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Chapter 9

Sequences and In nite Series

9.1 An Overview

9.1.1 A sequence is an ordered list of numbers a1; a2; a3; : : :, often written faz; a2; : : : g or fang. For example,

the natural numbers f1; 2; 3; :::g are a sequence where an = n for every n.
912a1=41=1a2=12;a3=13;a4=14 a5=15.
9.1.3a1=1(given);a2=1 a1=1;a3=2 a2=2;a4=3 a3z =6;a5=4 a4 =24.

9.1.4 A nite sum is the sum of a nite number of items, for example the sum of a nite number of terms of a
sequence.

9.1.5 An in nite series is an in nite sum of numbers. Thus if fang is a sequence, then al1+a2+ = ket 3
1 P 1 _ P t,-1

. - . . 2 - a . L .
is an in nite series. For example, if ak = k ,then k=1« k=1k IS anin nite series.

-

14243+4P o P ~ L P P k=
9.16S1 = e K18, = e K=1+2738,= kerk=1+2+3=6;S4= k=1

2 3 4
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9.1.9a1= 10:a2= 100:a3 = 1000 ;a4 =10000 .

9.1.10 a1 =3(1)+1=4.a2=3(2)+1=7,a3=3(3)+1=10,a4=3(4) +1=13.

9111 a1= L a2= L =l.az3= 2 = a4 =+ = 1,
22 4 2 82 16

9112 a1=2 1=1l.a2=2+1=3,a3=21=1,a4=2+1=3.

9113 al= —Z =4 .ap=2 =3 a3= 2 =16 ag=2— -



3 +1 +1 9 +1 17

9114 a1=1+ 4=2,a2=2+ 1 =3;a3=3+ 1 =10 ;a4=4+1 =i
12 2 3 34 4

9.1.15 a1 =1+sin(=2)=2;a2 =1+sin(2=2)=1+sin()=1;a3 =1+sin(3=2)=0; a4 =

1+sin(4=2)=1+sin(2) =1.

9.1.16 a1 =212 31+1=0a2=22% 32+1=3;a3=23%2 33+1=10;a4=24% 34+1=21.
3
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9.1.17 a1=2,a2=2(2) =4,a3 =2(4) = 8, a4 = 2(8) = 16.

a
9.1.18 1=32,a2=32=2=16,a3=16=2=8, a4 =8=2=4.

9.1.19 a1 =10 (given);a2 =3 a1 12=30
126 12 =114.

12=18;a3=3 a2 12=54 12=42;a4=3 a3 12=

2

9.1.20 a =1 (given);a=a“ 1=0;a =a° 1= 1;a =a 1=0.
1 2 1

9.1.21 a1=0 (given): a2=3 at?+1+1 =2;a3=3 a2 +2+1=15a4=3 a32+3+1=679.

9.1.22 ao=1 (given); a1=1(given);az=al1+ap=2;az3=a2+ai1=3;a4=az+a2=>.
9.1.23 9.1.24
1 1

a. 32 ,64 . a. 6,7.

b. a1 =1; an+1 = 227 .
1

C.an=2n 1.

b.a1 =1; an+1 = ( 1)"(anj + 1).

c.an=( 1)"n.

9.1.25 9.1.26

a. 55 a. 14,17.

b a1 =5 an+1 = an. b. a1=2;an+1=an + 3.

can=( 1)"s.
¢.an=(1)'5 c.an= 1+3n.
9.1.27 9.1.28
a. 32, 64.

a. 36, 49.
b. a1 =1; an+1 = 2an.

b. a1 =1;an+1=( an7+ 1)2.

c.an=2" 1 2
C.an=n".
9.1.29 9.1.30
a. 243, 729. a. 2, 1.

b. a1 =1; an+1 = 3an.

C. an =3" 1.

9.1.31a1 =9, a2 =99, az =999, a4 = 9999. This sequence diverges, because the terms get larger

without bound.

9.1.32 a1=2,a2 =17, a3 = 82, a4 = 257. This sequence diverges, because the terms get larger without

bound.

b. a1 = 64; an+1 = 29" .

C. an:2n&1-

a
9.1.33 1= 4d,a2=_1,a3= _1,a4= —1L. This sequence converges to zero.

10 100 1000 10;000
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9.1.34 a1=1=2,a2 =1=4, a3 = 1=8, a4 = 1=16. This sequence converges to zero.

9.1.35 a1= l,a2= 3 a3= 3,a4= 5 This sequence converges to 0 because each term is smaller in
absolute value than the preceding term and they get arbitrarily close to zero.

9.1.36 a1=0:9, a2 =0:99, a3z = 0:999, a4 =:9999. This sequence converges to 1.

c
Copyright 2013 Pearson Education, Inc.
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9.137 a1=1+1=2,a2=1+1=2,a3 =2, a4 = 2. This constant sequence converges to 2.

2

2
3. This constant sequences converges tos .

9.138 a1 =1 = 3. Similarly,a2 =az=a4 =

9.1.39 ap =100,a1 =0:5 100 +50 =100, a2 =0:5 100 + 50 =100, a3 =0:5 100+ 50 =100,
a4 = 0:5 100 + 50 = 100. This constant sequence converges to 100.

9.140 a1 =0 1= 1. a2=10 1= 11l,a3= 110 1= 111,a4= 1110 1= 1111.This
sequence diverges.

9.141

n 1 2 3 4 4 6 7 8 9 10
an 0.4637| 0.2450 | 0.1244 | 0.0624{ 0.0312 | 0.0156 | 0.0078| 0.0039(0.0020 | 0.0010
This sequence appears to converge to 0.

9.1.42

n 1 2 3 4 5 6 7 8 9 10
an | 3:1396| 3:1406| 3:1409| 3:1411( 3:1412| 3:1413| 3:1413| 3:1413]| 3:1414| 3:1414
This sequence appears to converge to.

9.1.43

n| 1 21 3 4] 51 6| 7] 8| 9] 10

an | O 2| 6| 12] 20| 30| 42| 56| 72| 90
This sequence appears to diverge.

9.1.44
n 1 2 3 4 5 6 7 8 9 10
ad
n | 9.9] 9.95] 9.9667| 9.975| 9.98( 9.9833| 9.9857| 9.9875| 9.9889| 9.99

This sequence appears to converge to 10.

9.1.45

n 2 3 4 5 6 7 8 9 10 11
an | 0.3333| 0.5000| 0.6000| 0.6667| 0.7143| 0.7500| 0.7778| 0.8000| 0.81818]| 0.8333
This sequence appears to converge to 1.

9.1.46

n 1 2 3 4 5 6 7 8 9 10 11

an | 0.9589| 0.9896| 0.9974| 0.9993| 0.9998| 1.000| 1.000| 1.0000| 1.000| 1.000| 1.000
This sequence converges to 1.

9.1.47 9.1.48
a. 2.5, 2.25, 2.125, 2.0625. a. 1.33333, 1.125, 1.06667, 1.04167.
b. The limitis 2. b. The limitis 1.

Copyright c 2013 Pearson Education, Inc.
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9.1.49
n |0 1 B 2 3 4 5 6 7 8 9 10
an | 3 | 3.5000 _3.7500 3.8750 | 3.9375 | 3.9688 [3.9844 [3.9922 [ 3.9961 3.9980] 3.9990
This sequence converges to 4.

9.1.50 )
n |0 1 o 2 3 4 5 6 7 8 9
an |1 2?5_ -_3:6875 3:9219 | 3:9805 3:9951 3:9988| 3:9997 | 3:9999 | 4:00
This sequence converges to 4.

9.1.51
nlol1|2]3] 45| 6[7 [8 [ o] 10
an |0 |1 :3|7:‘ 15] 31 631127 | 255 | 511 | 1023
This sequence diverges.

9.1.52
n 0112 (3]|]4]5 6| 7 8 9 10
an |32 116 [8 |4 ]| 2 |1 51.25 [.125 ].0625 |.03125
This sequence converges to 0.

9.1.53 -
n| o |1 | 2 3 4 5 6 7 8 9
an | 1000 | 18.811 |5.1686 | 4.1367 | 4.0169 | 4.0021 |4.0003 | 4.0000 |4.0000 | 4.0000
This sequence converges to 4.

9.1.54
n |0 1 2 3 4 5 6 7 8 9 10

an |1 |1.4212 | 1.5538 k#8881 | 1.6119 | 1.6161 |1.6174 |1.6179 | 1.6180 | 1.6180 |1.6180

THIS SEqUETTCE CONVETgES t0- 2 = 1.06180339.

9155 9.1.56
a. 20, 10, 5, 2.5. a. 10,9, 8.1, 7.29.
b. hn =20(0:5)". n
b. hn=10(0:9) .
9.1.57 9.1.58
a. 30, 7.5, 1.875, 0.46875. a. 20. 15. 11.25. 8.4375

b. hn = 30(0:25)". n
b. hn =20(0:75) .

9.1.59 811 =0:3, S2 =0:33, S3 = 0:333, S4 = 0:3333. It appears that the in nite series has a value of
0:3333:::==
3

9.1.60 821 =0:6, S2 = 0:66, S3 = 0:666, S4 = 0:6666. It appears that the in nite series has a value of
0:6666: :: = =
3

Copyright c 2013 Pearson Education, Inc.
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9.1.61 S1=4,52
9.1.62 S1 =1,S2

=4:9, S3 =4:99, S4 = 4:999. The in nite series has a value of 4:999 =5.
= 3=15S3= 1=1:75'S4 =12 =1:875. Thein nite series has a value of 2.
2 4 8

9.1.63

a. S1=23,S2=2553=87,54=8,

b. It appears that Sn = 2n2+1" .
c. The series has a value of 1 (the partial sums converge to 1).
9.1.64

a. S1= l2, S2= 34, S3= Z8, Sq4 = E16-

b.Sn=1 -,
2

c. The partial sums converge to 1, so that is the value of the series.
9.1.65

a. S1=13,52=25,53=37,54 =%,

b.S =

n o 2nn+1 '

c. The partial sums converge to 1, , Which is the value of the series.
9.1.66

a. S1= Zs, S2 = g9, S3= @27, Sq = @81.

b.Sn=1 -,
3

c. The partial sums converge to 1, which is the value of the series.
9.1.67

a. True. For example,S2=1+2=3,and S4=aj+a2+az+a4=1+2+3+4=10.

b. False. For example; l2 ,§4 , 18 ,wherean=1 Zln converges to 1; but each term is greater than the

previous one.

c. True. In order for the partial sums to converge, they must get closer and closer together. In order for

this to happen, the di erence between successive partial sums, which is just the value of an, must
approach zero.

9.1.68 The height atnthe n"  bounce is given by the recurrence hn =thr hn  1; an explicit form fornthis

sequenceishn=ho  r. The distance traveled by the ball during the n ,  bounceis thus 2hn = 2ho r,so
that Sh = =0 2ho r.
h =20,r=05,s0S =40,S =40+ 40 05=60,S =S +40 (0:5)2=70,S=
S2 +40_(0:5Y3 = 75, S4 = S3 + 40 (0:5)* =775
n 0 1 2 3 4 5
a” 40 60 70 75 /7.5 78.75
n 6 7 8 9 10 11
b. an | 79.375 |79.6875 | 79.8438 | 79.9219 | 79.9609 [79.9805
n 12 13 14 15 16 17
% 79.9902 | 79.9951 | 79.9976| 79.9988| 79.9994 |79.9997
n 18 19 20 21 22 23
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| an | 79.9998 | 79.9999 | 79.9999 80.0000| 80.0000 80.0000 |

The sequence converges to 80.

Copyright c 2013 Pearson Education, Inc.
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9.1.69 Using the work from the previous problem:

a.Hereh 0 - 20,r=0:75;s0S . =40,S L - 40+40 0:75=70,S ) S LT 40 (0375)2 =925,
3 4

S3=S2.+40 (0:75) _= 109:375, S4 = S3 +40 (0.75) . =.122:03125
n 0 1 2 3 4 5
an 40 70 925 | 109.375|122.0313| 131.5234
n 6 7 8 9 10 11
b, | @n | _138.6426 | 143.9819| 147.9865 |1500808 [153.2424 | 154.9318
n 12 13 14 15 16 17
an | 156:1988 | 157:1491| 157:8618| 158:3964| 158:7973 | 159:0980
n 18 19 20 21 22 23
an | 159:3235 | 159:4926| 159:6195| 159.715| 159.786 | 159.839

The sequence converges to 160.

9.1.70 9.1.71
a.s1= 1,s2=0,s3= 1,54=0. a. 0:9,0:99, 0:999, :9999.
b. The limit does not exist. b The limitis 1.
9.1.72 9.1.73
1 4 13 40
a. 1:5, 3:75, 7:125, 12:1875. a. 3,9 ,27 ,81 -
b. The limit does not exist. b. The limit is 1/2.
9.1.74 9.1.75
a. 1, 3,6, 10. a. 1,0, 1,0.

b. The limit does not exist. b. The limit does not exist.

9.1.76
a. 1,1, 2, 2.

b. The limit does not exist.
9.1.77

3 33 333 333

a. 10 =0:3,100 =0:33,1000 = 0:333, 10000 =0:3333.

b. The limitis 1/3.
9.1.78
a. po = 250, p1 = 250 1:03 = 258, p2 = 250 1:032 = 265, p3 = 250 1:03% = 273, p4 = 250 1:03% = 281.

b. The initial population is 250, so that po = 250. Then pn = 250 (1:03)", because the population
increases by 3 percent each month.

C. pn+1 =pn 1:03.

d. The population increases without bound.
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9.1.79
a. Mo =20, M1 =20 0:5=10, M2 =20 0:52=5, M3 =20 0:5° = 2:5, Ma = 20 0:5%=1:25
b. Mn =20 0:5".

c. The initial mass is Mo = 20. We are given that 50% of the mass is gone after each decade, so that
Mn+1 =0:5 Mp, n 0.

d. The amount of material goes to 0.
9.1.80
a.cp =100, c1 = 103, c2 =106:09, c3 = 109:27, c4 = 112:55.
b. cn =100(1:03)", ngeO.
c. We are given that co = 100 (where year 0 is 1984); because it increases by 3% per year, cn+1 = 1:03 cn.
d. The sequence diverges.
9.1.81

a. do = 200, d1 = 200 :95 = 190, d2 = 200 :952 = 180:5, d3 = 200 :95° = 171:475, d4 = 200 :95% =
162:90125.

b. dn =200(0:95)",n 0.

c. We are given do = 200; because 5% of the drug is washed out every hour, that means that 95% of
the preceding amount is left every hour, so that dn+1 = 0:95 dn.

d. The sequence converges to 0.

9.1.82



a. Using the recurrence an+1 = 1 an+ 0 ,we build atable:

2 an

n 0 1 2 3 4 5

an | 10| 5.5] B.659090909 ] 3.196005081 | 3.162455622 | 3.162277665
Thetrue valueis +9 3162277660, S0 INESEQUENCE CONVEIGES Withamn €

ror of lessthan 0:01 after

only 4 iterations, and is within 0:0001 after only 5 iterations.

b. The recurrence is now an+1 =d apn+ —=2
2 an

n |0 1 2 3 4 5 6
a
| 2] 1.5)1.416666667 [1.414215686 | 1.414213562 (_1.414213562 | 1.414213562

P
The true valueis 2 1:414213562, so the sequence converges with an error of less than 0:01 after 2
iterations, and is within 0:0001 after only 3 iterations.

9.2 Sequences

9.2.1 There are many examples; one is an = nl . This sequence is nonincreasing (in fact, it is decreasing)
and has a limit of 0.

9.2.2 Again there are many examples; one is an = In(n). It is increasing, and has no limit.

9.2.3 There are many examples; one is an = nt . This sequence is nonincreasing (in fact, it is decreasing),

is bounded above by 1 and below by 0, and has a limit of 0.
Copyright ¢ 2013 Pearson Education, Inc.
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n 1
9.2.4 Forexample,an=( 1)" . janj < 1, so it is bounded, but the odd terms approach 1 while the

even terms approach 1. Thus the sequence does not have a limit.

9.2.5 fr'g converges for 1<r 1.Itdiverges for all other values of r (see Theorem 9.3).

9.2.6 By Theorem 9.1, if we can nd a function f(x) such that f(n) = an for all positive integers n, then if
I|m f(x) exists and is equaI to L, we then have I|m an exists and is also equal to L. This means that we

can apply function-oriented limit methods such as L H”opital’s rule to determine limits of sequences.

9.2.7 A sequence an converges to | if, given any > 0, there exists a positive integer N, such that whenever
n>N,janLj<"

°
°
LT * [ The tail of the sequence
* ° ;
LT . ® e o © e ® Lis trapped between
L2 L2 andL1
T ° forn.N.
+— } } >
1 2 ...Nn n

9.2.8 The de nition of the limit of a sequence involves only the behavior of the n" term of a sequence as n
gets large (see the De nition of Limit of a Sequence). Thus suppose an; bn di er in only nitely many terms,
and that M is large enough so that an = bn for n > M. Suppose an has limit L. Then for " > 0, if N is such
that jan Lj <" for n > N, rst increase N if required so that N > M as well. Then we also have jbn Lj <" forn
> N. Thus an and bn have the same limit. A S|m|lar argument applies if an has no limit.

9.2.9 Divide numerator and denominator by n? to get Iim 1:l_n;, =0.

n'1 a4

9.2.10 Divide numerator and denominator by n'? to get lim —L-_

L
+
n!13 al2 3

9.2.11 Divide numerator and denominator by n3 to get Iim 303 =3

nll  2+n 2
9.2.12 Divide numerator and denominator by e" to get lim 2:zzeh = 2:
nll !
9.2.13 Divide numerator and denominator by 3"to get [|im 3xa=3"1 -3
n1 1
. . p2— 1 1
9.2.14 Divide numerator by k and denominator by k = k toget uim pemer— =3
!
1 .
9.2.15 limtan (n)= _:
e 12 1 1
9.2.16 lim csc ~(n) =lim sin (1=n) =sin ~(0)=0:
ni1 n'1
9.2.17 Because lim tan l(n) = _,lim tanim _=o.
n'1 o= 2 n1 n o=
9.2.18 Lety=n“"".ThenlIny= 2ln. Byl H"opital's rulewe have lim 2hx = im 2 =0,solimn“"=
e0=1. n X1 X x11% n'1
9.2.19 Find the limit of the logarithm of the expression, whichisnin 1+ % . Using L’H"opital’s rule:
2 1 2
£ — n - = lim _21+(2=n):2. Thus the limit of the original

Jimnini+g = lim , 1= = lim
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expression is e2. 11 11
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1 n+5 1 T

9.2.20 Take the logarithm of the expression and use L’H”opital’s rule: nlim n In " =nlim =
= 2 3, p5n2

lim . o8’ = i 0*3) - jim _53_ i§5—” =~ . To nd this limit, divide numerator and

lim

ni1 1=n° w1 n(n + 5)2 ni1 n13+ 10n2 + 25n

denominator by n 3to get lim __&20— = 5:Thus, the original limitise 5 .

nii 1+10n  +25n -

9.2.21 Take the logarithm of the expression and use L’H"”opital’s rule:

ni1 2 2_n il 2=n ni1 _—']‘_EHZ_ZDZ_ ni1 aa+Q@=ao) —4
im " In 1+ ° = lim e = lim =T = im b =

Thus the original limitis e™.
9.2.22 Find the limit of the logarithm of the expression, which is 3n In 1+ 4 . Using L’'H"opital’'s rule:

4 _ ="

1
4 (e 0 e (o) Thus the limit of the original
Jim 3nin 1+ » = lim 1=n f = m"m T=n = L Tr(@=n) - 2
expression is
el?,
9.2.23 Using L’'H"opital's rule: lim b—— =Ilm 1— =0.
n1® san 1€ +3
9.2.24 In(1=n) = Inn, sothisis lim _-doo. By L’'H”opital’srule, we havelim _ o= |m 1 =0:
n'l n n'l n n!ln
9.2.25 Taking logs, we have lim 1In(1=n)= lim bn = lim _4 =0byL'H opital'srule. Thus the
ni1 " n'1 n ni"
original sequence has limit e¥=1.
limnin1 n = Ilim 1=n = Iim 1=n2 = lim 1 @=n) = 4
9.2.26 Find the limit of the logarithm of the expression, which is ninl 4 , using L’H"opital’s rule:
In(1 4) 1 (a)n
L —t e — = —A— Thus the limit of the origi-
nil nil nil n'l
nal expressionis e
9.2.27 Except for a nite number of terms, this sequence is just an = ne N so it has the same limit as this
sequence. Note that lim o = lim 4 =0, by L’'H"opital’s rule.
n1® 1
9.2.28 In(n® + 1) In(3n® + 10n) = In 3+ ~ [ 14n 3
3+1on? ; so the limitis In(1=3) = In 3.

9.2.29 In(sin(1=n)) + In n = In(n sin(1=n)) = In . I 1 —mV=(1=n) | -
- :Asn! 1, sin(l=n)=(1=n)! 1, so the limit of
the original sequenceisIn 1 =0. 1=n

9.2.30 Using L’'H"opital’s rule:

1 cos(1=n) sin(L=n)( 1=n?)
limn(1 cos(1=n)) = im  ——— = lim =

> sin(0) = 0:
ni1 ni1 1=n ni1 1=n

9.231 limnsine=n)= lm spE=m. = lim Z2—— =im 6 cos(6=n) = 6:
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n'l n'1l 1=n n'l (1=n) n'l
- —* 1 - 1

9.2.32 Because (v , and because both  and have limit 0 as n ! 1, the limit of the given

n n

sequence is also 0 by the Squeeze Theorem.

9.2.33 Theterms with odd-numbered subscripts have theform =2, so they approach 1, while the

n+l
terms with even-numbered subscripts have thesfafrm == so they approach 1. Thus, the sequence has no
limit.

n2 (™2 ne ne n2
9.2.34 Because 2n+n 2n®+n 2n®+n , and because both 2n%+n and 2n%n  2havelimitOasn! 1, the
Iimoit of tge given sequence is also 0 by the Squeeze Theorem. Note that lim . —i— = lim —=
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When n is an integer, sin o— oscillates be-
does not converge. 5 10 15 20N

The even terms form a sequence b2n = 2n?+1
which converges to 1 (e.g. by L’'H”opital’s

n

which converges to 1. Thus the sequence as 5 10 L2 20 N
a whole does not converge.

The numerator is bounded in absolute value "

9.2.37 ¥

"~ by 1, while the denominator goes to 1, so B
the limit of this sequence is O.

0.15¢

The reciprocal of this sequence is bn =1 -
B 0.10+

9.2.38

1+ 43 " which increases without bound oot

as n! 1. Thus an converges to zero. e,

10 20 30 40 50

lim (1 + cos(1=n)) = 1 + cos(0) = 2. '
9.2.39 n1 *

s}

Copyright ¢c 2013 Pearson Education, Inc.
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By L'H opital's rule we have: lim _ —<. _

9.2.40 ~ .
n nl12 sin(e )

im e =1 =1

n!l 2cos(e ) e ) 2 cos(0) 2

This is the sequence “®%e," ; the numeratoris 9.2.41

increases without bound, so the
limit is zero.

In n

Using L’'H" opital’s rule, we have limnp 1. 1 =
nll

9.2.42 |im 1=n _ = |im 1 — =
n'1 (21:1)n n'l  (1:1)n

Ignoring the factor of ( 1)" for the moment,

we see, taking logs, that Ilim lo =0;
o]
that lim P e ni - n

into account, the odd terms convergeto 1
while the even terms converge to 1. Thus
the sequence does not converge.

lim —— =_, usingL’H"opital’s rule.

nll  2n+2 2

0.6

0.4F

03f

02f

0.1

0.2
0.1

-01

-02

0.20f o

0.150

0.10

0.05

20 40 60 80 100

15 ..,
............

1.0
0.5

T AN I o ) Y
-10
15

coouvoz
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0.35
0.30
0.25
0.20
0.15
0.10
0.05

10

20

30

40
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9.2.45 Because 0:2 < 1, this sequence converges to 0. Because 0:2 > 0, the convergence is monotone.

9.2.46 Because 1:2 > 1, this sequence diverges monotonically to 1.

9.2.47 Because | 0:7j<1,thesequence converges to 0; because 0:7 <0, it does not do so monotonically.
The sequence converges by oscillation.

9.2.48 Because j 1:.01j> 1, thesequence diverges; because 1:01 < 0, the divergence is not monotone.

9.2.49 Because 1:00001 > 1, the sequence diverges; because 1:00001 > 0, the divergence is monotone.
2 2

9.2.50 This is the sequence 3 " because 0<; < 1, the sequence converges monotonically to zero.

9.2.51 Becausej 2:5j> 1, the sequence diverges; because 2:5 <0, the divergence is not monotone. The
sequence diverges by oscillation.

9.2.52 j0:003j< 1, so the sequence converges to zero; because :003 < 0, the convergence is not monotone.

9.2.53 Because 1 cos(n) 1, we have —nl “nmm nl Because both —nl andn';L have limitOasn!1,
the given sequence does as well.

9.2.54 Because 1 sin(én) 1, we have 5—1 imm 5;1'. Because bothf,n—"L andsn-l have limit O
as
n! 1, the given sequence does as well.

9.2.55 Because 1 sinn 1 foralln, the given sequence satis es
both

2lﬂ 0 as n! 1, the given sequence converges to zero as well by the Sque?eze Theorem.

2”_1 son zn'l ; and because

1 cos(n =2) 1 1
9.256 Because 1 cos(n=2) 1 foralln,we have P n pn P n and because bothp= 10 as

n! 1, the given sequence converges to 0 as well by the Squeeze Theorem.

9.2.57 tan 11takes values between =2 and =2, so the numerator is always between and . Thus
2 tan n
n3+4 nS+4 n®+a ; and by the Squeeze Theorem, the given sequence converges to zero.

9.2.58 This sequence diverges. To see this, call the given sequence an, and assume it converges to limit L.
Then because the sequence by = - converges to 1, the sequence cn =, & would converge to L as well. But

Cn= sin® n doesn'’t converge, so the given sequence doesn’t converge either.
9.2.59

a. After the n'" dose is given, the amount of drug in the bloodstream is dn = 0:5 dn 1 + 80, because the
half-life is one day. The initial condition is d1 = 80.

b. The limit of this sequence is 160 mg.

c. Let L = lim dn. Then from the recurrence relation, we have dn = 0:5 dn 1 + 80, and thus lim dn =

11 11
0:5 Ilim é’n 1+80,s0L=0:5 L+ 80, and therefore L = 160. "
n'l

9.2.60
a.
Bo = $20; 000

B1=1:005 Bo $200 =$19; 900
B2=1:005B1  $200 =$19; 799:50

€epyright 6 2013 Pearsen Edueatien; IRe:
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B3=1:005B2  $200 =$19; 698:50
B4 =1:005B3  $200 = $19; 596:99

B5 =1:005B4  $200 =$19; 494:97

€epyright 6 2013 Pearsen Edueatien; IRe:



9.2. SEQUENCES 15

b. Bn =1:005 Bn 1 $200
c¢. Using a calculator or computer program, Bn becomes negative after the 13
months or almost 11 years.

9th payment, so 139

9.2.61

a.

Bo=0

B1 =1:0075 Bo + $100 = $100
B2 =1:0075 B1 + $100 = $200:75
B3 =1:0075 B2 + $100 = $302:26
B4 =1:0075 B3 + $100 = $404:52
Bs = 1:0075 B4 + $100 = $507:56

b. Bn=1:0075 Bn 1 + $100.

c¢. Using a calculator or computer program, Bn > $5; 000 during the 43" month.
9.2.62

a. Let Dn be the total number of liters of alcohol in the mixture after the nth replacement. At the next
step, 2 liters of the 100 liters is removed, thus leaving 0:98 Dn liters of alcohol, and then 0:1 2 = 0:2
liters of alcohol are added. Thus Dn = 0:98 Dn 1 +0:2. Now, Cnhn = Dn=100, so we obtain a
recurrence relation for Cn by dividing this equation by 100: Cn = 0:98 Cn 1 + 0:002:

Co=0:4

C1=0:98 0:4 + 0:002 =0:394
C2=0:98 C1 +0:002 =0:38812
C3=0:98 C2 +0:002 = 0:38236
C4=0:98 C3+0:002=0:37671
C5=0:98 C4 +0:002 =0:37118

The rounding is done to ve decimal places.

b. Using a calculator or a computer program, Cn < 0:15 after the goth replacement.

c. If the limit of Cn is L, then taking the limit of both sides of the recurrence equation yields L = 0:98L +
0:002, s0:02L =:002, and L =:1 = 10%.

9.2.63 Because n!  n" by Theorem 9.6, we have im ™ = 0.
niin"
9.2.64f3"g  fnigbecause fb"g  fnlgin Theorem 9.6. Thus, lim 3—“| =0.
n!
n'l
q p 20 10 _nio
9.2.65 Theorem 9.6 indicates thatin n n ,soln n n ,sonlim1in®, =1
q p 1000 10 _ o
. lim
9.2.66 Theorem 9.6 indicates thatIn n n ,soln nn ,so" 'lnwoon = 1.
9.2.67 By Theorem 9.6, nP  b", 50 n1990 2" and thus nlim - =% =o0.
11
10 = €110 gew = |im r"=0.

9.2.68 Note that e1710 = Po 11 tai- - 2 and note that 0 <r < 1. Thus dim

€epyright 6 2013 Pearsen Edueatien; IRe:
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1 Thenifn>N,wehave ;1 0 =1< ; <"

9.2.69 Let">0 be given and let N be an integer with N > . 2 - - —
9 2 70 Let" > 0 be given. We wishto nd N such that (1=n) 0. <"ifn>N. This means that
1 , so that N 2 1 J 1 . This shows that such

—

an N always exists for each " and thus that the limit is zero. B

2 2 4n 2+1 4 4(4n +1) 44 1 3
9.2.71 Let" > 0 be given. We wish to nd N such that for n > N, “3“_ i W J— = 2

2 . 2 1y
4

But this means that 3 < 4"(4n + 1), or 16"n + (4" 3) > 0. Solving the quadratic, we get n> - - 4

13
provided"<3=4.SoletN= 4q - if <3=4 and let N = 1 otherwise. q

n n

9.2.72 Let" >0 be given. We wish to nd N Isn,ych that for n > N,jb 0j =b <";sothat ninb<In".

So choose N to be any integer greater than Tnp :

9.2.73 Let " > 0 be given. We wish to nd N such that for n > N

! bn+1

But this means that "b?n + (b"  ¢) > 0, so that N > b Z=will work.

9.2.74 2 2 vl +
Let t > 0 be given. We wish to nd N such that for n > N, —_—— 0 = i <" Thus we

pl 4%
n<"(n +1),or"n n+">0. Whenever n is larger than the larger of the two roots of this quadratic,

the desired inequality will hold. The roots of the quadratic are " ; sowe choose N to be any integer
b »
greater than l+_'2".:-41' :

9.2.75
a. True. See Theorem 9.2 part 4.

b. False. For example, if an = e" and bn = 1=n, then lim anbn = 1
n'l

c. True. The de nition of the limit of a sequence involves only the behavior of the n" term of a sequence as
n gets large (see the De nition of Limit of a Sequence). Thus suppose an; bn di er in only nitely many
terms, and that M is large enough so that an = bn for n > M. Suppose an has limit L. Then
for " > 0, if N is such that jan Lj < " for n > N, rst increase N if required so that N > M as well. Then

we also have jbn Lj <" for n > N. Thus an and bn have the same limit. A similar argument applies if
an has no limit.

d. True. Note that an converges to zero. Intuitively, the nonzero terms of bn are those of an, which
converge to zero. More formally, given , choose N1 such that for n > N1, an <. Let N =2N1 + 1.

Thegfor n >ar’1\| cnon3|der bn. If nis even, then bn = 0 so certainly bn < . If nis odd, then

N (=2 1)=2>((2N1 + 1) 1)=2 = N1 so that a(n 1)=2 < . Thus bn converges to
zero as well.

converge to zero, the statement is true. But consider for example a =2+1.

e. False. If fang happensto = n =

Thenlim aln =2, but ( 1) an does not converge (it oscillates between positive and negative values

increasingly close to 2).

Cepyright € 2013 Pearsen Edueatien, IRe.
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f. True. Suppose f0:000001ang converged to L, and let > 0 be given. Choose N such that for n > N,
j0:000001an Lj < 0:000001. Dividing through by 0:000001, we get that for n > N, jan 1000000Lj <

, So that an converges as well (to 2000000L).

9.2.76 f2n  3gnl=s.

h
9277 f(n  2)°+6(n 2) 9gn’=3=fn?+2n  17gn'=s. b1 i
R | | | ” ' 1
ff)= X Zdx.then imf®=  lima. But lmf®=  1X Zdx= Iim =
lim __+1 =1:Rr R
b!'1l b

Cepyright € 2013 Pearsen Edueatien, IRe.
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. 1 . n ) n n_.
9.2.79 Evaluate the limit of each term separately: nlim &— == plim £ 1=0; while =2 20
n 1 ? [ ’
= :s0 by the Squeeze Theorem, this second term converges to 0 as well. Thus the sum of the terms

converges to zero.

9.2.80 Because !llm 13193— 1, and because the inverse tangent function is continuous, the given sequence
n+

has limit tan (1)
9.2.81 Because I|m 0: 99n 0, and because cosine is continuous, the rstterm converges to cos 0 = 1. The

n'1 lim 22 = |im Z n+ lim 2 n =0: Thus the sum converges to 1.
limit of the second termis 1 63" N1 63 ni1 63 @"=n1)+5
9.2.82 Dividing the numerator and denominator by n!, gives an = T@=m_ - By Theorem 9.6, we have
4n n! and 2" nl. Thus, liman=%2=5
ni1 1+0
1+(1=2)"
9.2.83 Dividing the numerator and denominator by 6" gives an = 1+(nioo=6r) . By Theorem 9.6 A0 6"
Thus liman=%0=1,
ni1 1+0

1+(1=n)

9.2.84 Dividing the numerator and denominator by n® gives an = = mn— .Becausel+ (1=n) !las

n!land(1=n)+Inn!lasn!1, wehavenlimz1an=0.
(7=5)"

9.2.85 We can write an = . Theorem 9.6 indicates that n’ b"for b> 1, s0 nlim an = 1.

11
9.2.86 A graph shows that the sequence appears to converge. Assuming that it does, let its limit be L.
Then liman+1 = zl liman+2,soL= 21 L+2,and thusz-'L L=2,soL=4.
n'1 n'l

9.2.87 A graph shows that the sequence appears to converge. Let its supposed limit be L, then Ifm an+l =
n'l

I|m (2an(1 an)) = 2( I|m an)(1 I|m an),soL=2L(1 L)=2L and thus 2L2 L = 0,soL=0; &
Thus the limit appears 10 be either 0'or 1= 2; with the given initial condmon doing a few iterations by hand
con rms that the sequence convergesto 1=2:ap = 0:3; a1 =2 0:3 0:7 =:42; a2 = 2 0:42 0:58 = 0:4872.

9.2.88 A graph shows that the sequerlge appears to converge, and to a value other than zero; let |ts limit be

L. Thenlim an+1 = lim 2(an + 3 )=2 liman + im & ,soL= 2L + L, and therefore L = 2 L +1.

SolL?= 2,and thus L = P 2.

9.2.89 Computing three terms givesap =0:5;a1=4:505=1;a2=41(1 1) = 0. All successive terms

are obviously zero, so the sequence converges to 0.

9 2.90 A graph shows that the sequence appears to converge. Let its limit be L. Then limap+1 =
—— nil
2+||n1an 'soL= pZ+L . Thus we have L?=2 + L, so L2 L 2=0,andthusL= 1;2.Asquare

n!
root can never be negative, so this sequence must converge to 2.

3 4 5
9.291For 6b=2,2 >3lbut16 =2 <4l =24, so the crossover pointis n=4.Fore,e 23148: 244%,\,13“;
100 While @ p24<8 b somuosmmmnen =4 oo .
25! 1:55 10 >10 , so the crossover pointis n = 25.

9.2.92

a. Rounded to the nearest sh, the populations are

Cepyright € 2013 Pearsen Edueatien, IRe.
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Fo = 4000

F1=1.015F0 80 3980
F2=1:015F1 80 3960
F3=1:015F2 80 3939
F4=1:015F3 80 3918

F5=1:015F4 80 3897

Cepyright € 2013 Pearsen Edueatien, IRe.



18 CHAPTER 9. SEQUENCES AND INFINITE SERIES

b. Fn=1:015Fn 1 80
c. The population decreases and eventually reaches zero.
d. With an initial population of 5500 sh, the population increases without bound.

e. If the initial population is less than 5333 sh, the population will decline to zero. This is essentially
because for a population of less than 5333, the natural increase of 1:5% does not make up for the
loss of 80 sh.

9.2.93

a. The pro ts for each of the rst ten days, in dollars are:

n 0 1 2 3 4 5 6 7 8 9 10
hn | 130.00| 130.75( 131.40| 131.95( 132.40| 132.75| 133.00| 133.15| 133.20| 133.15| 133.00

b. The pro t on an item is revenue minus cost. The total cost of keeping the hippo for n days is :45n,
and the revenue for selling the hippo onthe n " day is (200 + 5n) (:65 :01n); because the NiPPO

gains 5 pounds per day but is worth a penny less per pound each czjay. Thus the total prot on the n
day is hn = (200 +5n) (:65 :01n) :45n =130 + 0:8n 0:05n“: The maximum pro t occurs when
:1n + :8 = 0, which occurs when n = 8. The maximum pro t is achieved by selling the hippo on the

gth day.

9.2.94
a.X0=7,X1=6,x2=65= & x3=6:25,x4=6:375= 3§, ,x5=6:3125= 1l xg=6:34375= 203 |
3
2 8 162

b. For the formula given in the problem, we have xo = 19 + L 0 7, X1 =42 +2 __21 = 19 1 =6,

2
3 3

so that the formula holds for n = 0; 1. Now assume the formula holds for all integers  k; then

= (x +x )= +
k1 2 k k1 23 3 _ 2 +3+3 2 !
1 1192~ 1 x 19 2 1 k1
— - - -
=2 3 +3 2 2+1°

= 3 +3 2 .
c.Asn!1,( 1=2)"10, so that the limit is 19=3, or 6 1=3.

9.2.95 The approximate rst few values of this sequence are:

n 0 1 2 3 4 5 6

cn | .7071] .6325| .6136| .6088| .6076| .6074| .6073
Topyright ¢ 2013 Pearson Education, Tnc.




The value of the constant appears to be around 0:607.
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9.2.96 We rst prove that dn is bounded by 200. If dn 200, then dn+1 = 0:5 dn+100 0:5 200+100 200.

Because do = 100 < 200, all dn are at most 200. Thus the sequence is bounded. To see that it is
monotone, look at

dn dn 1=0:5 dn 1+100 dn 1 =100 0:5dn 1:

But we know thatdn 1 200, sothat 100 0:5dn 1 0. Thus dn dn 1 and the sequence is nondecreasing.
9.2.97

a. If we \cut o " the expression after n square roots, we get an from the recurrence given. We can thus

de ne the in nite expression to be the limitof anasn! 1.
[ p__po_

b.ao=1,a1= 2,a2= 1+ 2 1:5538,a3 1:598,a4 1:6118,and a5 1:6161.
c.a10 1:618, which diers from —%— 1:61803394 by less than :001.
q

P5 —_—
d. Assume lim an =L. Then lim an+1 = lim "1 +an = 1+limansoL=P 1+ L, and thus

n n'l nil nil
L =1 + L. Therefore we have L L1=0,s0L=
Because clearly the limit is positive, it must be the positive square root.

imaP
p+lmal,
e. Letting an+1 = p+P n withao = p and assuming a limit exists we have lim an+1 =lim Pp+an

a
n'l nl1l

n
q ni1 P — 2

and because we know that L is positive, we have L = 1421 The jimit existg for all positive p.

9.2.98 Note that 1 li_:—i_i 1—1 so that the product ir12—23—34—45 ;_so that an_:_nl—for'n 2. The sequence 13 2

;13 ; l4 ; » . :g has limit zero.

9.2.99

a. De ne an as given in the problem statement. Then we can de ne the value of the continued fraction

to be lim an.
n'l
1 T 3 1 T 1 8
b.ao =1l,a1=1+ ao =2,a2 =1+a =2 =15a3=1+ a2 =3 l67,a4=1+ = =5 16,
1 13
a ooz
5 =1+% =g  1:625.
c. From the list above, the values of the sequence alternately decrease and increase, so we would
expect that the limit is somewhere between 1:6 and 1:625.
1 1
d. Assume that the limitis equal to L. Then from ap+1 =1 +%, we have lim an+‘11 =1+—ma —,SO
p n! n'1
L=1+ 1 ,andthus L?> L 1 =0:Therefore,L= 1 s;and because L is clearly positive, it must
S,
be equalto 2 1:618.
b b 2
e Hereag=aandawi=a+ an . Assuming that lim a,= Lwe have L=a + b ,soL =al +b,and
p=—nit as STmE
thus L2 aL b=0.Therefore,L= a ** ,andbecauseL>0wehaveL= -

9.2.100

a. Experimenting with recurrence (2) one sees that for 0 < p 1 the sequence converges to 1, while for
p > 1 the sequence diverges to 1.
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b. With recurrence (1), in addition to converging for p < 1 it also converges for values of p less than
approximately 1:445. Here is a table of approximate values for di erent values of p:

p 11 1.2 13 14 1.44 | 1.444
liman | 1:111| 1:258| 1:471| 1:887| 2:394| 2:586

nll

Copyright c 2013 Pearson Education, Inc.
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9.2.101
a.fo=f1=1;f2=2;f3=3;f4=5;f5 =8; fe = 13; f7 = 21; fg = 34; fg = 55; f10 = 89.

b. The sequence is clearly not bounded.
f

10

c. s 161818
. . 1 1 1 1+ py 2 1 1+2P ~54544
d. We use induction. Note thatps '+ - =ps -+ , 4B =5 T 20’ ) —1-1. Also
1 2 1 1 = 2 1 ors 55 4
note that ps ’ 2= ps 2 3+p5 = pb 23+ ) =1 =f2. Now note that

1

fn 1+fn 2 = pl— (’n 1 ( l)n 1,1 n+vn 2 ( 1)n 2:2 n)

=p5 (" P+ A (2"t

Now, note that’ 1=1, sothat
1 —_
mi+’n2="n11+ =, 1(’) =’n
and
,2ﬂ 11 n=an(v2 1)=1n(7(1 1))=1n
Making these substitutions, we get
1
fn1+fn 2= p5(" (DT M=fs
9.2.102

a. We show that the arithmetic mean of any two positive numbers exceeds their geometric mean. Let a,
b>0 then & pap ='@ 2 T+b)= ' P- pH?>0: Because in addition a0 > bo, we have
2z 2 a

2

an > bn for all n.

b. To see that fang is decreasing, note that

an+l_ antbp _antan = an
2 2
Similarly,
p p
bn+1 = anbn > bnbn = bn;

so that fbng is increasing.

c. fang is monotone and nonincreasing by part (b), and bounded below by part (a) (it is bounded below

by any of the bn), so it converges by the monotone convergence theorem. Similarly, fong is
monotone and nondecreasing by part (b) and bounded above by part (a), so it too converges.

a b = 2y p— L p— 2

Copyright ¢ 2013 Pearson Education, Inc.
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ne1 N+l 2 anbn = Z(an 2 anbn +bn) < Z(an + bn);
|

because anbn 0. Thus the di erence between an and bn gets arbitrarily small, so the di erence between

their limits is arbitrarily small, so is zero. Thus lim an = lim bn.
nil nll

1
e. The AGM of 12 and 20 is approximately 15:745; Gauss’ constantis aem1p 2) 0:8346.

Copyright ¢ 2013 Pearson Education, Inc.
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9.2.103

01

. 10;5;16;8; 4, 2;1

0251

0 16;8;4;2; 1

: 3;10;5;16;8;4;2; 1

1 22;11; 34; 17, 52; 26; 13; 40; 20; 10; 5; 16;8; 4; 2;1

D 4;2;1

. 28;14;7;22; 11, 34; 17; 52; 26; 13; 40; 20;10; 5; 16;8;4;2;1
0 5;16;8;4;2;1

Smm\lmm#wl\)

b. From the above, H2 =1; H3 =7, and H4 = 2.

y
120
This plot is for 1 n 100. Like hailstones, the 100
numbers in the sequence an rise and fall o
60
C. but eventually crash to the earth. The con-
jecture appears to be true. 40p - - ..
2] pam S L ee S
.'...- b3 . - - 0‘ - .
n
0 20 40 60 go 10
an gan ¢ an

9.2.104 fang fbng means that nlimi1p, = 0. But nlimi1ab, =¢ nlimi1 b, =0; so that fcang fdbng.

9.3 In nite Series

9.3.1 A geometric series is a series in which the ratio of successive terms in the underlying sequence is a
constant. Thus a geometric series has the form P ark where r is the constant. One exam pleis 3 +6 + 12

+24+48 +inwhicha=3andr=2.

9.3.2 A geometric sum is the sum of a nite number of terms which have a constant ratio; a geometric
series is the sum of an in nite number of such terms.

9.3.3 The ratio is the common ratio between successive terms in the sum.

9.3.4 Yes, because there are only a nite number of terms.

9.3.5 No. For example, the geometric series with an = 3 2" does not have a nite sum.
9.3.6 The series converges if and only if jrj < 1.
138 10682

937S=1 1 3 = 2 =09841.
1 (=4t a4l 4194303 1398101

938S=1 1 (1=4) = 3 410 = 31048576 =1048576 1:333.

o2l —
939s=1 (4=29) = 2521 42520
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1:1905.
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1 2
9310 S=16 1 2 =511 16 =8176.

1_(73=4)"  4iw0_310Z 14T 0:5392.
9311 S=1  1+3=4  =41%34% 26014

1_( 2:5)i
9.3.12 S=( 2:5) 1+2:5 = 70:46875.
1 L7
9313 S=1 1 = 1 1409:84.
4 _ 1 (4=1)'° 375235564
9.3.14 S=7 3=7 = 282475249  1:328.
a1 (
1)21
9315 S=1 2 =1
9.3.16 55, 9.3.17 1093
2
9
1
27 6
9318 5 1 3=5=15625. 93191 1=4 =3
1 - —+—e=5®  —7448 L _4
9320 1 —— =2 9.3211-— =10.
1 3=52 1 09
-_l_ _7 9.3.23 Divergent, because r > 1.
9.3.22 2=7 =5 .
1 e 2 1
9324 1 1= = 1 93251 e € 1
5
4 5 2 3 1
9326  _______ = _. 9327 . - .
1 1=22 1 235 7
0328 34%=7% g | 93291625 -_1 .
1 4=7 49 1 1=5 500
1 3k 1

. P
9.3.30 Note that this isthe sameas =0 , .ThenS= T—3=2 =4.

©
w
w
-
I

. (Note that e < , so r < 1 for this series.)

9332 _1=16 =1

9.3.33 ko 4 K56k:56k=01 20 =551 1207 19 = 19

1 5 20 312500
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36-gb 729 1 10

9334 1 (3=8)° =248320 9.3.351+9=10 = 19 .

2

3 2 1 3

9.3.373 =



1+2=3 5
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1kX1
9.3.38 o =_1l-e = 1
€ l+1=e e+1
k=1
—=2 o1
9.3.40 = .
1+ 1=8s
9.3.41
a. 03 =0333:= 1 301K
sequence:of partial sums is 1/3.
b. The limit of the P
9.3.43
B P
a. 01=0111:::= 1k:1(0:1)k.

b. The limit of the sequence of partial sums is 1/9.

9.3.45

a. 0:09.= 0:0909 : :: = "1

9(0:01)K.

k=1

b. The limit of the sequence of partial sums is

0:15, o

9.3.39 = —— 0:0196.

6(0:1)%.

b. The limit of the sequencg of partial sums is 2/3.
9.3.44

5(0:1)K.

- P
b. The limit of the sequence of partial sumsiis 5/9.
9.3.46
—_ k

a. 0127 =0:272727:::= 1 27(0:01).

b. The limit of the sequencep of partial sums is

1/11. 3/11.
9.3.47 9.3.48 5
a. 0:037=0:037037037 : : : = P1 37(0:001)K. a. 0:02#=0:027027027 : : : = 1 27(0:001)"
k=1 k=1
b. The limit of the sequence of partial sums is b. The limit of the sequence of partial sums is
37=999 = 1=27: 27=999 = 1=37:
1 — 12 4
9.3.490:12=0:121212:::= :12 10 2k= ~T 1=100 =99 = 33 .
k=0
1 :25 25 124
9.3.50 1:25= 1:252525::: = 1+ 25 10X =1+ T 151000 =1+9%9 ="09 .
k=0
- 1 :456 456 152
9.3.51 0:456 =0:456456456 :::= :456 10 3k = T 1=1000 =999 = 333
k=0
- 1 :0039 :39 39 9939 3313
9.3.52 1:0039 =1:00393939 : : : =1+, _ :0039 10 2K-1+ T 1100 =1+99 =1+9900 =9900 = 3300.

1

9.3.53 0:00952 =0:00952952:::=
k=0

:00952 9:52 952 238

:00952 10 k= 1 1=1000 =999 =99900 =24975.

Copyright ¢ 2013 Pearson Education, Inc.



1 :0083 512 :83 128 83

9.3.54 5:1283 =5:12838383 : : : =5:12 + 10083 102K =5:12 + T 1=100= 100 +99 =725 + 9900
k=0

50771

9900 °

9.3.55 The second part of each term cancels with the rst part of the succeeding term,so Sn=_—1 _1
—o_;andlim —o- =1 1+ n+2
2n+4 n'l 2n+4 2

Copyright ¢ 2013 Pearson Education, Inc.
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9.3.56 The second part of each term cancels with the rst part of the succeeding term,so Sh= _ 1 _1 =

. 1+2 n+3
—o_ ;andlim —o— =1,
3n+6 n!13n+9 3
1 1 1

= 1 -1 i that series,
9.357 (k+6)k+7) k+6 k + 7 , so the series given is the same as k=1 k+6 k+71 :In 1 . Thus
the seclzond part of each term cancels with the rst part of the P n ™5 T
limSp==.
ni1 7
9.3.58 1 =1 1 1 , SO the series given can be written

GKT (3K + 4) 3 3k+7T 3k+4 g
11 1 1
_ X
3k=0 3k+1 3k+4 . In that series, the second part of each term cancels with the rst part of the
lim  n+1 =1 n 3 1 3n+4 3n+4
succeeding térm (because 3(k + 1) + 1 = 3k + 4), so we are left with S == * ' = *— and
n!'l 3n+4 3
1 1 1
4 1 1 X

9.3.59 Note that (4 3jak+1) =4k 3 4k+1- Thus the given series isthesame ask=3 4k 3 4k+1

In that series, the second part of each term cancels with the rst part of the succeeding term (because
4k +1) 3=4k+1),sowe have Sn= 1 4—19—, and thus lim Sp= 1.
n+

° n'1 9
1 1 1

_ 1

9.3.60 Note that (5 1)ks1) =2k 1 2k+1 - Thus the givenseriesisthe sameas k=3 2k 1 2k+1

In that series, the second part of each term cancels with the rst part of the succeeding term (because

2(k+1) 1=2k+1),sowehaveSn= L —L.Thus,lim Sn= 1
5 n
ni1 5




9.361In K +k1 =In(k +1) Ink,sothe series givenisthe sameas 1 (In(k+1) Ink),inwhich the
k=1

rst part of each term cancels with the second part of the nextterm, P n1o m
and thus the series diverges.
pP_ p- P— P_ p p
9.3.62 Note that Sy = ( 2 pH 3 2+ #( N+ 1 n): The second part of each term cancels
with the rst part of the previous term. Thus, Sp = P nT1 1: and because nlim p 7 +1 1=1, the
11
series diverges.
1 1 1 : 1 X 1 —1
9363 (k+p)k+p+1) =k+p k+pFT,sothat (k+p)k +p+1) =, K*p k+p+1
k=1 =1
and this series telescopes to give Sp= —1L L = X - So that S= .
lim p+1 n+p+1 n(p+1)+(p+1) ni "oop+l
1 1 1 1 1 1
— X
1 1 1 1

gt k=1 @ak+%t ak+ea+3+ :This series telescopes - the second term of each summand cancels with the

is 1. n aatl an+a+1
rst term of the succeeding summage {sothatS =~ —

; and thus the limit of the sequence

a(a+l)
1 1
9.365Letan= pn+1 pn+3 .Thenthesecondterm of an cancels with the rst term of an+2, so the

1 1 1 1
series telescopes and Sp = pz tp3 Dpnis . P s and thus the sum of the series is the limit of Sn, which
1 1
is p_ + p_ .
2 3

Copyright ¢ 2013 Pearson Education, Inc.
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9.3.66 The rstterm of the k" summand is sin( (kzﬁ*)m ); the second term of the (k + 1)5‘t summand is

sin( —ktl)); these two are equal except for sign, so they cancel. Thus Sn = sin0+sin( —@o+ )
- 2(k+1) 1 2n+1
) Because - has limit =2 as n , and because the sine function is continuous, it follows
sin(Cz2n+1 ): _ 2l 'l
that lim Shis sin( 2 )=1.
nll
1 1 1 11), SO  16k%+8Kk 37 (@Ks3)aK 1) 4 4k 1
2 1 1 1 1 —1 .
9.3.67 16k~ + 8k 3 = (4k + 3)(4k ’ 2k+3 . Thus the series
X 1
_ n —1
givenisequalto 4k=0 4k 1 4k + 3. This series telescopes, so Sh = 4
the series is equal to lim Sn= .. 1 anws ;S0 the sum of
n'l
9.3.68 This series clearly telescopes to give Sp = tan 1(1) + tan 1(n) =tan 1(n) <: Then because
lim tan (n) = _ , the sum of the seriesis equalto lim Sp=
2 4
n'l n'l
9.3.69
kK € k
a.True. e = ; because e < , this i§ a geometric series with ratio less than 1.
b. True. If 1 aK: L, then 1 aK = 11 ak +L:
X X X
k=12 k=0 k=0

c. False. For example,let0<a<landb > 1.

9.3.70 We have Sn = (sin 1(1) sin 1(1=2))+(sin 1(1=2) sin 1(1=3))+ +(sin 1(1=n) sin 1(1=(n+1))). Note that
the rst part of each term cancels the second part of the previous term, so the nth ?artial sum

telescopes tobe sin ~(1) sin ~(1=(n+ 1)). Because sin (1) = =2 and lim sin ~(1=(n+ 1)) =sin 1(0) =
0, we have lim Sn = _ mt
ni1 2
1 —2=— 1 2 2 E oLk —
9.3.71 This can be writtenas 3 k=1 3. This is a geometric series with ratio r = 3 sothesumis
3 1(29 =3 5 1.
1 1 k

9.3.72 This can be written as e k1 e. This is a geometric series with r = e >1, sothe series diverges.

In(krk ) (k1) In k ——1 '
9.3.73 Notethat -Truinict) = RGeS TS S Toen- - Inthe partial sum Sp, the
[F;] part of each term cancels the second part of the preceding term, so we have Sp = £ 1

us
In2  TA(T2)

we have lim Sn= 1.

E8BYright € 2833 Bearsan Edueatisn; IRE:
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9.3.74 1 In2

a. Because the rst part of  each term cancels the second part of the previous term, the nth partial sum

telescopes to be Sp = 12 z,.,l . Thus, the sum of the series is lim Sn = 1
n'i 2
1 1 2k+1 2k 1 1 1
b. Note that ¥ o1 = 2w == . Thus, the original series can be written as ae1  Which is

k=1

geometricwithr=1=2and a=1=4,sothesumis _ 1=4 =1,
1 1=2 2

E8BYright € 2833 Bearsan Edueatisn; IRE:
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9.3.75

a. Because the rst part of each term cancels the second part of the previous term, the nth partial sum
telescopestobe S = 4 _4 . Thus,the sum of the seriesis Im S = 4.

n 3 30+ " 3
4 4 4341 43K 8 1 8
b. Note that 3« o1 33k = 31 . Thus, the original series can be written as 3k+1 V1ICH

is geometric with r = 1=3 and a = 8=9, so the sumis 11-3 =g 2 =3.

9.3.76 It will take Achilles 1/5 hour to cover the rst mile. At this time, the tortoise has gone 1/5 mile more,
and it will take Achilles 1/25 hour to reach this new point. At that time, the tortoise has gone another 1/25
of a mile, and it will take Achilles 1/125 hour to reach this point. Adding the times up, we have

1 1 1 1=5 1
5 +25 + 125+ = 1 1=5 =4;

so it will take Achilles 1/4 of an hour (15 minutes) to catch the tortoise.
9.3.77 At the nth stage, there are o triangles of area An= 1An 1 B —1— A1, so the total area of the

8 8
2" 1n 1
triangles formed at the nth stageis 8 1 A1= 4 A1. Thus the total area under the parabola is
1 1 nna 1 1 a1 1 4
X ‘ _x - _
9.3.78
3 L 1 1 : Then
a.Notethat (3«1 @1 =2 3 1 3 1
k —
1 3 )1, 11 11
X - X
' N .
This series telescopes to give S, = s 3 1 ——— ; so that the sum of the series is im S, = = .
nil
— ak — _-l_ 4.—. —1
b. We mimic the above computations. First, @i D@ 1) —a 1 a1 a1 SO we see that

we cannot have a = 1, because the fraction would then be unde n

1 1 —1— :Now, lim 1 converges if and only if the denominator grows without bound;

alal a 1 j? 1 i

this a > 1, whenit converges to

happens if and only if a > 1. Thus, the original series converges for

@ 1 . Note that this is valid even for a negative.

It appears that the loan is paid o after about

470 months. Let Bn be the loan balance

afternmonths. ThenBp = 180000 and

Bn = 1:005 Bn 1 1000. ThenBn = y

E8BYright € 2833 Bearsan Edueatisn; IRE:
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1:005 Bn 1

1000 = % B n 2 150 000
1000) 1000 = (1:005) n o 2 1000(1 +
1000
(1: 005 B ) 100 000

9.3.79 1:005) = (1:005)

0= 1:005(1:005 B

= (1:005) 3 gn 3 1000(1 +

1000(1 + 1:005) » n 3 n 50 000§
1.005 +(1:005) ) = , = (L005)B
1000(1+1:005+(1:005) + (1005 )=

(1:005) 180000 1000 —T : Solving

this equation for Bn= 0'gives' n  461:66

months, so the loan is paid o after 462

months.

E8BYright € 2833 Bearsan Edueatisn; IRE:
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It appears that the loan is paid o after
about 38 months. Let Bp be the loan bal-
ance after n months. Then Bg = 20000 and

Bn=1:0075Bn ; 60. Then Bn = 1:0075 y
ni 600= 2 B n2 2000+,
15 000
9.3.80 10075) , =(1:0075) B 3 600(1 + 1:0075 + 10 000;
2 oo75)n 1 ) = 5009 ..".
1:0075 + (1:0075) + +(Ln e
] ) " forB ™ '=Dgivesn 10 2 % "

Solving this equation n

38:5 months, so the loan is paid o after 39

months.

9.3.81 Fn = (1:015)Fn 1 120=(1:015)((1:015)Fn 2 120) 120 = (1: 015)((1:015)((1:015)Fn 3 120)
120) 120 = =(1:015)"(4000) 120(1 + (1: 015) + (L 015) + +(1:015)" 1). This is equal to
015)" 1

(1:015)"(4000) 120 1:015 1 =(  4000)(1:015)" + 8000:

9.3.82 Let An be the amount of antibiotic  in your blood after n 6-hour periods. Then Ao = 200; An =
0: 5An 1 +200. We have An =:5An 1+200 =:5(:5An 2 + 200) + 200 = :5(:5(:5An 3 + 200) + 200) + 200 =
=:5"(200) + 200(1 + :5 + :52 + +:5" 1. This is equal to

&0

=2_1

:5M(200) +200 5 1 =(:5")(200  400) + 400 = ( 200)(:5") + 400:

The limit of this expression as n! 1 is 400, so the steady-state amount of antibiotic in your blood is 400
mg.

9.3.83 Under the one-child policy, each couple will have one child. Under the one-son policy, we compute the
expected number of children as follows: with probability 1=2 the  rst child will be a son; with probability

(1= 2) the rst child will be a daughter and the second child will be a son; in general, with probability
(1=2)", the rst n 1 children will be glrls and the n'" a boy. Thus the expected number of children

is the sum [ 1 N use the following \trick™: Letf(x)= 1 i
X - X
L 1 |
f(x)+ x'= (i + 1)x". Now, let
Xi Xi
1 ) ) 1
g)= x*tr=1x+ x =1 x+ —
i=1 =0 1 X
and X Xi
1 . 1 .
0% = f(x) + X=f(x) 1+ X =f(x) 1+ i
= i=0 1 X
]xi ™

1
Evaluate go(x) = 1 @ x?:then

1 1 1 1+x+1 X

fx)=1 —= == =
1 x 1 x)? 1 x)? 1 %%
Finally, evaluate at x = 1 to gatdpyrightc 2013 PearsonEdication, . There will thus be twice as many
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9.3.84 Let Ln be the amount of light transmitted through the window the n'" time the beam hits the second plnl
p

pane. Then the amount of light that was available before the beam went through the pane was t np-, SO
is re ected back to the rst pane, and Paln is then re ected back to the second pane. Of that, a fraction

1
equalto 1l pis transmitted through the W|Pndow. Thus

Ln+1 = (1 pyaP2bng = pory

The amount of light transmitted through the window the  rst time is (1 p)z. Thus the total amount is

2
1 @ n 1p
,,,,, >
=0 1 p 1+p
9.3.85 Ignoring the initial drop for the moment, the height after the n' bounce is 10p", so the total
time spent in that bounce is 2 2 10p”:g seconds. The total time before the_ball comes to rest (now
qg  +2%g1 e ‘ drop)isthen 20=g+P1 2 72 fop=g = .2 +2 2 1 "
including the_time Tor the initial p - i=1 g g =p =
p seconds. p
9.3.86
a. The fraction of available wealth spent each monthis 1 p, so the amount spent in the n month

isW (1 p)" (sothat all $W is spent during the rst month). The total amount spent is then



1 n W@ p)

1p
LWL p) =1a p=W

dollars.
b. As p ! 1, the total amount spent approaches 0. This makes sense, because in the limit, if everyone

saves all of the money, none will be spent. As p ! 0, the total amount spent gets larger and larger.
This also makes sense, because almost all of the available money is being respent each month.

9.3.87

a. In+1 is obtained by In by dividing each edge into three equal parts, removing the middle part, and
adding two parts equal to it. Thus 3 equal parts turn into 4, so Ln+1 = £ Ln. This is a geometric
sequence with a ratio greater than 1, so the n" term grows without bound.

b. As the result of part (a), In has 3 4" sides of length L ; each of those sides turns into an added triangle

inIn+10fside length 3n 1 3 i emas n equilateral triangles with side
P 3 P

2n 2 -

. . . . . 7 4
3, L. The areaof an equilaferal triangle with side x is .Thus An+1 = Ap +34" 2—— -

R34 p3 =A noRs e -
An +12 9 andAg= 4, ThusA 1 0 +Py, o ;sothat
A1=A0 P31 4 p p3 t p3 3 2
9.3.88
a51 10X 1¢=5 1=10 5
1 1 1 « 1=100 54
X X

b.54i-1 102K=54 1 100 =54 99=100= 99

nn p n p
12 ::Np i=1 10 =nin2 paor 1)=10 = 999::9 , where here n1n2 iinp e 1 ip
Suppo: =0:ninz . npninz Then we can write this decimal as mnz : : : ng - =
P 1 | —_—d=lp ning:ing does not

mean

multiplication but rather the digits in a decimal number, and where there are p 9’s in the denominator.

Copyright ¢ 2013 Pearson Education, Inc.
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d. According to part (c), 0:1234567%212345678912 i =

M999999999 9

e. Again using part (c), 0:9 =9 =1.
1 X
9389 JS Snj - k= —([n- = because the latter sum is simply a geometric series with rst term "
I=n
and ratio r.

9.3.90
a. Solve %6~ <10 ¢ for nto get n = 29.
0:4

b. Solve %15~ <10 6 fornto getn=8.

0:85
9'3;_%% 18 = 01:8 <10%fornto get n = 60.
0:2" 6
b. Solve 08 <10 forntogetn=9.

9.3.92
a. Solve 222" <10 %fornto get n = 46.
0:28

b. Solve [T0z5" 25"

9.3.93

1="
a. Solve

<106forntogetn:13.

1 1=

1=¢"
b. Solve 7= <10 ® forn to getn =15.

9.3.94
1ok 1
a. f(x) = k=0 =1 x; because f is represented by a geometric series, f(x) exists only for jxj < 1.
(0)=1,f(0:2) = -1 =1:25,f(0:5)= — =L =2. Neither f(1) nor f(1:5) exists.

b. The domain of fis fx : jxj < 1g.

9.3.95 S
such P, | | P 1:2 6 1+:05 3
a. f(x) = K=o ( 1" =mx ;because fis a geometric series, f(x) exists only when the ratio, x, is
that x =x<1.Thenf(0)=1,f(0:2)= - =2 f05)=  —& =2 _ Neither

f(1) nor
f(1:5) exists.

b. The domain of f is fx : jxj < 1g.

9.3.96 N
than 1, P i 1 .04 24 1 0:25
a. f(x) = k1:0 régs: - -t . fis a geometric series, so f(x) is de ned only when the ratio, X2, is
1 x
which means x <1.Thenf(0)=1,f0:2)= — = =2 f05)= —2— =%  Neither
f(1)

nor f(1:5) exists.
b. The domain of fis fx : jxj < 1g.
1 1 1 1 1, 1

Copyright ¢ 2013 Pearson Education, Inc.
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u and l‘u <lwhen1<1+x x>0 Forx< 1, 1 + X = j: X and this is less than 1 when
. =1 sof(x)=3when1+x=3x,x="1.
1< 1 xie.x< 2. So f(x) converges for x > 0 and for x < 2. When f(x) converges, its value is

1 1w X 2

Copyright ¢ 2013 Pearson Education, Inc.
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9.3.98

a. Clearly for k < n, hk is a leg of a right triangle whose hypotenuse is rk and whose other leg is formed

where the vertical line (in the picture) meets a diameter of the next smaller sphere; thus the other leg
of the triangle is rk+1. The Pythagorean theorem then implies that h2k = rk2 e

p " i1 PNt
. _h=r+ . .2
b. The heightis Hn = =L i iz N2 ri+1 by part (a).
c. From part (b), becauseri=a ,
nl nl
Hn=rm+ ri2 ri2+1 = an 1 + azi 2 azi
i=1 i=1
n 1 nil
=a"t+a ! 1_a2=a"1+1 a2 a1
N—Pp p o
1 a" 1
—an 1+p 1 a2 1 a
limH =Ilim n1 PT :lim a1 — _L = _ 1a l:a
d. p q
n'l n n1 a o+ a n 1a =0+1la 1a d gatla — 1la

9.4 The Divergence and Integral Tests

9.4.1 A series may diverge so slowly that no reasonable number of terms may de nitively show that it
does so.

1 1 1

9.4.2 No. For example, the harmonic serkes -1 diverges althoughx ! 0as k! 1.

9.4.3 Yes. Either the series and the integral both converge, or both diverge, if the terms are positive and
decreasing.

9.4.4 It converges for p > 1, and diverges for all other values of p.

9.4.5 For the same values of p as in the previous problem { it converges for p > 1, and diverges for all
other values of p.

9.4.6 Let Sn be the partial sums. Then Sn+1 Sn = an+1 > 0 because an+1 > 0. Thus the sequence of
partial sums is increasing.

9.4.7 The remainder of an in nite series is the error in approximating a convergent in nite series by a nite
number of terms.

P
9.4.8 Yes. Suppose ak converges to S, and let the sequence of partial sums be fSng. Then for any > 0
there is some N such that for any n > N, jS Spj <. But jS Spj is simply the remainder Rn when the series
is approximated to n terms. Thus Rn!0asn! 1.

9.4.9 ak = Z'REl_ and lim ak :-21, so the series diverges.
ki1

Copyright ¢ 2013 Pearson Education, Inc.
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9.4.10 ak= k- and lim ak =0, so the divergence test is inconclusive.

K1
ki1

9.4.11 ak = =& andklim ak = 1, so the series diverges.

11

9.4.12 ak= .~ and lim ak =0, so the divergence test s inconclusive.

2
ki1

Copyright ¢ 2013 Pearson Education, Inc.
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9.4.13 ak = mlw—* and lim ak = 0, so the divergence test is inconclusive.

ki1l
9.4.14 ak = k_ls;_ and lim ak = 1, so the series diverges.
+
ki1l

p
9.4.15 ak = = andklim ak = 1, so the series diverges.
11
9.4.16 ak= lk_k_’*l- and lim ak = 1, so the series diverges.
ki1
9.4.17 ak = k17K In order to compute limki1 ak, we let yk = In(ak) = 'nkk—. By Theorem 9.6, (or by
L’H”opital’s rule) limki1 yk = 0, so limk!1 ak = =1 The given series thus diverges.

9.4.18 By Theorem 9.6 K3 k!, so limk1 ks=0. The divergence test is inconclusive.

k!

9.4.19 Let f(x) = x Intx. Then f(x) is continuous and decreasing on (1; 1), because x In x is increasing

there. Because 11 f(x) dx = 1, the series diverges.

X 4
9.4.20 Let f(x) = p x+4 . f(x)is continuous for x 1. Note that fo(x) = P i S 0. Thus f

is increasing, and the conditions of the Integral Test aren’t satis ed. The given series diverges by the
Divergence Test.

2x2 continuous for x 1. Its derivative is e 2X2 1 4x2) <0 for
9.4.21 Letf(x)=x e . This function is 2 262 1

i
decreasing. Because 1X ¢ 2X dx = ; the series converges.

9.4.22 Letf(x)= ——= .f(x)is obviously continuous and decreasing for x 1. Because —— dx =

1; the series diverges. R 1

9.4.23 Letf(x)= __1_.f(x)is obviously continuous and decreasing for x 1. Because 1 _J1 _

the series diverges. Px+s R1 Pxgdx=1;

9.4.24 Letf(x)=  ._ <= 1 -1

series converges.  x(In x)2 . f(X) is continuous and decreasing for x 2. Because , f(x)dx= In2the

X ) ) o ex X€ ex

9.4.25 Let f(x) = — .1(x) is clearly continuous for x > 1, and its derivative, °(X) = -~ =@ X) =,
that f(x) is decreasing. Because 1 (3 dx= 2e L the series converges.

is negative for x> 1 s0 1 R1 1

9.4.26 Letf(x)= mmmwm— . f(X) is continuous and decreasing forx >3,and j————dx= .The

given series therefore diverges. R3 xIn xInIn x 1

9.4.27 The integral test does not apply, because the sequence of terms is not decreasing.

9.4.28 f(x) = —X— s decreasing and continuous, and = 1—2X— -1 Thus, the given series con-
verges.  (+)}  — . _ R1 0e+)° dx= 16
9.4.29 This is a p-series with p = 10, so this series converges.
1 ke 1 1
_— P
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9.4.30P k=2 1 k2 k e1. Note thate 3:1416 2:71828 < 1, so this series diverges.

1 1

9.4.31P k=3 k2* =

k=1 ks, which is a p-series with p = 4, thus convergent.

1 k 3=2 11
=]

9.4.32P =1 21 =2 k1=1 ks=2 is a p-series with p = 3=2, thus convergent.
9433 1 == 1 is a p-series with p = 1=3, thus divergent.

P k=1 p27k2 3 Pk:1 k2=3
9434 1 T===" 1 — isap-series with p = 2=3, thus divergent.

Copyright ¢ 2013 Pearson Education, Inc.
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9.4.35

a. The remainder Rn is bounded by nt x;s dx = 5n—15 :

b. We solve5w15 <1031t0 getn=3.

1 —1 =S + 1 A -1
c.L =S +R ] _ .
n n n+lxs dX=Sn+ sp+y® ,andUn 1 5  Rn X dx =Sn+ 5ns 1
d.S10 1:017341512,s0 Lo 1:017341512 + 515 1:017342754,and Uzg  1:017341512 + 510°

1:017343512.
9.4.36

remainder R isbounded by 1l .dx= i.:
a. The1 n3 R n xs n’

b.Wesolve 7o’ <10 to obtainn = 3.

1 1 1 1 1

,andU R -

C.Ln=Sn+ a1 ,8dx=Sn+ 7(n+1) 1=Sn+ n 8 dx=Sn+ 7 . 1

d. S10 1:004077346, so L10 1:004077346 + 7117 1:00408, and U1o0 1:004077346 + 710 1:00408.
9.4.37

remainder R isboundedby 1l dx= __1—_:

—

a. The n3 R n3* 3"InE)

b. We solve 3"in@3) <10 to obtainn=7.

1 1 1 11 1

B ,andU =S +R
C.Ln=Sn+ 3 dx=Sn+ 3™ n In n xdx=Spn+ 3"nE .
d. S10 0:4999915325, s0L1o 0:4999915325 + 0:4999966708, and U1o 0:4999915325 +
1 3 In3
3%n3  0:5000069475.
9.4.38

a. The remainder Ry, is bounded by 1 1 dx=

R
b.Wesolve nn <10 togetn=e 10 .

1 1 1 1 — 1

c.Ln=Sp+ +1 2 dx=Sp+ In(n+1) ,and Up = Sp +n 2 dx=Sp +Tnn .

R
11 nl xin x R 1xIn _x

d.S10= k=2 F@T— 1:700396385, so L10 1:700396385 + n12 2:102825989, and

I:)1:7003’»96385 + 1 2:117428776.
U1o In11
9.4.39
1 1=2

a. The remainder Rn is bounded by nt x3_=2 dx =2n

R
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b. We solve 2n 172 <103 to getn> 4 10° soletn=4 106+ 1.
+ 1 _1dx=S +2n+1) T2 andU =S + ,_ildx=S +2n172
R

C.Ln=Sn =n n+1:!_x3:2 n h n o R N X2 1=2 n

d. S1o = k=1k3=2 1:995336494, S0 Lip  1:995336494 + 2 11 2:598359183, and U1o

995336494 +2 10 T2 2:627792026.

9.4.40
a. The remainder Rn is bounded by nle*dx=e™

b. Wesolvee"<103togetn=7.

c. Ln:sn+Rn1+1exdx:Sn+e(n+1);andUn:Sn+ Rnlexdx:Sn+en.

R

Copyright ¢ 2013 Pearson Education, Inc.
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d.S10 = 19 10 0:5819502852, s0 L100:5819502852 + e 11 0:5819669869, and U10

k=1¢€
P

5819502852 + e 0:5819956852.

9.4.41

a. The remainder Rn is bounded by nt xks dx = 2nds :

b. We solve2ntz < 10 2 to getn = 23.

c.L =S + 1 ddx=S + —1 ,andU =S + 1 4 -1
R .
n n n+1xs no 2(n+1)? n 1n Rnx OX=Sn+ 2n: —
d.S;0 1:197531986, 50 L1g 1:197531986 + 71 1:201664217,and U1p 1:197531986 + 210

1:202531986.

9.4.42

R
a. The remainder Rn is bounded by n! xe 2 dx = 2etwe :

b. We solve%lnz <1030 getn=3.

Rl X2 ] 1 X 1

Xe
C.Ln=Sn+ 1 dx=Sn+ 2er»?,andUn=Sn+ prn xe dX=Sn+ 2e.

d. S10 0:4048813986,50 L10 0:4048813986+ 28777 0:4048813986, and U10 0:4048813986 + 2e752

0:4048813986.
P vl 1 1=12 2
9.4.43 This is a geometric series with a = landr= L so 1 = —m o= =4
1
3 12 k=1 11=12 1
2 P1 k 3= .  .3=._. 3.
9.4.44 This is a geometric serieswitha=3=e andr=1=e,s0 -, 3e =1 15 = “e1me = e(e1) -
k k 1
1 2 5 : .
=3 1 2 i 1 2 k 1 -

9445 . 3 - 2 - =5 2 =3 2 =5 7= 2
X | X K -X K I
1 3K 4K =2, 3 1 4%— 3=5 4=9 12

9446 2 _ i3 o 3 =2 +3 -3+ o=
X X X -
1 1 s« 37 1t 5 31! 7« 1 5% 3 7=9 5 21
9.4.47 36 +5 9 != 3 6 +5 9 =3 1=6 +5 2=9 =3

k=1

X X X

9448 1 -1 +3 1. 31 = 1 1+ 3 1 5 15 =65
1 1« lk1 1 1 K 1 2— k1 1=6 1 17

— _ — — =
9.4.49 6 + 3 1=6 + 3 =6 + 2=3=10

113
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X X X

1 K
9.450 2 3 1 2 3 _5n PN -

9.451

o . P
a. True. The two series di er by a nite amount ( k9 =1 ak), so if one converges, so does the other.

b. True. The same argument applies as in part (a).
P



c. False. If ak converges, then ak ! 0 as k! 1, so that ak + 0:0001 ! 0:0001 as k! 1, so that
(ak + 0:0001) cannot converge.
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False. Suppose p = k k

P P
d. converges. 1:0001. Then = p  diverges butp +:0001= 0:9991sothat  (p +:0001)
p

e. False. Let p=1:0005;then p+:.001= (p :001)= :9995, so that

Py converges (p-series) but

P
f. False. Let ak = kl , the harmonic series.
ima = Im X1
9.4.52 Diverges by the Divergence Test because k1 « kmir  k =16=0.

1 l ) - 1 1 1

Z - . —_—
9.4.53 Converges by the Integral Test because 1 (3x + 1)(3x + 4) dx = Zl 3(3x+1) 3(3x+4) dx=
Z =

bl 1 b 3(3X + 1) 3(3X + 4) bi19 3x+4 b b1 9 1
lim 1 1 . dx= Jim In  3x+1 lim = 1 In@4=7) 0:06217 <
dx=
2o X2+ 9 3b11 0 32
1 10 F 1 b 0
9.4.54 Converges by the Integral Test because lim tan ~(x=3) = 5:236 <
1 k
9.4.55 Diverges by the Divergence Test because klim ak = klim p_=—_ =16=0.
!
1 ok +1
‘ i 1 2Kk P1 k
%)4.?6 Converges because it is the sum of two geometric series. In fact, k=1 =7 = k=1(2=4) +
!
Z1 41 4 =4
9.4.57 Converges by the Integral Test because 2 xIn x dx = plim Inx 2 In2<*
9.4.58
—_—
1

a. In order for the series to converge, theintegral 2 ,nx? dx must exist. But

4 win xp & 1 pnxt p;
1

so in order for this improper integral to exist, we must have that1 p<Oorp> 1.

b. The series converges faster for p = 3 because the terms of the series get smaller faster.

9.4.59
a. Note that ﬁ;‘ dx = 1-l (Inin x)l P. and thus the improper integral with bounds n and
exists only |fxp|n> 1 because In In x > 0 for x > e. So this series converges for p > 1. 1
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b. For large values of z, clearly pz >1Inz, sothatz>(In 2)2. Write z = In x; then for large X,

Inx>(Inln x)2; multiplying both sides by x In x we have that x N2 x>xIn X(In'In x)2, so that the rst
series converges faster because the terms get smaller faster.

9.4.60

P
a. |(71:5 .
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9.4.61 Let Sp= k=1 plk. Then this looks like a left Riemann sum for the functiony = p gon[l;n+

rectangle = _1

Because each P lies above the curve itself, we see that Sp is bounded below by the integral of p X on
[1; n + 1]. Now, 7

n+1 1n+l n+1 = 2pn +1 2

This integral diverges as n! 1, so the series does as well by the bound above.

limniz” 1 =A B. n P" P " lim PN,
9.4.62 ek by =time n F e bk) = limn !1( k=1 3k k1 Pk n 1 kel k

P

1 . n . n o n
9.4.63 % = lim k=1 =limc ke1 B =Clim k=1 ak, so that one sum diverges if and
onlyif P P P P

1 R

—1

9.4.64 k=2 klInk diverges by the Integral Test, because 21 xinx =limpi1 Inln szb =1:
9.4.65 To approximate the sequence for (m), note that the remainder Rnp after n terms is bounded by
11 1

Zn Xm dx= m int ™

1
For m = 3, if we wish to approximate the value to within 10 3, we must solve Hon 2 <103, sothatn =23,

23 1
and % 1:201151926. The true value is 1:202056903.
k=1
1
For m =5, if we wish to approximate the value to within 10 3, we must solve Zn 4 <10 3, sothatn =4,
4 1
and ks 1:036341789. The true value is 1:036927755.
k=1
1
For m =7, if we wish to approximate the value to within 10 3, we must solve gn 6 <10 3 sothatn=3,

3 1

and 1 k- 1:008269747. The true value is 1:008349277.

9.4.66

a. Starting with cot? x < xiz <1+ cot? X, substitute k for x:

1
cot’(k) < 2z <1+cot(k);
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<3 3

. cot?(k ) <
k=1

n

cot?(k ) <
k=1

Note that the identity is valid because we are only summing for k upton, sothatk <2.

EoRyright & 2813 B

1~

k=1 k22

1

2 k=1

earson
earson

1

Ed

<

k=1

— <n+ cot (k)
k2 k=1

UC&IOn
ucalon

(1 + cot?(k ));
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ni2n
b. Substitute ——— for the sum, using the identity:
n(2n 1) 1 n 1 ni2n 1)
<_ X _=<n+ _
3 k*
2 k=1 3
ni2n 1) o 1 n(2n + 2)
2 3 < k=1 k_ZL <? 3
n2n 1) 2 0 1- n(2n +2)2 -

3(2n+1) < o1 k2< 3(2n+1)

c. By the Squeeze Theorem, if the expressions on either end have equal limits as n! 1, the expression
in the middle does as well, and its limit is the same. The expression on the left is

? 2n2—n =2 —2n 4 .

1202+ 12n + 3 12+12n1 +3n2

which has a limitof 6 asn!1. The expression on the right is
2_2f12+2n_:2 —2+2n L
12n2+12n+3 12+12nt + 3n

nl 11
i imi i X =X =
which has the same limit. Thus Ilrﬂl - - T

k=1 k=1

11 1 1 1 1 —

1 X X2 12 X 1 32 2 P
1
9.4.67 . ‘ ., splitting the series into even and odd terms. But .
1 k=1 =1 - — k=

-° TThus = F Y ' ion i
4 kelke 6 46 T kel(k 1 so that the sum in questionis 24 =g .

4.68

a. fFng is a decreasing sequence because each term in Fn is smaller than the corresponding term in
Fn 1 and thus the sum of terms in Fn is smaller than the sum of terms in Fn 1.
y

10 =

0.8}
0.6
. c. It appears that lim Fn = 0.

0.4 . n'l

.
o2f

9.4.69 a.x1=
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1k=2 1 P4 1 1 1 I Pe 1 t 1 __
120 X3 k=4 k =4 +5 37

+6'

b. xn has n terms. Each term is bounded below byTn and bounded above nﬂ .ThusXxn n2n= 2,

byandxnnm:fl<nn =1.

. The right Riemann sum for 12 dx using n subintervals has n rectangles of width nl;the right edges

of those rectangles are at 1 + n' = Hfori= 1; 2;:::; n. The height of such a rectangle is the value

of x& at the right endpoint, which\Lg n"+ . Thus the area of the rectangle is_ﬂl n"4i = n+ 5. Adding up

over all the rectangles gives xn.
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d. The limit lim xn is the limit of the right Riemann sum as the width of the rectangles approaches zero.

n'l " 2
This is precisely 12 dyx = Inx 1=1In2.

9.4.70

The rst diagram is a left Riemann sum for

f(x) = i on the interval [1; 11] (we assume

n = 10 for purposes of drawing a graph). The
n+l1

area under the curve i =In(n+1),
of the areas of the rectangles is

and the sum 1 1 R 1 _
obviously1l + 2 +3+ +n.Thus
1 1 1

Inn+1)<1+ 2 +3+ +n
a. The second diagram is a right Riemann sum
for the same function on the same interval.
Considering only [1; n], we see that, compar-
ing the area under the curve and the sum of
the areas of the rectangles, that
1 1 1

2+3+ +n<inn
Adding 1 to both sides gives the desired in-
equality. 0 2 4 6 8 10

b. According to part (a), In(n+1)<Snforn=1;2;3;:::,,sothat En=Sn In(h+1)>0.

c. Using the second gure above and assuming n = 9, the nal rectangle corresponds to n+—11 , and the
area under the curve betweenn + 1 and n + 2 is clearly In(n + 2) In(n + 1).

d.En+1 En=Sn+1 In(n+2) (Sn In(n+1))= 1 (In(n + 2) In(n + 1)). But this is

positive
n+l
because of the bound established in part (c).

e.Usingpart(a), En=Sn In(n+1)<1+In(n) In(n+1) <1:
f. Enis a monotone (increasing) sequence that is bounded, so it has a limit.
g. The rst ten values (E1 through E10) are

:3068528194; :401387711; :447038972; :473895421; :491573864;
:504089851; :513415601; :520632565; :526383161; :531072981.:

E1000 0:576716082.
h. For Sn > 10 we need 10 0:5772 = 9:4228 > In(n + 1). Solving for n gives n  12366:16, so n = 12367.
9.4.71

a. Note that the center of gravity of any stack of dominoes is the average of the locations of their centers.
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De ne the midpoint of the zeroth (top) domino to be x = 0, and stack additional dominoes down and to its
right (to increasingly positive x-coordinates.) Let m(n) be the x-coordinate of the midpoint of the n
domino. Then in order for the stack not to fall over, the left edge of the n" domino must

ni

1
)

be placed directly under the center of gravity of dominos 0 through n 1, whichis , =0 mf(i). so
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nl n
true for n = 1l - Py 1 n 1 i 1 P -
that m(n) =1+ nt i=om(i): Claim that in fact m(n) = k=1 ! . Use induction. This is certainly
Note rst that m(0) = 0, so we can start the sum at 1 rather than at 0. Now,
mn)=1+ = j=am(@)=1+ 7 =2 =12 r:Now,1lappearsn 1 times in the double sum,
Lpnrnt i
2 appears n PZ times, and so forth,Pso we can rewrite this sum as m(n) = 1+ W= -
1+1 nl1 o 1 =141 n nll1 (n 1) = n j11+1 s = n 1;andwearedone
W FoiEl n T "=l n i=1i
induction (noting that the statement is clearly true for n = 0, n = 1). Thus the maximum overhang
P
1
is k=2 K

b. For an in nite number of dominos, because the overhang is the harmonic series, the distance is
poten-tially in nite.

9.5 The Ratio, Root, and Comparison Tests

a
k+1
9.5.1 Given a series ak of positive terms, compute limki1 o andcallitr. If0 r<1, the given

series converges. If r > 1 (including r = ), the given series diverges. If r = 1, the test is inconclusive.

P 1
952 leen a SerIES a of positive terms, compute limy: "ax

series converges. If r> 1 (including r =

KT andcallitr. If0 r<1, the given

), the given series diverges. If r = 1, the test is inconclusiVe.

P 1

9.5.3 Givena series of positive terms ak that you suspect converges, nd a series bk that you know
converges, for whichlim — a =1L whpere L 0 is a nite number. If you are successpful, you will have

by

shown thatthe series  ak converges.
Given a series of positive terms  a that you suspect diverges, nd a series b that you know diverges,
8 k k

for which lim K1 = =Lwhere L >0 (including the case L = 1 ). I you are successful, you will have

b P P

P .
shown that  ak diverges.

9.5.4 The Divergence Test.
9.5.5 The Ratio Test.
9.5.6 The Comparison Test or the Limit Comparison Test.

9.5.7 The di erence between successive partial sums is a term in the sequence. Because the terms are positive, di
erences between successive partial sums are as well, so the sequence of partial sums is increasing.

9.5.8 No. They all determine convergence or divergence by approximating or bounding the series by some
other series known to converge or diverge; thus, the actual value of the series cannot be determined.

. . .k 1 (58 1
9.5.9 The ratio between successive termsis —=— = =—
} K+ 1 k+1

, which goes to zero as k ! 1, so the
given series converges by the Ratio Test.

a
k1 2k+1 oL 2
9.5.10 The ratio between successive termsis == = & 2* =rFr ; the limit of this ratio is zero, so the

given series converges by the Ratio Test.

a
9.5.11 The ratio between successive termsis —&- Ge)® _L 1 k&l 2 Thelimitis 1=4 as k ,
so the given series converges by the Ratio Test.3 = vy ®? =4k . 'l
9.5.12 Theratio between successive terms is
a k
k¢l 20y gk~ K

ak =K+ Dwn 2K =k+1 k+1:

k 1k 1

I~
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Note that limki1 k¥l =limk1(1 + k+1) =e, SO the limit of theratiois 0 . =0, sothe given series

converges by the Ratio Test.
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9.5.13 The ratio between successive terms is 2kt1 _ ) K +1

o kD& e = (k )e. The limit of thisratioas k! 1

is 1=e < 1, so the given series converges by the Ratio Test.

a (R = K= K This is the reciprocal of
. . ,o—ka ) E k+1

9.5.14 The ratio between successive termsis a = k+)**

k;Lk which has limit e as k ! 1, so the limit of the ratio of successive terms is 1=e < 1, so the given
series converges by the Ratio Test.

99 K 99
9.5.15 The ratio between successive terms is -2 &) —
given series diverges by the Ratio Test. (k+1)%° 2% =2 k41 ;the limitas k! 1is 2, so the
9.5.16 Theratio between successive terms is &® . gL = L. kel 6
given series converges by the Ratio Test. &+ (K° k+1 kK ; the limitas k! 1 is zero, so the
. . (e )? (2K (k+1)? . .
9.5.17 The ratio between successive terms is ey ™ = DD ;thelimitas k! 1is 1=4, so
the given series converges by the Ratio Test.
9.5.18 Theratio between successive terms is k2 &Y — 1 1 4 i
series converges by the Ratio Test. K2 . =2 « ;the limitas k! 1is 2, so the given
4Kk3+k 4
9.5.19 The kth root of the kth term is e The limit of thisas k! 1 is 7 < 1, so the given series
converges by the Root Test.
9.5.20 The kth root of the kth term is }‘Zf]" . Thelimitof thisas k! 1is % <1, so the given series
converges by the Root Test.
2=k

9.5.21 The kth root of the kth term is 2". Thelimitofthisas k! 1is 7 <1,sothe given series

converges by the Root Test.

9.5.22 The kth root of the kthtermis 1+ k2 X The limitof this ask ! 1is =e% > 1, so the given series

diverges by the Root Test.

2k

9.5.23 The kth root of the kth term is < L _ _ 2 _ _
k+1 . The limitof thisas k! lise <1, sothe given series
converges by the Root Test.

9.5.24 The kth root of the kth term is T(kll)— . The limit of this as k! 1 is 0, so the given series converges

by the Root Test.

9.5.25 The kth root of the kthtermis _1 . The limit of this as k is 0, so the given series converges
by the Root Test. KK 11

1=k
9.5.26 The kth root of the kth term is K-e—. The limit of thisas k! 1 is 1-5 <1, so the given series

converges by the Root Test.
—1 -1 1 4 1 —L Test.

P .
9.5.27 k2+4 <kz,and k=1k2 converges, SO 1k=1kz2+4 converges as well, by the Comparison 443 2

9.5.28 Use the Limit Comparison Test with ¢ . The ratio of the terms of the two seriesis . 3
which has limit 1 as k . Because the comparison series converges, the given series does as well.

11
9.5.29 Use the Limit Comparison Test with ¢ . The ratio of the terms of the two series is “.. which has

limit 1 as k . Because the comparison series diverges, the given series does as well.



11
9.5.30 Use the Limit Comparison Test with lk- . The ratio of the terms of the two series is Q‘mkfl'k which

has limit 0:0001 as k . Because the comparison series diverges, the given series does as well.

11
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1 1 1
9.5.31Forallk, —==— <= .The serieswhosetermsare ~—= s a p-series which converges, so the given

+1 k k
series converges as well by the Comparison Test.
5.32 Use the Limit Comparison Test with 1=k . The ratio of the terms of the two series is k ——
q -
ks+1 , which has limit 1 as k ! 1. Because the comparison series diverges, the given series does as well.

9.5.33 sin(1=k) >0 fork 1, sowe can applythe Comparison Test with 1=K2. sin(1=k) < 1, so &= o1

Because the comparison series converges, the given series converges as well.
- . . k . - 3=
9.5.34 Use the Limit Comparison Test with f1=3 g. The ratio of the terms of the two series is ok =
= , which has limit 1 as k! 1. Because the comparison series converges, the given series does as well.

1 2
X
3

9.5.35 Use the Limit Comparison Test with f1=kg. The ratio of the terms of the two series is 2k kpk = -

malfk- , Which has limit 1=2 as k ! 1. Because the comparison series diverges, the given series does as
well.

9.5.36 1 < _1 = 1 Because theseries whose terms are _+ isap serieswith p > 1, it converges.
k" ka2 K o= K k

Because the comparison series converges, the given series converges as well.

9.5.37 Use the Limit Comparison Testwith ~ _ . The ratio of corresponding terms of the two series is

k

p§_— + —37—2 = “E-——I _p_-;r_ ; which has limit 1 as k . The comparison series is the series whose terms

Tt - Tt vokos o+l 'l
are k273 3=2=K 576 \hich is a p-series with p < 1, so it, and the given series, both diverge.
9.5.38Forallk, _ - < - .Because theserieswhose terms are 1-converges, the given series
converges

(KInk) k k

as well.
9.5.39

a. False. For example, let fakg be all zeros, and fbkg be all 1's.
b. True. This is a result of the Comparison Test.

c. True. Both of these statements follow from the Comparison Test.

a =
K1 K K1 X, e 6
9.5.40 Use the Divergence Test: lim lim 1+ = ~ =0, sothe given series diverges.
a = 6
kil ki1 k k2 1
9.5.41 Use the Divergence Test: lim lim 1+ = €2 =, so the given series diverges.

9.5.42 Use the Root Test: The kth root of the kthtermis  —=—. The limitof thisas k! 1 is ,» <1,s0
the given series converges by the Root Test.

9.5.43 Use the Ratio Test: the ratio of successive termsis ~*+1 Lo = kil 400 —1 | This has limit

(k+2)! .10 k

1100 g =g ask! 1, so the given series converges by the Ratio Test.
9.5.44 Use the Comparison Test. Note that sin“k 1 forallk, so s’k 1 for all k. Because 1 4

converges, so does the given series. K ke k=1k

9.5.45 Use the Root Test. The kth root of the kth term is (klzk 1)2, which has limit0 as k ! 1, so the
given series converges by the Root Test.
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k
. Note that limki1 ;RZL-I Sf =

2 ¥ converges (which converges because

ek 1
limg1 == =1.Thegiven series thus converges because k=1 e
2

9.5.46 Use the Limit Comparison Test with the series whose kth term is 2—

possible to show convergence with the Ratio Test.

it is a geometric series with r = ¢ < 1. Note thatitisalso P
Copyright ¢ 2013 Pearson Education, Inc.



