Solution Manual for Basic College Mathematics 12th Edition by Bittinger Beecher Johnson ISBN 03219319129780321931917
 Full link download
 Test Bank:

https://testbankpack.com/p/test-bank-for-basic-college-mathematics-12th-edition-by-bittinger-beecher-johnson-isbn-0321931912-9780321931917/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-basic-college-mathematics-12th-edition-by-bittinger-beecher-
johnson-isbn-0321931912-9780321931917/

Chapter 11

Algebra: Solving Equations and Problems

$$
\begin{aligned}
& 5 a+5 b=5 \cdot 16+5 \cdot 6=80+ \\
& 30=110 \\
& \text { 14. } 5(a-b)=5(16-6)=5 \cdot 10=
\end{aligned}
$$

$5 a-5 b=5 \cdot 16-5 \cdot 6=80-$
$30=50$
16. $4 x+12$
18. $4(1-y)=4 \cdot 1-4 \cdot y=4-4 y$

$$
6^{-} \quad{ }_{6} \quad \begin{aligned}
& -10
\end{aligned}
$$

$$
\text { 20. } \begin{aligned}
54 m & +63 \\
\quad 20 x & +32+12 p \\
-9 y & +63 \\
14 x & +35 y-63
\end{aligned}
$$

Exel RC we RC 2.7
 2

4. -14
5. 29
6. 4
7. 6
8. -22

5
14. -42
16. -26
60. -15.68
18. 11
20. 17
22. -6
24. -11
26. 16
28. $24=x$
30. -15

1
1
3
32. 4

$-6 \quad 3$
$x=--$
2

3
36. $y-4 \underline{\overline{10}}^{6} \quad \underline{9}$
$y={ }_{y=19} 12^{+} 12$
$y={ }^{19} 12$
1
3
38. $-\overline{8}+y=-\quad 4$

Exercise Set 11.3

RC2. To solve the equation $-6 x=12$, we would first divide
by -6 on both sides.
The correct choice 13 is (d).
\square
$y=-8+$
$y=-\quad-8$
40. 4.7
42. 17.8
44.
-10.6

RC4. To solve the equation $6 x=12$, we would first multiply by 6 on both sides. The correct choice is (b).137

$$
\begin{equation*}
-50 \tag{9}
\end{equation*}
$$

-9
-6
14. -7
16. -8
18. 8
20. 2
22. -88
24. 20
26. -54
28. -5
30.

$5 / \cdot 2 / \cdot 2$

$y=-2 /$
3

$$
y=-\quad \underline{2}
$$

3

5
$\underline{10}$

$$
-7 x=-14
$$

$$
\begin{array}{rrrr}
7 \\
7 \\
-5 \cdot-7 & - & 5 & - \\
x=-5 & - & 10 \\
14
\end{array}
$$

$7.5 \cdot 2$
$x=5 . \quad 2$
7
48. $V=l \cdot w \cdot h=1.3 \mathrm{~cm} \times 10 \mathrm{~cm} \times 2.4 \mathrm{~cm}=31.2$ cm^{3}

$$
50 . A=\frac{1}{2} . \quad 9 \cdot \mathrm{~m} 8.5 \mathrm{~m}=38.25 \mathrm{~m}^{2}
$$

52. $0 \cdot x=0$ is true for all real numbers, so the solution is all real numbers.
53. $4|x|=48$
$|x|=12$
The distance of x from 0 is 12 . Thus, $x=12$ or $x=-12$.
54. To "undo" the last step, divide 22.5 by 0.3 .

$$
22.5 \div 0.3=75
$$

Now divide 75 by 0.3 .

$$
75 \div 0.3=250
$$

The answershould be 250 not 22.5 .

Chapter 11 Mid-Chapter Review

1. 3) $=2$ False; $2(x+$

$$
{ }_{3}^{x}+2
$$

$$
3, \text { or } 2 x+6=2 x+
$$

True; see page 629 in the text.

True; see page 630 in the text.
4. False; $-x=4 x$ is equivalent

3
to 3 -
$\begin{array}{lcc} \\ 3=5 x, \text { or } x=; & \underline{3} \\ 5 x= & 3 \text { is } & \begin{array}{l}\underline{3} \\ \text { equivalent to } x\end{array} \\ & \end{array}$

5
$x=1$
34. -20
-2
8
40.
$\underline{9}$
$7 y=$ 12.06

$$
6 x-3 y+18=3 \cdot 2 x-3 \cdot y+3 \cdot 6=3(2 x-y+
$$

6)

$$
\begin{gathered}
x+5=-3 \\
+5-5=-3 \\
5 \\
x+0= \\
-8 \\
x=-8 \\
-6 x=42
\end{gathered}
$$

$$
\begin{aligned}
&-{ }_{9} \cdot-{ }_{7} y=--{ }_{9} \\
&(12.06)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{rr}
\underline{84.4} \\
y=-\underline{2} \\
9 & 1 \cdot x=-7 \\
x=-7
\end{array} \\
& 4 x=4(-7)=-28 \\
& \underline{a}=\frac{56}{=7} \\
& 8 \\
& ={ }_{3} \\
& \begin{array}{l}
x=128 \\
m
\end{array} \\
& =10 \\
& \overline{\mathrm{~A}} \square \\
& \overline{\mathrm{~A}} \square \\
& 3(x+5)=3 \cdot x+3 \cdot 5=3 x+15 \\
& 4(2 y-7)=4 \cdot 2 y-4 \cdot 7=8 y-28 \\
& 6(3 x+2 y-1)=6 \cdot 3 x+6 \cdot 2 y-6 \cdot 1=18 x+2 y-6^{\overline{\mathrm{A}}} \square \\
& -2(-3 x-y+8)=-2(-3 x)-2(-y)-2 \cdot 8=6 x+2 y-16 \\
& 3 y+21=3 \cdot y+3 \cdot 7=3(y+7) \\
& 5 z+45=5 \cdot z+5 \cdot 9=5(z+9) \\
& \begin{array}{l}
\text { 46. } C=\pi \\
75.36 \mathrm{~cm}
\end{array} \\
& r=\underline{d}=\frac{24}{\mathrm{~cm}}=12 \mathrm{~cm} \\
& 2 \quad 2 \\
& A=\pi \cdot r \cdot r \approx 3.14 \times 12 \mathrm{~cm} \times 12 \mathrm{~cm}=452.16 \\
& \mathrm{~cm}^{2}
\end{aligned}
$$

The solution
is 6 .

$$
\begin{gathered}
x+9=-3 \\
+9-9=-3 \\
-9 \\
=\quad-12
\end{gathered}
$$

The solution is -12 .

$$
\begin{aligned}
8= & t+1 \\
8-1= & t+1- \\
1 & =
\end{aligned}
$$

he solution is 7 .

$$
-7=y+3
$$

$$
-7-3=y+3-3
$$

$$
-10=y
$$

The solution is -10 .

$$
x-6=14
$$

$$
-6+6=14+6
$$

$$
x=20
$$

The solution is
20.

$$
\begin{aligned}
y & -7=-2 y- \\
7+7 & =-2+7
\end{aligned}
$$

$$
y=5
$$

$$
\begin{aligned}
& \text { 18. } 24 a-8=8 \cdot 3 a-8 \cdot 1=8(3 a-1) \\
& \text { 19. } 4 x+6 y-2=2 \cdot 2 x+2 \cdot 3 y-2 \cdot 1=2(2 x \\
& +3 y-1) \\
& \text { 20. } 12 x-9 y+3=3 \cdot 4 x-3 \cdot 3 y+3 \cdot 1=3(4 x \\
& -3 y+1 \text {) } \\
& \text { 21. } 4 a-12 b+32=4 \cdot a-4 \cdot 3 b+4 \cdot 8=4(a- \\
& 3 b+8) \\
& \text { 22. } 30 a-18 b-24=6 \cdot 5 a-6 \cdot 3 b-6 \cdot 4=6(5 a- \\
& 3 b-4 \text {) } \\
& \text { 23. } 7 x+8 x=(7+8) x=15 x \\
& \text { 24. } 3 y-y=3 y-1 \cdot y=(3-1) y=2 y \\
& -9 \\
& (5-3) x+(-2+1) y+(6-9) \\
& 2 x-y-3 \\
& \underline{6} \\
& x+5=11 \\
& \begin{array}{l}
+5-5=11 \\
-5 \quad x=6
\end{array}
\end{aligned}
$$

$\begin{array}{lll}3 & 3 & 2\end{array}$ $y=-2 \begin{aligned} & 2 \\ & { }_{6}{ }^{-}{ }_{6}\end{aligned}$ $y=5 \quad-\quad 6$
The solution ${ }^{5}$

$$
\text { -s } 6
$$

35.

$$
2+x=-4
$$

$$
\begin{array}{cc}
3 & 33=+ \\
2 & x \quad 2
\end{array}
$$

$$
+2
$$

$x=\quad \underline{3}$

$$
=3^{-} 4^{+} 4
$$

$$
\underline{\underline{5}}^{4}
$$

THe solution is

$$
4.6=x+3.9
$$

$$
\begin{gathered}
4.6-3.9=x+-3.9 \\
3.9 \\
0.7=x
\end{gathered}
$$

The solution is $\quad 0.7$.

$$
\begin{gathered}
-3.3=-1.9 \\
t \\
-3.3+1.9=-1.9+t+1.9 \\
-1.4= \\
t
\end{gathered}
$$

The solution is

$$
-1.4
$$

$$
7 x=42
$$

$$
\underline{7 x}=\underline{42}
$$

$$
x=6
$$

The solution is 6 .

$$
144=12 y
$$

$$
\underline{12 y}
$$

$$
=
$$

$12 \quad 12$
The solution is 5 .

$$
\begin{gathered}
3+t=10 \\
3+t-3=10-3
\end{gathered}
$$

	$12=y$
T	
h	
e	
S	
o	
l	
u	

$t=7$

The solution is
7.

$$
\begin{aligned}
-5+x & =5-5+ \\
x+5=5 & \\
& =10
\end{aligned}
$$

The solution is 10 .
tion is 12 .

$$
\begin{aligned}
17 & =-t \\
-1 \cdot 17 & =-1(-t) \\
-17 & =t
\end{aligned}
$$

The solution is -17 .
41. $6 x=-54$
$\underline{6 x}=-54$
$=$
-9
The solution is -9 .

$$
\begin{gathered}
-5 y=-85-5 y \\
\overline{=}=-85 \\
\frac{-5}{-5}
\end{gathered}
$$

17
The solution is 17 .

They are not equivalent. For example, let $a=2$ and $b=$

$$
\begin{array}{r}
\frac{-8 x}{\underline{48}}= \\
-8 \\
-8 \\
= \\
-6
\end{array}
$$

The solution is -6 .

$$
\begin{aligned}
& \underline{2}_{x=12} \\
& 3 \\
& \underline{3} \\
& 12 \cdot 3 \text {. } \\
& x= \\
& 2 \\
& 18 \\
& \text { The solution } \\
& \text { is } 18 \text {. } \\
& t=1 \\
& 3 \\
& 2
\end{aligned}
$$

The solution is
-15 .
$3_{x-=}=$

-8

24
$x=-\underline{3}$
2
3
The solution is
2.
$\underline{5} \quad 25$
3.

Then $(a \quad=(2+=5 \quad=25$, but $=2+3$
$+b)$
3)
$a+b$
$=$
$4+9=13$.
We use the distributive law when we collect like terms even though we might not always write this step.

1
52. The student probably added on both sides of the equa-

1^{3} tion rather than adding - $-{ }_{\mathrm{ng}} \mathrm{g}$ (orsubtracti	$\begin{gathered} 1 \\ - \text {) on } \\ \text { both } \end{gathered}$
$\begin{aligned} & 3 \\ & 3 \end{aligned}$	
sides. The correct solution	2.
53. The student apparently sides	2 on both
$\underset{2}{m u l t i p l i e d ~ b y ~}-3$	
	The

lution is -2 .

ExerciseSet11.4

$R C 2$. The correct choice is (a).
RC 4 . The correct choice is (e).

$$
\begin{gathered}
8 x+6=30 \\
8 x=24 \\
=3 \\
8 z+7=79 \\
8 z=72 z \\
=9 \\
4 x-11=21 \\
4 x=32 x \\
=8
\end{gathered}
$$

```
    6x-9=57
            6 5 6 6 25
            -5
            t 6.25 6t5/..5
                    t=}\mp@subsup{}{5\cdot18}{=
                    .3.
                    t= 午
            The solution is
                3
    1.8y=
-5.4
    1.8y=
        - 5.4
        1.8 1.8
        -3
The solution is
-3 .
\[
\begin{aligned}
& -y=57- \\
& 7 \frac{-y}{}=7
\end{aligned}
\]
7
\[
-y=
\]
\[
35
\]
\[
-1(-y)=-1 .
\]
\[
35
\]
\[
=-35
\]
The solution is
``` -35 .
22. \(6 x+19 x=\)
\[
25 x=100^{100}
\]
\[
x=4
\]
24. \(-4 y-8 y=\)
\[
-12 y=48
\]
\[
y=-4
\]
26. \(-10 y-3 y=-39\)

5
\[
\begin{gathered}
-13 y= \\
-39 \\
y=3
\end{gathered}
\]
28. \(6.8 y-2.4 y=\)
\(-88\)
\[
4.4 y=
\]
\[
-88
\]
\[
y=
\]
\[
-20
\]
\[
\frac{1}{5}+5, \mathrm{LCM}
\]
30. \(x+4 x=\)

10
\[
\begin{gathered}
-7 y= \\
21 \\
y=-3
\end{gathered}
\]
\[
\text { 54. } 0.96 y-0.79=0.21 y+
\]
\[
96 y-79=21 y+
\]
32. \(4 x-6=6 x\)
\[
\begin{aligned}
& 6 y=30 \\
& y=5
\end{aligned}
\]
\[
15 \quad 10 y=3 y+9
\]

27
\[
0.46
\]
\[
75 y=125
\]
\[
\begin{array}{r}
-6= \\
2 x \\
-3= \\
x
\end{array}
\]
\[
y=\frac{125}{\underline{5}}
\]
\[
=75
\]
\[
3
\]
34. \(5 y-2=28\)
- \(y\)
\(56.1 .7 t+8-1.62 t=0.4 t-0.32+8\)
\[
\begin{gathered}
+800 \\
8 t+800=40 t \\
+768
\end{gathered}
\]
\[
-32 t=
\]
\[
\begin{aligned}
36 . & 5 x-2 \\
+x & =6 \\
4 x & =8 \\
x & =2
\end{aligned}
\]
38. \(5 y+3=2 y+15\)
\(3 y=\)
48. \(\begin{array}{r}3 \\ -2\end{array}+x=-\quad \begin{gathered}5\end{gathered} \begin{gathered}4 \\ ,\end{gathered}\)
\[
\begin{aligned}
&-9+6 x=-5-8^{6} \quad 3 \\
&-9+6 x=-13 \\
& 6 x= \\
&-4 \\
& x \underline{2}
\end{aligned}
\] \(170 t+800-162 t=40 t-32\)
\(\begin{array}{ll}5 & 3\end{array} t=1\)
58. \(\boldsymbol{y} \quad \mathbf{x}^{y=2} \quad-\quad y\), LCM is 16 \(16+\quad+\quad 4\)
\[
\begin{aligned}
3 x & =30 \\
x & =10
\end{aligned}
\]
\[
\begin{aligned}
& 5 \\
& 4 x=10 \\
& 4 \\
& x=-5 \\
& 10 \\
& x=8
\end{aligned}
\]
\[
\text { - } \quad 1510 y=
\]
\[
52.1-3 y=5-
\]

1
50. \(\quad+4 m=3-m \quad, \mathrm{LCM}\) is 2
\begin{tabular}{cc}
\hline 12 & 42. \\
\(y=4\) & \(5+4 x-7=4 x-2-x\) \\
\(4 x-2=3 x-2\) \\
40. \\
\(10-3 x=2 x-8 x+\) & \\
40 & 44. \begin{tabular}{c}
\(5 y-7+y=7 y+21-5 y\) \\
\(10-3 x=-6 x+\) \\
40
\end{tabular} \\
\(6 y-7=2 y+21\) \\
\(4 y=28\) \\
& \(y=7\)
\end{tabular}
\[
\begin{aligned}
& 5 \\
& y \\
& \begin{array}{l}
+ \\
6
\end{array} \\
& y \\
& = \\
& 3 \\
& 2 \\
& + \\
& 4 \\
& \text { y } \\
& 11 y=32+4 y \\
& 7 \\
& \text { y } \\
& \text { = } \\
& 3 \\
& 2 \\
& \text { 46. } \begin{array}{ccccc}
\underline{7} x & \underline{1} & 1 & \underline{3} \\
& + & \\
& = &
\end{array} \\
& \begin{array}{llr}
8 & -4 & 4 \\
& & 16
\end{array} \\
& 14 x-4+12 x=1 \\
& +16 x \\
& \begin{array}{c}
26 x-4=1+ \\
16 x
\end{array} \\
& \begin{array}{r}
10 x=5 \\
x \underline{=}
\end{array} \\
& y=32 \\
& 7 \\
& \text { 60. } 4(2 y-3)= \\
& 28 \\
& 8 y-12=28 \\
& 8 y= \\
& 40 \\
& y=5 \\
& 9=3(5 x- \\
& \text { 2) } \\
& =15 x-6 \\
& { }_{15 x}= \\
& =x \\
& 3(5+3 m)-8=88 \\
& \begin{array}{c}
15+9 m-8 \\
88
\end{array} \\
& 7+9 m=88 \\
& 9 m=81 \\
& m=9 \\
& 6 b-(3 b+8)=16 \\
& 6 b-3 b-8=16 \\
& 3 b-8=16 \\
& 3 b= \\
& 24 b \\
& =8
\end{aligned}
\]
68. \(10-3(2 x-1)\)
\(7(5 x-2)=6(6 x\)
\(-1)\)
\[
\begin{aligned}
& 35 x-14=36 x \\
& 6
\end{aligned}
\]
\[
\begin{gathered}
-8= \\
x
\end{gathered}
\]
74. \(5(t+3)+9=3(t-\)
\[
2)+6
\]
\[
5 t+15+9=3 t-
\]
\[
6+6
\]
\[
5 t+24=
\]
\(3 t\) \(24=\)
\(-2 t\)
\(-12=\)
\(t\)
76. \(13-(2 c+2)=2(c+\)
\[
\begin{gathered}
2)+3 c \\
13-2 c-2=2 c+4 \\
+3 c \\
11-2 c=5 c+ \\
4 \\
7= \\
7 c \\
1= \\
c
\end{gathered}
\]
78. \(0.9(2 x+8)=20-(x\)
\[
+5)
\]
\[
1.8 x+7.2=20-x
\]
\[
-5
\]
\[
\begin{gathered}
18 x+72=200-10 x \\
-50
\end{gathered}
\]
\[
18 x+72=150-
\]
\[
10 x
\]
\(28 x=\)
78
\[
78
\]
\[
x=-
\]
\[
28
\]
\[
x=
\]
\[
\begin{aligned}
& 0.05 y-1.82=0.708 y-0.5041000(0.05 y- \\
& 1.82)=1000(0.708 y- \\
& 0.504) \\
& 50 y-1820=708 y- \\
& 504 \\
& -1820+504=708 y \\
& 50 y \\
& -1316= \\
& 658 y \\
& 131 \\
& -658=y \\
& -2=
\end{aligned}
\]
\[
x=-32
\]

1
2

3

8

8
1
4
-
4
4
\(x\)
\(-\)
5
\(=\)
\[
\begin{aligned}
-1-64 x & =9 \\
-64 x & =10
\end{aligned}
\]

1
\(x=-64\)
19
\(\begin{array}{cll}\text { 84. } & \frac{7}{=} & = \\ & = \\ & 100 & 76 \%\end{array}\)
Move the decimal point 3 places to the left.
\(14.7 \mathrm{~m}=0.0147 \mathrm{~km}\)
88. \(90^{\circ}-52^{\circ}=38^{\circ}\)

Let \(s=\) the new salary. Solve: 42 ,
\(100-6 \% \cdot 42,100=s s=\$ 39\), 574
\(3 x=4 x\)
\(0=\)
\(x\)

Exercise Set 11.5

RC 2 . Translate to an equation.
RC4. Check yourpossible answerin the original problem.
\[
\text { Let } x=\text { the number; } \frac{3 x}{} . a
\]
4. Let \(b=\) the number; \(43 \% b\), or \(0.43 b\)
6. Let \(n=\) the number; \(8 n-75\)

Solve: \(8 n=2552 n=\)
319

The numberis
319.

Let \(c=\) the numberof calories in a cup of whole milk.
Solve: \(c-89=60\)
\(c=149\)
calories
Solve: \(5 x-36=374\)

82 The numberis 82 .
\[
3
\]

Solve: \(2 y+85=y 4\)
\[
\begin{array}{r}
= \\
-68
\end{array}
\]

The original number is -68 .
Let \(h=\) the height of the control tower at the Memphis airport, in feet.
Solve: \(h+59=385\)
\(h=326 \mathrm{ft}\)
Solve: \(84.95+0.60 m=250 m=\)
275.083

Molly can drive 275 mi .
20. Let \(p=\) the price of one shirt.Then \(2 p\) \(=\) the price of anothershirt.

\(p=\$ 25\), so \(2 p=2 \cdot \$ 25=\$ 50\). The prices of the other two shirts are \(\$ 25\) and \(\$ 50\).

Let \(w=\) the width of the two-by-four, in inches.
Solve: \(2(2 w+2)+2 w=10\)

\section*{\(w=2\), orl \(2-\)}

Let \(p=\) the average listing price of a home in Arizona.

Solve: \(3 p+72,000=\)
876, 000
\(p=\$ 268,000\)
26. Solve: \(4 a=30,172\)
\(=\)
7543
The area of Lake Ontario is 7543
\(\mathrm{mi}^{2}\).
Solve: \(x+2 x+3 \cdot 2 x=180\)
\[
=20
\]

If \(x=20\), then \(2 x=40\), and \(3 \cdot 2 x=120\).
The first piece is 20 ft long, the second is 40 ft , and the third is

120 ft .
We draw a picture. We let \(x=\) the measure of the first angle. Then \(4 x=\) the measure of the second angle, and
\((x+4 x)-45\), or \(5 x-45=\) the measure of the third
2nd angle

1st angle
38. Let \(p=\) the price of the battery before tax.

Solve: \(p+6.5 \% \cdot p=117.15\)
\(p=\$ 110\)

Let \(c=\) the cost of the meal before the tip was added.
Solve: \(c+0.18 c=40.71 c=\) \$34.50
42. Solve: \(2(w+60)+2 w=\)
=
100
If \(w=100\), then \(w+60=160\).
The length is 160 ft , the width is 100 ft , and the area is
\(160 \mathrm{ft} \cdot 100 \mathrm{ft}=16,000 \mathrm{ft}^{2}\).
_ \(\quad 32 \quad 15\)
17
44. \(-5+8=-40+40=-40\)

48.
409.6
 Solve:

There were 120 cookies on the tray.
\[
\underline{2} \underline{85}+s
\]
54.

Solve:
82
\(s=\)
76
The score on the third test was 76 .
angle.
Chapter 11 VocabularyReinforcement

When we replace a variable with a number, we say that we are substituting forthe variable.

A letterthat stands forjust one numberis called a

\[
x=22.5,4 x=(22.5)=90, \text { and } 5 x-45=5(22.5)-
\]
\[
45=
\]
67.5 , so the measures of the first, second, and third angles are \(22.5^{\circ}, 90^{\circ}\), and \(67.5^{\circ}\), respectively.

Let \(m=\) the numberof miles a passengercan travel for \(\$ 26\).

Solve: \(1.80+2.20 m=26\)
\(m=11 \mathrm{mi}\)
Let \(a=\) the amount Ella invested. Solve: \(a+\) \(0.06 a=6996\)
\[
a=
\]
\(\$ 6600\)
Let \(b=\) the amount borrowed.
Solve: \(\quad b+0.1 b=7194\)
\[
b+0.1 b=7194
\]

6540
4. The multiplication principle forsolving equations states that for any real numbers \(a, b\), and \(c, a=b\) is equivalent to \(a \cdot c=b \cdot c\).

The distributive law of multiplication over subtraction states that forany numbers \(a, b\), and \(c, a(b-c)=a b-a c\).

The addition principle forsolving equations states that for any real numbers \(a, b\), and \(c, a=b\) is equivalent to \(a+c=\) \(b+c\).

Equations with the same solutions are called equivalent equations.

\section*{Chapter11ConceptReinforcement}

True; for instance, when \(x=1\), we have \(x-7=1-7=\) -6 but \(7-x=7-1=6\). The expressions are not equivalent.

False; the variable is not raised to the same power in both terms, so they are not like terms.
\[
\begin{aligned}
& x+5=2 \\
& \\
& \begin{array}{c}
x+5-5 \\
5
\end{array} \quad=2 \\
& x=-3
\end{aligned}
\]

Since \(x=-3\) and \(x=3\) are not equivalent, we know that \(x+5\) \(=2\) and \(x=3\) are not equivalent. The given statement is false.

This is true because division is the same as multiplying by a reciprocal.

\section*{Chapter 11 StudyGuide}

7
\[
\begin{aligned}
& 4(x+5 y-7)=4 \cdot x+4 \cdot 5 y-4 \cdot 7=4 x+ \\
& y-28 \\
& 24 a-8 b+16=8 \cdot 3 a-8 \cdot b+8 \cdot 2=8(3 a-b+2) \\
& 7 x+3 y-x-6 y=7 x-x+3 y-6 y
\end{aligned}
\]
\[
\begin{aligned}
& 6 y^{7 x-1 \cdot x+3 y-} \\
& 6) y
\end{aligned}
\]
\[
6 x-3 y
\]
\[
\begin{aligned}
& -2^{y-4=} \\
& \quad y-4+4=-2 \\
& \quad+4
\end{aligned}
\]
\[
\begin{gathered}
y+0= \\
2 \\
y=2
\end{gathered}
\]

The solution
is 2 .
\(9 x=-72\)
\(6 x-4-x=2 x-105 x-4\)
\[
=2 x-
\]

10
\(5 x-4-2 x=2 x-10-\)
\(2 x\)
\(3 x-4=-10\)
\(3 x-4+4=-10\)
4 \(3 x=\)
\(-6\)
\(\underline{3 x}=\)
\(\overline{-}\)
3
3
\[
x=-2
\]

The \(\quad-2\)
solution is
\[
\begin{gathered}
2(y-1)=5(y-4) \\
2 y-2=20 \\
2 y-2-5 y=5 y-20- \\
5 y \\
2 y-3 y-2= \\
-20 \\
-3 y-2+20+2 \\
-3 y= \\
-18 \\
\frac{-3 y}{-3 y}= \\
-3-18 \\
y=6
\end{gathered}
\]

The solution is 6 .
Let \(n=\) the number. We have \(n+5\), or \(5+\)
\(n\).

\section*{Chapter 11 Review Exercises}
1. \(\leftarrow^{-x}=1 \leftarrow 7\) - \(5=\) \(12=4\)
33
\[
\text { 2. } 5(3 x-7)=5 \cdot 3 x-5 \cdot 7=15 x-35
\]
\(\underline{9 x}\)
\(10(0.4 x+1.5)=\)
\(10 \cdot 0.4 x+10\)
\(1.5=4 x+15\)
\(-8(3-6 x+2 y)=\)
\(-8 \cdot 3-8(-6 x)-\)
\(8(2 y)=\)
\(-24+48 x-\)
\(16 y\)
\(2 x-14=2 \cdot x-\)
\(2 \cdot 7=2(x-7)\)
\(6 x-6=6 \cdot x-6\)
\(1=6(x-1)\)
\[
\begin{aligned}
& \quad 9 \\
& +5 \cdot 2=5(x+ \\
& 1 \cdot x= \\
& -8 \\
& \quad x=-8
\end{aligned}
\]

The solution is -8 .
\(5 y+1=\)
\[
\begin{array}{rl}
5 y+1-1 & =6 \\
1 & 5 y \\
& =5 \\
\underline{5 y} \quad \leq \\
5 & 5 \\
& =-2 x+5 y \\
y & =1
\end{array}
\]

The solution is 1 .
8. \(5 x+10=5 \cdot x\)
\(12-3 x+6 z=3 \cdot 4-3 \cdot x+3 \cdot 2 z=3(4-x+2 z)\)
\(11 a+-4 a-5 b=11 a 4 a+-5 b\)
\(2 b\)
\((11-4) a+(2-5) b\)
\(7 a-3 b\)
\[
7 x-3 y-9 x+8 y=7 x 9 x-3 y+8 y
\]
\(\square \overline{\mathrm{A}} \quad \overline{\mathrm{A}}\)
\(7-9) x+(-3+8) y\)
\[
\begin{array}{r}
6 x+3 y-x-4 y=6 x-x+3 y-4 y \\
(6-1) x+(3-4) y
\end{array}
\]
\[
\square
\]
\[
x-
\]
\(y\)
\[
-3 a+9 b+2 a-b=-3 a+2 a+9 b-b
\]
\[
(-3+2) a+(9-
\]
1) \(b\)
\[
-a+8 b
\]
\(x+5=-1\)
\(\square \bar{A} \quad \bar{A}\)
\(5-5=-17\)
\(\bar{A} \bar{A} \bar{A}\)

\(-22\)
The number -22 checks. It is the solution.
\[
\begin{gathered}
-8 x=-56-8 x \\
= \\
\frac{-56}{-8} \\
-8 \\
x=7
\end{gathered}
\]

The number7 checks. It is the solution.
16.

The number - 192 checks. It is the solution.
\[
\begin{aligned}
& n-7=-6 \\
& n-7+7=-6+7 \\
& n=1
\end{aligned}
\]

The number 1 checks. It is the solution.
\[
\begin{aligned}
& 15 x=-35 \\
& 15 x=-35 \\
& \hline
\end{aligned}
\]
21.
\[
\begin{aligned}
& \text { _ }^{5} \quad{ }_{-}=-16 \\
& \begin{array}{llll}
5 & 4 & 5 & 3
\end{array} \\
& 4 \cdot 5 y=4 \quad-16 \\
& y=-\underline{5 \cdot 3}=\underline{15} \\
& 4 \begin{array}{lll}
& 1 \bar{A} \square \\
15
\end{array} \quad 64 \\
& \bar{A} \\
& \bar{A} \\
& \text { The number }-64 \text { checks. It is the solution. } \\
& y-0.9=9.09 \\
& -0.9+0.9=9.09+0.9 y= \\
& 9.99 \\
& \text { The number9.99 checks. It is the solution. } \\
& 5-x=13 \\
& 5-x-5=13 \\
& 5 \\
& -x=8 \\
& -1 \cdot x= \\
& 8 \\
& -1 \cdot(-1 \cdot x)=-1 \cdot 8
\end{aligned}
\]

The number -8 checks. It is the solution.
\[
\begin{aligned}
& \begin{array}{c}
5 t+9=3 t-1 \\
5 t+9-3 t=3 t-1 \\
3 t \\
2 t+9= \\
-1 \\
2 t+9-9=-1-9 \\
2 t= \\
-10 \\
\frac{2 t}{}= \\
-10 \\
2 \\
2
\end{array} \\
& = \\
& \text {-5 } \\
& \text { The number }-5 \text { checks. It is the solution. }
\end{aligned}
\]

15
15

The number -3 checks. It is the solution.
\(x-11=14\)
\(-11+11=14+11\)

25
The number 25 checks. It is the solution.

\section*{2 \\ 1}
20. \(-\underline{8}+x=\)
\(-6\)

\(-\overline{3}+x+3=-\overline{6}+3\)
8
\[
\begin{aligned}
& x=\underline{1} \pm 4 \\
& x={\underset{6}{6}}^{-6}=1 \\
& 2 \\
& \underline{1}=
\end{aligned}
\] checks. It is the
The number
26. \({ }^{1} x \quad \underline{5}=\underline{3}\)

48
\(1 \quad \underline{5} \quad \underline{5} \quad \underline{3} \quad \underline{5}\)

checks. It is the sब \(\bar{\phi}\) lution.
\(\bar{A} \square\)

\(=6 \quad 18 x\)
18
\[
\begin{aligned}
& \begin{array}{l}
\overline{8} \\
\underline{1}
\end{array} \\
& -3_{1}=x \\
& \quad-{ }_{3} \bar{A}
\end{aligned}
\]

1
\(4 x=8\)
\(x=1\)
4
\[
4 \cdot 1_{4} x=4 \cdot 1
\]
\[
x=4
\]

The number 4 checks. It is the solution.
\[
\begin{gathered}
14 y=23 y-17- \\
10 \\
14 y=23 y-27 \\
14 y-23 y=23 y-27- \\
23 y \\
-9 y=-27 \\
9 y=-27 \\
-9 \\
-9 \\
y=3
\end{gathered}
\]

The number3 checks. It is the solution.
\[
\begin{gathered}
0.22 y-0.6=0.12 y+3-0.8 y \\
0.22 y-0.6=-0.68 y \\
+3 \\
0.22 y-0.6+0.68 y=-0.68 y+3 \\
0.68 y \\
0.9 y-0.6= \\
3 \\
0.9 y-0.6+0.6=3 \\
+0.6 \\
0.9 y= \\
3.6
\end{gathered}
\]
\[
\underline{0.9 y}
\]
\[
=
\]
\[
\underline{3.6}
\]
\[
\begin{array}{ll}
0.9 & 0.9
\end{array}
\]
\[
y=4
\]

The number4 checks. It is the solution.

\(\pm\)
\(8 x=3-16\)
\(x\)
\[
\frac{\frac{1}{\mathrm{I}}}{8 x+16 x=3-1 \frac{1}{\frac{1}{4}} x+}
\]
\(x\)
16
\(-\frac{2}{16} x+\begin{gathered}1 \\ -16 x=\end{gathered}\)
\({ }^{3} x=\)

3
\[
\frac{16}{3}-{ }_{16}^{3 x}-16
\]
\[
\begin{gathered}
3(5 x-7)=-66 \\
15 x-21= \\
-66 \\
15 x-21+21=-66 \\
+21 \\
15 x=-45 \\
\underline{15 x}=-=-45 \\
=
\end{gathered}
\]

The number -3 checks. It is the
solution.
```

$8(x-2)-5(x+4)=20 x+x 8 x-16-$
$5 x-20=21 x$
$3 x-36=21 \times 3 x-$
$36-3 x=21 x-$
$3 x$
$-36=$
18x
$-36 \underline{18 x}=$

```

The number -2 checks. It is the solution.
\[
\begin{aligned}
& -5 x+3(x+8)=16-5 x+3 x \\
& \quad+24=16
\end{aligned}
\]
\[
\begin{gathered}
-2 x+1624= \\
-2 x+24-24=16 \\
24 \\
-2 x=-8 \\
-2 x-8 \\
=-2 \\
-\quad x=4
\end{gathered}
\]

The number 4 checks. It is the solution.

Let \(x=\) the number; \(19 \% x\), or \(0.19 x\)
Familiarize. Let \(w=\) the width. Then \(w+90=\) the length.

Translate. We use the formula for the perimeter of a rectangle, \(P=2 \cdot l+2 \cdot w\).
\(=\quad \begin{array}{ll} & 3 \\ \underline{3} & \underline{16}\end{array}\)
\(\underline{ }\)
\[
\begin{array}{rlll}
x= & & = & \\
& 3 \cdot 1 & 3 & 1 \\
& & & \\
16 & & &
\end{array}
\]

The number 16 checks. It is the solution.
```

$4(x+3)=364 x+12=$
36
$4 x+12-12=36-12$
$4 x=$
24
$\underline{4 x}=$
$\underline{24}$
$4 \quad 4$
$365 \mathrm{mi}+2 \cdot 275 \mathrm{mi}=730 \mathrm{mi}+550 \mathrm{mi}=x=6$

```

The number6 checks. It is the solution.
\[
1280=2 \cdot(w+90)+2 \cdot w
\]

Solve.
\(1280=2 \cdot(w+90)+2 \cdot w\)
\(1280=2 w+180+2 w\)
\(1280=4 w+180\)
\(1100=4 w\)
\(275=w\)
If \(w=275\), then \(w+90=275+90=365\). Check. The length is 90 mi more than the width. The
perimeter is 2 .
1280 mi . The answerchecks.
State. The length is 365 mi , and the width is 275 mi .
36. Familiarize. Let \(l=\) the length of the shorter piece, in ft .

Then \(l+5=\) the length of the longerpiece.
Translate.
\begin{tabular}{|c|c|c|c|}
\hline Length of shorter & plu & \[
\begin{gathered}
\text { lengength of } \\
\text { is } \\
\text { is }
\end{gathered}
\] & Tota \\
\hline piece & s & & lengt \\
\hline & & & h \\
\hline \(\downarrow\) & \(\downarrow\) & & \(\downarrow\) \\
\hline \(l\) & + & \((l+5)\) & \\
\hline
\end{tabular}

\[
\begin{aligned}
p+332 & =2449 \\
p & =2117
\end{aligned}
\]

Check. \(\$ 2117+\$ 332=\$ 2449\), the price in June, so the answerchecks.
State. The price of the mower in February was \(\$ 2117\).

Familiarize. Let \(a=\) the numberof appliances Ty sold.

\section*{Translate.}

\begin{tabular}{ll}
owed & t of \\
& bill
\end{tabular} unt
owed \(\downarrow\) \(\downarrow\)
\(a \quad=\quad 145.90 \quad-\quad 0.05\)
\[
=145.90-0.05 a
\]
\(1.05 a=145.90 a\)
\[
\approx 138.95
\]

Solve.

Check. \(5 \%\) of \(\$ 138.95=0.05 \cdot \$ 138.95 \approx \$ 6.95\) and
\(\$ 138.95+\$ 6.95=\$ 145.90\).
The answerchecks.
State. The organization actually owes \(\$ 138.95\).

Familiarize. Let \(s=\) the previous salary.
Translate.
the measure of the third
angle.

Translate. The sum of the measures of the angles of a
triangle is \(180^{\circ}\), so we have
\(x+(x+50)+(2 x-10)\) \(=180\).

Solve.
\(x+(x+50)+(2 x-10)=180\) \(4 x+40=\) 180 \(4 x=\)
140
\(x=\)
35
If \(x=35\), then \(x+50=35+50=85\)
and \(2 x-10=\)
\(2 \cdot 35-10=70-10=60\).

Previo
\begin{tabular}{llll}
us & plus & \(5 \%\) & salary \\
& & w \\
salar & of & & \\
\(y\) & & & salar \\
\(y\) & & & \(y\)
\end{tabular}
\begin{tabular}{lllll}
\(\downarrow\) & & \(\downarrow\) & \(\downarrow\) \\
\(s\) & + & 0.05 & & \(s\)
\end{tabular}

Solve. 400
\[
\begin{array}{r}
s+0.05 s=71,400 \\
1.05 s=71,400 \\
s=68,000
\end{array}
\]

Check. \(5 \%\) of \(\$ 68,000=0.05 \cdot \$ 68,000=\) \$3400 and
\(\$ 68,000+\$ 3400=\$ 71,400\). The answerchecks.

State. The previous salary was \(\$ 68,000\).
43. Familiarize. Let \(c=\) the cost of the television in January.

Translate.

Solve.
\[
\begin{gathered}
829=c- \\
38 \\
829+38=c-38+38 \\
867= \\
c
\end{gathered}
\]

Check. \(\$ 38\) less than \(\$ 867\) is \(\$ 867-\$ 38\), or \(\$ 829\). This is the cost of the television in May, so the answerchecks.

State. The television cost \(\$ 867\) in January.
44. Familiarize. Let \(l=\) the length. Then \(l-6=\) the width.
Translate. We use the formula for the perimeter of a rectangle, \(P=2 \cdot l+2 \cdot w\).
\[
56=2 \cdot l+2 \cdot(l-6)
\]

Solve.
\[
\begin{aligned}
56 & =2 l+2(l-6) \\
56 & =2 l+2 l-12 \\
56 & =4 l-12 \\
68 & =4 l \\
17 & =l
\end{aligned}
\]
\(6=11\).
Check. 11 cm is 6 cm less than
17 cm.
The perimeter is \(2 \cdot 17 \mathrm{~cm}+2 \cdot 11 \mathrm{~cm}=\)
\(\mathrm{cm}+22 \mathrm{~cm}=56 \mathrm{~cm}\). The answerchecks.
State. The length is 17 cm , and the width
is 11 cm .
45. Familiarize. The Nile Riveris 234 km
\(\begin{aligned} & \text { Amazon River, so } \\ & \text { longerthan the } \\ & \text { we let } l= \\ & \text { le the length }\end{aligned}\) of the Amazon

Riverand \(l+234=\) the length of the Nile River.

\section*{Translate.}
\begin{tabular}{|c|c|c|c|}
\hline Length & & Length of & \[
\begin{aligned}
& \text { Tot } \\
& \text { al }
\end{aligned}
\] \\
\hline Nile & \begin{tabular}{l}
plu \\
s
\end{tabular} & Amazon River is & \[
\frac{1 \text { engt }}{\hbar}
\] \\
\hline \(\downarrow\) & \(\downarrow\) & \(\downarrow \downarrow\) & \\
\hline \((l+234)\) & & \[
\begin{aligned}
& + \\
& 13,108
\end{aligned}
\] & \(l\) \\
\hline
\end{tabular}

Solve.
\[
\begin{array}{r}
(l+234)+l=13,108 \\
2 l+234=13,108 \\
2 l=12, \\
874 \\
= \\
6437
\end{array}
\]

If \(l=6437\), then \(l+234=6437+234=6671\).
47. \(3 x-2 y+x-5 y=3 x+x-2 y-5 y\)
\[
=3 x+1 \cdot x-2 y-5 y
\]
\[
\begin{aligned}
& =(3+1) x+(-2-5) y \\
& =4 x-7 y
\end{aligned}
\]

Answer A is correct.
48. \(2|n|+4=50\)
\[
\begin{aligned}
2|n| & =46 \\
|n| & =23
\end{aligned}
\]

The solutions are the numbers whose distance from 0 is
23. Thus, \(n=-23\) or \(n=23\). These are the solutions.
49. \(|3 n|=60\)
\(3 n\) is 60 units from 0 , so we have:
\[
\begin{aligned}
3 n & =-60 \text { or } 3 n=60 \\
n & =-20 \quad \text { or } \quad n=20
\end{aligned}
\]

The solutions are -20 and 20 .

\section*{Chapter 11 Discussion and Writing Exercises}
1. The distributive laws are used to multiply, factor, and col- lect like terms in this chapter.
2. Foran equation \(x+a=b\), we add the opposite of \(a\) on both sides of the equation to get \(x\) alone.
3. Foran equation \(a x=b\), we multiply by the reciprocal of
\(a\) on both sides of the equation to get \(x\) alone.
4. Add \(-b\) (orsubtract \(b\)) on both sides and simplify. Then multiply by the reciprocal of \(c\) (ordivide by \(c\)) on both sides and simplify.

\section*{Chapter 11 Test}

Check. 6671 km is 234 km more than 6437 km , and
\(6671 \mathrm{~km}+6437 \mathrm{~km}=13,108 \mathrm{~km}\). The answerchecks.
State. The length of the Amazon Riveris 6437 km , and the length of the Nile Riveris 6671 km .
\(6 a-30 b+3=3 \cdot 2 a-3 \cdot 10 b+3 \cdot 1=3(2 a\)
\(10 b+1)\) Answer C is correct.
\[
\begin{aligned}
& -5(y-1)=-5 \cdot y-(-5)(1)=-5 y-(-5)=-5 y+5 \\
& 12-22 x=2 \cdot 6-2 \cdot 11 x=2(6-11 x) \\
& 7 x+21+14 y=7 \cdot x+7 \cdot 3+7 \cdot 2 y=7(x+3 \\
& \text { 2y) } \\
&
\end{aligned}
\]

TRUE 3
The solution is 8 .
\(t-9=\)
\(t-9+9=17+9\) Adding 9 on both sides
\[
t=26
\]

Check: \(t-9\)
=17

26-9?
TR
17UE

The solution
is 26 .
\(3 x=-18\)
\[
\underline{\frac{3 x}{-18}}=\quad \underset{\text { bo }}{\substack{\text { Dividing sides }}}{ }^{3}
\]
\begin{tabular}{lr}
on the right \\
\(1 \cdot x=-6\) & Simplifying \\
\(x=-6\) & Identity
\end{tabular}
property of 1
The answerchecks. The solution is -6 .
4
- \(\quad x=-287\)

4

\section*{7}
\(--4 \cdot-7 x=-4 \cdot(-28)\) Multiplying by the recipro-
14. \(8-y=16\)
\(8-y-8=16\)
- 8
\(-y=8\)
\(-1(-y)=-1\)
8
\[
y=-8
\]

The answerchecks. The solution is -8 .

2
\[
-5+x=-4
\]

\(-5 \quad-\quad 545\)
\[
\begin{align*}
& x=\begin{array}{llll}
3 & 5 & 2
\end{array} \\
& \begin{array}{c}
4 \\
-5 \\
4 \\
8
\end{array}{ }^{-} \\
& =-20+ \\
& 20 \\
& x=-\overline{20} \tag{7}
\end{align*}
\]

The answerchecks. The solution is -20 .
\(0.4 p+0.2=4.2 p-7.8-0.6 p\)
\(0.4 p+0.2=3.6 p-7.8\) Collecting like terms
\(0.4 p+0.2-0.4 p=3.6 p-7.8-\)
\(0.4 p\)
\(0.2=3.2 p-7.8\)
\(0.2+7.8=3.2 p-7.8\)
\(8=\)
\(3.2 p\)
\(\frac{8}{3.2 p}\)
\(3.2=\quad 3.2\)
\(2.5=p\)
cal of -7 to elimin \(\quad \underline{\text { a }}\) te -7
on the left
7.28
17. \(3(x+2)=27\)
\(3 x+6=27\) Multiplying to remove parentheses
\(1 \cdot x=\)
4

\section*{\(x=\)}

49
The answerchecks. The solution is 49 .
\[
\begin{gathered}
3 t+7=2 t-53 t+7-2 t= \\
2 t-5 \\
2 t t+7=-5 t+ \\
7-7=-5-7 \\
t= \\
-12
\end{gathered}
\]

The answerchecks. The solution is -12 .
\(1 \quad 3 \quad 2\)
13. \(2^{x}={ }_{5}^{-}\) 5
\(1 \begin{array}{llll}1 & 2 & \underline{3} & \underline{3}\end{array}\)
\(2 x-5+5=5\)
5
1
\[
\begin{array}{r}
2 x=1 \\
2 \cdot{ }_{-\quad}^{2} x=2 . \\
1 \\
=2
\end{array}
\]

The answerchecks. The solution is 2 .
\[
3 x+6 \quad 6=27-6
\]
\[
\begin{gathered}
3 x= \\
21 \\
-3 x= \\
21 \\
3 \\
3 \\
x=7
\end{gathered}
\]

The answerchecks. The solution is 7 .
\[
\begin{gathered}
-3 x-6(x-4)=9-3 x- \\
6 x+24=9 \\
-9 x+24= \\
9 x+24-24=9
\end{gathered}
\]
\[
-9 x=-15
\]
\[
-9 x=-15
\]
\[
\begin{array}{ll}
-9 & -9
\end{array}
\]
\[
5
\]
\[
x=
\]

3
The answerchecks. The 5
solution is. \(\overline{3}\)
19. Let \(x=\) the number; \(x-9\).
20. Familiarize. We draw a picture. Let \(w=\) the width of the photograph, in cm . Then \(w\) \(+4=\) the length.

The perimeter \(P\) of a rectangle is given

\section*{by the formula}
\(2 l+2 w=P\), where \(l=\) the length and \(w=\) the width.

Translate. We substitute \(w+4\) for \(l\) and 36 for \(P\) in the formula for perimeter.
\[
2 l+2 w=P
\]
\[
\begin{gathered}
2(w+4)+2 w \\
=36
\end{gathered}
\]

Solve. We solve the equation.
\[
\begin{gathered}
2(w+4)+2 w \\
=36 \\
2 w+8+2 w= \\
36 \\
4 w+8=36 \\
4 w= \\
28 \\
w=7
\end{gathered}
\]

Possible dimensions are \(w=7 \mathrm{~cm}\) and \(w+4=11 \mathrm{~cm}\).
Check. The length is 4 cm more than the width. The perimeter is \(2 \cdot 11 \mathrm{~cm}+2.7 \mathrm{~cm}\), or 36 cm . The result checks.

State. The width of the photograph is 7 cm and the length is 11 cm .

Familiarize. Let \(x=\) the Ragers' income.

If the length of the shorter piece is 3
then the length of the longerpiece is \(3+2\), or5 m.
Check. The \(5-\mathrm{m}\) piece is 2 m longerthan the 3-
m piece, and the sum of the lengths
is \(3+5\), or8 m . The answer checks.
State. The pieces are 3 m and 5 m long.
23. Familiarize. Let \(t=\) the tuition U.S.
universities received from foreign students in 2005-2006, in billions of dollars.
Translate.

Solve.
\[
\begin{aligned}
&+0.52 \cdot t=14.3 \\
& 1.52 t=14.3 \\
& t=14.3 \\
& \frac{1.52}{0 .}
\end{aligned}
\]

Check. \(52 \%\) of \(9.4=0.52 \cdot 9.4=4.888\), and \(9.4+4.888=\)
\(14.288 \approx 14.3\), so the answerchecks.
State. U.S. universities received about \(\$ 9.4\) billion in tuition from foreign students in 2005-2006.

Familiarize. Let \(n=\) the original number. Translate.
Three \begin{tabular}{lll}
times a & minus 14 & \(\underline{2}\) of the \\
nu mber & \(\ldots\) & is
\end{tabular}\(\quad\)\begin{tabular}{l}
numbe __r
\end{tabular}

Check. \(17 \%\) of \(\$ 46,120=0.17 \cdot \$ 46,120=\$ 7840.4 \approx\)
\$7840, so the answerchecks.
```

            \downarrow \downarrow \downarrow \downarrow \downarrow
    0.17 . x = 784
    S lve.
        0.17
        7840
    ```
 7840
 \(x=\square .17\)
 \(x \approx 46,120 \quad\) Rounding to the
 nearest ten

Rounding to the nearest ten

Solve.
\[
\begin{aligned}
& 2 \\
& 3 n-14= \\
& { }^{3} 7 \\
& -14=-3 n \quad 3 n \quad \text { Subtracting } \\
& \frac{3}{7}^{\frac{3}{7}} \\
& -7(-14)=-7 \\
& n \\
& 6 \\
& \text { = } \\
& n
\end{aligned}
\]

State. The Ragers' income was about \(\$ 46,120\).

Familiarize. Using the labels on the drawing in the text, we let \(x\) and \(x+2\) represent the lengths of the pieces, in
meters.
Translate.

Solve.
8
\[
\begin{aligned}
& x 8+x+2= \\
& 2 x+2= \\
& 8 \\
& 2 x=6 \\
& \text { Subtracting } 2
\end{aligned}
\]

Check. \(3 \cdot 6-14=18-14\)
\(3 \cdot 6=4\), so
\(=4\) and answerchecks.
State. The original number is 6.

Familiarize. We draw a picture. We let \(x=\) the measure
of the first angle. Then \(3 x=\) the measure of the second
angle, and \((x+3 x)-25\), or \(4 x-25=\) the measure of the
third angle.
\[
\begin{gathered}
\text { 2nd } \\
\text { angle } \\
\not \approx 3 \cdot x \cdot \ldots
\end{gathered}
\]

Recall that the measures of the angles of any triangle add up to \(180^{\circ}\).

\section*{Cumulative Review Chapters 1-11}
measure of the first angle, we find the measures of the other two angles as well so that we can check the answer.

Possible answers for the angle measures
are as follows: First angle:
\(x\)
\(=25.625^{\circ}\)
Second angle: \(\quad 3 x=3(25.625)\)
\(=76.875^{\circ}\)
Third angle: \(4 x-25=\)
4(25.625) - 25
\[
=102.5-25=77.5^{\circ}
\]

Check. Consider \(25.625^{\circ}, 76.875^{\circ}\), and \(77.5^{\circ}\). The second is three times the first, and the third is \(25^{\circ}\) less than four times the first. The sum is \(180^{\circ}\). These numbers check.
State. The measure of the first angle is \(25.625^{\circ}\).
\[
\begin{gathered}
5 y-1=3 y+75 y-1-3 y \\
=3 y+7-3 y \\
2 y-1= \\
7 \\
2 y-1+1=7+12 y=8
\end{gathered}
\]
\[
\underline{2 y}=\underline{8}
\]
\(2 \quad 2\)
value of the last digit.
the whole number.
Seven b) Write "and" for the

\section*{Seven}
decimal point.
and c) Write a word name for the
numberto the right
Seven
of the decimal point, and
followed by the
fourhundred place
sixty-three

\[
|w|=15 \quad \text { Dividing by } 3
\]

Since \(|w|=15\), the distance of \(w\) from 0 on the number line is 15 . Thus, \(w=15\) or \(w=-15\).

\section*{1}

Then the first person got
\(3 t\) tickets, the second
person got

\section*{1}
\(t\), the third person got
4

1
\(5 t\), the fourth person

A word name for7.463 is seven and fourhundred sixty- three thousandths.
\[
741^{1}
\]

271

\(\overline{\text { A }}\) \(\qquad\) \(\overline{\mathrm{A}}\)

4513

got 8 tickets, and the fifth person got 5 .
Translate. There were \(t\) tickets given away, so we have

1

\(3 t+4 t+5 t+8+\)
\(5=t\).
\[
\begin{array}{rr}
\frac{4}{3} & 1 \\
26 & 26 \\
=\frac{+}{5} & \\
26 &
\end{array}
\]

7
\begin{tabular}{|c|c|}
\hline & \[
\begin{array}{ll}
1 & 2 \\
1 &
\end{array}
\] \\
\hline \multirow[t]{3}{*}{8.} & 2.04 \\
\hline & \\
\hline & 63.91 \\
\hline \multirow[t]{6}{*}{4} & \\
\hline & \(\underline{+428.0}\) \\
\hline & \(0^{--} \cdot\) \\
\hline & 493.97 \\
\hline & 1 \\
\hline & 1111 \\
\hline \multirow[t]{5}{*}{9.} & 34.56 \\
\hline & 2.78 \\
\hline & 0.43 \\
\hline & +765.1 \\
\hline & 802.87 \\
\hline
\end{tabular}
\[
\frac{674-5}{22152}
\]

13
\(83 / 16\)
\(11 . \quad / 4 / /\)
\[
\begin{array}{r}
5 \\
-8791 \\
\hline 7
\end{array}
\]

4

\[
\begin{aligned}
& \frac{16}{24}= \\
& 24 \\
& =-\frac{5}{24}
\end{aligned}
\]
19

\[
=\quad=
\]
\[
\text { 21. } \underline{9} \underline{14} \quad \underline{9}: \underline{14} \quad \underline{3 \cdot 3 \cdot 2 \cdot 7} \quad-\underline{3 \cdot 2}=
\]
\[
3 \cdot 7
\]
\[
7^{\cdot} \quad 7 . \quad 7 \cdot 3 . \quad 3.7^{\circ} 5
\]
\[
\begin{array}{ll}
15 & 6^{15} \\
3 \cdot 2 & 5
\end{array}
\]
\[
\frac{3 \cdot 2}{=} \quad 6^{5}
\]
\[
12 \cdot 6=\frac{12 \cdot 5}{2 \cdot 6 \cdot 5} \frac{\frac{6}{5} \frac{2}{2}}{6}=\frac{2 \cdot 5}{=}=10
\]
34.09 (2 decimal places)
\[
\frac{7.6(1 \text { decimal place })}{20454}
\]
\[
\frac{238}{25} \frac{630}{9.084} \quad \text { (3 decimal places) }
\]
\[
\underline{18}
\]
24. To to a mixed numeral, we divide. convert
\[
\begin{gathered}
\quad{ }^{5} \\
\stackrel{3}{1} 8 \\
\underline{15}
\end{gathered}
\]
\(18 \quad 3\)
\({ }_{3} \quad \underline{3}\)
5
573
\(6 \longdiv { 3 4 3 }\)
\(\frac{8}{30}\)
\[
\begin{array}{rlll}
43 & \\
42 & 18
\end{array}
\]
\[
\begin{array}{r}
8 \cdot 3=-1 \quad 24
\end{array} \begin{array}{r}
=-1 \\
\frac{24}{\underline{17}}
\end{array}
\]
1
80
19 و* 99910
14. \(\quad{ }_{2}^{*} \quad 0.000\)
\[
00 /
\]
\[
\frac{-0.0027}{9.99}
\]
\[
73
\]
15.
\begin{tabular}{|c|}
\hline \[
\begin{gathered}
399210 \\
\stackrel{\rightharpoonup}{*} \\
40
\end{gathered}
\] \\
\hline -5.789 \\
\hline 34. 2
1 \\
\hline
\end{tabular}
\[
\text { 16. }{ }^{21}-\frac{3}{-} \frac{3}{2} \quad 7
\]
\[
\begin{array}{llll}
7 & = & =1 . \\
& & & \\
30 & 3 & { }^{3} & 10 \\
\cdot 10 & & 10 & 10
\end{array}
\]
17. \(27=5 \cdot \quad \underset{-}{5} \quad=1 . \quad \stackrel{55}{=}\)

\(5 \quad 5 \cdot 1 \quad 5 \quad 1\)
1
18. 29

7
26. 34 \begin{tabular}{c}
The answeris \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\hline
\end{tabular}

The answeris 56
10.

A mixed numeral for the quotient in Exercise 26
is:
\[
29.23 \quad 30=3 \quad 30 \quad=3 \quad 30=90
\]
\[
\begin{aligned}
& 56^{10}=-56^{5} \\
& 34 \\
& \begin{array}{llll}
\underline{4} & \underline{4} 5 \\
\underline{8} & - & -\ldots \cdot 154 \cdot 3 \cdot 54 \cdot 53 & 3
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \text { = } \\
& \begin{array}{lllll}
1 & 7 & 7 & 1 & 7
\end{array}
\end{aligned}
\]

\(4 \quad 22\)
\(3 \times 7 \times(700 \mathrm{mi})\)
\(4 \times 22 \times 343\),
\(000,000 \mathrm{mi}^{3}\)
The LCM is \(2 \cdot 2 \cdot 2 \cdot 2 \cdot 2\)
\(5 \cdot 5\), or800.
37.We multiply these We
multiply these two numbers:
two numbers:

4
3
Since \(20=21\),

7
5

\(=\quad 3 \times 7\)
\(\approx 1,437,333,333^{3} \mathrm{mi}\)
42. Let \(c=\) the cost of the cabinets.
Translate. Wr hat number is \(40 \%\)
of \(\$ 26,888\) ?
\(\downarrow \quad \downarrow \quad \downarrow \downarrow \quad \downarrow\)
\(=40 \% \cdot 26,888\)
Solve. We convert \(40 \%\) to decimal notation and multiply.
\[
\begin{gathered}
26,88 \\
\times \quad 8 \\
\times 10, \frac{0.4}{7} 45.2
\end{gathered}
\]

The cabinets cost \(\$ 10,755\).20.
Let \(p=\) the percent of the cost represented by the countertops.

Translate. \(\$ 4033.20\) is what percent of \(\$ 26,888\) ?
\(4033.20=26,888\)

Since \(20<21\), it follows that \(35<35\), so \(7<5 \cdot p\)

Solve.
\(4033.20=p \cdot 26\),
888
\(\underline{4033.20}=p\).
\(26,888 \quad 26\),
\(0.15=888\)
p
\(15 \%=\)
p
The countertops account for \(15 \%\) of the total cost.

Let \(a=\) the cost of the appliances. Translate.
Wr hat number is \(13 \%\) of \(\$ 26,888\) ?
\(\downarrow \quad \downarrow \underset{\sim}{\downarrow} \downarrow \downarrow \quad \downarrow\)
\(a \quad=13 \% \quad . \quad 26,888\)
Solve. Convert \(13 \%\) to decimal notation and multiply.
\[
26, \quad 88
\]

64
\begin{tabular}{llll}
2 & 6 & 8 & 8 \\
\hline & 8 & 0 & \\
\hline
\end{tabular}
495.4

4
The appliances cost \(\$ 3495.44\).
Let \(p=\) the percent of the cost represented by the fixtures.

Translate.
\(\$ 8066.40\) is whpat percent of \(\$ 26\),
888 ?
\begin{tabular}{cc}
8066.40 & \(=\) \\
Solve. 8066.40 & \(=p \cdot 26,888\)
\end{tabular}

The fixtures account for \(30 \%\) of the total cost.

Let \(f=\) the cost of the flooring.

\section*{Translate.}
\[
=2 \% \cdot 26,888
\]

Solve. Convert \(2 \%\) to decimal notation and
multiply.
26,888

\(20=200\)
5
1.5

Move the decimal point two places to the right.
1.50.
\(\uparrow\)
L
b) Write a percent
have
symbol: \(150 \%\) Thus, 1.5
1 The unit is \(=150 \%\).
\({ }_{5}\) The unit is.
58. \(234+y=789\)

The denominatoris 5 . We have 3 parts shaded. This tells

3
us that the numerator is 3. Thus, 5 shaded.
49. 37
0.037.

1000

3 zeros Move 3 places.
37
\(100 \stackrel{ }{=}\)
0
```

    3.9\timesy=
    249.6
3.9 x y =
249.6
3.9 3.9
= 64

```

The number64 checks. It is the solution.

sides by 3
53 . \(\underline{5 \cdot 3}\)
\begin{tabular}{rl}
\(t=6 \cdot 2=\) \\
6 & 2 \\
\(=\) & \(\underline{5} \cdot \underline{3} \quad=\underline{3}-\underline{5}\) \\
\(2 \cdot 3 \cdot 2\) & 32. \\
& \\
&
\end{tabular}

61.
\(\underbrace{\underline{36}}\)\begin{tabular}{c}
\\
\\
\(x\)
\end{tabular}
\(8 \cdot x=17 \cdot 36 \quad\) Equating
cross products
\(\underline{8 \cdot x} \quad \underline{17}: 36\)

Chapter 11: Algebra: Solving Equations and Problems
Solve. We carry out the addition.
\[
627+48=d
\]
\[
675=d
\]

Check. We can repeat the calculation. The answer
checks.

State. The total donation was \(\$ 675\).
66. Familiarize. Let \(m=\) the numberof
wrap 8710 candy bars.
Translate.
\begin{tabular}{lllll}
\(\begin{array}{l}\text { Number } \\
\text { of }\end{array}\) & & \(\begin{array}{l}\text { Numb } \\
\text { er }\end{array}\) & \multicolumn{2}{c}{ Number } \\
bars & time & of & is of
\end{tabular}\(]\)

Check. \(134 \cdot 65=8710\), so the answerchecks.

State. It takes 65 min to wrap 8710 candy bars.

Familiarize. Let \(p=\) the price of the stock when it was resold.

Translate.
is Price
ten equally-spaced tick marks on the vertical scale price \(\quad\) price \(\quad\)\begin{tabular}{c}
before \\
resale
\end{tabular}

\(x+22^{\circ}+40^{\circ}=\)
\(180^{\circ}\)
```

        +62 =
    ```
 \(180^{\circ}\)
\begin{tabular}{ll}
\(\square\) & \(\bar{A} \square\) \\
\(180^{\circ}-62^{\circ}\) & \\
\(\square\) & \(\bar{A} \square\) \\
\(118^{\circ}\) &
\end{tabular}

From Exercise 63 we know that \(m(A)=118^{\circ}\), so \(A\) is an obtuse angle. Thus, the triangle is an obtuse triangle.

\section*{Familiarize. Let \(d=\) the total donation.}

\section*{Translate.}
\(\bar{A} \square 27,428.6+\bar{A} \square_{t}=27,914.5 \bar{A} \square\)
Solve.
\(27,428 \overline{4} 6+\quad t=27\),
914.5
\(27,428.6+t-27,428.6=27,914.5-\) 27, 428.6
\(t=\)
485.9

Check. 27, \(428.6+485.9=27,914.5\), so the answerchecks.
State. The trip was 485.9 mi long.

Famitiarize. Let \(a=\) the amount that remains after the taxes are paid. Translate.

Check. The total taxes paid were \(\$ 2300+\$ 1600\), or \$3900,
and \(\$ 12,000-\$ 3900=\$ 8100\) so the answerchecks.
State. \(\$ 8100\) remains after the taxes are paid.

Familiarize. Let \(p=\) the amount the teacherwas paid.

Translate.
\begin{tabular}{ll}
Draily times & \begin{tabular}{l}
Number of \\
pay
\end{tabular} \\
\(\underline{\underline{\text { days }}}\) is Armount
\end{tabular}
\[
\begin{array}{ll}
87 & \begin{array}{c}
\times \\
p
\end{array}
\end{array}
\]

Solve. We carry out the multiplication.

\section*{\(87 \times 9=\)}
p
\[
\begin{aligned}
& \quad 783=p \\
& \text { Check. } \quad \text { We can repeat the calculation. }
\end{aligned}
\]

The answer checks.

State. The teacherwas paid \(\$ 783\).
Familiarize. Let \(d=\) the distance Celeste would walk
in
\[
\begin{aligned}
& \text { Tolve. } \\
& \qquad \begin{array}{l}
s \times 8=679.68 \\
s * \underline{8}=\underline{679.68}
\end{array}
\end{aligned}
\]

8
\[
=84.96
\]

Check. \(8 \cdot \$ 84.96=\$ 679.68\), so the answerchecks.
State. Each sweatercost \$84.96.
Familiarize. Let \(p=\) the numberof gallons of paint needed to cover650 \(\mathrm{ft}^{2}\).
Translate. We translate to a proportion.

covered
Solve. We equate cross products.
\[
\begin{gathered}
=\begin{array}{c}
400 \\
650 \\
8 \cdot 650=400 \\
\cdot p \\
\underline{8.650} \quad \frac{400 \cdot p}{400} \\
= \\
400
\end{array} \\
13=p
\end{gathered}
\]

Check. We can substitute in the proportion and check

The cross products are the same so the answer checks.
State. 13 gal of paint is needed to cover650 \(\mathrm{ft}^{2}\).
\(\underline{3}\)
\(\times 5 \% \times 4\)
\$40003

1

2 hr , in kilometers.

Translate.
Speed times Time is

Check. The new population will of the origi- nal population. of \(29,000=1.04 \cdot 29,000=\)

30, 160, the answerchecks.
State. Aftera yearthe population will be 30,160.
77. To find the average age we add the ages and divide by the numberof addends.

The average age is 28 .

To find the median we first arrange the numbers from smallest to largest. The
median is the middle number.
18, 18, 21, 26, 31, 32,

> 50
> \(\uparrow\)
> Middle
> number

The median is 26 .
The number 18 occurs most frequently, so it is the mode.
```

78.18 2 = 18.18=
324
79.7 }\mp@subsup{}{}{3}=7\cdot7\cdot7
343
\
9=

```
 The square root of 9 is 3 because \(3^{2}\)
 \(\sqrt{ } 9\).
 \(12 \overline{1=11}\)

The square root of 121 is 11 because
 \(\sqrt[11]{ }{ }^{2}=121\).
82. \(2 \overline{0} \approx 4.472 \quad\) Using a calculator

 in.
 \(4280 \mathrm{~mm}=\mathrm{cm}\)

Think: To go from mm to cm in the table is a move of 1 place to the left. Thus, we move the decimal point 1 place to the left.
87. \(5 \mathrm{lb}=5 \times 1 \mathrm{lb}\)
\(=5 \times 16 \mathrm{oz}\)
\[
=80 \mathrm{oz}
\]
88. \(0.008 \mathrm{cg}=\ldots \ldots-\quad-\quad \mathrm{mg}\)

Think: To go from cg to mg in the table is a move of 1
place to the right. Thus, we move the decimal point 1 place to the right.
0.008
0.0.08
\(0.008 \mathrm{cg}=\)
0.08 mg
89. \(8190 \mathrm{~mL}=8190 \times\)

1 mL
\[
\begin{aligned}
& =8190 \times 0.001 \mathrm{~L} \\
& =8.19 \mathrm{~L}
\end{aligned}
\]
90. \(20 \mathrm{qt}=20\)
\(\mathrm{qt} \diamond \times \times\)\(\quad \begin{gathered}\frac{1}{\mathrm{gal}} \\ 4 \mathrm{qt} \uparrow\end{gathered}\)
\[
\begin{aligned}
& \frac{20}{-} \\
= & 4 \times 1 \mathrm{gal} \\
= & 5 \mathrm{gal}
\end{aligned}
\]

\(\checkmark\)
\begin{tabular}{|c|c|}
\hline The length of the third side is & 50 ft , orapproximately \\
\hline \(4280 \quad 428\) & \\
\hline . 0. & \\
\hline \(\uparrow\) & \\
\hline \(4280 \mathrm{~mm}=\) & \\
\hline cm & \\
\hline 3 days \(=3 \times 1\) day & \\
\hline \(\square\) & \(\overline{\mathrm{A}} \square\) \\
\hline \(\times 24 \mathrm{hr}\) & \\
\hline \(\square \overline{\mathrm{A}} \quad \overline{\mathrm{A}}\) & \(\bar{A} A \bar{A} \bar{A} \quad \square\) \\
\hline 2 & \\
\hline hr & \\
\hline
\end{tabular}
\(\square \overline{\mathrm{A}} \quad \overline{\mathrm{A}}\)
hr
\(\overline{\mathrm{A}}\)
7.071 ft .
\(d=2 \cdot r=2 \cdot 10.4 \mathrm{in} .=20.8 \mathrm{in}\).
\(C=2 \cdot \pi \cdot r\)
\(C \approx 2 \cdot 3.14 \cdot 10.4 \mathrm{in} .=65.312 \mathrm{in}\).
\(A=\pi \cdot r \cdot r\)
\(A=\pi \cdot r \cdot r\)
\(A \approx 3.14 \cdot 10.4\) in. \(\cdot 10.4\) in. \(=339.6224 \mathrm{in}^{2}\)
\(20,000 \mathrm{~g}=\)
kg
Think: To go from g to kg in the table is a move of 3 places to the left. Thus, we move the decimal point 3 places to the left.
\[
\begin{gathered}
20,000 \\
000 .
\end{gathered}
\]
\(20,000 \mathrm{~g}=20\)
kg
\[
\begin{aligned}
& P=2 \cdot(l+w) \\
& P=2 \cdot(10.3 \mathrm{~m}+2.5 \mathrm{~m}) P=2 \text {. } \\
& \text { (12.8 m) } \\
& P=25.6 \mathrm{~m} \\
& A=l \cdot w \\
& A=(10.3 \mathrm{~m}) \cdot(2.5 \mathrm{~m}) A= \\
& 10.3 \cdot 2.5 \cdot \mathrm{~m} \cdot \mathrm{~m} \\
& A=25.75 \\
& \text { m } \\
& \text { 94. } A=\underline{1} \quad b h \\
& \begin{array}{l}
2 \\
1 \\
1
\end{array} \\
& =2 \cdot 10 \mathrm{in} .5 \mathrm{in} \text {. } \\
& A=25 \\
& \mathrm{in}^{2}
\end{aligned}
\]
95. \begin{tabular}{ll}
\(A=b \cdot h\) \\
& \(A=15.4 \mathrm{~cm} \cdot 4\) \\
cm \\
& \(A=61.6 \mathrm{~cm}^{2}\) \\
96. & \(A=\xrightarrow{1} \cdot(a+\)
\end{tabular}
\(h\)

> b)

2
\(A=\underline{1}\)
\(20.2 \mathrm{yd})\)
\(\frac{8.3 \cdot 31}{\substack{A=\\ y d}} \quad 2\)

2
\(A=128.65\)
97. \(\quad \stackrel{y}{V} \stackrel{2}{=} l \cdot w \cdot h\)
\[
\begin{array}{rl}
V & =1 \cdot w \cdot h \\
V & 10 \mathrm{~m} \cdot 2.3 \mathrm{~m} . \\
2.3 \mathrm{~m}
\end{array}
\]
\[
V=23 \cdot 2.3 \mathrm{~m}^{3}
\]
\[
=52.9 \mathrm{~m}^{3}
\]
98. \(V=B h=\pi \cdot r^{2} \cdot h\)
\[
V \approx 3.14 \cdot 4 \mathrm{ft} \cdot 4 \mathrm{ft}
\]
\(V 16 \mathrm{ft}\)
99. \(V=\underline{1} \cdot r_{2} \cdot h\)

3
\[
1
\]
\[
\approx 3 \cdot 3.14 \cdot 4 \mathrm{~cm} \cdot 4 \mathrm{~cm} \cdot 16
\]
cm
\(\square\)
\(67.94 \overline{6} \mathrm{~cm}^{3}\)
\(7-x=12\)
\[
7-x-7=12
\]

7
\(-x=5\)
\[
-1 \cdot x=
\]
\[
5
\]
\[
\frac{-1}{5} \cdot(-1 \cdot x)=-1
\]
\(=\)
\(-5\)
The number -5 checks. It is the solution.
\[
\text { 103. } \begin{gathered}
5(x-2)-8(x-4)=20 \\
5 x-10-8 x+32=20 \\
-3 x+22= \\
20 \\
-3 x+22-22=20 \\
-22 \\
-3 x=-2
\end{gathered}
\]
\[
\frac{-3 x}{-3}=\frac{-2}{-3}
\]
\[
2
\]
\[
x=3 \quad-
\]

The \(\quad 2\)
2 checks. It is the solution.
number 3
104. \(12 \times 20-10 \div 5=\quad-2=238\)
105. \(4^{3}-5^{2}+(16 \cdot 4+23 \cdot 3)=4^{3}-5^{2}+(64+\)
69)
\[
\begin{gathered}
=4^{3}-5^{2}+133 \\
=64-25+133 \\
=39+133 \\
=172
\end{gathered}
\]
\(|(-1) \cdot 3|=|-3|=3\)
\(17+(-3)\)

The absolute values are 17 and 3 . The diff erence is \(17-3\),
or14. The positive numberhas the largerabsolute value, so the answeris positive.
\(\overline{\mathrm{A}}\)
\(17+(-3)=14\)
108. \(\begin{array}{crcrr}1 & 2 & 1 & 2 & 1 \\ - & 3 & -3 & =--3-3 & =3\end{array}\)
109. \((-6) \cdot(-5)=30\)

\({ }^{-}{ }_{7}\)
\(7 \quad 7^{\circ}\)
48
\[
-6=-8 \text { Check: }-8 \cdot(-6)=48 \text { 112. Let } y=\text { the }
\]
number; \(y+17\),
or17 \(+y\)
\(-4.3 \quad-4.3\)
\[
x=4
\]

The number4 checks. It is the solution.
\(5 x+7=3 x-9\)
\(5 x+7-3 x=3 x-9\)
\(3 x\)
\(2 x+7=-9\)
\(2 x+7-7=-9\)
7
\[
\begin{aligned}
& 2 x= \\
& -16 \\
& \frac{2 x}{-16}= \\
& \begin{array}{lr}
2 & 2 \\
= & 192 x \\
= & \\
=8
\end{array}
\end{aligned}
\]

The number -8 checks. It is the solution.

Let \(x=\) the number; \(38 \% x\), or \(0.38 x\)

Familiarize. Let \(s=\) the amount Rachel paid forher scooter. Then \(s+98=\) the amount Nathan paid forhis.

Translate.
\begin{tabular}{cllll}
Amou & & Amount & & Tota \\
nt & plu & Nathan paid & 1 & \\
Rachel & s & is & am ou \\
paid & & & nt & \\
\hline & & & &
\end{tabular}
\[
s \quad+\quad(s+98) \quad=\quad 192
\]

Solve.
\[
\begin{aligned}
& s+(s+ \\
2 s+98 & =192 \\
2 s & = \\
94 & \\
= &
\end{aligned}
\]

We were asked to find only \(s\), but we also find \(s+98\) so that we can check the answer.

If \(s=47\), then \(s+98=47+98=145\).
\begin{tabular}{ll}
234 \\
\begin{tabular}{l}
Check. \(\$ 145\) is \(\$ 98\) more than \(\$ 47\), and \(\$ 47+\) \\
\(\$ 145=\$ 192\).
\end{tabular} & \(\underline{1}^{17}\)
\end{tabular}

The answerchecks.

State. Rachel paid \(\$ 47\) forherscooter.
115. Familiarize. Let \(P=\) the amount originally invested.

Using the formula for simple interest, \(I=P\).
\(r \cdot t\), we know
amountheinterestintheis \(P \cdot 4 \% \cdot 1\), or \(0.04 P\), and the account afterl yearis \(P+0.04 P\), or \(1.04 P\)

Translate.

Amount in the account after1 yr
\(\square\)
\(1.04 P\)
2288

Solve.
\[
\begin{aligned}
& 1.04 P=2288 \\
& 228 \\
& P=- \\
& 1.04 \\
& P=2200
\end{aligned}
\]

Check. \(\$ 2200 \cdot 0.04 \cdot 1=\$ 88\) and \(\$ 2200+\$ 88=\$ 2288\), so
the answerchecks.
State. Originally, there was \(\$ 2200\) in the account.
Familiarize. Let \(x=\) the length of the first piece, in meters. Then \(x+3=\) the length of the second piece and 4
\(\digamma x=\) the length of the third piece.
Translate.

4
\[
\begin{array}{ll}
\quad \begin{array}{ll}
x & +(x+3) \\
+ & \overline{5}^{x}= \\
\text { Solve. } & \\
& \\
&
\end{array}+
\end{array}
\]
is
\$2288
\(=\)

Solve.

The number0 checks. It is the solution.
```

$29.966-8.673 y=-8.18+10.4 y$
$29.966-8.673 y+8.673 y=-8.18+10.4 y+$
8.673y
$29.966=-8.18+$
$19.073 y$
$29.966+8.18=-8.18+19.073 y$
$+8.18$
$38.146=$
$19.073 y$
$\begin{array}{r}38.146 \quad 19.073 y \\ \\ \\ \hline\end{array}$
19.073
$2=y$

```

The number2 checks. It is the solution.
1
119. \(\frac{3}{4} x-\frac{1}{4} \quad y \quad \frac{1}{4} x-\frac{3}{4} y \quad \frac{1}{4} x \quad \frac{1}{4} x-\frac{3}{4} y-{ }_{4} y^{-}\) \(+\quad=\quad+\)
\[
=\quad+
\]
\(x+\)
\[
\begin{aligned}
& x+(x+3)+5 x^{4} \\
& =143
\end{aligned}
\]

14
\(x+3=\)
\(143^{5}\)
\[
\begin{aligned}
\frac{14}{143-3} x+3-3 & = \\
\frac{5}{5} & x=140
\end{aligned}
\]

14 -
\[
14^{\circ} 5^{x}={ }_{14}
\]
\[
\begin{aligned}
& x=\quad \begin{array}{l}
\frac{5 \cdot 140}{14}= \\
14 \\
x=\quad \frac{14}{14} \cdot \frac{5 \cdot 10}{1}
\end{array} .
\end{aligned}
\]
\[
x=50
\]

\section*{\(4 \quad 4\)}

If \(x=50\), then \(x+3=50+3=53\) and \(5 x=5 \cdot 50=40\).

Check. The second piece is 3 m longerthan the first piece, and the third piece is four-fifths as long as the first piece.

Also, \(50 \mathrm{~m}+53 \mathrm{~m}+40 \mathrm{~m}=143 \mathrm{~m}\), so the answerchecks.

State. The length of the first piece of wire is 50 m , the length of the second piece is 53 m , and the length of the third piece is 40 m .

Answer C is
120. correct.
\[
8 x+4 y-12 z=4 \cdot 2 x+4 \cdot y-4 \cdot 3 z
\]
\[
4(2 x+y-3 z)
\]

Answer B is correct.

5
25
13
\(\begin{array}{lllll}\underline{13 \cdot 5 \cdot 1} & & 13 \cdot 5 & 1 & \underline{1} \\ \begin{array}{llll}5 \cdot 5 \cdot & = & 13 \cdot 5 & 5\end{array} & = \\ 13\end{array} \quad \begin{array}{llll} & & & \end{array}\)

Answer D is correct.
122. \(-27+(-11)\)

We have two negative numbers. Add the absolute values,
27 and 11 , getting 38 . Make the answernegative.
\(-27+(-11)=-38\)
Answer A is correct.

Familiarize. The difference of the numbers is 40 , so one number is 40 more than the other. Let \(x=\) the smaller number. Then \(x+40=\) the larger number.

Translate. The sum of the numbers is 430 , so we have \(x+(x+40)=\) 430.

Solve.
\[
\begin{aligned}
& x+(x+40)= \\
& 430 \\
& 2 x+40=430 \\
& 2 x= \\
& 390= \\
& 195
\end{aligned}
\]

If \(x=195\), then \(x+40=235\).
Check. The sum of the numbers is \(195+\)
235 , or 430 , and theirdiff erence is \(235-195\),
or 40 . The answerchecks.
State. The numbers are 195 and 235.```

