Solution Manual for Calculus Single Variable Canadian 8th Edition by Adams Essex ISBN 9780321877406 0321877403

Full link download: Solution Manual:

https://testbankpack.com/p/solution-manual-for-calculus-single-variable-canadian-8th-edition-by-adams-essex-isbn-9780321877406-0321877403/

Test Bank:

https://testbankpack.com/p/test-bank-for-calculus-single-variable-canadian-8th-edition-by-adams-essex-isbn-9780321877406-0321877403/

CHAPTER 2. DIFFERENTIATION

Section 2.1 Tangent Lines and Their Slopes (page 100)

Slope of y = 3x - 1 at (1, 2) is

$$m = \lim_{h \to 0} \frac{3(1+h)-1-(3\times 1-1)}{h} \qquad \lim_{h \to 0} \frac{3h}{h} = 3$$

The tangent line is y - 2 = 3(x - 1), or y = 3x - 1. (The tangent to a straight line at any point on it is the same straight line.)

Since y = x/2 is a straight line, its tangent at any point (a,

a/2) on it is the same line y = x/2.

Slope of
$$y = 2x^2 - 5$$
 at (2, 3) is

$$m = \lim_{h \to 0} \frac{2(2+h)^2 - 5 - (2(2^2) - 5)}{h}$$

$$\lim_{h \to 0} \frac{8 + 8h + 2h^2 - 8}{h}$$

$$= \lim_{h \to 0} (8 + 2h) = \frac{h}{8}$$

Tangent line is y - 3 = 8(x - 2) or y = 8x - 13.

The slope of
$$y = 6 - x - x^2$$
 at $x = -2$ is
$$m = \lim_{h \to 0} \frac{6 - (-2 + h) - (-2 + h)^2 - 4}{h}$$

$$= \lim_{h \to 0} \frac{3h - h^2}{h} = \lim_{h \to 0} (3 - h) = 3.$$

Slope of
$$y = \sqrt{x + 1}$$
 at $x = 3$ is
$$m = \lim_{h \to 0} \frac{\sqrt{4 + h} - 2}{h} \cdot \frac{\sqrt{4 + h} + 2}{4 + h - 4}$$

$$\lim_{h \to 0} \frac{\sqrt{h+h+2}}{h+h+2}$$

$$1$$

$$2$$

Tangent line is
$$y - 2 = \frac{1}{2}(x - 3)$$
, or $x - 4y = -5$.

8. The slope of
$$y = \sqrt{x}$$
 at $x = 9$ is
$$m = \lim_{h \to 0} \frac{1}{h} \frac{\sqrt{1}}{\sqrt{9+h}} - \frac{1}{3} \sqrt{\frac{9+h}{\sqrt{9+h}}} = \lim_{h \to 0} \frac{3 - \sqrt{\frac{9+h}{9+h}}}{3h - 9 + h} \cdot \frac{3 + \sqrt{\frac{9+h}{9+h}}}{\sqrt{3h}} = \lim_{h \to 0} \frac{\sqrt{\frac{9-9-h}{\sqrt{3h}} + \frac{3+-9+h}{9+h}}}{3h - 9 + h + (3 + -9 + h)}$$

$$= - -1 - = -1$$

$$3(3)(6) \qquad 54$$

The tangent line at
$$(9, \frac{1}{3})$$
 is $y = \frac{1}{3} - \frac{1}{54}(x - 9)$, or $y = \frac{1}{2} - \frac{1}{54}x$.

9. Slope of
$$y = \frac{2x}{x+2}$$
 at $x = 2$ is
$$\frac{2(2+h)}{m = \lim_{h \to 0} \frac{2+h+2^{-1}}{h}}$$

$$= \lim_{h \to 0} 4 + 2h - 2 - h - 2$$

The tangent line at (-2, 4) is y = 3x + 10.

Slope of
$$y = x^3 + 8$$
 at $x = -2$ is
$$m = \lim_{h \to 0} \frac{(-2 + h) + 8 - (-8 + 8)}{h}$$

$$\lim_{h \to 0} \frac{-8 + 12h - 6h^2 + h^3 + 8 - 0}{h}$$

$$= \lim_{h \to 0} 12 - 6h + h^2 = 12$$

Tangent line is y - 0 = 12(x + 2) or y = 12x + 24.

6. The slope of $y = x \cdot 2 + 1$ at (0, 1) is

$$m = \lim_{h \to 0} \frac{1}{h} - \frac{1}{h} - 1 = \lim_{h \to 0} \frac{-h}{h} = 0.$$

The tangent line at (0, 1) is y = 1.

$$= \lim_{h \to 0} \frac{h}{(2+h+2)} = \lim_{h \to 0} \frac{h}{h(4+h)} = \frac{1}{4}.$$

Tangent line is
$$y - 1 = \frac{1}{4}(x - 2)$$
,

or
$$x - 4y = -2$$
. $\sqrt{\frac{5 - x^2}{5 - x^2}}$ at $x = 1$ is

$$m = \lim_{h \to 0} \frac{p \cdot 5 - (1 + h) \cdot 2 - 2}{p \cdot 5 - (1 + h)^2 - 4}$$

$$= \lim_{h \to 0} \frac{\frac{5 - (1 + h)^2 - 4}{p \cdot 5 - (1 + h)^2 + 2}$$

$$= \lim_{h \to 0} \frac{p - 2 - h}{5 - (1 + h)^2 + 2} = -\frac{1}{2}$$

The tangent line at (1, 2) is
$$y = 2 - \frac{1}{1}(x - 1)$$
, or $y = \frac{5}{2} - \frac{1}{2}x$.

Slope of $y = x^2$ at $x = x_0$ is

$$m = \lim_{h \to 0} \frac{(x_0 + h)^2 - x^2}{h} = \lim_{h \to 0} \frac{2x h + h^2}{h} = 2x_0.$$

Tangent line is $y - x_0^2 = 2x_0(x - x_0)$,

or
$$y = 2x_0 x - x_0^2$$
.

12. The slope of $y = \frac{1}{x}$ at $(a, \frac{1}{a})$ is

$$m = \lim_{h \to 0} \underline{1} \underline{1} + \underline{1} = \lim_{h \to 0} \underline{a - a - h} = -\underline{1}$$
.

 $h \to 0$ $h \overline{a + h}$ a $h \to 0$ $\overline{h} (\overline{a + h})(a)$ a^2

The tangent line at $(a, \underline{1})$ is $y = \underline{1} - \underline{1}$ $(x - a)$, or a

$$y = 2 - \underline{x}.$$

$$a \quad a^2 \quad \forall$$

13. Since $\lim_{h\to 0} \frac{\boxed{0+h}-0}{h} = \lim_{h\to 0} \frac{1}{|h| \operatorname{sgn}(h)}$ does not exist (and is not ∞ or $-\infty$), has no tangent at x=0.

The slope of f(x) = (x - 1) at x = 1 is

$$m\lim_{h\to 0} \frac{(1+h-1)^{4/3}-0}{h} = \lim_{h\to 0} h^{1/3} = 0.$$

The graph of f has a tangent line with slope 0 at x = 1. Since f(1) = 0, the tangent has equation y = 0

The slope of f(x) = (x + 2) at x = -2 is

$$\min_{h \to 0} \ \frac{(-2 + h + 2)^{3/5}}{h} \frac{-0}{-1} = \lim_{h \to 0} h^{-2/5} = \infty.$$

The graph of f has vertical tangent x = -2 at x = -2.

16. The slope of $f(x) = |x^2 - 1|$ at x = 1 is $m = \lim_{h \to 0} \frac{1}{1 + h^2} = \lim_{h \to 0} \frac{|2h + h^2|}{1 + h^2}$

which does not exist, and is not $-\infty$ or ∞ . The graph of f has no tangent at x = 1.

$$\sqrt{x}$$
 if $x \ge 0$, then

17. If
$$f(x) = -x$$
 if $x < 0$

$$\lim_{h \to 0+} f(0 + h) - f(0) \qquad \lim_{h \to 0+} \frac{h}{h} = \infty$$

$$\lim_{h \to 0-} \frac{f(0 + h) - f(0)}{h} \qquad \lim_{h \to 0-} \frac{-\frac{1}{2}}{h}$$

If m = -3, then $x_0 = -\frac{3}{2}$. The tangent line with slope = -3 at $(-\frac{3}{2}, \frac{1}{2})$ is $y = \frac{5}{2} - 3(x + \frac{3}{2})$, that is, $\frac{3x - \frac{13}{4}}{3}$.

a) Slope of $y = x^{3}$ at x = a is $m = \lim_{h \to 0} \frac{(a + h) - a}{h}$ $\lim_{h \to 0} \frac{a^{3} + 3a^{2}h + 3ah^{2} + h^{3} - a^{3}}{h}$ $= \lim_{h \to 0} (3a^{2} + 3ah + h^{2}) = 3a^{2}$

b) We have m = 3 if 3a = 3, i.e., if $a = \pm 1$. Lines of slope 3 tangent to y = x are

$$y = 1 + 3(x - 1)$$
 and $y = -1 + 3(x + 1)$, or $y = 3x - 2$ and $y = 3x + 2$.

The slope of $y = x^3 - 3x$ at x = a is $h \qquad i$ $m \lim_{h \to 0} \frac{1}{h} (a + h)^3 - 3(a + h) - (a^3 - 3a)$ $\lim_{h \to 0} \frac{1}{h} a^3 + 3a^2 h + 3ah^2 + h^3 - 3a - 3h - a^3 + 3a$ $= \lim_{h \to 0} \frac{1}{h} a^3 + 3a^2 h + 3ah^2 + h^3 - 3a - 3h - a^3 + 3a$

i

 $h\rightarrow 0$

At points where the tangent line is parallel to the x-axis, the slope is zero, so such points must satisfy $3a^2 - 3 = 0$. Thus, $a = \pm 1$. Hence, the tangent line is parallel to the x-axis at the points (1, -2) and (-1, 2).

21. The slope of the curve $y = x^3 - x + 1$ at x = a is

$$m = \lim_{h \to 0} (a+h)^3 - (a+h) + 1 - (a^3 - a + 1)$$

$$= \lim_{h \to 0} \frac{3a^2 h}{h} \frac{3ah^2 + a^3 - h}{h}$$

$$= \lim_{h \to 0} (3a^2 + 3ah + h^2) - 1 = 3a^2 - 1.$$

The tangent at x = a is parallel to the line y = 2x + 5 if $3a^2 - 1 = 2$, that is, if $a = \pm 1$. The corresponding points on the curve are (-1, 1) and (1, 1).

The slope of the curve y = 1/x at x = a is

INSTRUCTORSECTION2.1'S(PAGESOLUTIONS100) MANUAL

Thus the graph of f has a vertical tangent x = 0.

The slope of $y = x^2 - 1$ at $x = x_0$ is

ADAMS SECTIONandESSEX:2.1CALCULUS(PAGE100)8

$$m = \lim_{h \to 0} \frac{a+h}{h} = \underline{a} = \lim_{h \to 0} \frac{a-(a+h)}{ah(a+h)} = -\underline{1}.$$

The tangent at x = a is perpendicular to the line y = 4x - 3 if -1/a = -1/4, that is, if $a = \pm 2$. The corresponding points on the curve are (-2, -1/2) and (2, 1/2).

The slope of the curve $y = x^2$ at x = a is

$$m\lim_{h\to 0} \frac{(a+h)^2}{h} \frac{-a^2}{h^2} = \lim_{h\to 0} (2a+h) = 2a.$$

The normal at x = a has slope -1/(2a), and has equation

$$y-a^2=-\frac{1}{2a}(x-a)$$
, or $\frac{x}{2a}+y=\frac{1}{2}a^2$.
This is the line $x+y=k$ if $2a=1$, and so

$$k = (1/2) + (1/2) = 3/4.$$

24. The curves $y = k x^2$ and $y = k(x - 2)^2$ intersect at (1, k).

The slope of $y = kx^2$ at x = 1 is

$$m1 = \lim_{h \to 0} \frac{k(1+h)^2 - k}{h} = \lim_{h \to 0} (2+h)k = 2k.$$

The slope of y = k(x - 2) at x = 1 is

$$m \ 2 \qquad \lim_{h \to 0} \frac{k(2 - (1 + h))^2 - k}{h} = \lim_{h \to 0} (-2 + h)k = -2k.$$

The two curves intersect at right angles if 2k = -1/(-2k), that is, if $4k^2$ = 1, which is satisfied if $k = \pm 1/2$.

25. Horizontal tangents at (0, 0), (3, 108), and (5, 0).

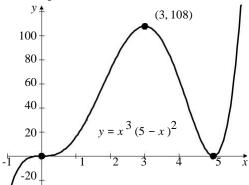


Fig. 2.1.25

26. Horizontal tangent at (-1, 8) and (2, -19).

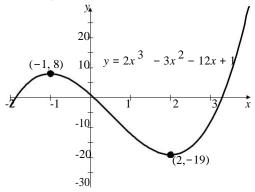
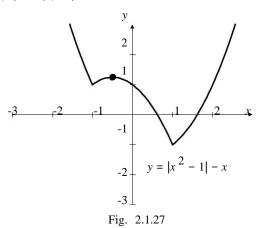
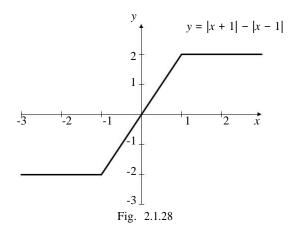


Fig. 2.1.26

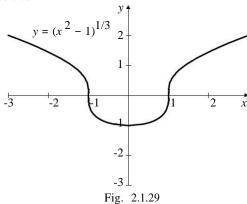
27. Horizontal tangent at (-1/2, 5/4). No tangents at (-1, 1) and (1, -1).



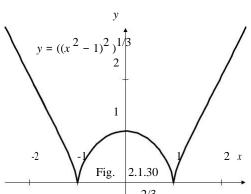
28. Horizontal tangent at (a, 2) and (-a, -2)for all a > 1. No tangents at (1, 2) and (-1, -2).



29. Horizontal tangent at (0, -1). The tangents at $(\pm 1, 0)$ are vertical.



Horizontal tangent at (0, 1). No tangents at (-1, 0) and (1, 0)0).



The graph of the function $f(x) \neq x^{2/3}$ (see Figure 2.1.7 in the text) has a cusp at the origin O, so does not have a tangent line there. However, the angle between OP and the positive y -axis does $\rightarrow 0$ as P approaches 0 along the graph. Thus the answer is NO.

The slope of P(x) at x = a is

$$m \quad \lim_{h \to 0} \frac{P(a+h) - P(a)}{h} .$$

Since $P(a + h) = a0 + a1 h + a2 h^2 + \dots + a_n h^n$ and

P(a) = a0, the slope is

Thus the line $y = \ell(x) = m(x - a) + b$ is tangent to = P(x) at x = a if and only if m = a1 and b = a0, that is, if and only if

$$P(x) - \ell(x) = a_2 (x - a)^2 + a_3 (x - a)^3 + \dots + a_n (x - a)^n$$

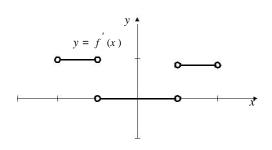
$$= (x - a)^2 h_{a2 + a3} (x - a) + \dots + a_n (x - a)^{n-2} i$$

$$= (x - a)^2 O(x)$$

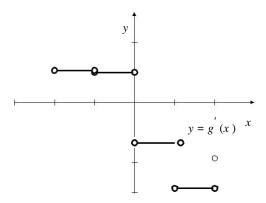
where Q is a polynomial.

Section 2.2 The Derivative (page 107)

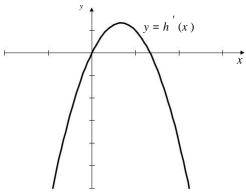
1.



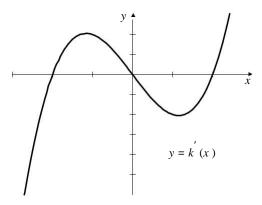
2.



3.



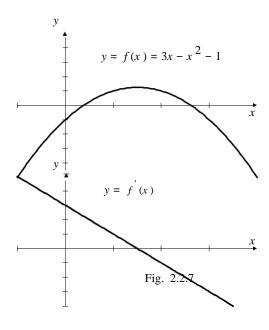
4.



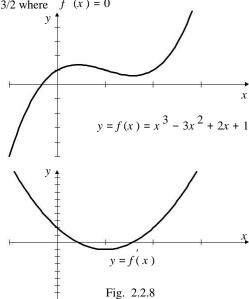
Assuming the tick marks are spaced 1 unit apart, the function f is differentiable on the intervals (-2, -1), (-1, 1), and (1, 2).

Assuming the tick marks are spaced 1 unit apart, the function g is differentiable on the intervals (-2, -1), (-1, 0), (0, 1), and (1, 2).

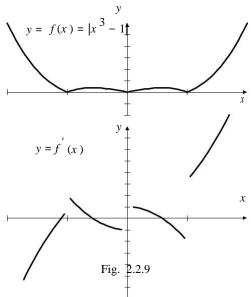
y = f(x) has its minimum at x = 3/2 where f'(x) = 0



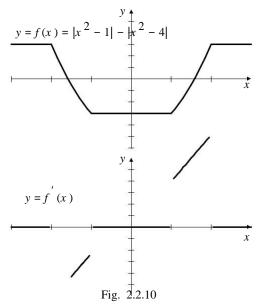
8. y = f(x) has horizontal tangents at the points near 1/2 and 3/2 where f(x) = 0



y = f(x) fails to be differentiable at x = -1, x = 0, and x = 1. It has horizontal tangents at two points, one between -1 and 0 and the other between 0 and 1.



10. y = f(x) is constant on the intervals $(-\infty, -2)$, (-1, 1), and $(2, \infty)$. It is not differentiable at $x = \pm 2$ and $x = \pm 1$.



$$y = x^{2} - 3x$$

$$y' = \lim_{h \to 0} \frac{(x+h)^{2} - 3(x+h) - (x^{2} - 3x)}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^{2} - 3h}{h} = 2x - 3$$

$$dy = (2x - 3) dx$$

 $\frac{2-x}{2+x}$

g(x) $h \to 0$ h

 $= - \frac{(2+x)^2}{4}$

2 - (x + h) - 2 - x

 $\lim (2-x-h)(2+x) - (2+x+h)(2-x)$

 $= \lim \frac{2 + x + h2 + x}{2 + x + h2 + x}$

g(x)

12.
$$f(x) = 1 + 4x - 5x^{2}$$

$$f'(x) = \lim_{h \to 0} \frac{1 + 4(x + h) - 5(x + h)^{2} - (1 + 4x - 5x^{2})}{1 + 4(x + h) - 5(x + h)^{2} - (1 + 4x - 5x^{2})} f$$

$$h \to 0$$

$$= \lim_{h \to 0} \frac{4h - 10xh - 5h^{2}}{h} = 4 - 10x$$

$$df(x) = (4 - 10x) dx$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

$$= \lim_{h \to 0} \frac{\sqrt{2t + 2h + 1 - 2t\sqrt{-1}}}{h} f$$

13.
$$f(x) = x^3$$

$$f'(x) = \lim_{h \to 0} \frac{(x+h) \cdot 3 - x \cdot 3}{h}$$

$$dF(t) = \sqrt{2t} \cdot 1 dt$$

$$df(t) = 3x^2 \frac{h}{h} + 3x \cdot \frac{h^2 + h^3}{h} - 3x^3$$

$$18. \quad f(x) = \frac{3}{4} \frac{\sqrt{2-x}}{2-x}$$

$$18. \quad f(x) = \frac{3}{4} \frac{\sqrt{2-x}}{2-(x+h)}$$

$$19. \quad f(x) = \frac{3}{4} \frac{\sqrt{2-x}}{\sqrt{2-(x+h)}}$$

$$19. \quad f(x) = \frac{3}{4} \frac{\sqrt{2-x}}{\sqrt{2-x}}$$

$$19. \quad f(x) = \frac{3}{4} \frac$$

$$x + h + \underbrace{1 \quad -x - 1}_{h \to 0}$$

$$= \lim_{h \to 0} \underbrace{1 \quad \frac{x + h}{h} - x - 1}_{-x \to h}$$

$$= \lim_{h \to 0} 1 + \underbrace{x - x - h}_{-x \to h}$$

$$dy \quad 1 \quad \lim_{h \to 0} \underbrace{-1}_{(x + h)x} = 1 - \underbrace{1}_{x^2}$$

$$= 1 - \underbrace{\frac{1}{x^2}}_{x^2} dx$$

$$dg(x) = -(2 - x)^{2} dx$$

$$= 1 - \frac{1}{x^{2}} dx$$

$$16.y = \frac{1}{x^{3}} x^{3} - x$$

$$y = \lim_{h \to 0} \frac{1}{h} \frac{1}{2} (x + h)^{3} - (x + h) - (\frac{1}{2} x^{3} - x)^{\frac{1}{2}}$$

$$\lim_{h \to 0} h = \frac{1}{3} x^{2} h + x h^{2} + \frac{1}{2} h^{3} - h$$

$$= \lim_{h \to 0} (x^{2} + x h + \frac{1}{3} h^{2^{3}} - 1) = x^{2} - 1$$

$$= 1 - \frac{1}{x^{2}} dx$$

$$z = \frac{1}{x^{2}}$$

$$\lim_{h \to 0} \frac{1}{x^{2}} + \frac{1}{x^{2}} - \frac{1}{x^{2}} = \frac{1}{x^{2}} dx$$

$$\lim_{h \to 0} \frac{1}{h^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} = \frac{1}{(1 + s)^{2}}$$

$$\lim_{h \to 0} \frac{1}{h^{2}} + \frac{1}{x^{2}} + \frac{1}{x$$

$$dy = (x^2 - 1) dx$$

$$\begin{array}{cccc}
dz & & & \\
& & 2 \\
& = (1 & s) & ds
\end{array}$$

21.
$$F(x) = \frac{\sqrt{1}}{1+x^2}$$

$$\frac{1}{1+x^2}$$

22.
$$y = \frac{1}{x^2}$$
 $y' = \lim_{x \to 0} \frac{1}{x} - \frac{1}{x}$

 $dF(x) = -(1 \quad x^2)^{3/2} dx$

 $= \overline{2(1+x^2)^{3/2}} = - (1+x^2)^{3/2}$

$$dy = -\chi 3 dx$$

$$y = \sqrt{1 + x}$$

 $f(t) = t_2 - 3_{\frac{t^2 + 3}{t}}$

$$\frac{\sqrt{1}}{h - 0} - \sqrt{1} + \frac{x}{h} + \frac{h}{h} + \frac{1}{1 + x}$$

$$= \lim_{h \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x + h}}{h + 1 + x + h} + \frac{\sqrt{1 + x + h}}{h + 1 + x + h}$$

$$\lim_{h \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x + h}}{h + 1 + x + h} + \frac{\sqrt{1 + x + h}}{h + 1 + x + h}$$

$$= \lim_{h \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x + h}}{h + 1 + x + h} + \frac{\sqrt{1 + x + h}}{h + 1 + x + h}$$

$$= \lim_{h \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x + h}}{h + 1 + x + h} + \frac{\sqrt{1 + x + h}}{h + 1 + x + h}$$

$$= -\frac{1}{2(1 + x)^{3/2}}$$

$$= \frac{1}{2(1 + x)^{3/2}}$$

$$d y = -2(1 + x)^{3/2} d x$$

Since $f(x) = x \operatorname{sgn} x = |x|$, for x = 0, f will become continuous at x = 0 if we define f(0) = 0. However, will still not be differentiable at x = 0 since |x| is not

differentiable at x = 0.

26. Since
$$g(x) = x^2 \operatorname{sgn} x = x |x| = \begin{cases} x^2 & \text{if } x > 0 \\ -x^2 & \text{if } x < 0 \end{cases}$$

will become continuous and differentiable at x = 0 if we define g(0) = 0.

27.
$$h(x) = |x| + 3x + 2$$
 fails to be differentiable where
$$\frac{1}{h^2} x^2 + 3x + 2 = 0$$
, that is, at $x = -2$, and $x = -1$. Note:

both of these are single zeros of x + 3x + 2. If they were higher order zeros (i.e. if (x + 2) or (x + 1) were

a factor of $x^2 + 3x + 2$ for some integer $n \ge 2$) then h would be differentiable at the corresponding point.

28.
$$y = x^3 - 2x$$

х	$\frac{f(x)}{x-1}$	3	x	$\frac{f(x) - f(1)}{x - 1}$
0.9 0.99 0.999	0.71000 0.97010 0.99700		1.1 1.01 1.001	1.31000 1.03010 1.00300
0.9999	0.99970		1.0001	1.00030

$$\frac{d}{dx}(x^{3} - 2x) = \lim_{h \to 0} \frac{(1+h)^{3} - 2(1+h) - (-1)}{h}$$

$$= \lim_{h \to 0} \frac{h + 3h^{2} + h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{h}{h \to 0}$$

$$f(x) = 1/x$$

	f(x) - f(2)		f(x) - f(2)			
x	- 2	X	x - 2			
1 1	<u> x</u>					
1.9	-0.26316	2.1	-0.23810			
1.99	-0.25126	2.01	-0.24876			
1.999	-0.25013	2.001	-0.24988			
1.9999	0.25001	2.0001	-0.24999			
1						
	, <u>2</u> +	<u> h –2</u>	2 - (2 + h)			
	lim					

SECTIONINSTRUCTOR2.2'S(PAGESOLUTIONS107) MANUAL

$$f'(t) = \lim_{h \to 0} \frac{1}{h} \frac{(t+h)^2 - 3}{(t+h)^2 + 3} - \frac{t^2 - 3}{t^2 + 3}$$

$$\lim_{h \to 0} \frac{1}{h} \frac{(t+h)^2 - 3(t^2 + 3) - (t^2 - 3)[(t+h)^2 + 3]}{2}$$

$$h \to 0h (t^2 + 3)[(t+h) + 3]$$

$$= \lim_{h \to 0} \frac{12t h + 6h^2}{(t^2 + 3)[(t+h)^2 + 3]} = \frac{12t}{(t^2 + 3)^2}$$

$$df(t) = (t^2 + 3)^2 dt$$

ADAMS SECTIONandESSEX:2.2CALCULUS(PAGE107)8

$$= \lim_{h \to 0} - \frac{1}{(2+h)^2} = -\frac{1}{4}$$
The slope of $y = 5 + 4x - x^2$ at $x = 2$ is
$$0 + \frac{2}{4} = \lim_{h \to 0} \frac{5 + 4(2+h) - (2+h) - 9}{h}$$

$$\frac{1}{4} = \lim_{h \to 0} \frac{5 + 4(2+h) - (2+h) - 9}{h} = 0.$$

Thus, the tangent line at x = 2 has the equation y = 9.

$$y = \sqrt[4]{x + 6}$$
. Slope at (3, 3) is
$$\sqrt[4]{9 + h} - 3 \qquad 9 + h - 9 \qquad 1$$

$$m = \lim_{h \to 0} \frac{1}{h} = \lim_{h \to 0} = \lim_{h \to 0} \frac{1}{h} = \lim_{h \to 0} \frac{1}{h} = \lim_{h \to 0} \frac{1}{h$$

Tangent line is $y - 3 = \frac{\pi}{6}$ (x - 3), or x - 6y = -15.

32. The slope of $y = t^2 - 2$ at t = -2 and y = -1 is

$$dy = \lim_{t \to -2} \frac{1}{h \to 0} \frac{-2 + h}{2} - (-1)$$

$$-dt_{t=-2} \quad h \to 0 \quad h \quad (-2 + h) - 2$$

$$\lim_{t \to -2} \frac{-2 + h + [(-2 + h)^2 - 2] = -3}{2}.$$

$$h \to 0 \quad h \quad [(-2 + h) - 2] \quad 2$$

Thus, the tangent line has the equation

$$y = -1 - \int_{0}^{\pi} (t+2)$$
, that is, $y = -\frac{1}{2}t - 4$.

33.
$$y = \frac{2}{t^2 + t}$$
 Slope at $t = a$ is

$$m = \lim_{h \to 0} \frac{\frac{2}{(a+h)^2 + (a+h)}}{h} = \frac{a^2 + a}{\frac{2}{a^2 + a}}$$

$$\lim_{h \to 0} \frac{2(a^2 + a - a^2 - 2ah - h^2 - a - h)}{(a^2 + a)^2 + a + h} \frac{2(a^2 + a - h)}{(a^2 + a)^2 + a + h}$$

$$\lim_{h \to 0} \frac{2(a^{-} + a - a^{-} - 2ah - h^{-} - a - h)}{h \to 0h [(a + h)^{2} + a + h](a^{2} + a)}$$

$$= \lim_{h \to 0} \frac{-4a - 2h - 2}{h + a + h](a^{2} + a)}$$

$$4a + 2$$

$$= - \overline{(a^2 + a)^2}$$

Tangent line is $y = \frac{2}{(2a+1)}(t-a)$

$$a^{2} + a$$
 $(a^{2} + a)^{2}$
 $f'(x) = -17x^{-18}$ for $x = 0$

$$g'(t) = 22t^{21}$$
 for all t

$$d^{-1}x^{y} = \frac{1}{3}x^{-2/3}$$
 for $x = 0$

$$d\frac{d^2x}{d^2x^2} = -\frac{1}{3}x^{-4/3}$$
 for $x = 0$

$$\frac{d}{dt}t^{-2.25} = -2.25t^{-3.25}$$
 for $t > 0$

39.
$$\frac{d}{ds} s^{119/4} = \frac{119}{4} s^{115/4} \text{ for } s > 0$$

The slope of $y = \sqrt{\frac{-}{x}}$ at $x = x_0$ is

$$\frac{dy}{dx} = \frac{1}{2 x_0}$$

Thus, the equation of the tangent line is

$$y = \sqrt{\frac{1}{x^0}} + \frac{1}{2x^0} (x - x^0), \text{ that is, } y = \frac{x + x^0}{2x^0}$$

45. Slope of $y = \frac{1}{x}$ at x = a is $-\frac{1}{x^2} = \frac{1}{a^2}$

Normal has slope a^2 , and equation $y = \frac{1}{a} = a^2(x - a)$,

or
$$y = a^2 x - a^3 + \frac{a}{1}$$

46. The intersection points of y = x and x + 4y = 18 satisfy

$$4x + x - 18 = 0$$
$$(4x + 9)(x - 2) = 0.$$

Therefore $x = -\frac{9}{2}$ or x = 2. The slope of $y = x^{\frac{4}{2}}$ is $m \cdot 1 = \frac{dy}{2} = 2x$.

At
$$x = -2$$
, $m_1 = -2$. At $x = 2$, $m_1 = 4$.

The slope of
$$x + 4y$$
 = 18, i.e. $y = -\frac{1}{4}x + \frac{18}{4}$, is $m = -\frac{1}{4}$.

2, the product of these slopes is $(4)(-\frac{1}{4})=-1$. So, the curve and line intersect at right angle s at that point.

2

Let the point of tangency be (a, a). Slope of tangent is

$$x^{2} = 2a$$

 $dx X^2$ x=a=2aThis is the slope from (a, a^2) to (1, -3), so

40.
$$ds$$
 s $s=9$ = $2\sqrt{s}$ $s=9$ = 6 .

42.
$$f'(8) = -\frac{2}{3}x - \frac{5}{3} = -\frac{1}{48}$$

$$\frac{a^2+3}{a^2+3} = 2a$$
, and

$$a - 1$$

$$2 2$$

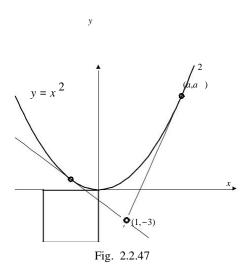
$$a + 3 = 2a - 2a$$

$$a^2 - 2a - 3 = 0$$

$$a = 3 \text{ or } -1$$

The two tangent lines are

(for
$$a = 3$$
): $y - 9 = 6(x - 3)$ or $6x - 9$
(for $a = -1$): $y - 1 = -2(x + 1)$ or $y = -2x - 1$



48. The slope of
$$y = \frac{1}{x}$$
 at $x = a$ is

$$= -\frac{1}{\frac{2}{a}}$$

1

$$dx_{x=0}$$

If the slope is
$$-2$$
, then $-\frac{1}{a^2} = -2$, or $a = \pm \sqrt{2}$

Therefore, the equations of the two straight lines are

$$y = 2 - 2$$
 $x - \sqrt{\frac{1}{2}}$ and $y = -2 - 2$ $x + \sqrt{\frac{1}{2}}$, or $y = -2x$ $\pm \overline{2}$ 2.

49. Let the point of tangency be (a, \sqrt{a})

Slope of tangent is $\frac{d}{x} = 1$

Thus $\sqrt{\ } = \ ,$ so a + 2 = 2a, and a = 2.

Fig. 2.2.49

50. If a line is tangent to $y = x^2$ at (t, t^2) , then its slope is

Hence
$$t = \frac{2a \pm \sqrt{\frac{4a^2 - 4b}{2}}}{2} = a \pm p_{\overline{a^2 - b}}$$
 $\sqrt{\frac{\sqrt{a^2 - b}}{a^2 - b}}$
If $b < a^2$, i.e. $a^2 - b > 0$, then $t = a \pm \frac{\sqrt{a^2 - b}}{a^2 - b}$

has two real solutions. Therefore, there will be two distinct tangent lines passing through (a,b) with equations

$$y = b + 2$$
 $a \pm \sqrt[3]{a^2 - b}$ $(x - a)$. If $b = a^2$, then $t = a$.

There will be only one tangent line with slope 2a and

equation y = b + 2a(x - a). If $b > a^2$, then $a^2 - b < 0$. There will be no real solution for

t. Thus, there will be no tangent line.

51. Suppose
$$f$$
 is odd: $f(-x) = -f(x)$. Then
$$f(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x-h) - f(x)}{h}$$

$$(let $h = -k)$$$

$$= \lim_{x \to \infty} \frac{f(x+k) - f(x)}{f(x+k)} = f'(x)$$

Thus $f^{'}$ is even.

Mow suppose
$$f$$
 is even: $f(-x) = f(x)$. Then $f(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h}$

$$= \lim_{h \to 0} \frac{f(x-h) - f(x)}{h}$$

$$= \lim_{k \to 0} \frac{f(x+k) - f(x)}{h}$$

SO f' is odd.

52. Let
$$f(x) = x^{-n}$$
. Then

=-f(x)

$$f'(x) = \lim \underbrace{(x \quad h)_{-n} - x_{-n}}_{h \to 0}$$

$$= \lim_{h \to 0} \frac{1}{h} - \underbrace{\frac{1}{(x+h)^n} - \frac{1}{x_n}}_{h \to 0}$$

$$= \lim_{h \to 0} \frac{x \frac{n}{(x+h)^n} - x_n}{h x^n (x+h)^n}$$

$$\frac{dy}{dx}$$
 = 2t. If this line also passes through (a, b) , then its satisfies slop

$$\frac{t^{2}-b}{t-a} = 2t, \text{ that is } t^{2} - 2at + b = 0.$$

$$= \lim_{h \to 0} \frac{x - (x + h)}{h \times n} \times$$

$$= \lim_{h \to 0} \frac{x - (x + h)^n}{h \times n} \times$$

$$= x^{n-1} + x^{n-2} (x + h) + \dots + (x + h)$$

$$= -x^{n-1} - (x + h)$$

$$= -x^{n-1} - (x + h)$$

$$= -x^{n-1} - (x + h)$$

$$(x) = \lim_{h \to 0} (x+h) - x$$

$$1/3 \quad 1/3$$

$$(x+h) - x$$

$$= \lim_{h \to 0} h$$

 $(x + h)^{2/3} + (x + h)^{1/3} + (x + h)^{1/3} + x^{2/3} + h)^{1/3} x^{1/3} + x^{2/3} + h)^{2/3} + (x + h)^{2$

$$\lim \frac{x+h-x}{2/3-1/3-1/3-2/3}$$

$$h \to 0 \ h \left[(x+h) + (x+h) + x + x \right]$$

$$\lim \frac{1}{h \to 0 \ (x+h)^{2/3} + (x+h)^{1/3} x^{1/3} + x^{2/3}}$$

$$\frac{1}{3x^{2/3}} = \frac{1}{3} x^{-2/3}$$

Let
$$f(x) = x^{1/n}$$
. Then
$$f' = -\frac{1/n}{n} \quad (\text{let } x + h = a , x = b)$$

$$(x) = \lim_{h \to 0} (x + h) - x \qquad n \qquad n$$

$$= \lim_{h \to 0} \frac{a - b}{n}$$

$$= \lim_{a \to b} \frac{a - b}{a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + b^{n-1}}$$

$$= \frac{1}{n} = \frac{1}{n} x^{(1/n)-1}.$$

$$nb^{n-1} \qquad n$$

55.
$$\frac{d \, x^n}{dx} = \lim_{h \to 0} \frac{(x - h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} x^n + \underbrace{n}_{n} x^{n-1} h + \underbrace{n(n-1)}_{n} x^{n-2} h^2$$

$$+ \underbrace{n(n-1)(n-2)}_{1 \times 2 \times 3} x^{n-3} h^3 + \dots + h^n - x^n$$

$$= \lim_{h \to 0} n x^{n-1} + h \underbrace{n(n-1)}_{n} x^{n-2} h$$

$$= \lim_{h \to 0} n x^{n-1} + h \underbrace{n(n-1)}_{n-2} x^{n-2} h + \dots + h^{n-1}$$

$$\times 2 \times 3$$

$$y = f(a)$$
 + $f'(a+)(x-a)$, $(x \ge a)$, the right tangent

line to the graph of f at x = a. Similarly, if f'(a-)

is finite, call the half-line y = f(a) + f(a -)(x - a), $(x \quad a)$, the left tangent li If f) (), \leq ne. $(a+=\infty \text{ or } -\infty$ the right tangent line is the half-line $x=a,y\geq f(a)$ (or

 $x = a, y \le f(a)$. If $f(a-) = \infty$ (or $-\infty$), the right tangent line is the half-line $x = a, y \le f(a)$ (or x = a,

The graph has a tangent line at x = a if and only if

f(a+) = f(a-).(This includes the possibility that both quantities may be $+\infty$ or both may be $-\infty$.)

case the right and left tangents are two opposite halves of the same straight line. For $f(x) = x^{2/3}$, $f'(x) = 2x^{-1/3}$.

At (0, 0), we have $f'(0+) = +\infty$ and $f'(0-) = ^3-\infty$. In this case both left and right tangents are the positive y axis, and the curve does not have a tangent line at the

For f(x) = |x|, we have

$$f'(x) = \operatorname{sgn}(x) = \frac{n \, 1}{\text{if } x > 0}$$

-1 if $x < 0$.

At (0, 0), f'(0+) = 1, and f'(0-) = -1. In this case the right tangent is y = x, $(x \ge 0)$, and the left tangent is

y = -x, $(x \le 0)$. There is no tangent line.

Section 2.3 Differentiation Rules (page 115)

1.
$$y = 3x^2 - 5x - 7$$
, $y' = 6x - 5$.
 $y = 4x^{1/2} - \frac{5}{x}$, $y' = 2x^{-1/2} + 5x^{-2}$

3.
$$f(x) = Ax + Bx + C$$
, $f(x) = 2Ax + B$.

5.
$$z = 15$$
 , $dx = 3$ 5

6.
$$y = x \stackrel{45}{=} x \stackrel{-45}{=} x \stackrel{-45}{=} y = 45x \stackrel{44}{=} + 45x \stackrel{-46}{=}$$
7. $g(t) = t + 2t + 3t$

7.
$$g(t) = t + 2t + 3$$

$$n\,x^{n-1}$$

$$g'(t) = 1$$
 $-2/3$ $-1 -3/4$ $3 -4/5$
 $3 t + 2t + 5t$
 $p 2$

8.
$$y = 3^{\frac{3}{t^2}} - \frac{\sqrt{}}{t^3} = 3t^{\frac{2}{3}} - 2t^{-\frac{3}{2}}$$

$$\frac{dy}{dt} = 2t - 1/3 + 3t - 5/2$$

9.
$$u = \frac{3}{5}x^{5/3}$$
 $\frac{5}{3}x^{-3/5}$ $\frac{du}{dx} = x^{2/3} + x^{-8/5}$

Let

$$f(a+) = m f(a+h) - f(a)$$

$$f \lim_{h \to 0+} \frac{h}{f(a+h) - f(a)}$$

$$f(a) \lim_{h \to 0-} \frac{f(a+h) - f(a)}{h}$$

$$z = t^{\frac{2}{2} + 2tt}$$

$$z = (t^{\frac{2}{2} - 1)(2t + 2) - (t^{\frac{2}{2} + 2t})(2t)}$$

$$(t^{2} - 1)^{2}$$

$$- \frac{2(t^{\frac{2}{2} + t + 1})(t)}{2^{\frac{2}{2} - 1}}$$
23.
$$s = \frac{1 + \sqrt{7}}{1 - \sqrt{1}}$$

$$\frac{ds}{dt} = \frac{\frac{1 + \sqrt{7}}{1 - \sqrt{1}}}{\frac{1 - \sqrt{1}}{1 - t}}$$

$$\frac{\sqrt{1 - 1} \sqrt{1}}{t(1 - t)^{2}}$$

$$f(x) = \frac{x_{3} - 4}{t}$$

$$+ 1$$

$$2 \quad 3$$

$$f'(x) = \frac{(x + 1)(3x - 1 - (x - 4)(1))}{(x + 1)^{2}}$$

$$= \frac{2x_{3}^{3} + 3x_{4}^{2} + 4}{(x + 1)^{2}}$$
25.
$$f(x) = \frac{ax - b}{cx - d}$$

$$f'(x) = \frac{(cx + d)a - (ax + b)c}{(cx + d)^{2}}$$

$$\frac{(cx + d)^{2}}{ad - bc}$$

$$(cx + d)^{2}$$

$$F(t) = t^{2} + \frac{7t - 8t^{2}}{t + 1}$$

$$(t^{2} - t + 1)(2t + 7) - (t^{2} + 7t - 8)(2t - 1)$$

$$F'(t) = \frac{2}{(t^{2} - t + 1)}$$

27. f(x) = (1+x)(1+2x)(1+3x)(1+4x)(x) = (1+2x)(1+3x)(1+4x) + 2(1+x)(1+3x)(1+4x)

= 2t - 1/2 +

$$t + t 32 + \frac{3(1 + x)(1 - \frac{1}{4x})}{2x(1 + 4x)} + \frac{4(1 + x)(1 + \frac{1}{4x})}{4(1 + x)(1 + \frac{1}{4x})} + \frac{4(1 + x)(1 + \frac{1}{4x})}{4(1 + x)(1 + \frac{1}{4x})} = 0$$

$$\frac{dy}{dt} = -t^{-3/2} + \frac{1}{\sqrt{t}} = 0$$

$$\frac{dt}{dt} = \frac{1}{2t} = 0$$

$$x = \frac{1}{2t}$$

50

Copyright © 2014 Pearson Canada Inc.

$$y = (x^{2} + 4)(\sqrt{x + 1})(5x^{2/3} - 2) \sqrt{x} + 1)(5x^{2/3} - 2) y' 2x($$

$$= (x^{2} + 4)(5x^{2/3} - 2)(5x^{2/3} - 2) + (x^{2} + 4)(5x^{2/3} - 2) + (x^{2} + 4)(5x^{2/3} - 2) + (x^{2} + 4)(5x^{2/3} - 2) + (x^{2} + 4)(x^{2} + 4)(x^{2} + 4)(x^{2} + 4) + (x^{2} + 4)(x^{2} + 4)(x^{2} + 4)(x^{2} + 4)(x^{2} + 4)(x^{2} + 4) + (x^{2} + 2)(5x^{2} + 4)(5x^{2} + 4) + (x^{2} + 2)(5x^{2} + 4)(5x^{2} +$$

35.
$$\frac{d}{dx} x^{2} f(x) = 2x f(x) + x^{2} f(x)$$

$$x = 2 \qquad x = 2$$

$$= 4f(2) + 4f'(2) = 20$$
36.
$$\frac{d}{dx} \frac{-f(x)}{x^{2} + f(x)} - \frac{1}{x = 2}$$

$$= \frac{(x^{2} + f(x))f'(x) - f(x)(2x + f'(x))}{(x^{2} + f(x))^{2}} = \frac{18 - 14}{(4 + f(2))^{2}} = \frac{18 - 14}{6^{2}} = \frac{1}{(4 + f(2))^{2}}$$

$$= \frac{(4 + f(2))f'(2) - f(2)(4 + f'(2))}{(4 + f'(2))^{2}} = \frac{18 - 14}{6^{2}} = \frac{1}{(4 + f(2))^{2}}$$

$$= \frac{8}{(x^{2} + 4)^{2}} (2x)$$

$$= \frac{32}{(x^{2} + 4)^{2}} \frac{1}{x^{2} - 2}$$

$$= \frac{32}{(4 + f(2))^{2}} - \frac{1}{6^{2}} \frac{32}{x^{2}}$$

$$= \frac{32}{(4 + f(2))^{2}} - \frac{1}{6^{2}} \frac{32}{x^{2}}$$

$$= \frac{(5 - f)(1 + \frac{3}{2}, \frac{1/2}{2}) - (4 + \frac{f'(2)}{2})}{2}$$

$$= \frac{(5 - f)(1 + \frac{3}{2}, \frac{1/2}{2}) - (4 + \frac{f'(2)}{2})}{2}$$

$$= \frac{(5 - f)(1 + \frac{3}{2}, \frac{1/2}{2}) - (4 + \frac{f'(2)}{2})}{2} = \frac{1}{6^{2}}$$
39.
$$f(x) = x + 1$$

$$= \frac{(x + 1)^{2}}{2} - \frac{x}{2}$$

$$= \frac{x + 1}{(x + 1)}$$

$$= \frac{(x + 1)^{2}}{2} - \frac{x}{2}$$

$$= \frac{x + 1}{(x + 1)}$$

.

33.
$$\frac{d}{dx} = \frac{f(x)(2x) - x}{f(x)} = \frac{f(x)(2x) - x}{f(x)} = \frac{f(x)(2x) - x}{f(x)} = \frac{f(x)(2x) - x}{f(x)} = \frac{4f(2) - 4f(2)}{f(2)^{2}} = -\frac{4}{4} = -1$$

34.
$$d f(x) \frac{x^2 f(x) 2x f(x)}{x^2 x^2} = x$$

$$dx x^2 x = 2 4 x = 2$$

$$f'(2) = \frac{2}{9} = \frac{2}{9} = \frac{2}{18} = \frac{2}{2}$$

40.
$$\underline{d}_{t}$$
 [(1 + t)(1 + 2t)(1 + 3t)(1 + 4t)]
 dt $t = 0$
(1)(1 + 2t)(1 + 3t)(1 + 4t) + (1 + t)(2)(1 + 3t)(1 + 4t) + (1 + t)(1 + 2t)(3)(1 + 4t) + (1 + t)(1 + 2t)(1 + 3t)(4)
 $t = 0$
 $1 + 2 + 3 + 4 = 10$

Slope of tangent at (1, -2) is m = (-1)22 =

51

51

Copyright © 2014 Pearson Canada Inc.

$$= \frac{4f'(2) - 4f(2)}{16} = \frac{4}{16} = \frac{1}{4}$$

Tangent line has the equation
$$y = -2 + 4(x - 1)$$
 or

$$y = 4x - 6$$

42. For
$$y = \frac{x+1}{x-1}$$
 we calculate

$$y' = (x-1)(1) - (x+1)(1) = -2 - (x-1)^2$$

At x = 2 we have y = 3 and y = -2. Thus, the

equation of the tangent line is y = 3 - 2(x - 2), or y = -2x + 7. The normal line is y = 3 + 4(x - 2), or y = 4x + 2.

43.
$$y = x + \frac{1}{x}, y' = 1 - \frac{1}{x^2}$$

For horizontal tangent: $0 = y' = 1 - \frac{1}{x^2}$ so $x^2 = 1$ and $x = \pm 1$

The tangent is horizontal at (1, 2) and at (-1, -2)

If
$$y = x^2 (4 - x^2)$$
, then

$$y' = 2x(4-x^2) + x^2(-2x) = 8x - 4x^3 = 4x(2-x^2).$$

The slope of a horizontal line must be zero, so $4x(2-x^2) = 0$, which implies that x = 0 or $x = \pm \sqrt{-2}$ At x = 0, y = 0 and at $x = \pm \sqrt{-2}$, y = 4.

Hence, there are two horizontal lines that are tangent to the curve. Their equations are y = 0 and y = 4.

45.
$$y = \frac{1}{x^2 + x + 1}, y' = -\frac{2x + 1}{(x^2 + x + 1)^2}$$

For horizon-

tal tangent we want $0 = y' = -\frac{2x+1}{(x^2+x+1)^2}$. Thus

$$2x + 1 = 0$$
 and $x = \frac{1}{2}$

The tangent is horizontal only at -2,3.

$$\frac{x+1}{x+1}$$
If $y = x + 2$, then

$$y' = \frac{(x+2)(1) - (x+1)(1)}{(x+2)^2} = \frac{1}{(x-2)^2}$$

In order to be parallel to y = 4x, the tangent line must have slope equal to 4, i.e.,

$$\frac{1}{x} = 4$$
, or $(x+2)^2 = \frac{1}{x}$.

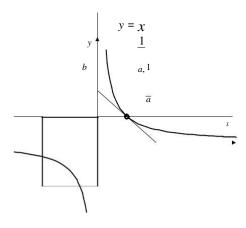


Fig. 2.3.47

48. Since
$$\frac{1}{\sqrt{x}} = y = x^2 \implies x^{5/2} = 1$$
, therefore $x = 1$ at the intersection point. The slope of $y = x^2$ at $x = 1$ is

2x = 2. The slope of $y = \sqrt{x}$ at x = 1 is

$$\frac{dy}{dx} = -\frac{1}{x} - \frac{3}{2} = -\frac{1}{x}.$$

The product of the slopes is (2) $-\frac{1}{2}$ = -1. Hence, the two curves intersect at right angles.

The tangent to $y = x^3$ at (a, a^3) has equation $y = a^3 + 3a^2(x - a), \text{ or } y = 3a^2x - 2a^3. \text{ This line } 2$ passes through (2, 8) if 8 = 6a - 2a or, equivalently, if $a^3 - 3^2 + 4 = 0. \text{ Since } (2, 8) \text{ lies on } y = x^3, a = 2 \text{ must}$

be a solution of this equation. In fact it must be a double root; $(a-2)^2$ must be a factor of a^3-3^2+4 . Dividing by

this factor, we find that the other factor $i^{\alpha}a + 1$, that is,

$$a^3 - 3^2 + 4 = (a - 2)^2 (a + 1).$$

The two tangent lines to y = x passing through (2, 8) correspond to a = 2 and a = -1, so their equations are y = -1

The tangent to $y = x^2/(x-1)$ at $(a, a^2/(a-1))$ has slope $(x-1)2x - x^2$ (1) $a^2 - 2a$

$$(x+2)^2$$

Hence
$$x + 2 = \pm \frac{1}{2}$$
, and $x = -\frac{3}{2}$ or $-\frac{5}{2}$. At $x = -3$.
 $y = -1$, and at $x = -\frac{5}{2}$, $y = 3$.

Hence, the tangent is parallel to y 4x at the points 2,-1 and 2,3. $-\frac{3}{}$ $-\frac{5}{}$ Let the point of tangency be $(a,\frac{1}{}a)$. The slope of the

53

tangent is
$$\frac{1}{a^2} = \frac{b-\frac{1}{a}}{a}$$
. Thus $b 1 = 1$ and $a = 2$.
$$a^2 = 0 - \overline{a} \qquad \overline{a} \qquad a \qquad b$$
$$b^2 \qquad \qquad b^2$$

$$m = \frac{1}{(x-1)^2} = \frac{1}{(x-1)^2}$$

The equation of the tangent is

$$\frac{a^2}{y - a - 1} = \frac{a^2 - 2a}{(a - 1)^2 (x - a)}.$$

This line passes through (2, 0) provided

$$\underline{a^2}$$
 $\underline{a^2 - 2a}$

Copyright © 2014 Pearson Canada Inc.

53

Tangent has slope -4 so has equation y = b - 4x.

$$0 - {a - 1} = {(a - 1)^2}(2 - a),$$

or, upon simplification, $3a^2 - 4a = 0$. Thus we can have either a = 0 or a = 4/3. There are two tangents through (2, 0). Their equations are y = 0 and y = -8x + 16.

51.
$$\frac{d \operatorname{P} \overline{f(x)}}{dx} = \lim_{h \to 0} \underbrace{\frac{f(x+h) - f(x)}{h \cdot \cdot \cdot}}_{h \cdot \cdot \cdot \cdot}$$

$$= \lim_{h \to 0} \underbrace{\frac{f(x+h) - f(x)}{h} \sqrt{\frac{1}{f(x+h) + f(x)}}}_{\frac{2^{\vee} \overline{f(x)}}{h}}$$

$$\frac{d}{dx} p \quad x^{2} + 1 = \sqrt{\frac{2x}{2x^{2} + 1}} = \sqrt{\frac{x}{x^{2} + 1}}$$

52.
$$f(x) = |x|^3 = x^3$$
 if $x \ge 0$. Therefore f is differen-

tiable everywhere except possibly at x = 0, However,

$$\lim_{h \to 0+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0+} h^2 = 0$$

$$\lim_{h \to 0-} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0-} (-h^2) = 0.$$

Thus f'(0) exists and equals 0. We have

$$f(x) = \begin{cases} 3x^2 & \text{if } x \ge 0 \\ -3x^2 & \text{if } x < 0. \end{cases}$$

To be proved: $d x^{n/2} = 2x^{(n/2)-1}$ for n = 1, 2, 3, ...

Proof: It is already known that the case n = 1 is true: the derivative of $x^{1/2}$ is $(1/2)x^{-1/2}$.

Assume that the formula is valid for n = k for some positive integer k:

$$\frac{d}{dx}x^{k/2}$$
 $\frac{\underline{k}}{2}x^{(k/2)-1}$.

Then, by the Product Rule and this hypothesis,

$$\frac{d}{dx} x^{(k+1)/2} \frac{d}{dx} x^{1/2} x^{k/2}$$

$$dx \qquad \qquad k+1$$

54. To be proved:

$$(f_1f_2\cdots f_n ')$$

$$= f' \quad f_1 \quad \cdots f_n + f \quad f' \cdots f_n + \cdots + f_1 f_2 \quad \cdots f_n$$

Proof: The case n = 2 is just the Product Rule. Assume

the formula holds for n = k for some integer k > 2. Using the Product Rule and this hypothesis we calculate

$$= f \cdot 1 \cdot f \cdot 2 \cdots f \cdot k \cdot f \cdot k + 1 + f \cdot 1 \cdot f \cdot 2 \cdots f \cdot k \cdot f \cdot k + 1 + \cdots$$

$$+ f \cdot 1 \cdot f \cdot 2 \cdots f \cdot k \cdot f \cdot k + 1 + f \cdot 1 \cdot f \cdot 2 \cdots f \cdot k \cdot f \cdot k + 1$$
so the formula is also true for $n = k + 1$. The formula is

therefore for all integers $n \ge 2$ by induction.

Section 2.4 The Chain Rule (page 120)

$$y = (2x + 3), y' = 6(2x + 3) = 12(2x + 3)$$

$$x$$

$$y = 1 - 3^{99}$$
98

$$y' = 99 \ 1 - \frac{x}{3} \quad {}^{98} - \frac{1}{3} = -33 \ 1 - \frac{x}{3}$$

$$f(x) = (4 - x^2)^{10}$$

$$(x) = 10(4 - x^2)^9 (-2x) = -20x(4 - x^2)^9$$

4.
$$\frac{dv}{dx} = \frac{d^{2}p}{1 - 3x^{2} = \sqrt{2}} = \frac{-6x}{1 - 3x^{2}} = \frac{-\sqrt{3}x}{1 - 3x^{2}}$$

5.
$$F(t) = 2 + \frac{3}{t}^{-10}$$

$$\frac{3}{F}$$
 $\frac{-11}{2}$ $\frac{-3}{2}$ $\frac{30}{2}$ $\frac{3}{2}$ -11

$$(t)_3 = -10 \ 2 +$$
 $z = (1 + x^{2/3})^{3/2}$
 $t = t$
 $t = 2 +$
 $t = t$

$$z' = (1 + x^{2/3})^{1/2} (\frac{3}{2}x^{-1/3}) = x^{-1/3} (1 + x^{2/3})^{1/2}$$

$$= \underbrace{\frac{1}{x} - \frac{1}{2} \frac{x}{k^{2}}}_{2} + \underbrace{\frac{k}{k} \frac{x}{k^{2}} - \frac{1}{2}}_{2} \underbrace{\frac{x}{(k+1)/2 - 1}}_{2}.$$

Thus the formula is also true for n = k + 1. Therefore it is true for all positive integers n by induction. For negative n = -m (where m > 0) we have

$$\frac{d}{dx} x^{n/2} = \frac{d}{dx} \frac{1}{m}$$

$$= \frac{dxx^{m/2}}{m} x^{(m/2)-1}$$

$$= -\frac{m}{2} x^{-(m/2)-1} = \frac{n}{2} x^{(n/2)-1}.$$

$$2$$

55

55

Copyright © 2014 Pearson Canada Inc.

$$y = 4x + |4x - 1|$$

 $y' = 4 + 4(\operatorname{sgn}(4x - 1))$
 $\operatorname{sif} x > 4^{\frac{1}{4}}$
 $\operatorname{0if} x < \frac{1}{4}$

$$y = (2 + |x|^{3})^{1/3}$$

$$3 - 2/3 2$$

$$y' = {}^{1}3(2 + |x|) (3|x|) sgn(x)$$

$$= |x|^{2}(2 + |x|^{3})^{-2/3} |x|^{x} = x |x|(2 + |x|^{3})^{-2/3}$$

13.
$$y = \frac{1}{2 + 3x + 4}$$

$$y = -\frac{1}{2 + 3x + 4}$$

$$-\frac{1}{2 + 3x + 4} = -\frac{\sqrt{3}}{2 + 3x + 4}$$

$$-\frac{\sqrt{3}}{2 + 3x + 4} = -\frac{\sqrt{3}}{2 + 3x + 4}$$

$$z = u + u - 1$$

$$\underline{dz} = -\underbrace{5}_{0} u + \underbrace{1}_{0} = 8/31 - \underbrace{1}_{0} = 0$$

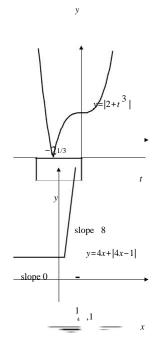
$$du = 3 \qquad u - 1 \qquad (u - 1)^{2} = -8$$

$$-5 \qquad \underbrace{-1}_{0} = 0$$

$$= -3 \qquad 1 - (u - 1) \qquad 1u \qquad u - 1$$

$$x_{5}$$
 $3 + x_{6}$

18.



$$\frac{d}{dx} \frac{d}{dx} = \frac{d}{dx} = \frac{1}{x} = \frac{1}{2} p\sqrt{x} + 2 \sqrt{x} = \frac{1}{4}x^{-3/4}$$

21.
$$\frac{d}{dx}x_{3/2} = \frac{d}{x^3} = \frac{1}{(3x^2)} = \frac{3}{x^{1/2}}$$

$$dx \qquad dx \qquad 2x^3 \qquad 2$$

$$\begin{aligned} d\underline{\underline{d}} \\ f(2t+3) &= 2f (2t+3) dt \end{aligned}$$

23.
$$f(5x-x^2) = (5-2x)f'(5x-x^2)$$

 $\frac{d}{2} = \frac{2}{3} = \frac{2}{2} = \frac{2}{2} = \frac{-2}{2}$

26.
$$\frac{d}{dt} f(3 + 2t) = f'(3 + 2t) = \frac{2}{\sqrt[4]{3+2t}}$$

16.
$$y = (4 + x^{2})^{\frac{1}{3}}$$

$$y' = \frac{1}{3 + 2t} f(\sqrt{3} + 2t)$$

$$y' = \frac{1}{3 + 2t} (4 + x^{2})^{3} 5x^{4} f(3 + 2t) + x^{5} \sqrt{3x^{5}}$$

$$(4 - x^{2})^{\frac{1}{3}} - x^{\frac{1}{3}} f(3 + 2t) + x^{5} \sqrt{3x^{5}}$$

$$(4 - x^{2})^{\frac{1}{3}} - x^{\frac{1}{3}} f(3 + 2t) + x^{\frac{1}{3}} f(3 + 2t) + x^{\frac{1}{3}} f(3 + 2t)$$

$$= \frac{(4 + x^{2})^{\frac{1}{3}} f(3 + 2t)^{\frac{1}{3}} f(3 + 2t)}{\sqrt{2t^{\frac{1}{3}} f(3 + 2t)}}$$

$$= \frac{(4 + x^{2})^{\frac{1}{3}} f(3 + 2t)^{\frac{1}{3}} f(3 + 2t)}{\sqrt{2t^{\frac{1}{3}} f(3 + 2t)}}$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3 + 2t) = \frac{d}{dt} f(3 + 2t)$$

$$= \frac{d}{dt} f(3$$

56

Copyright © 2014 Pearson Canada Inc.

29.
$$\overrightarrow{d} \times f = 2 - 3f(4 - 5t)$$

= $f' = 2 - 3f(4 - 5t)$ 3 $f' = (4 - 5t) = (-5)$

$$15f'(4-5t)f'2-3f(4-5t)$$

30.
$$\frac{d}{dx} = \frac{\sqrt{x^2 - 1}}{x^2 + 1}$$

$$= \frac{(x^2 + 1)}{x^2 - 1} = \frac{p}{x^2 - 1(2x)}$$

$$= \frac{(x^2 + 1)}{x^2 - 1} = \frac{p}{x^2 - 1(2x)}$$

$$= \frac{(x^2 + 1)}{2} = \frac{x - 2}{\sqrt{3}}$$

$$= \frac{(5) - \sqrt{3}}{2} = 3(-4) = 25$$

$$= 25$$

32.
$$f(x) = \sqrt{2x - 1}$$

$$f'(4) = -72x \cdot \cdot \cdot = -27$$

$$+ 1)^{3/2} x = 4$$
33. $y = (x^3 + 9)^{17/2}$

$$17 2 17$$

$$y' \frac{1}{2}(x^3 + 9)^{15/2} 3x \frac{1}{2} (12) 102$$

$$x = -2 x = -2$$

$$F(x) = (1 + x)(2 + x)^2 (3 + x)^3 (4 + x)^4 F'$$

$$(x) = (2+x)^{2} (3+x)^{3} (4+x)^{4} +$$

$$2(1+x)(2+x)(3+x)^{3} (4+x)^{4} +$$

$$4$$

$$3(1+x)(2+x)^{2} (3+x)^{2} (4+x) +$$

 $4(1+x)(2+x)^2(3+x)^3(4+x)^3$

Thus, the equation of the tangent line at
$$(2, 3)$$
 is $y = 3 + \underbrace{\frac{4}{3}}(x-2)$, or $y = \underbrace{\frac{4}{3}x + \frac{1}{4}}_{3}$.

37. Slope of y
$$(1 x^{2/3})^{3/2}$$
 $= +$ at $x = -1$ is

$$3 (1x^{2/3})^{1/2} \qquad \underline{2}_{x^{-1/3}} \qquad = -\sqrt{2}$$

2 3
$$x=-1$$

The tangent line at $(-1, 2^{3/2})$ has equation $3/2$ $y=2$ $y=2$

The slope of
$$y = (ax + b)^8$$
 at $x = a^b$ is
$$dy 7$$

$$\overline{d} x_{x=b/a} = 8a(ax+b) = 1024ab$$
.

The equation of the tangent line at $x = \frac{b}{a}$ and

$$y = (2b)^8 = 256b^8$$
 is

$$y = 256b + 1024ab \qquad x - a \text{ , or } y = 2 \text{ ab } x - 3 \times 2 \text{ b}$$

$$\frac{3}{3/2} = -(x^2 - x + 3)^{-5/2} (2x + 1) = -3(9^{-5/2})(-5) = -3(9^{-5/2})$$

The tangent line at (-2, 27) has equation

$$y = 1 + 5(x + 2).$$
27 162

40. Given that
$$f(x) = (x - a)^m (x - b)^n$$
 then

$$(x) = m(x-a)^{m-1} (x-b)^{n} + n(x-a)^{m} (x-b)^{n-1}$$

$$m-1 \qquad n-1$$

$$(x-a) \qquad (x-b) \qquad (mx-mb+nx-na).$$

If
$$x = a$$
 and $x = b$, then $f'(x) = 0$ if and only if

$$m \times - m^n b + 4n \times - \frac{m}{m+n} \emptyset,$$

35.
$$y = x + (3x)^5 - 2$$

 $y = -6 x + (3x)^5 - 2^{-1/2}$

$$1 - \frac{1}{2} (3x)^5 - 2^{-3/2} 5(3x)^4 3$$

$$= -6 1 \frac{15}{2} 4 \frac{5}{(3x)} - \frac{3}{2}$$

$$= -6 1 \frac{-1}{2} (3x) \frac{3}{(3x)} - 2$$

$$\times x + (3x)^5 - 2$$

which is equivalent to

This point lies lies between a and b.

41.
$$x (x^4 + 2x^2 - 2)/(x^2 + 1)^{5/2}$$

 $4(7x^4 - 49x^2 + 54)/x^7$
 $857, 592$
 $5/8$

The Chain Rule does *not* enable you to calculate the derivatives of $|x|^2$ and $|x|^2$ at x = 0 directly as a composition of two functions, one of which is |x|, because |x| is not differentiable at x = 0. However, $|x|^2 = x^2$ and

57 57

Copyright © 2014 Pearson Canada Inc.

36. The slope of
$$y = \frac{\sqrt{4x}}{1 + 2x^2}$$
 at $x = 2$ is
$$\frac{dy}{dx} = \frac{\sqrt{4x}}{2 + 2x^2} = \frac{4}{3}.$$

 $|x|^2 = x^2$, so both functions are differentiable at x = 0 and have derivative 0 there.

It may happen that k = g(x + h) - g(x) = 0 for values of h arbitrarily close to 0 so that the division by k in the "proof" is not justified.

Copyright © 2014 **Pearson Canada Inc.**

Section 2.5 Derivatives of Trigonometric Functions (page 125)

1.
$$\frac{d}{\csc x} = \frac{d}{-\frac{1}{2}} = -\frac{\cos x}{2} = -\csc x \cot x$$

$$\frac{dx}{dx} = \frac{dx \sin x}{dx} = -\frac{\cos x}{2} = -\csc x \cot x$$

2.
$$\frac{d}{dx}\cot x = \frac{d\cos x}{dx\sin x} = \frac{-\cos^2 x - \sin^2 x}{2} = -\csc^2 x$$

3.
$$y = \cos 3x$$
, $y' = -3 \sin 3x$

4.
$$y = \sin x$$
, $y' = 1 \cos x$.

5 5 5 5 5 5 5 5 5 7 9 =
$$\tan \pi x$$
, $y' = \pi \sec \pi x$

 $y = \sec ax$, $y' = a \sec ax \tan ax$.

7.
$$y = \cot(4 - 3x)$$
, $y' = 3\csc^2(4 - 3x)$

8.
$$dx \sin \frac{\pi}{3} = -3 \cos 3$$

9.
$$f(x) = \cos(s - rx)$$
, $f'(x) = r\sin(s - rx)$

10.
$$y = \sin(Ax + B)$$
, $y' = A\cos(Ax + B)$
 $d \sin(\pi x^2) = 2\pi x \cos(\pi x^2) dx$

d √ _ 1 √

12.
$$\overline{dx} \cos(x) = -\frac{\sqrt{x}}{2} \sin(x)$$

13.
$$y = \sqrt{1 + \frac{1}{\cos x}}$$
, $y' = \frac{\sqrt{-\sin x}}{2 + 1 + \cos x}$

14.
$$\frac{d}{dx}\sin(2\cos x) = \cos(2\cos x)(-2\sin x)$$

-2 sin x cos(2 cos x)

 $f(x) = \cos(x + \sin x)$

$$f'(x) = -(1 + \cos x) \sin(x + \sin x)$$
$$g(\theta) = \tan(\theta \sin \theta)$$

$$g'(\theta) = (\sin \theta + \theta \cos \theta) \sec^2 (\theta \sin \theta)$$

$$u = \sin^3(\pi x/2), \quad u' = \frac{3\pi}{2 \cos(\pi x/2) \sin^2(\pi x/2)}$$

$$y = \sec(1/x), y' = -(1/x^2) \sec(1/x) \tan(1/x)$$

19.
$$F(t) = \sin at \cos at (= 2 \sin 2at) F$$

$$d_{\frac{(\tan x + \cot x)}{\cos^2 x - \csc^2 x}} d$$

$$d\frac{d}{x}(\sec x - \csc x) = \sec x \tan x + \csc x \cot x$$

$$\frac{d}{dx}(\tan x - x) = \sec^2 x - 1 = \tan^2 x$$

26.
$$\overline{dx} \tan(3x) \cot(3x) = \overline{dx}(1) = 0$$

27.
$$\underline{d}(t\cos t - \sin t) = \cos t - t\sin t - \cos t = -t\sin t$$

$$dt$$

28.
$$-(t \sin t + \cos t) = \sin t + t \cos t - \sin t = t \cos t$$

$$\frac{d}{dt}$$

$$\frac{(\underline{1} + \cos x)(\cos x) - \sin(x)(-\sin x)}{(-\sin x)}$$

29.
$$\frac{d - \sin x}{dx \cdot 1 - \cos x} = \frac{2}{1 + \cos x}$$

$$= \frac{-\cos x + 1}{2} - \frac{1}{1 + \cos x}$$

$$= (1 + \cos x) = 1 + \cos x$$

30.
$$\frac{d}{dx} = \frac{\cos x}{-\cos x} = \frac{(1 + \sin x)(-\sin x) - \cos(x)(\cos x)}{2}$$
$$dx + \sin x = \frac{(1 + \sin x)}{2} = \frac{-1}{-1}$$
$$(1 + \sin x) = 1 + \sin x$$

31.
$$\frac{d}{dx} x^2 \cos(3x)$$
 $2x \cos(3x)$ $3x^2 \sin(3x)$

32.
$$g(t) = \frac{p}{(\sin t)/t}$$

$$g'(t) = \frac{\sqrt{1}}{2 + \frac{1}{(\sin t)/t}} \times \frac{t \cos t - \sin t}{t^2}$$

$$\frac{\sqrt{1}}{2t^{3/2}} \times \frac{1}{\sin t}$$

$$v = \sec(x^2) \tan(x^2)$$

$$f' = 2x \sec(x^2) \tan^2(x^2) + 2x \sec^3(x^2) \cot^{t\cos t \sin t}$$

34.
$$z = \frac{\sin^{3} x}{1 + \cos^{3} x}$$

$$z' = \frac{(1 + \cos^{3} x)(\cos \sqrt{x}2^{\sqrt{x}}) - (\sin^{3} x)(-\sin^{3} x)(-\sin^{3} x)(2^{\sqrt{x}})}{\sqrt{1 + \cos^{3} x}}$$

$$z' = \frac{(1 + \cos^{3} x)^{2}}{\sqrt{1 + \cos^{3} x}}$$

$$\frac{1}{\sqrt{1 + \cos^{3} x}}$$

$$\frac{1}{\sqrt{1 + \cos^{3} x}}$$

$$(t) = a \cos at \cos at - a \sin at \sin at$$

$$G(\theta) = \frac{\sin a\theta}{\cos b\theta}$$

$$G'(\theta) = \frac{\sin a\theta}{\cos b\theta}$$

$$G'(\theta) = \frac{a \cos b\theta \cos a\theta + b \sin a\theta \sin b\theta}{\cos^2 b\theta}$$
.

$$\frac{d}{21.} \frac{1}{dx} \sin(2x) - \cos(2x) = 2\cos(2x) + 2\sin(2x)$$

22.
$$\frac{d}{dx}(\cos^2 x - \sin^2 x) = \frac{d}{dx}\cos(2x)$$

$$\sin(\cos(\tan t)) = -(\sec t)(\sin(\tan t))\cos(\cos(\tan t)) dt$$

$$f(s) = \cos(s + \cos(s + \cos s)) \frac{1\cos x}{f'(s)} = -[\sin(s + \cos(s + \cos s))]$$

$$[1 - (\sin(s + \cos s))(1 - \sin s)]$$

Differentiate both sides of sin(2x) = 2 sin x cos x and

divide by 2 to get
$$cos(2x) = co^{s2} x - sin^2 x$$
.

Differentiate both sides of $cos(2x) = cos^2 x - sin^2 x$ and divide by -2 to get sin(2x) = 2 sin x cos x.

Slope of $y = \sin x$ at $(\pi, 0)$ is $\cos \pi = -1$. Therefore the tangent and normal lines to $y = \sin x$ at $(\pi, 0)$ have

59

59

Copyright © 2014 Pearson Canada Inc.

$$= -2 \sin(2x) = -4 \sin x \cos x$$

equations $y = -(x - \pi)$ and $y = x - \pi$, respectively.

60

The slope of $y = \tan(2x)$ at (0, 0) is $2 \sec^2(0) = 2$. Therefore

the tangent and normal lines to $y = \tan(2x)$ at (0, 0) have equations y = 2x and y = -x/2, respectively.

41. The slope of
$$y = \sqrt{\frac{2}{2}}\cos(x/4)$$
 at $(\pi, 1)$ is

 $-(2/4)\sin(\pi/4) = -1/4$. Therefore the tangent and normal lines to $y = \sqrt{2} \cos(x/4)$ at $(\pi, 1)$ have equations $y = 1 - (x - \pi)/4$ and $y = 1 + 4(x - \pi)$, respectively.

The slope of $y = \sqrt{\cos x}$ at $(\pi/3, 1/4)$ is

 $-\sin(2\pi/3) = -3/2$. Therefore the tangent and normal lines to $y = \tan(2x)$ at (0, 0) have equations $\sqrt{3/2}$)(x - ($\pi/3$)) and y = (1/4) - (

y = (1/4) + (2/2/ 3)($x - (\pi/3)$), respectively. = $\sin(x) = \sin \frac{180}{180}$ is

43. Slope of *y* . At x = 45 the tangent line has equation

$$y = \sqrt{2} + \overline{180 \ 2} (x - 45).$$

44. For $y = \sec(x^\circ) = \sec(\frac{180}{180})$

$$\frac{dy}{dx} = \frac{\pi}{8} \sec \frac{x\pi}{180} \tan \frac{x\pi}{180}$$

$$\frac{180}{\sqrt{}}$$

At x = 60 the slope is $\frac{\pi}{2} (2 \ 3) = \frac{\pi}{3}$

Thus, the normal line has slope $-\frac{\pi}{3}$ and has equation

$$y = 2 - \pi \sqrt{3} (x - 60)$$

 $\cos a = \pm 1/$

45. The slope of $y = \tan x$ at x = a is $\sec^2 a$. The tangent there is parallel to y $= 2x \text{ if } \sec^2 a$

are $a = \pm \pi/4$. The corresponding points on the graph are $(\pi/4, 1)$ and $(-\pi/4, 1)$.

 $\overline{2}$. The only solutions in $(-\pi/2, \pi/2)$

The slope of $y = \tan(2x)$ at x = a is 2 sec (2a). The tangent there is normal to y = -x/8 if $2 \sec^2(2a) = 8$, or

$$\frac{d}{\tan x = \sec^2 x = 0 \text{ nowhere.}}$$

48.
$$\frac{dx}{d}$$
 cot x csc $x = 0$ nowhere.

Thus neither of these functions has a horizontal tangent.

49. $y = x + \sin x$ has a horizontal tangent at $x = \pi$ because $dy/dx = 1 + \cos x = 0$ there.

 $y = 2x + \sin x$ has no horizontal tangents because dy

 $dx = 2 + \cos x \ge 1$ everywhere.

- **51.** $y = x + 2 \sin x$ has horizontal tangents at $x = 2\pi/3$ and = $4\pi/3$ because $dy/dx = 1 + 2\cos x = 0$ at those points.
- **52.** $y = x + 2 \cos x$ has horizontal tangents at $x = \pi/6$ and = $5\pi/6$ because $dy/dx = 1 - 2 \sin x = 0$ at those points.

53.
$$\lim_{x \to 0} \frac{t \, an(2x)}{x} = \lim_{x \to 0} \frac{\sin(2x)}{2x} = 1 \times 2 = 2$$

54.
$$\lim_{x \to \pi} \sec(1 + \cos x) = \sec(1 - 1) = \sec 0 = 1$$

55.
$$\lim_{x \to 0} x^2 \csc x \cot x = \lim_{x \to 0} \frac{x}{2} = \frac{2}{\cos x} = 1^2 \times 1 = 1$$

 $\lim \cos \pi \quad \frac{\sin x}{2} = \cos \pi = -1$ **56.** lim cos

$$x \to 0$$
 $x \to 0$ $x \to 0$ $x \to 0$

57. $\lim_{h \to \infty} \frac{1 - \cos h}{h} = \lim_{h \to \infty} 2 \sin^2(h/2) = \lim_{h \to \infty} \frac{1}{h}$

f will be differentiable at x = 0 if

$$2 \sin 0 + 3 \cos 0 = b$$
, and

$$\frac{d}{dx}(2\sin x + 3\cos x) \Big|_{x=0} = a.$$

Thus we need b = 3 and a = 2.

SECTIONINSTRUCTOR2.5'S(PAGESOLUTIONS125) MANUAL

 $cos(2a) = \pm 1/2$. The only solutions in $(-\pi/4, \pi/4)$ are $= \pm \pi/\underline{6}$. The corresponding points on the graph are

$$(\pi/6, \sqrt{3})$$
 and $(-\pi/6, -\sqrt{3})$.

47. $\frac{d}{dx} \sin x = \cos x = 0$ at odd multiples of $\pi/2$.

$$\frac{d}{dx}\cos x = -\sin x = 0 \text{ at multiples of } \pi.$$

$$\frac{d}{dx}\sec x = \sec x \tan x = 0 \text{ at multiples of } \pi.$$

$$\frac{d}{dx}\csc x = -\csc x \cot x = 0 \text{ at odd multiple}$$

$$\frac{d}{dx} \sec x = \sec x \tan x = 0 \text{ at multiples of } \pi.$$

$$\frac{df}{dx}\csc x = -\csc x \cot x = 0 \text{ at odd multiples of } \pi/2.$$

 $\frac{dx}{dx}$ Thus each of these functions has horizontal tangents at infinitely many points on its graph.

ADAMS SECTIONandESSEX:2.5CALCULUS(PAGE125)8

There are infinitely many lines through the origin that are tangent to $y = \cos x$. The two with largest slope are shown

in the figure.

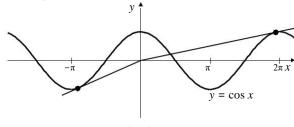


Fig. 2.5.59

61 61

The tangent to $y = \cos x$ at x = a has equation $= \cos a - (\sin a)(x - a)$. This line passes through the origin if $\cos a = -a \sin a$. We use a calculator with a "solve" function to find solutions of this equation near $a = -\pi$ and $a = 2\pi$ as suggested in the figure. The solutions are $a \approx -2.798386$ and $a \approx 6.121250$. The slopes of the corresponding tangents are given by $-\sin a$, so they are 0.336508 and 0.161228 to six decimal places.

1

61.
$$-2\pi + 3(2\pi^{3/2} - 4\pi + 3)/\pi$$

62. a) As suggested by the figure in the problem,

the square of the length of chord A P is

$$(1 - \cos \theta)^2 + (0 - \sin \theta)^2$$
, and the square of the

length of arc AP is θ^2 . Hence

$$(1 + \cos \theta)^2 + \sin^2 \theta < \theta^2$$
.

and, since squares cannot be negative, each term in the sum on the left is less than θ^2 . Therefore

$$0 \le |1 - \cos \theta| < |\theta|, \quad 0 \le |\sin \theta| < |\theta|.$$

Since $\lim_{\theta \to 0} |\theta| = 0$, the squeeze theorem implies

$$\lim_{\theta \to 0} 1 - \cos \theta = 0, \qquad \lim_{\theta \to 0} \sin \theta = 0.$$

From the first of these, $\lim_{\theta \to 0} \cos \theta = 1$.

Using the result of (a) and the addition formulas for cosine and sine we obtain

 $\lim_{h \to 0} \cos(\theta_0 + h) = \lim_{h \to 0} (\cos \theta_0 \cos h - \sin \theta_0 \sin h) = \cos \theta_0$ $\lim_{h \to 0} \sin(\theta_0 + h) = \lim_{h \to 0} (\sin \theta_0 \cos h + \cos \theta_0 \sin h) = \sin \theta_0.$

This says that cosine and sine are continuous at any point $\theta 0$.

Section 2.6 Higher-Order Derivatives

(page 130)

$$y = (3 - 2x)$$

3.
$$y = \frac{6}{(x-1)^2} = 6(x-1)^{-2}$$

$$y'' = -12(x-1)^{-3}$$

$$y = 36(x-1)^{-4}$$

$$y''' = -144(x-1)^{-5}$$
4.
$$y = \sqrt[4]{ax+b}$$

$$y' = \sqrt[4]{ax+b}$$

$$y'' = \sqrt[4]{ax+b}$$

$$\sqrt[4]{ax+b}$$

6.
$$y = x^{10} + 2x^{8}$$
 $y'' = 90x^{8} + 112x^{6}$
 $y' = 20x^{9} + 16x^{7}$ $y''' = 720x^{7} + 672x^{5}$
 $y = (x + 3) x = x^{-5/2} + 3x^{1/2}$
 $y' = \frac{5}{2}x^{3/2} \frac{3}{2}x^{-1/2}$
 $y''' = \frac{15}{4}x^{1/2} - \frac{3}{4}x^{-3/2}$
 $y''' = \frac{15}{8}x^{-1/2} \frac{2}{8}x^{-5/2}$

8.
$$y = \frac{x-1}{x}$$
 $y'' = -\frac{4}{(x+1)^3}$
 $y' = -\frac{2}{(x+1)^2}$ $y''' = \frac{12}{(x+1)^4}$
 $y = \tan xy = 2 \sec x \tan x$
 $y' = \sec xy$ 4 2 2
 $y'' = \sec x + 4 \sec x \tan x$

10.
$$y = \sec x$$
 $y'' = \sec x \tan^2 x + \sec x$
 $y' = \sec x \tan x$ $y''' = \sec x \tan^3 x + 5 \sec x \tan x$

11.
$$y = \cos(x^2)$$
 $y'' = -2\sin(x^2) - 4x^2\cos(x^2)$
 $y' = -2x\sin(x^2)$ $y''' = -12x\cos(x^2) + 8x^3\sin(x^2)$

$$y' = -14(3 - 2x)^{6}$$

$$y'' = 168(3 - 2x)^{5}$$

$$y''' = -1680(3 - 2x)^{4}$$

2.
$$y = x^2 - \frac{1}{x}$$
 $y'' = 2 - \frac{2}{x^3}$ $y'' = 2x + \frac{1}{x^2}$ $y''' = \frac{6}{x^4}$

sin x

$$y = \frac{x}{x}$$

$$y' = \cos x - \sin x$$

$$x \qquad x^{2} \qquad 2 \cos x$$

$$y'' = (2 - x^{2}) \sin x$$

$$x \qquad 3$$

$$y''' = (6 - x^{2}) \cos x$$

$$x \qquad 3$$

62

13.
$$f(x) = \frac{1}{x} = x^{-1}$$

$$(x) = 2x^{-3}$$

$$(x) = -3!x^{-4}$$

$$f^{(4)}(x) = 4!x^{-5}$$

$$f^{(n)}(x) = (-1) \quad n!x \qquad (*)$$
Proof: (*) is valid for $n = 1$ (and 2, 3, 4).

Assume $f^{(k)}(x) = (-1)^k k!x^{-(k+1)}$ for some $k \ge 1$

Then
$$f^{(k+1)}(x) = (-1)^k k! -(k+1) x^{-(k+1)-1}$$

 $(-1)^{k+1} (k+1)! x^{-((k+1)+1)}$ which is (*) for $n = k+1$

1. Therefore, (*) holds for n = 1, 2, 3, ... by induction.

$$f(x_{1}) = x \frac{1}{2} = x^{-2}$$

$$f(x) = -2x^{-3}$$

$$f''(x) = -2(-3)x^{-4} = 3!x^{-4}$$

$$f^{(3)}(x) = -2(-3)(-4)x^{-5} = -4!x^{-5}$$
Conjecture:

$$f^{(n)}(x) = (-1)^n (n+1)! x^{-(n+2)}$$
 for $n = 1, 2, 3, ...$

Proof: Evidently, the above formula holds for n = 1, 2 and 3. Assume it holds for n = k,

i.e.,
$$f^{(k)}(x) = (-1)^k (k+1)! x^{-(k+2)}$$
. Then
$$(k+1)(x) = \frac{d}{d} x f^{(k)}(x)$$

$$k \qquad -(k+2)-1$$

$$(-1) (k+1)! [(-1)(k+2)] x$$

$$(-1)^{k+1}(k+2)!x^{-[(k+1)+2]}$$

Thus, the formula is also true for n = k + 1. Hence it is true

for $n = 1, 2, 3, \dots$ by induction.

$$f(x) = 2 - \frac{1}{x} = (2 - x)^{-1} f'$$

$$(x) = +(2 - x)^{-2}$$

$$(x) = 2(2 - x)^{-3}$$

$$f''(x) = +3!(2-x)^{-4}$$
Guess: $f^{(n)}(x) = n!(2-x)^{-(n+1)}$ (*)
Proof: (*) holds for $n = 1, 2, 3$.
Assume $f^{(k)}(x) = k!(2-x)^{-(k+1)}$ (i.e., (*) holds for

Then
$$f^{(k+1)}(x) = k! - (k+1)(2-x)^{-(k+1)-1} (-1)$$

Proof: Evidently, the above formula holds for n = 2, 3 and 4. Assume that it holds for n = k, i.e.

$$(k)(x) = (-1)^{k-1} \frac{1 \cdot 3 \cdot 5 \cdot \underline{} \cdot \underline{} \cdot \underline{} (2k-3)}{2 \cdot \underline{} \cdot$$

Then

$$f^{(k+1)}(x) = \frac{d}{dx} f^{(k)}(x)$$

$$= (-\frac{k-1}{1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2k-3)} \cdot \frac{-(2k-1)}{2k} x^{-[(2k-1)/2]-1}$$

$$= \frac{2^k}{1 \cdot 3 \cdot 5} \frac{2}{(2k-3)[2(k-1) \cdot 3]}$$

$$(-1)^{(k+1)-1} \frac{2^k}{1 \cdot 2^k} \frac{2}{(2k-1)^{-1}} \frac{2^k}{(2k-1)^{-1}} \frac{2^k}{(2k-1)^{-1}}$$

Thus, the formula is also true for n = k + 1. Hence, it is true for $n \ge 2$ by induction.

17.
$$f(x) = \frac{1}{a+bx} = (a+bx)^{-1}$$

$$f'(x) = -b(a+bx)^{-2}$$

$$f''(x) = 2^{b} (a+bx)^{-3}$$

$$f''(x) = -3!b^{3} (a+bx)^{-4}$$
Guess:
$$f^{(n)}(x) = (-1)^{n} \frac{n!b^{(n)}(a+bx)^{-(n+1)}}{(a+bx)^{-(n+1)}}$$
Proof: (*) holds for $n = 1, 2, 3$
Assume (*) holds for $n = k$:
$$f^{(k)}(x) = (-\frac{k!b^{k}(a+bx)^{-(k+1)}}{1})$$
Then
$$f^{(k+1)}(x) = (-\frac{k!b^{k}(k+1)^{k+1}(a+bx)^{-(k+1)-1}}{1})$$

$$f^{(k+1)}(x) = (-\frac{k!b^{k}(k+1)!b^{k+1}(a+bx)^{-(k+1)-1}}{1})$$

So (*) holds for n = k + 1 if it holds for n = k. Therefore, (*) holds for n = 1, 2, 3, 4, ... by induction.

18.
$$f(x) = x^{2/3}$$

$$f'(x) = \overline{2} x^{-1/3}$$

$$f'' = -3 - 4/3$$

$$f''(x) = \overline{2} (-1)(-\frac{4}{3})x - \frac{4}{5}(x) = \overline{2}(-1)(-\frac{4}{3})x - \frac{4}{3}$$

$$1 \cdot 4 \cdot 7 \cdot \cdot \cdot \cdot (3n - 5)$$

$$f(n)(x) = 2(-1)^{n-1} \underline{3n}$$

Proof: Evidently, the above formula holds for n = 2 and 3. Assume that it holds for n = k, i.e.

$$= (k+1)!(2-x)^{-((k+1)+1)}.$$
1 · 4 · 7 · · · · (3k - 5)

Thus (*) holds for $n = k + 1$ if it holds for k .

Therefore, (*) holds for $n = 1, 2, 3, ...$ by induction.

(k) $(x) = 2(-1)k-1 - 3k - x$

Thus (*) holds for $n = 1, 2, 3, ...$ by induction.

16. $f(x) = \frac{\pi}{x} = x^{1/2}$

(a) $-(3k-2)/3$. Then,

$$f'(x) = \frac{1}{2}x^{-1/2}$$

$$x) = \frac{1}{2}(-\frac{1}{2})x^{-3/2}$$

$$x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})x^{-5/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-7/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-7/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-7/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-7/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-5/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-5/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-5/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-7/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-7/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-7/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-7/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-7/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})x^{-7/2}$$

$$f^{(4)}(x) = \frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac{3}{2})(-\frac$$

$$f^{(n)}(x) = (-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \cdots (2n-3)}{x^{-(2n-1)/2}} \quad x^{-(2n-1)/2} \quad (n \ge 2).$$

$$2^{(n)}(x) = (-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \cdots (2n-3)}{x^{-(3(k+1)-2)/3}} \quad x^{-(3(k+1)-2)/3} \cdot \frac{2^{(n-1)/2}}{x^{-(3(k+1)-2)/3}} \cdot \frac{2^{(n-1)/2}}{x^{-(n-1)/2}} \cdot \frac{$$

63

Thus, the formula is also true for n = k + 1. Hence, it is true for $n \ge 2$ by induction.

19.
$$f(x) = \cos(ax)$$
$$f(x) = -a\sin(ax)$$

$$f''(x) = -a^{2} \cos(ax)$$

$$f''(x) = a^{3} \sin(ax)$$

$$f^{(4)}(x) = a^{4} \cos(ax) = a f(x)$$

It follows that $f^{(n)}(x) = a^4 f^{(n-4)}(x)$ for $n \ge 4$, and

$$\int_{a}^{n} \cos(ax) \quad \text{if } n = 4k$$

$$f^{(n)}(x) = \begin{cases} -a^{n} \sin(ax) & \text{if } n = 4k+1 \\ -a^{n} \cos(ax) & \text{if } n = 4k+2 \end{cases} \quad (k = 0, 1, 2, ...$$

$$a^{n} \sin(ax) \quad \text{if } n = 4k+3$$

Differentiating any of these four formulas produces the one for the next higher value of n, so induction confirms the overall formula.

$$f(x) = x \cos x$$

$$f \qquad (x) = \cos x - x \sin x$$

$$f \qquad (x) = -2 \sin x - x \cos x$$

$$f''' \qquad (x) = -3 \cos x + x \sin x$$

$$f^{(4)}(x) = 4 \sin x + x \cos x$$

This suggests the formula (for k = 0, 1, 2, ...)

$$f^{(n)} = \begin{cases} n \sin x + x \cos x & \text{if } n = 4k \\ \square & \\ (x) = \begin{cases} n \cos x - x \sin x & \text{if } n = 4k + 1 \\ -n \sin x - x \cos x & \text{if } n = 4k + 2 \\ -n \cos x + x \sin x & \text{if } n = 4k + 3 \end{cases}$$

Differentiating any of these four formulas produces the one

for the next higher value of n, so induction confirms the overall formula.

$$f(x) = x \sin(ax)$$

$$f'(x) = \sin(ax) + ax \cos(ax)$$

$$f''(x) = 2a \cos(ax) - a^2 x \sin(ax)$$

$$f'''(x) = -3a^2 \sin(ax) - a^3 x \cos(ax)$$

$$4$$
) $(x) = -4a^3 \cos(ax) + a^4 x \sin(ax)$) This suggests the formula

$$f^{(n)}(x) = \begin{cases} -na^{n-1} \cos(ax) + a^n x \sin(ax) & \text{if } n = 4k \\ n & \text{if } n = 4k + 1 \end{cases}$$

$$f^{(n)}(x) = \begin{cases} na^{n-1} \sin(ax) + a x \cos(ax) & \text{if } n = 4k + 1 \\ na^{n-1} \cos(ax) - a^n x \sin(ax) & \text{if } n = 4k + 2 \end{cases}$$

If x = 0 we have

$$\frac{d}{dx}$$
 sgn x0 and (sgn x)² = 1.

Thus we can calculate successive derivatives of f using the product rule where necessary, but will get only one nonzero term in each case:

$$|x| = 2|x|^{-3} (\operatorname{sgn} x) = 2|x|$$

$$|x|^{-3} f^{(3)}(x) = -3!|x|^{-4} \operatorname{sgn} x$$

$$|x|^{-4} (x) = 4!|x|^{-5}.$$

The pattern suggests that

$$f^{(n)}(x) = -n!|x|^{-(n+1)} \operatorname{sgn} x \text{ if } n \text{ is odd}$$

 $n! |x|^{-(n+1)}$ if n is even Differentiating this formula leads to the same formula with n replaced by n+1 so the formula is valid for all $n \ge 1$ by induction.

23.
$$f(x) = \frac{1 - 3x}{1} = (1 - 3x)^{1/2}$$

$$f(x) = \frac{1}{2} (-3)\underline{x}(1 - 3x)$$

$$f''(x) = \frac{1}{2} - \frac{1}{2} (-3)\frac{2}{2}(1 - 3x)^{-3/2}$$

$$f'''(x) = \frac{1}{2} - \frac{1}{2} - \frac{3}{2} (-3)^3 (1 - 3x)^{-5/2}$$

$$f^{(4)}(x) = \frac{1}{2} - \frac{1}{2} - \frac{3}{2} - \frac{5}{2} (-3) (1 - 3x)$$

Guess:
$$f(x) = -\frac{1 \times 3 \times 5 \times \cdots \times (2n-3)}{2^n} n$$

 $f(x) = -\frac{1 \times 3 \times 5 \times \cdots \times (2n-3)}{2^n} n$
 $f(x) = -\frac{1 \times 3 \times 5 \times \cdots \times (2n-3)}{2^n} n$
Proof: (*) is valid for $n = 2, 3, 4$, (but not $n = 1$)
Assume (*) holds for $n = k$ for some integer $k \ge 2$
 $f(x) = -\frac{1 \times 3 \times 5 \times \cdots \times (2k-3)}{2^n} n$
 $f(x) = -\frac{1 \times 3 \times 5 \times \cdots \times (2k-3)}{2^n} n$

Then
$$f^{(k)}(x) = -\frac{1 \times 3 \times 5 \times \cdots \times (2k-3)}{2^k}$$
 3^k

$$1 \times 3 \times 5 \times \cdots \times 2(k+1) - 1$$

$$-na^{n-1}\sin(ax) - a^n x \cos(ax)$$
 if $n = 4k + 3$

for $k = 0, 1, 2, \dots$ Differentiating any of these four formulas produces the one for the next higher value of n, so

induction confirms the overall formula.

22.
$$f(x) = \left|\frac{1}{x}\right| = |x|^{-1}$$
. Recall that $\frac{d}{d}x|x| = \operatorname{sgn} x$, so

$$f'(x) = -|x|^{-2} \operatorname{sgn} x$$
.

$$(1-3x)^{-(2(k+1)-1)/2}$$

Thus (*) holds for n = k + 1 if it holds for n = k. Therefore, (*) holds for n = 2, 3, 4, ... by induction.

24. If
$$y = \tan(kx)$$
, then $y' = k \sec(kx)$ and

$$y'' = 2k^2 s ec^2(kx)t an(kx)$$

= $2k^2 (1 + tan^2(kx)) tan(kx) = 2k^2 y (1 + y^2).$

60

60

25. If $y = \sec(k x)$, then $y' = k \sec(k x) \tan(k x)$ and

$$y'' = k^{2} (\sec^{2} (kx) \tan^{2} (kx) + \sec^{3} (kx))$$

$$2 \qquad 2 \qquad 2 \qquad 2$$

$$k \quad y (2 \sec (kx) - 1) = k \quad y (2y - 1).$$

To be proved: if $f(x) = \sin(ax + b)$, then

$$f^{(n)}(x) = \begin{cases} (-1)^k a^n \sin(ax+b) & \text{if } n = 2k\\ (-1)^k a^n \cos(ax+b) & \text{if } n = 2k+1 \end{cases}$$

for $k = 0, 1, 2, \dots$ Proof: The formula works for k = 0 $(n = 2 \times 0 = 0 \text{ and } n = 2 \times 0 + 1 = 1)$:

$$f^{(0)}(x) = f(x) = (-1)^0 a^0 \sin(ax + b) = \sin(ax + b)$$
$$f^{(1)}(x) = f'(x) = (-1)^0 a^1 \cos(ax + b) = a\cos(ax + b)$$

Now assume the formula holds for some $k \ge 0$. If n = 2(k + 1), then

$$f^{(n)}(x) = \frac{d}{dx} f^{(n-1)}(x) \qquad \frac{d}{dx} f^{(2k+1)}(x)$$
$$\frac{d}{dx} a^{(-1)k} a^{(2k+1)} \cos(ax+b)$$
$$(-1)^{k+1} a^{(2k+2)} \sin(ax+b)$$

and if n = 2(k + 1) + 1 = 2k + 3, then

$$f^{(n)}(x) = \underline{d}^{d} x (-1)^{k+1} a^{2k+2} \sin(ax+b)$$
$$(-1)^{k+1} a^{2k+3} \cos(ax+b).$$

Thus the formula also holds for k + 1. Therefore it holds for all positive integers k by induction.

If $y = \tan x$, then

$$y' = \sec^2 x = 1 + \tan^2 x = 1 + y^2 = P(y),$$

2

where P_2 is a polynomial of degree 2. Assume that $y^{(n)} = P_{-+}(y)$ where P_{-+} is a polynomial of degree n+1. The derivative of any polynomial is a polynomial

29.
$$(fg)^{(3)} = \frac{d}{dx}(fg)^{"}$$

$$= \frac{d}{dx}[f^{"}g + 2f^{'}g^{'} + fg^{"}]$$

$$= f^{(3)}g + f^{"}g^{'} + 2f^{"}g^{'} + 2f^{'}g^{'} + f^{'}g^{"} + fg^{(3)}$$

$$= f^{(3)}g + 3f^{"}g^{'} + 3f^{'}g^{"} + fg^{(3)}.$$

$$(fg)^{(4)} = \frac{d}{dx}x(fg)^{(3)}$$

$$\frac{d}{dx}[f^{(3)}g + 3f^{"}g^{'} + 3f^{"}g^{"} + fg^{(3)}]$$

$$3f^{'}g^{(3)} + f^{'}g^{(3)} + fg^{(4)}$$

$$= f^{(4)}g + 4f^{(3)}g^{'} + 6f^{'}g^{"} + 4f^{'}g^{(3)} + fg^{(4)}.$$

$$(fg)^{(n)} = f^{(n)}g + nf(n-1)g^{'} + \frac{n!}{-2!}f^{(n-2)}g^{"}$$

$$\frac{-n!}{-2!}f^{(n-3)!}f^{(n-3)}g^{(3)} + \cdots + nf^{'}g^{(n-1)} + fg^{(n)}$$

$$= \frac{n!}{-(n-k)}g^{(k)}.$$

$$k=0 \ k!(n-k)!$$

Section 2.7 Using Differentials and Derivatives (page 136)

2.
$$1f(x) \approx df(x) = \frac{3 dx}{2 \cdot 3x + 1} = \frac{3}{4} \quad (0.08) = 0.06$$

 $f(1.08) \approx f(1) + 0.06 = 2.06.$

3.
$$1h(t) \approx dh(t) = -\frac{\pi}{4} \sin \frac{\pi t}{4} dt - \frac{\pi}{4} (1) \frac{1}{10\pi} = -\frac{1}{40}$$

 $h + 2 + \frac{1}{10\pi} \approx h(2) - \frac{1}{40} = -\frac{1}{40}$
4. $1u \approx du = 4 \sec \qquad 4 \quad ds = 4$

4.
$$1u \approx du = 4 \sec$$

$$\frac{4}{s} \quad ds = 4$$

$$\frac{1}{s} \quad (2)(-0.04) = -0.04.$$

If
$$s = \pi 0$$
 6, the $u = 1$.04 0.96.
= - .0 $n \approx -0$ \approx

If
$$y = x$$
, then $1y \approx dy = 2x dx$. If $dx = (2/100)x$, then $1y \approx (4/100)x^2 = (4/100)y$, so y increases by about 4%.

SECTIONINSTRUCTOR2.7'S(PAGESOLUTIONS136) MANUAL

of one lower degree, so

$$y^{(n+1)} = \underline{d} P \qquad \underline{dy} = P(y)(1+y^{2}) = P(y),$$

$$dx^{\frac{n}{n+1}(y)} = Pn(y) dx \qquad n \qquad n \geq 2$$

a polynomial of degree n + 2. By induction, $(d/dx)^n \tan x = P$ $(\tan x)$, a polynomial of degree n + 1 in $\tan x$.

28.
$$(fg)'' = (f'g + fg') = f''g + f'g' + f'g'' + fg''$$

ADAMS SECTIONandESSEX:2.7CALCULUS(PAGE136)8

6. If
$$y = 1/x$$
, then $1y \approx dy = (-1/x^2) dx$. If $dx = (2/100)x$, then $1y \approx (-2/100)/x = (-2/100)y$, so

y decreases by about 2%.

7. If
$$y = 1/x^2$$
, then $1y \approx dy = (-2/x^3) dx$. If $dx = (2/100)x$, then $1y \approx (-4/100)/x^2 = (-4/100)y$, so y decreases by about 4% .

8. If
$$y = x^3$$
, then $1y \approx dy = 3x^2 dx$. If $dx = (2/100)x$,
$$= f'' g + 2f' g' + fg''$$

61

61

then $1y \approx (6/100)x^3 = (6/100)y$, so y increases by about 6%.

9. If
$$y = \sqrt[4]{x}$$
, then $dy \approx dy = (1/2 \sqrt[4]{x}) dx$. If $\int_{-1}^{1x} (2/100)x$, then $1y \approx (1/100)$ $x = (1/100)y$, so y increases by about 1%.

- **10.** If $y = x^{-2/3}$, then $1y \approx dy = (-2/3)x^{-5/3} dx$. If dx = (2/100)x, then $1y \approx (-4/300)x^{2/3} = (-4/300)y$, so y decreases by about 1.33%.
- 11. If $V = \frac{4}{3}\pi r^3$, then $1V \approx dV = 4\pi r^2 dr$. If r increases by 2%, then dr = 2r/100 and $1V \approx 8\pi r^3/100$. There-fore $1V/V \approx 6/100$. The volume increases by about 6%.

If *V* is the volume and *x* is the edge length of the cube then $V = x^3$. Thus $1V \approx dV = 3x^2 \cdot 1x$. If 1V = -(6/100)V, then $-6x^3/100 \approx 3x^2 \cdot dx$, so $dx \approx -(2/100)x$. The edge of the cube decreases by about 2%.

Rate change of Area A with respect to side s, where $A = s^2$, is $\frac{dA}{ds} = 2s$. When s = 4 ft, the area is changing

at rate 8 ft²/ft.
$$\sqrt{}$$

14. If $A = s^2$, then $s = \sqrt{A}$ and ds/dA = 1/(2 A). If $A = 16 \text{ m}^2$, then the side is changing at rate $ds/dA = 1/8 \text{ m/m}^2.$

The diameter \overline{D} and area A of a circle are related by $D=2\sqrt[4]{A/\pi}$. The rate of change of diameter with re-spect to $\sqrt[4]{area}$ area is $d D/d A = 1/(\pi A)$ units per square unit. Since $A = \pi D^2/4$, the rate of change of area with re-spect

to diameter is $dA/dD = \pi D/2$ square units per unit. Rate of change of $V = 3^4 \pi r^3$ with respect to radius r is $\frac{V}{dr} = 4\pi r^2$. When r = 2 m, this rate of change is 16π

m/m.

Let A be the area of a square, s be its side length and L be its diagonal. Then, $L^2 = s^2 + s^2 = 2s^2$ and $A = s^2 = \frac{1}{2}L^2$, so $d^2 = L$. Thus, the rate of change of

the area of a square with respect to its diagonal L is L.

19. If the radius of the circle is r then $C = 2\pi r$ and $A = \pi r^2$.

Thus
$$C = 2\pi^{r} \frac{\overline{A}}{\underline{A}} = 2 \sqrt{\pi \sqrt{A}}$$

Rate of change of C with respect to A is $\frac{dC}{dA} = \sqrt{A} = C$ $\frac{dA}{dA} = \sqrt{A} = C$ $\frac{dA}{dA} = \sqrt{A} = C$

Let *s* be the side length and *V* be the volume of a cube. Then $V = s^3 \Rightarrow s = V^{1/3}$ and $d^d V^s = \frac{1}{2} V^{-2/3}$. Hence,

Volume in tank is $V(t) = 350(20 - t)^2$ L at t min.

At t = 5, water volume is changing at rate

$$dV = -700(20 - t)_{t=5} = -10,500.$$

$$dt_{t=5}$$

Water is draining out at 10,500 L/min at that time. At t = 15, water volume is changing at rate

$$\frac{dV}{dt} = -3,500.$$

$$\frac{dt}{t} = 15 = -700(20 - t)_{t=15}$$

Water is draining out at 3,500 L/min at that time.

b) Average rate of change between t = 5 and t = 15 is

$$\frac{V(15)}{15-5} = \frac{-350 \times (25-225)}{10} = -7,000.$$

The average rate of draining is 7,000 L/min over that interval.

22. Flow rate $F = kr^4$, so $1F \approx 4kr^3 1r$. If 1F = F/10,

then

$$1r \approx \frac{F}{40kr^3} \frac{kr^{\frac{4}{3}}}{40kr^3} = 0.025r.$$

The flow rate will increase by 10% if the radius is increased by about 2.5%.

23. $F = k/r^2$ implies that $dF/dr = -2k/r^3$. Since dF/dr = 1 pound/mi when r = 4,000 mi, we have $2k = 4,000^3$. If r = 8,000, we have $dF/dr = -(4,000/8,000)^3 = -1/8$. At r = 8,000

mi F decreases with respect to r at a rate of 1/8 pounds/mi.

24. If price = \$p, then revenue is \$R = 4, 000 p - 10 p ². a) Sensitivity of R to p is dR/dp = 4, 000 - 20 p. If p = 100, 200, and 300, this sensitivity is 2,000 \$/\$\$,

0\$/\$, and -2, 000\$/\$ respectively.

The distributor should charge \$200. This maximizes the revenue.

Cost is $C(x) = 8,000 + 400x - 0.5x^2$ if *x* units are manufactured.

Marginal cost if x = 100 is

$$C(100) = 400 - 100 = $300.$$

 $C(101) - C(100) = 43, 299.50 - 43, 000 = 299.50

which is approximately C 100).

Daily profit if production is x sheets per day is P(x)

where

$$P(x) = 8x - 0.005x^2 - 1,000.$$

Marginal profit $P^{'}(x) = 8 - 0.01x$. This is positive if x < 800 and negative if x > 800.

63

63

the rate of change of the side length of a cube with respect to its volume V is $\frac{1}{3} V^{-2/3}$.

ADAMS SECTIONandESSEX:2.7CALCULUS(PAGE136)8

To maximize daily profit, production should be $800 \, \text{sheets/day}$.

27.
$$C = \frac{80,000}{n} + 4n + \frac{\frac{2}{n}}{100}$$

$$\frac{dC}{dn} = -\frac{80,000}{n^2} + 4 + \frac{n}{50}.$$

$$n = 100, \frac{dC}{dn} = -2. \text{ Thus, the marginal cost of}$$

production is -\$2.

$$n = 300$$
, $\frac{d}{d} \frac{C}{n} = \frac{82}{9} \approx 9.11$. Thus, the marginal

cost of production is approximately \$9.11.

28. Daily profit
$$P = 13x - Cx = 13x - 10x - 20 - \frac{x^2}{1000}$$

$$= 3x - 20 - \frac{x^2}{1000}$$

Graph of P is a parabola opening downward. P will be maximum where the slope is zero:

$$0 = \frac{dP}{dx} = 3 - \frac{2x}{1000} \text{ so } x = 1500$$

Should extract 1500 tonnes of ore per day to maximize profit.

29. One of the components comprising C(x) is usually a fixed cost, \$S, for setting up the manufacturing opera-tion. On a per item basis, this fixed cost \$S/x, decreases as the number x of items produced increases, especially when x is small. However, for large x other components of the total cost may increase on a per unit basis, for instance labour costs when overtime is required or main-tenance costs for machinery when it is over used.

Let the average cost be A(x) =. The minimal av-x

erage cost occurs at point where the graph of A(x) has a horizontal tangent:

$$0 = \frac{dA}{dx} = \frac{xC(x) - C(x)}{x^2}.$$
Hence, $xC(x) - C(x) = 0 \Rightarrow C(x) = C(x) = A(x).$

Thus the marginal cost C(x) equals the average cost at the minimizing value of x.

30. If $y = C p^{-r}$, then the elasticity of y is

$$\frac{p}{v} \frac{d}{d} y = -C p^{p} - r(-r)C p^{-r-1} = r.$$

Section 2.8 The Mean-Value Theorem (page 143)

1.
$$f(x) = x^2$$
, $f'(x) = 2x$

where c = 2 lies between 1 and 2.

3.
$$f(x) = x^3 - 3x + 1$$
, $f(x) = 3x^2 - 3$, $a = -2$, $b = 2$

$$\frac{f(b) - f(a)}{b - a} = \frac{f(2) - f(-2)}{4}$$

$$\frac{8 - 6 + 1 - (-8 + 6 + 1)}{4}$$

$$\frac{4}{f'(c)} = 3c^2 - 3$$

$$3c^2 - 3 = 1 \Rightarrow 3c^2 = 4 \Rightarrow c = \pm \sqrt{2}$$
(Both points will be in (-2, 2).)

- **4.** If $f(x) = \cos x + (x^2/2)$, then $f'(x) = x \sin x > 0$ for x > 0. By the MVT, if x > 0, then f(x) f(0) = f'(c)(x 0) for some c > 0, so f(x) > f(0) = 1. Thus $\cos x + (x^2/2) > 1$ and $\cos x > 1 (x^2/2)$ for x > 0. Since both sides of the inequality are even functions, it must hold for x < 0 as well.
- 5. Let $f(x) = \tan x$. If $0 < x < \pi/2$, then by the MVT f(x) f(0) = f'(c)(x 0) for some c in $(0, \pi/2)$.

Thus $\tan x = x \sec c > x$, since s ecc > 1.

6. Let $f(x') = (1+x)^r - 1 - rx$ where r > 1. Then $f'(x) = r(1+x)^{r-1} - r$.

If $-1 \le x < 0$ then f'(x) < 0; if x > 0, then
Thus f(x) > f(0) = 0 if $-1 \le x < 0$ or x > 0.

Thus $(1 + x)^r > 1 + rx$ if $-1 \le x < 0$ or x > 0.

7. Let $f(x) = (1 + x)^r$ where 0 < r < 1. Thus, $f'(x) = r(1 + x)^{r-1}$. By the Mean-Value Theorem, for $x \ge -1$, and x = 0,

$$f(x) - f(0) = f(0)$$

$$\frac{(1-x)_r - 1}{x} = r(1+c)^r$$

for some c between 0 and x. Thus, $(1 + x)^r = 1 + r x (1 + c)^{r-1}$.

$$b + a = \frac{b^2 - a^2}{c^2} = \frac{f(b) - f(a)}{c}$$

$$b - a \qquad (1 + c)^{r-1} > 1 \qquad \text{(since } r - 1 < 0\text{)},$$

$$= f(c) = 2c \implies c = \frac{b + a}{2}$$

$$rx(1 + c)^{r-1} < rx \qquad \text{(since } x < 0\text{)}.$$

65

Hence, $(1 + x)^r < 1 + rx$.

If x > 0, then

$$c > 0$$
$$1 + c > 1$$

$$(1+c)^{r-1} < 1$$

 $rx(1+c)^{r-1} < rx$.

Hence, $(1 + x)^r < 1 + rx$ in this case also.

Hence, $(1 + x)^r < 1 + rx$ for either $-1 \le x < 0$ or x > 0.

8. If $f(x) = x^3 - 12x + 1$, then $f'(x) = 3(x^2 - 4)$.

The critical points of f are $x = \pm 2$. f is increasing on $(-\infty, -2)$ and $(2, \infty)$ where f'(x) > 0, and is decreas-

- ing on (-2, 2) where f'(x) < 0. 9. If $f(x) = x^2 4$, then f'(x) = 2x. The critical point of is x = 0. f is increasing on $(0, \infty)$ and decreasing on
- **10.** If $y = 1 x x^{5}$, then $y' = -1 5x^{4} < 0$ for all x. Thus y

has no critical points and is decreasing on the whole real

11. If $y = x^3 + 6x^2$, then $y' = 3x^2 + 12x = 3x(x + 4)$. The critical points of y are x = 0 and x = -4. y is increasing on

 $(-\infty, -4)$ and $(0, \infty)$ where y > 0, and is decreasing on (-4, 0) where y < 0.

12. If $f(x) = x^2 + 2x + 2$ then f'(x) = 2x + 2 = 2(x + 1). Evidently, f'(x) > 0 if x > -1 and f'(x) < 0 if x < -1. Therefore, f is increasing on $(-1, \infty)$ and decreasing on $(-\infty, -1)$.

$$f'(x) = 3x^{2} - 4$$

$$f'(x) > 0 \text{ if } |x| \qquad \stackrel{2}{=} 3$$

$$f'(x) < 0 \text{ if } |x| \qquad \stackrel{2}{=} 3$$

is increasing on $(-\infty, -\sqrt{\underline{)}}$ and $(\sqrt{\underline{,\infty}})$.

$$\frac{2}{-}$$
 =

f is decreasing on $(-\sqrt{3}, \sqrt{3})$.

 $f(x) = x^3 + 4x + 1$, then $f'(x) = 3x^2 + 4$. Since **14.** If f(x) > 0 for all real x, hence f(x) is increasing on the whole real line, i.e., on $(-\infty, \infty)$. $f(x) = (x^2 - 4)^2$ $f(x) = 2x 2(x^2 - 4) = 4x (x - 2)(x + 2) f(x)$ > 0 if x > 2 or -2 < x < 0 f(x) < 0 if x < -2 or

f is increasing on (-2, 0) and $(2, \infty)$.

$$f(x) = x^{3} (5 - x)^{2}$$

$$(x) = 3x^{2} (5 - x)^{2} + 2x^{3} (5 - x)(-1)$$

$$f$$

$$= x^{2} (5 - x)(15 - 5x)$$

$$= 5x^{2} (5 - x)(3 - x)$$

$$f(x) > 0 \text{ if } x < 0, 0 < x < 3, \text{ or } x > 5 f(x) < 0 \text{ of } 3 < x < 5 \text{ is increasing on } (-\infty, 3) \text{ and } (5, \infty). f \text{ is decreasing on } (3, 5).$$

- **18.** If $f(x) = x 2\sin x$, then $f(x) = 1 2\cos x = 0$ at $x = \pm 1$ $\pi/3 + 2n\pi$ for $n = 0, \pm 1, \pm 2, \dots$ is de creasing on $(-\pi/3 + 2n\pi, \pi + 2n\pi)$. is increasing on $(\pi/3 + 2n\pi, -\pi/3 + 2(n+1)\pi)$ for integers n.
- **19.** If $f(x) = x + \sin x$, then $f(x) = 1 + \cos x \ge 0$ f(x) = 0 only at isolated points $x = \pm \pi, \pm 3\pi, ...$ Hence f is increasing everywhere.
- **20.** If $f(x) = x + 2 \sin x$, then $f(x) = 1 + 2 \cos x > 0$ if $\cos x > -1/2$. Thus f is increasing on the intervals $(-(4\pi/3) + 2n\pi, (4\pi/3) + 2n\pi)$ where *n* is any integer.
- **21.** f(x) = x is increasing on $(-\infty, 0)$ and $(0, \infty)$ because $f(x) = 3x^2 > 0$ there. But $f(x_1) < f(0) = 0 < f(x_2)$

whenever $x_1 < 0 < x_2$, so f is also increasing on intervals containing the origin.

There is no guarantee that the MVT applications for f and g yield the same c.

CPs x = 0.535898 and x = 7.464102

CPs x = -1.366025 and x = 0.366025

CP x = 0.521350

If $x_1 < x_2 < \ldots < x_n$ belong to I, and $f(x_i) = 0$, $i \le n$), then there exists y_i in (x_i, x_{i+1}) such that $(y_i) = 0$, $(1 \le i \le n-1)$ by MVT. $(1 \le i \le n-1)$

For x = 0, we have $f(x) = 2x \sin(1/x) - \cos(1/x)$ which has no limit as $x \rightarrow 0$. However,

$$f'(0) = \lim_{h \to 0} f(h)/h = \lim_{h \to 0} h \sin(1/h) = 0$$

does exist even though f cannot be continuous at 0.

If f exists on [a, b] and f (a) = f (b), let us assume, without loss of generality, that f'(a) > k > f'(b). If g(x) = f(x) - kx on [a, b], then g is continuous on [a, b] because f, having a derivative, must be continuous there. By the Max-Min Theorem, g must have a maximum value (and a minimum value) on that interval. Suppose the maximum value occurs at c. Since g(a) > 0we must have c > a; since g(b) < 0 we must have c < b. By Theorem 14, we must have g'

16. If
$$f(x) = \frac{1}{x^2 + 1}$$
 then $f'(x) = \frac{-2x}{(x^2 + 1)^2}$. Evidently,

$$f'(x) > 0 \text{ if } x < 0 \text{ and } f'(x) < 0 \text{ if } x > 0.$$
 Therefore, f

is increasing on $(-\infty, 0)$ and decreasing on $(0, \infty)$.

$$f'(c) = 0$$
 and so $f'(c) = k$. Thus $f'(c) = k$ takes on the (arbitrary) intermediate value k .

66

30.
$$f(x) = x + 2x \sin(1/x)$$
 if $x = 0$
0 if $x = 0$.

66

a)
$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{h + 2h^2 \sin(1/h)}{h}$$

$$= \lim_{h \to 0} (1 + 2h \sin(1/h)) = 1,$$
because $|2h \sin(1/h)| \le 2|h| \to 0$ as $h \to 0$.

b) For x = 0, we have

$$(x) = 1 + 4x \sin(1/x) - 2\cos(1/x).$$

There are numbers x arbitrarily close to 0 where

$$f'(x) = -1$$
; namely, the numbers $x = \pm 1/(2n\pi)$,

where $n = 1, 2, 3, \dots$ Since f'(x) is continuous at every x = 0, it is negative in a small interval about every such number. Thus f cannot be increasing on any

interval containing x = 0.

Let a, b, and c be three points in I where f vanishes; that is, f(a) = f(b) = f(c) = 0. Suppose a < b < c. By the Mean-Value Theorem, there exist points r in (a, b) and s in (b, c) such that f(r) = f(s) = 0. By the Mean-Value Theorem applied to f(r, s), there is some point t in (r, s) (and therefore in I) such that

$$f^{''}(t)=0.$$

If $f^{(n)}$ exists on interval I and f vanishes at n + 1 distinct

points of I, then $f^{(n)}$ vanishes at at least one point of I.

Proof: True for n = 2 by Exercise 8. Assume true for n = k. (Induction hypothesis)

Suppose n = k + 1, i.e., f vanishes at k + 2 points of I and f (k+1) exists.

By Exercise 7, $f^{'}$ vanishes at k+1 points of I. (k)

By the induction hypothesis, $f^{(k+1)} = (f')$ vanishes at a point of I so the statement is true for n = k + 1. Therefore the statement is true for all $n \ge 2$ by induction. (case n = 1 is just MVT.)

- **33.** Given that f(0) = f(1) = 0 and f(2) = 1:
 - a) By MVT,

$$f'(a) = \underline{f(2) - f(0)} = \underline{1 - 0} = \underline{1}$$

$$2 - 0 \qquad 2 - 0 \qquad 2$$

for some a in (0, 2).

b) By MVT, for some r in (0, 1),

Then, by MVT applied to f on the interval [r, s], for some b in (r, s),

$$f''(b) = \frac{f'(s) - f'(r)}{s - r} = \frac{1}{s} - \frac{0}{r}$$

$$\frac{1}{s - r} > \frac{1}{2}$$

since s - r < 2.

Since f''(x) exists on [0, 2], therefore f'(x) is continuous there. Since f'(x) = 0 and f'(s) = 1, and since $0 < \frac{1}{2} < 1$, the Intermediate-Value Theorem

 $(c) = 7^1$ for some c between r and assures us that f

Section 2.9 Implicit Differentiation (page 148)

xy - x + 2y = 1Differentiate with respect to x: y + xy - 1 + 2y = 0Thus $y' = \frac{1 - y}{2} + \frac{1}{x}$ $x^3 + y^3 = 1$

$$3x^2 + 3y^2y' = 0$$
, so $y' = -\frac{x}{2}y^2$.

 $x^2 + xy = y^3$ Differentiate with respect to x:

$$2x + y + xy' = 3y^2y'$$

$$y' = \frac{2x + y}{2}$$

$$y - x$$

$$x^{3}y + xy^{5} = 2$$

$$3x^{2}y + x^{3}y' + y^{5} + = 05xy^{4}y$$

$$y' = \frac{-3x^{2}y - y^{5}}{x^{3} + 5xy^{4}}$$

$$x^2y^3 = 2x - y$$

$$2xy^{3} + 3x^{2}y^{2}y' = 2 - y'$$

$$2 - 2xy^{3}$$

$$y = \frac{3x^{2}y^{2} + 1}{x^{2} + 4(y - 1)^{2} = 4}$$

$$2x + 8(y - 1)y' = 0$$
, so $y' = 4(1^{x} - y)$

.

$$f$$
 $f(1) -f(0) = 0 -0$
 $f = 0$
 $f(1) -0$
 $f(1) = 0$

Also, for some s in (1, 2),

67

$$f^{'}(s) = \frac{f(2) - f(1)}{2 - 1} = \frac{1 - 0}{2 - 1} = 1.$$

7.
$$\frac{x-y}{} = \frac{x^2}{} + 1 = \frac{x^2}{} = \frac{y}{}$$

$$x + y y y Thus xy - y^2 = x^3 + x^2y + xy + y^2, or x^3 + x^2y + 2y^2 = 0$$
Differentiate with respect to x:
$$3x^2 + 2xy + x^2y + 4yy = 0$$

$$y' = -\frac{3x^2}{x^2 + 2xy}$$

$$y' = -\frac{x^2 + 4y}{x^2 + 4y}$$

Copyright © 2014 Pearson Canada Inc.

67

8.
$$x \sqrt{x+y} = 8 - xy$$

$$\sqrt{x+y} + x \quad \sqrt{1} \qquad (1+y') = -y - xy'$$

$$2(x+y) + x(1+y') = -2 \qquad \sqrt{y+y} \qquad (y+xy')$$

$$y' = -\frac{3x + 2y + 2y\sqrt{x+y}}{x + 2x + y}$$

9.
$$2x^2 + 3y^2 = 5$$

$$4x + 6yy' = 0$$

At (1, 1):
$$4 + 6y' = 0$$
, $y' = -\frac{2}{3}$

Tangent line: $y - 1 = -\frac{2}{3}(x - 1)$ or 2x + 3y = 5

10.
$$x^2y^3 - x^3y^2 = 12$$

$$2xy^3 + 3x^2y^2y' - 3x^2y_2 - 2x^3yy' = 0$$

At $(-1, 2)$: $-16 + 12y' - 12 + 4y' = 0$, so the slope is $y' = \frac{12}{12} + \frac{14}{14} = \frac{28}{16} = \frac{7}{12}$.

Thus, the equati on of the tangent line is

$$y = 2 + \frac{7}{4}$$
 (x + 1), or 7x - 4y + 15 = 0.

11.
$$\frac{x}{y^{+}}$$
 $\frac{y}{x}$ $\frac{3}{x} = 2$
 $x^{4} + y^{4} = 2x^{3}y$
 $4x^{3} + 4y^{3}y^{'} = 6x^{2}y + 2x^{3}y^{'}$

at
$$(-1, -1)$$
: $-4 - 4y' = -6 - 2y'$
2 $y' = 2, y' = 1$

Tangent line: y + 1 = 1(x + 1) or y = x.

12.
$$x + 2y + 1 = \frac{y^2}{x - 1}$$

$$1 + 2y = \frac{(x - 1)2yy - y (1)}{(x - 1)^2}$$
At (2, -1) we have $1 + 2y = -2y - 1$ so $y = -1$

Thus, the equation of the tangent is y = -1 - (x - 2), or x + 2y = 0.

13.
$$2x + y - \sqrt{2} \sin(x y) = \pi/2$$

$$2 + y' - \overline{2} \cos(xy)(y + xy') = 0$$

At
$$(\pi/4, 1)$$
: $2 + y'$ - $(1 + (\pi/4)y') = 0$, so

 $y = -4/(4 - \pi)$. The tangent has equation

$$y = 1 - \frac{4}{4} \cdot \pi \quad x \quad \frac{\pi}{4} \quad \pi.$$

$$x\sin(xy-y^2)=x^2-1$$

$$\sin(xy - y^2) + x(\cos(xy - y^2))(y + xy' - 2yy') = 2x$$
.

At
$$(1, 1)$$
: $0 + (1)(1)(1 - y') = 2$, so $y' = -1$. The tangent has equation $y = 1 - (x - 1)$, or $y = 2 - x$.

$$\cos \frac{y = x^{2} - 17}{y^{2}} - \sin^{1} \pi (x y - x^{2} y', \pi yy) = 2xy - x^{2}$$

At (3, 1):
$$-\frac{3}{2}\frac{\pi(3y-1)}{\sqrt{9}}=6-9y'$$

so y =
$$(108 - 3\pi)/(162 - 3\pi)$$
. The tangent has

162-3 3π

equation
$$y = 1 + \frac{108 - \sqrt{3}}{2} \pi (x - 3).$$

$$xy = x + y$$

$$y + xy = 1 + y \Rightarrow y = 1 - x$$

$$y' + y' + xy'' = y''$$
Therefore, $y'' = \underbrace{2y'}_{1-x} = \underbrace{2(y-1)}_{1-x}$

$$18. \quad x^2 + 4y^2 = 4, \quad 2x + 8yy' = 0, \quad 2 + 8(y')^2 + 8yy'' = 0.$$

18.
$$x^2 + 4y^2 = 4$$
, $2x + 8yy = 0$, $2 + 8(y')^2 + 8yy'' = 0$.

Thus, y 4 v and

$$y'' = \frac{-2 - 8(y')^{2}}{8y} = -\frac{1}{4y} \frac{\frac{2}{x^{2}}}{16y^{3}} = \frac{1}{4y^{2} - x^{2}} = -\frac{1}{4y^{3}}$$

$$x^{3} - y^{2} + y^{3} = x$$

$$3x^{2} - 2yy' + 3y^{2}y' = 1 \Rightarrow y' = \frac{1 - 3x^{2}}{3y^{2} - 2y}$$

$$6x - 2(y'^{2} - 2yy'' + 6y(y'^{2} + 3y^{2}y'' = 0)$$

$$(1 - 3x^{2})^{2}$$

$$\frac{(2-6y)(y^{\frac{2}{2}}-6x)}{3y^{2}-2y} = \frac{(2-6y)(3y^{2}-2y)^{2}}{3y^{2}-2y} - \frac{-6x}{3y^{2}-2y}.$$

$$\frac{(2-6y)(1-3x^{\frac{2}{2}})^{2}}{3y^{2}-2y} - \frac{-6x}{3y^{2}-2y}.$$

$$= \frac{(3y^{2}-2y)^{3}}{3y^{2}-2y} - \frac{6x}{3y^{2}-2y}.$$

$$x^{3}-3xy+y^{3}=1$$

$$3x^{2}-3y-3xy+3y^{2}y=0$$

$$6x-3y-3y-3xy+6y(y)+3y^{2}y=0$$

$$-0. Thus$$

$$\tan(x y^{2}) = (2/\pi)xy$$

$$(\sec^{2}(xy^{2}))(y^{2} + 2xyy^{2}) = (2/\pi)(y + xy^{2}).$$
At $(-\pi, 1/2)$: $2((1/4) - \pi y^{2}) = (1/\pi) - 2y^{2}$, so
$$y' = (\pi - 2)/(4\pi (\pi - 1)). \text{ The tangent has equation}$$

$$y' = \frac{y - x^{2}}{y^{2} - x}$$

$$y' = \frac{-2x + 2y - 2y(y)}{y^{2} - x}$$

$$y' = \frac{2}{y^{2} - x} - x + \frac{y - x^{2}}{y^{2} - x} - y + \frac{y - x^{2}}{y^{2} - x}$$

$$y' = \frac{2}{y^{2} - x} - x + \frac{y - x^{2}}{y^{2} - x} - y + \frac{y - x^{2}}{y^{2} - x}$$

$$y' = \frac{2}{y^{2} - x} - x + \frac{y - x^{2}}{y^{2} - x} - y + \frac{y - x^{2}}{y^{2} - x}$$

$$y' = \frac{2}{y^{2} - x} - x + \frac{y - x^{2}}{y^{2} - x} - y + \frac{y - x^{2}}{y^{2} - x}$$

$$y' = \frac{2}{y^{2} - x} - x + \frac{y - x^{2}}{y^{2} - x} - y + \frac{y - x^{2}}{y^{2} - x}$$

$$y' = \frac{2}{y^{2} - x} - x + \frac{y - x^{2}}{y^{2} - x} - y + \frac{y - x^{2}}{y^{2} - x}$$

$$y' = \frac{2}{y^{2} - x} - x + \frac{y - x^{2}}{y^{2} - x} - y + \frac{y - x^{2}}{y^{2} - x} - y + \frac{y - x^{2}}{y^{2} - x}$$

$$y' = \frac{2}{y^{2} - x} - x + \frac{y - x^{2}}{y^{2} - x} - y + \frac$$

68

$$x^{2} + y^{2} = a^{2}$$

$$2x + 2yy' = 0 \text{ so } x + yy' = 0 \text{ and } y' = -\frac{x}{y} + y' + yy'' = 0 \text{ so}$$

$$x^{2} + y' + y' + yy'' = 0 \text{ so}$$

$$x^{2} + y' + yy'' = 0 \text{ so}$$

$$x^{2} + y' + yy'' = 0 \text{ so}$$

$$x^{2} + y' + yy'' = 0 \text{ so}$$

$$x^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y^{2} + y^{2} + y'' + yy'' = 0 \text{ so}$$

$$x^{2} + y^{2} + y$$

$$y'' = \frac{-A - B(y')^2}{By} = \frac{\frac{By}{By}}{By}$$

$$= \frac{-A(By^2 + Ax^2)}{B^2y^3} = -\frac{AC}{B^2y^3}$$

Maple gives 0 for the value.

- **24.** Maple gives the slope as $\frac{206}{55}$.
- **25.** Maple gives the value -26.
- **26.** Maple gives the value $\frac{855,000}{371,293}$.

27. Ellipse:
$$x^{2} + 2y^{2} = 2$$

$$2x + 4yy' = 0$$
Slope of ellipse: $y = -\frac{x}{2}$
Hyperbola: $2x^{2} - 2y^{2} = 1$

$$4x - 4yy' = 0$$

Slope of hyperbola: y H = y

Similarly, the slope of the hyperbola
$$\begin{pmatrix} x^2 & y^2 \\ - & - & = 1 \text{ at} \end{pmatrix}$$

 (x, y) satisfies $\begin{pmatrix} A & B \\ - & - & - \end{pmatrix}$

$$\underbrace{2x - 2y}_{y'} = 0, \text{ or } y' = B^{2}x$$

$$A^{2} B^{2}$$

$$A^{2}y$$

If the point (x, y) is an intersection of the two curves, then

$$x \frac{2}{a^2} + \frac{y^2}{b^2} = \frac{x^2}{A^2} - \frac{y^2}{B^2}$$

$$x^2 \frac{1}{2} - \frac{1}{a^2} = y^2 \frac{1}{B^2} + \frac{1}{b^2}.$$

$$x \frac{2}{a^2} = \frac{2}{a^2} + \frac{2}{a^2} = \frac{2}{a^2} + \frac{2}{a^2} = \frac{2}{a^2} + \frac{2}{a^2} = \frac{2}{a^2} + \frac{2}{a^2}$$
Thus, $\frac{x}{y^2} = \frac{b + B}{B^2 b^2} - \frac{A}{a^2 - A^2} - \frac{A}{a^2} + \frac{2}{a^2} = a^2 - A^2$, Since $a^2 - b^2 = A^2 + B^2$, therefore $a^2 - b^2 = A^2 + B^2$, therefore $a^2 - b^2 = A^2 + A^2 a^2$

and $y^2 = B^2 b^2$. Thus, the product of the slope of the two curves at (x, y) is

$$\frac{b^{2}x}{a^{2}y} \cdot \frac{B^{2}x}{a^{2}y} = \frac{b^{2}B^{2}}{a^{2}A^{2}} \cdot \frac{A^{2}a^{2}}{B^{2}b^{2}} = -1.$$

Therefore, the curves intersect at right angles.

29. If $z = \tan(x/2)$, then

$$1 = \sec^{2}(x/2) \frac{1}{x} = \frac{1 + \tan^{2}(x/2) dx}{2} = \frac{1 - z^{2}}{x} \frac{dx}{2}.$$

$$2 dz \qquad 2 \qquad dz \qquad 2 \qquad dz$$
Thus $dx/dz = 2/(1+z)$. Also
$$\cos x = 2\cos^{2}(x/2) - 1 = \frac{2}{\sec^{2}(x/2)} - 1$$

$$= \frac{2}{1+z^{2}} - 1 = \frac{1-z^{2}}{1+z^{2}}$$

$$\sin x = 2\sin(x/2)\cos(x/2) = \frac{2\tan(x/2)}{1+\tan^{2}(x/2)} = \frac{2z}{1+z}.$$

$$x - y = x + 1 \Leftrightarrow xy - y^{2} = x^{2} + xy + xy + y^{2}$$

At intersection points
$$2x^2 - 2y^2 = 1$$

$$3x^{2} = 3 \text{ so } x^{2} = 1, y^{2} = \frac{1}{2}$$

Thus $y \mid y \mid = -\frac{x}{2} \frac{x}{y} = -\frac{x^{2}}{2y^{2}} = -1$

Therefore the curves intersect at right angles.

28. The slope of the ellipse
$$\frac{x^2}{x^2} + \frac{y^2}{y^2} = 1$$
 is found from

$$\begin{array}{cccc} & a^2 & b^2 \\ \frac{2x}{a^2} & +\frac{2y}{b^2} & y' & = 0, & \text{i.e. } y' & = -\frac{b^2x}{a^2y} \end{array}.$$

$$x^2 + 2y^2 + xy = 0$$

Differentiate with respect to x:

$$2x + 4yy' + y + xy' = 0 \Rightarrow y' = -\frac{2x + y}{4y + x}$$

However, since $x^2 + 2y^2 + xy = 0$ can be written

$$x + xy + \frac{1}{4}y^{2} + \frac{7}{4}y^{2} = 0$$
, or $(x + 2^{y})^{2} + \frac{7}{4}y^{2} = 0$,

the only solution is x = 0, y = 0, and these values do not satisfy the original equation. There are no points on the given curve.

69

69

Section 2.10 Antiderivatives and Initial-Value Problems (page 154)

$$Z$$

$$5 d x = 5x + C$$

$$x^2 dx = \frac{1}{3}x^3 + C$$

$$3. \qquad x \, d \, x = 3x \qquad C$$

$$x^{12} dx = 13^{1} \div 13 + C$$

5.
$$\frac{Z}{x^3} dx = \frac{1}{4}x^4 + C$$

6.
$$(x + \cos x) dx = \frac{x^2}{2} + \sin x + C$$

 $\tan x \cos x \, dx = \sin x \, dx = -\cos x + C$

$$Z 1 + \cos_3 x \frac{1}{dx} = Z (\sec^2 x + \cos x) dx = \tan x + \sin x + C$$

$$\frac{-\cos^2 x}{\cos^2 x}$$

9.
$$(a^2 - x^2) dx = a^2 x - \frac{1}{3}x^3$$
 C

10.
$$(A + Bx + Cx^2) dx = Ax + Bx^2 + C.x^3 K$$

Z
11.
$$(2x^{1/2} + 3x^{1/3} dx = 4x^{3/2})$$
 2 $x^{4/3}$ C

12.
$$Z = \frac{6(x1)}{dx} dx = \frac{Z}{(6x^{-1/3} - 6x^{-4/3})} dx$$

Z

105
$$(1+t^2+t^4+t^6) dt$$

$$105(t+3\frac{1}{2}t^3+5\frac{1}{2}t^5+\frac{1}{2}7t^7)+C$$

$$2 105t + 35t^3 + 21t^5 + 15t^7 + C$$

20. Since
$$\frac{d^{\sqrt{x+1}}}{dx} = \frac{\sqrt{1}}{2x+1}$$
, therefore

$$\frac{Z}{\underbrace{\sqrt{4}}_{x+1}} dx = 8^{\sqrt{\frac{1}{x+1}}} + C.$$

$$2x \sin(x^2) dx = -\cos(x^2) + C$$

22. Since
$$\frac{d}{d} p x^2 + 1 = \sqrt{x}$$
, therefore

$$Z$$
 Z $\tan^2 x \, dx = (\sec^2 x - 1) \, dx = \tan x - x + C$

24.
$$Z \sin x \cos x \, dx = \begin{bmatrix} Z & 1 \\ -1 & \sin(2x) \, dx = -\frac{1}{2} & \cos(2x) + C \end{bmatrix}$$

25.
$$Z \cos^2 x \, dx = Z \frac{1 + \cos(2x)}{2} dx \frac{x}{2} \frac{\sin(2x)}{4} + C$$

26.
$$Z \sin^2 x \, dx = Z \frac{1 - \cos(2x)}{1 - \cos(2x)} \, dx = \frac{x}{1 - \sin(2x)} + C$$

2 2 4

27.
$$y = x - 2 \Rightarrow y = \frac{1}{2}x^2 - 2x + C$$
 $y(0) = 3 \Rightarrow 3 = 0 + C \text{ therefore } C = 3$

Thus $y = \frac{1}{2}x^2 - 2x + 3 \text{ for all } x$.

then
$$y = \begin{bmatrix} z & y(-1) = 0, \\ (x^{-2} - x^{-3}) dx = -x^{-1} + \frac{1}{2}x^{-2} + C \end{bmatrix}$$

and
$$0 = y(-1)$$
 = $-(-1)^{-1} + \frac{1}{1} (-1)^{-2} + C \text{ so } C = -\frac{3}{2}$.

Hence, $y(x) = -\frac{1}{2} + \frac{1}{2x^2} - \frac{3}{2}$ which is valid on the interval $(-\infty, 0)$. $x = 2x^2 - 2$

29.
$$y' = 3$$
 $x \Rightarrow y = 2x^{3/2} + C$

$$y(4) = 1 \Rightarrow 1 = 16 + C \text{ so } C = -15$$

= $2x^{3/2} - 15 \text{ for } x > 0$.

Thus y

30. Given that

$$y' = x^{1/3}$$

y(0) = 5,

SECTIONINSTRUCTOR2.9'S(PAGESOLUTIONS148) MANUAL

$$\cos(2x) dx = 2\sin(2x) + C$$

16.
$$\sin \frac{x}{dx} = -2\cos \frac{x}{dx} + C$$

17.
$$(1+x)^2 = -1+x + C$$

18.
$$\sec(1-x)\tan(1-x) dx = -\sec(1-x) + C$$

ADAMS SECTIONandESSEX:2.9CALCULUS(PAGE148)8

then
$$y = x^{1/3} dx = {}^{3} x^{4/3} + C$$
 and $5 = y(0) = C$.

Hence, $y(x) = \frac{3}{4}x^{4/3} + 5$ which is valid on the whole real line.

Since
$$\underline{A}' = Ax \underline{B} + Bx + C$$
 we have

and
$$A = 3$$
 $B = 2$
 $y = 3(x - 1) + 2(x - 1) + C(x - 1) + 1$ for all $x = 3$

70

32. Given that

$$y' = x^{-9/7}$$
$$y(1) = -4$$

then
$$y = x^{-9/7} dx = -\frac{7}{2} x^{-2/7} + C$$
.

Also,
$$-4 = y(1) = -\frac{7}{2} + C$$
, so $C = -1$. Hence,

 $y = -\frac{7}{2}x^{-2/7} - \frac{1}{2}$, which is valid in the interval $(0, \infty)$.

33. For $y(\pi/6) = 2$, we have

$$Z$$

$$y = \cos x \, dx = \sin x + C$$

$$2 = \sin \frac{\pi}{4} + C = \frac{1}{1} + C \qquad H \Rightarrow C = \frac{3}{2}$$

$$6. \qquad 2 \qquad 2$$

$$y = \sin x + \frac{3}{2} \qquad \text{(for all } x\text{)}.$$

$$y' = \sin(2x)$$

34. For
$$y(\pi/2) = 1$$
 , we have Z

$$y = \sin(2x) dx = -\frac{1}{2} \cos(2x) + C$$

$$1 = -\frac{1}{2} \cos \pi + C = \frac{1}{2} + C \quad H \Rightarrow \quad C = \frac{1}{2}$$

$$y = \frac{1}{2} 1 - \cos(2x) \quad \text{(for all } x\text{)}.$$

35. For $y' = \sec^2 x$, we have

$$y = \sec^2 x \, dx = \tan x + C$$

$$1 = \tan 0 + C = C \quad H \Rightarrow \quad C = 1$$

$$y = \tan x + 1 \quad (\text{for } -\pi/2 < x < \pi/2).$$

36. For
$$y' = \sec^2 x$$

 $y(\pi) = 1$, we have
$$Z$$

$$y = \sec^2 x$$

$$Z$$

$$y = \sec^2 x dx = \tan x + C$$

$$1 = \tan \pi + C = C \quad \exists x \in C = 1$$

then
$$y' = \begin{bmatrix} Z \\ x^{-4} dx = -\frac{1}{3}x^{-3} + C \end{bmatrix}$$
.
Since $2 = y'(1) = -\frac{1}{3}x^{-3} + \frac{7}{3}$. Thus
$$Z$$

$$y = \begin{bmatrix} \frac{1}{3}x^{-3} + \frac{7}{3} & \frac{1}{3}x^{-2} & \frac{7}{3}x^{-3} \\ -\frac{1}{3}x^{-3} & \frac{7}{3}x^{-3} & \frac{1}{3}x^{-2} & \frac{7}{3}x^{-3} \\ -\frac{1}{3}x^{-3} & \frac{7}{3}x^{-3} & \frac{1}{3}x^{-2} & \frac{7}{3}x^{-3} & \frac{1}{3}x^{-2} & \frac{7}{3}x^{-3} \\ -\frac{1}{3}x^{-3} & \frac{7}{3}x^{-3} & \frac{1}{3}x^{-2} & \frac{7}{3}x^{-3} & \frac{1}{3}x^{-2} & \frac{7}{3}x^{-3} & \frac{1}{3}x^{-3} & \frac{7}{3}x^{-3} & \frac{7}{3}x^{-3}$$

and
$$1 = y(1) = \frac{1}{1} + \frac{7}{7} + D$$
, so that $D = -\frac{3}{2}$. Hence,
 $y(x) = \frac{1}{2}x^{-2} + \frac{7}{2}x - \frac{3}{2}$, which is valid in the interval

39. Since $y'' = x^3 - 1$, therefore $y' = \frac{1}{4}x^4 - x + C1$. Since y'(0) = 0, therefore $0 = \begin{pmatrix} 4 & 0 - 0 + C1 \end{pmatrix}$, and $y' = \frac{1}{4}x^4 - x$. Thus $y = \frac{1}{20}x^5 - \frac{1}{2}x^2 + C2$.

> Since y(0) = 8, we have $8 = 0 - 0 + C_2$. Hence $y = \frac{1}{2}x^5 + 8$ for all x.

Given that

 $(0, \infty)$.

$$\int_{0}^{1} y'' = 5x^{2} - 3x^{-1/2}$$

$$\int_{0}^{1} y'(1) = 2$$

$$\int_{0}^{1} y'(1) = 0,$$
Z

we have $y' = 5x^{2} - 3x^{-1/2} dx = \frac{5}{3}x^{3} - 6x^{1/2} + C$.

Also,
$$2 = y'(1) = \frac{5}{6} - 6 + C$$
 so that $C = \frac{19}{3}$. Thus, $y' = \frac{5}{6}x^3 - 6x^{1/2} + \frac{19}{3}$, and

$$y = \begin{bmatrix} \frac{3}{2} & 3 & 3 \\ Z & \frac{5}{12} & -6x & \frac{1}{2} + dx = \frac{5}{2} x^{4} - 4x^{\frac{3}{2}} + \frac{19}{2} x + D. \\ 3 & 3 & 12 & 3 \end{bmatrix}$$

Finally,
$$0 = y(1) = \underbrace{5}_{12} - 4 + \underbrace{19}_{12} + D$$
 so that $D = -\underbrace{11}_{4}$.
Hence, $y(x) = \underbrace{5}_{12} x^4 - 4x^{3/2} + \underbrace{\frac{19}{3}}_{3} x - \underbrace{11}_{4}$.

$$y = \tan x + 1$$
 (for $\pi/2 < x < 3\pi/2$).
Since $y'' = 2$, therefore $y' = 2x + C1$.
Since $y'(0) = 5$, therefore $5 = 0 + C_1$, and $y' = 2x + 5$. Thus $y = x^2 + 5x + C2$.
Since $y'(0) = -3$, therefore $-3 = 0 + 0 + C2$, and $C2 = -3$.
Finally, $y = x^2 + 5x - 3$, for all x .
Given that $= x^{-4}y$

41. For
$$y' = \cos x$$

 $y(0) = 0$ we have
$$y'(0) = 1$$

$$Z$$

$$y' = \cos x \, dx = \sin x + C1$$

$$1 = \sin 0 + C1 \quad H \Rightarrow \quad C1 = 1$$

$$y = (\sin x + 1) \, dx = -\cos x + x + C2$$

$$0 = -\cos 0 + 0 + C2 \quad H \Rightarrow \quad C2 = 1$$

$$y = 1 + x - \cos x$$

71

$$y'(1) = 2$$

 $y(1) = 1$,

42. For
$$y' = x + \sin x$$
 we have $y'(0) = 2$ we have $y'(0) = 0$ y

$$B _{x} B _{y} B _{y} B _{y} 2 B _{y}$$
Let $y = Ax + x$. Then $y = A - x 2$, and $y = x 3$.

Thus, for all x = 0,

 $y = \frac{x_3}{6} - \sin x + x + 2.$

$$x^{2}y'' + xy' - y = \frac{2}{x}B + Ax - \frac{B}{x} - Ax - \frac{B}{x} = 0.$$

We will also have y(1) = 2 and y(1) = 4 provided A + B = 2, and A - B = 4.

These equations have solution A = 3, B = -1, so the initial value problem has solution y = 3x - (1/x).

Let r_1 and r_2 be distinct rational roots of the equation ar

$$ax^{2}(Ar_{1}(r_{1}-1)x^{r_{1}-2}+Br_{2}(r_{2}-1)x^{r_{2}-2}$$

$$bx (Ar_1 x^{r_1-1} + Br_2 x^{r_2-1}) + c(Ax^{r_1} + Bx^{r_2})$$

$$A ar_1 (r_1 - 1) + br_1 + c x^{r_1}$$

$$B(ar_2(r_2-1)+br_2+c x^{r_2})$$

$$B(ar_2 (r_2 - 1) + br_2 + c x)$$

$$= 0x \frac{r_1}{4} + 0x \frac{r_2}{2} \equiv 0 \quad (x > 0)$$

$$= 4x^2 y + 4x y - y = 0 \quad (*) \Rightarrow a = 4, b = 4, c = -1$$

$$y (4) = 2$$

$$y (4) = -2$$

Auxiliary Equation:
$$4r(r-1) + 4r - 1 = 0$$
$$4r^2 - 1 = 0$$
$$r = \pm \frac{1}{2}$$

Now
$$y' = \frac{A}{2}x^{-1/2} - \frac{B}{2}x^{-3/2}$$
 solves (*) for $x > 0$.

Substitute the initial conditions:

Hence
$$9 = \frac{B}{2}$$
, so $B = 18$, $A = -\frac{7}{2}$.

Thus
$$y = -\frac{7}{2}x^{1/2} + 18x^{-1/2}$$
 (for $x > 0$).

46. Consider

$$\begin{array}{c} \square \\ \square \\ x^2y & -6y = 0 \\ y(1) & 1 \\ y'(1) = 1. \end{array}$$

Let $y = x^r$, $y' = rx^{r-1}$, $y'' = r(r-1)x^{r-2}$. Substituting these expressions into the differential equation we obtain

$$x^{2}[r(r-1)x^{r-2}] - 6x^{r} = 0$$
 r
 $[r(r-1) - 6]x = 0.$

Since this equation must hold for all x > 0, we must have

$$r(r-1) - 6 = 0$$

$$r^{2} - r - 6 = 0$$

$$(r-3)(r+2) = 0$$

There are two roots: $r_1 = -2$, and $r_2 = 3$. Thus the differential equation has solutions of the form $y = Ax^{-2} + Bx^3$. Then $y = -2Ax^{-3} + 3Bx^2$. Since 1 = y(1) = A + B and 1 = y(1) = -2A + 3B, therefore $A = \frac{2}{5}$ and $B = \frac{3}{5}$. Hence, $y = \frac{2x^{-2}}{5} + \frac{3x^3}{5}$.

Section 2.11 Velocity and Acceleration (page 160)

$$x = t^2 - 4t + 3$$
, $y = \frac{d}{dt} \frac{x}{t} = 2t - 4$, $a = \frac{d}{dt} \frac{y}{t} = 2$

particle is moving: to the right for t > 2

to the left for t < 2

particle is always accelerating to the right

never accelerating to the left

particle is speeding up for t > 2

slowing down for t < 2

the acceleration is 2 at all times

SECTIONINS FRUCTOR 2.16 S SULUTIONS (PAGE 154) MANUAL
$$-2 = \frac{A}{4} - \frac{B}{16} \Rightarrow -8 = A - \frac{B}{4}.$$

average velocity over $0 \le t \le 4$ is

$$\frac{x(4)-x(0)}{4-0} = \frac{16-16+3-3}{4} = 0$$

70 **70**

$$x = 4 + 5t - t^2$$
, $v = 5 - 2t$, $a = -2$.

The point is moving to the right if v > 0, i.e., when $t < \frac{5}{2}$.

The point is moving to the left if v < 0, i.e., when $t > \frac{5}{2}$.

The point is accelerating to the right if a > 0, but a = -2 at all t; hence, the point never accelerates to the right.

The point is accelerating to the left if a < 0, i.e., for all t .

The particle is speeding up if v and a have the same sign, i.e., for $t > \frac{5}{2}$.

The particle is slowing down if v and a have opposite

sign, i.e., for
$$t < 2^5$$
.

Since a = -2 at all t, a = -2 at $t = \frac{5}{2}$ when v = 0.

The average velocity over [0, 4] is

3.
$$x = t^3 - 4t + 1$$
, $v = \frac{dx}{dt} = 3t^2 - 4$, $a = \frac{dv}{dt} = 6t$

a) particle
$$\sqrt{\text{moving:}}$$
 to the right for $t < -2/\sqrt{3}$.

to the left for
$$-2/\sqrt{3} < t < 2/\sqrt{3}$$

particle is accelerating: to the right for t > 0 to the left for t < 0

particl $\sqrt{\underline{e}}$ is speeding up for $t > 2/\sqrt{3}$ or for -2/3 < t < 0

f) particle is slowing down for t < -2/ 3 or for

$$0 < t < 2/$$
 3

g) velocity is zero at $t = \pm 2/$ 3. Acceleration at these times is $\pm 12/$ 3

h) average velocity on [0, 4] is

$$-\frac{4^{3}-4\times4+1-1}{4-0} = 12$$

4.
$$x = \frac{t}{t^2 + 1}$$
, $v = \frac{(t^2 + 1)(1) - (t)(2t)}{(t^2 + 1)^2} = \frac{1 - t^2}{(t^2 + 1)^2}$, $\frac{(t^2 + 1)^2(-2t) - (1 - t^2)(2)(t^2 + 1)(2t)}{(t^2 + 1)^4} = \frac{1 - t^2}{(t^2 + 1)^2}$, $\frac{2t(t^2 - 3)}{(t^2 + 1)^3}$

The point is moving to the right if v > 0, i.e., when $1 - t^2 > 0$, or -1 < t < 1.

The point is moving to the left if v < 0, i.e., when t < 0

- d) The poi $\sqrt{\underline{nt}}$ is acceleratin $\sqrt{\underline{g}}$ to the left if a < 0, i.e., for t < -3 or 0 < t < 3.
- e) The particle is speedi $\sqrt{\text{ng}}$ up if v and a have the same sign, i.e., $\sqrt{\text{for}} t < -3$, or -1 < t < 0 or 1 < t < 3.

The particle is slowing $\sqrt{}$ down if v and a have opposite $\sqrt{}$ sign, i.e., for -3 < t < -1, or 0 < t < 1 or t > 3.

g)
$$v = 0$$
 at $t = \pm 1$. At $t = -1$, $a = \frac{-2(-2)}{(2)^3} = \frac{1}{2}$
At $t = 1$, $a = \frac{2(-2)}{(2)^3} = -\frac{1}{2}$.

h) The average velocity over [0, 4] is

$$x(4) - x(0) = \begin{array}{c} -\frac{4}{3} - 0 \\ 17 \end{array} = \frac{1}{3}$$

 $y = 9.8t - 4.9t^{2}$ metres (t in seconds) dyvelocity v = dt = 9.8 - 9.8t

acceleration
$$a = \frac{d}{d} v_{t} = -9.8$$

The acceleration is 9.8 m/s^2 downward at all times. Ball is at maximum height when v = 0, i.e., at t = 1. Thus

maximum height is $y_t = 1 = 9.8 - 4.9 = 4.9$ metres. Ball strikes the ground wh en y = 0, (t > 0), i.e., 0 = t (9.8 - 4.9t) so t = 2.

Velocity at t = 2 is 9.8 - 9.8(2) = -9.8 m/s. Ball strikes the ground travelling at 9.8 m/s (downward).

Given that $y = 100 - 2t - 4.9t^2$, the time t at which the

ball reaches the ground is the positive root of the equation y = 0, i.e., $100 - 2t - 4.9t^2 = 0$, namely,

$$t = \frac{-2 + \sqrt{\frac{1}{4 \cdot 4(4.9)(100)}}}{4 \cdot 4(4.9)(100)} \approx 4.318 \text{ s.}$$

$$-100$$

The average velocity of the ball is 4.318 = -23.16 m/s.

Since -23.159 = v = -2 - 9.8t, then $t \approx 2.159$ s.

7. $D = t^2$, D in metres, t in seconds

velocity
$$v = dD = 2t$$

 $\frac{dt}{dt}$ Aircraft becomes airborne if

$$v = 200 \text{ km/h} = \frac{200,000}{100} = \frac{500}{100} \text{ m/s}.$$

3600 9Time for aircraft to become airborne is t = 250 s, that

$$-1$$
 or $t > 1$.

The point is accelerating to the right if a > 0, i.e.,

when
$$\sqrt{2}t$$
 ($t^2 - \sqrt{3}$) > 0, that is, when $t > 3$ or $-3 < t < 0$.

is, about 27.8 s.

Distance travelled during takeoff run is $t^2 \approx 771.6$ metres.

Let $y\left(t\right)$ be the height of the projectile t seconds after it is fired upward from ground level with initial speed v() . Then

$$y''(t) = -9.8, y'(0) = v_0, y(0) = 0.$$

71

Two antidifferentiations give

$$= -4.9t^2 + v0 t = t (v0 - 4.9t).$$

Since the projectile returns to the ground at t = 10 s, we

have y(10) = 0, so v0 = 49 m/s. On Mars, the acceleration of gravity is 3.72 $\mbox{m/s}^2$ rather than 9.8 $\mbox{m/s}^2$, so the height of the projectile would be

$$= -1.86t^2 + v_0 t = t (49 - 1.86t).$$

The time taken to fall back to ground level on Mars would be $t = 49/1.86 \approx 26.3 \text{ s.}$

The height of the ball after t seconds is

$$y(t) = -(g/2)t^2 + v_0 t$$
 m if its initial speed was v_0 m/s.

Maximum height h occurs when dy/dt = 0, that is, at t = v0/g. Hence

$$h = -\frac{g}{2} \cdot \frac{v_0^2}{g^2} + v_0 \cdot \frac{v_0}{g} = \frac{v_0^2}{2g}.$$

 $h = -\frac{g}{2} \cdot \frac{v_0^2}{g^2} + v_0 \cdot \frac{v_0}{g} = \frac{v_0^2}{g^2}.$ An initial speed of 2v₀ means the maximum height will be 4v ²/2g = 4h . To get a maximum height of 2h an initial ⁰ speed of 2v0 is required.

To get to 3h metres above Mars, the ball would have to be thrown upward with speed

$$v = {p \over 6g \cdot h} = {q \over 6g \cdot v^2/(2g)} = v {p \over 3g \cdot /g}$$
 $M = M = 0 = 0$

Since gM = 3.72 and g = 9.80, we have $v M \approx 1.067v0$ m/s.

If the cliff is h ft high, then the height of the rock t sec-onds after it falls

is $y = h - \sqrt{16t^2}$ ft. The rock hits the ground (y = 0) at time $\sqrt{t} = h/16$

s. Its speed $\sqrt{\underline{at}}$ that time is v = -32t = -8 h = -160 ft/s. Thus h = 20,

and the cliff is h = 400 ft high.

If the cliff is h ft high, then the height of the rock t sec-onds after it is thrown down is $y = h - 32t - 16t^2$ ft. The rock hits the ground (y = 0) at time

$$t = \frac{-32 + \frac{\sqrt{32^2 + 64h}}{32^2 + 64h}}{32} = -1 + \frac{4}{4} = 16 \cdot h \text{ s}$$

Its speed at that time is

Let x(t) be the distance travelled by the train in the t seconds after the brakes are applied. Since $d^2 x/dt^2 = -1/6 \text{ m/s}^2$ and since the initial speed is vo = 60 km/h = 100/6 m/s, we have

$$x(t) \qquad \frac{1}{12}t^2 \quad \frac{100}{6}t.$$

The speed of

the train at time t is v (t) = -(t/6) + (100/6) m/s, so

it takes the train 100 s to come to a stop. In that time it travels x (100) = $-10^2/12 + 100^2/6 = 100^2/12 \approx 833$

2

$$x = At + Bt + C$$
, $v = 2At + B$. The

average velocity over [t 1, t2] is (t2) - x (t1)

$$\frac{At \, 2^2 + B \, t_1 + C - At \, 1^2 - B \, t_1 - C}{t_2 - t_1}$$

$$\frac{A(t^2 - t^2) + B(t)}{2} - t$$

$$= \underline{A(t2 + t1)(t2 - t1) + B(t2 - t1)}$$

$$(t2 - t1)$$

$$A(t2+t1)+B.$$

The instantaneous velocity at the midpoint of [t1, t2] is

$$\frac{t_2 + t_1}{2} = 2A$$
 $\frac{t_2}{2} \cdot \frac{t_1}{2} + B = A(t_2 + t_1) + B$.

Hence, the average velocity over the interval is equal to

the instantaneous velocity at the midpoint.

15.
$$s = \begin{bmatrix} 1 & t^2 & 0 \le t \le 2 \\ 4t - 4 & 2 & 2 < t < 8 \\ -68 + 20t - t & 8 \le t \le 10 \end{bmatrix}$$

Note: s is continuous at 2 and 8 since $2^2 = 4(2) - 4$ and 4(8)-4=-68+160-64

velocity v =
$$\frac{ds}{dt} = 4$$
 if $0 < t < 2$ if $2 < t < 8$

$$\begin{array}{c} 20 & \text{if } 8 < t < 10 \\ \text{Since } 2t \rightarrow 4 \text{ as } t \rightarrow 2 - \text{, th erefore, v is continuous at 2} \\ ((v \ (2) = 4). \end{array}$$

Since $20 - 2t \rightarrow 4$ as $t \rightarrow 8+$, therefore v is continuous at 8 (v(8) = 4). Hence the velocity is continuous for 0 < t < 10

acceleration
$$a = \begin{pmatrix} \frac{dy}{dt} \\ dt \end{pmatrix}$$
 = 0 if 2 < t < 8 \\ dt = -2 if 8 < t < 10

is discontinuous at t = 2 and t = 8

Maximum velocity is 4 and is attained on the interval 2

v = -32 - 32t = -8 16 + h = -160 ft/s.

 $\leq t \leq 8.$

Solving this equation for h gives the height of the cliff as 384 ft

This exercise and the next three refer to the following figure depicting the velocity of a rocket fired from a tower as a function of time since firing.

72

72

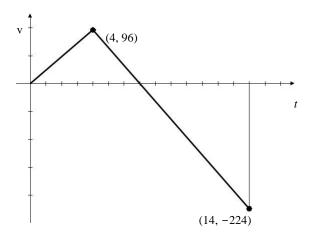


Fig. 2.11.16

The rocket's acceleration while its fuel lasted is the slope of the first part of the graph, namely 96/4 = 24 ft/s.

17. The rocket was rising until the velocity became zero, that

is, for the first 7 seconds.

As suggested in Example 1 on page 154 of the text, the distance travelled by the rocket while it was falling from its maximum height to the ground is the area between the velocity graph and the part of the t-axis where v < 0.

The area of this triangle is (1/2)(14 - 7)(224) = 784 ft. This is the maximum height the rocket achieved.

19. The distance travelled upward by the rocket while it was rising is the area between the velocity graph and the part

of the *t* -axis where v > 0, namely (1/2)(7)(96) = 336 ft. Thus the height of the tower from which the rocket was fired is 784 - 336 = 448 ft.

20. Let s(t) be the distance the car travels in the t seconds after the brakes are applied. Then s(t) = -t and the velocity at time t is given by

Z 2
$$s'(t) = (-t) dt = -\frac{t}{2} + C_1,$$

where C = 20 m/s (that is, 72 km/h) as determined in

Example 6. Thus

$$Z 2 3$$

$$\underline{t} \underline{t}$$

$$s(t) = 20 - 2 dt = 20t - 6 + C2,$$

where C2 = 0 because s(0) = 0. The time taken to come distance travelled is

Review Exercises 2 (page 161)

1.
$$y = (3x + 1)^2$$

 $\underline{dy} \quad \lim_{x \to 0} \frac{(3x + 3h + 1)^2 - (3x + 1)}{h}^2$
 $dx \quad h \to 0 \quad h$
 $= \lim_{h \to 0} \frac{9x^2 + 18xh + 9h^2 + 6x + 6h + 1 - (9x^2 + 6x + 1)}{h}$
 $= \lim_{h \to 0} (18x + 9h + 6) = 18x + 6$

$$d \quad p \xrightarrow{2} \frac{\frac{p}{1 - (x + h)^{2}} - \sqrt{\frac{2}{1 - x^{2}}}}{1 - x}$$

$$2. \quad \frac{1 - x}{1 - (x + h)^{2} - (1 - x^{2})} = \lim_{h \to 0} \frac{\frac{h}{1 - (x + h)^{2}} - (1 - x^{2})}{\frac{p}{1 - (x + h)^{2}} + \frac{1 - x^{2}}{1 - x^{2}}}$$

$$= \lim_{h \to 0} \frac{\frac{p}{1 - (x + h)^{2}} + \frac{\sqrt{1 - x^{2}}}{1 - x^{2}}}{1 - x^{2}} = -\sqrt{x}$$

3.
$$f(x) = 4/x^2$$

$$4$$

$$f^{'(2) = \lim_{h \to 0} \frac{(2+h)^2 - 1}{h}$$

$$= \lim_{h \to 0} \frac{4 - (4+4h+h^2)}{2} = \lim_{h \to 0} \frac{-4-h}{2}, = -1$$

$$h \to 0 \qquad h(2+h) \qquad h \to 0 (2+h)$$

4.
$$g(t) = \lim_{h \to 0} \frac{4+h}{\frac{1+-9+h}{1+-9+h}} - 1$$

$$= \lim_{h \to 0} \frac{(3+h--9+h)(3+h+-9+h)}{(3+h-9+h)(3+h+-9+h)}$$

$$= \lim_{h \to 0} \frac{9+6h+h-(9+h)}{h(1+-9+h)(3+h+-9+h)}$$

$$= \lim_{h \to 0} \frac{\sqrt{5+h}}{h(1+-9+h)(3+h+-9+h)}$$

$$= \lim_{h \to 0} \frac{\sqrt{5+h}}{(1+-9+h)(3+h+-9+h)}$$

$$= \frac{5}{24}$$

$$(t) = 0$$
, so it is $t = \sqrt{}$

5. The tangent to
$$y = \cos(\pi x)$$
 at $x = 1/6$ has

slope
$$s = 20 40 - 640^{3/2} \approx 84.3 \text{ m}.$$

$$dy$$
 π π
 $dx = 1/6 = -\pi \sin 6 = -2$.

73

Its equation is

$$y = \frac{\sqrt{3}}{3} - \underline{\pi} \quad x - \underline{1} \quad .$$

$$2 \quad 2 \quad 6$$

6. At
$$x = \pi$$
 the curve $y = \tan(x/4)$ has slope

 $(\sec (\pi/4))/4 = 1/2$. The normal to the curve there

has equation $y = 1 - 2(x - \pi)$.

7.
$$\frac{d}{dx - \sin x} = -\frac{1 - \cos x}{(x - \sin x)^2}$$

$$d + x + x + x + 2 + x + 3 = d$$

8.
$$dx$$
 \dot{x} \dot{a} $= dx(x^{-4} + x^{-3} + x^{-2} + x^{-1}) -4x^{-5} -3x^{-4} -2x^{-3} -x^{-2} -2$

$$-4 + 3x + 2x^{2} + x^{3}$$

9.
$$\frac{d}{dx} (4-x)^{2/5} = -\frac{5}{2} (4-x)^{2/5} = -\frac{5}{2} x^{2/5}$$

$$d p$$
 $-2 \cos x \sin x - \sin x \cos x$

 $x - 3/5 (4 - x^{2/5}) - 7/2$

10.
$$\frac{1}{dx} = \frac{2 + \cos^2 x}{2 + \cos^2 x} = \frac{\sqrt{\frac{1}{2 + \cos^2 x}}}{2 + \cos^2 x}$$

$$\frac{d}{d\theta} = \frac{2}{\theta} = \frac{2}{\theta}$$

12.
$$d = 1 + t^2 = -1$$

$$\frac{(\sqrt[4]{1+t^2} + 1)\sqrt{t} - (-1+t^2 - 1)\sqrt{t}}{\sqrt{1+t^2}} = \frac{(\sqrt[4]{1+t^2} - 1)\sqrt{t}}{\sqrt{1+t^2+1}}$$

$$= \frac{(\sqrt[4]{1+t^2} + 1)\sqrt{t} - (-1+t^2 - 1)\sqrt{t}}{\sqrt{1+t^2+1}}$$

$$= \sqrt[4]{2t}$$

$$= \sqrt[4]{2}$$

$$1 + t^{2} (1 + t^{2} + 1)^{-1}$$

$$\frac{(x+h)^{20} - x^{20}}{d}$$

13.
$$\lim_{h \to 0} \int_{0}^{\pi} dx \sqrt{1} dx = x^{20} = 20x^{10}$$

14.
$$\lim_{-\frac{4x+1}{2}} -3 = \lim_{-\frac{4x+1}{2}} 4 = \lim_{-\frac{4x+1}{2}} 4$$

17.
$$\frac{d}{dx}f(3-x^2) = -2xf'(3-x^2)$$

$$\sqrt{\qquad } \sqrt{\qquad } \sqrt{\qquad } \sqrt{\qquad } \sqrt{\qquad } f(-x)f'(-x)$$

18.
$$dx[f(-x)]^2 = 2f(-x)f'(-x)^{-2}x$$

19.
$$\frac{d}{dx} f(2x) g(x/2)$$
 $= 2f(2x) p \frac{f(2x)g(x/2)}{g(x/2)}$

4 g(x/2)

20.
$$\frac{d}{dx} f(x) = g(x)$$

$$= \frac{1}{(f(x) + g(x))} f(x) + g(x) +$$

21.
$$\frac{d}{dx}f(x+(g(x))^2) = (1+2g(x)g'(x))f'(x+(g(x))^2)$$

22.
$$\frac{d}{f}$$
 $\frac{g(x^2)}{dx} = \frac{2x^2g'(x^2) - g(x^2)}{x^2}f' = \frac{g(x^2)}{x}$

23.
$$\frac{d}{dx} f(\sin x) g(\cos x)$$

$$= (\cos x) f'(\sin x) g(\cos x) - (\sin x) f(\sin x) g'(\cos x)$$

$$-\frac{s}{\cos f(x)}$$

 $d x \sin g(x) s$

$$= 1 \sin g(x)$$

 $2 \cos f(x)$

$$\times \frac{-f'(x)\sin f(x)\sin g(x) - g(x)\cos f(x)\cos g(x)}{\left(\sin g(x)\right)^2}$$

If
$$x^3y + 2xy^3 = 12$$
, then $3x^2y + x^3y' + 2y^3 + 6xy^2y' = 0$.

At (2, 1): 12 + 8y + 2 + 12y = 0, so the slope there is y = 0-7/10. The tangent line has equation

$$y = 1 - \frac{7}{2}(x - 2) \text{ or } 7x + 10 \text{ } y = 24. \text{ } 2$$

26. $3 \int_{0.7}^{0.7} 2x \sin(\pi y) + 8 y \cos(\pi x) = 2$

$$x \rightarrow 2$$
 $x \rightarrow 2$ $h \rightarrow 0$ $4h$

$$\frac{d}{d} \quad \sqrt{} \quad \frac{4}{2} \quad 2$$

$$= dx4 \quad x \quad = 2\sqrt{9} \quad = 3$$

15.
$$\lim_{x \to \pi/6} \frac{\cos(2x) - (1/2)}{x - \pi/6} = \lim_{h \to 0} \frac{\cos((\pi/3) - 2h) \cos(\pi/3)}{2h}$$

$$\frac{2^d}{2^d} \cos x$$

$$dx$$

$$-2 \sin(\pi/3) = -3$$

$$\frac{1}{x \to -a} \frac{1}{x + a} = \lim_{x \to -a} \frac{(-a + h)}{2} - \frac{(-a)}{2}$$

$$h \to 0 \qquad h$$

$$d \qquad 1 \qquad 2$$

$$3 \quad 2\sin(\pi y) + 3\pi \sqrt{2} \qquad x\cos(\pi y)y + 8y \cos(\pi x)$$

$$-8\pi y \sin(\pi x) = 0$$

$$At (1/3, 1/4): \quad 3 + \pi y' + 4y' - \pi \quad 3 = 0, \text{ so the slope}$$

$$\sqrt{-}$$
there is $y' = \frac{\pi}{x + 4} = \frac{3 - 3}{\pi + 4}$.

$$Z \quad 1 + x_4 \qquad Z \quad 1 \qquad 1 \qquad x^3$$

$$Z \quad 1 + x_4 \qquad Z \quad 1 \qquad 1 \qquad x^3$$

$$Z \quad \frac{1 + x_4}{x^2} dx = \frac{1}{x^2} + x^2 \qquad dx = -\frac{1}{x^2} + \frac{1}{x^2} + C$$

$$Z \quad \frac{1 + x_4}{x} dx = \frac{1}{x^2} + x^2 \qquad dx = -\frac{1}{x^2} + \frac{1}{x^2} + C$$

$$\sqrt{-} \quad \frac{2}{x^2} + \frac{1}{x^2} + \frac{1}$$

74

Copyright © 2014 Pearson Canada Inc.

cos x

$$\overline{dxx^2}_{x=-a} = \overline{a^3}$$

$$= 2 \tan x + 3 \sec x + C$$

or, equivalently,

$$(2x+1)^4 dx = \frac{(2x+1)_5}{} + C$$

If
$$f'(x) = 12x^2 + 12x^3$$
, then $f(x) = 4x^3 + 3x^4 + C$.

If
$$f(1) = 0$$
, then $4 + 3 + C = 0$, so $C = -7$ and $f(x) = -7$

$$4x^3 + 3x^4 - 7$$
.

If $g(x) = \sin(x/3) + \cos(x/6)$, then

$$g(x) = -3\cos(x/3) + 6\sin(x/6) + C.$$

If
$$(\pi, 2)$$
 lies on $y = g(x)$, then $-(3/2) + 3 + C = 2$, so $= 1/2$ and $g(x) = -3\cos(x/3) + 6\sin(x/6) + (1/2)$.

d-

$$(x \sin x + \cos x) = \sin x + x \cos x - \sin x = x \cos x \, dx$$

$$\frac{d}{Z}x(x\cos x - \sin x) = \cos x - x\sin x - \cos x = -x\sin x$$

$$x\cos x \, dx = x\sin x + \cos x + C$$

Z

$$x\sin x \, dx = -x\cos x + \sin x + C \, \mathbf{34.}$$

If
$$f'(x) = f(x)$$
 and $g(x) = x f(x)$, then

$$g'(x) = f(x) + xf'(x) = (1+x)f(x)$$
 $g'(x) = f(x) + (1+x)f'(x) = (2+x)f(x)$

$$g^{'''}(x) = f(x) + (2 + x)f^{'}(x) = (3 + x)f(x)$$

Conjecture: $g^{(n)}(x) = (n+x) f(x)$ for n = 1, 2, 3, ...

Proof: The formula is true for n = 1, 2, and 3 as shown above. Suppose it is true for n = k; that is, suppose $g^{(k)}$

$$(x) = (k + x) f(x)$$
. Then

$$g^{(k+1)}(x) = \frac{d}{dx} x \quad (k+x)f(x)$$

$$= f(x) + (k+x)f'(x) = ((k+1) + x)f(x).$$

Thus the formula is also true for n = k + 1. It is therefore true for all positive integers n by induction.

The tangent to $y = x^3 + 2$ at x = a has equation

This line passes through (0, 1) provided

$$1 = \frac{p}{2 + a^2} - \frac{a^2}{\sqrt{2 + a^2}}$$

$$p \frac{2 + a^2}{2} = 2 + a^2 - a^2 = 2$$

$$2 + a = 4$$

The possibilities are $a = \pm \frac{\sqrt{2}}{2}$, and the equations of the corrresponding tangent lines are $y = 1 \pm (x/\sqrt{2})$.

37.
$$\frac{d}{dx} \sin^{n} x \sin(nx)$$

$$= n \sin^{n-1} x \cos x \sin(nx) + n \sin^{n} x \cos(nx)$$

$$= n \sin^{n-1} x [\cos x \sin(nx) + \sin x \cos(nx)] = n \sin^{n-1} x \sin((n+1)x)$$

$$y = \sin^{n} x \sin(nx) \text{ has a horizontal tangent at}$$

$$= m \pi/(n+1), \text{ for any integer } m.$$

38.
$$dx \sin^n x \cos(nx)$$

$$= n \sin^{n-1} x \cos x \cos(n x) - n \sin^{n} x \sin(n x)$$

$$= n \sin^{n-1} x \left[\cos x \cos(n x) - \sin x \sin(n x)\right] = n \sin^{n-1} x \cos((n+1)x)$$

$$\frac{d}{dx}\cos^{n}x\sin(nx)$$

$$n-1$$

$$= -n\cos x\sin x\sin(nx) + n\cos x\cos(nx)$$

$$n-1$$

$$= n\cos x[\cos x\cos(nx) - \sin x\sin(nx)]$$

 $[x] = n \cos x \cos((n+1)x)$

$$\frac{d}{dx}\cos^{n}x\cos(nx)$$

$$-n\cos x\cos(nx) - n\cos x\sin(nx)$$

$$-n\cos x\left[\sin x\cos(nx) + \cos x\sin(nx)\right]$$

$$-n\cos^{n-1}x\sin((n+1)x)$$

Q = (0, 1). If $P = (a, a^2)$ on the curve $y = x^2$, then $-1.x\sin$ the slope of $y = x^2$ at P is 2a, and the slope of PQ is $(a^2 - 1)/a$. PQ is normal to $y = x^2$ if a = 0 or $[(a^2 - 1)/a](2a) = -1$, that is, if $\sqrt{a} = 0$ or $a^2 = 1/2$. The points P

are (0,0) and $(\pm 1/\sqrt{2}, 1/2)$. The distances from these points to Q are 1 and 3/2, respectively.

The distance from Q to the $\sqrt{\text{curve }} y = x^2$ is the shortest of these distances, namely 3/2 units.

The average profit per tonne if x tonnes are exported is P(x)

$$y = a^3 + 2 + 3a^2 (x - a)$$
, or $y = 3a^2 x - 2a^3 + 2$. This line

passes through the origin if $0 = -2a^3 + 2$, that is, if a = 1. The line then has equation y = 3x.

36. The $\sqrt{\text{tangen}}$ t to $y = 2 + x^2$ at x = a has slope $a/2 + a^2$

and equation

$$v = \frac{p}{2 + a^2} + \sqrt{a} \quad 2 + a^2$$

)/x, that is the slope of the line joining (x, P(x)) to the origin. This slope is maximum if the line is tangent to the

graph of P(x). In this case the slope of the line is P'(x), the marginal profit.

41.
$$F(r) = \frac{m g R^2}{r^2}$$
 if $r \ge R$

$$\begin{array}{ccc}
m & & \text{if } 0 & r < R \\
kr & & \leq & \\
\end{array}$$

$$(x-a)$$
.

76 76

For continuity of F(r) at r = R we require m g = m k R, so k = g/R.

b) As r increases from R, F changes at rate

$$\frac{d m g R^2}{=} = -\frac{2m g R^2}{=}$$

$$\frac{2m g}{R^3} = -R.$$

As r decreases from R, F changes at rate

$$\frac{d}{dr} (m kr) = -m k = - \frac{m g}{R}.$$

Observe that this rate is half the rate at which F decreases when r increases from R.

P V = k T. Differentiate with respect to P holding T

constant to get

$$V + P \frac{d}{d} V_P = 0$$

Thus the isothermal compressibility of the gas is

Let the building be *h* m high. The height of the first ball at time *t* during its motion is

$$y_1 = h + 10t - 4.9t^2$$
.

It reaches maximum height when $d y_1/d t = 10 - 9.8t = 0$,

that is, at t = 10/9.8 s. The maximum height of the first ball is

$$y1 = h + 100 - 4.9 \times 100 = h + 100 = 100$$
.

The height of the second ball at time t during its motion is

$$y_2 = 20t - 4.9t^2$$
.

It reaches maximum height when $d y^2/d t = 20 - 9.8t = 0$, that is, at t = 20/9.8 s.

The maximum height of the second ball is

$$y = 400 - 4.9 \times 400 = 400$$

9.8 $(9.8)^2$ 19.6

These two maximum heights are equal, so

$$h + \frac{100}{19.6} = \frac{400}{19.6} ,$$

which gives $h = 300/19.6 \approx 15.3$ m as the height of the building.

The first ball has initial height 60 m and initial velocity 0,

The second ball has initial height 0 and initial velocity v0, so its height at time t is

$$y_2 = v_0 t - 4.9t^2$$
 m.

The two balls collide at a height of 30 m (at time T, say). Thus

$$= 60 - 4.9T^{2}$$
$$= v_{0} T - 4.9T^{2}.$$

Thus v₀ T = 60 and $T^2 = 30/4.9$. The initial upward speed of the second ball is

$$v_0 = \frac{60}{T} = 60 \frac{4.9}{30} \approx 24.25 \,\text{m/s}.$$

At time T, the velocity of the first ball is

$$\frac{d y_1}{d t}$$
 = -9.8T \approx -24.25 m/s.

At time T, the velocity of the second ball is

$$\frac{d y_2}{d t}$$
 = v₀ - 9.8T = 0 m/s.

Let the car's initial speed be v₀. The car decelerates at 20 ft/s² starting at t = 0, and travels distance s in time t, where $d^2 s / dt^2 = -20$. Thus

$$\frac{d}{d}^{S}t = v_0 - 20t$$
$$= v_0 t - 10t^2$$

The car stops at time $t = v_0/20$. The stopping distance is s = 160 ft, so

$$\begin{array}{ccccc}
 & v^2 & v^2 & v^2 \\
 & - & - & - & - \\
160 & = & 20 & - & 40 & = & 40
\end{array}$$

The car's initial speed cannot exceed

$$v_0 = \sqrt{\frac{160 \times 40}{1}} = 80 \text{ ft/s}.$$

46.
$$P = 2\pi^{\sqrt{\frac{L/g}{L/g}}} = 2\pi L_{1/2} g^{-1/2}$$
.

a) If L remains constant, then

so its height at time t is

$$y_1 = 60 - 4.9t^2$$
 m.

If g increases by 1%, then 1g/g = 1/100, and 1 P/P = -1/200. Thus P decreases by 0.5%.

78

78

b) If g remains constant, then

$$\begin{split} 1 \, P &\approx & \frac{dP}{dL} \, 1L = \pi \, L - \frac{1}{2} \, g^{-1/2} \, 1L \\ & \frac{1 \, P}{dL} \approx \frac{\pi \, L^{-1/2} \, g^{-1/2}}{2} \, 1L = \frac{1}{2} \, \frac{1L}{2} \, . \end{split}$$

 $P = 2\pi L^{1/2} g^{-1/2} = 2 L$ If *L* increases by 2%, then 1*L* /*L* = 2/100, and 1 *P*/

P = 1/100. Thus P increases by 1%.

Challenging Problems 2 (page 162)

The line through (a, a^2) with slope m has equation $y = a^2 + m(x - a)$. It intersects $y = x^2$ at points x that satisfy

$$x^2 = a^2 + mx - ma$$
, or $x^2 - mx + ma - a^2 = 0$

In order that this quadratic have only one solution x = a, the

left side must be (x - a), so that m = 2a. The tangent has slope 2a.

This won't work for more general curves whose tangents can intersect them at more than one point.

$$f'(x) = 1/x, f(2) = 9.$$
a) $\lim_{x \to 2} \frac{f(x^2 + 5) - f(1)}{x - 2}$ $\lim_{h \to 0} \frac{f(9 + 4 + h^2) - f(9)}{h}$

$$= \lim_{h \to 0} \frac{f(9 + 4h + h^2) - f(9)}{4h + h^2} \times \frac{4h + h^2}{h}$$

$$= \lim_{k \to 0} \frac{f(9 + k) - f(9)}{k} \times \lim_{h \to 0} (4 + h)$$

$$= f'(9) \times 4 = \frac{4}{k}$$

$$\sqrt{\qquad \qquad 9 \qquad - \qquad \qquad }$$
b) $\lim_{k \to 0} \frac{f(x) - 3}{k} = \lim_{k \to 0} \frac{f(2 + h) - 3}{k}$

$$= \lim_{k \to 0} \frac{f(2 + h) - 9}{k} \times \sqrt{\qquad \qquad 1}$$

$$= f'(2) \times \frac{1}{12} = \frac{1}{12}.$$

3.
$$f(4) = 3$$
, $g(4) = 7$, $g(4) = 4$, $g(x) = 4$ if $x = 4$.
a) $\lim_{x \to 4} f(x) - f(4) = \lim_{x \to 4} \underbrace{f(x) - f(4)}_{x - 4} (x - 4)$

$$= f'(4)(4-4) = 0$$
b) $\lim \frac{f(x) - f(4)}{x - 4} = \lim \frac{f(x) - f(4)}{x - 4} \times \frac{1}{x - 4}$.

d)
$$\lim_{x \to 4} \frac{f(x) - f(4)}{\frac{1}{x} - \frac{1}{4}} = \lim_{x \to 4} \frac{f(x) - f(4)}{x - 4} \times \frac{x - 4}{(4 - x)/4x}$$
$$= f'(4) \times (-16) = -48$$
$$f(x) - f(4)$$

e)
$$\lim_{x \to 4} \frac{f(x) - f(4)}{g(x) - 4} = \lim_{x \to 4} \frac{x - 4}{g(x) - g(4)}$$

$$= \frac{f'(4)}{g(4)} = \frac{3}{7}$$

f)
$$\lim_{x \to 4} \frac{f(g(x)) - f(4)}{x - 4}$$

$$= \lim_{x \to 4} \frac{f(g(x)) - f(4)}{g(x) - 4} \times \frac{g(x) - g(4)}{x - 4}$$

$$f(g(4)) \times g(4) = f(4) \times g = 3 \times 7 = 21$$

- **4.** $f(x) = {\text{n}} x$ if x = 1, 1/2, 1/3, ... otherwise
 - a) f is continuous except at 1/2, 1/3, 1/4, It is continuous at x = 1 and x = 0 (and everywhere else).

Note that

$$\lim_{x \to 1} x^2 = 1 = f(1),$$

$$\lim_{x \to 1} x^2 = \lim_{x \to 0} x = 0 = f(0)$$

b) If a = 1/2 and b = 1/3, then

$$\frac{f(a) + f(b)}{2} = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{3} = \frac{5}{12}$$

If 1/3 < x < 1/2, then f(x) = x < 1/4 < 5/12. Thus the statement is FALSE.

c) By (a) f cannot be differentiable at x = 1/2, 1/2, It is not differentiable at x = 0 either, since

$$\lim_{h \to 0} h - 0h = 1 = 0 = \lim_{h \to 0} \frac{h^2}{h} = 0.$$

f is differentiable elsewhere, including at x = 1 where its derivative is 2.

If h = 0, then

$$\frac{f(h) - f(0)}{h} - = \frac{|f(h)|}{\frac{|h|}{h}} > \frac{\overline{|h|}}{|h|} \to \infty$$

f

$$= f'(4) \times 1 = 3$$

c)
$$\lim_{x \to 4} \frac{f(x) - f(4)}{\sqrt{x}} = \lim_{x \to 4} \frac{f(x)}{f(4)} \frac{f(4)}{\sqrt{x}} \times (x+2)$$

$$= \int_{x \to 4} \frac{f(x) - f(4)}{\sqrt{x}} = \lim_{x \to 4} \frac{f(x)}{\sqrt{x}} \frac{f(4)}{\sqrt{x}} \times (x+2)$$
6. Given that $f'(0) = k$, $f(0) = 0$, and $f(x+y) = f(x)f(y)$, we have
$$f(0) = f(0+0) = f(0)f(0)H \Rightarrow f(0) = f(0$$

as
$$h \to 0$$
. Therefore (0) does not exist.

6. Given that
$$f'(0) = k$$
, $f(0) = 0$, and $f(x + y) = f(x) f(y)$, we have

$$f(0) = f(0+0) = f(0) f(0) H \Rightarrow f(0) = 0 \text{ or } f(0) = 1.$$

79 79

Thus f(0) = 1.

$$f (x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h} = f(x)f'(0) = kf(x).$$

7. Given that g'(0) = k and g(x + y) = g(x) + g(y), then

a)
$$g(0) = g(0 + 0) = g(0) + g(0)$$
. Thus $g(0) = 0$.

b)
$$g'(x) = \lim_{x \to a} \frac{g(x+h) - g(x)}{x}$$

$$h\rightarrow 0$$

$$= \lim_{\substack{h \to 0 \\ r}} g(x) + g(h) - g(x) = \lim_{\substack{h \to 0}} g(h) - g(0)$$

$$= g'(0) = k.$$

c) If
$$h(x) = g(x) - kx$$
, then $h(x) = g(x) - k = 0$

for all x. Thus h(x) is constant for all x. Since h(0) = g(0) - 0 = 0, we have h(x) = 0 for all x, and g(x) = kx.

8. a)
$$f'(x) = \lim_{k \to 0} \overline{f(x+k) - f(x)}$$
 (let $k = -h$)
$$= \lim_{k \to 0} \frac{f(x-h) - f(x)}{h} = \lim_{k \to 0} \frac{f(x-h)}{h}.$$

$$f'(x) = \frac{1}{1} f'(x) + f'(x)$$

$$f(x) = 1 f(x) + f(x)$$

$$= \frac{2}{1} \lim_{x \to a} \frac{f(x+h) - f(x)}{f(x+h) - f(x)}$$

$$+ \lim_{h \to 0} \frac{f(x) - f(x - h)}{h}$$

=
$$\lim_{h \to 0} f(x+h) - f(x-h)$$
.

b) The change of variables used in the first part of (a) shows that

$$\lim_{h \to 0} f(x+h) - f(x) \quad and \quad \lim_{h \to 0} f(x) - f(x-h)$$

are always equal if either exists.

c) If f(x) = |x|, then f'(0) does not exist, but

$$\lim_{h \to 0} f(0+h) - f(0-h) = \lim_{h \to 0} |\underline{h}| = |\underline{h}| = \lim_{0} = \lim_{h \to 0} \frac{|\underline{h}|}{h} = \lim_{h \to 0} \frac{1}{h} = \lim_{h \to 0} \frac{1}{$$

9. The tangent to $y = x^3$ at x = 3a/2 has equation

$$\frac{3}{y = 27a + 27 \times 3a} = \frac{3}{8 + 4a^2} = \frac{3}{2}.$$

If a = 0, the x-axis is another tangent to $y = x^3$ that passes through (a, 0).

The number of tangents to $y = x^3$ that pass through (x_0, y_0) is

three, if
$$x = 0$$
 and $y = 0$ is between 0 and $x = 0$;
two, if $x = 0$ and either $y = 0$ or $y = x = 0$;
0 0 0 0
one, otherwise.

This is the number of distinct real solutions b of the cubic equation $2b^3 - 3b^2x$ + y = 0, which states that the

tangent to
$$y = x^3$$
 at (b, b^3) passes through (x_0, y_0) .

10. By symmetry, any line tangent to both curves must pass through the origin.

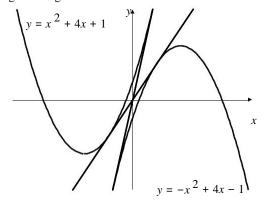


Fig. C-2.10

The tangent to $y = x^2 + 4x + 1$ at x = a has equation

$$y = a^{2} + 4a + 1 + (2a + 4)(x - a)$$
$$= (2a + 4)x - (a^{2} - 1),$$

which passes through the origin if $a = \pm 1$. The two common tangents are y = 6x and y = 2x.

11. The slope of $y = x^2$ at x = a is 2a.

The slope of the line from (0, b) to (a, a^2) is $(a^2 - b)/a$.

This line is normal to y = x if either a = 0 or $2a((a^2 - b)/a) = -1$, that is, if a = 0 or $2a^2 = 2b - 1$. There are three real solutions for a if b > 1/2 and only one (a = 0) if $b \le 1/2$.

 $\lim_{h \to 0} f(0+h) - f(0-h) = \lim_{h \to 0} |\underline{h}| = \lim_{h \to 0} 0 = 0.$ 12. The point $Q = (a, a^2)$ on $y = x^2$ that is closest to

P = (3, 0) is such that PQ is normal to $y = x^2$ at Q. Since PQ has slope 2/(a-3) and $y = x^2$ has slope 2a at Q, we require

$$a - 3 = -2a$$

which simplifies to $2a^3 + a - 3 = 0$. Observe that a = 1

$$27^{-3}$$
 27 $3a$

is a solution of this cubic equation. Since the slope of

$$8 + 4a^2 \quad a \quad 2 = 0.$$

 $y = 2x^3 + x - 3$ is $6x^2 + 1$, which is always positive, the cubic equation can have only one real solution. Thus Q = (1, 1) is the point on $y = x^2$ that is closest to P. The istance from P to the content of P is the content of

80

The curve $y = x^2$ has slope m = 2a at (a, a^2) . The tangent there has equation

$$y = a^2 + m(x - a) = mx - \frac{m_2}{4}$$
.

The curve $y = Ax^2 + Bx + C$ has slope m = 2Aa + B at $(a, Aa^2 + Ba + C)$. Thus a = (m - B)/(2A), and the tangent has equation

$$y = Aa^{2} + Ba + C + m(x - a)$$

$$= mx + \frac{(m - B)}{2} + \frac{B(mB)}{4} + C - \frac{m(m - B)}{2}$$

$$4A \qquad 2A \qquad 2A \qquad 2A$$

$$mx + C + \frac{(m - B)^{2}}{4A2A} - \frac{(m - B)^{2}}{4CA} = \frac{1}{2}$$

$$mx + f(m),$$

where
$$f(m) = C - (m - B)^{2}/(4A)$$
.

Parabola $y = x^2$ has tangent y = 2ax - a at (a, a). Parabola $y = Ax^2 + Bx + C$ has tangent

$$y = (2Ab + B)x - Ab^2 + C$$

at $(b, Ab^2 + Bb + C)$. These two tangents coincide if

$$2 Ab + B = 2a$$

$$Ab^2 - C = a^2.$$
(*)

The two curves have one (or more) common tangents if (*) has real solutions for a and b. Eliminating a between the

two equations leads to

$$(2Ab + B)^2 = 4Ab^2 - 4C$$

or, on simplification,

$$4A(A-1)b^2 + 4ABb + (B^2 + 4C) = 0.$$

This quadratic equation in b has discriminant

2 2 2 2 2 =
$$16 A B - 16 A (A-1)(B + 4C) = 16 A (B - 4(A-1)C)$$
.

There are five cases to consider:

CASE I. If A = 1, B = 0, then (*) gives

$$b = -\frac{B^2}{4B} - \frac{4C}{4B}, \quad a = \frac{B^2}{4B} + C.$$

There is a single common tangent in this case.

CASE II. If A = 1, B = 0, then (*) forces C = 0, which is not allowed. There is no common tangent in this case.

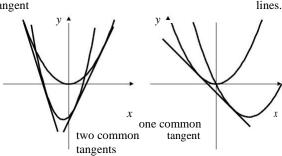
There is a single common tangent, and since the points of tangency on the two curves coincide, the two curves are tangent to each other.

CASE IV. If A = 1 and $B^2 - 4(A - 1)C < 0$, there are no

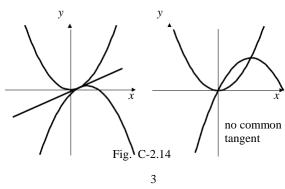
real solutions for b, so there can be no common tangents.

CASE V. If A = 1 and B - 4(A - 1)C > 0, there are two

distinct real solutions for b, and hence two common tangent



tangent curves



a) The tangent to $y = x^3$ at (a, a) has equation $2 \qquad 3$ $= 3a \quad x - 2a$

For intersections of this line with $y = x^3$ we solve

$$x^{3} - 3a^{2}x + 2a^{3} = 0$$
$$(x - a)^{2}(x + 2a) = 0.$$

3

The tangent also intersects $y = x^3$ at (b, b), where b = -2a

CASE III. If A = 1 but $B^2 = 4(A - 1)C$, then

- b) The slope of $y = x^3$ at x = -2a is $3(-2a)^2 = 12a^2$, which is four times the slope at x = a.
- c) If the tangent to $y = x^3$ at x = a were also tangent at x = b, then the slope at b would be four times that at a and the slope at a would be four times that at b. This is clearly impossible. -B

$$b = 2(A - 1) = a$$
.

d) No line can be tangent to the graph of a cubic polynomial P(x) at two distinct points a and b, because if there was such a double tangent y = L(x), then $(x-a)^2(x-b)^2$ would be a factor of the cubic polynomial P(x) - L(x), and cubic polynomials do not have factors that are 4th degree polynomials.

81

a) $y = x^4 - 2x^2$ has horizontal tangents at points xsatisfying $4x^3 - 4x = 0$, that is, at x = 0 and $x = \pm 1$. The horizontal tangents are y = 0 and y = -1. Note that y = -1 is a double tangent; it is

tangent at the two points $(\pm 1, -1)$.

b) The tangent to $y = x^4 - 2x^2$ at x = a has equation $= a^4 - 2a^2 + (4a^3 - 4a)(x - a)$ $=4a(a^2-1)x-3a^4+2a^2$

Similarly, the tangent at x = b has equation

$$=4b(b^2-1)x-3b^4+2b^2$$

These tangents are the same line (and hence a dou-ble

tangent) if

$$4a(a^{2} - 1) = 4b(b - 1)$$

$$4 2$$

$$3a^{4} + 2a^{2} = -3b + 2b$$

The second equation says that either $a^2 = b^2$ or $3(a^2 + b^2) = 2$; the first equation says that

$$a^3 - b^3 = a - b$$
, or, equivalently, $a^2 + ab + b = 1$.

If $a^2 = b^2$, then a = -b (a = b is not allowed). Thus $a^2 = b^2 = 1$ and the two points are $(\pm 1, -1)$ as discovered in part (a). If $a^2 + b^2 = 2/3$, then ab = 1/3. This is not possible

$$0 = a^2 + b^2 - 2ab = (a - b)^2 > 0.$$

Thus y = -1 is the only double tangent to y $= x^4 - 2x^2$.

c) If y = Ax + B is a double tangent to $= x^{4} - 2x^{2} + x$, then y = (A - 1)x + B is a double tangent to $y = x^{4} - 2x^{2}$. By (b) we must have A - 1 = 0 and B = -1. Thus the only double tangent to $y = x^{4} - 2x^{2}$. $x^4 - 2x^2 + x$ is y = x - 1.

a) The tangent to

$$y = f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

at x = p has equation

$$y = (4ap^3 + 3bp^2 + 2cp + d)x - 3ap^4 - 2bp^3 - 2 + e.$$

This line meets y = f(x) at x = p (a double root), and

These two latter roots are equal (and hence correspond to a double tangent) if the expression under the square root is 0, that is, if

$$8a^{2}p^{2} + 4abp + 4ac - b^{2} = 0.$$

This quadratic has two real solutions for p provided its discriminant is positive, that is, provided

$$16^{a2}b^2 - 4(8a^2)(4ac - b^2) > 0.$$

This condition simplifies to

$$3h^2 > 8ac$$

For example, for $y = x_2^4 - 2x^2 + x - 1$, we have a = 1, b

= 0, and c = -2, so 3b = 0 > -16 = 8ac, and the curve has a double tangent.

From the discussion above, the second point of tangency is

$$q = \frac{-2a p - b}{2a} = -p - \frac{b}{2a}.$$

The slope of P O is

$$\frac{f(q) - f(p)}{q - p} = \frac{b^{2} - 4abc}{8a^{2}} \cdot \frac{8a^{2} d}{a^{2}}.$$

Calculating f ((p + q)/2) leads to the same expression, so the double tangent PQ is parallel to the tangent at the point horizontally midway between P and Q.

c) The inflection points are the real zeros of f

$$(x) = 2(6ax^2 + 3bx + c).$$

This equation has distinct real roots provided $9b^2 > 24ac$, that is, $3b^2 > 8ac$. The roots are

$$r = \frac{-3b = -\frac{9b^2}{12a} - 24ac}{s}$$

$$s = \frac{-3b + \frac{9b^2}{12a} - 24ac}{12a}$$

The slope of the line joining these inflection points

$$\frac{f(s) - f(r)}{s - r} = \frac{b^3}{2} = \frac{4abc + 8a^2}{8a^2} \frac{d}{d}$$

so this line is also parallel to the double tangent.

$$= -2ap - b \pm b^{2} - 4ac - 4abp - 8a^{2}p^{2} \cdot 2a$$

18. a) Claim:
$$\overline{dx_n}\cos(ax) = a^n\cos ax + \frac{n\pi}{a}$$
.

Proof: For n = 1 we have

$$\frac{d}{dx}\cos(ax) = -a\sin(ax) = a\cos ax + \frac{\pi}{2} ,$$

true for n = k, where k is a positive integer. Then

$$\underline{d}_{k+1} \qquad \underline{d}_{k} \qquad \underline{k\pi}$$

$$= a^{k} - a \sin \quad ax + \underline{}_{2}$$

$$= a^{k+1} \cos \quad ax + \underline{(k + 1)\pi}_{2}$$

Thus the formula holds for n = 1, 2, 3, ... by induction.

b) Claim:
$$\underline{d}^{\underline{n}} = \sin(ax) = a^n \sin ax + \frac{n\pi}{2}$$
.

Proof: For n = 1 we have

$$\frac{d}{\sin(ax)} = a\cos(ax) = a\sin ax + \underline{\pi} ,$$

$$dx$$

so the formula above is true for n = 1. Assume it is true for n = k, where k is a positive integer. Then

$$\frac{d^{k+1}}{dx^{k+1}}\sin(ax) = \frac{\overline{d}}{dx} \quad a^k \sin ax + \frac{k\pi}{2}$$

$$= a^k a \cos \quad ax + \frac{k\pi}{2}$$

$$= a^{k+1} \sin ax + \frac{(k+1)\pi}{2}.$$

Thus the formula holds for n = 1, 2, 3, ... by induction.

c) Note that

$$\frac{d}{dx}(\cos^4 x + \sin^4 x) = -4\cos^3 x \sin x + 4\sin^3 x \cos x$$

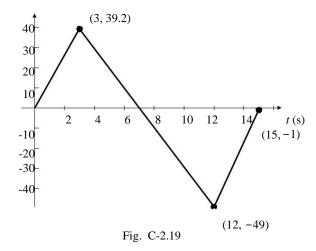
$$= -4\sin x \cos x (\cos^2 - \sin^2 x)$$

$$= -2\sin(2x)\cos(2x)$$

$$= -\sin(4x) = \cos 4x + \frac{\pi}{2} .$$

It now follows from part (a) that

$$\frac{d^n}{dx^n}(\cos^4 \qquad \qquad ^4 \qquad \qquad ^{n-1} \qquad \qquad \frac{n\pi}{2}$$



- a) The fuel lasted for 3 seconds.
- b) Maximum height was reached at t = 7 s.
- c) The parachute was deployed at t = 12 s.
- d) The upward acceleration in [0, 3] was $39.2/3 \approx 13.07 \text{ m/s}^2$.
- e) The maximum height achieved by the rocket is the

distance it fell from t = 7 to t = 15. This is the area under the t-axis and above the graph of v on that interval, that is,

$$\frac{12-7}{2}$$
 (49) + $\frac{49+1}{2}$ (15 – 12) = 197.5 m.

f) During the time interval [0, 7], the rocket rose a

distance equal to the area under the velocity graph and above the t-axis, that is,

$$\overline{1}$$
 2 (7 - 0)(39.2) = 137.2 m.

Therefore the height of the tower was

 $x + \sin$

 $x) = 4^{-}$

cos

4x + 2.