Solution manual for Basic College Mathematics through Applications 5th Edition by Akst and Bragg 0321733398 9780321733399

Linkfulldowndload:

Test Bank:
https://testbankpack.com/p/test-bank-for-basic-college-mathematics-through-applications-5th-edition-by-akst-and-bragg-0321733398-9780321733399/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-basic-college-mathematics-through-applications-
5th-edition-by-akst-and-bragg-0321733398-9780321733399/

Chapter 2

FRACTIONS

2.1 Factors and Prime

Numbers

Exercises

2. A composite number is a whole number that has more than two factors.
3. The least common multiple of two or more numbers is the smallest nonzero number that is a multiple of each number.
4. The divisibility test for 10 is to check if the ones digit is 0 .
5. $\frac{10}{1}=10 \mathrm{R} 0 \quad \underline{10}=5 \mathrm{R} 0$

The factors of 10 are $1,2,5$, and 10 .
10. $\stackrel{9}{=} 9 \mathrm{R} 0 \quad \underline{9}=3 \mathrm{R} 0$

13
The factors of 9 are 1,3 , and 9 .
12. $\underline{15}=15 \mathrm{R} 0 \quad \underline{15}=5 \mathrm{R} 0$

13
The factors of 15 are $1,3,5$, and 15 .
22. ${ }^{48}=48$
$48=24$
$\frac{\mathrm{R} 0}{2}$
$\underline{48}=12 \mathrm{R} 0 \quad \underline{48}=8 \mathrm{R} 0$
$4 \quad 6$

The factors of 48 are $1,2,3,4,6,8,12,16$, 24 , and 48.
24. 7 is prime.
26. 24 is composite; $2,3,4,6,8$, and 12 are factors.
28. 75 is composite; $3,5,15$, and 25 are factors.
30. 31 is prime.
32. 45 is composite; $3,5,9$ and 15 are factors.
34.

38.

$18=2 \times 3 \times 3=2 \times 3^{2}$
40.

1
The factors of 47 are 1 and 47.
16. $\underline{35}=35 \mathrm{R} 0 \quad \underline{35}=7 \mathrm{R} 0$

220
$2 \overbrace{}^{10}$

15
The factors of 35 are $1,5,7$, and 35 .
18. $\underline{73}=\begin{array}{rr}2 & 5 \\ 73 & R 0\end{array}$

The factors of 73 are 1 and 73 .
$40=2 \times 2 \times 2 \times 5=2^{3} \times 5$
42.

44.

46.
$7 \quad 7$
$49=7 \times 7=7^{2}$

14 Chapter 2 Fractions
48.

$$
64=2 \times 2 \times 2 \times 2 \times 2 \times 2=2^{6}
$$

50.

211
$22=2 \times 11$
52.

54.

56. 13^{2}

231
$62=2 \times 31$
58.

$$
200=2 \times 2 \times 2 \times 5 \times 5=2^{3} \times 5^{2}
$$

60.

62.

$400=2 \times 2 \times 2 \times 2 \times 5 \times 5=2^{4} \times 5^{2}$
64. $9=3^{2} \quad 12=2^{2} \times 3$
$\mathrm{LCM}=2^{2} \times 3^{2}=4 \times 9=36$
66. $4=2^{2} \quad 6=2 \times 3$
$\mathrm{LCM}=2^{2} \times 3=4 \times 3=12$
68. $20=2^{2} \times 5 \quad 21=3 \times 7$
$\mathrm{LCM}=2^{2} \times 3 \times 5 \times 7=4 \times 3 \times 5 \times 7=$ 420
70. $15=3 \times 5 \quad 60=2^{2} \times 3 \times 5$
$\mathrm{LCM}=2^{2} \times 3 \times 5=4 \times 3 \times 5=60$
2
72. $30=2 \times 3 \times 5150_{2}=2 \times 3 \times 5$
$\mathrm{LCM}=2 \times 3 \times 5=2 \times 3 \times 25=150$
74. $100=2^{2} \times 5^{2} \quad 90=2 \times 3^{2} \times 5$
$\mathrm{LCM}=2^{2} \times 3^{2} \times 5^{2}=4 \times 9 \times 25=900$
76. $2=2 \quad 8=2^{3} \quad 10=2 \times 5$
$\mathrm{LCM}=2^{3} \times 5=8 \times 5=40$
78. $2=2 \quad 3=3 \quad 5=5$
$\mathrm{LCM}=2 \times 3 \times 5=6 \times 5=30$
80. $6=2 \times 3 \quad 8=2^{3} \quad 12=2^{2} \times 3$
$\mathrm{LCM}=2^{3} \times 3=8 \times 3=24$
82. $8=2^{3} \quad 24=2^{3} \times 356=2^{3} \times 7$

LCM $=2^{3} \times 3 \times$
$7=8 \times 3 \times 7=$ 168
84. 63 is composite; 3 , 7,9 , and 21 are factors.

3
586.

$$
\begin{aligned}
& 5=5 \quad 10=2 \times 5 \quad 12 \\
& =2^{2} \times 3 \\
& \quad 90=2 \times 3 \times 3 \times 5=2 \times 3^{2} \\
& \quad \times 5
\end{aligned}
$$

L $\quad=2^{2} \times 3 \times 5=4 \times 15=$ 60 C
M 49 R0
88. a. 4196

Yes, because 196 is a multiple of 4 .
b. $4 \longdiv { 9 8 }$

No, because 198 is not a multiple of 4 .
90. Yes, an oil change would be recommended at 21,000 miles, because 21,000 is divisible by 3,000.
92. $\operatorname{LCM}(4,3)=12$. Both prizes will be given in $2006+12=2018$.
94. $6=2 \times 3 ; 3=3 ; 4=2 \times 2$
$\operatorname{LCM}(6,3,4)=2^{2} \times 3=12$, so the bills will all fall due again in 12 months.

Mindstretchers

1. a. $57=7+19+31$ or $57=3+17+37$
b. $81=11+23+47$ or $81=7+37+37$
2. $1=12=23=34=2^{2} 5=5$
$6=2 \times 37=78=2^{3} 9=3^{2} 10=2 \times 5$
$\mathrm{LCM}=1 \times 2^{3} \times 3^{2} \times 5 \times 7=2,520$
3. $715 \times 7 \times 11 \times 13=715,715$

2.2 Introduction to Fractions

Exercises

2. The improper fraction $\frac{5}{2}$ can be expressed as a mixed number.
3. Divide the numerator and denominator of a fraction by the same whole number in order to. simplify it.
4. The least common denominator of two or more fractions is the least common multiple of their denominators.
5. There are 4 equal parts of which 1 part is
shaded. The fraction is $\frac{1}{4}$.
6. There are 5 equal parts of which 4 parts are shaded. The fraction is 4 .

$$
5
$$

$$
\underline{2}
$$

12. There are 2 wholes and of a whole shaded.
13. There is 1 whole shaded and of a whole $\underline{8}$ shaded. The mixed number is $1 \frac{\underline{6}}{8}$.
14. ${ }^{6}$

11

18. $\frac{4}{10}$

20.

11 $\overline{11}$

22. ${ }^{8}$

3

24. $4^{\frac{1}{1}}$

5

26. $3 \frac{4}{9}$

28. $\frac{7}{12}$, proper \quad 30. ${ }_{\underset{1}{10}, \text { improper }}^{11}$ 1
32. $12{ }_{2}{ }^{-}$, mixed number
34. $\frac{4}{4}$, improper \quad 36. $\frac{5}{6}$, proper
38. $10 \frac{\underline{3}}{4}$, mixed number
40. $1^{\underline{1}}=\underline{(3 \times 1)+1}=\frac{4}{}$

The mixed number is $2{ }_{5}$.
42. $10^{\underline{2}}=\frac{(3 \times 10)+2}{}=\underline{32}$
33
3
44. $12 \underline{3}=\frac{(4 \times 12)+3}{}=\underline{51}$

$\begin{array}{lll}4 & 4 & 4\end{array}$

46. $8=\frac{8}{1}$
47. $6^{\frac{5}{6}}=\frac{(6 \times 6)+5}{6}=\frac{41}{6}$
$6 \quad 6 \quad 6$

ㄴ․ $10 \frac{1}{2}=\frac{(2 \times 10)+1}{2}=$
52. $20 \frac{1}{8}-\frac{(8 \times 20)+1}{8}=\frac{161}{8}$
54. $11 \underline{5}=\frac{(7 \times 11)+5}{}=\underline{82}$ $=$
$\begin{array}{lll}7 & 7 & 7\end{array}$
56. $10=\begin{gathered}\overline{10} \\ 1\end{gathered}$
58. $2^{\underline{7}} \begin{aligned} & \underline{(13 \times 2)} \\ & \underline{+7}\end{aligned}$
$13 \quad 13 \quad 13$
60. $4 \frac{1}{6}=\frac{(6 \times 4)+1}{6}=\frac{25}{6}$
62. $14^{\frac{1}{=}}=\frac{(10 \times 14)+1}{}=\underline{141}$
$10 \quad 10 \quad 10$
$\underline{6} \quad \underline{1}$ R1 $\quad \underline{6} \quad 1$
64. $=5)^{6}=-$

1
$5 \quad 5 \quad 5$

$$
\underline{12} \quad \underline{2} \mathrm{R} 2 \quad \underline{12} \quad \underline{2}
$$

66. $=512=2$
$415 \mathrm{R} 1 \quad \underline{41} \quad \underline{1}$
67. ${ }_{8}=\oint 41 \quad 8=5_{8}$
68. ${ }^{\overline{58}}=11_{58}^{5 \mathrm{R} 3} \quad \overline{58}=5^{3}$

69. $\underline{72}=9 \sqrt{72}$ R0 $\quad \underline{72}=8$
$9 \quad 9$
19 R 0
70. $\frac{19}{1}=119 \quad \frac{19}{1}=19$
71. Possible answers: 90. Possible answers:
$\underline{3} \quad \underline{3 \cdot 2}=\underline{6} \quad \underline{1} \quad \underline{1 \cdot 2}=\underline{2}$

| 10 | $10 \cdot 2$ | 20 | 10 | $10 \cdot 2$ |
| ---: | :--- | ---: | :--- | :--- |$\quad 20$

92. Possible answers:
$\underline{5} \quad \underline{5 \cdot 2} \quad 10$
$\underline{3} \quad 3.2 \quad 6$
$\begin{array}{lll}= & = & = \\ \frac{6}{6 \cdot 2} & = & = \\ \frac{5}{6}=\frac{5 \cdot 3}{6 \cdot 3}=\frac{15}{18} & \underline{3}=\frac{3 \cdot 3}{5}=\frac{10}{5 \cdot 3}\end{array}$
93. $\stackrel{2}{=} \frac{2 \cdot 2}{=}-4$
94. ${ }^{7}=\frac{7 \cdot 2}{}=\underline{14}$
$\begin{array}{lll}9 & 9 \cdot 2 & 18\end{array}$
$\begin{array}{lll}10 & 10 \cdot 2 & 20\end{array}$
95. $5=\underline{5}=\underline{5 \cdot 15}=\underline{75}$
$1 \quad 1 \cdot 15 \quad 15$
96. $\underline{4}=\frac{4 \cdot 7}{=} \underline{28}$
97. ${ }^{-3}=\frac{3 \cdot 4}{}=\underline{12}$
$\begin{array}{lll}9 & 9.7 & 63\end{array}$
$10 \quad 10 \cdot 4$
5
55
98. $\underline{\underline{12}}=12 \underline{12} \quad \underline{12}=1$
$=\underline{\underline{2}}=\underline{2 \cdot 21}=\underline{42}$
99. $21 \begin{array}{lll} & 1.21 & 21\end{array}$

12)
12
108. $\underline{7}=\underline{7 \cdot 3}=\underline{21} \quad$ 110. $\quad \underline{5}=\frac{5 \cdot 8}{}=40$
$100 \quad 1 \mathrm{R} 0 \quad \underline{100}=1$
70. $-=100 \underline{100}$

100
100
72. $\begin{array}{ccc}\frac{31}{2} & \begin{array}{l}15 \mathrm{R} 1 \\ 231\end{array} & \begin{array}{l}31 \\ 2\end{array} \\ 2 & - & 15^{1} \\ - \\ 2 & 2\end{array}$
74. $\begin{array}{cc}\underline{62}= & \begin{array}{c}20 \mathrm{R} 2 \\ 62\end{array} \\ 3 & \underline{62}=20 \\ \underline{2} & 3\end{array}$
,$^{13 \mathrm{R} 1 \quad 40}={ }_{13} 1^{1}$
76. $\frac{40}{} 4-$
$\begin{array}{lll}8 & 8 \cdot 3 & 24\end{array}$
$\begin{array}{lll}6 & 6 \cdot 8 \quad \underline{48}\end{array}$
112. $\frac{1}{3}=\frac{1 \cdot 30}{3 \cdot 30}=\frac{30}{90} \quad$ 114. $\quad \frac{1}{4}=\frac{1 \cdot 25}{4 \cdot 25}=\frac{25}{100}$

1		11
120. $\underline{9}^{-}=\frac{3 \cdot 3}{}=\underline{3}$	$\text { 122. } \underline{21}$	377
$\begin{array}{lll}12 & 3 \mid 4 & 4\end{array}$	21	3\|7 7
1		11

Section 2.2 Introduction to Fractions
124. $\underline{4}=\frac{11}{/ /} \cdot \underline{2} \quad=\underline{1}$ 126. $\quad \underline{25}=\underline{5}=$ $\begin{array}{llllll}24 & 2 \cdot 2 \cdot 2 \cdot 3 & 6 & \underline{5} & 49 & 7 \cdot 7\end{array}$

11
1
128. $\underline{75}=\quad \underline{3.25}=\underline{3}$
$100 \quad 4 \cdot 25 \quad 4$
130. 875 $\stackrel{111}{5 \cdot 5,5 ; 7}=7$

$$
1,000 \underset{111}{\$} 5 \cdot 5 \cdot 5 \cdot 8
$$

132. $\underline{15}=\frac{3 \cdot 5}{\mid}=\underline{5}=1^{2}$
$\begin{array}{llll}9 & 3 \cdot 3 & 3 & 3\end{array}$
$30 \quad$ 5.y
133. $18=3 \cdot 6=5=1^{2}$

$$
\begin{array}{lll}
6 & 3 & 3
\end{array}
$$

140. $\frac{36}{144}=\frac{11}{9 \cdot 4 \cdot 4 \cdot 4} \frac{1}{4} 4$

11
142. $\quad \underline{21} \quad \frac{1}{\beta \cdot 7}=7$
$=$

$$
\begin{array}{lll}
36 & \begin{array}{ll}
3 \mid 12 & 12 \\
1
\end{array} &
\end{array}
$$

144. $11 \frac{51}{}=\frac{1.51}{11}=$
$102 \quad 2 \cdot 51 \quad 2$
1
145. $6 \overbrace{32}^{5 \mathrm{R} 2}=52=5$ $6 \quad 6 \quad 3$

$$
\begin{aligned}
& \mathrm{LCM}=2^{3} \cdot 11=8 \cdot 11=88 \\
& \underline{5}=\underline{5 \cdot 11}=\underline{55}
\end{aligned}
$$

$$
\begin{array}{lll}
8 & 8 \cdot 11 & 88
\end{array}
$$

$$
\frac{1}{2}=\frac{1 \cdot 44}{2 \cdot 44}=\frac{44}{88}
$$

$$
\frac{4}{11}=\frac{4 \cdot 8}{11 \cdot 8}=\frac{32}{88}
$$

415 -
146. ${\underset{144}{ }=1+1=2210}$
148. $\frac{5}{10}>\frac{3}{10}$ because $5>3$
$10 \quad 10$
164.

10

150. ${ }_{6}^{\underline{5}}<\frac{7}{8}$ because $\frac{20}{24}<\frac{21}{24} \quad 152$
166.

3
2^{19}
$={ }_{8}$
表 $4 \frac{6}{6}=1^{\underline{2}}=1^{1}$
168.
) $4_{1} \quad 4 \quad 2$
There are 1_{2} cloves per serving.

18 Chapter 2 Fractions
170. a. The total number of therapists is $182,000+94,000=276,000$. The fraction of therapists who are physical therapists is

$$
\frac{182,000}{276,000}=\frac{182}{276}=\frac{91}{138} .
$$

b. The fraction of therapists who are respiratory therapists is $\frac{94,000}{276,000}=\frac{94}{276}=\frac{47}{138}$
172. The Lakers did not win $82-65=17$ games.

This is $\frac{17}{82}$ of the games played.
$\begin{array}{lll}1 & 1.4 & 4\end{array}$
174. ${ }^{-}=-$
$\begin{array}{lll}9 & 9.4 & 36\end{array}$
$\underline{5}=\underline{5}$
$36 \quad 36$
There is a greater probability of getting a 6
because $\frac{5}{36}>\frac{1}{9}$.
176. The LCM of 2,8 , and 16 is 16 .

$$
\begin{aligned}
& \underline{1}=\underline{1} \quad \underline{1}=\begin{array}{l}
1 \\
-\underline{8} \\
16
\end{array} 16 \quad 8 \quad 8 \cdot 2 \quad 16 \quad 2 \quad 2 \cdot 8 \quad 16
\end{aligned}
$$

a. Newark Airport had the best visibility at

$$
\underline{1}_{\mathrm{mi}}
$$

2
b. Kennedy Airport had the worst visibility at ${ }^{1} \mathrm{mi}$.

16
178. average age $=\frac{57+61+57+57+58+57}{6}$

$$
=\frac{347}{6} \mathrm{yr}=57 \frac{5}{6} \mathrm{yr}
$$

Mindstretchers

2.3 Adding and Subtracting Fractions

Exercises

2. To subtract unlike fractions, rewrite them as_ equivalent fractions with the same denominator.
3. Fractions with equal numerators and denominators are equivalent to 1 .
4. $\frac{7}{10}+\frac{9}{10}=\frac{16}{10}=\frac{6}{10}$ or $\frac{3}{5}$
5. ${ }^{71}+\frac{7}{5}={ }^{150}=$ or $1-$
$100 \quad \overline{100} \quad 100 \quad \overline{100} \quad 2$
6. ${ }^{1}+\underline{3}+\underline{2}=\underline{6}$
$\begin{array}{llll}7 & 7 & 7 & 7\end{array}$
7. $\frac{1}{}+\underline{3}+\frac{1}{-5}=\frac{1}{}$
$\begin{array}{lllll}10 & 10 & 10 & 10 & 2\end{array}$
8. $\underline{1}=\underline{5}$
9. $\underline{1}=\underline{1}$
$4 \quad 20$
$+\frac{2}{=}=+$
5
13

20
18. $\underline{5}=\underline{10}$
$\stackrel{6}{+}{ }^{1}=\frac{12}{+}$
$112 \quad 12$
11
12
20. $\underline{3}=\underline{21}$
$\pm^{\frac{4}{3}}= \pm \begin{gathered}28 \\ 12\end{gathered}$
$7 \quad \underline{28}$
$\frac{33}{28}=1 \frac{5}{28}$
22. $\stackrel{9}{=} \underline{9}$
$\begin{array}{cc}10 & 10 \\ +\underline{4}= & +\underline{8}\end{array}$

1. The shaded center triangle is equivalent to 4 of the smaller shaded triangles, so
there are 7 shaded triangles. There are 9 unshaded triangles,
so there are 16 triangles in total. ${ }^{7}$

16 of the
triangle is shaded.
2. There are an infinite number of fractions, such

$$
\begin{aligned}
& \text { as } \\
& \underline{3} \quad 1 \underline{4} \quad 1 \quad \underline{5} \quad 1 \\
& 1,=1,1 \text {, and so on. } \\
& 2=\begin{array}{lllll}
2 & 3 & 3 & 4 & 4
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 5
\end{aligned} \frac{10}{\frac{17}{10}}=\frac{1}{10}
$$

24. $\frac{7}{20}=\frac{7}{20}$

3 $\quad 15$
3. a. $42=42 ; 174=174 ; 406=406$
b. $4=\frac{3}{6}=\frac{79}{158}$

$$
\begin{aligned}
& \pm= \pm \\
& \begin{array}{l}
\frac{20}{22} \\
\frac{2}{20}=1 \\
20
\end{array}=11
\end{aligned}
$$

26. $\frac{1}{5}+\frac{1}{6}+\frac{1}{3}=\frac{6}{30}+\frac{5}{30}+\frac{10}{30}=\frac{21}{30}=\frac{7}{10}$
27. $\underline{3}+\underline{1}+\underline{1}=\underline{27}+\underline{30}+\underline{10}=$ $\underline{67}$
$\begin{array}{lllllll}10 & 3 & 9 & 90 & 90 & 90 & 90\end{array}$
28. $\frac{1}{2}=\frac{6}{12}$

$$
\underline{1}=\underline{4}
$$

$$
3 \quad 12
$$

$+\frac{1}{4}=+\underline{3}$

$$
\frac{13}{12}=+\frac{1}{12}
$$

32. $\underline{1}=\underline{3}$
$10 \quad 30$
$\underline{2}=\frac{12}{30}$
$+\underline{5}=+$
$\underline{25} 6 \quad 30$
$\underline{40}=1 \underline{10}=$
1^{1}
$30 \quad 30 \quad 3$
33. $4 \frac{1}{5}$
34. $6 \frac{1}{12}$

$$
\begin{array}{ll}
\frac{+2}{1} & +4^{4^{1}} \\
{ }^{6} 5 & 10^{2}
\end{array} \quad 10^{\frac{1}{2}}
$$

Check: $4^{\underline{1}}+2$

$$
\begin{array}{cc}
5 \\
\downarrow \downarrow & \text { Check: } 6 \frac{1}{12}+\frac{1}{4} \\
12 \\
4+2=6 & \downarrow \\
& \downarrow+4=10
\end{array}
$$

44. $4^{\frac{7}{7}}=4^{\underline{14}}$

$$
\begin{aligned}
& 4 \frac{21}{20}=5 \\
& \text { Check: } 4 \frac{7}{10}+\frac{7^{20}}{20} \\
& \begin{array}{l}
\downarrow \\
5+0
\end{array} \stackrel{\downarrow}{=} 5
\end{aligned}
$$

46. $4^{\underline{1}}=4^{\underline{10}}$
$\begin{array}{rc}9 & 90 \\ +20 & =+20 \underline{63}\end{array}$

10
$24 \frac{90}{90} 7$

$$
4+21=25
$$

48. $\frac{1}{\underline{5}}=$

17
49. $20^{\underline{3}}=20^{\underline{6}}$

$$
\begin{aligned}
& \underline{2} \quad \underline{10} \\
& 24^{\underline{11}}=25^{\underline{1}}
\end{aligned}
$$

Check: $\begin{gathered}3_{30}^{1} \\ 2\end{gathered}$
$\begin{array}{ll}6 & 5 \\ \downarrow & \downarrow\end{array}$

$$
0+3=3
$$

Check: $20^{\frac{10}{3}}+4^{-10}$
-

$$
\begin{gathered}
5 \\
\begin{array}{c}
5 \\
\downarrow \\
21+5= \\
21
\end{array}
\end{gathered}
$$

38. $8^{\underline{2}}$
39.

10

$$
2^{\underline{3}}
$$

52. $4^{\underline{8}}=4^{\underline{8}}$

$$
+6^{\underline{2}}
$$

$$
\begin{array}{ccc}
\underline{3} & \begin{array}{l}
+7 \frac{9}{10}
\end{array} & \begin{array}{c}
9 \\
+5^{9} \overline{\mathrm{~T}}
\end{array} \begin{array}{r}
9 \\
\underline{3}
\end{array} \\
14^{\underline{4}}=15^{\underline{1}} & 9^{\underline{12}}=10^{\underline{2}}=10^{\underline{1}} & \underline{3} \\
3 & 3 & 10
\end{array} 10 \begin{aligned}
& \underline{9} \\
& 3
\end{aligned}
$$

Check: $8^{\underline{\leq}}+6^{\underline{\leq}} \quad$ Check: $2^{-3}+7^{\text {y }}$

$$
\begin{array}{cc}
\downarrow^{3} & \downarrow^{3}
\end{array}
$$

$10 \quad 10$

Check: $44_{9}^{9}+5^{\frac{1}{1}}{ }^{9}$

$$
9+7=16
$$

$$
2+8=10
$$

42. $17^{\underline{3}}=17^{\underline{15}}$

$$
\begin{gathered}
8 \\
+20^{\underline{1}}= \\
\underline{8} \\
+20 \\
\frac{5}{37 \frac{23}{40}}
\end{gathered}
$$

Check: $17^{\underline{3}}+20^{\underline{1}}$
85
$\downarrow \quad \downarrow$
$17+20=37$
$\downarrow \quad \downarrow$

$$
5+5=10
$$

54. $10^{\underline{5}}=10^{\underline{10}}$
$+8 \stackrel{6}{1}=+8^{\underline{3}}$
$-\frac{12}{18^{\frac{13}{2}}}$ or 19^{-1}

$$
\text { Check: } 100^{12}+8 \underline{1}^{12}{ }^{12} \begin{gathered}
4 \\
\downarrow \\
11+8 \\
= \\
=
\end{gathered}
$$

20 Chapter 2 Fractions

56. | $8^{\frac{3}{=}}$ |
| :---: |
| 10 |
| 8^{300} |
| $+2^{\frac{321}{}}=$ |
| $+2^{\frac{321}{2}}$ |
| 1,000 |
| 10000 |
| $10 \frac{621}{1,000}$ |
| Check: $8^{\underline{3}}+2^{\underline{321}}$ |

$$
\begin{array}{ll}
10 & 1,000 \\
\downarrow & \downarrow \\
8 & + \\
2=10
\end{array}
$$

58. $\underline{1}=\underline{8}$

$$
25^{\begin{array}{r}
3 \\
7
\end{array} \quad=25^{24}}
$$

$24 \quad 24$
$+100^{\underline{1}}=+100^{\underline{12}}$
[$\quad \frac{24}{125^{24}}={ }_{126} 3$ or $126^{\frac{1}{1}}$
$\begin{array}{cc}\text { Check: } & \frac{1}{3}+25 \frac{24}{24}+100_{2}^{24} \\ & \downarrow \\ & \downarrow\end{array}$

$$
0+25+101=126
$$

60. $4^{\underline{1}}=4^{\underline{2}}$

$$
\begin{array}{cc}
48 \\
\underline{3} & = \\
4 \underline{3} \\
16 & 16 \\
+\underline{5}^{16}= & +\underline{20} \\
-\frac{4}{8} & \underline{16} \\
& \frac{25}{16}=9 \frac{9}{16}
\end{array}
$$

64. $4^{\underline{2}}=4^{\underline{24}}$

$$
\begin{array}{cc}
3 & 36 \\
2 \frac{11}{}= & 2 \underline{11} \\
36 & 36 \\
+1^{\underline{1}}=+1 \underline{18} \\
-2 & \underline{36} \\
7 \underline{53} & =8 \underline{17}
\end{array}
$$

$$
\text { Check: } 4^{\frac{2}{2}}+2^{\underline{11}}+1^{\underline{1}}
$$

$$
\begin{gathered}
\begin{array}{c}
3 \\
\downarrow \\
\downarrow \\
5+2+2 \\
\downarrow
\end{array}{ }^{\downarrow}=9
\end{gathered}
$$

66. ${ }^{7}-{ }^{5}=2$
67. $\underline{11}-\underline{5}=\underline{6}=\underline{1}$
$9 \quad 9 \quad 9$
$\underline{3} \quad 1 \quad \underline{2}$
$\begin{array}{llll}7 & 4 & \underline{3} & \underline{1}\end{array}$
68. $2_{2}{ }_{2}={ }_{2}=1$
69. $\frac{1}{8}-\frac{1}{8}=0$
70.

$$
\begin{aligned}
\frac{2}{5} & =\frac{12}{30} \\
-\frac{1}{5} & =-5
\end{aligned}
$$

78. $\begin{aligned} & \frac{9}{10}=\frac{90}{100} \\ & 3^{3}=-3\end{aligned}$
$100 \quad 100$

$\frac{7}{30}$	$\frac{87}{100}$

80. $\underline{5}=\underline{20}$
81. $\underline{2}=\underline{18}$
$\bar{\sigma}^{6}=\begin{gathered}24 \\ \underline{8} \\ \frac{-}{\underline{3}} \\ \frac{24}{17}\end{gathered}$

$$
4+4+1=9
$$

62. $1^{\underline{2}}=1 \underline{8}$

$$
\begin{aligned}
& 312 \\
& 5^{\underline{5}}=5^{\underline{10}} \\
& 6 \quad 12 \\
& +3^{\underline{1}}=+3^{\underline{3}} \\
& \longrightarrow \quad \underset{\underline{3}}{\underline{\underline{3}} \underline{\underline{22}}}=10^{\underline{9}}=10 \\
& \text { Check: } 1^{\frac{2}{2}}+\begin{array}{ccc}
12 & 5^{\frac{5}{5}} & 3^{12} \\
3 & 6 & 4 \\
\downarrow & \downarrow & \downarrow
\end{array} \\
& 2+6+3=11
\end{aligned}
$$

92. $7^{\frac{3}{}} \quad$ Check: $7^{\frac{1}{2}}=7^{\frac{2}{2}}$

4	2	4
-1	$+\frac{1}{4}=+\frac{1}{}$	
4	4	4
$7^{\underline{2}}=7 \frac{1}{1}$		
42		

94. 2^{1} Check: $\frac{1}{}$

$$
\begin{array}{rr}
3 & 3 \\
-2 & +2 \\
\hline & \\
1 & 2 \underline{1} \\
3 & 3
\end{array}
$$

96. $4=3^{-5} \quad$ Check: 2^{4}

$$
\begin{array}{rc}
5 & 5 \\
-1^{\underline{1}}=-1^{\underline{1}} & +1^{\underline{1}} \\
-\quad \underline{5} & -\frac{5}{5} \\
2^{4} & 3^{\underline{5}}=4 \\
5 & 5
\end{array}
$$

98. $2=1^{\underline{2}}$ Check: ${ }^{1}$

$$
\begin{array}{rr}
-\overline{-1}=-1^{2} & +1^{\frac{2}{1}} \\
-2 & -\frac{2}{2} \\
& 1^{2}= \\
\frac{1}{2} & 2_{2}^{2}
\end{array}
$$

Check: $2^{4}=2^{\underline{8}}$

$$
\begin{array}{r}
\begin{array}{r}
5 \\
\frac{3}{=} \\
+2 \frac{10}{3} \\
+\frac{10}{10} \\
4 \frac{10}{10}
\end{array}=5 \frac{1}{10}
\end{array}
$$

106. $3^{\frac{1}{2}}=2^{\underline{6}}$ Ch eck: $1^{\underline{2}}$

$$
\begin{array}{ll}
-1^{4^{5}}=-1^{\frac{5}{4}} & +1^{\underline{5}} \\
-\frac{5}{5} & -\frac{5}{2} \\
1^{\underline{2}} & - \\
2^{\underline{6}}=3^{1}
\end{array}
$$

$$
\begin{array}{lll}
5 & 5 & 5
\end{array}
$$

108. $\frac{7}{3}=\frac{17}{2}$

Check: $2_{5}=2$

$$
\begin{array}{r}
\frac{10}{\frac{10}{9}} \\
+\frac{10}{\underline{10}}=+\underline{10} \\
2 \underline{17} \\
=3^{7} \\
10 \quad \overline{10}
\end{array}
$$

100. $5=4^{\underline{10}}$ Check: $\underline{1}$

$-4^{\underline{9}}=-4^{\underline{9}}$	10
10	
10	$\underline{9}$
$\frac{+410}{10}$	
10	$4=5$
10	10

$1 \quad \underline{2}$
110. ${ }_{2}{ }_{5}=1_{5}$ Check: 1_{5} $-4=-4 \quad+-4$
$\begin{array}{lcc}\underline{5} & \underline{5} & -\underline{5} \\ & 1^{\underline{2}} & 1 \frac{1}{6} \\ & & \\ & & 5\end{array}$
$1 \quad 7 \quad \underline{7}$

$$
\begin{aligned}
& 10 \quad 10 \\
& -\underline{9}=-\underline{9} \\
& \begin{array}{c}
10 \\
2_{10}^{8}=2 \\
2_{5}^{4}
\end{array} \\
& 4 \quad \underline{8}
\end{aligned}
$$

102.

$$
\begin{array}{cc}
4 & 4 \\
-\underline{3}=-\underline{3} & +\frac{3}{4} \\
8^{\frac{4}{1}} & \frac{4}{8 \frac{4}{4}}= \\
4 & 4
\end{array}
$$

112. ${ }^{7}{ }_{10}={ }_{70}={ }_{70}$ Check:

$$
\frac{-2}{-2}_{\underline{7}}^{\underline{1}}=\frac{\underline{10}}{-2}=\begin{array}{lll}
\underline{10} & 7^{\underline{1}}-2^{\underline{1}} \\
\underline{70} & 10 & 7 \\
\underline{67} & \downarrow & \downarrow
\end{array}
$$

$$
470 \quad-2=5
$$

104. $5^{-1}=4 \underline{11}$
$1 \quad \underline{10} \quad \underline{110}$

$$
\begin{gathered}
10 \\
10 \\
-2 \underline{3}=-2 \underline{3} \\
-10 \\
\frac{10}{2} \underline{8} \\
10
\end{gathered}=2 \frac{4}{5}, ~ ل م
$$

114. ${ }^{2}{ }_{10}=2_{100} \quad{ }_{100} \quad$ Check:

22 Chapter 2 Fractions
116. $9^{\underline{13}}=9^{\underline{13}}=8^{\underline{113}}$ Check:

100	100	100	13	7
$-6^{7}=-6 \underline{70}=-6 \underline{70}$			$9_{100}{ }^{-6}{ }_{10}$	
10	100	100	\downarrow	
	$2 \underline{43}$			
		100	9	$-7=2$

118. $1^{\underline{2}}=1^{\underline{3}}=\underline{15}$

$$
\begin{array}{lrr}
8 & 12 & 12 \\
\underline{2} & \underline{4} & \underline{4} \\
- & =- & - \\
-6 & \underline{6} & \frac{12}{11} \\
12
\end{array}
$$

Check: $\underline{11}=\underline{11}$

$$
\begin{array}{r}
12 \\
+\frac{12}{6}=+\frac{4}{6} \\
\frac{12}{\frac{15}{2}}=1^{\underline{3}}=1^{\underline{1}}= \\
1^{\underline{2}}
\end{array}
$$

$$
\begin{array}{llll}
12 & 12 & 4 & 8
\end{array}
$$

120. $2^{\underline{1}}=2^{\underline{2}}=1^{\underline{6}}$ Check: $\underline{3}$

$$
\begin{array}{cr}
2 & 4 \\
-1^{\underline{3}}=-1^{\underline{3}}=-1^{\underline{3}} & +1^{\underline{3}}
\end{array}
$$

$\begin{array}{lll}4 & 4\end{array}$

$$
\begin{array}{ll}
\underline{3} & 1^{6}=2^{z}=2^{-} \\
4 & 1
\end{array}
$$

122. $7^{1}=7^{4}=6^{20}$

$$
\begin{array}{ccc}
4 & 16 & 16 \\
-1 \underline{5}= & -1 \underline{5}= & -1 \underline{5} \\
-16 & -16 & 16
\end{array}
$$

$$
5 \underline{15}
$$

Check: $5^{\underline{3}}=5^{\underline{6}}$

$$
\begin{gathered}
5 \\
+3^{\underline{1}}=+3^{\underline{5}} \\
-\frac{10}{8 \frac{11}{2}}=9 \underline{1} \\
10
\end{gathered}
$$

126. $3^{\underline{1}}=3^{\underline{4}}=2^{\underline{20}}$

$$
\begin{array}{r}
\begin{array}{r}
4 \\
5
\end{array} \begin{array}{r}
16 \\
5
\end{array} \\
\hline=-2
\end{array}
$$

$$
\begin{array}{ll}
16 & 16 \\
& \frac{16}{15} \\
& 16
\end{array}
$$

Check: 15

$$
\begin{array}{r}
+2^{16} \\
\hline 2^{\frac{16}{20}} \\
+3^{4}=3^{1}
\end{array}
$$

$16 \quad 16 \quad 4$
$\underline{2} \quad \underline{1} \quad \underline{1} \quad \underline{20} \quad \underline{6} \quad \underline{15} \quad \underline{29}$
128. $3^{-}{ }_{5}+{ }_{2}={ }_{30}-{ }_{30}+{ }_{30}={ }_{30}$
130. $7^{\underline{1}}=7^{\underline{5}}=6^{\underline{20}} 4^{-8}=\frac{8}{4}$

$$
\begin{gathered}
3
\end{gathered} \begin{gathered}
15
\end{gathered} \begin{gathered}
15
\end{gathered} \begin{gathered}
15
\end{gathered} \begin{gathered}
15 \\
-2^{4}=-2^{12} \\
=-2^{\frac{12}{2}}
\end{gathered}
$$

$$
\left[\begin{array}{l}
5 \\
4 \underline{8}
\end{array} \frac{15}{3} \quad \begin{array}{l}
\frac{15}{3} \\
=3
\end{array} \underline{1}\right.
$$

$$
15
$$

132. $4^{\text {- }} \quad 7=6^{\text { }}$
$\begin{array}{ll}0 & 4\end{array}$
$+2^{-9} \quad-3 \stackrel{3}{=}-3 \underline{3}$

Check: 5^{15}
$\underline{10} \quad \underline{10} \quad \underline{4}$

$$
\begin{array}{r}
16 \\
+15 \\
\hline 16 \\
\hline
\end{array}
$$

$$
6_{10}=7 \quad 3_{4}
$$

134. $8^{\underline{9}}=8^{\underline{9}}$

$$
6 \frac{20}{16}=7 \frac{4}{16}=7 \frac{1}{4}
$$

$$
\underline{1} \quad 1 \quad 11
$$

124.

$$
\begin{gathered}
10 \quad 10 \begin{array}{r}
10 \\
-3
\end{array} \frac{1}{4}=-3^{-5}=-3^{-5}
\end{gathered}
$$

$$
\underline{2} \quad \underline{10} \quad \underline{10}
$$

$$
5 \underline{6}=5 \underline{3}
$$

$$
10 \quad 5
$$

1
0
1
4

$$
\underline{1} \quad \underline{3}
$$

$$
6=6
$$

$$
\text { 138. } \quad \underline{3}=\underline{9}
$$

\qquad
150. The difference in foot length when comparing

136.

10	30	$8 \quad 24$
$\underline{7}$	14	$\underline{12}$
$\begin{aligned} & +3 \\ & 3 \end{aligned}$	$=+$	=
15	30	24
	$9 \frac{17}{30}$	$+\frac{1}{3}=\underline{24}$

$\underline{29}=1 \underline{5}$
$24 \quad 24$
142. $\quad \frac{7}{8}$ acre $=\frac{7}{8}$ acre
_ 1 acre $=$ - acre

The area of the land not occupied by the building is $\underline{5}_{8}$ acre.

$$
\begin{aligned}
& \text { sizes } 4 \text { and } 7 \text { is } \\
& 6^{\frac{1}{4}}-5^{\frac{3}{2}}=6^{\frac{2}{2}}-5^{\frac{3}{6}}=5^{6}-5^{\frac{3}{=}}=\frac{3}{\text { in }} \\
& 244
\end{aligned} \begin{aligned}
& 4
\end{aligned}
$$

The difference in foot length when comparing sizes 7 and 10 is

$$
7 \frac{1}{4}-6_{2}^{\frac{1}{2}}=7_{4}^{\frac{1}{-}}-6_{4}^{\frac{2}{-}}=6_{4}^{\frac{5}{-}}-6_{4}^{\frac{2}{-}}=\frac{3}{4} \mathrm{in} .
$$

Both differences are the same.

13
140. $\underline{9}=\underline{18}$
$10 \quad 20$
$-1=-\underline{5}$

$\underline{20}$
13
152. The total weight of the packages on the right side of the scale is:

$$
\begin{gathered}
1 \frac{1}{l b}=1 \mathrm{lb} \underline{2}^{2} \\
2 \\
+3 \frac{1}{-1 b}=+3^{1} \mathrm{lb} \\
\begin{array}{l}
4 \\
3
\end{array}
\end{gathered}
$$

4 lb
The total weight of the packages on the leftside

3

144. a. $\begin{aligned} \frac{1}{32} & =\frac{1}{32} \quad \text { The combined amount of } \\ +\underline{1} & =+\underline{4}\end{aligned}$
of the scale must also equal $4_{4} \mathrm{lb}$.
electricity generated by liquid fuels and nuclear power is 5 of the total
world electricity.

1 ${ }^{b} 4$

b. $\quad \underline{7}=\underline{14}$ The amount of electricity $-\frac{56}{32}=-\frac{32}{32} \quad \begin{array}{ll}\text { generated by coal is }-32 \\ & \text { greater than the combined }\end{array}$ $32 \quad 32$ amount generated by liquid fuel and nuclear power.
146. The sum of the fractions of the votes would equal 1 whole, or $\frac{8}{8}$.
$\frac{5}{8}+\frac{1}{4}=\frac{5}{8}+\frac{2}{8}=\frac{7}{8}$
$\underline{8}-\underline{7}=\underline{1}$
$8 \quad 8 \quad 8$
The third candidate got ${ }^{1}$ of the votes.
-8
148. $20^{\underline{5}}=20^{\underline{5}}$

The total weight of the boxes is $31 \frac{1}{8} \mathrm{oz}$.

$$
-\underline{-2} 4 \underline{l b}
$$

2 lb
The small package on the left weighs 2 lb .

Mindstretchers

1.

$1 \underline{1} 4$	$\underline{2}$	$1 \frac{1}{12}$
$\underline{5}$	1	$1 \underline{6}$
6	$\underline{6}$	
11	1	3
12	$\underline{3}$	4

2. ${ }^{3}={ }^{1} \pm^{1} \pm$
$\begin{array}{llll}7 & 28 & 7 & 4\end{array}$
3. a. In Method 1 we "borrow" from the whole number in the minuend so that the fraction in the minuend is big enough to subtract the
fraction in the subtrahend. In Method 2 we add a fraction to the subtrahend, making it a whole number. We add the same fraction to the minuend and then subtract.
b. Answers may vary.
c. Answers may vary.

2.4 Multiplying and Dividing Fractions

Exercises

2. To multiply mixed numbers, change each mixed number to its equivalent improper fraction.
3. To divide fractions, change the divisor to its reciprocal, and multiply the resulting fractions.
4. When multiplying fractions, we can divide any $\underline{12}$
numerator and any denominator by a common factor.

5. $\times=$
$\left(_{-1}^{8}\right)_{2}^{2}(\underset{1}{16})(\underset{1}{1})_{1}^{1}$
6. $\left(\frac{1}{8}\right) \neq\left.\right|_{8}| |_{64}=$
7. $1 \times \underline{3}=\underline{3}$
8. $\underline{20} \times \stackrel{2}{=}=\frac{40}{}=1 \underline{19}$
$2 \quad 2 \quad 4$
$\begin{array}{llll}3 & 7 & 21 & 21\end{array}$
9. $\underline{11} \cdot \underline{9}=\underline{99}=1 \underline{49}$
$\begin{array}{llll}10 & 5 & 50 & 50\end{array}$
10.

22. $\underline{4} \times \frac{1}{2}=\frac{4}{2} \times \frac{1}{1}=$
$\begin{array}{lllll}5 & 2 & 5 & 2 & 5\end{array}$
34. $100 \cdot{ }_{5}^{2}={ }_{1}^{\frac{1200}{2}} \cdot \overline{\not / 7}=40$

4

3
38. $\underline{5}^{5} \times 12=-\frac{5}{-} \times \underline{15}=7 \underline{1}$

8	$\frac{8}{2}$	1	2	2

40. $\binom{1}{\underline{13}} /\left(\begin{array}{l}1\end{array}\right)=\underline{13}$ $\stackrel{4}{\digamma_{3}} \begin{array}{llll}5 & & & \\ 5\end{array}$
41. ${ }^{1} \times 2{ }^{1}=-{ }^{1} \times{ }^{11}={ }^{11}$
 $\left(\begin{array}{l}2\end{array}\right)$
42. $\underline{z}^{\underline{1}} \times=\frac{3}{9} \times \frac{1}{2}=3$
$\begin{array}{llll}2 & 3 & 2 & 3 \\ & & 1 & 1\end{array}$

12
48. $\begin{aligned} & \underline{3} \\ & 8 \quad \\ & 8\end{aligned} 5^{\frac{1}{2}}=\frac{\beta 16}{16}=2$
($/$ (.)
${ }_{1}$ 12
| $\underline{7}||\underline{9}| \underline{1} \underline{3}$

1

$$
\text { 人, (. }{ }^{4}
$$

$$
\text { 52. } 2^{\frac{1}{x}} \times 1 \quad=7 \quad \times{ }^{3}=7
$$

$$
\begin{aligned}
& =3^{1} \\
& 5^{\mathbf{2 6} .} \frac{12}{5} \times \frac{15}{\overline{4}} \frac{3}{1} \times \frac{3}{1}=9 \\
& 1
\end{aligned}
$$

$$
\left.\left({ }_{\underline{1}}\right)^{3}\left({ }_{\underline{3}}^{2}\right){ }^{3}{ }_{\underline{3}}^{y}\right)_{\underline{9}}^{2}{ }^{2}{ }^{2}
$$

$$
\text { 54. }|1|=|\quad|| |==2
$$

28．${ }^{\underline{5}} \times 5 \stackrel{\underline{5}}{=} x^{\underline{5}}=\underline{25}=4^{\underline{1}}$

3
32．${ }_{9}^{3} \times 12={ }^{\overline{3}} \times{ }^{\frac{3}{2}}=$
$\left.1_{2} ノ_{2} ノ_{2}\right)_{44}$
56． $5 \cdot 1 \frac{1}{2}=\frac{5}{1} \times \frac{3}{2}=\frac{15}{2}=7 \frac{1}{2}$

58． $1_{6} \times 20={ }_{6} \times{ }_{1}=3=36_{3}$

62. $\left.\binom{1}{10}\left|\left(\begin{array}{l}2 \\ 1 \\ 9\end{array}\right)\right|=\left.\right|_{10} \quad \right\rvert\, \begin{aligned} & \mid=3 \\ & 9\end{aligned}$

$$
\pi_{1}
$$

64. $\left.5^{\frac{1}{\cdot 1}}=\underline{2} \quad \underline{51} \cdot \stackrel{1}{5} \right\rvert\,=\frac{17}{}=8^{\underline{1}}$

$$
\begin{array}{cccccc}
10 & 3 & 10 & 3 & 2 & 2 \\
& & 2 & 1 & &
\end{array}
$$

66. \(\begin{array}{r}37

1\end{array} \quad 1^{3}=\)| 15 | |
| ---: | ---: |
| 60 | |

$$
\begin{array}{llll}
2 & 5 & 2 \mid & 5 \\
& & 1 & 1
\end{array}
$$

3
68. ${ }^{\frac{1}{8}} \times 2^{\underline{1}} \times 6={ }^{1} \times{ }^{9} \times \frac{6}{8}=\frac{27}{}=1^{\underline{11}}$ $\begin{array}{lllllll}8 & 4 & 8 & 4 \mid & 1 & 16 & 16\end{array}$

7 .

90. $\underline{3} \div \underline{6}=\underline{3} \times \underline{5}=\underline{5}$

$\begin{array}{lllll}4 & 5 & 4 & 6 & 8\end{array}$

2
92. ${ }^{7} \div 10={ }^{7} \div{ }^{10}={ }^{7} x^{-1}={ }^{7}$
$\begin{array}{llllll}10 & 10 & 1 & 10 & 10 & 100\end{array}$

\[

\]

$96.8 \div{ }_{9}={ }_{1} \div{ }_{9} \quad{ }_{1}{ }_{2}=$
$=\quad{ }_{1}^{36}$
98. $10 \div{ }^{2}={ }^{10} \div \stackrel{2}{\nmid 10} \times{ }^{5} \times=25$

\[

\]

100. $10 \div \underset{3}{=} \div{ }_{1} \quad 1 \times \underset{2}{=}=15$
101. $8 \frac{1}{\underline{1}} \times \underline{3} \times \underline{5}=25 \times \underline{3} \times \frac{5}{\Gamma}=\underline{25}=2 \underline{1}$

$$
\left\{\begin{array}{llllllll}
3 & 10 & 6 & 3 & \frac{10}{2} & 6 & 12 & 12 \\
3 & & & & & & \underline{5} & \\
3 & \underline{5} & \underline{5} & & \underline{125} & & \underline{5} &
\end{array}\right.
$$

74. $|2|=|\quad|| || |==15$
75. $3 \div \underline{1}=\underline{3} \div \underline{1}=\underline{3} \times \underline{8}=24$
$\begin{array}{lllll}8 & 1 & 8 & 1 & 1\end{array}$

$\begin{array}{llllllll}9 & 3 & 9 & 3 & 9 & 4 & 3 & 3\end{array}$

76. $\frac{2}{3} \div \frac{3}{5}=\frac{2}{3} \times \frac{5}{3}=\frac{10}{9}=\underset{9}{1}$

77. ${ }^{1} \div \frac{1}{=}=\frac{1}{2}=$
$\underline{2}$

$$
\begin{array}{lllll}
7 & 2 & 7 & 1 & 7
\end{array}
$$

82. $\frac{1}{\div} \div \underline{5}=\frac{1}{x} \times \underline{9}=$
$\underline{9}$

$$
\begin{array}{lllll}
8 & 9 & 8 & 5 & 40
\end{array}
$$

86. $\frac{10}{3} \div \frac{5}{6}=\frac{20}{\nmid \sigma} \times \frac{2}{5}=4$
$1 \quad 1$
108. $6{ }_{2} \div{ }_{2}={ }_{2} \div{ }_{2}={ }_{-} \times \quad=13$
$\begin{array}{ll}1 & 2 \\ & 1\end{array}$
110. $15^{\underline{2}} \div \frac{5}{6}=\frac{47}{3} \div \frac{5}{6}=\underset{3}{3} \times \frac{47}{5}=\frac{94}{5}=18^{\underline{4}}$
112. $\underset{7}{\underline{2}} \div \frac{1}{1} \underset{3}{\underline{2}} \underset{7}{\underline{2}} \underset{3}{\underline{4}}={ }_{7}^{1} 7_{7}^{2} \times{ }_{\overline{4}}^{3}={ }^{3}$
114. $\begin{array}{llllll}\underline{3} & \div 3^{\underline{1}} & \underline{3} & \div \underline{28} & \underline{3} \times \underline{9}=\frac{27}{=} \\ = & & & \\ 4 & 9 & 4 & 9 & 4 & 28\end{array}$

130. $3 \div \underline{2}_{-2} \underline{1}=(\underline{3} \div \underline{2})_{-2}$

$$
\begin{aligned}
& \left.53 \begin{array}{c}
3 \\
=\binom{5}{3}
\end{array}\right)_{-2}^{3} \\
& 1 \\
& 123 \\
& \begin{array}{c}
=\frac{15}{-}-2^{\frac{1}{2}}=7^{1}-2^{\underline{1}} \\
2
\end{array}
\end{aligned}
$$

£ $1 \quad 3 \dot{\bar{\phi}} \quad \mathrm{E}_{2} \quad 2 \dot{\bar{\phi}}$

$$
\begin{aligned}
= & \underline{5} \quad \underline{1}=\frac{20}{} \frac{3}{-} \\
& 3 \quad 4 \\
= & \frac{17}{12}=12 \\
& 12
\end{aligned}
$$

$\mathfrak{x} \quad \ddot{\mathrm{o}}^{2} \quad \mathfrak{x} \quad \ddot{\mathrm{o}}^{2} \quad \mathfrak{x} \quad \ddot{\mathrm{o}}^{2} \quad \mathfrak{x} \ddot{\mathrm{o}}^{2}$

$$
=7 \underline{3}-2 \frac{2}{2}=5 \frac{1}{2}
$$

$$
\text { è } 5 \varnothing_{-} \text {è } 2 \emptyset \quad 25 \quad 4
$$

$$
\left.\begin{array}{llll}
8 & 2 & 10 & 8
\end{array} \begin{array}{ll}
& 2
\end{array}\right]
$$

3
134. $6 \div 5 \times \frac{1}{=}=\frac{6}{1}=\frac{3}{} \times \underline{1}=\underline{3}$

$$
\begin{array}{llllll}
4 & 5 & 4 & 5 & 2 & 10
\end{array}
$$

136. $4 \cdot \stackrel{2}{-}-1^{\underline{1}}=\left(\underline{4} ._{-}^{2}\right)_{-1}^{\underline{1}}$

$$
\begin{array}{lllll}
3 & 8 & 1 & 3 & 8
\end{array}
$$

$$
\begin{aligned}
= & \underline{8}-1^{\underline{1}}=2^{\frac{2}{-}} 1_{-}^{1} \\
& 3 \quad 8 \quad 3 \\
= & 2 \frac{16}{-}-1^{\underline{3}}= \\
& 24 \quad \frac{13}{}
\end{aligned}
$$

$$
=\begin{array}{cc}
9 & 4 \\
25 & 9
\end{array}
$$

$$
=\underline{49}+2\left(\begin{array}{l}
\\
\underline{1}
\end{array}\right)
$$

$$
4 \quad\binom{6}{1}
$$

$$
=\underline{49}+\underline{\mid 2} \cdot \underline{1}=\underline{49}
$$

$+$
$\left.148.14-3 \div \overbrace{1}^{\left(\frac{4}{6}\right)^{2}} \right\rvert\,=14-3 \div$

$$
5=14-\binom{25}{\underline{3} . \underline{25}}=14-\underline{75}
$$

116 $=$

$$
=14-4 \underline{11}=13 \underline{16}-4 \underline{11}=9^{\underline{5}}
$$

$\begin{array}{llll}16 & 16 & 16 & 16\end{array}$
150. $\underline{9} \div \underline{2}=\underline{9} . \quad \underline{5}=\underline{9}=2$
$-\quad 1$
$\begin{array}{llclll}10 & 5 & \begin{array}{c}10 \\ 2\end{array} & 2 & 4 & 4\end{array}$

1
154. $\underline{1}^{\not 2}=\underline{1}$
$\begin{array}{lll}\overline{8} & 5 & 20 \\ 4 & & \end{array}$
1 of the emergency room visits were due to 20
motor vehicle accidents.
156. $\$ 24,000 \div 12=\$ 2,000$

Their monthly income is $\$ 2,000$.
500

They should spend no more than $\$ 500$ per month on $\overline{\mathrm{R}}$ ent.

Section 2.4 Multiplying and Dividing Fractions
162. $6 \mathrm{~min} \div 2 \mathrm{~min}=3$

> The temperature drops by ${ }^{1}{ }^{\circ} \mathrm{F}$ three times. 10

$$
70-(3 \times \underline{1})=70^{\underline{3}} \quad 69 \quad \underline{10} \underline{3} \underline{7}
$$

$$
\begin{array}{llll}
10 & 10 & 10 & 10
\end{array}
$$

10
The temperature after 6 min is $69_{10}^{7} \mathrm{o}$.
164. $9 \div \frac{3}{=}=\frac{3}{4} \times \frac{4}{1}=12$
$\begin{array}{lll}4 & 1 & 3 \\ & & 1\end{array}$
He can administer 12 doses.
$\begin{array}{llllll} & \underline{1} & \underline{3} & \underline{3} & \underline{3} & \underline{2}\end{array}$
166. a. $3 \div 1{ }_{2}={ }_{1}{ }_{2} \times \frac{3}{1}=2$

The average amount collected per year is $\$ 2$ million.
b. If an additional $\$ 1$ million were collected, then the total collected is $\$ 4$ million.

$$
\begin{aligned}
& 4 \div \underline{1} \underline{1}_{2}=\underline{4} \underset{1}{\div} \underset{2}{\underline{3}}=\underset{1}{\underline{4}} \underset{3}{\underline{2}} \underset{3}{\underline{8}}=\underline{2} \\
& 2 \\
& 2 \frac{3}{2}-2=\frac{2}{3}
\end{aligned}
$$

The average would increase by $\${ }_{-}^{2}$
3

Mindstretchers

since its area is 186 sq ft and the area of the $16 \mathrm{ft} \times 11$
${ }^{1} \mathrm{ft}$ room is 184 sq ft .

$$
\begin{aligned}
& \begin{array}{ll}
16 \times & \underline{16} \\
11
\end{array} \quad \underline{23}=\frac{368}{}= \\
& = \\
& 15_{2}^{1} \times 12=\frac{2}{2} \frac{31}{2} \times \frac{2}{12}=\frac{2}{2}=\frac{372}{2}=186
\end{aligned}
$$

The area of the $15 \frac{1}{2} \mathrm{ft} \times 12 \mathrm{ft}$ room is larger
cal of 0 would have to be ${ }^{1}$, which

1. is impossible because the product of The any number and its reciprocal is 1 , reci but 0 times any number is 0 .
pro
2. $\underset{10}{\frac{9}{0}} 10 \frac{1}{2}=\frac{9}{10} \times \frac{21}{2}=\frac{189}{20}=9 \frac{9}{20}$
3.

3	$\frac{1}{6}$	2
$\frac{2}{3}$	1	$1 \frac{1}{2}$
$\underline{1}$	6	$\frac{1}{3}$

0

There are $9 \underset{20}{9}$ gallons of gasoline in $10 \underline{1}_{2}$
gallons of gasohol. So there are
$10^{\underline{1}}-9^{9}=10 \underline{10}-9 \underline{9}=1 \underline{1}$ gallons of
$9 \frac{9}{20}-1 \frac{1}{20}=8 \frac{8}{20}=8 \frac{2}{5}$ more gallons of
gasoline than ethyl alcohol in gasohol.
3. $1^{\underline{1}} \cdot 1^{\underline{1}} \cdot 1^{\underline{1}} \cdot \cdots \cdot 1^{\underline{1}} \cdot 1^{\underline{1}}$
$\begin{array}{lllll}2 & 3 & 4 & 99 & 100\end{array}$
$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$
$=3.4 .5 \cdot \mid \cdot 1.100 .101$
$=\frac{101}{2}=5 Q^{\underline{1}}$

