Solution Manual for Business Statistics in Practice 7th Edition by Bowerman Connell and Murphree ISBN 00735214939780073521497

Full link download

Solution Manual:
https://testbankpack.com/p/solution-manual-for-business-statistics-in-practice-
7th-edition-by-bowerman-connell-and-murphree-isbn-0073521493-
9780073521497I

Test Bank:
https://testbankpack.com/p/test-bank-for-business-statistics-in-practice-7th-edition-by-bowerman-connell-and-murphree-isbn-0073521493-9780073521497/

CHAPTER 2-Descriptive Statistics: Tabular and Graphical Methods

2.1 Constructing either a frequency or a relative frequency distribution helps identify and quantify patterns in how often various categories occur.

L02-01
2.2 Relative frequency of any category is calculated by counting the number of occurrences of the category divided by the total number of observations. Percent frequency is calculated by multiplying relative frequency by 100 .

L02-01
2.3 Answers and examples will vary.

L02-01

L02-01
2.5 a. $(100 / 250) * 360$ degrees $=144$ degrees
b.
c.

L02-01
2.6 a. Relative frequency for product x is $1-(0.15+0.36+0.28)=0.21$
b. Product:

W	X	Y	Z
75	105	180	140

c.
d. Degrees for W would be 54 , for X degrees would be 75.6 , for Y 129.6 , and for Z 100.8. L02-01
2.7 a. Rating

Frequency Relative Frequency
Outstanding
$14 \quad 0.467$
Very Good
10
0.333

Good
5
0.167

Average
b.

Chapter 02 - Descriptive Statistics: Tabular and Graphical Methods
c.

L02-01

2.8 a. Tally for Discrete Variables: Sports League

Sports	
League	Count
MLB	11
MLS	3
NBA	8
NFL	23
NHL	5

Rel.
Freq. Percent
0.2222 .00
$0.06 \quad 6.00$
$0.16 \quad 16.00$
$0.46 \quad 46.00$
$0.10 \quad 10.00$
50
b.

c.

d. Most popular league is NFL and least popular is

MLS. L02-01
2.9

Private, 50\%
Private, 87%

L02-01
2.12 a. 32.29%
b. 4.17%
c. Explanations will vary

L02-02
2.13 a. We construct a frequency distribution and a histogram for a data set so we can gain some insight into the shape, center, and spread of the data along with whether or not outliers exist.
b. A frequency histogram represents the frequency in a class using bars while in a frequency polygon the frequencies in consecutive classes are connected by a line.
c. A frequency ogive represents a cumulative distribution while the frequency polygon is not a cumulative distribution. Also, in a frequency polygon the lines connect the class midpoints while in a frequency ogive the lines connect the upper boundaries of the classes.

L02-03

2.14 a. To find the frequency for a class you simply count how many of the observations are greater than or equal to the lower boundary and less than the upper boundary.
b. Once you get the frequency for a class the relative frequency is obtained by dividing the class frequency by the total number of observations (data points).
c. Percent frequency for a class is calculated by multiplying the relative frequency by 100 .

L02-03

2.15 a. One hump in the middle; left side looks like right side.

b. Two humps, left side may or may not look like right side.

c. Long tail to the right

d. Long tail to the left

L02-03
2.16 a. Since there are 28 points you should use 5 classes (from Table 2.5).
b. Class Length $(\mathrm{CL})=(46-17) / 5=6$
c. $17 \leq x<23,23 \leq x<29,29 \leq x<35,35 \leq x<41,41 \leq x<47$
d.

Frequency Distribution - Quantitative

Data					cumulative			
lower		upper	midpoint	width	frequency	percent	frequency percent	
12	$<$	18	15	6	1	3.6	1	3.6
18	$<$	24	21	6	3	10.7	4	14.3
24	$<$	30	27	6	2	7.1	6	21.4
30	$<$	36	33	6	5	17.9	11	39.3
36	$<$	42	39	6	14	50.0	25	89.3
42	$<$	48	45	6	3	10.7	28	100.0

e.

f. See output in answer to
d. L02-03

$2.17 \mathrm{a} \& \mathrm{~b}$.

| Class | Frequency | Cum | Prequency |
| :--- | ---: | ---: | ---: | ---: | | Prequency |
| :---: |
| Freq $\%$ | Frequency

c.

Chapter 02 - Descriptive Statistics: Tabular and Graphical Methods

d.
2.18 a. 6 classes because there are 60 data points (from Table 2.5).
b. Class Length $(\mathrm{CL})=(35-20) / 6=2.5$ and we round up to 3 .
c. $20 \leq x<23,23 \leq x<26,26 \leq x<29,29 \leq x<32,32 \leq x<35,35 \leq x<38$
d.

Rating					cumulative			
lower			upper	midpoint	width	frequency	Percent	frequency
	percent							
20	$<$	23	21.5	3	2	3.3	2	3.3
23	$<$	26	24.5	3	3	5.0	5	8.3

Chapter 02 - Descriptive Statistics: Tabular and Graphical Methods

26	$<$	29	27.5	3	9	15.0	14	23.3
29	$<$	32	30.5	3	19	31.7	33	55.0
32	$<$	35	33.5	3	26	43.3	59	98.3
35	$<$	38	36.5	3	1	1.7	60	100.0

e.

Distribution shape is skewed left.

L02-03
2.19a \& b.

Rating			midpoint	width	frequency	Percent	cumulative	
lower		upper					frequency	percent
20	<	23	21.5	3	2	3.3	2	3.3
23	<	26	24.5	3	3	5.0	5	8.3
26	<	29	27.5	3	9	15.0	14	23.3
29	<	32	30.5	3	19	31.7	33	55.0
32	<	35	33.5	3	26	43.3	59	98.3
35.	$<$	38	36.5	3	1	1.7	60.	100.0

c.

$2.20 \mathrm{a} \& \mathrm{~b}$ \& c .

Frequency Distribution

Pay (\$mil)			midpoint	width	frequency	percent	cumulative	
lower		upper					frequency	percent
20	<	40	30	20	2	8.0	2	8.0
40	<	60	50	20	7	28.0	9	36.0
60	<	80	70	20	7	28.0	16	64.0
80	<	100	90	20	3	12.0	19	76.0
100	<	120	110	20	2	8.0	21	84.0
120	<	140	130	20	2	8.0	23	92.0
140	<	160	150	20	0	0.0	23	92.0
160	<	180	170	20	0	0.0	23	92.0
180	<	200	190	20	1	4.0	24	96.0
200	<	220	210	20	0	0.0	24	96.0
220	<	240	230	20	0	0.0	24	96.0
240	<	260	250	20	0	0.0	24	96.0
260	<	280	270	20	0	0.0	24	96.0
280	$<$	300	290.	20	1	4.0	25.	100.0

L02-03
2.21 a. Concentrated between 42 and 46.
b. Shape of distribution is slightly skewed left. Ratings have an upper limit but stretch out to the low side.
c. Clacccccccc $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ $34<x \leq 36,36<x \leq 38,38<x \leq 40,40<x \leq 42,42<x \leq 44,44<x \leq 46,46<x \leq 48$, more
d.
Cum Freq
1
L02-03
2.22 a. Concentrated between 3.5 and 5.5.
b. Shape of distribution is slightly skewed right. Waiting time has a lower limit of 0 and stretches out to the high side where there are a few people who have to wait longer.
c. The class length is 1 .
d. Class

Cum Frequency
$-0.5<0.5 \quad 1$
$0.5<1.5 \quad 5$
$1.5<2.5 \quad 12$
$2.5<3.5 \quad 20$
$3.5<4.5 \quad 37$
$4.5<5.5 \quad 53$
$5.5<6.5 \quad 67$
$6.5<7.5 \quad 79$
$7.5<8.5 \quad 87$
$8.5<9.593$
$9.5<10.5 \quad 97$
$10.5<11.5 \quad 99$
$11.5<12.5 \quad 100$
L02-03
2.23 a. Concentrated between 48 and 53.
b. Shape of distribution is symmetric and bell shaped.
c. Class length is 1.
d. Class: $\quad 46<47 \quad 47<48 \quad 48<49 \quad 49<50 \quad 50<51 \quad 51<52 \quad 52<53 \quad 535454<55$

Cum Freq. $2.5 \% \quad 5.0 \% \quad 15.0 \% \quad 35.0 \% \quad 60.0 \% ~ 80.0 \% ~ 90.0 \% ~ 97.5 \% ~ 100.0 \%$

L02-03

2.24 a.

Value					
lower		upper	midpoint	width	ncy
300	<	400	350	100	11
400	<	500	450	100	8
500	<	600	550	100	5
600	<	700	650	100	1
700	<	800	750	100	2
800	<	900	850	100	1
900	<	1,000	950	100	1
1,000		1,100	1,050	100	0
1,100	<	1,200	1,150	100	0
1,200	<	1,300	1,250	100	0
1,300	<	1,400	1,350	100	0
1,400	<	1,500	1,450	100	0
1,500	<	1,600	1,550	100	0
1,600	<	1,700	1,650	100	0
1.700	\leq	1.800	1.750	100	1

30

Distribution is skewed right and has a distinct outlier, The NY Yankees.
b.

Frequency Distribution - Quantitative

Revenue						cumulative		
		upper	midpoint	width	frequency	percent	frequency	percent
lower	$<$	160	150	20	2	6.7	2	6.7
140	$<$	180	170	20	9	30.0	11	36.7
180	$<$	200	190	20	5	16.7	16	53.3
200	$<$	220	210	20	6	20.0	22	73.3
220	$<$	240	230	20	4	13.3	26	86.7
240	$<$	260	250	20	2	6.7	28	93.3
260	$<$	280	270	20	1	3.3	29	96.7
280	$<$	300	290	20	0	0.0	29	96.7
300	$<$	320	310	20	0	0.0	29	96.7
320	$<$	340	330	20	0	0.0	29	96.7
340	$<$	360	350	20	0	0.0	29	96.7
360	$<$	380	370	20	0	0.0	29	96.7
380	$<$	400	390	20	0	0.0	29	96.7
400	$<$	420	410	20	0	0.0	29	96.7
420	$<$	440	430	20	1	3.3	30	100.0

Distribution is skewed right.
c.

L02-03

2.25 a.

Frequency Distribution - Quantitative

Sales (\$mil)			midpoint	width	frequency	percent	cumulative	
lower		upper					frequency	percent
0	<	100	50	100	3	7.5	3	7.5
100	<	200	150	100	4	10.0	7	17.5
200	<	300	250	100	6	15.0	13	32.5
300	<	400	350	100	5	12.5	18	45.0
400	<	500	450	100	4	10.0	22	55.0
500	<	600	550	100	4	10.0	26	65.0
600	<	700	650	100	4	10.0	30	75.0
700	<	800	750	100	1	2.5	31	77.5
800	<	900	850	100	4	10.0	35	87.5
900	$<$	1.000	950	100	5	12.5	40	100.0

Distribution is relatively flat, perhaps two humped.
b.

Frequency Distribution - Quantitative

Sales Growth(\%)		upoer	midpoint	width	frequency	percent	cumulative	
lower							frequency p	ercent
0	<	10	5	10	4	10.0	4	10.0
10	<	20	15	10	3	7.5	7	17.5
20	<	30	25	10	13	32.5	20	50.0
30	<	40	35	10	11	27.5	31	77.5
40	<	50	45	10	4	10.0	35	87.5
50	<	60	55	10	2	5.0	37	92.5
60	<	70	65	10	2	5.0	39	97.5
70	<	80	75	10	0	0.0	39	97.5
80	\leq	90	85.	10	1.	2.5	40.	100.0

Distribution is skewed right.
L02-03
2.26 The horizontal axis spans the range of measurements and the dots represent the measurements.

L02-04
2.27 A dot plot with a 1000 points is not practical. Use a histogram.

L02-03, L02-04
2.28

Distribution is concentrated between 0 and 2 and is skewed to the right. 10 and 8 are probably high outliers.

L02-04

2.29

High outliers greater than 80%. Eliminating the high outliers the distribution is reasonably symmetric.
L02-04
2.30

Low outliers 22 and 25 . Without outliers distribution is reasonably symmetric.
L02-04
2.31 A stem \& leaf enables one to see the shape of the distribution and still see all the measurements where in a histogram you cannot see the values of the individual measurements.

L02-03, L02-05
2.32 --Displays all the individual measurements.
--Puts data in numerical order
--Simple to construct
L02-05
2.33 With a large data set (eg 1000 measurements) it does not make sense to do a stem \& leaf because it is impractical to write out 1000 leafs. Should use a histogram.

L02-03, L02-05
2.34

Stem Unit $=10$, Leaf Unit $=1$

Frequency		Stem Leaf	
	2		8
4		30236	
5		422349	
5		5	13569
2		6	35
1		7	0
1	8	3	
1		9	1

20
L02-05
2.35

Stem Unit $=1$ Leaf Unit $=.1$		
Frequency	Stem	
2	10	44
0	11	
1	126	
3	13	289
4	14	0149
4	15	2289
4	16	1148
0	17	
0	18	
0	19	
0	20	
0	21	

1	222
0	23
0	24

| $\frac{1}{20}$ | 25 |
| ---: | :--- | ---: |

L02-05
2.36 Rounding each measurement to the nearest hundred yields the following stem \&
leaf Stem unit $=1000$, Leaf Unit $=100$

Frequency	Stem	Leaf
5	1	24457
5	2	04778
4	3	3357
2	4	26
1	5	4
2	6	08
1	7	9
20		

L02-05
2.37 a. Payment times distribution is skewed to the right.
b. Bottle design ratings distribution is skewed to the left. L02-05
2.38 a. Distribution is symmetric
b. $46.8,47.5,48.2,48.3,48.5,48.8,49.0,49.2,49.3$, 49.4 L02-05
2.39

The 61 home runs hit by Maris would be considered an outlier, although an exceptional individual achievement.

L02-05
2.40 a.

	WaitTime	
count	100	
Stem and Leaf plot for stem unit = leaf unit =	$\begin{aligned} & \text { WaitTime } \\ & 1 \\ & 0.1 \end{aligned}$	
Frequency	Stem	Leaf
2	0	48
6	1	134688
9	2	023457899
11	3	12456778899
17	4	00123334455567789
15	5	011223445667888
13	6	1123334556778
10	7	0223445789
7	8	0134667
6	9	123589
3	10	279
1	11	6
100		

b. Distribution of wait times is fairly symmetrical, may be slightly skewed to the right. L02-05
2.41 a.

Stem and Leaf plot for Ratings
stem unit = 1
leaf unit $=0.1$

| Descriptive statistics
 Frequency | | |
| ---: | ---: | ---: | :--- |
| 1 | Stem | Leaf |
| 0 | 36 | 0 |
| 3 | 37 | |
| 4 | 38 | 000 |
| 5 | 39 | 0000 |
| 6 | 40 | 00000 |
| 6 | 41 | 000000 |
| 6 | 42 | 000000 |

8	43	00000000
12	44	000000000000
9	45	000000000
7	46	0000000
3	47	000
$\frac{1}{1}$	48	0
65		

b. Distribution is slightly skewed to the left.
c. Since 19 of the ratings are below 42 it would not be accurate to say that almost all purchasers are very satisfied.

L02-05
2.42 Cross tabulation tables are used to study association between categorical variables.

L02-06
2.43 Each cell is filled with the number of observations that have the specific values of the categorical variables associated with that cell.

L02-06
2.44 Row percentages are calculated by dividing the cell frequency by the total frequency for that particular row. Column percentages are calculated by dividing the cell frequency by the total frequency for that particular column. Row percentages show the distribution of the column categorical variable for a given value of the row categorical variable. Column percentages show the distribution of the row categorical variable for a given value of the column categorical variable.
L02-06
2.45

Crosstabulation

a. $\quad 17$
b. $\quad 14$
c. If you have purchased Rola previously you are more likely to prefer Rola. If you have not purchased Rola previously you are more likely to prefer Koka.

L02-06
2.46

Crosstabulation

				ence		
			Very Sweet	Sweet	Not So Sweet	Total
	Koka	Observed \% of row	37.5\% ${ }^{6}$	25.0\%	37.5\%	16 100.0%
		\% of column	42.9\%	30.8\%	46.2\%	40.0\%
Preference		\% of total	15.0\%	10.0\%	15.0\%	40.0\%
	Rola	Observed \% of row	3 ${ }^{8}$	9 ${ }^{9}$	29.2\% ${ }^{7}$	$\begin{array}{r} 24 \\ 100.0 \% \end{array}$
		\% of column	57.1\%	69.2\%	53.8\%	60.0\%
		\% of total	20.0\%	22.5\%	17.5\%	60.0\%
	Total	Observed \% of row	14	13	13	40 100.0%
		\% of column	100.0\%	100.0\%	100.0\%	100.0\%
		\% of total	35.0\%	32.5\%	32.5\%	100.0\%

a. 17 b. 6
c. No relationship.

L02-06
2.47

a. 22 b. 4
c. People who drink more cola are more likely to prefer

Rola. L02-06
2.48 a. $16 \%, 56 \%$
b. Row Percentage Table

Watch Tennis
Do Not Watch Tennis
Drink Wine
40\%
60\%
Total
100\%
Do Not Drink Wine
6.7\%
93.3\%
100%
c. Column Percentage Table

	Watch Tennis		Do Not Watch Tennis
	80%	30%	
Drink Wine		70%	
Do Not Drink Wine	20%	100%	
Total	100%		10

d. People who watch tennis are more likely to drink wine.
e.

L02-0
2.49
a.

	TV Violence Inc.	TV Violence No Inc.	Total
TV Quality Worse	$\mathbf{3 6 2}$	$\mathbf{9 2}$	454
TV Quality Not Worse	359	187	546
Total	721	279	$\mathbf{1 0 0 0}$

b.

	TV Violence Inc.	TV Violence No Inc.	Total
TV Quality Worse	79.7%	20.3%	100%
TV Quality Not Worse	$\mathbf{6 5 . 8 \%}$	$\mathbf{3 4 . 2 \%}$	$\mathbf{1 0 0 \%}$

c.

	TV Violence Inc.	TV Violence No Inc.
TV Quality Worse	$\mathbf{5 0 . 2 \%}$	$\mathbf{3 3 . 0 \%}$
TV Quality Not Worse	$\mathbf{4 9 . 8 \%}$	$\mathbf{6 7 . 0 \%}$
Total	$\mathbf{1 0 0 \%}$	$\mathbf{1 0 0 \%}$

d. Those people who think TV violence has increased are more likely to think TV quality has gotten worse.
e.

TV Quality Worse vs Violence Increased

L02-01, L02-06

2.50 a.

b. As income rises the percent of people seeing larger tips as appropriate also rises. L02-01, L02-06
2.51 a.

b. People who have left at least once without leaving a tip are more likely to think a smaller tip is appropriate.

L02-01, L02-06
2.52 A scatterplot is used to look at the relationship between two quantitative variables.

L02-07
2.53 Data are scattered around a straight line with positive slope.

L02-07
2.54 Data are scattered around a straight line with negative slope.

L02-07
2.55 Data are scattered on the plot with the best line to draw through the data being horizontal.

L02-07
2.56 Scatter plot: each value of y is plotted against its corresponding value of x.

Runs plot: a graph of individual process measurements versus time
L02-07
2.57 As home size increases, sales price increases in a linear fashion. A fairly strong relationship

L02-07
2.58 As temperature increases, fuel consumption decreases in a linear fashion. A strong relationship.

L02-07
2.59 Cable rates decreased in the early 1990's in an attempt to compete with the newly emerging satellite business. As the satellite business was increasing its rates from 1995 to 2005, cable was able to do the same.

L02-07
2.60 Clearly there is a positive linear relationship here. As a brand gets more sales, retailers want to give more shelf space. Also as shelf space increases sales will tend to increase. Its difficult to determine cause and effect here.

L02-07
2.61 The scatterplot shows that the average rating for taste is related to the average rating for preference in a positive linear fashion. This relationship is fairly strong.

The scatterplots below show that average convenience, familiarity, and price are all related in a linear fashion to average preference in a positive, positive, and negative fashion (respectively). These relationships are not as strong as the one between taste and preference.

L02-07
2.62 The differences in the heights of the bars are more pronounced.

L02-08
2.63 Examples and reports will vary.

L02-08
2.64 The administration's plot indicates a steep increase over the four years while the union organizer's plot shows a gradual increase.

L02-08
2.65 a. No, very slight (if any).
b. Yes, strong trend.
c. The line graph is more appropriate because it shows growth.
d. Probably not. Both distort the data.

L02-08

2.66

Reports will vary but should focus on the Liberty model sales staying around 30% of total sales.

L02-01
2.67 Large portion of manufacturers are rated 3 .

Overall Mechanical Quality	frequency
1	0
2	6
3	23
4	2
5	2

2.68 Categories $3 \& 4$ cover large portion of companies.

Overall Design Quality	frequency	percent
1	0	0.0
2	4	12.1
3	22	66.7
4	6	18.2
5	1	3.0
	33	100.0

2.69 Written analysis will vary.

L02-01
2.70 Written analysis will vary

L02-01
2.71 Europe and the Pacific Rim both have a couple of outliers with ratings of $4 \& 5$, otherwise there does not seem to be much of a relationship.

Tabulated statistics: Area of Origin, Overall Quality Mechanical

	The Rest	About Average	Better Than Most	Among The Best	All
Europe	3	4	1	1	9
	33.33	44.44	11.11	11.11	100.00
Pacific Rim	2	9	1	1	13
	15.38	69.23	7.69	7.69	100.00
United States	1	10	0	0	11
	9.09	90.91	0.00	0.00	100.00
All	6	23	2	2	33
	18.18	69.70	6.06	6.06	100.00
Cell Contents:	Count \% of				

L02-06
2.72 Written reports will vary. See 2.69 for percentage bar charts. See 2.71 for row percentages.

L02-06
2.73 Pacific Rim has a much higher percentage rated 4 or higher than either Europe or United States.

Tabulated statistics: Area of Origin, Overall Quality Design

2.74 Written reports will vary. See 2.70 for pie charts. See 2.73 for row percentages L02-06
2.75 a. Since there are 50 data points you should use 6 classes.
b.

Frequency Distribution - Quantitative

ModelAge							cumulative	
lower		upper	midpoint	width	frequency	percent	frequency	percent
17	<	19	18	2	3	6.0	3	6.0
19	<	21	20	2	2	4.0	5	10.0
21	<	23	22	2	3	6.0	8	16.0
23	<	25	24	2	5	10.0	13	26.0
25	<	27	26	2	8	16.0	21	42.0
27	<	29	28	2	15	30.0	36	72.0
29	<	31	30	2	10	20.0	46	92.0
31.	$<$	33.	32	2.	4.	8.0	50	100.0

Chapter 02 - Descriptive Statistics: Tabular and Graphical Methods

d. This distribution is skewed to the
left. L02-03

L02-03
2.7726% of the perceived ages are below 25 . Much too high.

L02-04
2.78a \& b \& c. See table in 2.75
d.

e. 36 out of $50=72 \%$
f. 8 out of $50=16 \%$

L02-03

Distribution is skewed to the right

Distribution is skewed to the right

Distribution is skewed to the left
L02-03
2.80 Distribution has one high outlier and with or without the outlier is skewed right.

L02-04
2.81 a.

Class
$\$ 25 \mathrm{~K}$ to 50 K

$$
\frac{5025}{10-0} \quad \stackrel{25}{ }{ }_{10}^{2.5}
$$

Factor

$$
\begin{array}{lll}
100=\underline{50} & \underline{50} & 5 \\
10-0 & 10 &
\end{array}
$$

$$
\begin{array}{lll}
\underline{150-100} & 5 \underline{0} & \\
10-0 & 10 & 5
\end{array}
$$

$$
\begin{array}{ccc}
200-150 \\
10-0 & \underline{\underline{0}} . & 5 \\
10 & 5
\end{array}
$$

$$
\begin{array}{cc}
\underline{250-200} & \underline{50} \\
10-0 & \underline{0} 0 \\
\hline 10
\end{array}
$$

$$
25
$$

$\$ 250 \mathrm{~K}$ to 500 K

$10-0 \quad 10$
$\underline{\text { Height }}$
$\underset{2.5}{. \frac{1}{1}-(62)} \underset{5}{24} 4$
${ }^{1}-(60) 12$
5
${ }_{5}^{1-}(24) 4{ }_{5}^{4}-$
${ }_{5}^{1}$ - (19) $3{ }_{5}^{4}-$
${ }_{5}^{1-(22)} 4{ }_{5}^{2}-$
${ }^{1}$-(21) 21
$25 \quad 25$

2.82 Since the runs plot is not in control, the stem \& leaf is not representative of the number of missed shots.

```
Stem-and-leaf of Shots Missed N=30
Leaf Unit = 0.10
```

 150
 260
 4700
 9800000
 159000000
 \(15 \quad 10 \quad 00000\)
 101100
 \(8 \quad 120\)
 \(7 \quad 130\)
 \(6 \quad 140\)
 \(5 \quad 1500\)
 3160
 2170
 1180

L02-05
2.83 The graph indicates that Chevy trucks far exceed Ford and Dodge in terms of resale value, but the y-axis scale is misleading.

L02-08
2.84 a. Stock funds: $\$ 60,000$; bond funds: $\$ 30,000$; govt. securities: $\$ 10,000$

b. Stock funds: $\$ 78,000$ (63.36%); bond funds: $\$ 34,500$ (28.03\%);
govt. securities: \$10,600 (8.61\%)

c. Stock funds: $\$ 73,860$; bond funds: $\$ 36,930$; govt. securities: $\$ 12,310$

L02-01

Internet Exercises

2.85 Answers will vary depending on which poll(s) the student refers to. L02-01 - L02-08

