Solution Manual for Chemistry for Today General Organic and Biochemistry 8th Edition by Seager Slabaugh ISBN 1133602274 9781133602279

Full link download:

Test bank:

https://testbankpack.com/p/test-bank-for-chemistry-for-today-generalorganic-and-biochemistry-8th-edition-by-seager-slabaugh-isbn-1133602274-9781133602279/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-chemistry-for-todaygeneral-organic-and-biochemistry-8th-edition-by-seager-slabaugh-isbn-1133602274-9781133602279/

Chapter 2: Atoms and Molecules

CHAPTER OUTLINE

2.1 Symbols and Formulas 2.4 Relative Masses of Atoms 2.6 Avogadro's Number: The Mole 2.2 Inside the Atom and Molecules 2.7 The Mole and Chemical **Formulas** 2.3 Isotopes 2.5 Isotopes and Atomic Weights

LEARNING OBJECTIVES/ASSESSMENT

When you have completed your study of this chapter, you should be able to:

- 1. Use symbols for chemical elements to write formulas for chemical compounds. (Section 2.1; Exercise 2.4)
- 2. Identify the characteristics of protons, neutrons, and electrons. (Section 2.2; Exercises 2.10 and 2.12)
- 3. Use the concepts of atomic number and mass number to determine the number of subatomic particles in isotopes and to write correct symbols for isotopes. (Section 2.3; Exercises 2.16 and 2.22)
- 4. Use atomic weights of the elements to calculate molecular weights of compounds. (Section 2.4; Exercise 2.32)
- 5. Use isotope percent abundances and masses to calculate atomic weights of elements. (Section 2.5; Exercise 2.38)

6. Use the mole concept to obtain relationships between number of moles, number of grams, and number of atoms for elements, and use those relationships to obtain factors for use in factor-unit calculations. (Section 2.6; Exercises 2.44 a & b and 2.46 a & b)

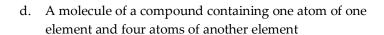
7. Use the mole concept and molecular formulas to obtain relationships between number of moles, number of grams, and number of atoms or molecules for compounds, and use those relationships to obtain factors for use in factor-unit calculations. (Section 2.7; Exercise 2.50 b and 2.52 b)

LECTURE HINTS AND SUGGESTIONS

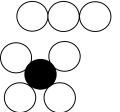
- 1. The word "element" has two usages: (1) a homoatomic, pure substance; and (2) a kind of atom. This dual usage confuses the beginning student. It often helps the beginning student for the instructor to distinguish the usage intended in a particular statement. e.g. "There are 112 elements, meaning 112 kinds of atoms." or "Each kind of atom (element) has a name and a symbol." or "Water contains the element (kind of atom) oxygen."
- 2. Emphasize that the term "molecule" can mean: (1) the limit of physical subdivision of a molecular compound; (2) the smallest piece of a molecular compound; or (3) the basic building block of which a molecular compound is made. Do not try to differentiate at this time the differences between ionic solids, molecular compounds, or network solids.
- 3. Many students fail to make a connection that a given pure substance has only one kind of constituent particle present; i.e., pure water contains only one kind of molecule, the water molecule. The molecule of water is made up of atoms of hydrogen and oxygen, but there are no molecules of hydrogen or oxygen in pure water.
- 4. The student will memorize the names and symbols for approximately one-third of the 112 elements to be dealt with-those commonly encountered in this course or in daily living. Mentioning both the name and the symbol whenever an element is mentioned in the lecture will aid the student's memorizing.
- While memorization of the names and symbols is important, it should not become the major outcome of this class. Avoid reinforcing the mistaken notion that chemistry is merely learning formulas and equations.

29

6. It should be emphasized that the mole is a convenient way of measuring out needed numbers of atoms and molecules In the correct ratios for chemical reactions. Explain that the term "mole" is the same type of term as "dozen," "pair," or "gross," except that it specifies a much larger number of items.

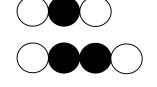

SOLUTIONS FOR THE END OF CHAPTER EXERCISES

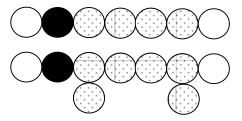
SYMBOLS AND FORMULAS (SECTION 2.1)


2.1 a. A diatomic molecule of an element*

b. A diatomic molecule of a compound*

c. A triatomic molecule of an element


*Note: Each of these structures could be drawn in many



different ways.

- 2.2 a. A triatomic molecule of a compound*
- b. A molecule of a compound containing two atoms of one element and two atoms of a second element*
- c. A molecule of a compound containing two atoms of one element, one atom of a second element, and four atoms of a third element*
- d. A molecule containing two atoms of one element, six atoms of a second element, and one atom of a third element*

*Note: Each of these structures could be drawn in many different ways.

- 2.3 a. A diatomic molecule of fluorine (two fluorine atoms) F2; like Exercise 2.1 a
- b. A diatomic molecule of hydrogen chloride (one hydrogen HCl; like Exercise 2.1 b atom and one chlorine atom)
- c. A triatomic molecule of ozone (three oxygen atoms) O₃; like Exercise 2.1 c*
- d. A molecule of methane (one carbon atom and four CH₄; like Exercise 2.1 d* hydrogen atoms)

 *The number and variety of atoms are alike. The actual structures of the molecules are different.
- ■2.4 a. A molecule of water (two hydrogen atoms and one oxygen H₂O; like Exercise 2.2 a* atom)
- b. A molecule of hydrogen peroxide (two hydrogen atoms and oxygen atoms) H2O2; like Exercise 2.2 b* two oxygen atoms)

*The number and variety of atoms are alike. The actual structures of the molecules are different.

- c. A molecule of sulfuric acid (two hydrogen atoms, one sulfur H₂SO₄; like Exercise 2.2 c* atom, and four oxygen atoms)
- d. A molecule of ethyl alcohol (two carbon atoms, six C₂H₆O; like Exercise 2.2 d* hydrogen atoms, and one oxygen atom)

*The number and variety of atoms are alike. The actual structures of the molecules are different.

2.5 b. c. d.	a. ammonia (NH ₃) 1 nitrogen atom; 3 hydrogen atoms acetic acid (C ₂ H ₄ O ₂) 2 carbon atoms; 4 hydrogen atoms; 2 oxygen atoms boric acid (H ₃ BO ₃) 3 hydrogen atoms; 1 boron atom; 3 oxygen atoms ethane (C ₂ H ₆) 2 carbon atoms; 6 hydrogen atoms						
2.6 b. c. d.	a. methane (CH ₄) 1 carbon atom; 4 hydrogen atoms perchloric acid (HClO ₄) 1 hydrogen atom; 1 chlorine atom; 4 oxygen atoms methylamine (CH ₅ N) 1 carbon atom; 5 hydrogen atoms; 1 nitrogen atom propane (C ₃ H ₈) 3 carbon atoms; 8 hydrogen atoms						
2.7 c. d.	b. SICl ₄ (silicon tetrachloride) The elemental symbol for silicon is Si: SiCl ₄ c. SOO (sulfur dioxide) Only one O should be written and a subscript 2 should be added: SO ₂						
2.8	a. HSH (hydrogen sulfide) More than one H is part of the compound; a subscript should be used: H ₂ S						
b.		elemental		_	rine is Cl (the second letter of a	symbol	
c.	must be lowercase): HClO ₂ 2. 2HN ₂ (hydrazine – two hydrogen The subscripts should reflect the actual number of atoms and						
			_		ound: H2N4		
d.	C2H6 (ethane) The number			_			
INSI	DE THE ATOM (SECTION 2.2	2) 2.9			Charge Mass (u)		
a.	5 protons and 6 neutrons 5	11					
b.	10 protons and 10 neutrons 41	10	20	c.	18 protons and 23 neutrons	18	
	d. 50 protons and 76 neu	itrons			50	126	
=2.1	0				Charge 1	Mass (u)	
a.	4 protons and 5 neutrons 4	9			_		
b.	9 protons and 10 neutrons 9	19					
c.	20 protons and 23 neutrons	20	43				
d.	47 protons and 60 neutrons	47	107				
2.11	2.11 The number of protons and electrons are equal in a neutral atom.a. 5 electronsb. 10 electronsc. 18 electronsd. 50 electrons						
■2.12 The number of protons and electrons are equal in a neutral atom. a. 4 electrons b. 9 electrons c. 20 electrons d. 47 electrons							
ISO	ISOTOPES (SECTION 2.3) 2.13 Electrons Protons						

a. sulfur

b. As

16

33

16

33

c.	element 1	numbei	r 24	24	24				
2.14	4 Electi	rons Pr	otons a.	potassiun	n	19 19			
b. c.	Cd	48	48	51	51				
2.15						Protons	Ne	eutrons	Electrons
a.	$12^{25}Mg$	12	13	12					
b.	¹³ 6 C	6	7	6					
c.	19^{41} K	19	22	19					
=2. 1	16					Protons	Ne	eutrons	Electrons
a.	$_{16^{34}}$ S	16	18	16					
b.	$^{91}40 Zr$	40	51	40					
c.	$^{131}54 \mathrm{Xe}$	54	77	54					
2.17 b. c.		⁶⁰ 27 C 0				¹¹⁰ 48 Cd			
2.18	a. silio	con-28				$_{14^{28}}Si$			
	b. 88 ₃₈ Sr	argoi	n-40	$_{18}^{40}\mathrm{Ar}$		C.	strontium-88		
2.19	9 Mass N	umber	Atomic	Number	Symbo	ol a. 5 pro	tons and 6 neut	trons 11 5 115 B	
b. 1	10 protons	and 10) neutror	ns 20 10 ²⁰ 1	oNe c.	18 protons	s and 23 neutro	ons 41 18 18 ⁴¹ Ar	
	d. 50 p	orotons	and 76 r	neutrons		126		50	$^{126}50$ Sn
	Mass Notes		Atomic	Number	Symbo	ol a. 4 pro	otons and 5 neu	itrons 9 4 % Be b	. 9 protons and 10
c.	20 protor	ns and 2	23 neutro	ons	43	20	⁴³ 20 Ca		
d.	47 protor	ns and	60 neutro	ons	107	47	¹⁰⁷ Ag		47
2.21	a.	contai	ns 18 elec	ctrons and	ł 20 ne	utrons	38 18 Ar		

b. a calcium atom with a mass number of 40^{-40} ₂₀Ca

an arsenic atom that contains 42 neutrons 7533As

- ■2.22 a. contains 17 electrons and 20 neutrons ³⁷₁₇Cl
 - b. a copper atom with a mass number of 65

 $_{29}$ 65Cu c. a zinc atom that contains 36 neutrons

 66_{30} Zn

RELATIVE MASSES OF ATOMS AND MOLECULES (SECTION 2.4)

Two element pairs whose average atoms have masses that are within 0.3 u of each other are 2.23 argon (Ar 39.95 u) and calcium (40.08 u) as well as cobalt (Co 58.93u) and nickel (Ni 58.69u).

2.26
$$77.1\% \times 52.00 \text{ u} = 0.771 \times 52.00 \text{ u} = 40.1 \text{ u}$$
; Ca; calcium

In the first 36 elements, the elements with atoms whose average mass is within 0.2 u of being

2.27

twice the atomic number of the element are:

Atom	Atom Atomic Number		Relative Mass			Ratio	
helium (He)	2		4.003			2.002	
carbon (C)		6		12.01			2.002
nitrogen (N) 7	14.01	2.001	oxygen (O)	8	16.00	2.000	
neon (Ne)		10		20.18			2.018
silicon (Si)	14		28.09			2.006	
sulfur (S)		16		32.07			2.004
calcium (Ca)		20		40.08			2.004

2.28
$$\frac{1}{2}$$
 ×28.09 u = 14.05 u; N; nitrogen

2.29 a. fluorine (F₂)
$$(2 \times 19.00 \text{ u}) = 38.00 \text{ u}$$

b. carbon disulfide (CS₂)
$$(1 \ 12.01 \times \text{u}) + (2 \times 32.07 \text{ u}) = 76.15 \text{ u}$$

c. sulfurous acid (H₂SO₃)
$$(2\times1.008 \text{ u})+(1\times32.07 \text{ u}) (+ 3\times16.00 \text{ u}) = 82.09 \text{ u}$$

d. ethyl alcohol (C₂H₆O)
$$(2\times12.01 \text{ u})+(6\times1.008 \text{ u}) (+116.00\times \text{ u}) = 46.07 \text{ u}$$

e. ethane (C₂H₆)
$$(2\times12.01 \text{ u})+(6\times1.008 \text{ u}) = 30.07 \text{ u}$$

2.30 a. sulfur trioxide (SO₃) (1×

$$(1 \times 32.07 \text{ u}) + (3 \times 16.00 \text{ u}) = 80.07 \text{ u}$$

- b. glycerin (C₃H₈O₃) $(3\times12.01 \text{ u})+(8\times1.008 \text{ u}) (+ 3\times16.00) = 92.09 \text{ u}$
- c. sulfuric acid (H₂SO₄) $(2 \times 1.008 \text{ u}) + (1 \times 32.07 \text{ u}) (+ 4 \times 16.00 \text{ u}) = 98.09 \text{ u}$
- d. nitrogen (N_2) $2 \times 14.01 \text{ u} = 28.02 \text{ u}$
- e. propane (C₃H₈) (3 12.01× u)+(8×1.008 u) = 44.09 u
- 2.31 The gas is most likely to be N2O based on the following calculations: NO: 1

$$14.01 \text{ u} (\times) (+116.00 \times \text{u}) = 30.01 \text{ u}$$

NO:
$$22(\times 14.01 \text{ u}) (+ 116.00 \times \text{u}) = 44.02 \text{ u}$$

NO: 1 14.01
$$u_2(x) (+ 2 \times 16.00 u) = 46.01 u$$

The experimental value for the molecular weight of an oxide of nitrogen was 43.98 u, which is closest to the theoretical value of 44.02 u, which was calculated for N₂O.

≡2.32 The gas is most likely to be ethylene based on the following calculations:

acetylene : 2(
$$\times$$
12.01 u) (+ 2×1.008 u) = 26.04 u ethylene : 2(\times 12.01 u) (+ 4×1.008 u) = 28.05 u

ethane :
$$2(\times 12.01 \text{ u}) (+ 6 \times 1.008 \text{ u}) = 30.07 \text{ u}$$

The experimental value for the molecular weight of a flammable gas known to contain only carbon and hydrogen is 28.05 u, which is identical to the theoretical value of 28.05 u, which was calculated for ethylene.

2.33 The x in the formula for glycine stands for 5, the number of hydrogen atoms in the chemical formula.

$$(2 \times 12.01 \text{ u}) (+ x \times 1.008 \text{ u}) (+ 114.01 \times \text{u}) + (2 \times 16.00 \text{ u}) = 75.07 \text{ u}$$

 $x \times 1.008 \text{ u} + 70.03 \text{ u} = 75.07$
 $x \times 1.008 \text{ u} = 5.04$
 $x \times 1.008 \text{ u} = 5.04$

2.34 The y in the formula for serine stands for 3, the number of carbon atoms in the chemical formula.

ISOTOPES AND ATOMIC WEIGHTS (SECTION 2.5)

- 2.35 a. The number of neutrons in the nucleus $22.9898 11 = 11.9898 \approx 12$ neutrons
 - . The mass (in u) of the nucleus (to three 23.0 u

significant figures)

2.36 a. The number of neutrons in the nucleus $26.982 - 13 = 13.982 \approx 14$ neutrons

b. The mass (in u) of the nucleus (to three significant figures) 27.0 u

 $2.37 \quad 7.42\% \times 6.0151 \text{ u} + 92.58\% \times 7.0160 \text{ u} =$

$$\frac{0.0742 \times 6.0151 \text{ u} + 0.9258 \times 7.0160 \text{ u} = 6.94173322 \text{ u}; 6.942 \text{ u with SF or}}{(7.42 \times 6.0151 \text{ u}) + (92.58 \times 7.0160 \text{ u})} = 6.94173322 \text{ u}; 6.942 \text{ u with SF}}$$

The atomic weight listed for lithium in the periodic table is 6.941 u. The two values are the very close.

=2.38 19.78%×10.0129 u + 80.22%×11.0093 u =

$$\frac{0.1978 \times 10.0129 \text{ u} + 0.8022 \times 11.0093 \text{ u} = 10.81221208 \text{ u}; 10.812 \text{ u} \text{ with SF or}}{\left(19.78 \times 10.0129 \text{ u}\right) + \left(80.22 \times 11.0093 \text{ u}\right)} = 10.81221208 \text{ u}; 10.812 \text{ u} \text{ with SF}}$$

The atomic weight listed for boron in the periodic table is 10.81 u. The two values are close to one another.

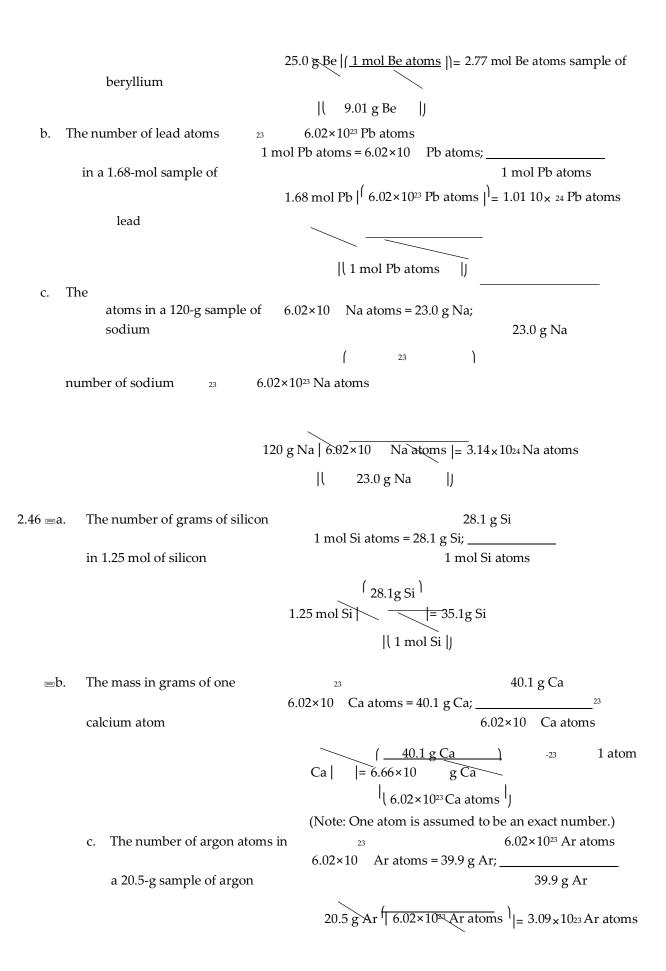
2.39 $92.21\% \times 27.9769 \text{ u} + 4.70\% \times 28.9765 \text{ u} + 3.09\% \times 29.9738 \text{ u} =$

$$0.9221\ 27.9769 \times u + 0.0470 \times 28.9765\ u + 0.0309 \times 29.9738\ u = 28.08558541\ u;\ 28.09\ u \ with\ SF\ or \\ \underline{\left(92.21 \times 27.9769\ u\right) + \left(4.70 \times 28.9765\ u\right) + \left(3.09 \times 29.9738\ u\right)}_{=\ 28.08558541\ u;\ 28.09\ u \ with\ SF}$$

The atomic weight listed for silicon in the periodic table is 28.09 u. The two values are the same.

2.40 $69.09\% \times 62.9298 \text{ u} + 30.91\% \times 64.9278 \text{ u} =$

$$0.6909 \times 62.9298 \text{ u} + 0.3091 64.9278 \times \text{ u} = 63.5473818 \text{ u}; 63.55 \text{ u} \text{ with SF}$$


$$\frac{(69.09 \times 62.9298 \text{ u}) + (30.91 \times 64.9278 \text{ u})}{100} = 63.5473818 \text{ u}; 63.55 \text{ u with SF}$$

The atomic weight listed for copper in the periodic table is 63.55 u. The two values are the same.

AVOGADRO'S NUMBER: THE MOLE (SECTION 2.6)

2.41
$$\left| 6.02 \times 10^{23} \text{ atoms P} \right| = 6.02 \times 10_{22} \text{ atoms P}$$

3.10 g P

THE MOLE AND CHEMICAL FORMULAS (SECTION 2.7)

2.47
$$(1 \ 31.0 \times u) + (3 \ 1.01 \times u) = 34.0 \ u; 1 \ mole PH_3 = 34.0 \ g PH_3$$

 $(1 \ 32.1 \times u) (+ 2 \times 16.0 \ u) = 64.1 \ u; 1 \ mole SO_2 = 64.1 \ g SO_2$
 $(6.02 \times 10_{23} \ molecules SO)$
 $(6.41 \ g SO_2) | (64.1 \ g SO_2$

 6.02×10 molecules PH₃ || 6.02×10₂₃ molecules PH₃ ||

2.48
$$(1\ 10.8 \times u) + (3 \times 19.0\ u) = 67.8\ u; 1\ mole\ BF_3 = 67.8\ g\ BF_3$$

 $(2 \times 1.01\ u) (+ 1 \times 32.1\ u) = 34.1\ u; 1\ mole\ H\ S_2 = 34.1g\ H\ S_2$
 $(6.02 \times 10_{23}\ molecules\ H\ S)$
 $(6.02 \times 10_{23}\ molecules\ H\ S)$

 6.0×10 molecules BF₃ || $6.02\times10_{23}$ molecules BF₃ || = 0.68 g BF₃

2.49 a. methane (CH₄)

22

- 1. 2 CH₄ molecules contain 2 C atoms and 8 H atoms.
- 2. 10 CH₄ molecules contain 10 C atoms and 40 H atoms.
- 3. 100 CH₄ molecules contain 100 C atoms and 400 H atoms.
- 4. 6.02×10²³ CH₄ molecules contain 6.02×10²³ C atoms and

24.08×10²³ H atoms.

- 5. 1 mol of CH₄ molecules contains 1 mole of C atoms and 4 moles of H atoms.
- 6. 16.0 g of methane contains 12.0 g of C and 4.04 g of H.
- b. ammonia 1. 2 NH molecules contain 2 N atoms and 6 H atoms.3
 - (NH₃) 2. 10 NH molecules contain 10 N atoms and 30 H atoms.3
 - 3. 100 NH molecules contain 100 N atoms and 300 H atoms.3
 - 4. 6.02×10²³ NH molecules contain 6.02₃ ×10²³ N atoms and

18.06×10²³ H atoms.

5. 1 mol of NH molecules contains 1 mole of N atoms and 3 moles₃ of H atoms.

- 6. 17.0 g of ammonia contains 14.0 g of N and 3.03 g of H.
- c. chloroform 1. 2 CHCl₃ molecules contain 2 C atoms, 2 H atoms, and 6 Cl atoms.

(CHCl³) 2. 10 CHCl₃ molecules contain 10 C atoms, 10 H atoms, and 30 Cl atoms.

- 3. 100 CHCl₃ molecules contain 100 C atoms, 100 H atoms, and 300 Cl atoms.
- 4. 6.02×10²³ CHCl₃ molecules contain 6.02×10²³ C atoms,

6.02×10²³ H atoms, and 18.06×10²³ Cl atoms.

- 5. 1 mol of CHCl₃ molecules contains 1 mole of C atoms, 1 mole of H atoms, and 3 moles Cl atoms.
- 6. 119 g of chloroform contains 12.0 g of C, 1.01g of H, and 106 g of Cl.
- 2.50 a. benzene (C₆H₆) 1. 2 C H molecules contain 12 C atoms and 12 H atoms.₆ 6
 - 2. 10 C H₆ 6 molecules contain 60 C atoms and 60 H atoms.
 - 3. 100 C H₆ 6 molecules contain 600 C atoms and 600 H atoms.
 - 4. 6.02×10²³ C H₆ 6 molecules contains 36.12×10²³ C atoms and

36.12×10²³ H atoms.

- 5. 1 mol of C H molecules contain 6 moles of C atoms and 6 moles₆ of H atoms.
- 6. 78.1g of benzene contains 72.0 g of C and 6.1g of H.
- ■b. nitrogen dioxide 1. 2 NO₂ m
- $1.\ 2\ NO_2 molecules$ contain 2 N atoms and 4 O atoms.

(NO₂)

- 2. 10 NO₂ molecules contain 10 N atoms and 20 O atoms.
 - 3. 100 NO₂ molecules contain 100 N atoms and 200 O atoms.
 - 4. 6.02×10²³ NO₂ molecules contain 6.02×10²³ N atoms and

12.04×10²³O atoms.

- 5. 1 mol of NO₂ molecules contains 1 mole of N atoms and 2 moles of O atoms.
- 6. 46.0 g of nitrogen dioxide contains 14.0 g of N and 32.0 g of O.
- c. hydrogen 1. 2 HCl molecules contain 2 H atoms and 2 Cl atoms. chloride (HCl) 2. 10 HCl molecules contain 10 H atoms and 10 Cl atoms.
 - 3. 100 HCl molecules contain 100 H atoms and 100 Cl atoms.
 - 4. 6.02×10²³ HCl molecules contain 6.02×10²³ H atoms and

6.02×10²³Cl atoms.

- 5. 1 mol of HCl molecules contains 1 mole of H atoms and 1 mole Cl atoms.
- 6. 36.5 g of hydrogen chloride contains 1.01g of H and 35.5 g of Cl.
- 2.51 a. **Statement 5.** 1 mol of CH₄ molecules contains 1 mole of C atoms and 4 moles of H atoms.

b. **Statement 6.** 17.0 g of ammonia contains 14.0 g of N and 3.03 g of H.

Factor: || 1 mole NH₃ || J

$$1.00 \text{ mole NH}_{3} | (14.0 \text{ g N})$$

$$1.00 \text{ mole NH}_{3} | (1 \text{ mole NH}_{4}) | = 14.0 \text{ g N}$$

c. **Statement 6.** 119 g of chloroform contains 12.0 g of C, 1.01g of H, and 106 g of Cl.

2.52 a. Statement 5. 1 mol of C H₆₆ molecules contains 6 moles of C atoms and 6 moles of H atoms.

(6 moles H atoms) Factor :
$$||1 \mod C + H_{66}||$$

0.75 mol C
$$H_{66}$$
 | 6 moles H atoms |= 4.5 moles H atoms | 1 mole C H_{66} | J

statement 4. 6.02×10²³ NO₂ molecules contain 6.02×10²³ N atoms and

12.04×10²³O atoms.

$$(12.04 \times 10^{23} \text{ O atoms})$$
Factor: $||| 1 \text{ mole NO}_2 |||$

6.02×10²³ N atoms, and 18.06×10²³ O atoms.

Statement 5. 1 mol C H NO molecules contain 6 moles of C atoms, 5 moles of H atoms, 653 1 mole of N atoms, and 3 moles of O atoms.

Statement 6. 139 g of nitrophenol contains 72.0 g of C, 5.05 g of H, 14.0 g of N, and 48.0 g of O.

a. **Statement 6.** 139 g of nitrophenol contains 72.0 g of C, 5.05 g of H, 14.0 g of N, and 48.0 g of O.

b. **Statement 5.** 1 mol C H NO molecules contain 6 moles of C atoms, 5 moles of H atoms, 6 5 3 1 mole of N atoms, and 3 moles of O atoms.

(3 moles of O atoms)

Factor : ||\(1 \text{ mole C H NO}_6 \) 5

1.50 moles C H NO₆ $\frac{3 \text{ moles of O atoms}}{53 | | 1 \text{ mole C-H-NO}_6}$ 5 3 | | = 4.50 moles of O atoms

c. **Statement 4.** 6.02×10^{23} C H NO molecules contain 36.12_6 5 3 $\times 10^{23}$ C atoms, $30.1\ 10 \times {}^{23}$ H atoms,

6.02×10²³ N atoms, and 18.06×10²³ O atoms.

Factor: $| (6.02 \times 10^{23} \text{C atoms}) |$ Factor: $| (6.02 \times 10^{23} \text{C H NO molecules}_6 5)$ $| (6.02 \times 10^{23} \text{C H NO molecules}_6 5)$ $| (6.02 \times 10^{23} \text{C atoms}) |$ $| (6.02 \times 10^{23} \text{C atoms}) |$ $| (6.02 \times 10^{23} \text{C H NO molecules}_6 5)$ $| (6.02 \times 10^{23} \text{C H NO molecules}_6 5)$ $| (6.02 \times 10^{23} \text{C H NO molecules}_6 5) |$ $| (6.02 \times 10^{23} \text{C atoms}) |$ $| (6.02 \times 10^{23} \text{C atoms}_6 5) |$ $| (6.02 \times 10^{23} \text{C atoms}_6 5) |$

2.58

Statement 4. 6.02×10^{23} H PO₃₄ molecules contain 18.06×10^{23} H atoms, 6.02×10^{23} P atoms, and 24.08×10^{23} O atoms.

Statement 5. 1 mol H PO_{3 4} molecules contains 3 moles of H atoms, 1 mole of P atoms, and 4 moles of O atoms.

Statement 6. 98.0 g of phosphoric acid contains 3.03 g of H, 31.0 g of P, and 64.0 g of O.

a. **Statement 6.** 98.0 g of phosphoric acid contains 3.03 g of H, 31.0 g of P, and 64.0 g of O.

(3.03 g H)

Factor:
$$|| 98.0 \text{ g H PO}_{34}|| ||$$

$$46.8 \text{ g H PO}_{34}| | 3.03 \text{ g H} || = 1.45 \text{ g H}$$
 $|| 98.0 \text{ g H PO}_{34}||$

b. **Statement** 5. 1 mol H PO₃₄ molecules contains 3 moles of H atoms, 1 mole of P atoms, and 4 moles of O atoms.

(4 moles of O atoms)

1.25 moles H-PO₃₄ | 4 moles of O atoms | = 5.00 moles of O atoms | $| 1 \text{ mole H PO}_{34} | | 1 \text{ mole H PO}_{34} |$

c. **Statement 4.** 6.02×10^1 H PO₃ 4 molecules contain 18.06×10^{23} H atoms, 6.02×10^{23} P atoms, and 24.08×10^{23} O atoms.

 $\begin{array}{c|c} & 6.02 \times 10^{23} \, P \ atoms \end{array} \big) \\ Factor: \Big| & \hline & 6.02 \times 10_{23} \, H \ PO_{34} \, molecules} \, \Big| \Big| \\ \end{array}$

2.59 Urea (CH₄N₂O) contains the higher mass percentage of nitrogen as shown in the calculation below:

2.60 Magnetite (Fe₃O₄) contains the higher mass percentage of iron as shown in the calculation below:

167 g Fe

$$\times 100 = 72.3\%$$
 Fe in Fe O₃₄
231g Fe O₃₄
 $\times 100 = 72.3\%$ Fe in Fe O₂₃
 $\times 100 = 70.0\%$ Fe in Fe O₂₃

2.61 Calcite (CaCO₃) contains the higher mass percentage of nitrogen as shown in the calculation below:

 $^{^{1} \}times 100 = 1.66 \times 10$ % 6.02×10

$$100 \text{ g CaCO}_3$$

$$40.1 \text{ g Ca}$$

$$\times 100 = 21.8\% \text{ Ca in CaMgC O}_{26}$$

$$184 \text{ g CaMgC O}_{26}$$

ADDITIONAL EXERCISES

U-238 contains 3 more neutrons in its nucleus than U-235. U-238 and U-235 have the same volume because the extra neutrons in U-238 do not change the size of the electron cloud. U-238 is 3u heavier than U-235 because of the 3 extra neutrons. Density is a ratio of mass to volume; therefore, U-238 is more dense than U-235 because it has a larger mass divided by the same volume.

2.63
$$1.0 \times 10^9$$
 -13

2.65 DO:
$$2_2(\times 2 u) (+ 116.00 \times u) = 20 u$$

2.66 In Figure 2.2, the electrons are much closer to the nucleus than they would be in a properly scaled drawing. Consequently, the volume of the atom represented in Figure 2.2 is much less than it should be. Density is calculated as a ratio of mass to volume. The mass of this atom has not changed; however, the volume has decreased. Therefore, the atom in Figure 2.2 is much more dense than an atom that is 99.999% empty.

ALLIED HEALTH EXAM CONNECTION

- 2.67 The symbol K on the periodic table stands for (a) potassium.
- 2.68 (b) Water is a chemical compound. (a) Blood and (d) air are mixtures, while (c) oxygen is an element.
- 2.69 (c) Compounds are pure substances that are composed of two or more elements in a fixed proportion. Compounds can be broken down chemically to produce their constituent elements or other compounds.
- $_{17}^{34}$ Cl has (a) 17 protons, 17 neutrons (34-17=17), and 17 electrons (electrons = protons in neutral atom).
- 2.71 If two atoms are isotopes, they will (c) have the same number of protons, but different numbers of neutrons.
- 2.72 Copper has (b) 29 protons because the atomic number is the number of protons.

- 2.73 Atoms are electrically neutral. This means that an atom will contain (c) an equal number of protons and electrons.
- 2.74 The negative charged particle found within the atom is the (b) electron.
- 2.75 Two atoms, L and M are isotopes; therefore, they would not have (b) atomic weight in common.
- 2.76 The major portion of an atom's mass consists of (a) neutrons and protons.
- 2.77 The mass of an atom is almost entirely contributed by its (a) nucleus.
- 2.78 (d) $_{16}^{33}$ S $^{2-}$ has 16 protons, 17 neutrons, and 18 electrons.
- 2.79 An atom with an atomic number of 58 and an atomic mass of 118 has (c) 60 neutrons.
- 2.80 The mass number of an atom with 60 protons, 60 electrons, and 75 neutrons is (b) 135.
- 2.81 Avogadro's number is (c) 6.022 x 10²³.
- 2.82 (c) 1.0 mol NO₂ has the greatest number of atoms (1.8 x 10^{24} atoms). 1.0 mol N has 6.0 x 10^{23} atoms, 1.0 g N has 4.3 x 10^{22} atoms, and 0.5 mol NH₃ has 1.2 x 10^{24} atoms.
- 2.83 A sample of 11 grams of CO₂ contains (c) 3.0 grams of carbon.

$$11 \text{ g CO}_{2} || \frac{12.0 \text{ g C}}{44.0 \text{ g CO}_{2}} || = 3.0 \text{ g C}$$

- 2.84 The molar mass of calcium oxide, CaO, is (a) 56 g (40 g Ca + 16 g O).
- 2.85 The mass of 0.200 mol of calcium phosphate is (b) 62.0 g.

$$0.200 \text{ mol Ca}_{3} (PO_{4})_{2} | 1 \text{ mol Ca}_{3} (PO_{4})_{2} | |_{2} = 62.0 \text{ g Ca}_{3} (PO_{4})_{2}$$

2.86 (b) 2.0 moles Al are contained in a 54.0 g sample of Al.

CHEMISTRY FOR THOUGHT

- 2.87 a. Atoms of different elements contain different numbers of protons.
 - b. Atoms of different isotopes contain different numbers of neutrons, but the same number of protons.
- 2.88 Aluminum exists as one isotope; therefore, all atoms have the same number of protons and neutrons as well as the same mass. Nickel exists as several isotopes; therefore, the individual atoms do not have the weighted average atomic mass of 58.69 u.

$$2.89 \qquad \frac{2.36 \times 10^{3} \text{g}}{= 197} = \frac{\text{g}}{12 \text{ oranges}}$$

None of the oranges in the bowl is likely to have the exact mass calculated as an average. Some oranges will weigh more than the average and some will weigh less.

2.90 dry bean mass 1 =
$$jelly bean mass$$
 1.60

- 2.92 If the atomic mass unit were redefined as being equal to 1/24th the mass of a carbon-12 atom, then the atomic weight of a carbon-12 atom would be 24 u. Changing the definition for an atomic mass unit does not change the relative mass ratio of carbon to magnesium. Magnesium atoms are approximately 2.024 times as heavy as carbon-12 atoms; therefore, the atomic weight of magnesium would be approximately 48.6 u.
- 2.93 The ratio of the atomic weight of magnesium divided by the atomic weight of hydrogen would not change, even if the atomic mass unit was redefined.

2.94 The value of Avogadro's number would not change even if the atomic mass unit were redefined. Avogadro's number is the number of particles in one mole and has a constant value of 6.022×10^{23} .

EXAM QUESTIONS MULTIPLE CHOICE

- 1. Why is CaO the symbol for calcium oxide instead of CAO?
 - a. They both can be the symbols for calcium oxide.
 - b. They are both incorrect as the symbol should be cao.
 - c. A capital letter means a new symbol.
 - d. They are both incorrect as the symbol should be CaOx.

Answer: C

- 2. What is the meaning of the two in ethyl alcohol, C₂H₅OH?
 - a. All alcohol molecules contain two carbon atoms.
 - b. There are two carbon atoms per molecule of ethyl alcohol.
 - c. Carbon is diatomic.
 - d. All of these are correct statements.

Answer: B

- 3. The symbols for elements with accepted names:
 - a. consist of a single capital letter.
 - b. consist of a capital letter and a small letter.
 - c. consist of either a single capital letter or a capital letter and a small letter.
 - d. no answer is correct

Answer: C

- 4. A molecular formula:
 - a. is represented using the symbols of the elements in the formula.
 - b. is represented using a system of circles that contain different symbols.
 - c. cannot be represented conveniently using symbols for the elements.
 - d. is represented using words rather than symbols.

Answer: A

5. Which of the following uses the unit of "u"?								
a. atomic weights of atoms	c. molecular weights of	molecules						
b. relative masses of atoms	d. more than one response is	correct						
Answer: D								
6. What is meant by carbon-12?								
•	e mass of approximately 12 grai	ms.						
	e mass of approximately 12 pou							
c. The carbon atom has a relative	e mass of approximately 12 amu	1.						
d. The melting point of carbon is	s 12°C.							
Answer: C								
7. Refer to a periodic table and tell how same mass as an average oxygen a		ld be needed to get close to the						
a. six b. four	c. twelve	d. one-fourth						
Answer: B								
8. Determine the molecular weight of h	nydrogen perovide H2O2 in 11							
a. 17.01 b. 18.02	c. 34.02	d. 33.01						
2. 15.02	e. 51.6 2	G. 66.61						
Answer: C								
9. Using whole numbers, determine the	e molecular weight of calcium h	nydroxide, Ca(OH)2.						
a. 56 b. 57	c. 58	d. 74						
Answer: D								
10. The average relative mass of an ozo	one molecule is 48 0 u . An ozona	e molecule contains only oxygen						
atoms. What does this molecular v								
It contains a single oxygen ator	_							
b. It contains two oxygen atoms.								

c. It contains three oxygen atoms.

d. The data tell nothing about the formula of an ozone molecule.						
Answer: C						
11. Which of the following pairs are about equal in mass?a. proton and electron c. proton and neutronb. electron and neutron d. nucleus and surrounding electron						
Answer:	С					
12. Which of the follo a. proton	wing particles is the sr b. electron	nallest? c. neutron	d. they are all the same size			
Answer:	В					
13 How many electro	ons are in a neutral ato	m of carbon-13 ¹³ C?				
a. 6	b. 18	c. 12	d. no way to tell			
Answer:	A					
14. Which of the follo a. a proton b. a neutron	owing carries a negativ c. an electron d. both proton and r	-				
Answer: C						
15. Which of the follo a. protons b. neutrons	wing is located in the of c. electrons d. protons and neut					

Answer:	D				
a. equ equ	equal numbers of pro al numbers of pro al numbers of neutro	can they have no charge totons and neutrons b. tons and electrons c. ons and electrons a drained out of the ator			
Answer:	В				
a. b. c.	They have different	numbers of protons in numbers of neutrons ir numbers of electrons o	n the nucleus.		
Answer:	В				
a.	nat way is U-238 diff three more electrons three more protons	s c. three more			
Answer:	С				
19. How	many protons are fo	ound in the nucleus of a	a boron-11 (B) atom?		
a.	11	b. 6	c. 5	d.	4
Ans	swer: C				
20. How a.	many neutrons are	found in the nucleus of b. 6	a boron-11 (B) atom? c. 5	d.	4

21. What is the mass number of a carbon-13 (C) atom?

В

52 Chapter 2	Atoms and Molecules 52

a.	13	b. 12	C	. 6	d. 7	
Answer:	:	A				
	en in pare	nthesis). Calculate the	atomic weigh	t of neor	omposition (the mass of each isoton in u from these data.	pe is
a. 28.97	7	b. 37.62	c. 20	17	d. 20.17	
Answer:	:	D				
whe isote	ere the isotope is pres Li-7		ı in parenthese	es. Use th	pes, Li-6 (6.02 u) and Li-7 (7.02 u), ne periodic table and determine w ement. a. Li-6	
d.		e determined from the	e information a	vailable		
Ansv	ver:	В				
	at mass of a	ersenic (As) in grams b. 74.92	contains the sa	nme num 4.16	ber of atoms as 39.95 g of argon (. d. 149.84	Ar)?

- 25. Which is greater: the number of Cr atoms in a 26.0 g sample of chromium or the number of Al atoms in a 26.98 g sample of aluminum?
 - a. The number of Cr atoms is greater than the number of Al atoms.
 - b. The number of Al atoms is greater than the number of Al atoms.
 - c. The number of Cr atoms and Al atoms are the same.

В

d. The number of Cr atoms and Al atoms cannot be determined from the provided data.

Answer: B

of mercury is heat less than 200.6 b. the same as A	ary (Hg), a liquid at room to ated until it boils. What is the or it would not be a gas Avogadro's number when it is a liquid answers is correct		
Answer:	С		
	•	-	was found to contain 0.0800 g
of oxygen, how r a. 0.140	nany grams of nitrogen wo b. 0.280	uld it contain? c. 0.560	d. 0.0700
Answer:	A		
28. Avogadro's numb a. 55.85 g	er of iron (Fe) atoms would b. 27.95 g	l weigh c. 6.02 x 10 ²³ g	d. 6.02 x 10 ⁻²³ g
Answer:	A		
a. Avogadro's r	are contained in a sample on number c. one vogadro's number d. one-te		s 8.38 g?
Answer:	В		
30. Which of the follow	wing has the largest mass?		
a. 5.0 mol H ₂ O	b. 3.5 mol NH₃	c. 8.0 mol C	d. 6.0 mol C ₂ H ₂
Answer:	D		
31. How many silicon	atoms (Si) are contained in	a 12.5 g sample of silicor	n?
a. 2.68 x 10 ²³	b. 5.83 x 10 ⁻²²	c. 1.35 x 10 ²⁴	d. 1.71 x 10 ²¹

A

54 Chapter 2

32. What is the number	r of hydrogen at эms ir	n a 18.016 gram sample of	water?
a. 2.000	b. 6.022 x 10 ²³	c. 18.02	d. 1.204 x 10 ²⁴
Answer:	D		
33. How many moles	of oxygen atoms are in	one mole of CO ₂ ?	
a. 1	b. 2	c. 6.02×10^{23}	d. 12.04 x 10 ²³
Answer:	В		
34 How many hydro	ogen atoms are in 1.00 i	male of NH22	
a. 3.00	b. 6.02 x 10 ²³	c. 12.0 x 10 ²³	d. 18.1 x 10 ²³
Answer: D			
•	of hydrogen molecules n peroxide (H2O2)? 3	(H ₂) contain the same nu	mber of hydrogen atoms as two
Answer: B			
36. Calculate the weigh	ht percentage of hydro	gen in water, rounded to	3 significant figures.
a. 33.3	b. 66.7	c. 2.00	d. 11.2
Answer: D			
37. What is the weight	percentage of nitroger	n in urea, CN2H4O, round	ed to 3 significant figures?
a. 46.7	b. 30.4	c. 32.6	d. 16.3

Answer:	A				
38. How many ca a. 2.75 x 10 ⁻²²		toms are contained in $0.3.29 \times 10^{24}$		g of ethane, C ₂ H ₆ ? 1.10 x 10 ²³	d. 2.20 x 10 ²³
Answer:	D				
39 Which elemen	nt is an	proximately 65 percen	t of s	sulfuric acid (H2SO4)	hv weight?
a. hydrogen	•	b. sulfur	с.		d. any of these
Answer:	С				
40. How many m	oles of	N ₂ O contain the same	nun	nber of nitrogen aton	ns as 4.60 g of NO ₂ ?
a. 0.500		b. 0.0500	c.	0.100	d. 0.200
Answer:	В				
41. How many g	rams o	of iron (Fe) are containe	ed ir	n 15.8 g of Fe(OH) ₃ ?	
a. 12.1		b. 8.26	c.	11.8	d. 5.21
Answer:	В				
42. What is the sy	mbol f	for bromine?			
a. B		b. Br	c.	Be	d. none of these
Answer: 43. What is the wa. 14.2%	B veight p	percent of sulfur in K ₂ S b. 18.4%	6O4, 1	rounded to 3 signific c. 54.4%	ant figures? d. 22.4%
Answer:	В	;			
44. What is the n			ne li	ter of water if one gra	am of water takes up one
a. 1	•	b. 18		c. 55.6	d. 1000

	Answer:	С			
1 5.	. How many neutro a. 40	ons are in an atom b. 35		s number of 75 a 75	and contains 35 protons? d. no way to know
	Answer:	A			
16.	. Atoms that have t	he same atomic n	umber but diffe	er by mass numb	er are called?
	a. protons	b. neutrons		isotopes	d. positrons
	Answer:	С			
! 7.	•				ir combined mass to be?
	a. 12.01 g	b. 6.005 g	C.	3.003 g	d. 1.000 g
	Answer:	В			
18.	. What is wrong wi a. OSO is the co b. SO should be	_	c. OO sl	nould be written	
	Answer:	D			
19.	a. 43 protons, 4 b. 43 protons, 5	13 electrons	-	otons, 43 electror	
	Answer:	A			
50.	. Upon which of the	e following is the	system of atom	ic mass units bas	sed?

a. Assigning C-12 as weighing exactly 12 u and comparing other elements to it.

b. Measuring the true mass of each subatomic particle.c. Comparing the differences in protons and electrons.d. Viewing how atoms are affected by electromagnetic fields.

Answer:	A
TRUE-FALSE	
1. The symbols fo	or all of the elements are derived from the Latin names.
Answer:	F
2. The symbols for	or all of the elements always begin with a capital letter.
Answer:	T
3. The first letter	of the symbol for each of the elements is the first letter of its English name.
Answer:	F
4. The most accur	rate way to determine atomic mass is with a mass spectrometer.
Answer:	T
5. H ₂ O ₂ contains	equal parts by weight of hydrogen and oxygen.
Answer:	F
6. Electrons do no	ot make an important contribution to the mass of an atom.
Answer:	T
7. The charge of t	the nucleus depends only on the atomic number.
Answer:	T
8. Isotopes of the	same element always have the same number of neutrons.

F

58 Chapter 2	Atoms and Molecules 58
--------------	------------------------

9. Isotopes of t	the same element always have the same atomic number.		
Answer:	T		
10. Isotopes of t	the same element always have the same atomic mass.		
Answer:	F		
11. A mole of copper contains the same number of atoms as a mole of zinc.			
Answer:	T		
12. One mole o same eleme	f average atoms of an element would have the same mass as a mole of one isotope of the ent.		
Answer:	F		
13. One mole of silver has the same mass as a mole of gold.			
Answer:	F		
14. One mole of H ₂ O contains two moles of hydrogen atoms.			
Answer:	T		
15. One mole o	f H ₂ O contains 2.0 grams of hydrogen.		
Answer:	Т		
16. One mole of O₃ weighs 16 grams.			
Answer:	F		
17. The pure substance, water, contains both hydrogen molecules and oxygen molecules.			
Answer:	F		

18.	A diet is planned for a trip on a space ship and is lacking in milk, but is rich in turnips and broccoli.
	Such a diet could provide a sufficient amount of calcium for adults.

Answer: T

19. Calcium supplements can be taken in 1,000 mg increments.

Answer: F

20. Protons and neutrons have approximately the same mass.

Answer: T