Solution Manual for Foundations of Operations Management
 Canadian 4th Edition by Ritzman Krajewski Malhotra Klassen ISBN 01340909189780134090917

Full link download:
Test Bank:
https://testbankpack.com/p/test-bank-for-foundations-of-
operations-management-canadian-4th-edition-by-ritzman-
krajewski-malhotra-klassen-isbn-0134090918-9780134090917/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-foundations-of-operations-management-canadian-4th-edition-by-ritzman-krajewski-malhotra-klassen-isbn-0134090918-9780134090917/

PROBLEMS

Chapter 2

1. EBI Solar
a. Inventory turnover = (Annual sales at cost $) /($ Average aggregate inventory value) Thus, $4.50=2500000 /$ Average aggregate inventory value
Average aggregate inventory value $=\$ 555556$
Weekly sales $=$ Cost of goods sold $/ 52=\$ 2500000 / 52=\$ 48077$
Weeks of supply = Average aggregate inventory value / weekly sales
$=\$ 555556 / 48077=11.56$ weeks of supply
b. Average aggregate inventory value $=$ raw material + work-in-process + finished goods
$=\$ 100500+\$ 25800+\$ 16200=\$ 142500$
Inventory turnover $=($ Annual sales at cost $) /($ Average aggregate inventory value $)$
$=\$ 2500000 / \$ 142500=17.54$
Weeks of supply = Average aggregate inventory value / weekly sales
$=\$ 142500 / 48077=2.96$ weeks of supply
2. Roll-away Corporation. Average aggregate inventory value can be calculated as: Average aggregate inventory value

Weeks of supply

a. Sales per week
$=$ Raw materials + WIP + Finished goods
$=$ Cost of goods sold $/ 52$ weeks per year
= \$48 000000 / 52
= \$923 077
= Average aggregate inventory value $/$ Weekly sales
$=\$ 2470000+\$ 1566000+\$ 1200$

000
= \$5 236000
(at cost)
= \$5 236000 / \$923 077
$=5.7$ weeks
$=($ Annual sales at cost) / (Average aggregate inventory value)
= \$48 $000000 / \$ 5236000$
$=9.17$ turns/year
3. Sterling Inc.

a.		Average	
Part Number	Inventory (units)	Value (\$/unit)	Total Value (\$)
RM-1	20000	1.00	20000
RM-2	5000	5.00	25000
RM-3	3000	6.00	18000
RM-4	1000	8.00	8000
WIP-1	6000	10.00	60000
WIP-2	8000	12.00	96000
FG-1	1000	65.00	65000
FG-2	500	88.00	44000
	44500		336000

Average aggregate inventory value: \$336000
b. Average weekly sales at cost $=\$ 6500000 / 52=\$ 125$

000

$$
\begin{aligned}
\text { Weeks of supply } & =\$ 336000 / \$ 125000 \\
& =2.688 \text { weeks }
\end{aligned}
$$

c. Inventory turnover
= Annual sales (at cost) / Average
aggregate inventory value $=$ \$6 500000 / \$336 000 $=19.34$ turns.
4. One product line

$$
\begin{aligned}
\text { Inventory turnover }= & (\text { Annual sales at cost }) /(\text { Average } \\
& \text { aggregate inventory value) } \\
10.0= & \$ 985000 / \text { Average aggregate inventory } \\
& \text { value }
\end{aligned}
$$

Average aggregate inventory value $=\$ 985000 / 10=\$ 98500$
5. A retailer
a.

Sales per week $=$ Cost of goods sold $/ 52$ weeks per year $=\$ 3$ 500000 / 52
$=\$ 67308$

$$
\begin{aligned}
\text { Weeks of supply } \quad & =\text { Average aggregate inventory value / } \\
\quad & \text { Weekly sales (at cost) } \\
& =\$ 1200000 / \$ 67308 \\
& =17.8 \mathrm{wk}
\end{aligned}
$$

CHAPTER TWO • Supply-Chain Management
b.

$$
\begin{aligned}
\text { Inventory turnover } \quad & =(\text { Annual sales at cost }) / \\
\quad & \quad(\text { Average aggregate inventory value }) \\
& =\$ 3500000 / \$ 1200000 \\
& =2.9 \text { turns/year }
\end{aligned}
$$

6. Large global automobile manufacturer
a. We must use the break-even equation for evaluating processes:

$$
F-F
$$

$Q=\underline{m b} \quad c b-c m$
$Q=(\$ 6$ million $-\$ 4$ million $) /(\$ 8.00-\$ 5.00)=666667$ solenoids. Consequently, the automobile manufacturer would need to use 666667 or more solenoids to make a financial case to retain manufacture of them in-house.
b. If the projection is for less than 666667 solenoids, the use of the subcontractor becomes a possibility. However, in doing so, the manufacturer loses some control over the production of that part. If that part is critical to the end product, relinquishing direct oversight may not be a good idea. The ability of the subcontractor to deliver on time and with high quality are also factors to consider. Also, once out of the manufacturing of that part, it typically will take quite a while to start it back up again, raising issues of labor skills and equipment. Ethical issues, such as the potential layoffs and the effect on the community, should also be considered.
7. BlueFin Bank

We use the break-even equation for evaluating two processes:

$$
\begin{gathered}
F-F \\
Q=\begin{array}{c}
m \\
c b-c m
\end{array}
\end{gathered}
$$

The key is to solve for the fixed costs of the "make" option,

$$
F m=F b+(c b-c m) Q
$$

$F m=\$ 12$ million $+0.02(20$ million $)=\$ 12400000$. Consequently, if the fixed annual costs to do the transactions in-house exceed, $\$ 12400000$, BlueFin would be better off using DataEase.

8. Bennet Company

a. Each supplier's performance can be calculated as:

1. Price $0.20 .6(0.2)=0.12 \quad 0.5(0.2)=0.10 \quad 0.9(0.2)=0.18$
2. Quality $0.2 \quad 0.6(0.2)=0.12 \quad 0.4(0.2)=0.08 \quad 0.8(0.2)=0.16$
3. Delivery $0.3 \quad 0.6(0.3)=0.18 \quad 0.3(0.3)=0.09 \quad 0.8(0.3)=0.24$
4. Production facilities
\& capacity $\quad 0.1 \quad 0.5(0.1)=0.05 \quad 0.9(0.1)=0.09 \quad 0.6(0.1)=0.06$
5. Environmental protection $0.10 .7(0.1)=0.07 \quad 0.8(0.1)=0.08 \quad 0.6(0.1)=0.06$
6. Financial position $0.1 \quad 0.9(0.1)=0.09 \quad 0.9(0.1)=\begin{array}{lll}\quad & 0.7(0.1)= & \underline{0.07} \\ 0.77 & 0.09\end{array}$

Total weighted score 0.63

b. Suppliers A and C survived the hurdle. Supplier A would receive 45% of the orders and Supplier C would receive 55% of the orders.
c. Ben's system provides some assurance that orders are placed with qualified suppliers. The orders are divided between two suppliers, so there is a ready alternative if a strike, fire, or other problem prevents one supplier from performing. The system also rewards suppliers with more orders if they improve performance.
9. Beagle Clothiers. The weights for the four criteria-price, quality, delivery, and flexibility - should be $0.2,0.2,0.2$, and 0.4 , respectively. The weighted scores are:

Price		Suppl	$\begin{aligned} & \text { Supplier } \\ & \text { C } \end{aligned}$
	Supplier A $8 \times 0.2=\overline{1.6}$	B	

Quality	$9 \times 0.2=1.8$		$\begin{aligned} & 7 \times 0.2= \\ & 1.4 \end{aligned}$	$\begin{aligned} & 7 \times 0.2= \\ & 1.4 \end{aligned}$
Delivery	$7 \times 0.2=1.4$		$\begin{aligned} & 9 \times 0.2= \\ & 1.8 \end{aligned}$	$\begin{aligned} & 6 \times 0.2= \\ & 1.2 \end{aligned}$
Flexibility	$5 \times 0.4=\underline{2.0}$		$\begin{aligned} & 8 \times 0.4= \\ & \underline{3.2} \end{aligned}$	$\begin{aligned} & 9 \times 0.4= \\ & \underline{3.6} \end{aligned}$
Total weighted		6.8	7.6	

Supplier B should be selected.

DISCUSSION QUESTIONS

1. Wal-Mart's approach is to generate a competitive situation between suppliers and to drive down prices. One of the major competitive priorities in Wal-Mart's business is low cost, thereby keeping retail prices to a minimum. Wal-Mart is dealing with standardized goods in high volumes, and consequently uses an efficient supply chain.

Benetton deals with fashion goods that have shorter life cycles. Therefore, Benetton needs a more flexible supply chain and also more control over the supply channels. In-house manufacturing operations combined with rapid response suppliers provides the capability to produce fashion goods quickly.
2. Many of the key suppliers for Autoshare are service-based, including information technology that track cars, property management firms that own the parking lots, auto mechanics for preventive maintenance and repairs, and suppliers of fuel. Of course, automobile manufacturers are critical suppliers to provide new vehicles to replace older cars, ideally with a more fuel efficient design. In contrast, Boeing has a network of very sophisticated suppliers that manufacture parts and subsystems, in addition to its own plant network.

Autoshare is working with partners to expand the number of locations to expand customer service and the value of membership. Thus, its primary focus is on downstream linkages with property owners to increase access. In parallel, AutoShare's service suppliers also need to expand their ability to serve a growing number of locations. In contrast, Boeing is working to develop upstream linkages with its suppliers-to the point where much the of the technology development work is their responsibility. As an aircraft designer and integrator, web-based technologies can improve collaboration during design, the speed of information exchange, and scheduling once production begins. This is particularly important as the extent of design and manufacturing work by suppliers continues to expand.

AutoShare is heavily using the web to interact with customers and track usage. In addition, web-based data exchange also might be used to schedule maintenance and other background services. Similar to AutoShare, Boeing could include customers in the webbased system, once a new aircraft is launched into production. Here, customized options or changes could be readily captured into scheduling, and customers could monitor their orders as they move through the system. The web may also facilitate the more timely collection of operating performance data for its aircraft in service. Thus, the web can offer a new option for Boeing to develop closer relationships with its customers.

CASE: WOLF MOTORS *

A. Synopsis

Wolf Motors has just expanded its network of auto dealerships to include its first auto supermarket where three different makes of cars are sold at the same facility. John Wolf, the president and owner of the dealership, has identified three factors that have contributed to the success of the dealerships: volume, "one price-lowest price" concept of pricing, and afterthesale service to the cars sold. Focusing on the service aspect, three components are critical to providing quality after-the-sale service: well-trained technicians, the latest equipment technologies, and an adequate supply of service parts and materials. Presently each dealership is responsible for ordering and managing its inventory of parts and service materials. The recent growth has brought with it both space and financial resource constraints. John is now wondering what, if anything, can be done with respect to the purchasing of service parts and materials that would help address some of these concerns.

B. Purpose

This case provides students with the opportunity to investigate the purchasing function of an organization in the service sector. Students begin to see that the effective management of materials is not only essential in manufacturing environments but is also critical in supporting the delivery of quality services.

Students are confronted by a number of issues as they are asked to recommend a suitable structure for the purchasing function. Included among them are the following:

1. Given the growth in the number of dealerships in the network, should the purchasing function be centralized to take advantage of certain economics of scale, or should it remain decentralized in each separate dealership?
2. Given the different categories of service parts that are purchased, supplier management issues are raised. Some parts may be more appropriately purchased through single-source contracting, whereas others may be competitively bid on by multiple suppliers. Bid awards don't necessarily have to be awarded on the basis of low cost alone. Also some items may be grouped and purchased from the same supplier using blanket orders.
3. Limited space for inventory storage and limited investment dollars complicate the issues. Fast, reliable service in repairing and servicing cars is a key factor in the success of the dealership, but space and dollars limit service part availability to some extent.
4. Finally, students have the opportunity to bring into play basic inventory management concepts such as an ABC analysis to help determine appropriate levels of inventory investment and inventory stocking policies. This case can also be used as a lead-in to Chapter 10, Inventory Management.

This case was prepared by Dr. Brooke Saladin, Wake Forest University, as a basis for classroom discussion.

C. Analysis

The analysis of this case can be accomplished in three logical steps. Students should first address the issue of restructuring the purchasing function. Then the inherent policies and procedures to carry out the purchasing processes can be addressed, followed by an analysis of specific inventory management issues that help lead into Chapter 10, Inventory Management.

Major factors to consider in addressing these steps include:
\square Presently each individual dealership handles its own purchase and management of service parts and materials.

- The new dealership is an auto supermarket with three different makes of cars sold at the same location. The purchase of this dealership has led to a tightening of financial resources. Having three different makes of cars to service has also created a space constraint in stocking service parts.
- Wolf Motors is trying to reduce the total operating costs in order to compete effectively in a very price competitive market with its "one price-lowest price" strategy, while at the same time it needs to maintain a high level of service. High service levels have traditionally been linked to high levels of inventory of spare parts.
- There is a need to maintain timely delivery of service parts due to the limited space available.
- There are various categories of parts and materials. One key distinction is that some parts are available only from the auto manufacturer or its certified dealer/wholesaler. Other parts and materials (i.e., oil, lubricants, fan belts, and so on) are more generic and can be
purchased from a number of sources, including local vendors.
- Parts are not only used to service and repair cars but are also sold over-the-counter to the do-it-yourself mechanic or other repair garages. Therefore, the overall levels of demand and supporting inventory must be coordinated among service needs, sales, and special promotions such as free brake inspections or discounts on oil changes and air-conditioner service. Weather also plays a role in the demand for parts: extreme cold affects the electrical/ignition systems, heat affects the air-conditioning, and rain affects the wipers.

1. Structural Issues: Students should first address the structural issues that face Wolf Motors pertaining to the purchase of parts and materials. These issues include two categories of decisions: (1) centralized purchasing versus continuing a decentralized model of letting each dealership purchase and manage its own inventories and (2) the responsibility relationships purchasing should maintain with inventory management and control, to include the distribution of parts for service and over-the-counter sales.

Although there is some advantage to be gained by maintaining a decentralized, local purchasing function, it appears that Wolf Motors has grown to the point where a more formal central purchasing function is warranted. Wolf's size should give it some economy of scale leverage to help maintain low costs and timely deliveries.

Within the purchasing function, personnel could be assigned specific responsibilities or vendors such as:

Specific auto manufacturers or their certified distributors
\square Wholesale distributors of generic parts such as alternators, carburetors, or brake pads

- Wholesale distributors of consumable materials such as oils, lubricants, or filters

The second structural issue pertains to the level of integration that needs to be structured and maintained between purchasing, inventory stocking and control, and parts distribution. Should these be separate functions that "hand off" the responsibility for materials as they flow through the system, or should an integrated supply chain be implemented? The issue is one of being able to balance the purchasing costs, inventory carrying costs, distribution/logistics costs, and target service levels.
2. Policies and Procedures: After the structural issues have been discussed, students should consider alternative purchasing options that are available for procuring parts. Given that the parts and materials being purchased differ quite a bit with respect to availability, usage, costs, and delivery lead time, the policies and procedures used to order various parts may be different. Alternative policies that may be used include:

- Competitive bidding
- Single-source contracting
- Blanket orders
- Open-ended orders

Of course, these approaches are not mutually exclusive and may be combined for
certain categories of parts. Students should discuss how each of these alternatives may be used for different groups of parts and materials. Going out for competitive bids would be most appropriate for "commodity" type items that are readily available from a number of vendors. Given that other aspects of the service, such as reliability and dependability, are comparable, then a competitive bid will help reduce purchase costs. Where the quality of the parts and/or service provided differs, then a single-source contract may be warranted. This should lead to a partnership arrangement that is beneficial to both parties.

Blanket orders are used when a number of parts are to be purchased from a single supplier. Blanket orders help reduce the overall ordering and distribution costs by grouping items under a single order. This may be an appropriate procedure for purchasing oils and lubricants from a local supplier or for ordering "factory certified" parts from a manufacturer or its designated distributor.

Open-ended orders provide flexibility in allowing items to be added or deleted from an order or for the time period of the order to be extended, such as in a blanket order of oil. Through this discussion students will begin to see that all items should not be ordered by the same procedure. Factors such as the item's availability, relative importance, usage levels, and costs will have a significant impact on the way the item should be procured. This has implications also in determining how the purchasing function's performance should be measured and evaluated. Just getting the lowest price is no longer good enough. Other measures of performance, such as product quality, reliable on-time delivery, and
ordering flexibility with respect to the size and timing of the order, may be more important than price. This is an important lesson the students should understand.
3. Inventory Management Issues: The financial resource and space constraint issues brought out in the case provide the opportunity to discuss the close relationship and necessary integration that purchasing must have with inventory management. Suggested inventory management policies that can be discussed include the three important factors in making inventory stocking-level decisions. These include costs, delivery lead time, and space required/available. Students should see that each of these factors can be used to prioritize the different parts and materials to be inventoried.
\square You can discuss the different costs incurred in ordering and carrying inventory to set students up for the trade-offs to be discussed in the Inventory Management chapter.

- You can bring out the issue of total investment in inventory over time to open the door for a discussion of the ABC analysis in the Inventory Management chapter. \square There is the issue of where to stock different parts in the storeroom or warehouse. Frequently used material should be stored in easily accessed locations, and a random
location system will minimize space requirements.
- You could also introduce how inventories can be categorized, such as building anticipation stocks for promotions and seasonal use.
- Finally, perhaps implementing an effective EDI link between locations and suppliers would reduce delivery lead time.
The amount of time and depth of analysis pertaining to the discussion of inventory management issues will depend on how you wish to lead into the chapter on inventory management. You should at least make sure the students see the necessary integration between purchasing and inventory management policies.

D. Recommendations

How the case is used will determine the level of detail you should expect with respect to any recommendations students may make. When used as an in-class exercise without any prior preparation by the students, the focus of the case should be on discussing the issues and recognizing the trade-offs that need to be made in the decisions. If given more time to read and analyze the case, typical recommendations to expect include: 1 .
Some form of centralization of the purchasing function
2. Development of partnership agreements for "key" parts that perhaps may lead to single sourcing
3. The use of blanket orders to reduce ordering costs and to limit the number of suppliers
4. Open-ended ordering agreements, especially in the "commodity" type materials that can be sourced locally to reduce lead times and minimize inventory investment
5. Perhaps the establishment of a central warehouse facility to reduce overall space requirements while maintaining parts availability in a timely manner
6. Conducting an analysis of inventory cost trade-offs to minimize total costs of inventory
policies

E. Teaching Suggestions

This case can be used as either an in-class "cold-call" exercise or an overnight reading and analysis exercise. In either case the class discussion flows well when the instructor follows the order of the discussion questions at the end of the case. The level of detail necessary to make this a good decision case is not present. The case was designed to act as a vehicle to introduce the issues that pertain to purchasing and to show students that the issues are similar
in both services and manufacturing. Therefore, it is best to begin the discussion by first focusing on how the purchasing function should be organized. Then focus the students on specific policies and procedures that Wolf may implement for different categories of parts.
Finally, if time permits, you can begin to introduce some inventory management issues and show how the inventory function interacts with purchasing.

CASE: BRUNSWICK DISTRIBUTORS

There are two options that need to be considered in the analysis of Brunswick Distribution, Inc. (BDI). The accompanying spreadsheet program, Brunswick Financial Analyzer, can be used to explore various areas where operations can help firms to become more profitable. The program can take any data as a starting point and show how various changes (or shocks) to the status quo will affect the financial measures. It uses the well-known DuPont analysis as a basis for its calculations.

This Instructor's Manual contains full financial statements to accompany the Dupont analysis using the spreadsheet program. The student should use the Financial Analyzer spreadsheet to do a DuPont analysis for Brunswick.

A summary of the conclusions from the analysis of the two options posed in the case
follow. Option 1: Invest in new warehouse facilities

- Inventory turnover improves marginally with this option. (See the DuPont analysis ratios).
- Net income goes up but not enough to make the new investment attractive.
- Declining returns \Rightarrow The DuPont analysis indicates worsening ratios if this option is adopted. (See the DuPont analysis ratios).
- The investment would put Brunswick in a precarious debt to equity situation.

Option 2: Streamlining the order fulfillment system.

- The basic system results in lower profits than the status quo and poor financial ratios. It is clearly not the better of the two alternatives in this option. This alternative can be discarded in favor of the fully integrated alternative.
- In this case of the fully integrated system, the DuPont analysis shows improving results in all the ratios with the exception of the sales to total assets ratio.
- Operational measures are mixed. Note that the inventory turns measure actually go down. While inventory valuation goes down (because of the reductions in direct labor costs), the cost of good sold goes down further (because of reductions in shipping costs as well). This points out the weakness in the inventory turns measure when looking at an aggregate inventory. Operationally, it is better to " measure each item's inventory in terms of physical "units" and its demands also in "units." The problem, of course, is getting to an aggregate measure of inventory turns because of the conflicts in units of measure.
- The cash cycle has deteriorated largely because of the decrease in accounts payable. Brunswick needs to work on getting it's A/R days and inventories down.
- The fully integrated option increases the leverage ratios but not as substantially as in Option 1.

Chain Management

- Another reason why Option 2 is the better than Option 1 is its impact on the stock market performance measures.

While Option 2 - fully integrated system - dominates Option 1, it does not improve the inventory problems at Brunswick. "Inventory days" goes up and "inventory turns" go down. Brunswick may decide to take Option 2 for other reasons. This option may improve customer service and drive increases in customer demands in the future. The analysis of these two options shows the tradeoff in attempting to build market share (Option 1) and becoming more efficient (Option 2). It should be pointed out to the students that the Dupont analysis is a short-term analysis. It is debatable which of the two options may have more long-term benefits.

Educational objectives

- To critically examine the inter-related activities of marketing, finance and operations.
- To study how seemingly small changes in various aspects of the business affect return on equity and financial measures.
- To emphasize that operational changes that affect the cost of goods sold (such as direct materials costs or labor costs) can have an effect on the firm's inventory measures because of the way inventory is valued, even if the actual stock of inventory remains unchanged.

DISCUSSION

Option 1

Income statement

- This option increases annual revenue by $\$ 3.6$ million.
- This option would increase costs by a total of $\$ 1,717,000$, split up between shipping ($\$ 955$ thousand), direct material (\$358 thousand), and direct labor cost (\$404 thousand).
- Annual depreciation works out to be $\$ 500,000$, which is computed as straight-line depreciation of the $\$ 10$ million investment for 20 years. ($\$ 10$ million/20)
- Annual interest is computed at the rate of $11 \% .(11 \% * \$ 12$ million $=\$ 1,320,000)$

Balance sheet

- $\$ 1.5$ million in accounts receivable.
- $\$ 10$ million investment in plant and equipment.
- $\$ 2$ million in property.
- The Financial Analyzer assumes that the new level of inventory investment is equal to the old level, plus direct changes (plus or minus) in the shock column, plus one-half the total
of the changes to the direct materials on the Income Statement (plus or minus) and the changes to the direct labor on the Income Statement (plus or minus). The Financial Analyzer will automatically do this computation, given the inputs on the Income Statement and the direct inventory shock. Here we have assumed that direct materials changes and the labor changes take place gradually over the course of the year so that the average level is one half of the total.
- On the liability side accounts payable is increased by the amount of the interest from the new loan, adjusted downward for savings in materials and labor, and adjusted for any net changes in taxes. Once the annual interest is entered in the "shock" column, the Financial Analyzer does the computation for you.
- The entire $\$ 12$ million is assumed to be a long-term loan agreement.

See the complete spreadsheet analysis for Option 1.

Option 2

This option would contribute 16% in direct cost savings for the fully integrated system which is computed as $16 \% *$ Cost of sales $(16 \% * \$ 21,620,000)$. This works out to be $\$ 3,460,000$ in annual savings split up equally for direct material and direct labor cost $-(\$ 1,730,000)$.

Income Statement

- Annual depreciation works out to be $\$ 1,600,000$, which is computed as straight-line depreciation of the $\$ 8$ million investment for five years. ($\$ 8 \mathrm{M} / 5$)
- Annual interest is computed at the rate of $10 \% .10 \% * \$ 8$ million $=\$ 800,000$.

Balance Sheet

- $\$ 8$ million investment in plant and equipment.
- On the liability side, accounts payable is computed as being made up of direct material costs net of savings and the additional amount payable on the higher taxes resulting from the savings.
- The entire $\$ 8$ million is assumed to be a long-term loan agreement.

See the complete spreadsheet analysis for the two alternatives of Option 2.

Chain Management

Other Issues to Discuss

One of the biggest issues facing BDI is the predictability of sales. Since orders do not come in from retailers in a timely fashion, considerable emphasis is placed on forecasting sales for manufacturers. This forecasting is largely historical and therefore does not reflect the changes that have occurred over the past two years. In order to better determine levels of safety stock, a better integration of the supply chain is required. Getting the end customer involved by showcasing the product in a kitchen-like setting and acquiring forward -looking information from the end user might help Brunswick in determining demand. Perhaps a better approach, however, is to implement vendor managed inventory programs with retailers and using their forecasts of sales in various product lines. This could somewhat alleviate the delayed ordering from the retailer and allow more accurate 60/90/120 ordering to the manufacturer.

With the additional business, and the extra product lines, BDI has acquired some deadweight. The company already supplies the majority of high-end appliances and the new lines have cut in to the profit margins that the company has historically observed. Other financial concerns, such as the poor cash cycle, can be looked at in one of two ways: either bring accounts receivable and accounts payables closer in line by delaying payables whenever possible and placing tighter controls on receivables, or, increase liquidity by obtaining a larger operating loan.

TN1. Invest in New Warehouse Facilities

Operating Expenses
Selling Expenses Fixed Expenses
Depreciation Total

Earnings Before Interest and Taxes

Interest Expense

Earnings Before Taxes

Taxes @ 40\%

Net Income

Dividends

Contribution to Retained Earnings

\# of Shares Outstanding Stock Price as of 1/31/1997

TN1 (continued)
Balance Sheet

AssetsCurrent AssetsInventory \quad Total Inventory	Without Shock			With Shock			Without Shock		Shock \$1,320	With Shock	
	\$6,789	\$6,789	Shock	\$7,170	\$7,170	Current Liabilities Accounts Payable Short-term Liabilities Notes Payable Short-term Debt Total STL	$\$ 1,282$ $\$ 1,099$ $\$ 4,159$	\$6,540		$\$ 3,389$$\$ 0$$\$ 1,099$$\$ 4,159$	
		\$16,996		$\begin{aligned} & \$ 3,223 \\ & \$ 7,103 \\ & \$ 1,381 \end{aligned}$	\$18,877						8647.2
Cash Accounts Receivable	$\begin{aligned} & \$ 3,223 \\ & \$ 5,603 \end{aligned}$		\$1,500			Long-term Liabilities Long-term Loans Bonds Other Liabilities Total LTL					
Other Current Assets	\$1,381						\$7,523		\$12,000	\$19,523	
Total CA										$\begin{aligned} & \$ 0 \\ & \$ 0 \end{aligned}$	
								\$7,523			\$19,523
Long-term Assets											
Property Plant and Equipment, net	$\begin{aligned} & \$ 3,179 \\ & \$ 8,995 \end{aligned}$		$\begin{array}{r} \$ 2,000 \\ \$ 10,000 \end{array}$	$\begin{array}{r} \$ 5,179 \\ \$ 18,995 \end{array}$		Total Debt		\$14,063			\$28,170
Long-term Investments Total LTA	\$1,000	\$13,174		\$1,000	\$25,174	Equity Common Stock	\$1,750			\$1,750 \$0	
						Paid-in-excess	\$428			\$428	
Total Assets		\$30,170			\$44,051	Retained Earnings	\$13,929			\$13,703	
						Total Equity		\$16,107			\$15,881
						Total Debt \& Equity		\$30,170			\$44,051

TN1 (continued)

DuPont Analysis	Without Shock	With Sho	Change
ROE	3.7\%	3.9\%	UP = Net Income / Equity
ROA	3.2\%	2.4\%	DOWN = EBIT / Total Assets

NPM	1.8%	$\mathbf{1 . 7 \%}$	DOWN $=$ Net Income / Sales
TATO	109.6%	$\mathbf{8 3 . 3 \%}$	DOWN = Sales / Total Assets

Current ratio	2.60	$\mathbf{2 . 1 8}$	DOWN	$=$ Current Assets / Current Operating Liabilities
Inventory Turns	3.2	$\mathbf{3 . 3}$	UP	$=$ COGS / Inventory
WC to Sales	31.6%	$\mathbf{2 7 . 9 \%}$	DOWN	$=$ Operating WC / Sales
Fixed Asset Turnover	111.8%	$\mathbf{1 0 3 . 6 \%}$	DOWN	$=$ Net Property, Plant, Equipment / COGS

A/R Days	61.8	55.8	DOWN	= Accounts Rec. / (Sales / 365) = \# of days to collect credit charges
A/P Days	78.5	195.7	UP	= Accounts Pay. / (Direct Materials / 365)
Inventory Days	114.6	112.1	DOWN	= Inventory / (COGS / 365)
Cash Cycle	98.0	(27.8)	DOWN	= A/R Days - A/P Days + Inventory Days

Operational Measures

Liquidity

Many of the financial and performance ratios degrade relative to the current status. Troubling, however is the debt-equity increase to 177.4%. This is an unreasonably high leverage and may pose difficulties for Brunswick to obtain financing. Inventory turns essentialy do not improve,

CHAPTER TWO

TN2. Streamlining the Order Fulfillment System - Basic

Cost of Goods Sold

Shipping costs
Direct materials
Direct Labor \& other Total
Gross Profit

Operating Expenses

Selling Expenses
Fixed Expenses
Depreciation
Total

Earnings Before Interest and Taxes

Interest Expense

Earnings Before Taxes
Taxes @ 40\%

Net Income

Dividends

Contribution to Retained Earnings
\# of Shares Outstanding Stock Price as of 1/31/1997

TN2 (continued)

TN2 (continued)

DuPont Analysis	Without Shock	With Sho	Change
ROE	3.7\%	2.4\%	DOWN = Net Income / Equity
ROA	3.2\%	1.9\%	DOWN = EBIT / Total Assets
NPM	1.8\%	1.2\%	DOWN = Net Income / Sales
TATO	109.6\%	94.7\%	DOWN = Sales / Total Assets

Current ratio	2.60	$\mathbf{2 . 8 1}$	UP	$=$ Current Assets / Current Operating Liabilities
Inventory Turns	3.2	$\mathbf{3 . 1}$	DOWN	$=$ COGS / Inventory
WC to Sales	31.6%	$\mathbf{3 2 . 0 \%}$	UP	$=$ Operating WC / Sales
Fixed Asset Turnover	80.8%	$\mathbf{8 9 . 8 \%}$	UP	$=$ Net Property, Plant, Equipment / COGS

A/R Days A/P	61.8			= Accounts Rec. / (Sales / 365) = \# of days to collect credit charges
Days	78.5	36.7	DOWN	= Accounts Pay. / (Direct Materials / 365)
Inventory Days	114.6	117.2	UP	= Inventory / (COGS / 365)
Cash Cycle	98.0	142.3	UP	= A/R Days - A/P Days + Inventory Days

Operational Measures

Liquidity

Financial Performance			
Debt- Asset Ratio	46.6\%	53.5\%	UP = Debt / Total Assets
Debt-Equity Ratio	87.3\%	115.0\%	UP = Debt / Equity Times
Interest Earned	2.55	1.56 DOWN	N = EBIT / Interest Gross
Profit Margin	34.6\%	41.2\% UP	= Gross Profit / Sales
Materials \%	18.0\%		$=$ Direct Materials / COGS
Labor \%	20.3\%	17.1\% D	DOWN = Direct Labor / COGS

Stock Market Performance

EPS			
Earnings / Price	0.68	$\mathbf{1 . 1 2}$	DOWN = Earnings / \# of shares outstanding
Market Value/ Book V	0.11	$\mathbf{0 . 2 2}$	DOWN = EPS / Market Price

The basic level option results in less profit per year and worsening financial ratios. Average inventories increase and inventory turns decrease.

TN3. Streamlining the Order Fulfillment System - Full System

Inc. Stmt.

Revenue

Cost of Goods Sold

Shipping costs
Direct materials
Direct Labor \& other Total
Gross Profit

Operating Expenses
Selling Expenses
Fixed Expenses
Depreciation
Total

Earnings Before Interest and Taxes

Interest Expense

Earnings Before Taxes

TN3 (continued)
Balance Sheet

TN3 (continued)

Current ratio Inventory Turns WC to Sales Fixed Asset Turnover	$\begin{gathered} \hline 2.60 \\ 3.2 \\ 31.6 \% \\ 93.3 \% \end{gathered}$	2.82 3.1 31.5% 111.1%	$\begin{gathered} \text { UP } \\ \text { DOWN } \\ \text { DOWN } \\ \text { UP } \end{gathered}$	$\begin{aligned} & \text { = Current Assets / Current Operating Liabilities } \\ & =\text { COGS / Inventory } \\ & =\text { Operating WC / Sales } \\ & =\text { Net Property, Plant, Equipment / COGS } \end{aligned}$
A/R Days	61.8			= Accounts Rec. $/$ (Sales / 365) = \# of days to collect credit charges
A/P Days Inventory Days Cash Cycle	$\begin{gathered} 78.5 \\ 114.6 \\ 98.0 \end{gathered}$	27.9 119.1 153.0	$\begin{gathered} \text { DOWN } \\ \text { UP } \\ \text { UP } \end{gathered}$	= Accounts Pay. / (Direct Materials / 365) = Inventory / (COGS / 365) = A/R Days - A/P Days + Inventory Days

Financial Performance			
Debt- Asset Ratio	46.6\%	56.9\%	UP = Debt / Total Assets
Debt-Equity Ratio	87.3\%	132.2\%	UP = Debt / Equity Times
Interest Earned	2.55	1.87 DOWN	= EBIT / Interest Gross
Profit Margin	34.6\%	45.1\% UP	= Gross Profit / Sales
Materials \%	18.0\%		$=$ Direct Materials / COGS
Labor \%	20.3\%	15.1\%	DOWN = Direct Labor / COGS
Stock Market Pertormance			
EPS	1.68	2.13	UP = Earnings / \# of shares outstanding
Earnings / Price	0.34	0.43	UP = EPS / Market Price
Market Value/ Book V	0.11	0.11	UP = Market Value / Book Value of Equity

The fully integrated option dominates the basic option as well as Option 1. The financial ratios are beter, however none of the options addresses the issue of inventory turns. Brunswick may decide on Option 2: Full Implementation for otjher reasons, primarily customer service that may pay off in more customers in the future.

EXPERIENTIAL EXERCISE: SONIC DISTRIBUTORS

A. Synopsis

The purpose of this exercise is to provide a situation in which students can observe how supplychain management affects the efficiency and effectiveness of a distribution network.
It is designed to be quite flexible. In its simplest form it can be a "quick hit" to give the students an initial exposure to supply chains and thus set them up for a more productive lecture and discussion of the chapter. Alternatively complexity can be added so the efficient and the responsive distribution chains can be compared or more freedom can be allowed making it an analytical simulation to observe and measure the effects of changes to the system. In this last format, students can configure the supply chain for efficiency or responsiveness (or anywhere in between) and then operate it while measuring its supply chain performance.

Many lessons can be brought out from a discussion of the results of this exercise. It demonstrates the complexities of managing an enterprise where there are multiple parties and information requirements involved. It brings forth the trade-offs that must be made when conflicting goals exist with different costs or benefits. It shows the cost implications of managerial decisions such as establishing safety stock policies and setting production lot sizes. And, it shows the role of time delay on the overall system performance.

The results of this exercise can also lead to further discussions: The distribution of demand for the distribution centers (and thus for the factory) depends not only on the nature of the demand at the retail stores but also on the ordering policies of the retailer and the distribution center. This can lead to a discussion of dependent demand, which sets the stage for the next chapter's material. As a tie-in to applied statistics, the smoothing effect of grouping several independent demands, and perhaps, even the central limit theorem can be teased out of the results. An outline of some of the topics from Chapter 8 that spring from this exercise can be found at the end of this teaching note.

B. Preparation Materials

\square Retail and Distributor Purchase Order Forms (one set for each retail store and one set for each of the two distribution centers). A set is made up of one form for each simulated day the game is to be played.

- Manufacturing Work Order Sheet (one set for the factory). The set for the factory contains as many forms as the proposed length of the simulation times the number of distributors it serves.
- Factory and Distributor Material Delivery Forms (one set for the factory and one set for each distribution center that the factory supplies). The size of the set for a distributor is the proposed number of days times the number of retail stores each is to serve.
- Inventory Position Worksheets (one for each retail store, each distribution center, and the factory)
- A random demand generator such as a pair of dice, a deck of playing cards for each team (with all face cards removed) or slips of paper with the numbers 1 to 10 written on them, random number table, a simple computer program, etc.

Preparation Time Required

Instructor: It will take a couple of hours to read through the material and fully understand the procedure that the students will enact. It is suggested that the instructor personally play several rounds before presenting it in class to the students. The instructor should play the part of all participants (retail stores, distribution centers, and the factory) to best grasp each student's role. Although it appears complex at first, the procedure is fairly simple.

Preclass preparation consists of devising the random demand generators, one for each company (team). If only one type of CD is to be produced (Quick-Hit version), a pair of dice works well (one pair for each retail store is best but a pair can be shared by the stores in a team). If the demonstration is to include all four types of CD demands, an easy demand generator is a shuffled deck of playing cards with all the face cards and jokers removed.

Inventory position and cost calculation worksheets need to be photocopied, one for each retail outlet, distributor, and factory. Likewise, sets of Retail Store and Distribution Center Purchase Order Forms, Factory Work Order Forms, and Factory and Distribution Center Material Delivery Forms need to be photocopied.

Students: Prereading the exercise is suggested; it reduces the startup time. It should take the students only 15 minutes or so to read and understand the instructions. Indicate to the students how the exercise will be run (the "Quick Hit" version in the text or the "Efficient versus Responsive Comparison" or the "Analytical Simulation" versions in this teaching note).

Class Time Required

As with any business simulation, there is a trade-off between realism and feasibility. More detail can yield a more realistic estimate of what true distribution chain costs are. This realism comes at the cost of more effort on the part of the student to perform the exercise. It also can cause more confusion when trying to explain the rationale behind each cost and how to account for it when calculating total cost. Therefore, three versions of the exercise are suggested to allow whatever level of realism the instructor chooses; other configurations are easily devised, depending on the objectives the instructor.

In its simplest form, the "Quick Hit" version can take as little as 45 minutes to run. This has enough detail for the students to observe the dynamics of a supply chain. The "Efficient versus Responsive Comparison" version takes about 75 minutes. The "Analytical Simulation" version generates the most realistic total costs and allows the students try several configurations. Therefore, it can take two hours or more plus additional time for postexercise debriefing and discussion. This longer configuration works best for a one-night-per-week class or if the debriefing and discussion session can take place during the following class. It could also be given as a multiple session exercise if the goal of the instructor is to cover distribution chain performance in depth.
Setting Up

This exercise works well when two or more companies are formed. In any case, companies should be configured with no fewer than two retail outlets drawing from each of the two distributors. Although this is the minimum, more than two retail outlets to each distributor are
better because they more clearly demonstrate the effect of averaging stochastic demand at the distributors. If teams of less than 14 must be formed, first assign only one person to the retail stores; next assign only one person to the factory; finally, assign only one to each of the distribution centers. Play will progress a little more slowly because the students working alone will have more to do (both undertake the transactions and record them).

CHAPTER TWO

The following parameters need to be established for each team:

1. Starting conditions:

Initial inventory of each of the four artist's CDs at the:
Retail stores-the text suggests 15
Distribution centers-the text suggests 25
Factory-the text suggests 100
Outstanding orders (or backorders-if any) for each of the four CDs at the:
Distribution centers-the text suggests none
Factory-the text suggests none
Note: There will be no backorders at the Retail Stores because any stockout results in a lost sale.
2. Operating considerations:

Demand patterns-will a quantity of only one artist's CD be sold at a given retail store each day (i.e., each retailer will generate only one random number for demand per roundas for the Quick Hit version) or will several artist's CDs be sold (i.e., each retailer will generate several different random numbers to determine demand)?

3. Costs

Transportation costs and holding costs in the inventory pipeline are expressly ignored in the Quick Hit version for simplicity.

Holding cost per unit per day-may be different for each of the stages in the distribution chain. 1 The text suggests:

Retail outlets-\$1.00/day
Distribution center-\$0.50/day
Factory-\$0.25/day
Ordering/setup cost-may be different for each of the stages in the distribution chain.
The text suggests:
Retail outlets- $\$ 20.00$ /order
Distribution center-\$20.00/order
Factory setup-\$50 per order. For other versions with a capacity limited factory, the setup cost does not recur in subsequent days of production until another order is called for.

Stockout cost (may be different for each stage-will be equivalent to the contribution margin of a lost sale for the retail stores) the text suggests $\$ 8.00$ for each CD short in a period.

Expediting cost (for example, shipping an order by UPS instead of normal freight). The
text doesn't suggest a cost for the Quick Hit version.

1
These holding costs differentials are designed to dissuade students from positioning too much forward inventory at the retail outlets. See a discussion of other possibilities in the parameter list for the Efficient vs. Responsive version, later on.

4 . Delays

Ordering delay-time from when a purchase order (PO) is issued until it is received. The text suggests one day.

Delivery delay-time required to assemble, pack, and transport an order once the PO is received. The text suggests one day.

Production time-time from receiving an order until it is ready for shipment (may be determined by factory production lot sizes). The text suggests one day. If the factory is capacity limited, the delivery delay will be as long as it takes to run the entire order. Partial production runs are not shipped.
5. Lot sizing restrictions_may be EOQ, lot-for-lot, minimum order quantity, or fixed lot size:

Retail Store orders_the text indicates there are none.
Distribution Center orders_the text indicates there are none.
Factory production lot sizes and capacity. Also, the factory may be able to produce multiple types simultaneously or be restricted to producing only one type of CD at a time. For the Quick Hit version, the text suggests a minimum lot size of 20 and an upper limit of 200, which is well above any required production. For the Quick Hit version, this large capacity eliminates the complexity needing to extend a production run over several days.
6. Storage capacity restrictions - the text does not mention any for the Quick Hit version.

All of these parameters will be preset by the instructor for the "Quick Hit" and the "Efficient versus Responsive Comparison" versions. The "Analytical Simulation" version allows students to adjust many of the operating considerations by making lot sizing and cost/performance trade-off decisions.

C. Conducting the Exercise

Break the class into teams and have them sit together so that communication among the team members will be convenient. They can be seated in an area of the classroom or around a large table. Let them arrange themselves to establish effective and efficient transmission chains for
the required information (POs and material delivery forms). To include delays in the transmission of POs to suppliers or in the delivery of goods from suppliers, provide a place where the POs and delivery forms can be placed for the required delay periods. If the team is seated at a table, $81 / 2 \times 11$ pieces of paper (one for each source and sink pair) can be fastened on the table and marked as delay stations. If the students are sitting in chairs, an empty chair between the various pairs within the team can serve as a delay station.

Specify the values for the parameters (listed previously) that will be followed for the exercise. Review the sequence of play. If a deck of cards or slips of paper are used to determine demand, specify that at the end of each round (day) the cards or slips that were drawn should be returned to the deck and the deck reshuffled. Go over the items that are to be recorded on the worksheets. Start off with a few practice rounds to be sure each student understands his or her task, how the data are gathered, and how play progresses.

To simplify record keeping, have the students adopt an MRP "midpoint convention" for recording transactions. This assumes all transactions occur simultaneously in the middle of the day-scheduled receipts arrive, demand is determined and met, and any shortages occur, all at noon. Inventory recorded in the inventory position worksheet is the ending inventory after all these transactions occur.

Regardless of the version, for each simulated day the sequence of play goes as follows:

Retailer:

a. Each retailer receives any shipment due in from their distributor (one day after shipment) and places it into sales inventory (adds the quantity indicated on any incoming Material Delivery Form from the distributor-after its one-day delay-to the current inventory level on the Retailer's Inventory Position Worksheet). Note: for the first day of the exercise no order will be coming in.
b. The retailers each determine the day's retail demand (the quantity of CDs requested) by rolling a pair of dice. The roll determines the number demanded.
c. Retailers fill demand from available stock if possible. Demand is filled by subtracting it from the current inventory level indicated on the worksheet. If demand exceeds supply, sales are lost. Record all lost sales on the worksheet.
d. Retailers determine whether an order should be placed. If an order is required, the desired quantity of CDs is written on a Retail Store Purchase Order, which is forwarded to the distributor (who receives it after a one-day delay). If an order is made, it should be noted on the worksheet. Retailers may also desire to keep track of outstanding orders separately.

Distributor:

a. The distributor receives any shipment due in from the factory and places the CDs in available inventory (adds the quantity indicated on any incoming Material Delivery Form from the factory-after its one-day delay-to the current inventory level on the distributor's Inventory Position Worksheet).
b. All outstanding back orders are filled (the quantity is subtracted from the current inventory level indicated on the worksheet) and prepared for shipment. CDs are shipped by filling out a Distribution Center Material Delivery Form indicating the quantity of
CDs to be delivered.
c. The distributor uses the purchase orders received from the retail stores (after the designated one-day delay) to prepare shipments for delivery from available inventory.

Quantities shipped are subtracted from the current inventory level on the worksheet. If insufficient supply exists, back orders are generated.
d. The distributor determines whether a replenishment order should be placed. If an order is required, the quantity of CDs is written on a Distribution Center Purchase Order, which is forwarded to the factory (after a one-day delay). If an order is made, it should be noted on the worksheet. The distributor may also desire to keep track of outstanding orders separately.

Factory:

a. The factory places any available new production into inventory (adds the items produced the previous day to the current inventory level on the Factory Inventory Position Worksheet).
b. All outstanding back orders are filled (the quantity is subtracted from the current inventory level indicated on the worksheet) and prepared for shipment. CDs are shipped by filling out a Factory Material Delivery Form, indicating the quantity of CDs to be delivered.
c. The factory obtains the incoming distributor's purchase orders (after the designated oneday delay) and ships them from stock if it can. These amounts are subtracted from the current values on the inventory worksheet. Any unfilled orders become back orders for the next day.
d. The factory decides whether to issue a work order to produce CDs either to stock or to order. If production is required, a Factory Work Order is issued and the order is noted on the inventory worksheet. Remember that the setup cost is for each production order. It is important to keep careful track of all production in process.

When all parties have completed and recorded their day's transactions, go back to Retailer Step a and repeat. Make the students aware that, once an order is placed, it cannot be changed (unless, of course, you wish to simulate the ability to amend orders).
The exercise must be run long enough in order for the interactions within the system to be revealed. The number of rounds required will depend on the parameters that are selected. In general, if feedback is sluggish (the time between issuing a PO and the receipt of inventory is two or more days), as many as 40 simulated days may be required to see the effects of the system dynamics. If feedback time is short, the number of required rounds may be reduced at the expense of fully developing the dynamic characteristics in the system.

When the exercise is concluded, have each entity (retailer(s), distributor, and the factory) calculate the total cost of operation. For retail stores, find the total of:

1. The cumulative amount of inventory of each type of CD (there will be only one type of CD if the Quick Hit version is run). Add the inventory position numbers in each of the two columns on the worksheet for each type of CD and then multiply the total by the holding cost per CD per day.
2. The total ordering cost. Count the number of times an order was placed and multiply by the ordering cost.
3. The total stockout cost. Add the numbers in each of the two columns on the worksheet for stockouts and multiply the total by the cost per lost sale.

For distribution centers, find the total of:

1. The cumulative amount of inventory of each type of CD (only one type if Quick Hit version). Add the numbers in each of the two columns on the worksheet for each type of CD and then multiply the total by the holding cost per CD per day.
2. The total ordering cost. Count the number of times an order was placed and multiply by the ordering cost.

For the factory, find the total of:

1. The cumulative amount of inventory of each type of CD (only one type if Quick Hit version). Add the numbers in each of the two columns on the worksheet for each type of CD and then multiply the total by the holding cost per CD per day.
2. The total setup cost. Count the number of times a production order was placed and multiply by the setup cost.

Then add up the costs of all the entities. The lower the total cost, the better the team operated the distribution chain.

D. "Quick Hit" Version (the version in the text)

In this version, only one type of CD is produced and there is only one Distribution Center. The team breakout, procedures, costs, and conditions for this version are given in the text. Distribute the materials to each team (the worksheets, order and delivery forms, and the random demand generator). Assuming that they have already read the exercise description and instructions, briefly review the sequence of steps they will follow in each round (simulated day). Remind them of the values they need to use for each of the operating parameters (costs and conditions).

Allow the students to complete a couple of practice rounds so that each person knows his or her task. Then have them reset to the starting conditions (no pipeline inventory and the initial quantities in stock) and begin the exercise. Let them go until most teams have at least 25 rounds completed, more if you have time.

When completed, have them determine the total cost of their operation. Discussion can then begin.

E. Efficient Versus Responsive Comparison

Divide the class into two companies (teams) of 16 to 26 or so, although, if necessary, as few as 7 can form a team:
2 people schedule production at the factory
2 people operate each of the two distribution centers
The remaining pairs of people operate the retail stores

At each of the distribution centers and retail stores, one person determines demand and fills the orders while the other records and graphs inventory levels as play progresses. Both help decide when and how much to order. The goal is to achieve the lowest total operating costs for the entire distribution chain.

In these expanded versions four groups currently have top-10 recordings being sold. They are: Jake Spade and the Diggers, The Heartmenders, Diamonds in the Ruff, and Kulture Klub. Consequently, playing cards make a convenient way of determining demand. When using cards, the daily retail demand for a given group's recording at a given retail outlet is determined by drawing a playing card. The suit determines which group's CDs sold that day and the pip (the number) indicates how many were sold.

Briefly review the sequence of steps they will follow in each round. Then give the students the following parameters for their production:
Starting conditions for both teams:
Initial inventory of each of the four artist's CDs at the:
Retail stores_15 CDs of each artist
Distribution centers_25 CDs of each artist
Factory-50 CDs of each artist

Team 1-Efficient Supply Chain

Costs:
Holding cost per unit per day:2 Retail
outlets: \$1.00/CD/day
Distribution centers: \$0.50/CD/day
Factory: \$0.25/CD/day
Pipeline inventory cost: These costs can be ignored or added in depending on the level of realism desired (because they are linear, they don't affect the best decisions to make, only the total cost that is generated). If you choose to include them, add another column to the inventory position worksheets for the DCs and the factory next to the inventory column. Explain that the DC pays inventory holding costs on open orders (inventory shipped to the retailers but not yet received), and the factory pays inventory costs for open orders sent to the
DCs.
Ordering cost (retailers and distributors): \$20/order for single or mixed types.
Factory setup cost (to run an order): $\$ 50$ (unless the subsequent order is for the same type CD as the preceding order).

Stockout (lost margin) cost for retail stores: $\$ 8$ per CD sale lost in a period.
Back orders: There is no cost for back orders due to shortages from the factory or the distribution centers, although all back orders must be filled first before shipping new orders. Shipping cost: One alternative is to ignore this cost by using the rationale that, as other products are already being distributed through this chain and CDs are light and take up little volume, the cost is essentially zero. If you desire more realism, a per shipment (or per unit) shipping cost can be included.
Expediting cost (for example, shipping an order by UPS instead of normal freight): \$1 per CD.

Outstanding orders:
Retail outlets and distribution centers: no orders.
Existing factory order: 200 Kulture Klub CDs in production, the first 50 to be delivered next period.
Lot sizing restrictions:
Retail store orders-minimum order: 20 of each artist. More may be ordered if desired. Distribution center orders_minimum order: 100 of each artist. More may be ordered if desired.

Factory production lot sizes and capacity: Limited to only one type CD at a time. Produce in lots of 200 at the rate of 50 per day (i.e., an order takes four days to complete but 50 units are available the day after production starts). 3

2
As with the Quick Hit version, these cost differentials are designed to prevent too much forward placement of inventory.

One possibility is to make the costs more equal, but impose Another possibility is to make the lead time from the factory longer than from the DC to the retailers.capacity limits on how much a retailer is willing to hold.

The factory capacities should be adjusted upward if there are more than six retail stores drawing off a single factory's production. Using playing cards, the average demand is 5.5 CDs per store per day. With four retail stores the factory will experience a mean demand of 22 CDs per day, and the peak demand can occasionally approach 40. Having a production capacity of 50/day makes meeting demand without a lot of forward placed inventory a challenge. With more than four retail outlets, the capacity cushion becomes very thin. Six retail outlets give a mean demand of 33 with a peak of 60 . Although the increased number of retail outlets reduces the variability of
Delays
Ordering delay: 1 day transit time for orders between retail stores and distributors and between distributors and the factory. Note: As an alternative, you may wish to allow this "efficient" firm to employ electronic data interchange (EDI) and allow the team to electronically forward orders with no delay. This capability is provided to the other "responsive" firm.

It takes one day to start up production (i.e., a one-day delay) if the factory has not been producing anything the previous day. There is no delay if immediately starting a second order of an existing CD or switching to a new type CD.
Delivery delay: 1-day delivery time between distributors and retail stores and between the factory and the distributors. Team 2-Responsive Supply Chain

Costs:
Holding cost per unit per day (see footnote 2 above):
Retail outlets: $\$ 2.00 / \mathrm{CD} /$ day
Distribution Centers: \$1.00/CD/day
Factory: $\$ 0.50 / \mathrm{CD} /$ day
Pipeline inventory cost: These costs can be ignored or added in depending on the level of realism desired (as they are linear, they don't affect the best decisions to make, only the total cost that is generated). If you choose to include them, add another column to the inventory position worksheets for the DCs and the factory next to the inventory column. Explain that the DC pays inventory holding costs on open orders (inventory shipped to the retailers but not yet received), and the factory pays inventory costs for open orders sent to the DCs.

Ordering cost (retailers and distributors): \$20/order for single or mixed types
Factory setup cost (to run an order): $\$ 25$ (unless the subsequent order is for the same type CD as the preceding order).

Stockout (lost margin) cost_retail store: $\$ 16$ per CD sale lost in a period.
There is no cost for back orders for shortages from the factory or the distribution centers, although all back orders must be filled first before shipping new orders.

Expediting cost (for example, shipping an order by UPS instead of normal freight): $\$.50$ per
CD . (This is suggested to be lower than for the efficient chain using the rationale this
is planned for and, thus, can be contracted at a lower cost.)
Lot sizing restrictions_none: all orders may be made lot-for-lot including factory production lot sizes.

Facto
ry
capac
ity: 50
units/
day,
may
be of
mixed
types
(see
footno
te 3$)$.

Outstanding orders: no orders for retail outlets, distribution centers, or the factory. Delays
Ordering delay: none. Using EDI, orders placed in one period can be acted on the following period. This includes the factory. Furthermore, the factory should be informed about all retail store purchase orders at the time they are made, although they do not ship to the distribution centers until a request for inventory has been issued.

[^0]Delivery delay: orders received are shipped the same day. They are available for use the following day. Note: As an alternative, you may wish to maintain a delivery delay, say, of one day.

Have the two teams run 30 to 40 rounds and then allow the students to compare the performance of the two different types of supply chains using the data gathered on their worksheets. To focus the discussion, suggest to the students that they use Tables 11.2 and 11.3 found in the text as a guide for comparison.

F. "Analytical Simulation" Version

This version allows the students to see how the various distribution chain parameters (see the list under "Setting Up" in Section B) affect performance. It can be run by forming two or more teams, each designing a distribution system by selecting values for their distribution system's parameters based on their understanding of the chapter material. The teams run their various systems simultaneously (like in the "Efficient Versus Responsive Comparison" version). After sufficient periods have been simulated, the teams come together to discuss and compare the effectiveness of their distribution system designs.

Alternatively, it can be run with the class operating as one team. Have them select the way they want to design the distribution system and then run it for a while to establish how well it performs. They can then discuss the results, adjust various parameters, and rerun the exercise to see if performance has been improved. This alternative works best for smaller sized classes.

In either case, the instructor will need to establish values for the various operating costs and set limits over which the other parameters can reasonably range. Other variations can be included as well. For instance, it could be permissible to allow the factory or DCs to position inventory forward (as anticipation inventory) rather than waiting for a purchase order to better synchronize the entire distribution chain. It is also possible to allow for partial shipments to better allocate scarce resources.

G. Debriefing/Discussion

When any of the versions of the game have been completed, there will be an opportunity to discuss many of the topics that are covered in Chapter 11 of the text. Some of the more relevant of these topics are outlined below. Furthermore, any of these topics can become issues to include for investigation when playing the analytical version of the game.

Possible disruptions to model:
External supply chain causes
Volume changes
Product mix changes
Delivery delays
Partial shipments
Internal supply chain causes Production
failure
Product modifications
New products
Promotional demand peaks
Information
Value analysis
Where to stock
Forward placement
Backward placement (Even out variations in demand-inventory pooling. This could be
simulated by developing a bimodal demand generator-include face cards and
have them worth 25 CDs.)
Supply-chain performance measures
Holding costs (Table 11.1)
Aggregate inventory value (the different types of CDs could be valued differently) Week's supply
Inventory turns
Production costs:
Setups
Lot sizes
Material purchases (quantity and supplier lead-time)
Defects-yield (relate to required speed of delivery and length of run)
Transport (shipping) costs
Truckload vs. LTL common carrier vs. UPS
Tardiness costs
Time delay
Lost sales, back orders (measured as percent on-time delivery)

Students can also be shown the imbalance that exists between a flow shop production and a product that needs to be flexible by decreeing that the factory only produce in large, multiday runs.

It may also be instructive to have the students graph their inventory positions over the duration of the exercise to better display the supply chain dynamics. It will become evident that the greater the delays in the delivery of the POs and the shipment of the CDs, the more wild the resulting inventory level excursions.

Some students may wish to write a computer simulation to replicate this exercise. By doing so and then experimenting with the model, they will develop a deeper appreciation for the system dynamics that evolve from adjusting various parameters. Although a simulation is an interesting tool, most students will not gain much by playing with a model created by someone else. The inner workings are not clear enough to develop a full understanding of the interactions that take place. However by participating in the in-class exercise, these interactions become more evident and can be better appreciated.

H. Worksheets

Two sets are provided; one for the single product version ("Quick Hit"), and one for the other two multiple product versions. Duplicate as many of these as needed (see "Materials" section of the instructions).

One thing expressly left out of the worksheets is a column for keeping track of what has been ordered but not yet delivered. This is to allow the students to discover, on their own, the importance of keeping track of outstanding orders so that double ordering does not occur. If you do not wish this to be a self-discovery exercise, you can add a column to the Inventory Position Worksheets for this information to be recorded.

Forms for Single Product (Quick Hit) Version:

RETAIL STORE PURCHASE	
ORDER Ret	filer: Day Sent:

RETAIL STORE PURCHASE	
ORDER Retailer: Day Sent:	Day Rec.:
Quantity:	

RETAIL STORE PURCHASE
ORDER Re ailer: Day Sent: Day
Rec.: Quantity:

RETAIL STORE PURCHASE
ORDER Re ailer: Day Sent: Day
Rec.: Quantity:

RETAIL STORE PURCHASE	
ORDER Retailer: Day Sent:	Day Rec.:
Quantity:	

RETAIL STORE PURCHASE	
ORDER Retailer: Day Sent:	Day Rec.:
Quantity:	

RETAIL STORE PURCHASE
ORDER Re ailer: Day Sent: Day
Rec.: Quantity:

RETAIL STORE PURCHASE
ORDER Re ailer: Day Sent: Day
Rec.: Quantity:

RETAIL STORE PURCHASE
ORDER Re ailer: Day Sent: Day
Rec.: Quantity:

RETAIL STORE PURCHASE
ORDER Re ailer: Day Sent: Day
Rec.: Quantity:

RETAIL STORE PURCHASE	
ORDER Retqiler: Day Sent:	Day Rec.:
Quantity:	

RETAIL STORE PURCHASE	
ORDER Retailer: Day Sent:	Day Rec.:
Quantity:	

RETAIL STORE PURCHASE	
ORDER Retailer: Day Sent:	Day Rec.:
Quantity:	

RETAIL STORE PURCHASE	
ORDER Retailer: Day Sent:	Day Rec.:
Quantity:	

[^1]RETAIL STORE PURCHASE

ORDER Retailer: Day Sent:	Day Rec.:
Quantity:	

ORDER Retailer: Day Sent:	Day Rec.:
Quanti ty:	

RETAIL STORE PURCHASE
ORDER Re ailer: Day Sent: Day
Rec.: Quantity:

RETAIL STORE PURCHASE
ORDER Re ailer: Day Sent: Day
Rec.: Quantity:

Forms for Single Product (Quick Hit) Version:

DISTRIBUTION CENTER P. $\mathbf{0 .}$	
Day Sent:	Day Rec'd.:
Quantity:	

DISTRIBUTION CENTER P. $\mathbf{0 .}$	
Day Sent:	Day Rec'd.:
Quantity:	

DISTRIBUTION CENTER P. $\mathbf{0 .}$	
Day Sent:	Day Rec'd.:
Quantity:	

DISTRIBUTION CENTER P. $\mathbf{0 .}$	
Day Sent:	Day Rec'd.:
Quantity:	

DISTRIBUTION CENTER P. $\mathbf{0 .}$	
Day Sent:	Day Rec'd.:
Quantity:	

DISTRIBUTION CENTER P. $\mathbf{0}$	
Day Sent:	Day Rec'd.:
Quantity:	

DISTRIBUTION CENTER P. $\mathbf{0 .}$	
Day Sent:	Day Rec'd.:
Quantity:	

DISTRIBUTION CENTER P. $\mathbf{0 .}$	
Day Sent:	Day Rec'd.:
Quantity:	

DISTRIBUTION CENTER P. $\mathbf{0 .}$	
Day Sent:	Day Rec'd.:
Quantity:	

DISTRIBUTION CENTER P. $\mathbf{0 .}$	
Day Sent:	Day Rec'd.:
Quantity:	
DISTRIBUTION CENTER P. $\mathbf{0}$.	
Day Sent:	Day Rec'd.:
Quantity:	

Forms for Single Product (Quick Hit) Version:

DISTRIBUTION CENTER P. $\mathbf{0}$	
Day Sent:	Day Rec'd.:

Quantity:

DISTRIBUTION CENTER P. $\mathbf{0}$	
Day Sent:	Day Rec'd.:

DISTRIBUTION CENTER P. $\mathbf{0}$	
Day Sent:	Day Rec'd.:

Quantity:

DISTRIBUTION CENTER P. $\mathbf{0}$	
Day Sent:	Day Rec'd.:
Quantity:	

DISTRIBUTION CENTER P. $\mathbf{0 .}$	
Day Sent:	Day Rec'd.:
Quantity:	

DISTRIBUTION CENTER P. 0.

Day Sent:	Day Rec'd.:
Quantity:	

DISTRIBUTION CENTER P. 0.

Day Sent:	Day Rec'd.:
Quantity:	
DISTRIBUTION CENTER P. $\mathbf{0}$	
Day Sent:	Day Rec'd.:
Quantity:	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
Quantity:	

FACTORY WORK ORDER	
Day Placed: \quad Day Complete:	
Quantity:	

FACTORY WORK ORDER	
Day Placed:	Day Complete:

Quantity:

FACTORY WORK ORDER	
Day Placed:	Day Complete:

FACTORY WORK ORDER	
Day Placed:	Day Complete:

Quantity:

> Quantity:

FACTORY WORK ORDER	
Day Placed:	Day Complete:
Quantity:	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
Quantity:	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
Quantity:	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
Quantity:	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
Quantity:	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
Quantity:	
FACTORY WORK ORDER	
Day Placed:	Day Complete:
Quantity:	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
Quantity:	

FACTORY WORK ORDER	
Day Placed:	Day Complete:

FACTORY WORK ORDER	
Day Placed:	Day Complete:

Forms for Single Product (Quick Hit) Version:
Quantity:
Quantity:

FACTORY WORK ORDER	
Day Placed:	Day Complete:
Quantity:	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
Quantity:	

Forms for Single Product (Quick Hit) Version:

FACTORY MATL. DELIV	FACTORY	MATL. DELIVERY FORM		
Day Shipped:	ay Rec	Day Shipped	$:$	ay Rec'd.:
Quantity:	Quantity:			

| FACTORY MATL. DELI | FACTORY | MATL. DELIVERY FORM | |
| :--- | :--- | :--- | :--- | :--- |
| Day Shipped: | Day RevDlay Shipped: | | Day Rec'd.: |
| Quantity: | Quantity: | | |

| FACTORY MATL. DELI | FACTORY | IATL. DELIVERY FORM | |
| :--- | :--- | :--- | :--- | :--- |
| Day Shipped: | Day Redd.y Shipped: | | Day Rec'd.: |
| Quantity: | Quantity: | | |

| FACTORY MATL. DELI | FACTORY | MATL. DELIVERY FORM | |
| :--- | :--- | :--- | :---: | :---: |
| Day Shipped: | Day RejeDlay Shipped: | | Day Rec'd.: |

Quantity:	Quantity:	

FACTORY MATL. DELI		FACTORY	MATL. DELIVERY
Day Shipped:	Day Re	FQ.RM	
Quantity:		Day Shipped:	Day Rec'd.:
		Quantity:	

| FACTORY MATL. DELI | FACTORY | MATL. DELIVERY FORM | |
| :--- | :--- | :--- | :--- | :--- |
| Day Shipped: | Day Re_Dlay Shipped: | | Day Rec'd.: |
| Quantity: | Quantity: | | |

| FACTORY MATL. DELI | FACTORY | MATL. DELIVERY FORM | |
| :--- | :--- | :--- | :--- | :--- |
| Day Shipped: | Day Re_'ray Shipped | | Day Rec'd.: |
| Quantity: | Quantity: | | |

FACTORY MATL. DELI		FACTORY	MATL. DELIVERY
Day Shipped:	Day Re	FQRM	
Quantity:		Day Shipped:	Day Rec'd.:
		Quantity:	

FACTORY MATL. DELI		FACTORY	MATL. DELIVERY
Day Shipped:	Day Re	FQRM	
Quantity:		Day Shipped:	Day Rec'd.:
		Quantity:	

FACTORY MATL. DELI		FACTORY	MATL. DELIVERY
Day Shipped:	Day Re	FQ.RM	
Quantity:		Day Shipped:	Day Rec'd.:
		Quantity:	

Forms for Single Product (Quick Hit) Version:

DIST. CNTR. MATL. DELI	DIST. CNTR. MATL. DELIV. FORM		
To Store: Day Ship: Day R	c.:	Tan太tgre:	Day Ship: Day R
c.: Quantity:			

DIST. CNTR. MATL. DELI	DIST. CNTR. MATL. DELIV. FORM		
To Store: Day Ship: Day R	c.:	Tanstyre:	Day Ship: Day R
c.: Quantity:			

DIST. CNTR. MATL. DELI	DIST. CNTR. MATL. DELIV. FORM		
To Store: Day Ship: Day R	c.:	Tan太itøe:	Day Ship: Day R
c.: Quantity:			

DIST. CNTR. MATL. DELI	DIST. CNTR. MATL. DELIV. FORM	
To Store: Day Ship: Day R	c.:	To Store:
Day Ship: Day R	c.:	
Quantity:	Quan tity:	

DIST. CNTR. MATL. DELI	DIST. CNTR. MATL. DELIV. FORM		
To Store: Day Ship: Day R	c.:	Tansityre:	Day Ship: Day R
c.: Quantity:			

DIST. CNTR. MATL. DELI	DIST. CNTR. MATL. DELIV. FORM		
To Store: Day Ship: Day R	c.:	Tanstore:	Day Ship: Day R
c.: Quantity:			

DIST. CNTR. MATL. DELI	DIST. CNTR. MATL. DELIV. FORM		
To Store: Day Ship: Day R	c.:	Tansitye:	Day Ship: Day R
c.: Quantity:			

DIST. CNTR. MATL. DELI		DIST. CNTR. MATL. DELIV. FORM	
To Store: Day Ship: Day R	c.:	To Store:	Day Ship: Day R
c.:			
Quantity:	Quantity:		

DIST. CNTR. MATL. DELI	DIST. CNTR. MATL. DELIV. FORM	
To Store: Day Ship: Day R	c.:	To Store:
Day Ship: Day R	c.:	
Quantity:	Quantity:	

DIST. CNTR. MATL. DELI	DIST. C	NTR. MATL. DELIV. FORM
To Store: Day Ship: Day R c.:	Tangityre:	Day Ship: Day R c.: Quantity:

Retailer Inventory Position Worksheet-One for each Retail Store

INVEN	TORY POS	ITION		RETAIL S	TORE \#		
Day	Ending Inventory	Stockouts	Quantity Ordered	Day	Ending Inventory	Stockouts	Quantity Ordered
1				21			
2				22			
3				23			
4				24			
5				25			
6				26			
7				27			
8				28			
9				29			
10				30			
11				31			
12				32			
13				33			
14				34			
15				35			

Distributor Inventory Position Worksheet-One for each Distribution Center

DISTRIBUTION CENTER INVENTORY POSITION							
Day	Ending Inven- tory	Back Orders	Quantity Ordered	Day	Ending Inven- tory	Back Orders	Quantity Ordered
1				21			
2				22			
3				23			
5				24			
6				25			

Factory Inventory Position Worksheet

CHAPTER TWO • Supply	FACTORY INVENTORY POSITION							
	$\overline{\text { Dain }}$	Ending Inven- tory	Back Orders	Produc- tion Order	Day	Ending Inven- tory	Back Orders	Produc- tion Order
	1				21			
	2				22			
	3				23			
	4				24			
	5				25			
	6				26			
	7				27			
	8				28			
	9				29			
	10				30			
	11				31			
	12				32			
	13				33			
	14				34			
	15				35			
	16				36			
	17				37			
	18				38			
	19				39			
	20				40			

Cumulative sum of both columns for each category Total number of check marks for orders			
Holding cost/day/unit in first column, production order cost/order in last column	0		
Resulting cumulative holding and ordering costs			
Total operating cost (sum of both costs)			

Forms for Multiple Product Versions:

RETAIL STORE PURC		$$	RE PURCHASE ORDER	
Retailer:	Day Sent:		ay Sent:	Day Rec.:
CD Artist:		Crantrists:		Quantity:
Jake Spade and the Diggers		Jake Spade and	the Diggers	
The Heartmenders		The Heartmend	rs	
Diamonds in the Ruff		Diamonds in th:	Ruff	
Kulture Klub		Kulture Klub		

RETAIL STORE PURC		RETAIL ST		
RE PURCHASE ORDER				
Retailer:	Day Sent:	QataRerc.:	ay Sent:	Day Rec.:
CD Artist:	QuaAtititist:	D	Quantity:	
Jake Spade and the Diggers	Jake Spade and	the Diggers		
The Heartmenders	The Heartmend	rs		
Diamonds in the Ruff	Diamonds in th:	Ruff		
Kulture Klub	Kulture Klub			

RETAIL STORE PURC		RETAIL STC RetyiRerc.:	RE PURCHASE ORDER	
Retailer:	Day Sent:		ay Sent:	Day Rec.:
CD Artist:		QRantitist:		Quantity:
Jake Spade and the Diggers		Jake Spade and	the Diggers	
The Heartmenders		The Heartmend	rs	
Diamonds in the Ruff		Diamonds in th	Ruff	
Kulture Klub		Kulture Klub		

RETAIL STORE PURC		RETAIL ST		
RE PURCHASE ORDER				
Retailer:	Day Sent:	QataReac.:	ay Sent:	Day Rec.:
CD Artist:	QuaAtritisy:			
Jake Spade and the Diggers	Jake Spade and	the Diggers	Quantity:	
The Heartmenders	The Heartmend	rs		
Diamonds in the Ruff	Diamonds in th:	Ruff		
Kulture Klub	Kulture Klub			

RETAIL STORE PURC	RETAIL ST	RE PURCHASE ORDER	
Retailer:	Day Sent:	RadaRec.:	Day Sent:
CD Artist:	Qoantitityt:		Day Rec.:
Jake Spade and the Diggers	Jake Spade and	the Diggers	
The Heartmenders	The Heartmenders		
Diamonds in the Ruff	Diamonds in th	Ruff	

Kulture Klub
Kulture Klub

Forms for Multiple Product Versions:

DISTRIBUTION CENTER P. 0.	
Center:	Day Sent:
CD Artist:	Day Rec.:
Jake Spade and the Diggers	
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

DISTRIBUTION CENTER P. 0.		
Center:	Day Sent:	Day Rec.:
CD Artist:	Quantity:	
Jake Spade and the Diggers		
The Heartmenders		
Diamonds in the Ruff		
Kulture Klub		

DISTRIBUTION CENTER P. $\mathbf{0 .}$		
Center:	Day Sent:	
CD Artist:	Day Rec.:	
Jake Spade and the Diggers		

DISTRIBUTION CENTER P. $\mathbf{0 .}$	
Center:	Day Sent:
CD Artist:	Day Rec.:
Jake Spade and the Diggers	Quantity:
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

DISTRIBUTION CENTER P. 0.	
Center:	Day Sent:
CD Artist:	Day Rec.:
Jake Spade and the Diggers	
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

\square
\square

DISTRIBUTION CENTER P. 0.			
Center:	Day Sent:		
CD Artist:	Day Rec.:		
Jake Spade and the Diggers			
The Heartmenders Diamonds in the Ruff Kulture Klub 		$>.$	
:---			

DISTRIBUTION CENTER P. $\mathbf{0 .}$	
Center:	Day Sent:
CD Artist:	Day Rec.:
Jake Spade and the Diggers	Quantity:
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

DISTRIBUTION CENTER P. $\mathbf{0}$		
Center:	Day Sent:	Day Rec.:
CD Artist:	Quantity:	

Jake Spade and the Diggers	
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

DISTRIBUTION CENTER P. 0.	
Center:	Day Sent:
CD Artist:	Quy Rec.:
Jake Spade and the Diggers	
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

Supply-Chain Management

Forms for Multiple Product Versions:

| FACTORY WORK ORDER | |
| :--- | :--- | :--- |
| Day Placed: | Day Complete: |
| CD Artist-Check One: | Quantity: |
| Jake Spade and the Diggers | |
| The Heartmenders | |

FACTORY WORK ORDER	
Day Placed:	Day Complete:
CD Artist-Check One:	Quantity:
Jake Spade and the Diggers	
The Heartmenders	

Diamonds in the Ruff	
Kulture Klub	

Diamonds in the Ruff	
Kulture Klub	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
CD Artist-Check One:	
Jake Spade and the Diggers	Quantity:
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
CD Artist-Check One:	
Jake Spade and the Diggers	Quantity:
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
CD Artist-Check One:	Quantity:
Jake Spade and the Diggers	
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
CD Artist-Check One:	Quantity:
Jake Spade and the Diggers	
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

| FACTORY WORK ORDER | |
| :--- | :--- | :--- |
| Day Placed: | Day Complete: |
| CD Artist-Check One: | Quantity: |
| Jake Spade and the Diggers | |
| The Heartmenders | |
| Diamonds in the Ruff | |
| Kulture Klub | |

FACTORY WORK ORDER	
Day Placed:	Day Complete:
CD Artist-Check One:	
Jake Spade and the Diggers	Quantity:
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

FACTORY WORK ORDER

Day Placed:	Day Complete:
CD Artist-Check One:	Quantity:
Jake Spade and the Diggers	

FACTORY WORK ORDER	
Day Placed:	Day Complete:
CD Artist-Check One:	
Jake Spade and the Diggers	

The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

Forms for Multiple Product Versions: FACTORY MATL. DELIVERY FORM

To Cntr:	Day Ship:
CD Artist:	Day Rec.:
Jake Spade and the Diggers	
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

FACTORY MATL. DELIVERY FORM

To Cntr:	Day Ship:
CD Artist:	Day Rec.:
Jake Spade and the Diggers	
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

To Cntr: ${ }^{\text {d }}$ Day Ship:	Day Rec.:	To Cntr:	Day Ship:	Day Rec.:
CD Artist:	Quantity:	CD Artist:		Quantity:
Jake Spade and the Diggers		Jake Spade and the Diggers		
The Heartmenders		The Heartmenders		
Diamonds in the Ruff		Diamonds	Ruff	
Kulture Klub		Kulture Klub		

FACTORY MATL. DELIVERY FORM		
To Cntr:	Day Ship:	
CD Artist:	Day Rec.:	
Jake Spade and the Diggers	Quantity:	

$|$| FACTORY MATL. DELIVERY FORM | | |
| :--- | :--- | :--- |
| To Cntr: | Day Ship: | Day Rec.: |
| CD Artist: | Quantity: | |
| Jake Spade and the Diggers | | |
| | | |

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| The Heartmenders | | | |
| Diamonds in the Ruff | | The Heartmenders | |
| Kulture Klub | | | |

FACTORY MATL. DELIVERY FORM		FACTORY MATL. DELIVERY FORM		
To Cntr: Day Ship:	Day Rec.:	To Cntr:	Day Ship:	Day Rec.:
CD Artist:	Quantity:	CD Artist:		Quantity:
Jake Spade and the Diggers		Jake Spade and the Diggers		
The Heartmenders		The Heartmenders		
Diamonds in the Ruff		Diamonds in the Ruff		
Kulture Klub		Kulture Klu		

FACTORY MATL. DELIVERY FORM	
To Cntr:	Day Ship:
CD Artist:	Day Rec.:
Jake Spade and the Diggers	
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

FACTORY MATL. DELIVERY FORM		
To Cntr:	Day Ship:	
CD Artist:	Day Rec.:	
Jake Spade and the Diggers		
The Heartmenders		
Diamonds in the Ruff		

Forms for Multiple Product Versions:

DIST. CNTR. MATL. DELIV. FORM		DIST. CNTR. MATL. DELIV. FORM		
To Store: Day Ship:	Day Rec.:	To Store:	Day Ship:	Day Rec.:
CD Artist:	Quantity:	CD Artist:		Quantity:
Jake Spade and the Diggers		Jake Spade	the Diggers	
The Heartmenders		The Heartm		
Diamonds in the Ruff		Diamonds in	Ruff	
Kulture Klub		Kulture Klub		

DIST. CNTR. MATL. DELIV. FORM			DIST. CNTR. MATL. DELIV. FORM		
To Store:	Day Ship:	Day Rec.:	To Store:	Day Ship:	Day Rec.:
CD Artist:		Quantity:	CD Artist:		Quantity:
Jake Spade and the Diggers			Jake Spade and the Diggers		
The Heartmenders			The Heartmenders		
Diamonds in the Ruff			Diamonds in the Ruff		
Kulture Klub			Kulture Klub		

DIST. CNTR. MATL. DELIV. FORM			DIST. CNTR. MATL. DELIV. FORM		
To Store:	ay Ship:	Day Rec.:	To Store:	Day Ship:	Day Rec.:
CD Artist:		Quantity:	CD Artist:		Quantity:
Jake Spade and the Diggers			Jake Spade and the Diggers		
The Heartmenders			The Heartmenders		
Diamonds in the Ruff			Diamonds in the Ruff		
Kulture Klub			Kulture Klub		

DIST. CNTR. MATL. DELIV. FORM		
To Store:	ay Ship:	Day Rec.:
CD Artist:	Quantity:	
Jake Spade and the Diggers		

DIST. CNTR. MATL. DELIV. FORM	
To Store:	Day Ship:
CD Artist:	Day Rec.:
Jake Spade and the Diggers	Quantity:

The Heartmenders		The Heartmenders Diamonds in the Ruff Diamonds in the Ruff Kulture Klub	Kulture Klub	

DIST. CNTR. MATL. DELIV. FORM

To Store:	Day Ship:
CD Artist:	Day Rec.:
Jake Spade and the Diggers	
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

DIST. CNTR. MATL. DELIV. FORM

To Store:	Day Ship:
CD Artist:	Day Rec.:
Jake Spade and the Diggers	
The Heartmenders	
Diamonds in the Ruff	
Kulture Klub	

Retailer Inventory Position Worksheet-One for each Retail Store

RETAIL STORE INVENTORY POSITION WORKSHEET \quad RETAIL STORE\#													
	Ending Inventory				Stock- outs	OrderQuantity	Ending Inventory					Stock-	$\begin{aligned} & \text { Order } \\ & \text { Quantity } \end{aligned}$
Day	<	a	(C)	\cdots			Day	<	a	(C)	.		
1							21						
2							22						
3							23						
4							24						
5							25						

Total operating cost (sum of all costs)						

Distributor Inventory Position Worksheet—One for each Distribution Center

DISTRIBUTION CENTER INVENTORY POSITION WORKSHEET										CENTER \#			
	Endi	vent			Back Orders	$\begin{aligned} & \hline \text { Order } \\ & \text { Quantity } \end{aligned}$	Ending	ntory				Back Orders	$\begin{aligned} & \hline \text { Order } \\ & \text { Quantity } \end{aligned}$
Day	<	a	(C)	.			Day	\ll	a	(C)	-•		
1							21						
2							22						
3							23						
4							24						
5							25						
6							26						
7							27						
8							28						
9							29						
10							30						
11							31						

Factory Inventory Position Worksheet

FACTORY INVENTORY POSITION WORKSHEET

[^0]: the demand experienced by the factory, it becomes very hard to avoid stockouts. More than six retail outlets require increased capacity at the factory.

[^1]: RETAIL STORE PURCHASE

