Solution Manual for Basic College Mathematics 12th Edition by Bittinger Beecher Johnson ISBN 0321931912 9780321931917

Full link download

Test Bank:

https://testbankpack.com/p/test-bank-for-basic-college-mathematics-12th-edition-by-bittinger-beecher-johnson-isbn-0321931912-9780321931917/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-basic-college-mathematics-12th-edition-by-bittinger-beecherjohnson-isbn-0321931912-9780321931917/

54

Chapter 11

Algebra: Solving Equations and Problems

		7a - 3b
ExerciseSet11.1		38x + 14
		11 - 92d, or $-92d + 11$
RC2. $3q = 3 \times q$, so multiplication $\underline{3}$	is involved.	-4t
RC4. $q = 3 \div q$, so division is involved.		9 <i>t</i>
$9t = 9 \cdot 8 =$		-3m + 4
$- = \frac{18}{6}$		3x + y + 2
n3		
$\begin{array}{rcl} 6. & \underline{5y} & \underline{5(-15)} & \underline{-75} & -75$		66. $12y - 923$
= 25 3		13 —
$g^{p} = \frac{17 - 3}{14} = = 12$		$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $
=7 2 2 2		13 9 3 2
10. $ba = 4(-5) =$		= 2 3 5 $ b-42$
-20		<i>a</i> + · 10
12. $5(a+b) = 5(16+6) = 5 \cdot 22 = 110$		$= \frac{39}{a+} \frac{4}{b} \frac{-3}{b} \frac{-3}{4}$

50

$$5a + 5b = 5 \cdot 16 + 5 \cdot 6 = 80 + 30 = 110$$

14. $5(a - b) = 5(16 - 6) = 5 \cdot 10 =$

 $5a - 5b = 5 \cdot 16 - 5 \cdot 6 = 80 - 30 = 50$ 16. 4x + 12 18. 4(1 - y) = 4 \cdot 1 - 4 \cdot y = 4 - 4y

$$_{6}$$
 $_{6}$ $_{10}$ $^{-10}$ $^{-10}$

20. 54m + 63

20x + 32 + 12p-9y + 6314x + 35y - 63

$$3 \\ 5 \\ 1 \\ b - 42 \\ = 6a + \\ 1 \\ 0 \\ 3 \\ 5 \\ 28. \frac{4}{16} \\ 5 \\ x - 2y - 5 \\ 2 \\ 30. 8.82x + 9.03y + 4.62 \\ 5(y + 4) \\ 7(x + 4) \\ 6(3a + 4b) \\ 9(a + 3b + 9) \\ 10(x - 5) \\ 6(4 - m) \\ 3(3a + 2b - 5) \\ -7(2x - 3y - 1), \text{ or } 7(-2x + 3y + 1) \\ \end{cases}$$

48. 17*x*

-9x

$$= \frac{3}{-\frac{a_{+}}{42}} b$$
2.6a + 1.4b
$$d \equiv 2 \cdot \frac{8.2}{6} m = \frac{16.4}{16.4} m$$

$$C \approx 2 \cdot 3.14 \cdot 8.2 m \approx 51.496 m$$

$$\approx 3.14 \cdot 8.2 m \cdot 8.2 m \approx 211.1336 m^{2}$$

$$d = 2 \cdot 2400 \text{ cm} = 4800 \text{ cm}$$

$$\approx 2 \cdot 3.14 \cdot 2400 \text{ cm} \approx 15,072 \text{ cm}$$

$$\approx 3.14 \cdot 2400 \text{ cm} \cdot 2400 \text{ cm} \approx 18,086,400 \text{ cm}^{2}$$

$$r = \frac{264 \text{ km}}{2} =$$

$$r = \frac{264 \text{ km}}{2} =$$

$$R = \frac{10.3 \text{ m}}{2}$$

$$r = \frac{10.3 \text{ m}}{2} =$$

$$r = \frac{10.3 \text{ m}}{2} =$$

$$C \approx 3.14 \cdot 10.3 \text{ m} \approx 32.342 \text{ m}$$

$$A \approx 3.14 \cdot 5.15 \text{ m} \approx 5.15 \text{ m} \approx 83.28065 \text{ m}^{2}$$

$$21x + 44xy + 15y - 16x - 8y - 38xy + 2y$$

$$f = \frac{10}{2} + xy$$

3

_ _ 5

31

2

= .

3 · 4 12

Thus, x = 5

2 5

	46. $5\frac{1}{4} = \frac{2}{8}43 + x$
Exercise Set 11.2	5 - 4 - 12 = x
RC2. To solve the equation $3 + x = -15$,	12 12 15 <u>8</u>
we would first subtract 3 on both sides. The correct choice is (c)	$_{_{_{12}=x_{12}}^{_{_{4}}}}$
RC4. To solve the equation $x + 4 = 3$, we would first add -4 on both sides. The correct choice is (a).	$\frac{1}{12} = x$ $\frac{1}{48, 123}$
2.7	8
2	_ ⁵ _ <u>16</u> _15 _ 1
414	503+8 = -24 + 24 = -24
6. 29	521.7
8. 4	54 5 16 15
10. 6	$\overline{3} - 8 = 24 - 24 = 24$
12. –22	56.3.2 - (-4.9) = 3.2 + 4.9 = 8.1
5	- <u>·</u> <u>·</u> <u>·</u> <u>·</u>
1442	$58 \frac{3}{3} \cdot \frac{8}{8} = \frac{8}{3} \cdot \frac{3}{3} \cdot \frac{8}{3}$
1626	-3 $2 \cdot 4$ $2 \cdot 4$
5015.68	-
18. 11	$62 2 - \div = 3 = - 2 \cdot 2 \cdot \frac{1}{2} - 10$
20. 17	3 8 3 5 15 644.9
226	4 7 3
24. –11	66. -5^{+} $= -4$
26 16	-20 + 20 + 20
= x	20 · 20 · 20
3015	$\frac{13}{20} = x$
1	68. 8-25 = 8 + x - 21
-	-17 = x -
3 32. 4	-4 - r
2	70. $x + x = x$
34. $x + - 5$	2x = x
3 5 6 4	x = 0
$x = -\frac{1}{2}e^{-\frac{1}{2}}e^{-$	72. The distance of x from θ is 5. or $x = -5$.
$\frac{-6}{x} = -\frac{3}{-2}$	
~ - 2	-
	-

36.
$$y = 4 \underbrace{10}_{y=10}^{26} \underbrace{9}_{y=19}$$

 $y = 12^{+12}$
 12^{+12}
 12^{+12}
 13^{-12}
 $38. -\overline{8} + y = -4$

Exercise Set 11.3

RC2. To solve the equation -6x = 12, we would first divide

1

6

by -6 on both sides. The	1RC4. To solve the equation $6 x = 12$, we would first multiply by 6 on both sides. The correct choice is (b).
correct choice is (d).	13 7
$y = -\frac{8}{8} + \frac{1}{5}$	9 -50
$\begin{array}{ccc} y = - & \\ 40. & 4.7 & 8 \\ 42. & 17.8 \end{array}$	-9 -6
44. -10.6	U U

9

7

7

-6x = 42

48. $V = l \cdot w \cdot h = 1.3 \text{ cm} \times 10 \text{ cm} \times 2.4 \text{ cm} = 31.2$

 cm^3

$$- \frac{1}{9} \cdot - \frac{1}{7}y = -\frac{1}{9}$$
.
(12.06)

-6 -6

$$\begin{array}{c} \frac{84.4}{y=-\frac{2}{9}} & 1 \cdot x = -7 \\ x = -7 \\ x = -7 \\ \end{array}$$

$$\begin{array}{c} -9.38 \\ -$$

46. $C = \pi \cdot d \approx 3.14 \cdot 24$ cm = 75.36 cm

.

 $r = \frac{\underline{d}}{\underline{24}} \quad \underline{cm} = 12 \text{ cm}$ $A = \pi \cdot r \cdot r \approx 3.14 \times 12 \text{ cm} \times 12 \text{ cm} = 452.16 \text{ cm}^2$

 $9x - 36 = 9 \cdot x - 9 \cdot 4 = 9(x - 4)$

18. $24a - 8 = 8 \cdot 3a - 8 \cdot 1 = 8(3a - 1)$ 19. $4x + 6y - 2 = 2 \cdot 2x + 2 \cdot 3y - 2 \cdot 1 = 2(2x)$ +3y - 1) 20. $12x - 9y + 3 = 3 \cdot 4x - 3 \cdot 3y + 3 \cdot 1 = 3(4x)$ -3y+1) $21. 4a - 12b + 32 = 4 \cdot a - 4 \cdot 3b + 4 \cdot 8 = 4(a - 4) + 4(a - 4) +$ 3b + 8) 22. $30a - 18b - 24 = 6 \cdot 5a - 6 \cdot 3b - 6 \cdot 4 = 6(5a - 3b - 4)$ 23. 7x + 8x = (7 + 8)x = 15x24. $3y - y = 3y - 1 \cdot y = (3 - 1)y = 2y$

-9

(5-3)x + (-2+1)y + (6-9)

$$2x - y - 3$$
6

$$x + 5 = 11$$

$$+5 - 5 = 11$$

$$-5$$

$$x = 6$$

The solution is 6.

$$x + 9 = -3$$

+9-9=-3
- 9
= -12
The solution is -12.
$$8 = t + 1$$

$$8 - 1 = t + 1 - 1$$

= t
The solution
is 7.
-7 = y + 3
-7 - 3 = y + 3 - 3
-10 = y
The solution is
-10.
$$x - 6 = 14$$

-6+6=14 + 6

x = 20The solution is 20. y - 7 = -2 y -7 + 7 = -2 + 7

T y + 34. 2 1 1 1 1 *y* + - = _ 3 3 2 3 3 v =5 y =The solution 5 <u>-</u> s 6 3 3 35. 2 + x = -4³³ _ 3 3 _ $\overline{2}$ *x* 2 = 4 +23 x = $=3^{-4^{+4}}$ <u>3</u>-4 THe solution is 4 4.6 = x + 3.94.6 - 3.9 = x + - 3.93.9 0.7 = xThe solution is 0.7. -3.3 = -1.9t -3.3 + 1.9 = -1.9 + t + 1.9-1.4 =t The solution is -1.4.7x = 42 $\underline{7x} = \underline{42}$ 7 7 x = 6The solution is 6. 144 = 12y<u>12y</u> =12 12 The solution is 5. 3 + t = 103 + t - 3 = 10 - 3

12 = yT h e s o l u t = 7 The solution is 7.

-5 + x = 5 - 5 + x + 5 = 55 = 10

The solution is 10.

tion is 12. 17 = -t $-1 \cdot 17 = -1(-t)$ -17 = tThe solution is -17. 41. 6x = -54 $\underline{6x} \equiv -5\underline{4}$ 6 6 = -9 The solution is -9. -5y = -85 - 5y____85 -5 -5 =

The solution is 17.

<u>36</u>

215

They are not equivalent. For example, let a = 2 and b =

lution is -2.

ExerciseSet11.4

RC2. The correct choice is (a). RC4. The correct choice is (e). 8x + 6 = 30 8x = 24 = 3 8z + 7 = 79 8z = 72 z = 9 4x - 11 = 21 4x = 32 x= 8

Ā 🗆

6 t = -18

$$6x - 9 = 57$$

$$6x = 5$$

$$-5 - 5 - \frac{5}{18}$$

$$6x = 66$$

$$x = 11$$

$$6 - 5 - \frac{5}{18}$$

$$10. \quad 5x + 4 = -41$$

$$t = -5 - 18 = -3$$

$$5x = -45$$

$$t = \frac{5}{3}$$
The solution is
$$x = -9$$

$$12. -91 = 9t + 8$$

$$-99 = 9t$$

$$-11 = t$$

1.8y = -5.4

- $1.8y \equiv$ -5x = 115- 5.4 _____
- x = -231.8 1.8

$$\begin{array}{c} = \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ \end{array}$$

$$\begin{array}{c} -6z - 18 = -132 - 6z \\ = -114 \\ 19 \\ 19 \\ 4x + 5x = 45 \\ 9x = 45 \\ 9x = 45 \end{array}$$

$$9x = 45$$

= 5

-5x - 7 = 108

$$7 \frac{-y}{5} = 7$$

$$7 \frac{-y}{5} = 7$$

$$7 \frac{-y}{35} = -1 \frac{-35}{35}$$
The solution is
$$-35.$$

•

216

216
22.
$$6x + 19x =$$

 $25x = 100$
 $x = 4$
24. $-4y - 8y =$
 $-12y = 48$
 $y = -4$
26. $-10y - 3y = -39$
 5
 $-13y =$
 -39
 $y = 3$
28. $6.8y - 2.4y =$
 -88
 $y =$
 -20
 $\frac{1}{5} + 5, LCM$ is 15
30. $x + 4x =$
10
 $5\frac{5}{36} - 3y$
 $4x = 10$
 4
 $x = -5$
 10
 $x = 8$
32. $4x - 6 = 6x$
 $-6 =$
 $2x$
 $-3 =$
 x
34. $5y - 2 = 28$
 $-y$
 $6y = 30$
 $y = 5$
36. $5x - 2 = 6$

Chapter 11: Algebra: Solving Equations and Problems

48.
$$\begin{array}{c} 3 \\ -2 \\ +x = \end{array} \begin{array}{c} -5 \\ -9 \\ +x = \end{array} \begin{array}{c} 5 \\ -9 \\ +x = \end{array} \begin{array}{c} 4 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9 \\ -13 \\ -4 \\ -4 \\ x = -3 \end{array}$$

$$50. + 4m = 3 - m , LCM \text{ is } 2$$

$$1 + 8m = 6m = -5$$

$$2m = -6$$

$$m = -3$$

$$\frac{-6}{3}$$

$$\frac{-2}{3} - 2 \quad y$$

$$52.1 - 3 y = 5 - 15$$

$$10y = 3y + 9$$

$$27 = -1$$

$$15 \quad 10y = 3y + 9$$

$$27 = -1$$

$$1510y = -7y = 21$$

$$y = -3$$

$$54. \quad 0.96y - 0.79 = 0.21y + 0.46$$

38. 5y + 3 = 2y + 153y =

4x = 8

x = 2

+ *x*

12 y = 440. 10 - 3x = 2x - 8x + 4010 - 3x = -6x + 40

42. 5 + 4x - 7 = 4x - 2 - x4x - 2 = 3x - 2x = 044. 5y - 7 + y = 7y + 21 - 5y6y - 7 = 2y + 214y = 28y = 7

68. 10 - 3(2x - 1) = $0.05y - 1.82 = 0.708y - 0.504\ 1000(0.05y -$ 1.82) = 1000(0.708y -1 0.504) 10 - 6x + 3 =50y - 1820 = 708y -1 504 13 - 6x = 1-1820 + 504 = 708y-6x =50y -12-1316 =x = 2658y 70. 3(t-2) = 9(t+1)131 6 2) -658 = y3t - 6 = 9t +18 -2 =-24 =у 6*t* -4 = 2 5 7 3 96. *x* 4 = t - 8 7(5x-2) = 6(6x)3 8 8 - 1) 35x - 14 = 36x7 5 <u>3</u> 6 =, LCM is 24 х -8 = Ā 🗆 Ā 🗆 .8 - 4(b - 1) = 0.2 + 3(4 - b) 0.8 - 4b + 4 = 0.2 + 12 - 3b 8 - 40b + 40x 74. 5(t+3) + 9 = 3(t - 3)= 2 + 120 - 30b2)+6 48 - 40b = 122 - 30b5t + 15 + 9 = 3t --74 = 10b - 7.4 = b6 + 65t + 24 =3*t* 0.09% = 0.000924 = -2t-12 = t 76. 13 - (2c + 2) = 2(c + 2)2) + 3c13 - 2c - 2 = 2c + 4+ 3c11 - 2c = 5c +4 7 = 7c1 = С 78. 0.9(2x + 8) = 20 - (x + 8)+ 5) 1.8x + 7.2 = 20 - x- 5 18x + 72 = 200 - 10x- 50 18x + 72 = 150 -10x28x =78 78 *x* = — 28 *x* = ____ 14

Move the decimal point 3 places to the left.

14.7 m = 0.0147 km

88. $90^{\circ} - 52^{\circ} = 38^{\circ}$

Let *s* = the new salary. Solve: 42, $100 - 6\% \cdot 42$, $100 = s \ s = 39 , 574 3x = 4x0 = x Exercise Set 11.5

RC2. Translate to an equation.

RC4. Check yourpossible answerin the original problem.

Let
$$x =$$
 the number; $\frac{3x}{2}$. a

4. Let b = the number; 43%b, or 0.43b

6. Let n = the number; 8n - 75Solve: 8n = 2552 n =319

The numberis 319.

Let c = the number of calories in a cup of whole milk.

Solve:
$$c - 89 = 60$$

 $c = 149$
calories
Solve: $5x - 36 = 374$

50100.5x = 50 = 577

82 The number is 82.

 $ar{A}$ \square

 $ar{A}$ \Box

 $\begin{array}{rcl}
3 \\
\text{Solve: } 2y + 85 &=& y \\
&= \\
-68 \\
\end{array}$

The original number is -68.

Let h = the height of the control tower at the Memphis airport, in feet. Solve: h + 59 = 385 h = 326 ft Solve: 84.95 + 0.60m = 250 m =

275.083

-

Molly can drive 275 mi.

20. Let p = the price of one shirt. Then 2p= the price of anothershirt.

> Solv^p _ +2p +27 e: = 34 3

p = \$25, so $2p = 2 \cdot $25 = 50 . The prices of the other two shirts are \$25 and \$50.

Let w = the width of the two-by-four, in inches.

Solve:2(2w + 2) + 2w = 10

2

1

$$w = 2 - \operatorname{orl} 2 - \frac{1}{1}$$
If $w = 1$ then $w + 2 = 3$.
The length $\frac{1}{1}$ n. and the width $\frac{1}{1}$ in
 2
 3

Let p = the average listing price of a home in Arizona.

Solve: 3p + 72, 000 =876,000 p = \$268, 000

26. Solve: 4*a* = 30, 172

= 7543 The area of Lake Ontario is 7543

mi². Solve: $x + 2x + 3 \cdot 2x = 180$ = 20

If x = 20, then 2x = 40, and $3 \cdot 2x = 120$. The first piece is 20 ft long, the second is 40 ft, and the

third is

120 ft.

We draw a picture. We let x = the measure of the first angle. Then 4x = the measure of the second angle, and

(x + 4x) - 45, or 5x - 45 = the measure of the third

38. Let p = the price of the battery before tax. Solve: $p + 6.5\% \cdot p = 117.15$

p = \$110

Let c = the cost of the meal before the tip was added.

Solve: c + 0.18c = 40.71 c =\$34.50

42. Solve:
$$2(w + 60) + 2w =$$

= 100 If w = 100, then w + 60 = 160. The length is 160 ft, the width is 100 ft, and the area is

$$160 \text{ ft} \cdot 100 \text{ ft} = 16,000 \text{ ft}^2.$$

$$32 \quad 15 \quad 17$$

$$44.-5+8=-40+40=-40$$

$$46.-\overset{4}{-} - 32\overset{4}{8} \\ \overset{-}{5} \overset{-}{-} \\ \overset{+}{8} = \overset{-}{-} - 5\overset{-}{-} \\ \overset{-}{15} \\ 15 \\ 32 \\ 8 \\ - 5 \\$$

48. 409.6 1 c 1 c + 10 + 1 = c50. 1 1 -41.6 $\overline{3}c$ 4c8 5 52. c = 120Solve:

There were 120 cookies on the tray.

$$2 \cdot 85 + s$$

54. = Solve: 82 s = 76

The score on the third test was 76.

angle.

:

Chapter 11 VocabularyReinforcement

When we replace a variable with a number, we say that we are substituting forthe variable.

A letterthat stands forjust one numberis called a

So lve +4x + (5x - 45) =180 3rd angle

angle
$$\frac{cons}{tant}$$
.
3. The $\frac{identit}{y}$
 y
 $proper$
 $ty of 1$
 $states$
that
for any
real
numbe
 r
 $x = 22.5, 4x = (22.5) = 90, and $5x - 45 = 5(22.5) - 45 = 67.5$, so the measures of the first, second, and $x = 10^{-10}$$

third .5, st, second, angles are 22.5° , 90° , and 67.5° , respectively.

Let m = the number of miles a passengercan travel for \$26.

Solve: 1.80 + 2.20m = 26m = 11 miLet a = the amount Ella invested. Solve: a +0.06*a* = 6996 *a* = \$6600 Let b = the amount

borrowed. Solve: b + 0.1b = 7194_

\$6540

4. The multiplication principle forsolving equations states that for any real numbers a, b, and c, a = b is equivalent to $a \cdot c = b \cdot c$.

The distributive law of multiplication over subtraction states that for numbers a, b, and c, a(b - c) = ab - ac.

The addition principle forsolving equations states that for any real numbers a, b, and c, a = b is equivalent to a + c =

b+c.

Equations with the same solutions are called equivalent _ equations.

Chapter11ConceptReinforcement

True; for instance, when x = 1, we have x - 7 = 1 - 7 = -6 but 7 - x = 7 - 1 = 6. The expressions are not equivalent.

False; the variable is not raised to the same power in both terms, so they are not like terms.

$$x + 5 = 2$$

x + 5 - 5 = 2 5 x = -3

Since x = -3 and x = 3 are not equivalent, we know that x + 5 = 2 and x = 3 are not equivalent. The given statement is false.

This is true because division is the same as multiplying by a reciprocal.

Chapter 11 StudyGuide

$$\frac{a \ b \ -2}{2} = -5 \cdot 8 - 2 = -40 = -2 = -42$$
=6
7
7
4(x + 5y - 7) = 4 \cdot x + 4 \cdot 5y - 4 \cdot 7 = 4x +
20y - 28

 $24a - 8b + 16 = 8 \cdot 3a - 8 \cdot b + 8 \cdot 2 = 8(3a - b + 2)$

$$7x + 3y - x - 6y = 7x - x + 3y - 6y$$

$$7x - 1 \cdot x + 3y - 6y$$

(7 - 1)x + (3 - 6)y

6x - 3y

$$y - 4 =$$

$$-2$$

$$y - 4 + 4 = -2$$

$$+ 4$$

$$y + 0 =$$

$$2$$

$$y = 2$$
The solution
is 2.
$$9x = -72$$

$$= 2x -$$

$$10$$

$$5x - 4 - 2x = 2x - 10 -$$

$$2x$$

$$3x - 4 = -10$$

$$3x - 4 + 4 = -10$$

$$4$$

$$3x =$$

$$-6$$

$$3x =$$

$$\frac{-}{6}$$

$$3x =$$

$$\frac{-}{6}$$

$$3x = -2$$
The -2.
solution is
$$2(y - 1) = 5(y - 4)$$

$$2y - 2 = 5y -$$

$$20$$

$$2y - 2 - 5y = 5y - 20 -$$

$$-3y - 2 =$$

$$-20$$

$$-3y - 2 =$$

$$-18$$

$$\frac{-3y}{y = 6} =$$
The solution is 6.
Let *n* = the number. We have *n* + 5, or 5 + 4

6x - 4 - x = 2x - 105x - 4

Chapter 11 Review Exercises

n.

1.
$$\underbrace{-x}_{12} = 4$$

3 3 3
2. $5(3x - 7) = 5 \cdot 3x - 5 \cdot 7 = 15x - 35$
3. $5)$ 2 (2) $5 =$ (10) $8x + 10$
 $2(4x) = -\frac{4x}{3} + \frac{8x}{3} = -\frac{5}{3} + \frac{10}{3} = -\frac{10}{3}$

<u>9x</u>

-72₌

10(0.4x + 1.5) = $10 \cdot 0.4x + 10 \cdot$ 1.5 = 4x + 15 -8(3 - 6x + 2y) = $-8 \cdot 3 - 8(-6x) -$ 8(2y) = -24 + 48x - 16y $2x - 14 = 2 \cdot x 2 \cdot 7 = 2(x - 7)$ $6x - 6 = 6 \cdot x - 6$

 $\cdot \ 1 = 6(x - 1)$

9 9 $+5 \cdot 2 = 5(x + 2)$ $1 \cdot x = -8$ The solution is -8. 5y + 1 = 5 5y + 1 - 1 = 6 1 5y = 5 5y = 5 5y = 5 5y = -2x + 5y y = 1The solution is 1.

 $12 - 3x + 6z = 3 \cdot 4 - 3 \cdot x + 3 \cdot 2z = 3(4 - x + 2z)$ $11a + -4a - 5b = 11a \, 4a + -5b$ $2b \qquad - 2b$ (11 - 4)a + (2 - 5)b 7a - 3b 7x - 3y - 9x + 8y = 7x9x - 3y + 8y - $\Box \bar{A} \quad \bar{A} \quad \bar{A} \qquad \bar{A} \bar{A} \bar{A} \qquad \Box \bar{A} = 3$

8. $5x + 10 = 5 \cdot x$

$$6x + 3y - x - 4y = 6x - x + 3y - 4y$$

(6 - 1)x + (3 - 4)y
$$\Box \qquad \bar{A} \qquad \Box$$

x -
y

-3a+9b+2a-b =	= -3a + 2a + 9b - b	21.	$\frac{4}{3}$ 5 y = - 16		_
	(-3+2) <i>a</i> + (9 - 1) <i>b</i>		5 4 5	3	
	-a + 8b		$\frac{1}{4} \cdot 5 y = 4 \qquad 16$		
x + 5 = -17			$y = - \frac{5 \cdot 3}{2} = - \frac{5 \cdot 3}{2}$	15	
$ \begin{array}{c} \Box \bar{A} & \bar{A} \\ 5-5=-17 \end{array} $	$ar{A}ar{A}ar{A}$	$ar{A}$ \square	$\begin{array}{ccc}4&&&1\overline{6}&\square\\&&15\end{array}$	54 <i>Ā</i> 🗆	Å
	$ar{A}$ \square	$ar{A}$ \square T	$ar{A}$ \Box The number – 64 checks. It is	\vec{A} \Box s the solution.	$ar{A}$ \square
= -22 The number -22 cho solution. $-8x = -56 - 8x$ $=$ $\frac{-56}{-8}$ -8 $x = 7$	ecks. It is the	у Т 5	y - 0.9 = 9.09 - 0.9 + 0.9 = 9.09 + 0.9 y = 9.99 The number 9.99 checks. It is t 5 - x = 13 5 - x - 5 = 13 5 - x = 8 - 1 \cdot x =	= he solution.	
The number7 checks	s. It is the solution.		$8 \\ -1 \cdot (-1 \cdot x) = -1 \cdot 8$		

The number -192 checks. It is the solution.

n - 7 = -6n - 7 + 7 = -6 + 7n = 1

The number1 checks. It is the solution.

15x = -3515x = -35

The number -8 checks. It is the solution.

$$5t + 9 = 3t - 1$$

$$5t + 9 - 3t = 3t - 1$$

$$3t$$

$$2t + 9 = -1$$

$$2t + 9 - 9 = -1 - 9$$

$$2t = -10$$

$$2t = -10$$

$$2t = -10$$

$$2t = -5$$

The number -5 checks. It is the solution.

3

<u>7</u>

$$S = 3 \cdot 5 \frac{25}{7x-6} = \frac{25x}{7x-6} = \frac{26}{18x} = \frac{26}{18x} = \frac{16}{18x} = \frac{16}{18x$$

.

$$14y = 23y - 17 - \frac{10}{10}$$

$$14y = 23y - 27$$

$$14y - 23y = 23y - 27 - \frac{23y}{23y}$$

$$-9y = -27$$

$$\frac{-9y}{-9} = -\frac{27}{-9}$$

$$y = 3$$

The number3 checks. It is the solution.

0.22y - 0.6 = 0.12y + 3 - 0.8y

$$0.22y - 0.6 = -0.68y + 3$$

$$0.22y - 0.6 + 0.68y = -0.68y + 3$$

$$0.68y + 3$$

$$0.9y - 0.6 = 3 + 0.6 = 3 + 0.6$$

$$0.9y = 3.6 + 0.6 = 3 +$$

The number4 checks. It is the solution.

3(5x-7) = -6615x - 21 =-66 15x - 21 + 21 = -66+2115x = -45<u>15x = -45</u> 15 = -3 The number -3 checks. It is the solution. 8(x-2) - 5(x+4) = 20x + x 8x - 16 -5x - 20 = 21x36 - 3x = 21x -3*x* -36 = 18x $=36_{18x}$ = 18 -2 = xThe number -2 checks. It is the solution. -5x + 3(x + 8) = 16 - 5x + 3x+24 = 16-2x + 1624 =-2x + 24 - 24 = 1624 -2x = -82x-8

$$\frac{-2x-8}{=}$$

The number4 checks. It is the solution.

Let x = the number; 19%x, or 0.19x*Familiarize*. Let w = the width. Then w + 90 = the length.

Translate. We use the formula for the perimeter of a rectangle, $P = 2 \cdot l + 2 \cdot w$.

$$x = \frac{3 \cdot 1}{3 \cdot 1} = \frac{3}{3 \cdot 1}$$

= 16
The number 16 checks. It is
the solution.
$$4(x+3) = 36 \ 4x + 12 = \frac{36}{36} \ 4x + 12 - 12 = 36 - 12 \ 4x = \frac{24}{24} \ \frac{4x}{24} = \frac{24}{24} \ \frac{4x}{24} = \frac{24}{24}$$

The number6 checks. It is the solution.

.

$$1280 = 2 \cdot (w + 90) + 2 \cdot w$$

Solve.
$$1280 = 2 \cdot (w + 90) + 2 \cdot w$$

$$1280 = 2w + 180 + 2w$$

$$1280 = 4w + 180$$

$$1100 = 4w$$

$$275 = w$$

If w = 275, then w + 90 = 275 + 90 = 365. Check. The
length is 90 mi more than the width. The

perimeter is 2 ·

1280 mi. The answerchecks.

State. The length is 365 mi, and the width is 275 mi.

36. *Familiarize*. Let l = the length of the shorter piece, in ft.

Then l + 5 = the length of the longerpiece.

Translate. Length of shorter piece	plu s	length of is	Tota l lengt h
\downarrow l 21	\downarrow_+	$\downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad$	↓ =

Solve.

$$l + (l + 5) = 21$$

 $2l + 5 =$
 $2l = 16$
 $l = 8$
If $l = 8$, then $l = 58 + 5 = 13$.
Check. A 13-ft piece is 5 ft longerthan an 8-ft piece and the sum of the length is 8 ft + 13
ft, or 21 ft. The answer checks.

State. The lengths of the pieces are 8 ft and 13 ft.

37. *Familiarize*. Let p = the price of the mower in February.

Translate.

Price in	plu	Additio nal	in	Price is
Februa ry	S	cost	June	
1			-	

Solve.

$$p + 332 = 2449$$

 $p = 2117$

Check. \$2117 + \$332 = \$2449, the price in June, so the answerchecks.

State. The price of the mower in February was \$2117.

Familiarize. Let a = the number of appliances Ty sold.

Translate.

	Commiss		Number		
Commissio	ion	time	of		
n is	foreach appliance	S	applianc es sold		
	↓		Ļ		
216 a	=	8			
Solve. $= 8a$					
27 = a					
<i>Check.</i> $27 \cdot \$8 = \$$					
State. Ty sold 27 appliances.					

	<i>Check.</i> The second angle, 85° , is 50° more than the first angle, 35° , and the third angle, 60° , is 10° less than twice the first angle. The sum of the measures is $35^{\circ} + 85^{\circ}$	$+60^{\circ}$, or 180° . The
	answerchecks. <i>State</i> . The measure of the first angle is the measure of the second angle is 85, and	35°,
	the measure of the third angle is 60° .	
).	<i>Familiarize.</i> Let p = the marked	price

40. *Familiarize*. Let p = the marked price of the bread maker.

Translate.

Solve.

$$p - 0.3p = 154$$

 $0.7p = 154$
 $p = 220$

Check. 30% of $$220 = 0.3 \cdot $220 = 66 and \$220 - \$66 = \$154. The answerchecks.

State. The marked price of the bread maker was \$220.

41.*Familiarize*. Let a = the amount the organization actu- ally owes. This is the cost of the office supplies without sales tax added. *Translate*.

iniou	15	А	minus	57001	

nt moun Amo

+ 50 = the measure of the second angle and 2x-10 =

^{t of} bill owed unt owed \downarrow \downarrow \downarrow 145.90 0.05 = _ . a a Solve. = 145.90 - 0.05a1.05a = 145.90 a≈ 138.95 *Check.* 5% of \$138.95 = $0.05 \cdot $138.95 \approx 6.95 and

\$138.95 + \$6.95 = \$145.90. The answerchecks.

State. The organization actually owes \$138.95.

Familiarize. Let s = the previous salary.

Translate.

the measure of the third angle.	Previo	Previo	ousis	Ne
<i>Translate</i> . The sum of the measures of the angles of a	us plus	5% s	salary	w
	salar of			salar y
triangle is 180°, so we have x + (x + 50) + (2x - 10) - 180	↓		Ļ	\downarrow
Solve.	s + 400 +	0.05 ·	S	=71,
x + (x + 50) + (2x - 10) = 180	s + 0.05s = 71,400			
4x + 40 = 180 $4x =$ 140	1.05s = 71, 400 s = 68, 000 <i>Check.</i> 5% of \$68, 000 = 0.0)5 · \$68, 000 =	=	
x = 35 If $x = 35$, then $x + 50 = 35 + 50 = 85$ and $2x - 10 = 5$	\$3400 and \$68, 000 + \$3400 = \$71, 400 answerchecks. <i>State</i> . The previous salary w). The as \$68,000.		
2.35 - 10 = 70 - 10 = 60.				

..
43. *Familiarize*. Let c = the cost of the television in January. Translate.

Check. \$38 less than \$867 is \$867 - \$38, or\$829. This is the cost of the television in May, so the answerchecks.

State. The television cost \$867 in January.

 $56 = 2 \cdot l + 2 \cdot (l - 6)$

44. *Familiarize*. Let l = the length. Then l - 6 =the width. Translate. We use the formula for the

 $2 \cdot l + 2 \cdot w.$ perimeter of a rectangle, P =

Solve.

56 = 2l + 2(l - 6)56 = 2l + 2l - 1256 = 4l - 1268 = 4l17 = lIf l = 17, then l - 6 = 17 - 66=11. Check. 11 cm is 6 cm less The perimeter is $2 \cdot 17$ cm + $2 \cdot 11$ cm = than 17 cm. 34

cm + 22 cm = 56 cm. The answerchecks.

State. The length is 17 cm, and the width is 11 cm.

45. Familiarize. The Nile Riveris 234 km longerthan the Amazon River, so we let l= the length of the Amazon

Riverand l + 234 = the length of the Nile River.

Translate.
Length Length Tot
of al
Nile plu
s is Amazon River 1 engt

$$(l + 234) + l = 13, 108$$

So

$$(l + 234) + l = 13, 108$$

 $2l + 234 = 13, 108$
 $2l = 12,$
 874
 $=$
 6437

If l = 6437, then l + 234 = 6437 + 234 = 6671.

3x - 2y + x - 5y = 3x + x - 2y - 5y47. $= 3x + 1 \cdot x - 2y - 5y$

=(3+1)x+(-2-5)y=4x - 7yAnswer A is correct.

48. 2/n/+4 = 502/n/ = 46|n| = 23The solutions are the numbers whose distance from 0 is

> 23. Thus, n = -23 or n = 23. These are the solutions.

49. /3n/=603*n* is 60 units from 0, so we have: 3n = -60 or 3n = 60n = -20 or n = 20The solutions are -20 and 20.

Chapter 11 Discussion and Writing Exercises

- 1. The distributive laws are used to multiply, factor, and col- lect like terms in this chapter.
- 2. For an equation x + a = b, the we add opposite of a on both sides of the equation to get x alone.
- 3. For an equation ax = b, we multiply by the reciprocal of

a on both sides of the equation to get x alone.

4. Add -b (orsubtract b) on both sides and simplify. Then multiply by the reciprocal of c (ordivide by c) on both sides and simplify.

Chapter 11 Test

$$x^{3} = x^{3} = 5$$
 $x^{3} = 5 = 6$

2. $3(6 - x) = 3 \cdot 6 - 3 \cdot x = 18 - 3x$

Check. 6671 km is 234 km more than 6437 km, and

6671 km + 6437 km = 13, 108 km. The answerchecks.

State. The length of the Amazon Riveris 6437 km, and the length of the Nile Riveris 6671 km.

 $6a - 30b + 3 = 3 \cdot 2a - 3 \cdot 10b + 3 \cdot 1 = 3(2a - 10b + 1)$ Answer C is correct.

$$-5(y-1) = -5 \cdot y - (-5)(1) = -5y - (-5) = -5y + 5$$

$$12 - 22x = 2 \cdot 6 - 2 \cdot 11x = 2(6 - 11x)$$

$$7x + 21 + 14y = 7 \cdot x + 7 \cdot 3 + 7 \cdot 2y = 7(x + 3)$$

$$2y)$$

$$9x - 2y - 14x + y = 9x - 14x - 2y + y$$

$$\Box \bar{A} \quad \bar{A} \quad \bar{A} \bar{A} \quad \Box$$

$$x - 14x - 2y + 1 \cdot y$$

$$\Box \quad A \quad \bar{A} \quad \Box$$

$$9 - 14)x + (-2 + 1)y$$

..

$$\begin{array}{c}
-5x + \\
(-y) \\
-5x - \\
y \\
-a + 6b + 5a - b = -a + 5a + 6b - b \\
\Box \\
1 \cdot a + 5a + 6b - 1 \cdot b \\
\bar{A} \Box \\
(-1 + 5)a + (\bar{\mathbf{5}} - \Box)b \\
\bar{A} \Box \\
\bar{A} \\
\bar{A} \\
\bar{A} \\
\bar{B} \\
\bar{A} \\
\bar{B} \\$$

8.
$$x + 7 = 15$$

 $x + 7 - 7 = 15 - 7$ Subtracting 7 on
both sides
 $x + 0 = 8$ Simplifying
 $x = 8$ Identity
property of 0 .
Chec+ $7 = \frac{1}{15}$
 $8+7?$
15
TRUE 3
e solution is 8

2

8 - y = 1614. 8 - y - 8 = 16- 8 -y = 8-1(-y) = -18 y = -8The answerchecks. The solution is -8. _ -5 + x = -4The solution is 8. 2 +x+ 2 3 2 t - 9 =- 5 545 $x = \frac{3}{-} \frac{5}{4} \frac{2}{4}$ t - 9 + 9 = 17 + 9 Adding 9 on both sides $\frac{4}{5} + 5^{-1}$ t = 26Check: t - 9=17 =-20+ 20 7 26-9? x = -20TR 7 17UE The answerchecks. The solution is -20. The solution is 26. 0.4p + 0.2 = 4.2p - 7.8 - 0.6p3x = -18<u>3x</u> 0.4p + 0.2 = 3.6p - 7.8 Collecting like terms Dividing by 3 on $\lim_{b \to th \text{ sides}} by 3$ = -18 3 on the right 0.4p + 0.2 - 0.4p = 3.6p - 7.8 - $1 \cdot x = -6$ Simplifying 0.4px = -6Identity property of 1 0.2 = 3.2p - 7.8The answerchecks. The 0.2 + 7.8 = 3.2p - 7.8solution is -6. 7.8 8 = 4 - x =- 287 3.2p <u>8</u> <u>3.2p</u>

4 7 $--\frac{1}{4}$ \cdot -7 x = - 4 \cdot (-28) Multiplying by the recipro-

4

solution is 2.5.

4

 $3.2^{=}$

2.5 = p

3.2

cal of -7 to elimin <u>a</u>te - 7 on the left

17. 3(x + 2) = 273x + 6 = 27Multiplying to remove parentheses

7.28

20. Familiarize. We draw a picture. Let w = the width of the photograph, in cm. Then w + 4 = the length.

the width.

Translate. We substitute w + 4 for l and 36 for P in the

formula for perimeter.

$$2l + 2w = P$$

$$2(w+4) + 2w$$

= 36
Solve. We solve the equation.

$$2(w + 4) + 2w = 36$$

$$2w + 8 + 2w = 36$$

$$4w + 8 = 36$$

$$4w = 28$$

$$w = 7$$

Possible dimensions are w = 7 cm and w + 4 = 11 cm.

Check. The length is 4 cm more than the width. The perimeter is $2 \cdot 11 \text{ cm} + 2 \cdot 7 \text{ cm}$, or 36 cm. The result checks.

State. The width of the photograph is 7 cm and the length is 11 cm.

Familiarize. Let x = the Ragers' income.

Translate.

17% of Income is \$7840

$$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow 0.17 \cdot x = 784$$

S lve. 0
0.17 · x = 0

$$x = 0.17$$

 $x \approx 46, 120$
nearest ten

Rounding to the

7840

If the length of the shorter piece is 3 m, then the length of the longerpiece is 3 + 2, or 5 m. *Check.* The 5-m piece is 2 m longerthan the 3m piece, and the sum of the lengths is 3 + 5, or 8 m. The answer checks. *State.* The pieces are 3 m and 5 m long.

23. *Familiarize*. Let t = the tuition U.S.

universities received from foreign students in 2005-2006, in billions of dollars.

Translate.

2005-	plus 52% of		is		2010	-2011
2006	2005-2006			<u> </u>	_tuitio	n
<u>tui</u> tion		<u>tui</u> tio <u>n</u>				
$\downarrow t$	$\downarrow \downarrow \downarrow \downarrow + 0.52$ ·	\downarrow t	↓	=	↓	14.3

Solve.

$$\begin{array}{r} + 0.52 \cdot t = 14.3 \\ 1.52t = 14.3 \\ t = 14.3 \\ \hline \frac{1.52}{9.4} \end{array} \approx$$

Check. 52% of $9.4 = 0.52 \cdot 9.4 = 4.888$, and 9.4 + 4.888 =

 $14.288 \approx 14.3$, so the answerchecks.

State. U.S. universities received about \$9.4 billion in tuition from foreign students in 2005-2006.

Familiarize. Let *n* = the original number. *Translate*.

Three	times	a	minus 14	$\underline{2}$ of the
nu mber		_,	is	³ <u>n</u> umber

Check. 17% of \$46, $120 = 0.17 \cdot $46, 120 = $7840.4 \approx$

\$7840, so the answerchecks.

-

_

State. The Ragers' income was about \$46,120.

Familiarize. Using the labels on the drawing in the text, we let x and x + 2 represent the lengths of the pieces, in

meters.

Check.
$$3 \cdot 6 - 14 = 18 - 14$$
 $3 \cdot 6 = 4$.
= 4 and answerchecks.

so

the

State. The original number is 6.

Familiarize. We draw a picture. We let x = the measure of the first angle. Then 3x = the measure of the second

angle, and (x + 3x) - 25, or 4x - 25 = the measure of the third angle.

x = 3 Dividing by 2

Recall that the measures of the angles of any triangle add up to 180° .

Translate. Measure	plus	easure f	plus	Solve. First we collect like terms on $\begin{array}{c} \downarrow \\ t + \end{array}$	the
of	se	o le		3 4 t + 5 t + 8 + 5 = t	
first	I	ond	1	$\frac{20}{t+}$ $\frac{15}{12}$	
$\overset{\downarrow}{x}$	↓ +	$\overset{\downarrow}{3x}$	↓ +	$60 \qquad 60 \ t + 60 \ t + 13 = t \\ 47 \qquad \qquad 47$	
		measure	of	60 <i>t</i> + 13	
		third a 180°.	ingle ¹⁸	= t	$\frac{47}{60}$ t
			_	13 =60	
		\downarrow	$\downarrow \downarrow$	$\frac{1}{60}$ - $\frac{1}{60}$ - $\frac{12}{12}$	
		(4x - 25) 180	5) =	$13 \cdot 13 = 13 \cdot t$	
Solve. We so	olve the o	equation. $x + 3x$ (4x - 25) = 18	+ 30	$\begin{array}{c} 60\\ 60=t \end{array}$	
				_ ¹ = 1 ¹	
	8x - 180	25 =		Check. 3 $\cdot 60 = 4 \cdot 60 = 15$, and 20, 12. Since	5.60=
		8x = 205 = 100		20 + 15 + 12 + 8 + 5 = 60, the answerchecks. State. 60 tickets were given away.	
Although	we	25.625 are asked to fir	nd only the	Cumulative Review Chapters 1 - 11	

х

1.47,201

7.463

tens + 5 ones, or

The digit 7 tells the number of thousands.

y = 4

Adding 8

The answer checks. The

3/w/ = 45

solution is 4. Answer D is

7405 = 7 thousands + 4 hundreds + 0

7 thousands + 4 hundreds + 5 ones

Write a word name for

correct.

27. 3/w/ - 8 = 37

measure of the first angle, we find the measures of the other two angles as well so that we can check the answer.

Possible answers for the angle measures

 are as follows: First angle:

 $= 25.625^{\circ}$

 Second angle:
 3x = 3(25.625)

 $= 76.875^{\circ}$

 Third angle:
 4x - 25 = 4(25.625) - 25

 $= 102.5 - 25 = 77.5^{\circ}$ *Check.* Consider25.625°, 76.875°, and 77.5°. The second is three times the first, and the third is 25° less than four times the first. The sum is 180°. These numbers check. *State.* The measure of the first angle is 25.625°.

$$5y - 1 = 3y + 7 5y - 1 - 3y$$

= 3y + 7 - 3y
$$2y - 1 = 7$$

$$2y - 1 + 1 = 7 + 1 2y = 8$$

 $\underline{2y} \equiv \underline{8}$

2 2 value of the last digit. the whole number. Seven b) Write "and" for the Seven decimal point. and c) Write a word name for the numberto the right Seven of the decimal point, and

followed by the

fourhundred place

sixty-three

/w/ = 15 Dividing by 3 Since /w/ = 15, the distance of *w* from 0 on the number line is 15. Thus, w = 15 or w = -15.

28. Familiarize.	Let $t =$ the number of tickets give away.	en			thous	andths	
	1	A six	word name for ty- three thous	7.463 is se andths.	even and fourh	undred	
			$ \begin{array}{c} 41 \\ 2 \\ 71 \\ \hline \\ 90 \\ 3 \\ 5 \\ 2 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78$		Ā 🗆		Ā 🗆
Then the first person got 1	3 t tickets, the second person got		6 3 91				
t , the third p $\frac{4}{4}$	erson got 1 - 5 /, th	e fourth person	51 3 21,085				
got 8 tickets, a	nd the fifth person got 5.						
Translate. The	re were <i>t</i> tickets given away, so we l	6. <u>2</u>	<u>2</u> <u>1</u> +	2 T			
1		12	3 13 6	·+ 2	26		
3t + 4t =	- 5 <i>t</i> + 8 +		<u>4</u> =	<u>1</u>			
5 = t.			$=\frac{26}{26}$	26			

 $^{-1}$

 $^{1 8}_{2}$

3

$$8 \cdot 3 = -1 \quad 24 = -1$$

$$24$$

$$17$$

$$\frac{1}{\underline{8}0}$$

14.
$$\stackrel{*}{2}$$
 0. 0 0
 $-\frac{0.0027}{1.9.999}$
7 3

12

17.
$$27 = 5 \cdot \frac{5}{5} = 1.$$
 $\frac{55}{5} = \frac{55}{55} \cdot 55$
 $5 = 5 \cdot 1 = 5 = 1.$ $55 = 1$
18. $2 = 9$

.

$$\begin{array}{r} \times 16 \\
 1 78 \\
 2 97 \\
 \hline
 0 \\
 4 75 \\
 2
 \end{array}$$

The answeris
573.
26. 34
$$5614$$

 9
 70
 21
 4
 20
 4
 10
The answeris 56
 $10.$

A mixed numeral for the quotient in Exercise 26 is:

$$56^{\frac{10}{-0}} = -56^{5}$$

$$\frac{34}{17}$$

$$\frac{4}{8} \qquad \frac{4}{15} \qquad - - 4 \cdot 154 \cdot 3 \cdot 54 \cdot 53 \qquad 3$$

$$28. \quad 5^{-2} \quad 15 = 5 \quad 85 \cdot 8 = 5 \cdot 2 \quad = 4 \cdot 5 \quad 2 = 2$$

$$1 \qquad 7 \qquad 7 \qquad 1 \qquad 7$$

$$1 \qquad 7 \qquad 7 \qquad 1 \qquad 7$$

$$29.23 \qquad 30 = 3 \qquad 30 = 3 \qquad 30^{-2} = 90$$

$\begin{array}{c} 3 & 9 \\ 3 & 5 \\ 3 & 5 \\ 3 & 5 \\ 3 & 5 \\ 3 \\ 3 \\ 4 \\ 4$	To compare two numbers in decimal notation, start at the left and compare corresponding digits moving from left to right. When two digits differ, the number with the larger digit is the larger of the two numbers.
$\frac{4}{0}$ The answeris 39. 68,48	1.001 Diff erent; 1 is larger than 0. ↓
9 └─┘ ↑	0.9976 Thus, 1.001 is larger.
The digit 8 is in the thousands place. Consider the next digit to the right. Since the digit, 4, is 4 or lower round down, meaning that 8 thousands stay as 8 thousands. Then change all digits to the right of the thousands digit to zeros.	$ \begin{array}{r} $
The answeris 68,000.	$\begin{array}{ccc} 15 & \text{oz} \approx 11.067 \text{c//oz} \\ & \text{oz}186 \text{c/} \\ & \$1.8 & & \\ & 6 & & \\ \hline \end{array}$
32.	=
0.42 $\overline{15}$ Ten-thousandths digit is	<u>1</u> 15.25 \approx 12.197c// oz
5 orhigher. Round up.	oz oz 4
0.42 8	$\frac{\$2.54}{24} = \frac{254}{02} \approx 10.583 \text{c// oz}$
33. Round 1. 8 3.8-3 to the nearest	oz307c/ \$3.0 7
nundrequn. ↑	= 10.586c// oz
orhigher.	29 oz 29 oz
2 1.8 4 Round up. A numberis divisible by 6 if it is even and the sum of its digits is divisible by 3. The number1368 is even. The sum	Brand D has the lowest unit price. a) $C = \pi \cdot d$ 22 $C \approx 7 \cdot 1400$ mi = 4400 mi
of its digits, $1 + 3 + 6 + 8$, or 18, is divisible by 3, so	b) First we find the radius.

 $r = \frac{d}{d}$

= 2

 $V = \frac{1}{3}$

1400 mi

2

Now we find the volume. $\frac{4}{2}$

 $\cdot \cdot \pi r^3$

= 700 mi

of its digits, 1 + 3 + 6 + 8, or 18, is divisible by 3 1368 is divisible by 6.

We find as many two-

factorizations as we can. 15=1.15

15 = 3.5

The factors of 15 are 1, 3, 5, and 15.

 $16=2.2.2 \\ 2 \\ 25=5.5 \\ 32=2.2.2.2.2$

 $3 \times 7 \times (700 \text{ mi})$

$$4 \times 22 \times 343,$$

 $000, 000 \text{ mi}^3$
The LCM is $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
 $\cdot 5 \cdot 5, \text{ or800.}$

37.We multiply these We multiply these two numbers: two numbers:

Solve. We convert 40% to decimal notation and multiply.

The cabinets cost \$10,755.20. Let p = the percent of the cost represented by the countertops.

4033.20 = .26, 888

<u>2</u>0

<u>321</u>

Since 20 < 21, it follows that 35 < 35 , so 7 < 5 . p

Solve.

 $4033.20 = p \cdot 26$, 888 4033.20 <u>p</u> = <u>26, 888</u> 26, 888 26, 0.15 = 888р

> 15% = р

The countertops account for 15% of the total cost.

Let a = the cost of the appliances. *Translate*.

Wr hat number is 13% of \$26, 888?

Solve. Convert 13% to decimal notation and multiply.

The appliances cost \$3495.44.

Let p = the percent of the cost represented by the fixtures.

of

Translate.

\$8066.40 is whpat percent of \$26, 888? 8066.40 = · 26, 2 places Move 2 places.2 zeros 888 463 Solve. $8066.40 = p \cdot 26, 888$ 4.63 = 100 _<u>___</u>. -29 1 26,888 26,888 26, $0.3 = p \, 888$ 55. 40% = Definition of percent 30% = 40 р 100 The fixtures account for 30% of the total cost. 2.205.20 Let f = the cost of the flooring. 2 <u>20</u> Translate. 5 20 Wr hat number is 2%

	<u>13</u> <u>13</u> 50.=	5	4 5 =	= 0.52
	25	25	100	
	4			
51.	8 = 8 9	9 ÷		
	0.88	8		
	8.0 <u>7 2</u> 8 <u>7</u>			
	Since 81	leens n	aannaa	rina as a r

Since 8 keeps reappearing as a remainder, the digits repeat

$$\frac{8}{9} = 0.888..., \text{ or } 0.8.$$
7%
Replace the percent symbol with ×0.01.
×
0.01

Move the decimal point two places to the left.

463

53.	4. <u>63</u>	100
	4.63.	100
	I ↑	

54. 7
$$(7 \ 4 = 28 \text{ and } 28 + 1 = 29)$$

$= 2\% \cdot 26,$	888		17 17	85		
Solve. Convert 2% to decimal notat	ion and	56.	5 _	=1	= 85%	
multiply. 26,888			20 = 20	0		
<u>0.0 2</u> 537.7 6		1	.5 Move the d	ecimal p	point two pla	ices to the right.
The flooring cost \$537.76.			1.50. ↑			
Since 987 is to the right of 87	9 on the number line, ha	we ave b) Write a perc	ent		
987 > 879.		S	ymbol: 150%	Thus, 1.	5	
48. The rectangle is divided into 5 equal parts		$\frac{1}{2}$ The unit is.	= 150%.			
The denominatoris 5. We have 3 pashaded. This tells	<u>r</u> ts	5 58.	234 + y	[,] = 789		
	3					
us that the numerator is	is		234 + y -	234 = 7	789 – 234	
3. Thus,	5 shaded.		T1 1 66	= 555	T1	1.7
49. 37 0.037.			The numberss	5 cneck	s. It is the so	lution.
$\begin{array}{ccc} 1000 & \uparrow & \downarrow \\ 3 \text{ zeros} & \text{Move 3 places.} \\ \hline 37 \\ \hline 100 \\ 0.037 \\ \hline 0 \end{array}$						
~						

230

 $3.9 \times y =$ 249.6 $\frac{3.9 \times y}{249.6} =$ $3.9 \qquad 3.9$ = 64

The number64 checks. It is the solution.

 $\underline{2}_{t} = \underline{5}_{t}$ 3 2 minutes it takes to t = 0 3 Dividing bot h sides by 3 <u>5</u>3 <u>5 · 3</u> $t = 6 \cdot 2 = \cdot$ 2 6 = <u>3</u> <u>5</u> = <u>5 · 3</u> 32 · 2.3.2 2 $m_{1} = \frac{5}{1}$ checks. It is the The number solution. 4

$$\begin{array}{c} 61. \\ \underline{36} \\ = \\ 17 \\ x \end{array}$$

 $8 \cdot x = 17 \cdot 36$ cross products

Chapter 11: Algebra: Solving Equations and Problems

Solve. We carry out the addition. 627 + 48 = d

675 = d*Check.* We can repeat the calculation. The answer

checks.

State. The total donation was \$675.

66. *Familiarize*. Let m = the number of

wrap 8710 candy bars. *Translate*.

Nu of	mber		Numb er		Num	ber	
	bars	time	of	is	of		
	per	S	<u>mi</u> nut		bars		
min	ute		es		wrapp ed	-	
			Ĩ			Ĩ	
Solve.	134		×	т	=		8710

$$134 \times m = 8710$$

$$134 \times m = 8710$$

134 *m* = 65

Check. $134 \cdot 65 = 8710$, so the answerchecks.

State. It takes 65 min to wrap 8710 candy bars.

Familiarize. Let p = the price of the stock when it was resold.

On the horizontal scale, in four equally-spaced intervals, indicate responses. Label this scale "Responses." Then make

Equating

Translate. Original minu Drop in

ten equally-spaced tick marks on the vertical scale	price s	price	before resale	
---	------------	-------	------------------	--

and label them by 10's. Label this scale "Percent." Draw

vertical bars above the responses to show the percents.

 $x + 22^{\circ} + 40^{\circ} = 180^{\circ}$

$$+62^{\circ} =$$

$$180^{\circ}$$

$$\boxed{A} \qquad \boxed{A}$$

$$180^{\circ} - 62^{\circ}$$

$$\boxed{A} \qquad \boxed{A}$$

$$118^{\circ}$$

From Exercise 63 we know that $m(A) = 118^\circ$, so A is an – obtuse angle. Thus, the triangle is an obtuse triangle.

Familiarize. Let d = the total donation.

Translate.

First donati on	plu s	Second donation is	T don on	otal ati	
11		11		I	
627		+	48	=	d

	29.63	—	3.88	=	р
	Solve. We carry 29.63 – 3 25.	out the sub 8.88 = p .75 = p	traction.		
	<i>Check</i> . we can r checks.	epeat the ca	lculation.	The answer	
	<i>State</i> . The price was \$25.75.	of the stock	k before it	was resold	
	Familiarize. Let	t = the lense	gth of the	trip, in miles.	
	<i>Translate</i> . Starti	Mil s	End	i	
	ng plu <u>mi</u> lea s ge	driven	ng mile ge	e a	
		1	—	Ĩ	
Ā	□ 27, 428.6	$_+$ $ar{A}$	\Box_t =	= 27, 914.5	$ar{A}$ \Box
	Solve.				
Ā		27, 42&16	+ 914.5	<i>t</i> = 27,	$ar{A}$ \square
	27, 4	128.6 + t - 1	27, 428.6 7, 428.6 <i>t</i> =	= 27, 914.5 -	
			485.	9	
	C	neck. 27, 42	28.6 + 483	9.9 = 27, 914.5	, so the

answerchecks.

State. The trip was 485.9 mi long.

Cumulative Review Chapters 1 - 11

Familiarize. Let a = the amount that remains Solve. $s \times 8 = 679.68$ after the taxes are paid. Translate. <u>679.68</u> $s \times \underline{8} \equiv$ Amount 8 8 Income minus minus is Federal State t<u>axe</u>s remaini taxe = 84.96 <u>s</u> ng Ĩ *Check.* $8 \cdot \$84.96 = \679.68 , so the answerchecks. 2300 12,000 1600 = State. Each sweatercost \$84.96. t *Familiarize*. Let p = the number of gallons of paint Solve. We carry out the calculations on needed to cover650 ft². the left side of the equation. Translate. We translate to a proportion. 12, 000 - 2300 - 1600 = tGallons $\rightarrow 8$ <u>p</u>←Gallons 9700 - 1600 = t $\rightarrow 400^{-}$ 8100 = tArea Area covered 650 covered Check. The total taxes paid were \$2300 + \$1600, or Solve. We equate cross products. \$3900, and \$12,000 - \$3900 = \$8100 so the answerchecks. 8 р = State. \$8100 remains after the taxes are paid. 400 650 8.650 = 400*Familiarize*. Let p = the amount the teacherwas $\cdot p$ paid. 8.650 $400 \cdot p$ Translate. 400 = 400 Draily times Number of _____ is Armount 13 = ppaid <u>pa</u>y days Check. We can substitute in the proportion and check 87 9 × the cross products. р 13 = 5200-8 Solve. We carry out the <u>13</u> multiplication. = ; 8 650 =5200;400 40 650 87×9= 0 р The cross products are the same so the answer 783 = pchecks. Check. We can repeat the calculation. State. 13 gal of paint is needed to cover 650 ft^2 . The answer checks. 74. $I = P \cdot r \cdot t$

Familiarize. Let d = the distance Celeste would walk $\underline{1}$

in

2 hr, in kilometers.

State. The teacherwas paid \$783.

3

 $\times 5\% \times 4$

\$40003

Distance

 $\begin{array}{l}\$4000\times0.05\times4\\\$150\end{array}$

Commission = Commission rate \times Sales

$$\frac{3}{2}$$
 - 1
= d
84,000 to find r.
5 2

Solve. We carry out the multiplication.

_

$$\times \overline{2} = d$$

$$\frac{10}{10} =$$

d

Check. We can repeat the calculation. The answer checks.

3 1 State. Celeste would walk 10 -

km in 2 hr.

Familiarize. Let s = the cost of each sweater.

Translate.

5800 =

We divide both sides of the equation by

r

$$\frac{5880}{84,000} = \frac{r \times 84,}{000}$$

$$\frac{r}{84,000}$$

$$0.07 = r$$

$$r$$

$$7\% = r$$
The commission rate is 7%.

Familiarize. Let p = the population after year.

Translate.

Solve.

 $29, 000 + 0.04 \cdot 29, 000 = p$ 29, 000 + 1160 = p30, 160 = p

Chapter 11: Algebra: Solving Equations and Problems

 $5 lb = 5 \times 1 lb$

87.

be 104% Check. The new population will of the origi- nal population. Since 104% of 29, $000 = 1.04 \cdot 29, 000 =$ 30, 160, the answerchecks. State. Aftera yearthe population will be 30,160. 77. To find the average age we add the ages and divide by the number of addends. 18+21+26+31+ 32+ 19 728 The average age is 28. To find the median we first arrange the numbers from smallest to largest. The median is the middle number. 18, 18, 21, 26, 31, 32, 50 1 Middle number The median is 26. The number 18 occurs most frequently, so it is the mode. $78.18^2 = 18.18 =$ 324 $79.7^3 = 7.7.7 =$ 343 λ 9 = The square root of 9 is 3 because 3^2 9. $\sqrt{}$ $12\overline{1} = 11$ The square root of 121 is 11 because $11^2 = 121.$ $2\overline{0} \approx 4.472$ Using a calculator 82. 1 ^{83.} yd $3^3 \times$ —3 ×36 in. $\frac{36}{=}$ 12 in. 4280 mm = cm

 $= 5 \times 16 \text{ oz}$ = 80 oz 88. 0.008 cg =_mg Think: To go from cg to mg in the table is a move of 1 place to the right. Thus, we move the decimal point 1 place to the right. 0.008 0.0.08 1 0.008 cg =0.08 mg $8190 \text{ mL} = 8190 \times$ 89. 1 mL $= 8190 \times 0.001 L$ = 8.19 L 1 gal 90. 20 qt = 204 qt� qt令 × 20 $= 4 \times 1$ gal = 5 gal a^2 + = Pythagorean equation 2 c^2 b^2 2 2 5 + 5 = *c* 25 + 25 $50 = c^2$ $\overline{50} = c$ Exact answer $7.071 \approx c$ Approximation The length of the third 50 ft, side is orapproximately 4280 428 . 0. 1 4280 mm = cm $3 \text{ days} = 3 \times 1 \text{ day}$ Ā 🗆 \times 24 hr $\Box \bar{A}$ ĀĀĀ 🗆 Ā 2

hr

Ā 🗆

Ā

232

Think: To go from mm to cm in the table is a move of 1 place to the left. Thus, we move the decimal point 1 place to the left.

7.071 ft. $d = 2 \cdot r = 2 \cdot 10.4 \text{ in.} = 20.8 \text{ in.}$ $C = 2 \cdot \pi \cdot r$ $C \approx 2 \cdot 3.14 \cdot 10.4 \text{ in.} = 65.312 \text{ in.}$ $A = \pi \cdot r \cdot r$ $A \approx 3.14 \cdot 10.4 \text{ in.} \cdot 10.4 \text{ in.} = 339.6224 \text{ in}^2$ $20,000 \text{ g} = \frac{\text{kg}}{\text{kg}}$

Think: To go from g to kg in the table is a move of 3 places to the left. Thus, we move the decimal point 3 places to the left.

20,000
$$20$$
.
000.
20,000 g = 20
kg

95. $A = b \cdot h$ 103. 5(x-2) - 8(x-4) = 20 $A = 15.4 \text{ cm} \cdot 4$ 5x - 10 - 8x + 32 = 20-3x + 22 =cm 3x + 22 - 22 = 20 $A = 61.6 \text{ cm}^2$ $\cdot (a +$ 96. A =-3x = -2*b*) h 2 $A = \frac{1}{2 \cdot 8.3 \text{ yd} \cdot (10.8 \text{ yd} + 10.8 \text{ yd})}$ $\frac{-3x}{-3} = \frac{-2}{-3}$ 20.2 yd) $\frac{8.3 \cdot 31}{A = yd}$ 2 2 x = 3 -2 2 A = 128.65The checks. It is the solution. 3 97. $\begin{array}{cc} y & 2 \\ V &= l \cdot w \cdot h \end{array}$ number $V = 10 \text{ m} \cdot 2.3 \text{ m} \cdot 2$ $104.12 \times 20 - 10 \div 5 =$ -2 = 238 $V = 23 \cdot 2.3 \text{ m}^3$ 240 $= 52.9 \text{ m}^3$ 98. $V = Bh = \pi \cdot r^2 \cdot h$ 105. $4^{\circ}-5^{-2}+(16\cdot4+23\cdot3)=4^{\circ}-5^{-2}+(64+23\cdot3)=4^{\circ}-5^{\circ$ $V \approx 3.14 \cdot 4 \text{ ft} \cdot 4 \text{ ft}$ 69) $=4^{3}-5^{2}+133$ V 16 ft = 64 - 25 + 133 =39+133 = 172/(-1)·3/=|-3/=3 99. $V = \frac{1}{r_2 \cdot h}$ 17 + (-3)3 1 The absolute values are 17 and 3. The difference $\approx \underline{3} \cdot 3.14 \cdot 4 \text{ cm} \cdot 4 \text{ cm} \cdot 16$ is 17 – 3, cm or14. The positive numberhas the largerabsolute value, Ā 🗆 Ā 🗆 Ā 🗆 so the answeris positive. $67.94\overline{6} \text{ cm}^3$ 17 + (-3) = 147 - x = 121 2 1 2 1 108. 7 - x - 7 = 12-3 -3 = -3 +3 = 37 _ -x = 5109. $(-6) \cdot (-5) = 30$ $-1 \cdot x =$ 5 $-1 \cdot (-1 \cdot x) = -1$ 5 = 7 7 7 -5The number -5 checks. It is the 48 solution. -6 = -8 Check: $-8 \cdot (-6) = 48$ 112. Let y = the

2

Ā

-4.3x =

-17.2

- 17.2

number; y + 17, or17 + y -4.3 -4.3

x = 4

The number4 checks. It is the solution.

$$5x + 7 = 3x - 9$$

$$5x + 7 - 3x = 3x - 9$$

$$3x$$

$$2x + 7 = -9$$

$$2x + 7 - 7 = -9$$

$$7$$

$$2x = -16$$

$$2x = -16$$

$$2x = -16$$

$$2 = 192 x$$

$$= -8$$

The number -8 checks. It is the solution.

Let x = the number; 38% x, or 0.38x

Familiarize. Let s = the amount Rachel paid forher scooter. Then s + 98 = the amount Nathan paid forhis.

s + (s +

$$2s + 98 = 192$$
$$2s = 94$$
$$= 47$$

We were asked to find only *s*, but we also find s + 98 so that we can check the answer.

If s = 47, then s + 98 = 47 + 98 = 145.

3*x*

6

1

6

1

1

x =

6 **-** ⁻ 2

 $\frac{4}{6}x + \frac{1}{6} \frac{3}{6} \frac{1}{6}x = \frac{1}{6} - \frac{1}{3}x$

1

 $\frac{1}{1}$

6

6x + 6 + 3x = 6 - 3x + 3x

<u>18</u>

6

x =

 $\frac{1}{6}x + \frac{1}{6} = \frac{1}{6-3x}$

x +

3

1

1

x +

19

<u>1</u>17.

Check. \$145 is \$98 more than \$47, and \$47	+
145 = 192.	

The answerchecks.

State. Rachel paid \$47 forherscooter.

115. Familiarize. Let P = the amount originally invested.

> Using the formula for simple interest, I = P. $r \cdot t$, we know amount the interest in the is $P \cdot 4\% \cdot 1$, or 0.04P, and the

account after 1 year is P + 0.04P, or 1.04P

Translate.

Amount in the account after1 yr	is \$2288	6
1.04P	=	
2288		
Solve. $1.04P = \frac{2288}{228}$ $P = \frac{8}{1.04}$		-
P = 2200 Check. $2200 \cdot 0.04 \cdot 1 = 888$ and so	\$2200 + \$88 = \$2288,	

the answerchecks. State. Originally, there was \$2200 in the account.

Familiarize. Let x = the length of the first piece, in meters. Then x + 3 = the length of the second piece and 4

5x =the length of the third piece. Translate.

Leng th of 1st	plu s	Leng th of 2nd	plu th of s	Leng f is 3rd	Total
piece		piec e		piec e	<u>lengt</u> h
<u> </u>			1		11
				4	
<i>x</i> +	+	(x +	+ 3)	$\frac{x}{5}$	=
Solve.				143	

mber2 checks. It is the solution.							
3 4	у	$\frac{1}{4^{x}}$	$\frac{3}{4^y}$	$\frac{1}{4} x$	$\frac{1}{4^{x}}$	$\frac{3}{4}y - 4y$	3
+			=	+			

6 $1 \\ 1$ 1

1

$$\begin{array}{c} & \xrightarrow{x\pm} 6 \xrightarrow{-6} 6^{\pm} 6^{-} \\ & \xrightarrow{-6} \\ & \xrightarrow{19} \\ & 6 \end{array} \\ & x=0 \\ 6 \\ & 6 \end{array} \\ \begin{array}{c} 6 \\ 19 \\ 19 \end{array} \\ & 6 \end{array} \\ \begin{array}{c} x=0 \\ 6 \\ 19 \\ & 0 \end{array} \\ & =0 \end{array}$$

The number0 checks. It is the solution.

29.966 - 8.673y = -8.18 + 10.4y29.966 - 8.673y + 8.673y = -8.18 + 10.4y +8.673y 29.966 = -8.18 +19.073y 29.966 + 8.18 = -8.18 + 19.073y+ 8.1838.146 = 19.073y 19.073y 38.146 19.073 _ 19.073 2 = y

The nut

1

 $\overline{4} x -$

119.

$$=$$
 + 1 1 3 3

3

=x +y+

$$\begin{array}{r}
\frac{4}{x + (x + 3) + 5 x} \\
= 143 \\
\begin{array}{r}
\frac{14}{x + 3} \\
\frac{14}{x + 3} \\
\frac{14}{143 - 3} \\
\frac{14}{5} \\
\frac{14}{5} \\
x = 140 \\
14 \\
\end{array}$$

 $14 \cdot 5^{\underline{x}} = 14 \cdot$

x =

<u>5 ·14 ·10</u>

1

 $\frac{5 \cdot 140}{-14} = 14$.

Answer C is

120. correct.

 $8x + 4y - 12z = 4 \cdot 2x + 4 \cdot y - 4 \cdot 3z$

$$4(2x + y - 3z)$$

Answer B is correct.

<u>13</u>	<u>13</u>	5	13.5
121. – ÷	- =	13	= =
			25 ·
5	25		13
<u>13 ·5 ·1</u>	<u>13.5</u> <u>1</u>	<u>1</u>	
5.5. 13	13.5 5	5	

Answer D is correct.

122. -27 + (-11)We have two negative numbers. Add the absolute values, 27 and 11, getting 38. Make the answernegative. -27 + (-11) = -38Answer A is correct.

x = 50

 $x = \frac{14}{14} \cdot \frac{5 \cdot 10}{1}$

4 4 If x = 50, then x + 3 = 50 + 3 = 53 and 5x = 5.50=40.

Check. The second piece is 3 m longerthan the first piece,

and the third piece is four-fifths as long as the first piece.

Also, 50 m + 53 m + 40 m = 143 m, so the answerchecks.

...

State. The length of the first piece of wire is 50 m, the length of the second piece is 53 m, and the length of the third piece is 40 m.

Familiarize. The difference of the numbers is 40, so one number is 40 more than the other. Let x = the smaller number. Then x + 40 = the larger number.

Translate. The sum of the numbers is 430, so we have x + (x + 40) = 430.

Solve.

x + (x + 40) =430 2x + 40 = 430 2x =390 =195 If x = 195, then x + 40 = 235. *Check*. The sum of the numbers is 195 + 235, or 430, and their difference is 235 - 195, or 40. The answerchecks. *State*. The numbers are 195 and 235.
