Full link download Calculus 8th Edition by James Stewart

Test bank:
https://testbankpack.com/p/test-bank-for-calculus-8th-edition-by-stewart-isbn-1285740629-9781285740621/

Solution manual:
https://testbankpack.com/p/solution-manual-for-calculus-8th-edition-by-stewart-isbn-1285740629-9781285740621/

$1 \square$ FUNCTIONS AND LIMITS

1.1 Four Ways to Represent a Function

The functions ()$=+\sqrt{2}^{2}-\underline{\operatorname{and}()}=+\sqrt{2}-$ give exactly the same output values for every input value, so and are equal.
()$=\underline{2}=\rfloor=\underline{1)}=$ for $-16=, 0$ so and $[$ where ()$=]$ are not equal because (1) is undefined and -1-1
$(1)=1$.
(a) The point (13) is on the graph of , so $(1)=3$.

When $=-1$, is about -02 , so $(-1) \approx-02$.
()$=1$ is equivalent to $=1$ When $=1$, we have $=0$ and $=3$.

A reasonable estimate for when $=0$ is $=-08$.
The domain of consists of all -values on the graph of . For this function, the domain is $-2 \leq \leq 4$, or [-24]. The range of consists of all -values on the graph of. For this function, the range is $-1 \leq \leq 3$, or $[-13]$.
(f) As increases from -2 to 1, increases from-1 to 3. Thus, is increasing on the interval [-2 1].
(a) The point $(-4-2)$ is on the graph of , so $(-4)=-2$. The point (34) is on the graph of , so $(3)=4$.

We are looking for the values of for which the -values are equal. The -values for and are equal at the points (-21) and (2 2), so the desired values of are -2 and 2 .
()$=-1$ is equivalent to $=-1$. When $=-1$, we have $=-3$ and $=4$.

As increases from 0 to 4 , decreases from 3 to -1 . Thus, is decreasing on the interval [04].
The domain of consists of all -values on the graph of. For this function, the domain is $-4 \leq \leq 4$, or $[-44]$. The range of consists of all -values on the graph of . For this function, the range is $-2 \leq \leq 3$, or $[-23]$.
(f) The domain of is $\left[\begin{array}{ll}-4 & 3\end{array}\right]$ and the range is $\left[\begin{array}{lll}0 & 4\end{array}\right]$.

From Figure 1 in the text, the lowest point occurs at about ()$=(12-85)$. The highest point occurs at about (17 115).
Thus, the range of the vertical ground acceleration is $-85 \leq \leq 115$. Written in interval notation, we get [-85115].

6. Example 1: A car is driven at 60 mi h for 2 hours. The distance

 traveled by the car is a function of the time. The domain of the function is $\{\mid 0 \leq \leq 2\}$, where is measured in hours. The range of the function is $\{\mid 0 \leq \leq 120\}$, where is measured in miles.

Example 2: At a certain university, the number of students on campus at any time on a particular day is a function of the time after midnight. The domain of the function is $\{\mid 0 \leq \leq 24\}$, where is measured in hours. The range of the function is $\{\mid 0 \leq \leq\}$, where is an integer and is the largest number of students on campus at once.

Example 3: A certain employee is paid $\$ 800$ per hour and works a maximum of 30 hours per week. The number of hours worked is rounded down to the nearest quarter of an hour. This employee's gross weekly pay is a function of the number of hours worked. The domain of the function is [030] and the range of the function is \{0200400 23800240 00\}.

No, the curve is not the graph of a function because a vertical line intersects the curve more than once. Hence, the curve fails the Vertical Line Test.

Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [-2 2] and the range is $[-12]$.

Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [-32] and the range is $[-3-2) \cup[-13]$.

No, the curve is not the graph of a function since for $=0, \pm 1$, and ± 2, there are infinitely many points on the curve.
(a) When $=1950, \approx 138^{\circ} \mathrm{C}$, so the global average temperature in 1950 was about $138^{\circ} \mathrm{C}$.

When $=142^{\circ} \mathrm{C}, \approx 1990$.
The global average temperature was smallest in 1910 (the year corresponding to the lowest point on the graph) and largest in 2005 (the year corresponding to the highest point on the graph).

When $=1910, \approx 135^{\circ} \mathrm{C}$, and when $=2005, \approx 145^{\circ} \mathrm{C}$. Thus, the range of is about $[135,145]$.
(a) The ring width varies from near 0 mm to about 16 mm , so the range of the ring width function is approximately [016]. According to the graph, the earth gradually cooled from 1550 to 1700 , warmed into the late 1700 s, cooled again into the late 1800 s, and has been steadily warming since then. In the mid-19th century, there was variation that could have been associated with volcanic eruptions.
13. The water will cool down almost to freezing as the ice melts. Then, when the ice has melted, the water will slowly warm up to room temperature.

Runner A won the race, reaching the finish line at 100 meters in about 15 seconds, followed by runner B with a time of about 19 seconds, and then by runner C who finished in around 23 seconds. B initially led the race, followed by C , and then A .

C then passed B to lead for a while. Then A passed first B, and then passed C to take the lead and finish first.
Finally, B passed C to finish in second place. All three runners completed the race.
(a) The power consumption at 6 AM is 500 MW which is obtained by reading the value of power when $=6$ from the graph. At 6 PM we read the value of when $=18$ obtaining approximately 730 MW

The minimum power consumption is determined by finding the time for the lowest point on the graph, $=4$ or 4 AM . The maximum power consumption corresponds to the highest point on the graph, which occurs just before $=12$ or right before noon. These times are reasonable, considering the power consumption schedules of most individuals and businesses.
16. The summer solstice (the longest day of the year) is around June 21, and the winter solstice (the shortest day) is around December 22. (Exchange the dates for the southern hemisphere.)

The value of the car decreases fairly rapidly initially, then somewhat less rapidly.

The temperature of the pie would increase rapidly, level off to oven temperature, decrease rapidly, and then level off to room temperature.

17. Of course, this graph depends strongly on the geographical location!

As the price increases, the amount sold decreases.

21.

22. (a)

(c)

(b)

23. (a)

(b) 9:00 AM corresponds to $=9$. When $=9$, the temperature is about $74^{\circ} \mathrm{F}$.
(b) The blood alcohol concentration rises rapidly, then slowly decreases to near zero. Note that the BAC in this exercise is measured in g dL , not percent.

$$
\begin{aligned}
& ()=3^{2}-+2(2)=3(2)^{2}-2+2=12-2+2=12 \\
& (-2)=3(-2)^{2}-(-2)+2=12+2+2=16()=3^{2}-+2 \\
& (-)=3(-)^{2}-(-)+2=3^{2}++2 \\
& (+1)=3(+1)^{2}-(+1)+2=3\left({ }^{2}+2+1\right)--1+2=3^{2}+6+3-+1=3^{2}+5+42()=2 \cdot()=2\left(3^{2}-+2\right)=6^{2}-2+4
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
(2)=3(2)^{2}-(2)+2=3\left(4^{2}\right)-2+2=12^{2}-2+2\left({ }^{2}\right)=3\left({ }^{2}\right)^{2}-(\\
\left.{ }^{2}\right)+2=3\left({ }^{4}\right)-{ }^{2}+2=3^{4}-{ }^{2}+2 \\
{[()]^{2}=32^{-} \quad+2^{2}=32^{-} \quad+2 \quad 32-\quad+2}
\end{array} \\
& \quad 9^{4}-3^{3}+6^{2}-3^{3}+{ }^{2}-2+6^{2}-2+4=9^{4}-6^{3}+13^{2}-4+4(+)=3(+)^{2}-(+)+2=3\left({ }^{2}+2+{ }^{2}\right)-- \\
& +2=3^{2}+6+3^{2}--+2
\end{aligned}
$$

A spherical balloon with radius +1 has volume $(+1)=\underline{4}_{3}(+1)^{3}=4_{3}\left({ }^{3}+3^{2}+3+1\right)$. We wish to find the amount of air needed to inflate the balloon from a radius of to +1 . Hence, we need to find the difference $(+1)-()=4_{3}\left({ }^{3}+3^{2}+3+1\right)-\underline{4}_{3}{ }^{3}=4^{3}\left(3^{2}+3+1\right)$.
()$=4+3-{ }^{2}$, so $(3+)=4+3(3+)-(3+)^{2}=4+9+3-\left(9+6+{ }^{2}\right)=4-3-2$, and $(3+)=(3)=\underline{(4}$ $-\underline{3}$ 二 $\left.^{2}\right)=4=(-3$ ニ) $=-3-$.
()$={ }^{3}$, so $(+)=(+)^{3}=^{3}+3^{2}+3^{2}+{ }^{3}$,
and $\quad(+)-()=\quad\left(\underline{3}+3^{\underline{2}}+\underline{3}^{\underline{2}} \underline{+} \underline{3}\right)-\underline{3} \quad=\frac{\left(3^{2}+3+{ }^{2}\right)}{}=3^{2}+3+{ }^{2}$.
29. ()-(

$$
=-\frac{1}{-1} \frac{-}{--}=\underline{-}=\underline{-1(-)}=1
$$

30. ()$-(1)$

$$
+3 \quad 2
$$

$$
\begin{gathered}
-1 \\
=\frac{-1}{(+1)(\eta}=\frac{-1}{(+1)(\eta)}=\frac{-1}{-1} .
\end{gathered}
$$

31. ()$=(+4)\left({ }^{2}-9\right)$ is defined for all except when $0=^{2}-9 \quad \Leftrightarrow 0=(+3)(-3) \Leftrightarrow=-3$ or 3 , so the domain is $\{\in R \mid 6=-33\}=(-\infty-3) \cup(-33) \cup(3 \infty)$.
32. ()$=\left(2^{3}-5\right)\left({ }^{2}+-6\right)$ is defined for all except when $0=^{2}+-6 \quad \Leftrightarrow 0=(+3)(-2) \Leftrightarrow$ $=-3$ or 2 , so the domain is $\{\in R \mid 6=-32\}=(-\infty-3) \cup(-32) \cup(2 \infty)$.
33. ()$=2_{3}-1$ id defined for all real numbers. In fact $\quad()$.where () is a polynomial, is defined for all real numbers.

Thus, the domain is R or $(-\infty \infty)$.
34. () $=\sqrt{ } \quad-\sqrt{ } \frac{}{2+} \quad$ is defined when $3-\geq 0 \Leftrightarrow \leq 3$ and $2+\geq 0 \Leftrightarrow \geq-2$. Thus, the domain is $-2 \leq \leq 3$, or [-2 3].
35. ()$=1_{4}^{\sqrt{ }} \quad{ }_{2}-5 \quad$ is defined when ${ }^{2}-50 \Leftrightarrow(-5) \quad 0$. Note that ${ }^{2}-56=0$ since that would result in division by zero. The expression (-5) is positive if 0 or 5 . (See Appendix A for methods for solving inequalities.) Thus, the domain is $(-\infty 0) \cup(5 \infty)$.
© Cengage Learning. All Rights Reserved.
36. ()$=\frac{+1}{\frac{1+1}{+1}}$ is defined when $+16=0[6=-1]$ and $1+\frac{1}{+1} 6=$. OSince $1+\frac{1}{+1}=0 \Leftrightarrow$ $\frac{1}{+1}=-1 \Leftrightarrow 1=--1 \Leftrightarrow=-2$, the domain is $\{\mid 6=-2,6=-1\}=(-\infty-2) \cup(-2-1) \cup(-1 \infty)$.

37. ()$=2-$ is defined when ≥ 0 and $2-\geq 0$. Since $2-\geq 0 \Leftrightarrow 2 \geq \quad \Leftrightarrow 2 \Leftrightarrow$ $\leq \leq 4$, the domain is [04].
38. ()$=\sqrt{4} \overline{-2 . \text { Now }} \quad=\sqrt{4-2} \Rightarrow 2=4-2 \Leftrightarrow 2+2=4$, so the graph is the top half of a circle of radius 2 with center at the origin. The domain is $\left|4-^{2} \geq 0=\right| 4 \geq^{2}=\{|2 \geq| |\}=[-22]$. From the graph, the range is
 $0 \leq \leq 2$, or [02].
39. The domain of ()$=16-24$ is the set of all real numbers, denoted by R or $(-\infty \infty)$. The graph of f is a line with slope 16 and y-intercept -24.

$\begin{array}{r}\text { 40. Note that }()=\frac{2}{-1}=\frac{(+1)(-1)}{+1}= \\ +1\end{array}=\begin{gathered}1 \text { for }+1 \\ +1\end{gathered}$

The domain of is the set of all real numbers except -1 . In interval notation, we have $(-\infty-1) \cup(-1 \infty)$. The graph of is a line with slope 1 , -intercept -1 , and a

hole at $=-1$.
41. ()
$\begin{array}{ccc}()= & 1 & \text { if0 } \\ & +2 & \text { if0 }\end{array}$

$$
(-3)=-3+2=-1,(0)=1-0=1, \text { and }(2)=1-2=-1
$$

42. ()$=\quad 2^{-} \quad 25$ if2

$$
3 \quad 1 \quad \text { if2 }
$$

$(-3)=3-\frac{1}{-1}(-3)=\stackrel{\underset{9}{9}}{2}, \quad \stackrel{\geq}{2}, \quad(0)=3-\frac{1}{2}(0)=3$, 2

$$
+1 \text { if } \leq-1
$$

$$
\begin{aligned}
& \text { 43. }()=2 \begin{array}{c}
\text { if }-1 \\
(-3)=-3+1=-2, \\
\end{array}(0)=0^{2}=0, \text { and }(2)=2^{2}=4
\end{aligned}
$$

45. | $=\quad-\quad$ if0

$$
\text { if } \geq 0
$$

so

$$
\begin{array}{cll}
|\mid & 0 & \text { if0 } \\
()=+= & 2 & \text { if } \geq 0
\end{array}
$$

Graph the line $=2$ for ≥ 0 and graph $=0$ (the -axis) for 0

46.

$$
\left.\begin{array}{rlrl}
()=|+2|=-(+2) & & \text { if }+20 \\
+2
\end{array}\right) \quad \begin{aligned}
\text { if }+2 \geq 0
\end{aligned}
$$

47. $\quad()=|1-3|=\begin{array}{cl}(1 & 3) \\ 1-3 & \text { if } \begin{array}{rl}1 & 3 \\ \text { if } 1-3 \geq 0\end{array}\end{array}$

$$
\begin{array}{cc}
1-3 & \text { if } \quad \leq_{3} \\
- &
\end{array}
$$

$$
\text { if } \geq 0
$$

48. ||= -

$$
\begin{array}{ccl}
\text { if0 } & \text { and } & \\
+1 & \text { if }+1 \geq 0 & +1
\end{array} \quad \text { if } \geq-1
$$

SO

$$
(0)=+\quad+1=\begin{array}{llll}
+(+1) & \text { if } & \geq_{1} 0 \\
& -+(+1) & \text { if } & =0 \\
& -1) \text { if } & -1 &
\end{array}
$$

$$
-+(--1) \text { if }-1 \quad-2-1 \text { if }-1
$$

$$
\begin{aligned}
& \text { 44. () = } \\
& \text { SECTION } 1.1 \\
& 2 \text { if1 } \\
& \text {-1 } \\
& \text { if } \leq 1 \\
& (-3)=-1,(0)=-1, \text { and }(2)=7-2(2)=3 \text {. }
\end{aligned}
$$

16 a CHAPTER
49. To graph () =
$\begin{array}{ll} & \text { if } \leq 1 \\ \text { if }\left.\right|^{\mid} 1, \text { graph }=\|(\text { Figure 16 })\end{array}$
for $-1 \leq \quad \leq 1$ and graph $=1$ for

We could rewrite f as ()=
50. () =

Recall that the slope of a line between the two points (11) and (2) is $=^{-1}$ and an equation of the line 2-1
connecting those two points is $-1=(-1)$. The slope of the line segment joining the points $(1-3)$ and (57) is

52. The slope of the line segment joining the points (510) and $(7 \quad 10)$ is $-10-\underline{10}=-\underline{5}$, so an equation is

$-10=-\underline{5}_{3}[-(-5)]$. The function is ()$=-\underline{5}^{3}+\underline{5}^{3},-5 \leq \leq 7$.
53. We need to solve the given equation for $\cdot \quad+(-1)^{2}=0 \quad \Leftrightarrow(-1)^{2}=-\quad \Leftrightarrow-1= \pm-\cdots$ $=1 \pm \stackrel{\sqrt{ }}{-}$.The expression with the positive radical represents the top half of the parabola, and the one with the negative radical represents the bottom half. Hence, we want ()$=1-V_{-}$. Note that the domain is ≤ 0.
54. ${ }^{2}+(-2)^{2}=4 \Leftrightarrow(-2)^{2}=4-^{2} \Leftrightarrow-2= \pm 4-2 \Leftrightarrow=2 \pm 4-2$. The top half is given by the function ()$=2+$ $\sqrt{ }$

$$
4-2,-2 \leq \leq 2
$$

For $0 \leq \leq 3$, the graph is the line with slope -1 and -intercept 3 , that is, $=-+3$. For $3 \leq 5$, the graph is the line with slope 2 passing through (30); that is, $-0=2(-3)$, or $=2-6$. So the function is

$$
\begin{array}{cc}
()= & 6
\end{array} \text { if } 35
$$

56. For $-4 \leq \leq-2$, the graph is the line with slope $-\underline{3}_{2}$ passing through (-20); that is, $-0=-\underline{3}_{2}[-(-2)]$, or $=-\underline{3}_{2}-3$. For -22 , the graph is the top half of the circle with center (00) and radius 2 . An equation of the circle
© Cengage Learning. All Rights Reserved.
is ${ }^{2}+{ }^{2}=4$, so an equation of the top half is $=\sqrt{~}$-2. For $2 \leq \leq 4$, the graph is the line with slope ${ }^{3}-\overline{2}$ passing through (2

0); that is, $-0=\underline{3}_{2}(-2)$, or $=\underline{3}_{2}-3$. So the function is

57. Let the length and width of the rectangle be and . Then the perimeter is $2+2=20$ and the area is=

$$
\frac{20-2}{2}
$$

lengths are positive, the domain of is 0 10. If we further restrict to be larger than , then 510 would be the domain.

Let the length and width of the rectangle be and. Then the area is $=16$, so that $=16$. The perimeter is $=2+2$, so ()$=$ $2+2(16)=2+32$, and the domain of is 0 , since lengths must be positive quantities. If we further restrict to be larger than , then 4 would be the domain.

Let the length of a side of the equilateral triangle be. Then by the Pythagorean Theorem, the height of the triangle satisfies ${ }^{2}+\underline{1}_{2} .^{2}={ }^{2}$, so that ${ }^{2}=2-1_{4}{ }^{2}=\underline{3}_{4}{ }^{2}$ and $=\underline{V_{2}} \underline{3}^{2}$. Using the formula for the area of a triangle, $=\frac{1}{2}$ (base)(height), we obtain $\quad()=\frac{1}{2}() \quad \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{4}^{2}$, with domain 0.

Let the length, width, and height of the closed rectangular box be denoted by, , and , respectively. The length is twice the width, so $=2$. The volume of the box is given by $=\quad$. Since $=8$, we have $8=(2) \quad \Rightarrow$
$8=2^{2} \Rightarrow=$

Let each side of the base of the box have length, and let the height of the box be. Since the volume is 2 , we know that $2=^{2}$, so that $=2^{2}$, and the surface area is $=^{2}+4$. Thus, ()$=^{2}+4\left(2^{2}\right)=^{2}+(8)$, with domain 0 .

The area of the window is $=+1_{2} \underline{1}_{2}^{2}=+8^{2}$, where is the height of the rectangular portion of the window.

The perimeter is $=2++\quad \frac{1}{2} \quad=30 \Leftrightarrow 2=30--\quad \frac{1}{2} \Leftrightarrow=\quad \frac{1}{4}(60-2-)$. Thus,

Since the lengths and must be positive quantities, we have 0 and 0 . For 0 , we have $2 \quad 0$ $30-\quad \stackrel{1}{20} \Leftrightarrow 602+\Leftrightarrow \quad \frac{60}{2+.}$ Hence, the domain of is $0 \quad \frac{60}{2+}$.

The height of the box is and the length and width are $=20-2,=12-2$. Then $=$ and so
()$=(20-2)(12-2)()=4(10-)(6-)()=4\left(60-16+{ }^{2}\right)=4^{3}-64^{2}+240$.

The sides , , and must be positive. Thus, $0 \Leftrightarrow 20-2 \quad 0 \Leftrightarrow 10$;
0
$\Leftrightarrow 12-2$
$0 \Leftrightarrow$
6 ; and
0 . Combining these restrictions gives us the domain 0
6.
© Cengage Learning. All Rights Reserved.
64. We can summarize the monthly cost with a piecewise defined function.
()$=35+010$ (
400) if400
$35 \quad$ if $0 \leq \leq 400$

65. We can summarize the amount of the fine with a piecewise defined function.

$15(40-)$	if $0 \leq \quad 40$
()$=015(-65)$	if $40 \leq \leq 65$
	if 65

66. For the first $1200 \mathrm{kWh}, \quad()=10+006$.

For usage over 1200 kWh , the cost is
()$=10+006(1200)+007(-1200)=82+007(-1200)$.

Thus,

$$
\begin{array}{ll}
10+006 & \text { if } 0 \leq \leq 1200 \\
()=82+007(& 1200) \text { if } 1200
\end{array}
$$

67. (a) $R(\%)_{\lambda}$ (b) On $\$ 14,000$, tax is assessed on $\$ 4000$, and $10 \%(\$ 4000)=\$ 400$. On $\$ 26,000$, tax is assessed on $\$ 16,000$,
 and

$$
10 \%(\$ 10,000)+15 \%(\$ 6000)=\$ 1000+\$ 900=\$ 1900 .
$$

(c) As in part (b), there is $\$ 1000$ tax assessed on $\$ 20,000$ of income, so the graph of is a line segment from $(10,0000)$ to $(20,0001000)$. The tax on $\$ 30,000$ is $\$ 2500$, so the graph of for 20,000 is the ray with initial point $(20,0001000)$ that passes through $(30,000$
 2500).

One example is the amount paid for cable or telephone system repair in the home, usually measured to the nearest quarter hour. Another example is the amount paid by a student in tuition fees, if the fees vary according to the number of credits for which the student has registered.
is an odd function because its graph is symmetric about the origin. is an even function because its graph is symmetric with respect to the -axis.
is not an even function since it is not symmetric with respect to the -axis. is not an odd function since it is not symmetric about the origin. Hence, is neither even nor odd. is an even function because its graph is symmetric with respect to the -axis.
(a) Because an even function is symmetric with respect to the -axis, and the point (53) is on the graph of this even function, the point (-53) must also be on its graph.

Because an odd function is symmetric with respect to the origin, and the point (53) is on the graph of this odd function, the point $(-5-3)$ must also be on its graph.
72. (a) If is even, we get the rest of the graph by reflecting about the -axis.

()$=2+1$.
()$=-\quad=\quad=\quad=\quad=()$
$-\quad(-) 2+1 \quad 2+1 \quad-2+1 \quad-$
Since $(-)=-(), \quad$ is an odd function.

75. () $=$

$$
\begin{array}{ccc}
\\
+1 & \text {, so }()= & - \\
-\quad+1
\end{array}
$$

Since this is neither () nor -() , the function is neither even nor odd.

(b) If is odd, we get the rest of the graph by rotating 180° about the origin.

()$={ }^{2}$.
$\overline{4+1}$
$(-)_{2} \quad 2 \quad-$
$(-)=\quad=\quad=() \cdot(-) 4+14+1$

Since $(-)=()$, is an teven function.

()$=\|$.

$$
\begin{gathered}
(-)=(-)|-|=(-)||=-(| |) \\
-()
\end{gathered}
$$

Since $(-)=-(), \quad$ is an odd function.

20 CHAPTER 1 FUNCTIONS AND LIMITS
()$=1+3^{2}-4$.
$(-)=1+3(-)^{2}-(-)^{4}=1+3^{2-4}=()$. Since $(-)=$
(), is an even function.

$$
\begin{aligned}
& ()=1+3^{3}-5 \text {, so } \\
& (-)=1+3(-)^{3}-(-)^{5}=1+3\left(-{ }^{3}\right)-\left(-{ }^{5}\right) \\
& 1-3^{3} 5
\end{aligned}
$$

Since this is neither () nor - (), the function is neither even nor odd.

(i) If and are both even functions, then $(-)=()$ and $(-)=()$. Now
$(+)(-)=$
$(-)+(-)=$
()$+()=(+)()$, so
$+\quad$ is an even function.

If and are both odd functions, then $(-)=-()$ and $(-)=-()$. Now
$(+)(-)=(-)+(-)=-()+[-()]=-[()+()]=-(+)()$, so + is an odd function.
If is an even function and is an odd function, then $(+)(-)=(-)+(-)=()+[-()]=()-()$, which is not $(+)()$ nor $-(+)()$, so + is neither even nor odd. (Exception: if is the zero function, then

+ will be odd. If is the zero function, then + will be even.)
(i) If and are both even functions, then $(-)=()$ and $(-)=()$. Now
$(\quad)(-)=$
$(-)(-)=$
()()$=($
$)($), so is an even function.

If and are both odd functions, then $(-)=-()$ and $(-)=-()$. Now
()$(-)=(-)(-)=[-()][-()]=()()=()()$, so is an even function.

If is an even function and is an odd function, then
()$(-)=(-)(-)=()[-()]=-[()()]=-()()$, so is an odd function.

1.2 Mathematical Models: A Catalog of Essential Functions

(a) ()$=\log _{\sqrt{2}}$ is a logarithmic function.
(b) ()$=4 \quad$ is a root function with $=4$.
(c) ()$=\frac{2}{1-2}^{3}$ is a rational function because it is a ratio of polynomials.
() = $1-11+254{ }^{2}$ is a polynomial of degree 2 (also called a quadratic function).
()$=5$ is an exponential function.
(f) () $=\sin \quad \cos ^{2}$ is a trigonometric function.
$(a)=$ is an exponential function (notice that is the exponent).
$=$ is a power function (notice that is the base).
$={ }^{2}(2-3)=2^{2}-5$ is a polynomial of degree 5 .
$=\tan -\cos$ is a trigonometric function.
$=(1+)$ is a rational function because it is a ratio of polynomials.
$\left.(\mathrm{f})=\frac{\sqrt{ }}{3-1(1+3}\right)$ is an algebraic function because it involves polynomials and roots of polynomials.
We notice from the figure that and are even functions (symmetric with respect to the -axis) and that is an odd function (symmetric with respect to the origin). So $(b)={ }^{5}$ must be. Since is flatter than near the origin, we must have $=8$ matched with and (a) $=2$ matched with .
(a) The graph of $=3$ is a line (choice).
$=3$ is an exponential function (choice).
$=3$ is an odd polynomial function or power function (choice).
$=V_{3}=13$ is a root function (choice).
5. The denominaos cannot equal 0 , so $1-\sin \quad 6=0 \Leftrightarrow \sin \quad 6=1 \Leftrightarrow 6=2+2$. Thus, the domain of
()$=7^{1-\sin ^{S}} \mid 6=2 \quad+2$, an integer.
6. The denominator cannot equal 0 , so $1-\tan \quad 6=0 \Leftrightarrow \tan 6=1 \quad 6=4+$. The tangent function is not defined $\frac{1}{2}+\quad, \quad 6=2+\quad, \quad$ an integer.
if $6=2+$.Thus, the domain of ()$=1-\tan$ is $\mid 6=4$
(a) An equation for the family of linear functions with slope 2 is $=()=2+$, where is the -intercept.

(b) $(2)=1$ means that the point (21) is on the graph of. We can use the pointslope form of a line to obtain an equation for the family of linear functions through the point $(21) .-1=(-2)$, which is equivalent to $=+(1-2)$ in slope-intercept form.

To belong to both families, an equation must have slope $=2$, so the equation in part $(b),=+(1-2)$, becomes $=$ $2-3$. It is the only function that belongs to both families.

All members of the family of linear functions ()$=1+(+3)$ have graphs that are lines passing through the point (-31).

9. All members of the family of linear functions ()$=-$ have graphs that
are lines with slope -1 . The -intercept is .

The vertex of the parabola on the left is (30), so an equation is $=(-3)^{2}+0$. Since the point (42) is on the
parabola, we'll substitute 4 for and 2 for to find $.2=(4-3)^{2} \Rightarrow=2$, so an equation is ()$=2(-3)^{2}$. The -
intercept of the parabola on the right is (01), so an equation is $=^{2}++1$. Since the points (-22) and $(1-25)$ are on the parabola, we'll substitute -2 for and 2 for as well as 1 for and -25 for to obtain two equations with the unknowns and.

$$
\begin{array}{lll}
(-22): & 2=4-2+1 & \Rightarrow 4-2=1 \\
(1-25): & -25=++1 & \Rightarrow+=-35
\end{array}
$$

$2 \cdot(\mathbf{2})+(\mathbf{1})$ gives us $6=-6 \Rightarrow=-1$. From (2), $-1+=-35 \Rightarrow=-25$, so an equation is ()$=-{ }^{2}-25$
+1 .
Since $(-1)=(0)=(2)=0$, has zeros of $-1,0$, and 2 , so an equation for is ()$=[-(-1)](-0)(-2)$,
or ()$=(+1)(-2)$. Because $(1)=6$, we'll substitute 1 for and 6 for ().
$6=(1)(2)(-1) \quad \Rightarrow-2=6 \Rightarrow \quad=-3$, so an equation for \quad is $\quad()=-3(+1)(-2)$.
(a) For $=002+850$, the slope is 002 , which means that the average surface temperature of the world is increasing at a rate of $002{ }^{\circ} \mathrm{C}$ per year. The -intercept is 850 , which represents the average surface temperature in ${ }^{\circ} \mathrm{C}$ in the year 1900 .
(b) $=2100-1900=200 \Rightarrow \quad=002(200)+850=1250^{\circ} \mathrm{C}$
$(a)=200$, so $=00417(+1)=00417(200)(+1)=834+834$. The slope is 834 , which represents the change in mg of the dosage for a child for each change of 1 year in age.

For a newborn, $=0$, so $=834 \mathrm{mg}$.
14. (a)

15. (a)

(b) The slope of -4 means that for each increase of 1 dollar for a rental space, the number of spaces rented decreases by 4 . The -intercept of 200 is the number of spaces that would be occupied if there were no charge for each space. The -intercept of 50 is the smallest rental fee that results in no spaces rented.
(b) The slope of $\frac{9}{5}$ means that increases $\underline{9}_{5}^{\text {degrees }}$ for each increase of $1^{\circ} \mathrm{C}$. (Equivalently, increases by 9 when increases by 5 and decreases by 9 when decreases by 5 .) The -intercept of 32 is the Fahrenheit temperature corresponding to a Celsius temperature of 0 .
16. (a) Let $=$ distance traveled (in miles) and $=$ time elapsed (in hours). At
$=0,=0$ and at $=50$ minutes $=50 . \quad \frac{1}{60} \quad \stackrel{5}{6} \mathrm{~h},=40$. Thus we
have two points: (00) and $\frac{5}{6} 40$, so $=\frac{40-0}{\frac{5}{5}}=48$ and so $=48$.
6-0
(c) The slope is 48 and represents the car's speed in mi h.
17. (a) Using in place of and in place of, we find the slope to be

$$
\begin{gathered}
\frac{2-1}{2-1}=\frac{80}{173-}-\frac{70}{113}=\frac{10}{60}=1 . \text { So a linear } \\
\underline{1} \quad 307 \quad 307
\end{gathered}
$$

The slope of ${ }^{1} 6$ means that the temperature in Fahrenheit degrees increases one-sixth as rapidly as the number of cricket
chirps per minute. Said differently, each increase of 6 cricket chirps per minute corresponds to an increase of $1^{\circ} \mathrm{F}$.
When $=150$, the temperature is given approximately by $=1_{6}(150)+{ }^{307} 6=7616^{\circ} \mathrm{F} \approx 76{ }^{\circ} \mathrm{F}$.
18. (a) Let denote the number of chairs produced in one day and the associated cost. Using the points (100 2200) and (300 4800), we get the slope

$$
\begin{aligned}
& \frac{4800-2200}{30 n-10 n}=2600 \\
& =13+900 .
\end{aligned}
$$

(b) The slope of the line in part (a) is 13 and it represents the cost (in dollars) of producing each additional chair.

The -intercept is 900 and it represents the fixed daily costs of operating the factory.
19. (a) We are given $\frac{\text { change in pressure }}{10 \text { feet change in depth }}=\frac{434}{10}=0434$. Using for pressure and for depth with the point $(\quad)=(015)$, we have the slope-intercept form of the line, $\quad=0434+15$.
(b) When $=100$, then $100=0434+15 \Leftrightarrow 0434=85 \Leftrightarrow=0{ }^{85} 434 \approx 19585$ feet. Thus, the pressure is $100 \mathrm{lb} \mathrm{in}^{2}$ at a depth of approximately 196 feet.
(a) Using in place of and in place of, we find the slope to be $\underline{2}=1=\frac{460}{=} \underline{380}=80=\frac{1}{}$. 2-1800-480 $320 \quad 4$
So a linear equation is $-460=1_{4}(-800) \Leftrightarrow \quad-460=1_{4}-200 \Leftrightarrow \quad=1_{4}+260$.
(b) Letting $=1500$ we get $=\frac{1}{4}(1500)+260=635$.

The cost of driving 1500 miles is $\$ 635$.
(d) The -intercept represents the fixed cost, $\$ 260$.
(e) A linear function gives a suitable model in this situation because you have fixed monthly costs such as insurance and car payments, as well as costs that increase as you drive, such as gasoline, oil, and tires, and the cost of these for each additional mile driven is a constant.
(c)

The slope of the line represents the cost per mile, \$0 25.
(a) The data appear to be periodic and a sine or cosine function would make the best model. A model of the form

$$
()=\cos ()+\text { seems appropriate }
$$

The data appear to be decreasing in a linear fashion. A model of the form ()$=+$ seems appropriate.
(a) The data appear to be increasing exponentially. A model of the form ()$=\cdot$ or ()$=\cdot+$ seems appropriate. The data appear to be decreasing similarly to the values of the reciprocal function. A model of the form () =seems appropriate.

Exercises 23-28: Some values are given to many decimal places. These are the results given by several computer algebra systems - rounding is left to the reader.
23. (a)

(b) Using the points (4000 141) and (60,000 82), we obtain

- $141=\frac{82-141_{\text {,000 }}(-4000) \text { or, equivalently, }, ~}{\text {, }}$
$\approx-0000105357+14521429$.

Using a computing device, we obtain the least squares regression line $=-00000997855+13950764$. The following commands and screens illustrate how to find the least squares regression line on a TI-84 Plus.

Enter the data into list one (L1) and list two (L2). Press \qquad STAT 1 to enter the editor.

Note from the last figure that the regression line has been stored in Y_{1} and that Plotl has been turned on (Plot1 is highlighted). You can turn on Plot1 from the $Y=$ menu by placing the cursor on Plot 1 and pressing \square ENTER| or by pressing 2nd STAT PLOT|1 ENTER|.

Now press ZOOM 9 line. Note that choice 9 of the ZOOM menu automatically selects a window that displays all of the data.

When $=25,000, \approx 11456$; or about 115 per 100 population.

When $=80,000, \approx 5968$; or about a 6% chance.
(f) When $=200,000$, is negative, so the model does not apply.
24. (a)

(c) When $=100^{\circ} \mathrm{F},=2647 \approx 265$ chirps min.
(b)

Using a computting device, we obtain the least squares regression line $=4856-22096$.
25. (a)

(c) When $=53 \mathrm{~cm}, \approx 1823 \mathrm{~cm}$.
(b) Using a computing device, we obtain the regression line $=188074+8264974$.

Femur lenglh (em)
(a) Using a computing device, we obtain the regression line $=001879+030480$.
(b) The regression line appears to be a suitable model for the data.
(c) The -intercept represents the percentage of laboratory rats that develop lung tumors when not exposed to asbestos fibers.
27. (a) See the scatter plot in part (b). A linear model seems appropriate.

(b) Using a computing device, we obtain the regression line

$$
=111664+60,18833 .
$$

(c) For 2002,

For 2012,

(a) See the scatter plot in part (b). A linear model seems appropriate.
(b) Using a computing device, we obtain the regression line $=033089+807321$.
(c) For 2005, $=5$ and ≈ 973 cents $k W h$. For 2013, $=13$ and ≈ 12

37 cents kWh.

If is the original distance from the source, then the illumination is ()$=-2={ }^{2}$. Moving halfway to the lamp gives us an illumination of $1_{2}=1_{2}{ }^{-2}=(2)^{2}=4\left({ }^{2}\right)$, so the light is 4 times as bright.
(a) If $=60$, then $=07^{03} \approx 239$, so you would expect to find 2 species of bats in that cave.
(b) $=4 \Rightarrow 2 \quad 4=07^{03} \Rightarrow \quad \begin{gathered}\overline{40} \\ 7\end{gathered}=310 \quad \Rightarrow=\quad 7^{40} \quad \approx 3336$. so we estimate the surface area of the cave to be 334 m .
(a) Using a computing device, we obtain a power function $=$, where ≈ 31046 and ≈ 0308.

If $=291$, then $=\approx 178$, so you would expect to find 18 species of reptiles and amphibians on Dominica.
(a) $=1000431227^{1499528750}$

The power model in part (a) is approximately $={ }^{15}$. Squaring both sides gives us ${ }^{2}={ }^{3}$, so the model matches Kepler's Third Law, ${ }^{2}={ }^{3}$.

1.3 New Functions from Old Functions

(a) If the graph of is shifted 3 units upward, its equation becomes $=()+3$.

If the graph of is shifted 3 units downward, its equation becomes $=()-3$.
If the graph of is shifted 3 units to the right, its equation becomes $=(-3)$.
If the graph of is shifted 3 units to the left, its equation becomes $=(+3)$.
If the graph of is reflected about the -axis, its equation becomes $=-()$.
(f) If the graph of is reflected about the -axis, its equation becomes $=(-)$.

If the graph of is stretched vertically by a factor of 3 , its equation becomes $=3()$.
If the graph of is shrunk vertically by a factor of 3 , its equation becomes $\left.={\underset{1}{3}}^{(}\right)$.
(a) To obtain the graph of $=()+8$ from the graph of $=()$, shift the graph 8 units upward.

To obtain the graph of $=(+8)$ from the graph of $=()$, shift the graph 8 units to the left.
To obtain the graph of $=8()$ from the graph of $=()$, stretch the graph vertically by a factor of 8 .
To obtain the graph of $=(8)$ from the graph of $=()$, shrink the graph horizontally by a factor of 8 .
To obtain the graph of $=-()-1$ from the graph of $=()$, first reflect the graph about the -axis, and then shift it 1 unit downward.
(f) To obtain the graph of $=8\left({ }^{-1} 8\right)$ from the graph of $=()$, stretch the graph horizontally and vertically by a factor of 8 .
(a) (graph 3) The graph of is shifted 4 units to the right and has equation $=(-4)$. (graph 1) The graph of is shifted 3 units upward and has equation $=()+3$.
(graph 4) The graph of is shrunk vertically by a factor of 3 and has equation $=1_{3}()$.
(graph 5) The graph of is shifted 4 units to the left and reflected about the -axis. Its equation is $=-(+4)$. (graph 2) The graph of is shifted 6 units to the left and stretched vertically by a factor of 2 . Its equation is $=2(+6)$.
4. $(\mathrm{a})=()-3$ Shift the graph of 3 units down.
(b) $=(+1)$: Shift the graph of 1 unit to the left.

28 CHAPTER 1 FUNCTIONS AND LIMITS
$=\underline{1}_{2}()$: Shrink the graph of vertically by a factor
of 2.

(a) To graph $=(2)$ we shrink the graph of horizontally by a factor of 2 .

The point ($4-1$) on the graph of corresponds to the point $\underline{1}_{2} \cdot 4-1=(2-1)$.

To graph $=(-)$ we reflect the graph of about the -axis.

The point (4-1) on the graph of corresponds to the point $(-1 \cdot 4-1)=(-4-1)$.
(d) $=-()$: Reflect the graph of about the -axis.

To graph $=\frac{1}{-2}$ we stretch the graph of horizontally by a factor of 2 .

The point $(4-1)$ on the graph of corresponds to the point $(2 \cdot 4-1)=(8-1)$.

To graph $=-(-)$ we reflect the graph of about the axis, then about the -axis.

The point ($4-1$) on the graph of corresponds to the point $(-1 \cdot 4-1 \cdot-1)=(-41)$.

$$
\sqrt{ }
$$

The graph of $=()=3-2$ has been shifted 2 units to the right and stretched vertically by a factor of 2 . Thus, a
function describing the graph is

$$
=2(-2)=23(-2)-(\overline{-2) 2=23-6-(2-4}+4)=2^{\sqrt{ }}-{ }_{2+7-10}
$$

The graph of $=()=\sqrt{ }-2$ has been shifted 4 units to the left, reflected about the -axis, and shifted downward 1 unit.

Thus, a function describing the graph is

$$
=\begin{array}{ccc}
-1 \cdot & (+4) & \overline{-1} \\
\text { about -axis } & 4 \text { units left } & 1 \\
\text { reflect } & \text { shift } & \text { shitenift } \\
& \text { shif }
\end{array}
$$

This function can be written as

$$
\begin{aligned}
& =-(+4)-1=-3(+4)-\left(+\overline{4) 2-1=-3+12-(2+8+16)-1=-}{ }^{2-5-4-1}\right. \text { (C) Cengage Learning. All Rights Reserved. }
\end{aligned}
$$

(a) The graph of $=2 \sin$ can be obtained from the graph of $=\sin$ by stretching it vertically by a factor of 2 .

The graph of $=1+\sqrt{ }$ can be obtained from the $\sqrt{ }$
graph of $=\quad$ by ${ }^{\prime}$ shifting it upward 1 unit.

9. $=-{ }^{2}$: Start with the graph of $={ }^{2}$ and reflect about the -axis.

10. $=(-3)^{2}$: Start with the graph of $=2$ and shift 3 units to the right.

11. $={ }^{3}+1$: Start with the graph of $=$

3 and shift upward 1 unit.

$=1-1=-1+1$: Start with the graph of $=1$, reflect about the -axis, and shift upward 1 unit.

$=2 \cos 3:$ Start with the graph of $=\cos$, compress horizontally by a factor of 3 , and then stretch vertically by a factor of
2.

$=2^{\sqrt{ }}+\overline{1: \text { Start with the graph of }=\sqrt{ }}$, shift 1 unit to the left, and then stretch vertically by a factor of 2 .

$=^{2}-4+5=(2-4+4)+1=(-2)^{2}+1$: Start with the graph of $=^{2}$, shift 2 units to the right, and then shift upward 1 unit.

$=1+\sin :$ Start with the graph of $=\sin$, compress horizontally by a factor of, and then shift upward 1 unit.

$=2-\sqrt{ }$ Start with the graph of $=^{\sqrt{ }}$, reflect about the -axis, and then shift 2 units upward.

$=3-2 \cos :$ Start with the graph of $=\cos$, stretch vertically by a factor of 2 , reflect about the -axis, and then shift 3 units upward.

19. $=\sin ($
2): Start with the graph of $=\sin \quad$ and stretch horizontally by a factor of 2.

20.

21. $=|-2|:$ Start with the graph of

a CHAPTER 1 FUNCTIONS AND LIMITS
$=\left.\right|^{\sqrt{ }}-1 \mid$: Start with the graph of $=^{\sqrt{ }}$, shift it 1 unit downward, and then reflect the portion of the graph below the -axis about the -axis.

$=|\cos |$: Start with the graph of $=\cos$, shrink it horizontally by a factor of, and reflect all the parts of the graph below the -axis about the -axis.

This is just like the solution to Example 4 except the amplitude of the curve (the $30^{\circ} \mathrm{N}$ curve in Figure 9 on June 21) is $14-12=2$. So the function is ()$=12+2 \sin 365^{2}(-80)$. March 31 is the 90 th day of the year, so the model gives $(90) \approx$ 1234 h . The daylight $\frac{\frac{1245-1234}{\underline{1245}}}{}$ time (5:51 AM to $\left.6: 18 \mathrm{PM}\right)$ is 12 hours and 27 minutes, or 1245 h . The model value
differs

Using a sine function to model the brightness of Delta Cephei as a function of time, we take its period to be 54 days, its amplitude to be 035 (on the scale of magnitude), and its average magnitude to be 40 . If we take $=0$ at a time of average brightness, then the magnitude (brightness) as a function of time in days can be modeled by the formula
()$=40+035 \sin 5^{2} 4$.

The water depth () can be modeled by a cosine function with amplitude $\underline{12-2}=5 \mathrm{~m}$, average magnitude $\underline{\underline{12}+2}=7 \mathrm{~m}$,

$$
22
$$

and period 12 hours. High tide occurred at time 6:45 AM ($=675 \mathrm{~h}$), so the curve begins a cycle at time $=675 \mathrm{~h}$ (shift 6.75 units to the right). Thus, ()$=5 \cos ^{2} 12(-675)+7=5 \cos 6(-675)+7$, where is in meters and is the number of hours after midnight.
The total volume of air () in the lungs can be modeled by a sine function with amplitude $\frac{2500}{}=\underline{2000}=250 \mathrm{~mL}$, average 2
volume $\frac{2500+2000}{2}=2250 \mathrm{~mL}$, and period 4 seconds. Thus, ()$=250 \sin \frac{2}{4}+2250=250 \sin { }_{2}+2250$, where is in mL and is in seconds.
(a) To obtain $=(\|)$, the portion of the graph of $=()$ to the right of the -axis is reflected about the -axis.
(b) $=\sin | |$

(c) $=H$

30. The most important features of the given graph are the -intercepts and the maximum and minimum points. The graph of $=1$ () has vertical asymptotes at the -values where there are -intercepts on the graph of $=()$. The maximum of 1 on the graph of $=()$ corresponds to a minimum of $11=1$ on = 1 (). Similarly, the minimum on the graph of $=()$ corresponds to a maximum on the graph of
$=1$ () As the values of get large (positively or negatively) on the graph of $=($
$)$, the values of get close to zero on the graph of $=1()$.

()$={ }^{3}+2^{2} ;()=3^{2}-1=R$ for both and.
$(+)()=\left({ }^{3}+2^{2}\right)+\left(3^{2}-1\right)={ }^{3}+5^{2}-1,=(-\infty \infty)$, or R.
$(-)()=\left({ }^{3}+2^{2}\right)-\left(3^{2}-1\right)={ }^{3}-2+1,=R$.
()()$=\left({ }^{3}+2^{2}\right)\left(3^{2}-1\right)=3^{5}+6^{4}-3^{3} 2^{2},=R$.

() = $\sqrt{3-},=(-\infty 3] ; \quad()=V_{2-1}, \quad=(-\infty-1] \overline{\cup[1 \infty)}$.
$(+)()=\sqrt{\sqrt{ }} 3-+{ }_{2}-1,=(-\infty-1] \cup[13]$, which is the intersection of the domains of and.
$(-)()=3-{ }_{\sqrt{2-1}}, \quad=(-\infty-1] \cup[13]$.
()()$=3-\cdot 2-1,=(-\infty-1] \cup[13]$.

(d) $\quad()=\sqrt{2}-1,=(-\infty-1) \cup(13]$. We must exclude $= \pm 1$ since these values would make
undefined.
()$=3+5 ;()=^{2}+.=\mathrm{R}$ for both and, and hence for their composites.

$$
(\circ)()=(())=\left(^{2}+\right)=3\left({ }^{2}+\right)+5=3^{2}+3+5, \quad=R .
$$

$(\circ)()=(())=(3+5)=(3+5)^{2}+(3+5)$

$$
9^{2}+30+25+3+5=9^{2}+33+30,=R
$$

$(\circ)=(())=(3+5)=3(3+5)+5=9+15+5=9+20,=R$.
$(\circ)()=(())=\left({ }^{2}+\right)=\left({ }^{2}+\right)^{2}+\left({ }^{2}+\right)$
$4_{+} 2^{3}+{ }^{2}+{ }^{2}+={ }^{4}+2^{3}+2^{2}+,=R$
()$={ }^{3}-2 ;()=1-4 .=R$ for both and, and hence for their composites.

$$
\left.\begin{array}{rl}
(\circ)()=(())= & (1-4)=(1-4)^{3}-2 \\
& (1)^{3}-3(1)^{2}(4)+3(1)(4)^{2}-(4)^{3}-2=1-12+48^{2}-64^{3}-2 \\
& -1-12+48^{2}-64^{3}=R
\end{array}\right] .
$$

34 CHAPTER 1 FUNCTIONS AND LIMITS
$(\circ)()=(())=\left({ }^{3}-2\right)=\left({ }^{3}-2\right)^{3}-2$

$$
\left({ }^{3}\right)^{3}-3\left({ }^{3}\right)^{2}(2)+3\left({ }^{3}\right)(2)^{2}-(2)^{3}-2=9-6^{6}+12^{3}-10=R
$$

$(\circ)()=(())=(1-4)=1-4(1-4)=1-4+16=-3+16,=R$.
($)=\stackrel{V}{ }+\overline{=\{T \geq-1\} ;} ;()=4-3,=R$.
$(\circ)()=(())=(4-3)=(4-3)+1=V_{4-2}$
The domain of \circ is $\{\mid 4-3 \geq-1\}=\{\mid 4 \geq 2\}=\mid \geq 1_{2}=1_{2} \infty$.
$(\circ)()=(())=(\sqrt{ }+1)=4 \sqrt{\sqrt{2}}$
The domain of \circ is $\{\mid$ is in the domain of and () is in the domain of $\}$. This is the domain of , that is,
$\{\mid+1 \geq 0\}=\{\mid \geq-1\}=[-1 \infty)$.
$(\circ)()=(())=\left(^{\sqrt{ }}+1\right)={ }^{\forall}+1+$
For the domain, we need $+1 \geq 0$, which is equivalent to ≥-1, and $\sqrt{ }+\overline{-1}$, which is true for all real values of .
Thus, the domain of \circ is $[-1 \infty)$.
$(\circ)()=(())=(4-3)=4(4-3)-3=16-12-3=16-15=R$.
()$=\sin ;()=^{2}+1 .=R$ for both and, and hence for their composites.
$(\circ)()=(())=\left({ }^{2}+1\right)=\sin \left({ }^{2}+1\right),=R$.
$(\circ)=(())=(\sin)=(\sin)^{2}+1=\sin ^{2}+1,=R$.
$(\circ)()=(())=(\sin)=\sin (\sin),=R$.
$(\circ)()=(())=\left({ }^{2}+1\right)=\left({ }^{2}+1\right)^{2}+1={ }^{4}+2^{2}+1+1={ }^{4}+2^{2}+2,=R$.
37. ()$=+\quad 1, \quad+\quad+\frac{1}{+2} \quad,=\{\mid 6=-2\}$
(a) $(\circ)()=(())=$

$$
\begin{aligned}
& \begin{array}{lllll}
+2 & =+2 \\
+1 & +1 & +1 & + & +2 \\
+1 & +1 & +2 \\
\hline
\end{array} \\
& +2 \\
& (+1)(+1)+(+2)(+2)={ }^{2}+2+1+{ }^{2}+4+4=2^{2}+6+5 \\
& (+2)(+1)(+2)(+1)(+2)(+1)
\end{aligned}
$$

Since () is not defined for $=-2$ and $(())$ is not defined for $=-2$ and $=-1$, the domain of $(\circ)()$ is $=\{\mid 6=-2-1\}$.
(b) $(\circ)()=(())=+$

$+\quad+2$
Since () is not defined for $=0$ and $(())$ is not defined for $=-1$, the
domain of $(\circ)()$ is $=\{\mid 6=-10\}$.

```
。
```



```
\((\mathrm{d})(\circ)()=(())=\)
\[
\frac{+1}{+1}+\frac{\begin{array}{c}
+1 \\
+2 \\
+1 \\
+2
\end{array}}{+2}+\frac{\begin{array}{c}
+1(+2) \\
+2
\end{array}}{\frac{+1+2(+2)}{+2}}=\frac{+1++2}{+1+2+4}=3+5
\]
Since ( ) is not defined for \(=-2\) and \((())\) is not defined for \(=-\)
\(\frac{5}{3}\),
the domain of \((\circ)()\) is \(=\mid 6=-2-\)
38. ()\(=1+\quad,=\{\mid 6=-1\} ; \quad()=\sin 2, \quad=R\).
(a) \((\circ)()=(())=(\sin 2)=\quad \sin 2 \quad \overline{1+\sin \overline{2}}-\)
Domain: \(1+\sin 26=0 \Rightarrow \sin 26=-1 \quad-\quad \Rightarrow 26=2+2 \quad \Rightarrow 6=4 \quad+\quad[\) an integer \(]\).
(b) \((\circ)()=(())=\)
\[
1+=\sin \quad 1+
\]
Domain: \(\{\mid 6=-1\}\)
```



```
\[
\begin{equation*}
1+\quad 1+1+ \tag{1+}
\end{equation*}
\]
Since ( ) is not defined for \(=-1\), and ( ( ) ) is not defined for \(=-\frac{1}{2}\), the
domain of \((\circ)()\) is \(=\left\{\mid 6=-1-1_{2}\right\}\).
\((\circ)()=(())=(\sin 2)=\sin (2 \sin 2)\). Domain:
R
\[
\begin{aligned}
& (\circ \circ)()=((()))=\left(\left({ }^{2}\right)\right)=\left(\sin \left({ }^{2}\right)\right)=3 \sin \left({ }^{2}\right)-2 \\
& (\circ \circ)()=((()))=\left(\left({ }^{\sqrt{ }}\right)\right)=\left(2^{\sqrt{ }}\right)=2^{\sqrt{ }}-4
\end{aligned}
\]
\[
(\circ \circ)()=((()))=\left(\left({ }^{3}+2\right)\right)=\left[\left({ }^{3}+2\right)^{2}\right]
\]
\[
\left(6+4^{3}+4\right)=(6+43+4)-3=\frac{\sqrt{ }}{6+4} 3+1
\]
```



```
\[
\text { 42. }(\circ \circ)()=((()))=\left(\left({ }^{\sqrt{ }} \quad\right)\right)=
\]
Let ()\(=2+{ }^{2}\) and ()\(={ }^{4}\). Then \((\circ)()=(())=\left(2+{ }^{2}\right)=\left(2+{ }^{2}\right)^{4}=()\).
```

$$
\text { Let }()=\cos \text { and }()={ }^{2} \text {. Then }(\circ)()=(())=(\cos)=(\cos)^{2}=\cos ^{2}=() .
$$

© Cengage Learning. All Rights Reserved.

Let ()$={ }^{2}$ and ()$=\sec \tan$. Then $(\circ)()=(())=\left({ }^{2}\right)=\sec \left({ }^{2}\right) \tan \left({ }^{2}\right)=()$.
48. Let ()$=\tan$ and ()$=\quad \frac{\operatorname{lan}}{1+.}$. Then $(\circ)()=(())=(\tan)=\quad \frac{\tan }{1+\tan }=()$.

Let ()$=,()=-1$, and ()$=$. Then
$(\circ \circ)()=((()))=\left(\left({ }^{\sqrt{\prime}}\right)\right)=\left({ }^{\sqrt{ }}-1\right)=^{\neq}=1=()$.
50. Let ()$=| |,()=2+$, and $\quad()=8$. Then
$(\circ \quad \circ)()=((()))=((| |))=(2+| |)=82+\|=()$.
Let ()$=\cos ,()=\sin$, and ()$={ }^{2}$. Then
$(\circ \circ)()=((()))=((\cos))=(\sin (\cos))=[\sin (\cos)]^{2}=\sin ^{2}(\cos)=()$.
52. (a) $((1))=(6)=5$
(b) $((1))=(3)=2$
(c) $((1))=(3)=4$
(d) $((1))=(6)=3$
(e) $(\circ)(3)=((3))=(4)=1$
(f) $(\circ)(6)=((6))=(3)=4$
(a) $(2)=5$, because the point (25) is on the graph of. Thus, $((2))=(5)=4$, because the point (54) is on the graph of

$$
((0))=(0)=3
$$

$(\circ)(0)=((0))=(3)=0$
$(\circ)(6)=((6))=(6)$. This value is not defined, because there is no point on the graph of that has -
coordinate 6.
$(\circ)(-2)=((-2))=(1)=4$
(f) $(\circ)(4)=((4))=(2)=-2$

To find a particular value of $(())$, say for $=0$, we note from the graph that $(0) \approx 28$ and $(28) \approx-05$. Thus, $((0)) \approx$ $(28) \approx-05$. The other values listed in the table were obtained in a similar fashion.

	()	$(())$
-5	-02	-4
-4	12	-33
-3	22	-17
-2	28	-05
-1	3	-02

	()	$(())$
0	2	8
	-05	
1	22	-17
2	12	-33
3	-0	2
4	-4	-19
5	-4	-2

(a) Using the relationship distance $=$ rate \cdot time with the radius as the distance, we have ()$=60$.
(b) $=^{2} \Rightarrow(\circ)()=(())=(60)^{2}=3600^{2}$. This formula gives us the extent of the rippled area (in $\left.\mathrm{cm}^{2}\right)$ at any time.
(a) The radius of the balloon is increasing at a rate of 2 cm s , so ()$=(2 \mathrm{~cm} \mathrm{~s})(\mathrm{s})=2$ (in cm$)$.

Using $=4_{3}{ }^{3}$, we get $(\circ)()=(())=(2)=\frac{4}{3}(2)^{3}=\frac{32}{3} \quad 3$.
The result, $=\frac{32}{3} \cdot{ }^{3}$, gives the volume of the balloon $\left(\mathrm{in}_{\mathrm{cm}}{ }^{3}\right.$) as a function of time (in s).
57. (a) From the figure, we have a right triangle with legs 6 and , and hypotenuse .
$\sqrt{ }$
(b) Using $=$, we get $=(30 \mathrm{~km} \mathrm{~h})$ (hours) $=30($ in km$)$. Thus, $=()=30$.

(c) $(\circ)()=(())=(30)=(30) 2+36=\stackrel{\sqrt{ }}{=} 9002+36$. This function represents the distance between the lighthouse and the ship as a function of the time elapsed since noon.
58. (a) $=\quad \Rightarrow \quad()=350$

There is a Pythagorean relationship involving the legs with lengths and 1 and the hypotenuse with length :
$2+1^{2}={ }^{2}$. Thus, ()$=\sqrt{ } \quad 2+\overline{1 .}$
$(\circ)()=(())=(350)=(350) 2+1$ \qquad
59. (a)

(b)

$$
()=\begin{array}{ccc}
0 & \text { if } & 0 \\
1 & \text { if } & 0
\end{array}
$$

(c)

$$
\begin{aligned}
= & \text { if0 } \\
0 & \text { if0 }
\end{aligned}
$$

\geq

If ()$=1+1$ and ()$=2+2$, then
$(\circ)()=(())=(2+2)=1(2+2)+1=12+12+1$. So \circ is a linear function with slope 12.

If ()$=104$, then
$(\circ)()=(())=(104)=104(104)=(104)^{2}$,
$(\circ \circ)()=((\circ)())=\left(\left(\begin{array}{ll}104\end{array}\right)^{2}\right)=104\left(\begin{array}{ll}104\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 04\end{array}\right)^{3}$, and
$(\circ \circ \circ)()=((\circ \circ)())=\left((104)^{3}\right)=104(104)^{3}=(104)^{4}$. These compositions represent the amount of the investment after 2,3, and 4 years.
Based on this pattern, when we compose copies of , we get the formula $(\circ \circ \cdots \circ)()=(104)$.
(a) By examining the variable terms in and, we deduce that we must square to get the terms 4^{2} and 4 in. If we let
()$=^{2}+$, then $(\circ)()=(())=(2+1)=(2+1)^{2}+=4^{2}+4+(1+)$. Since
()$=4^{2}+4+7$, we must have $1+\quad=7$. So $=6$ and ()$=^{2}+6$.

We need a function so that $(())=3(())+5=()$. But
()$=3^{2}+3+2=3\left({ }^{2}+\right)+2=3\left({ }^{2}+-1\right)+5$, so we see that ()$=2+-1$.

We need a function so that $(())=(+4)=()=4-1=4(+4)-17$. So we see that the function must be ()$=4-17$.

We need to examine $(-)$.

$$
(-)=(\circ)(-)=\quad((-))=\quad(()) \quad[\text { because is even }] \quad=()
$$

Because $(-)=(), \quad$ is an even function.
$(-)=((-))=(-())$. At this point, we can't simplify the expression, so we might try to find a counterexample to show that is not an odd function. Let ()$=$, an odd function, and ()$=^{2}+$. Then ()$=^{2}+$ which is neither even nor odd.

Now suppose is an odd function. Then $(-())=-(())=-()$ Hence, $(-)=-()$, and so is odd if both and are odd.

Now suppose is an even function. Then $(-())=(())=()$ Hence, $(-)=()$, and so is even if is odd and is even.

1.4 The Tangent and Velocity Problems

(a) Using (15 250), we construct the following table: Using the values of that correspond to the points

		slope $=$	
		694-250 444	$-388+(-\underline{278)}=-333$
5	(5694)	$5-15=-10=-444$	2
		444-250 $\quad 194$	
10	(10 444)	$\sqrt{10-15}=-\sqrt{5}=-388$	
$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & (20111) \\ & (25 \text { 28) } \end{aligned}$	$\begin{aligned} 20-15 & =-\overline{5}=-278 \\ 225-2559 & =-248 \end{aligned}$	
30	(30 0)	$\frac{0-250}{30-15}=-\frac{250}{15}=-166^{-}$	

From the graph, we can estimate the slope of the tangent line at to be $-\frac{-300}{} 9=-33$ 3. -

(a) Slope $=\frac{29}{\underline{2}} \underline{\text { o }}=\underline{\angle 00 u}=\frac{410}{} \approx 6967$

$$
\text { Slope }=\frac{2948}{42-402}=\frac{2806}{4<- \text { oo }}=\frac{142}{}=71
$$

(b) Slope $=\frac{2948-2661}{42-38} \quad \underline{287}_{4}=7175$
(d) Slope $=\frac{3080-2948}{44-42} \quad, \quad \underline{132}_{2}=66$

From the data, we see that the patient's heart rate is decreasing from 71 to 66 heartbeats minute after 42 minutes. After being stable for a while, the patient's heart rate is dropping.
3. $(\mathrm{a})=1-1, \quad(2-1)$

		(1(1-))	
(i)	15	(15-2)	2
(ii)	19	(19-1 111111)	1111111
(iii)	199	(199-1 010 101)	1010101
(iv)	1999	(1999-1 001 001)	1001001
(v)	25	(2 5-0 666 667)	0666667
(vi)	21	(2 1-0 909 091)	0909091
(vii)	201	(201-0 990 099)	0990099
(viii)	2001	(2001-0 999 001)	0999001

The slope appears to be 1 .
Using $=1$, an equation of the tangent line to the curve at $(2-1)$ is $-(-1)=1(-2)$, or
$=-3$.
4. (a) $=\cos ,(050) \quad$ The slope appears to be - .

(i)	0	(0 1)	-2
(ii)	04	(040309017)	-3 090170
(iii)	049	(0490031411)	-3 141076
(iv)	0499	(04990003142)	-3 141587
(v)	1	(1-1)	-2
(vi)	06	(0 6-0 309017)	-3 090170
(vii)	051	(0 51-0 031411)	-3 141076
(viii)	0501	(0501-0 003142)	-3141587

$-0=-(-05)$ or $=-+\frac{1}{2}$.

(a) $=()=40-16^{2}$. At $=2,=40(2)-16(2)^{2}=16$. The average velocity between times 2 and $2+$ is

$$
\text { ave }=\frac{(2+)}{-}=-\underline{40(2+)-16(2+)^{2}}-\underline{-16}=\underline{24-16^{2}} \underline{2}=2416 \text {, if }=.0
$$

(i) $[225]:=05$, ave $=-32 \mathrm{ft} \mathrm{s}$
(iii) $[2205]:=005$, ave $=-248 \mathrm{ft} \mathrm{s}$
(ii) [2 2 1]: $=0$ 1, ave $=-256 \mathrm{ft} \mathrm{s}$
(iv) [2 2 01]: $=001$, ave $=-2416 \mathrm{ft} \mathrm{s}$

The instantaneous velocity when $=2($ approaches 0$)$ is -24 ft s .
(a) $=()=10-186^{2}$. At $=1,=10(1)-186(1)^{2}=814$. The average velocity between times 1 and $1+$ is
$\mathrm{ave}=\underline{(1+)^{(1+}-(1)}=-\underline{10(1+)-186(1+)^{2}}-\underline{-814}=\underline{628-186} \underline{2}=628186$, if $=.0$
(i) [1 2]: $=1$, ave $=442 \mathrm{~m} \mathrm{~s}$
(ii) [115]: $=05$, ave $=535 \mathrm{~m} \mathrm{~s}$
(iii) [11 1]: = 0 1, ave $=6094 \mathrm{~m} \mathrm{~s}$
(iv) $[1101]:=001$, ave $=62614 \mathrm{~m} \mathrm{~s}$
[11 001]: $=0$ 001, ave $=627814 \mathrm{~m} \mathrm{~s}$

The instantaneous velocity when $=1($ approaches 0$)$ is 628 m s .
(a) (i) On the interval [24], ave $=\frac{(4)}{(2)}=\frac{792}{}=\frac{206}{}=293 \mathrm{ft} \mathrm{s}$.

$$
4-22
$$

(ii) On the interval [3 4], ave $=\frac{(4)}{\frac{4-(3)}{4}}=\frac{792-465}{1}=327 \mathrm{ft} \mathrm{s}$.
(iii) On the interval [4 5], ave $=\frac{(5)}{\frac{5-(4)}{1}}=\frac{1248-792}{1}=456 \mathrm{ft} \mathrm{s}$.
(iv) On the interval [4 6], ave $=\frac{(6)}{\frac{(6)}{6-4}}=\frac{1767-792}{2}=4875 \mathrm{ft} \mathrm{s}$.
(b) Using the points (2 16) and (5 105) from the approximate tangent line, the instantaneous velocity at $=3$ is about
$\frac{105-16}{5 _2}=\frac{89}{} \quad 297 \mathrm{ft} \mathrm{s}$.

8. (a) $($ i $)=()=2 \sin +3 \cos$. On the interval [12], ave $=$

$$
\frac{(2)-(1)}{2-1}=\frac{3-(-3)}{1}=6 \mathrm{~cm} \mathrm{~s} .
$$

(ii) On the interval [$\left[\begin{array}{ll}1 & 1\end{array}\right]$, ave $=\frac{(11)-(1)}{11} \approx \frac{-3471-(-3)}{01}=471 \mathrm{~cm} \mathrm{~s}$.
(iii) On the interval [1101], ave $=\frac{(101)}{101}-(1)$
(iv) On the interval [11 001], ave $=\frac{(1001)}{1001}-(1) . \frac{-300627-(-3)}{1}=627 \mathrm{~cm} \mathrm{~s}$.

The instantaneous velocity of the particle when $=1$ appears to be about -63 cm s .
(a) For the curve $=\sin (10 \quad)$ and the point (10):

2	(20)	0
15	(1508660)	17321
14	(14-0 4339)	-1 0847
13	(13-0 8230)	-2 7433
12	(1208660)	43301
11	(11-0 2817)	-2 8173

05	(050)	0
06	(0608660)	-2 1651
07	(0707818)	-2 6061
08	(08 1)	-5
09	(09-0 3420)	34202

As approaches 1 , the slopes do not appear to be approaching any particular value.

We see that problems with estimation are caused by the frequent oscillations of the graph. The tangent is so steep at that we need to take -values much closer to 1 in order to get accurate estimates of its slope

If we choose $=1001$, then the point is ($1001-00314$) and ≈-313794. If $=0999$, then is
(099900314) and $=-314422$. The average of these slopes is -314108 . So we estimate that the slope of the tangent line at is about -314.

1.5 The Limit of a Function

As approaches $2,()$ approaches 5 . [Or, the values of () can be made as close to 5 as we like by taking sufficiently close to 2 (but $6=$)2.] Yes, the graph could have a hole at (25) and be defined such that $(2)=3$.
As approaches 1 from the left, () approaches 3; and as approaches 1 from the right, () approaches 7. No, the limit does not exist because the left- and right-hand limits are different.
3. (a) $\lim 3()=\infty$ means that the values of () can be made arbitrarily large (as large as we please) by taking
sufficiently close to -3 (but not equal to -3). lim
(b) $\rightarrow 4_{+}()=-\infty$ means that the values of () can be made arbitrarily large negative by taking sufficiently close to 4 through values larger than 4.
(a) As approaches 2 from the left, the values of () approach 3 , so $\lim -()=3 . \rightarrow 2$
(b) As approaches 2 from the right, the values of () approach 1 , so $\lim \quad()=1$. $\rightarrow 2^{+}$
(c) \lim () does not exist since the left-hand limit does not equal the right-hand limit. $\rightarrow 2$
(d) When $=2, \quad=3$, so $(2)=3$.
(e) As approaches 4, the values of () approach 4, so $\lim _{\rightarrow 4}()=4$.
(f) There is no value of () when $=4$, so (4) does not exist.
5. (a) As approaches 1, the values of () approach 2, so $\lim _{\rightarrow 1}()=2$.
(b) As approaches 3 from the left, the values of () approach 1 , so $\lim \quad()=1$.
(c) As approaches 3 from the right, the values of () approach 4 , so $\lim \quad()=4$.
$\rightarrow 3^{+}$
(d) \lim () does not exist since the left-hand limit does not equal the right-hand limit. $\rightarrow 3$
(e) When $=3,=3$, so $(3)=3$.
() $4 \quad 3 \quad \lim \quad()=4$
6. (a) approaches as approaches - from the left, so $\rightarrow-3^{-}$.
(b) () approaches 4 as approaches -3 from the right, so $\lim 3_{+}()=4$.
(c) $\lim \quad()=4$ because the limits in part (a) and part (b) are equal. $\rightarrow-3$
(-3) is not defined, so it doesn't exist.
() approaches 1 as approaches 0 from the left, so $\lim -()=1 . \rightarrow 0$
(f) () approaches -1 as approaches 0 from the right, so $\lim _{\rightarrow 0^{+}}()=-1$.
(g) $\lim _{\rightarrow 0} \quad()$ does not exist because the limits in part (e) and part (f) are not equal.
(h) $(0)=1$ since the point (01) is on the graph of .

Since $\lim ()=2$ and $\lim ()=2$, we have $\lim ()=2$.
$\rightarrow 2+\rightarrow 2 \rightarrow 2$
(2) is not defined, so it doesn't exist.
() approaches 3 as approaches 5 from the right, so $\lim _{+}()=3 . \rightarrow 5$
(1) () does not approach any one number as approaches 5 from the left, so lim () does not exist.
7. (a) $\lim _{0}()=1$
$\lim _{\rightarrow 0^{+}}()=-2$
(c) \lim () does not exist because the limits in part (a) and part (b) are not equal.
$\rightarrow 0$
(d) $\overrightarrow{\lim }()=2$
(e) $\lim ()=0$
$\rightarrow 2^{+}$
(f) lim () does not exist because the limits in part (d) and part (e) are not equal.
(g) $\overrightarrow{(2)}=1$
(h) $\lim ()=3$
$\overrightarrow{m_{1}}$
$\rightarrow 5^{-}$
(b) 2 does not exist.
(c) $2^{-} \quad-\infty$
8. (a) $\lim 3()=\infty$
(d) $\overrightarrow{\lim }_{\rightarrow 2+}^{\overrightarrow{-}}()=\quad \infty$
$\overrightarrow{\lim }()=$
(e) $\rightarrow-1 \quad-\infty$
(f) The equations of the vertical asymptotes are $=-3,=-1$ and $=2$.
9. (a) $\lim 7()=-\infty$
(b) $\lim 3()=\infty$
(c) $\lim ()=\infty$
(d)

$\underset{\text { (e) } \rightarrow 6^{+}}{\lim ^{+}}()=$ ∞
(f) The equations of the vertical asymptotes are $=-7,=-3,=0$, and $=6$.
10. $\lim ()=150 \mathrm{mg}$ and $\lim ()=300 \mathrm{mg}$. These limits show that there is an abrupt change in the amount of drug in $\rightarrow 12^{-} \rightarrow 1^{+}$ the patient's bloodstream at $=12 \mathrm{~h}$. The left-hand limit represents the amount of the drug just before the fourth injection.

The right-hand limit represents the amount of the drug just after the fourth injection.
11. From the graph of

we see that $\lim ()$ exists for all except $=-1$. Notice that the right and left limits are different at $=-1$.
12. From the graph of
()$=\begin{array}{ll}\cos & \begin{array}{l}\text { if } 0 \\ 1+\sin \\ \text { if0 }\end{array} \leq\end{array}$, \leq

44 CHAPTER 1 FUNCTIONS AND LIMITS
(a) $\lim -()=1 \rightarrow 0$
$\lim _{+}()=0 \rightarrow 0$
(c) $\lim _{\rightarrow 0} \quad()$ does not exist because the limits in part (a) and part (b) are not equal.
(a) $\lim -()=-1 \rightarrow 0$
$\lim _{+}()=1 \rightarrow 0$
(c) \lim () does not exist because the limits $\rightarrow 0$
in part (a) and part (b) are not equal.
$\lim ()=1 \quad \lim ()=2 \quad(0)=1$
15. $\rightarrow 0^{-}$
$-, \rightarrow 0^{+}$

$\lim ()=4, \quad \lim ()=2, \quad \lim ()=2$,
$(3)=3, \quad(-2)=1$

16. $\lim _{\rightarrow 0}()=1, \lim _{\rightarrow 3-}()=-2, \lim _{\rightarrow 3+}()=2$, $(0)=-1,(3)=1$

$\lim ()=2, \lim ()=0, \lim ()=3$,
$\lim \xrightarrow{\rightarrow 0^{+} \rightarrow+}()=0,(0)=2,(4)=1$
$\rightarrow 4^{+}$

For ()$=\underline{2}=\underline{3}$:

$$
2-9
$$

	()
31	0508197
305	0504132
301	0500832
3001	0500083
30001	0500008

	()
29	0491525
295	0495798
299	0499165
2999	0499917
29999	0499992

It appears that $\lim \frac{2-3}{2-9}=1$.

For ()$=\underline{\underline{2}}$ 二 $\underline{3}$:
2-9

	()
-25	-5
-29	-29
-295	-59
-299	-299
-2999	-2999
-29999	-29.999

21.For ()$=\frac{\sin }{+\tan }:$

$$
\begin{array}{|l|l|}
\hline & \\
\hline & \\
\hline & \\
\hline
\end{array}
$$

$\operatorname{For}()=1+\frac{9}{15}: 1+$

	()			
-11	0427397			
-101	0582008			
-1001				
-10001	0598200	\quad		()
:---	:---:			
-099920				
-099	0771405			
-0999				
-09999	066992			

It appears that $\lim \quad()=06$. The graph confirms that result.

For ()$=$:

	()
01	0794328
001	0954993
0001	0993116
00001	$\underline{5} 999079$

It appears that $\lim _{+}()=1$. The graph confirms that result.

27. (a) From the graphs, it seems that $\lim _{0} \underline{\cos 2} 2=\underline{\cos }=15$.

(b)
$\rightarrow 0 \sin$

$$
\lim \quad+1=
$$

28. (a) From the graphs, it seems that $\lim \xrightarrow{\sin }=032$.
(b)

 () ± 01 -1493759 ± 001 -1499938 ± 0001 -1499999 00001 -1500000

	()
± 01	0323068
± 001	0318357
± 0001	0318310
± 00001	0318310

Later we will be able to show that the exact value is $\frac{1}{2}$.

0
29. $\rightarrow 5^{+}-5 \infty$ since the numerator is positive and the denominator approaches
from the positive side as \rightarrow.
$\lim +1$
30. $\rightarrow 5^{-}-5=-\infty$ since the numerator is positive and the denominator approaches 0 from the negative side as $\rightarrow 5$.
31. $\lim 2-=$ since the numerator is positive and the denominator approaches 0 through positive values as
\qquad $\lim =$

$$
0
$$

32. $\rightarrow 3-(-3)^{5} \quad-\infty$ since the numerator is positive and the denominator approaches from the negative side as \rightarrow
33. $\lim _{\rightarrow-2^{+}} \frac{-1}{2(+2)}=\operatorname{since}(+2) \quad 0$ as 2^{+}and $\frac{-1}{2(+2)} 0$ for 20 .
34. $\lim _{0} \frac{-1}{}=-\infty$ since $^{2} \rightarrow 0$ as $\rightarrow 0$ and -1 0 for 01 and for
35.
36. $\lim 1$

1 $\lim \cot =\lim \cos =$ 0
36. $\rightarrow^{-} \quad \rightarrow^{-} \sin \quad-\infty$ since the numerator is negative and the denominator approaches through positive values as \rightarrow^{-}.
$\lim \csc =\quad \lim \quad-\quad=$
0
37. $\rightarrow 2^{-} \rightarrow 2^{-} \sin \quad-\infty$ since the numerator is positive and the denominator approaches through negative values as $\rightarrow 2^{-}$.
38. $\lim \underline{2}-\underline{2}=\lim \quad \underline{(-2)}=\lim =$ since the numerator is positive and the denominator

$$
\rightarrow 2^{2}-4+4 \quad \rightarrow 2-(-2)^{2} \quad \rightarrow 2^{-}-2 \quad-\infty
$$

approaches 0 through negative values as $\rightarrow 2^{-}$.
39. $\lim \stackrel{\underline{2}}{\underline{-2}-8}=\lim \quad \underline{(-4)(+2)}=$ since the numerator is negative and the denominator approaches 0 through

$$
\rightarrow 2^{+2}-5+6 \quad \rightarrow 2+(-3)(-2) \quad \infty
$$

negative values as $\rightarrow 2^{+}$.
40. (a) The denominator of $=\frac{2+1}{3-2}=\frac{{ }^{2}+1}{(3-2)}-$ is equal to zero when
$=0$ and $=\underline{3}_{2}$ (and the numerator is not), so $=0$ and $=15$ are vertical asymptotes of the function.
(b)

41. (a) ()$=\quad \frac{1}{3}-1$.

From these calculations, it seems that

	()
05	-114
09	-369
099	-337
0999	-3337
09999	-33337
099999	$-33,3337$

	()
15	042
11	302
101	330
1001	3330
10001	33330
100001	33,3333

(b) If is slightly smaller than 1 , then ${ }^{3}-1$ will be a negative number close to 0 , and the reciprocal of $3-1$, that is, (), will be a negative number with large absolute value. So $\lim \quad()=-\infty$.

$$
\rightarrow 1^{-}
$$

If is slightly larger than 1 , then ${ }^{3}-1$ will be a small positive number, and its reciprocal, (), will be a large positive number. So lim ($)=\infty$.

$$
\rightarrow 1^{+}
$$

(c) It appears from the graph of that

$$
\begin{aligned}
& \lim _{\rightarrow 1^{-}}()=\lim _{\rightarrow 1_{+}}()= \\
& -\infty \text { and }{ }_{\rightarrow \rightarrow 1^{+}} .
\end{aligned}
$$

For ()$={ }^{2}-(21000)$:
(a)

	()
1	0998000
08	0638259
06	0358484
04	0158680
02	0038851
01	0008928
005	0001465

It appears that $\lim ()=0$.

$$
\text { For }()=\frac{\tan }{3}_{:}^{\rightarrow 0}
$$

(a)

	()
10	055740773
05	037041992
01	033467209
005	033366700
001	033334667
0005	033333667

(c)

	()
0001	033333350
00005	033333344
00001	033333000
000005	033333600
000001	033300000
0000001	000000000

$\tan 4 .=4$.

(b)

	()
± 01	4227932
± 001	4002135
± 0001	4000021
± 00001	4000000

(b)

	()
004	0000572
0002	
001	
0005	-0000614
0003	-0000907
0000978	
0	-0000993
	-0001000

$$
\text { It appears that } \lim _{\rightarrow 0}()=\mathbf{-}^{0} 001
$$

Here the values will vary from one calculator to another. Every calculator will eventually give false values.
(d) As in part (c), when we take a small enough viewing rectangle we get incorrect output.

No matter how many times we zoom in toward the origin, the graphs of ()=sin() appear to consist of almost-vertical lines.

This indicates more and more frequent oscillations as $\rightarrow 0$.

(a) For any positive integer, if $=^{1}$, then ()$=\tan { }^{1}=\tan ()=0$. (Remember that the tangent function has period .)
(b) For any nonnegative number, if $=\frac{4}{(4+1)}$, then

$$
\begin{aligned}
())=\tan \frac{1}{}= & \tan \frac{(4+1)}{}=\tan \frac{4}{+=\tan +=\tan =1} \\
& 44444
\end{aligned}
$$

(c) From part (a), () = 0 infinitely often as $\quad \rightarrow 0$. From part (b), () = 1 infinitely often as $\rightarrow 0$. Thus, $\lim _{\rightarrow 0}^{\tan } 1$ does not exist since () does not get close to a fixed number as $\quad \rightarrow 0$.
47.

There appear to be vertical asymptotes of the curve $=\tan (2 \sin)$ at $\approx \pm 090$ and $\approx \pm 224$. To find the exact equations of these asymptotes, we note that the graph of the tangent function has vertical asymptotes at $=\overline{2}_{2}+$. Thus, we must have $2 \sin =\overline{2}^{+}$, or equivalently, $\sin =\quad \overline{4}{ }^{+} \bar{\Sigma}_{2}$. Since $-1 \leq \sin \leq 1$, we must have $\sin = \pm \quad _$and so $= \pm \sin ^{-1} \quad \Lambda$ (corresponding to $\approx \pm 090$). Just as 150° is the reference angle for $30^{\circ},-\sin ^{-1} \quad 4$ is the reference angle for $\sin ^{-1}{ }_{4}$. So $= \pm-\sin ^{-1} \quad-\quad$ are also equations of vertical asymptotes (corresponding to $\approx \pm 224$).
48.

$$
3-1
$$

49. (a) Let $=\forall=4$.

From the table and the graph, we guess
that the limit of as approaches 1 is 6 .

099	592531
0999	599250
09999	599925
101	607531
1001	600750
10001	600075

$$
3-1
$$

(b) We need to have $55 \quad \forall=1 \quad 6$ 5. From the graph we obtain the approximate points of intersection (0931455) and (1064965). Now $1-09314=00686$ and $10649-1=00649$, so by requiring that be within 00649 of 1 , we ensure that is within 05 of 6 .

1.6 Calculating Limits Using the Limit Laws

Because the limit of the denominator is 0 , we can't use Limit Law 5. The given limit, lim $\frac{()}{}$, does not exist because the $\rightarrow 2$ ()
denominator approaches 0 while the numerator approaches a nonzero number.
(f) $\lim \xrightarrow{(0)()} \lim _{=\rightarrow 2}[()()] \quad$ [Limit Law 5]
$\rightarrow 2 \quad()$
 [Limit Law 4]
$\frac{-2 \cdot 0}{4}=0$
(a) $\lim _{\rightarrow 2}[()+()]=\lim _{\rightarrow 2}()+\lim _{\rightarrow 2}() \quad[$ Limit Law 1]

$$
=-1+2
$$

$$
\text { = } 1
$$

$\lim () \quad \lim ($ $2 \lim [()$
()]
(b) $\rightarrow 0$ exists, but $\rightarrow 0$ does not exist, so we cannot apply Limit Law to $\rightarrow 0$

The limit does not exist.
(c) $\lim 1[()()]=\lim 1() \cdot \lim 1()$

[Limit Law 4]

$$
\begin{aligned}
& =1 \cdot 2 \\
& =2
\end{aligned}
$$

(d) $\lim _{\rightarrow 3}()=1$, but $\lim _{\rightarrow 3}()=0$, so we cannot apply Limit Law 5 to $\lim _{\rightarrow 3}^{()}$(The limit does not exist.

$$
\lim \text { (1) }+3^{-} \lim (1) \quad-\quad 3^{+}
$$

Note: $\rightarrow 3^{-} \quad() \quad=\infty$ since ()$\rightarrow 0 \quad$ as $\quad \rightarrow \quad$ and $\rightarrow 3^{+} \quad()=-\infty$ since ()$\rightarrow 0 \quad$ as \rightarrow.

Therefore, the limit does not exist, even as an infinite limit.
$\lim ^{2}()=\lim ^{2} \quad \lim ()$
(e) $\rightarrow 2$
$\rightarrow 2 \quad \rightarrow 2 \quad$ [Limit Law 4]

$$
\begin{aligned}
& =2^{2} \cdot(-1) \\
& =-4
\end{aligned}
$$

(f) $(-1)+\lim 1()$ is undefined since (-1) is not defined.

52 - CHAPTER 1 FUNCTIONS AND LIMITS
4. $\lim _{1}\left({ }^{4}-3\right)\left({ }^{2}+5+3\right)=\lim 1\left({ }^{4}-3\right) \lim _{1}\left({ }^{2}+5+3\right) \quad$ [LimitLaw 4]

$$
\begin{align*}
& \begin{array}{lllll}
\rightarrow- \\
\rightarrow-1 & -\rightarrow- \\
\rightarrow-1 & \rightarrow-1 & \rightarrow-1 & \rightarrow-1
\end{array}[2,1] \\
& \lim 4 \lim 3 \quad \lim ^{2}+\lim \quad 5+\lim 3 \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& =(1+3)(1-5+3) \\
& =4(-1)=-4
\end{aligned}
$$

$$
\begin{aligned}
& =\quad \text { 16-2 } \quad[9,7 \text {, and } 8] \\
& \begin{array}{l}
2(4)-3(-2)+2 \\
14=7
\end{array}
\end{aligned}
$$

$=$
1
6
8
$\lim \sqrt{4}$ 7 im $(4+3+6)$
6. $\rightarrow-2$

$$
\begin{aligned}
+3 & +6 \\
=\underset{\rightarrow-2}{ } \rightarrow \lim _{\rightarrow-2} 4+3 & \lim _{\rightarrow-2}+\lim _{\rightarrow-2} 6
\end{aligned}
$$

[11]
[1, 2, and 3]

$$
\begin{aligned}
& =\sqrt{(-2)^{4}+3(-2)+6} \quad \quad[9,8, \text { and } 7] \\
& =\sqrt{16-6+6}=\sqrt{ } 16=4
\end{aligned}
$$

 [Limit Law 4] [1, 2, and 3]

$$
\begin{equation*}
=1+38 \cdot 2-6 \cdot 8^{2}+83 \tag{7,10,9}
\end{equation*}
$$

$$
\begin{aligned}
& =(3)(130)=390 \\
& -3+5
\end{aligned}
$$

8. $\lim \underline{2}-2=\lim \underline{2}-2$ [Limit Law 6]

$$
\begin{align*}
&\left.\lim _{2}^{2}-2\right) \tag{5}\\
& \lim (32+5) \\
& \rightarrow 2 \lim _{2}^{-}{ }_{2} \lim _{\rightarrow 2} 2 \\
&= \lim _{3} 3 \lim +\lim 5
\end{align*} \quad[1,2, \text { and } 3]
$$

$\lim \underline{2}^{\underline{2}+1}=\lim _{\rightarrow 23}^{\underline{2}-2} \quad$ [Limit Law 11]
$\rightarrow 23-2$

$$
\frac{2(2)^{-2}+1}{3(2)-24}=\stackrel{\rightarrow 2}{2}=\underline{3}-
$$

(a) The left-hand side of the equation is not defined for $=2$, but the right-hand side is.

Since the equation holds for all $6=, 2$ it follows that both sides of the equation approach the same limit as $\rightarrow 2$, just as in Example 3. Remember that in finding lim (), we never consider = .

13. lim $\stackrel{\underline{2}-5+6}{ }$. does not exist since $-5 \rightarrow 0$, but ${ }^{2}-5+6 \rightarrow$ as $\rightarrow 5$.

14. $\rightarrow 4 \quad 2^{--12} \rightarrow 4(-4)(+3) \quad \rightarrow 4-4$. The last limit does not exist since $\rightarrow 4^{-}-4 \quad-\infty$ and
lim . -

$$
\rightarrow 4+-4=\infty \text {. }
$$

$\lim \underline{2}^{2} \underline{+3+1}=\lim \underline{(2+1)(+1)}=\lim \underline{2+1}=\underline{2(-1)+1}=\underline{-1}=\underline{1}-1^{2}-2-3$ $\rightarrow-1(-3)(+1) \rightarrow-1-3-1-3-44$
17. $\lim _{\rightarrow 0} \underline{(-5+)^{2}-25}=\lim _{\rightarrow 0} \quad \underline{\left(25-10+^{2}\right)-25}=\lim _{\rightarrow 0} \quad \frac{-10+^{2}}{=}=\lim _{\rightarrow 0} \quad \underline{\left(-10^{+}\right)}=\lim _{\rightarrow 0}(10+)=\quad 10$

$$
\lim \quad 12+6+{ }^{2} \quad=12+0+0=12
$$

By the formula for the sum of cubes, we have

$\lim _{\rightarrow-2} \frac{+2}{3+8}=\lim _{\rightarrow-2} \frac{+2}{$| $(+2)(2-2+4)$ |
| :---: |
| © Cengage Learning. All Rights Reserved. |}$=\lim _{\substack{\rightarrow-2}} \frac{1}{4+4+4}=\frac{1}{12}$.

We use the difference of squares in the numerator and the difference of cubes in the denominator.

$$
\begin{aligned}
& \left.\lim \underline{4-1}=\lim \quad\left({ }^{2}-1\right)\left({ }^{2}+1\right)=\lim \quad \underline{(-1)(+1)(\underline{2}+1)}=\lim -(+1) \underline{(2}+1\right)-\underline{2} \underline{(2)}=\underline{4} \\
& \begin{array}{lllllllll}
\rightarrow 1 & 3-1 & \rightarrow 1 & (-1)(2++1) & \rightarrow 1 & (-1)(2++1) & \rightarrow 1 & 2++1 & 3
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim =\lim _{\sqrt{ }}=\square=1 \\
& \rightarrow 0 \quad 9++3 \quad \rightarrow 09++3 \quad 3+3 \quad 6
\end{aligned}
$$

$$
\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}
$$

23. $\lim \underset{-2}{-2}=\lim \ldots \underline{3} \underline{3}=\lim 3-=\lim \underline{-1}=1$
$\rightarrow 3 \quad-3 \rightarrow 3 \quad-3 \quad 3 \rightarrow 3 \quad 3(-3) \rightarrow 3 \quad 3 \quad-9$

24. $\lim \underline{1}=\lim \underline{1} \quad 1 \quad=\lim +1-1 \quad=\lim \frac{1}{2}=1$

$$
\begin{aligned}
& \text { 27. } \lim 4-\frac{\sqrt{ }}{4-}=\lim \frac{\sqrt{ }}{\left(4--\frac{\sqrt{ }}{2}\right)} \frac{\lim }{\nabla^{\prime}}=\lim \frac{\sqrt{ } .}{16-\sqrt{2}} \\
& \rightarrow 1616 \text { - }^{2} \rightarrow 16 \quad(16-2)(4+) \quad \rightarrow 16(16-)(4+) \\
& \lim 1 \quad 1 \quad 1=1 \\
& \rightarrow 16 \quad\left(4+{ }^{V}\right)=164+V_{16}={ }_{16(8)} \quad 128 \\
& \text { 28. } \lim \frac{2}{2}-4+4=\lim \quad(-2)^{2} \quad=\lim \quad(-2)^{2} \\
& \rightarrow 2 \text { 4-3 2-4 } \rightarrow 2(2-4)(2+1) \quad \rightarrow 2(+2)(-2)(2+1) \\
& =\lim \frac{-2}{(+2)(2+1)}=\frac{0}{4 \cdot 5}=0
\end{aligned}
$$

$=31+3 \cdot 0+1$
$=\frac{1}{3}(1+1)=\frac{2}{3}$
34. (a)

$$
\lim _{0} \frac{\sqrt{ }}{3+-} \sqrt{3}_{3}-029
$$

[7 and 11]

$$
\begin{aligned}
& \stackrel{\not)^{4}}{3+0+} 3 \\
= & \frac{1}{\sqrt{3}} \\
= & 2^{2}
\end{aligned} \quad[1,7, \text { and } 8]
$$

(b)

	()
-0001	02886992
-00001	02886775
-000001	02886754
-0000001	02886752
0000001	02886751
000001	02886749
00001	02886727
0001	02886511

$$
\begin{array}{lcc}
\rightarrow 0 & 1 & \rightarrow 0 \\
-\operatorname{tim}(3+)+ &
\end{array}
$$

35. Let ()$=-{ }^{2},()={ }^{2} \cos 20$ and ()$={ }^{2}$. Then
$-1 \leq \cos 20 \leq 1 \quad \Rightarrow-{ }^{2} \leq^{2} \cos 20 \leq^{2} \quad \Rightarrow() \leq() \leq()$.
So since $\lim ()=\lim ()=0$, by the Squeeze Theorem we have
$\lim ()=0$.
$\rightarrow 0$
\qquad

$-1 \leq \sin () \leq 1$

$$
\left.\Rightarrow-\frac{\sqrt{ }}{3+2} \leq \frac{\sqrt{ }}{3+2 \sin (}\right) \leq \sqrt{ }^{3+2} \overline{2} \Rightarrow
$$

()$\leq() \leq()$. So since $\quad \rightarrow 0 \quad \rightarrow 0 \quad$, by the Squeeze Theorem we have lime $\quad()=0$.

$$
\lim _{]^{\rightarrow}}(4 \quad 9)=4(4) \quad 9=7 \quad \lim _{\text {and }}^{\rightarrow 4} 2 \quad 4+7=4^{2} \quad 4(4)+7=7
$$

for $\geq 0, \rightarrow 4 \quad$ by the Squeeze Theorem.
 $\lim ()=2$ by the Squeeze Theorem. $\rightarrow 1$

$\begin{array}{ccc}\text { 40. }-1 \leq \sin (2) \leq 1 \\ \sqrt{ }-\sqrt{ }- & \Rightarrow & \Rightarrow \sin ^{2}(2) \leq 1\end{array} \quad \begin{aligned} & \text { Vim } \\ & =0 \quad 1 \leq \sin ^{2}(2 \sqrt{ }) \leq 2 \\ & =0\end{aligned} \quad \Rightarrow$ $\leq 1+\sin (2) \leq 2$. Since $\rightarrow 0_{+} \quad$ and $\rightarrow 0^{+} \quad$, we have
41.
$-3 \quad$ if $\quad 3 \geq 0 \quad-3$ if ≥ 3
$\lim _{\rightarrow 3^{+}}(2+\underset{|-|}{ } 3)=\lim _{\rightarrow 3^{+}}(2+\quad 3)=\lim _{\rightarrow 3^{+}}(3 \quad 3 \quad 3)=3(3) \quad 3=6$ and

42. $|+\overrightarrow{6}|=-(+6)$
if +60
$=-(+6) \quad$ if -6

$$
+6 \quad \text { if }+6 \geq 0 \quad+6 \quad \text { if } \geq-6
$$

We'll look at the one-sided limits.

The left and right limits are different, so $\lim _{\rightarrow-6} \frac{2+12}{+6}$ does not exist.
$2^{3}-{ }^{2}={ }^{2}(2-1)={ }^{2} \cdot|2-1|={ }^{2}|2-1|$
$|2-1|=\quad\left(\begin{array}{ll}2 & 1\end{array}\right)$ if $2^{-} 0^{=} \quad\left(\begin{array}{ll}2 & 1\end{array}\right)$ if 5
$2-1 \quad$ if $21 \geq 0 \quad 2-1 \quad$ if ≥ 05
So $2^{3-}{ }^{2}{ }^{2}={ }^{2}[-(2-1)]$ for 05 .

Thus, $\lim \underline{2-1}=\lim \underline{2-1}=\lim \underline{-1}=\underline{-1}=\underline{-1}=4$.
 denominator approaches 0 and the numerator does not.

(iv) Since | $\quad=0 \lim \quad \lim 1=1$
\quad for $6, \rightarrow 0 \mid$ sgn $\mid=\rightarrow 0$
48.
(a) ()$=\operatorname{sgn}(\sin)=0 \quad$ if $\sin =0$
(i) $\lim _{\rightarrow 0^{+}}()=\quad \underset{\rightarrow 0^{+} \operatorname{sgn}(\sin)=1}{\lim \operatorname{sgn}(\sin)} \underset{1}{\sin } \underset{\sin }{\text { is positive for small positive values of }}$.

(iv) $\rightarrow^{+} \quad \rightarrow^{+} \quad-$ since is negative for values of slightly greater than (v) $\lim ()=\quad \lim \operatorname{sgn}(\sin)=1$ since \sin is positive for values of slightly less than.
$\overrightarrow{\mathrm{m}}^{-} \rightarrow^{-} \quad \lim () \quad=\lim ()$ (vi) $\rightarrow \quad$ does not exist since $\rightarrow+\quad 6 \rightarrow^{-}$
(b) The sine function changes sign at every integer multiple of, so the signum function equals 1 on one side and -1 on the other side of, an integer. Thus, lim () does not exist
(c)

for $=, \quad$ an integer.
(a) (i) $\lim ()=\lim _{\rightarrow 2^{+} \rightarrow 2} \quad \frac{2+-6 \mid}{-2 \mid} \quad \lim \frac{(+3)(-2)}{|-2| \rightarrow 2}$

$$
\begin{aligned}
& =\lim _{2} \cdot \frac{(+3)(-2)}{-2} \cdot\left[\text { since } 20 \text { if } 2^{+}\right] \\
& =\overrightarrow{\lim }^{+}(+3)=5^{2}
\end{aligned}
$$

(ii) The solution is similar to the solution in part (i), but now $|-2|=2-$ since $-2 \quad 0$ if $\rightarrow 2^{-}$.

Thus, $\lim \quad()=\lim -(+3)=-5$.
(b) Since the right-hand and left-hand limits of at $=2$ are not equal, $\lim ()$ does not exist.
(c)

50. (a) ()$=(-2)^{2}$
if ≥ 1
$2+1$ if 1
$\lim ()=\lim \left({ }^{2} \quad+1\right)=1^{2}+1=2$
$\lim ()=\quad \lim ($
$2)^{2}=(1)^{2}=1$ $\rightarrow 1^{-} \quad \rightarrow 1^{-} \quad, \rightarrow 1^{+} \quad \rightarrow 1+\quad-$
(b) Since the right-hand and left-hand limits of at $=1$ are not equal, $\lim \quad()$ does not exist.
$\rightarrow 1$
(c)

SECTION 1.6 CALCULATING LIMITS USING THE LIMIT LAWS a 59

(a) (i) $\lim ()=\lim =1$
$\rightarrow 1^{-} \rightarrow 1$

Note that the fact (1) $=3$ does not affect the value of the limit.
When $=1,()=3$, so $(1)=3$.
$\lim ()=\lim \left(2-{ }^{2}\right)=2-2^{2}=2-4=-2$

$$
\rightarrow 2^{-} \rightarrow 2
$$

$\lim ()=\lim (-3)=2-3=-1$
im() $\quad \lim () \quad-\quad \operatorname{lim()} \quad \rightarrow 2^{+} \rightarrow 2$
(vi) $\rightarrow 2 \quad{ }_{3}$ does not $\underset{\substack{\text { exist } \\ \text { if } \\=1}}{\text { indince }} \quad \rightarrow 2^{-} \quad 6 \rightarrow 2^{+}$
(b) $\quad()={ }^{3} \quad$ if 1

53. (a) (i) $[[]]=-2$ for $-2 \leq-1$, so lim2 $+[[]]=$
$\lim 2+(-2)=-2$
(ii) $[[]]=-3$ for $-3 \leq-2$, so

The right and left limits are different, so lim [[]] does not exist.

(b) (i) $\quad-\quad$ for $-\leq$

$$
\text { , so } \underset{\rightarrow-}{ }[[]]=\rightarrow-
$$

$$
\lim [[]]=\lim =
$$

(ii) $[[]]=$ for $\leq+1$, so $\rightarrow+$

$$
\rightarrow^{+}
$$ lim

(c) \rightarrow [[]] exists $\quad \Leftrightarrow$ is not an integer.
54. (a) See the graph of $=\cos$.

Since $-1 \leq \cos 0$ on $[--2)$, we have $=()=[[\cos]]=-1$ on $[--2)$.

Since $0 \leq \cos \quad 1$ on $\left[\begin{array}{ll}- & 20\end{array}\right) \cup\left(\begin{array}{ll}0 & 2\end{array}\right]$, we have ()$=0$ on $\left[\begin{array}{ll}- & 20\end{array}\right) \cup\left(\begin{array}{ll}0 & 2\end{array}\right]$.

Since $-1 \leq \cos \quad 0$ on (2], we have ()$=-1$ on (2].
Note that $(0)=1$.
(b) (i) $\lim ()=0$ and $\quad \lim ()=0$, so $\lim ()=0$.

$$
\begin{array}{lllll}
\rightarrow 0^{-} & -,()^{\rightarrow 0^{+}} & & \lim ^{\rightarrow 0} & ()=0 . \\
& +,() & \ldots & 1 & \lim ^{\rightarrow} \\
& ()=1
\end{array}
$$

(iv) Since the answers in parts (ii) and (iii) are not equal, lim () does not exist.

| $\lim ()$ | (1) | $\rightarrow 2$ | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
\text { integer } . \text { Thus, } \rightarrow 2^{-} \quad-\text { and } \quad \rightarrow^{+} \quad-, \text { so }_{\rightarrow 2} \quad-\text { However, }
$$

$$
(2)=[[2]]+\left[\begin{array}{ll}
{[} & 2]]]=2+(\quad 2)=0 \quad \lim () \quad=(2)
\end{array}\right.
$$

A left-hand limit is necessary since is not defined for
Since () is a polynomial, ()$=0+1+2^{2}+\cdots+$. Thus, by the Limit Laws,

Thus, for any polynomial, $\lim \quad()=()$.
Let ()$=()$ where () and () are any polynomials, and suppose that () $6=.0$ Then
()

Note: The value of lim ()-8 does not affect the answer since it's multiplied by 0 . What's important is that

$$
\lim \quad()-8 \quad \text { exists. }
$$

$\rightarrow 1 \quad-1$
$\lim ()=\lim \quad\left(\perp \quad 2 \quad \lim () \quad \lim ^{2}=5 \quad 0=0\right.$
60. (a) $\rightarrow 0 \rightarrow 0 \quad 2 \cdot=\rightarrow 0 \quad 2 \cdot \rightarrow 0$

$$
\lim \longrightarrow \quad=\lim \quad \text { L } \quad=\lim \quad(\perp \quad \lim =5 \quad 0=0
$$

(b) $\rightarrow 0 \quad \rightarrow 0^{2} \quad \rightarrow 0 \quad 2 \quad \rightarrow 0$
61. Observe that $\leq \leq$ for all , and $\rightarrow 0 \quad \rightarrow 0$. So, by the Squeeze Theorem, $\rightarrow 0$
62. Let ()$=[[]]$ and ()$=-[[]]$. Then
$\lim _{\rightarrow 3}() \underset{\text { and }}{\lim _{\rightarrow 3}()}$ do not exist [Example 10]
$\lim _{\text {but } \rightarrow 3}[()+()]=\lim ([[]] \quad[[]])=\underset{\rightarrow 3}{ }=\lim _{\rightarrow 3} 0=0$.
Let ()$=()$ and ()$=1-()$, where is the Heaviside function defined in Exercise 1.3.59.
Thus, either or is 0 for any value of. Then $\underset{\rightarrow 0}{\lim }()$ and $\underset{\rightarrow 0}{\lim }()$ do not exist, but $\underset{\rightarrow 0}{\lim }[() \underset{\rightarrow 0}{()]}=\lim 0=0$.

 $\lim _{(2-)}^{(2-} \sqrt{\underline{3}-1}=\lim \sqrt{\sqrt{3}-+1}=1$

Since the denominator approaches 0 as $\rightarrow-2$, the limit will exist only if the numerator also approaches

Solution 1: First, we find the coordinates of and as functions of . Then we can find the equation of the line determined by these two points, and thus find the -intercept (the point), and take the limit as $\rightarrow 0$. The coordinates of are (0).

The point is the point of intersection of the two circles ${ }^{2}+{ }^{2}=2$ and $(-1)^{2}+{ }^{2}=1$. Eliminating from these equations, we get ${ }^{2}-^{2}=1-(-1)^{2} \Leftrightarrow \quad{ }^{2}=1+2-1 \Leftrightarrow=\frac{1}{2} 2$. Substituting back into the equation of the
 (the positive -value). So the coordinates of are $\quad \frac{1}{2} \quad 21-\frac{1}{4} 2$. The equation of the line joining and is thus $-=\quad-\frac{1-\frac{1}{2}}{2}-\frac{1}{2}-0 \quad(-0)$. We set $=0$ in order to find the -intercept, and get

\qquad

$$
+\lim =\overline{\lim 2} \overline{1 \quad 1} \quad 2+1=\lim 2 \sqrt{1}+1=4
$$

© Cengage Learning. All Rights Reserved.

So the limiting position of is the point (40).
[continued]

Solution 2: We add a few lines to the diagram, as shown. Note that
$\angle=90^{\circ}$ (subtended by diameter). So $\angle=90^{\circ}=\angle$ (subtended by diameter). It follows that $\angle=\angle$. Also $\angle=90^{\circ}-\angle=\angle$. Since 4 is isosceles, so is
4 , implying that $=$. As the circle 2 shrinks, the point plainly approaches the origin, so the point must approach a point twice as far from the origin
 as , that is, the point (40), as above.

1.7 The Precise Definition of a Limit

1. If $|()-1| 02$, then -02()$-102 \Rightarrow 08$ () 12 . From the graph, we see that the last inequality is true if 0711 , so we can choose $=\min \{1-0711-1\}=\min \{0301\}=01$ (or any smaller positive number).
2. If $|()-2| 05$, then -05()$-205 \Rightarrow 15$ () 25 . From the graph, we see that the last inequality is true if 2638 , so we can take $=\min \{3-2638-3\}=\min \{0408\}=04$ (or any smaller positive number). Note that $6=.3$
The leftmost question mark is the solution of $\stackrel{\sqrt{ }}{=}=16$ and the rightmost, ${ }^{\sqrt{ }}=24$. So the values are $16^{2}=256$ and $24^{2}=576$. On the left side, we need $|-4||256-4|=144$. On the right side, we need $|-4||576-4|=176$. To satisfy both conditions, we need the more restrictive condition to hold - namely, | $-4 \mid 144$. Thus, we can choose $=144$, or any smaller positive number.
3. The leftmost question mark is the positive solution of $\stackrel{2}{=} \stackrel{1}{=}$, that is, $=\stackrel{1}{\sqrt{2}}$, and the rightmost question mark is the positive solution of ${ }^{2}=\frac{3}{2}$, that is, $=\frac{\overline{3}}{\frac{3}{2}} \quad$. On the left side, we need $|-1|+\frac{1}{2}-1 \approx 0292$ (rounding down to be safe). On the right side, we need $\begin{array}{llll}|-| & \frac{2}{}_{-}^{3} & \approx & \\ \underline{3}^{-} & 0 & \text { 224. The more restrictive of these two conditions must apply, so we choose }\end{array}$ $=0224$ (or any smaller positive number).
4.

6.

From the graph, we find that $=\tan =08$ when ≈ 0675, so
$4-1 \approx 0675 \Rightarrow{ }_{1} \approx 4-0675 \approx 01106$. Also, $=\tan =12$
when ≈ 0876, so $4+2 \approx 0876 \Rightarrow 2=0876-4 \approx 00906$.
Thus, we choose $=00906$ (or any smaller positive number) since this is the smaller of 1 and 2.
From the graph, we find that $=2\left({ }^{2}+4\right)=03$ when $=3^{2}$, so
$1-1=3^{2} \quad \Rightarrow{ }_{1=3}^{1}$. Also, $=2\left({ }^{2}+4\right)=05$ when $=2$, so
$1+2=2 \quad \Rightarrow 2=1$. Thus, we choose $=3^{1}$ (or any smaller positive number) since this is the smaller of 1 and 2.

From the graph with $=02$, we find that $=^{3}-3+4=58$ when
≈ 19774, so $2-1 \approx 19774 \quad \Rightarrow 1 \approx 00226$. Also,
$={ }^{3}-3+4=62$ when ≈ 2022, so $2+2 \approx 20219 \Rightarrow$ $2 \approx 00219$. Thus, we choose $=00219$ (or any smaller positive number) since this is the smaller of 1 and 2 .

For $=01$, we get $1 \approx 00112$ and $2 \approx 00110$, so we choose $=0011$ (or any smaller positive number).

For $=(4+1)(3-4)$ and $=05$, we need $191 \leq \leq 2125$. So since $|2-191|=009$ and $|2-2125|=0125$, we can take $0 \leq 009$. For $=01$, we need $1980 \leq 2021$. So since $|2-1980|=002$ and $|2-2021|=0021$, we can take $=002$ (or any smaller positive number).

9. (a) The graph of $=\downarrow=4$ shows that $=100$ when ≈ 404 (more accurately, 404134). Thus, we choose $=004$ (or any smaller positive number).
(b) From part (a), we see that as gets closer to 4 from the right, increases
 without bound. In symbols, $\lim _{4^{+}} \frac{2}{\sqrt{-4}}=\infty_{\infty}$ ∞.

We graph $=\csc ^{2}$ and $=500$. The graphs intersect at ≈ 3186, so we choose $=3186-\approx 0044$. Thus, if $0|-| 0044$, then $\csc ^{2} 500$. Similarly, for $=1000$, we get $=3173-\approx 0031$.
11. (a) $=2$ and $=1000 \mathrm{~cm}^{2} \Rightarrow 2=1000 \Rightarrow 2=\underline{1000} \Rightarrow \quad=\quad \frac{1000}{}$ (0) $\approx 178412 \mathrm{~cm}$. (b) $|-1000| \leq 5 \quad \Rightarrow-5 \leq^{2}-1000 \leq 5 \Rightarrow 1000-5 \leq{ }^{2} \leq 1000+5 \Rightarrow$

if the machinist gets the radius within 00445 cm of 178412 , the area will be within $5 \mathrm{~cm}^{2}$ of 1000 .
is the radius, () is the area, is the target radius given in part (a), is the target area $\left(1000 \mathrm{~cm}^{2}\right)$, is the magnitude of the error tolerance in the area $\left(5 \mathrm{~cm}^{2}\right)$, and is the tolerance in the radius given in part (b).
12. (a) $=01^{2}+2155+20$ and $=200 \Rightarrow$ $01^{2}+2155+20=200 \quad \Rightarrow$ [by the quadratic formula or from the graph] 330 watts (0)
(b) From the graph, $199 \leq \leq 201 \quad \Rightarrow 32893311$.

(c) is the input power, () is the temperature, is the target input power given in part (a), is the target temperature (200), is the tolerance in the temperature (1), and is the tolerance in the power input in watts indicated in part (b) (0 011 watts). 0

1
13. (a) $|4-8|=4|-2| 01 \quad \Leftrightarrow|-2| \quad-\quad$, so $=\frac{1}{4}=0025$.
(b) $|4-8|=4|-2| 001 \quad \Leftrightarrow|-2| \quad \frac{001}{4}$, so $=\frac{001}{4}=00025$.
14. $|(5-7)-3|=|5-10|=|5(-2)|=5|-2|$. We must have $|()-|$, so $5|-2| \Leftrightarrow$
$|-2| 5$. Thus, choose $=5$. For $=01,=002$; for $=005,=001$; for $=001,=0002$.
15. Given0, we need 0 such that if $0|-3|$, then

the definition of a limit.
16. Given 0 , we need 0 such that if $0|-4|$, then
$|(2-5)-3|$. But $|(2-5)-3| \Leftrightarrow|2-8|$ \Leftrightarrow

17. Given0, we need0 such that if $0|-(-3)|$, then
$|(1-4)-13|$.But $|(1-4)-13|$
\Leftrightarrow
$|-4-12| \Leftrightarrow|-4||+3| \Leftrightarrow|-(-3)| \quad$ 4. So if
we choose $=4$, then $0|-(-3)| \quad \Rightarrow|(1-4)-13|$.
Thus, $\lim 3(1-4)=13$ by the definition of a limit.

18. Given 0 , we need 0 such that if $0|-(-2)|$, then $|(3+5)-(-1)|$.

But $|(3+5)-(-1)| \Leftrightarrow$
$|3+6| \Leftrightarrow|3||+2| \Leftrightarrow|+2| 3$. So if we choose $=3$, then $0|+2| \Rightarrow \mid(3$ $+5)-(-1) \mid$. Thus,
$\lim _{\rightarrow-2}(3+5)=-1$ by the definition of a limit.

$$
\begin{aligned}
& \text { 19. Given0, we need0 such that if } 0|-1| \text {, then } 2 \text {. But } \\
& 4 \quad-\quad \underline{2+4}
\end{aligned}
$$

© Cengage Learning. All Rights Reserved.

Given0, we need0 such that if $0|-|$, then $|-| . S o=$ will work.
Given 0 , we need 0 such that if $0|-|$, then $|-|$. But $|-|=0$, so this will be true no matter what we pick.

Then $000=$. Thus, $\lim =0$ by the definition of a limit.
27. Given0, we need0 such that if $0|-0|$, then $\quad|\mid-0$. But $\|=\|$. So this is true if we pick $=$.

Thus, $\lim \quad=0$ by the definition of a limit.

Given 0 , we need 0 such that if $0|-2|$, then ${ }^{3}-8$. Now ${ }^{3}-8=(-2)^{2}+2+4$. If $|-2| 1$, that is, 13 , then ${ }^{2}+2+$
$43^{2}+2(3)+4=19$ and so
© Cengage Learning. All Rights Reserved.

SECTION 1.7 THE PRECISE DEFINITION OF A LIMIT a 67

(b) Solving $3++1=3+$ gives us two nonreal complex roots and one real root, which is ()$=\sqrt[6216+108+12^{2} \cdot 336+324+812]{216+108+12} \sqrt{336+324+812}-2$
(c) If $=04$, then ()≈ 1093272342 and $=()-1 \approx 0093$, which agrees with our answer in part (a).

1

$1-1 \quad 1-\frac{1}{-} \quad \underline{2}{ }_{1}$
0 2. But $=-= \pm$. We find a positive constant such that
2

choose $=\min \{12\}$.
2. Showing that works $\underset{2}{\operatorname{Given}}+\underset{|-|}{ }$ we let $=\min _{-2}\{12\}$. If $0|-2|, \operatorname{then}_{2}|-2| 1 \quad \rightarrow 13 \Rightarrow$

1. Guessing a value forGiven0, we must find0 such that $\left.\right|^{\sqrt{ }}-\sqrt{ }$ |whenever $0|-|$. But

$$
\begin{aligned}
& \left.\right|_{-} \quad \mid \quad{ }^{\downarrow}+ \\
& \sqrt{-} \sqrt{-}^{-}=\left.\right|^{-} \quad \text { (from the hint). Now if we can find a positive constant such that } \quad \sqrt{-} \sqrt{-}^{-} \text {then } \\
& \left.\right|^{-}-\left.\right|^{-} \quad L-1 \quad \text {; and we take } \quad \text {. We can find this number by restricting to lie in some interval }
\end{aligned}
$$

$$
\begin{aligned}
& =\quad \overline{\frac{1}{2}}+\sqrt{ }-\overline{1}+\sqrt{ }-\quad \text { is a suitable choice for the constant. So }|-| \quad \text {. This suggests that we let } \\
& =\min \begin{array}{cc}
\frac{1}{2} & \frac{1}{2}+\sqrt{ }
\end{array} . \\
& \text { 2. Showing that works } \quad \text { Given0, we let }=\min \quad \frac{1}{2} \quad \frac{1}{2}+\sqrt{-} \quad . \text { If } 0 \quad|-| \text {, then }
\end{aligned}
$$

 $0|-|$ so $|()-|$. Hence, $\rightarrow+$

[^0]
© Cengage Learning. All Rights Reserved.
\[

$$
\begin{aligned}
& \text { 42. Given0, we need } 0 \text { such that } 0 \quad|+3| \\
& \Rightarrow 1(+3)^{4} \text {. Now } \\
& \frac{-1}{(+3)_{4}} \\
& \Leftrightarrow \\
& (+3)^{4} \quad-\quad \Leftrightarrow|+3| \frac{1}{\sqrt{4}} \text {. So take }=\frac{1}{\sqrt{4}-} \text {. Then } 0 \quad|+3|=\quad \frac{1}{\sqrt{4}} \Rightarrow \frac{1}{(+3)_{4}} \text {, so } \\
& \lim \\
& \rightarrow \quad()=\text {, there exists } 20 \text { such that } 0|-|2 \quad \Rightarrow|()-| 1 \quad \Rightarrow()-1 \text {. Let be the } \\
& \text { smaller of } 1 \text { and } 2 \text {. Then } 0|-| \quad \Rightarrow()+()(+1-)+(-1)=\text {. Thus, } \\
& \lim \\
& \rightarrow \quad[()+()]=\infty \text {. } \\
& \text { lim }
\end{aligned}
$$
\]

1.8 Continuity

1. From Definition 1, $\lim \quad()=\quad(4)$.

The graph of has no hole, jump, or vertical asymptote.
(a) is discontinuous at -4 since (-4) is not defined and at $-2,2$, and 4 since the limit does not exist (the left and right limits are not the same).
(b) is continuous from the left at -2 since $\rightarrow^{-2^{-}} \quad()=(-2) . \quad$ is continuous from the right at 2 and 4 since
© Cengage Learning. All Rights Reserved.
$\rightarrow 2^{+} \quad$ and $\rightarrow 4^{+} \quad$. It is continuous from neither side at - since $\quad-\quad$ is undefined. From the graph of , we see that is continuous on the intervals [-3-2), (-2-1), (-1 0], (01 1), and (13].

70 CHAPTER 1 FUNCTIONS AND LIMITS
The graph of $=()$ must have a discontinuity at $=2$

The graph of = () must have a removable discontinuity $($ a hole $)$ at $=3$ and a jump discontinuity at $=5$.

The graph of $=()$ must have discontinuities

The graph of $=()$ must have a discontinuity lim
at $=-2$ with $\quad \rightarrow-2^{-}() 6=(-2)$ and

$\lim _{\substack{-2^{+}}} \quad() 6=(-2)$. It must also show that	
$\lim _{\rightarrow 2^{-}}$	()$=$
	(2) and $\lim _{\rightarrow 2^{+}}$
	() $6=(2)$.

9. (a) The toll is $\$ 7$ between 7:00 AM and 10:00 AM and between 4:00 PM and 7:00 PM.
(b) The function has jump discontinuities at $=7,10,16$, and 19. Their significance to someone who uses the road is that, because of the sudden jumps in the toll, they may want to avoid the higher rates between $=7$ and $=10$ and between $=16$
 and $=19$ if feasible.
(a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps from one temperature to another.

Continuous; the temperature at a specific time changes smoothly as the distance due west from New York City increases, without any instantaneous jumps.

Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump from one height to another without going through all of the intermediate values - at a cliff, for example.

Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.
(e) Discontinuous; when the lights are switched on (or off), the current suddenly changes between 0 and some nonzero value, without passing through all of the intermediate values. This is debatable, though, depending on your definition of current.
$\lim _{\text {11. } \rightarrow-1} \quad()=\lim _{\rightarrow-1} \lim +2^{3}=\lim _{\rightarrow-1} 3^{4} \quad{ }^{4}=-1+2(-1)^{3^{4}}=(-3)=81=(-1)$.

By the definition of continuity, is continuous at $=-1$.

By the definition of continuity, is continuous at $=2$.
$\lim ()=\lim 2^{\sqrt{ }} \quad 32^{\circ}+1=2 \lim \sqrt{\sqrt{2}}-\overline{32}+1=2 \quad \frac{\lim (32+1)=2}{3 \lim 2^{2}+\lim 1}$
13. $\rightarrow 1$

By the definition of continuity, is continuous at $=1$.
$\lim ()=\lim \quad 3^{4} 5+32^{2}+4=3 \lim 4 \quad 5 \lim +3 \lim \left(^{2} \longrightarrow+4\right)$
14. $\rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow 2$

$$
=3(2)^{4}-5(2)+{ }_{3} \overline{22+4}=48-10+2=40=(2)
$$

By the definition of continuity, is continuous at $=2$.
15. For4, we have

So is continuous at $=$ for every in (4∞). Also, $\quad \rightarrow 4^{+}$,so is continuous from the right at.
Thus, is continuous on $[4 \infty$).
16. For-2, we have

$$
\begin{aligned}
& \lim _{\rightarrow}()=\lim _{\rightarrow} \frac{-1}{3+6}=\frac{\lim }{\lim \left(3+\frac{(-1)}{6}\right)} \quad \text { [Limit Law 5] } \\
& \begin{array}{ll}
& \\
=\overrightarrow{3 \lim _{\rightarrow}+\lim 6} & \\
=\frac{\overrightarrow{l i m} 1}{\lim } & \text { [2 } 1 \text { and 3] } \\
=\frac{-1}{3+6} & \text { [8 and 7] }
\end{array}
\end{aligned}
$$

Thus, is continuous at $=$ for every in $(-\infty-2)$; that is, is continuous on $(-\infty-2)$.
1 is discontinuous at $=-2$ because (-2) is undefined.
()$=\quad+2$
© Cengage Learning. All Rights Reserved.

72 a CHAPTER 1

18. () =

$$
+2 \text { if } 6=-2
$$

1

so $\lim _{\rightarrow-2}()$ does not exist and is discontinuous at -2 .
()$=1 \quad$ if $\quad 1$ 1-2 if1

$\lim ()=\quad \lim (1)=1$ Since these limits are not equal, $\lim ()$
does not exist and is discontinuous at 1 .
20. () $=2$

$$
\frac{2}{1}=\operatorname{if}_{\pi=1}^{-1} \quad \begin{aligned}
& 6 \\
& 1
\end{aligned}
$$

$\lim _{\rightarrow 1}()=\lim _{\rightarrow 1} \quad \frac{2}{2-1}=\lim _{\rightarrow 1} \frac{(-1)}{(+1)(-1)}=\lim _{\rightarrow 1+1}=1$,
but $(1)=1$, so is discontinous at 1

$$
\text { 21. }\left(\begin{array}{ccr}
()=0 & \text { if } & =0 \\
\cos & \text { if } & 0 \\
1- & &
\end{array}\right.
$$

$\lim ()=1$, but $(0)=06=, 1$ so \quad is discontinuous at 0 .

22. () $=$

$$
\frac{2^{2}}{6}-\frac{-3}{-3-3} \quad \text { if }_{=3}=3
$$

$\lim ()=\lim$
$\rightarrow 3 \quad \rightarrow 3$

$$
\underline{2} \underline{\underline{2}-5-3}=\lim
$$

$$
\frac{(2+1)(-3)}{-3}=\lim _{\rightarrow 3}(2+1)=7
$$

$$
\text { but }(3)=6 \text {, so } \quad \text { is discontinuous at } 3 \text {. }
$$

$$
()=\frac{2--2_{=}(-2)(+1)}{-2-2 \rightarrow 2}=+1 \text { for } 6=.2 \text { Since } \lim ()=2+1=3 \text {, define }(2)=3 \text {. Then is }
$$

continuous at 2.

$$
\text { 2-4(}-2)(+2)+2 \rightarrow 22+2
$$

Then is continuous at 2.
()$=\underline{2} \underline{2}-1$ is a rational function, so it is continuous on its domain, $(-\infty \infty)$, by Theorem 5 (b). $2+1$
26. () $=\frac{2+1}{22^{-}-1}=\frac{2+1}{(2+1)(-1)}$ is a rational function, so it is continuous on its domain, $1 \quad 1$
$-\infty-\quad 2 \cup-{ }_{2} 1 \cup(1 \infty)$, by Theorem 5(b).

continuous everywhere by Theorem 5(a) and ${ }_{3}-2$ is continuous everywhere by Theorems $5(\mathrm{a}), 7$, and 9 . Thus, is continuous on its domain by part 5 of Theorem 4.

By Theorem 7, the trigonometric function sin and the polynomial function +1 are continuous on R.
By part 5 of Theorem 4, ()$=\frac{\sin }{}$ is continuous on its domain, $\{\mid 6=-1\}$.
$+1$
By Theorem 5, the polynomial $1-2$ is continuous on $(-\infty \infty)$. By Theorem 7, \cos is continuous on its domain, R. By
Theorem $9, \cos 1-2$ is continuous on its domain, which is R.

By Theorem 7, the trigonemetrie function tan is continuous on its domain, $\mid 6=2+$. By Theorems $5(\mathrm{a}), 7$, and 9 , the
 domain, $(-2-2) \cup(-22) \cup(22)$.

or ≤-1, so has domain $(-\infty-1] \cup(0 \infty)$. is the composite of a root function and a rational function, so it is continuous at every number in its domain by Theorems 7 and 9 .

The sine and cosine functions are continuous everywhere by Theorem 7, so ()$=\sin (\cos (\sin))$, which is the composite of sine, cosine, and (once again) sine, is continuous everywhere by Theorem 9 .
33.

$=\frac{1}{1+\sin }$ is undefined and hence discontinuous when
$1+\sin =0 \quad \Leftrightarrow \sin =-1 \quad \Leftrightarrow=-\quad \overline{2}+2$, an
integer. The figure shows discontinuities for $=-1,0$, and 1 ; that
is, $-\frac{-}{2} \approx-785,-\quad-\quad \approx-157$, and $-2 \approx 471$.
34.

The function ${ }^{5}=()=$ tan
is continuous throughout its domain because it is the composite of a trigonometric function
and a root function. The square root function has domain $[0 \quad$) and the tangent function has domain $=+$. So is discontinuous when 0 and when $\sqrt{ }=_{2}+\quad \Rightarrow \quad \overline{2}^{+} \quad 2$, where is a nonnegative integer. Note
that as increases, the distance between discontinuities increases.
Because is continuous on R and $\sqrt{2} \overline{0-2 \text { is continuous on its domain, }-V_{20 \leq} \leq V_{20, ~ t h e ~ p r o d u c t ~}}$
() $=\sqrt{20-2 ~ i s ~ c o n t i n u o u s ~}_{2 n}-\sqrt{20}^{20 \leq} \leq \sqrt{2}$. The number 2 is in that domain, so is continuous at 2, and
$\lim ()=(2)=2 \quad 16=8$.
$\rightarrow 2$

Because is continuous on R, \sin is continuous on R, and $+\sin$ is continuous on R, the composite function ()$=\sin (+\sin)$ is continuous on R, so $\lim \quad()=\quad()=\sin (+\sin)=\sin \quad=0$.

The function ()$={ }^{2} \tan$ is continuous throughout its domain because it is the product of a polynomial and a trigonometric function. The domain of is the set of all real numbers that are not odd multiples of 2 ; that is, domain $=\{\mid 6=2$, an odd integer $\}$. Thus, 4 is in the domain of and

$$
\lim ^{2} \tan =\quad \quad={ }^{4} \tan ^{4}={ }^{2}-1=^{2^{6}}-
$$ is continuous throughout its domain because it is the quotient of a polynomial and the

\square
38. The function ()$=\sqrt{ } \quad 3$ $+-2$
square root of a $\underset{+-20=\{\mid(3}{\text { polynomial. The domain of is }}$

$$
2 \quad \lim
$$

1) $0=$
$21=($
2) (1)
39. Thus, 2 is in the domain of and $\rightarrow 2 \sqrt{ } 2+-2$ $=(2)=\frac{2}{\sqrt[8]{2}}=4$

- $\} \begin{array}{lll} & \{13 & - \text { or }\} \\ -\infty-U & \infty\end{array}$

$$
=(2)=\frac{2}{\sqrt{2}}=\underline{8}=4
$$

39.

$$
()=v_{-1} \text { if } 1
$$

$$
\text { if } \leq 1
$$

[^1]\geq
By Theorem 7, the trigonometric functions are continuous. Since ()$=\sin$ on $(-\infty 4)$ and ()$=\cos$ on
(4∞), is continuous on $(-\infty 4) \cup(4 \infty) \quad \lim \quad()=\lim \sin =\sin \ldots=1 \quad 2$ since the sine
function is continuous at 4 Similarly, $\lim \quad()=\lim \quad \cos =1 \quad 2$ by continuity of the cosine function © Cengage Learning. All Rights Reserved.

```
(4)+
    at 4.Thus, lim () exists and equals 1 }\mp@subsup{}{}{\sqrt{}{2}
-> 4)
so is continuous on \((-\infty \infty)\).
```

is continuous on $(-\infty-1),(-11)$, and (1∞), where it is a polynomial, a polynomial, and a rational function, respectively.

Now $\lim _{\rightarrow-1-}()=\lim ^{2}=1 \quad \lim ()=\lim =\quad 1$

\qquad
so is discontinuous at - . Since $\quad-\quad-$, is continuous from the right at - . Also, $\rightarrow 1^{-} \quad \rightarrow 1^{-}$and $\lim ()=\lim \quad 1=1=(1)$, so is continuous at 1 .
42. ($)=3 \quad$ if $1 \quad 4$

| 2 | +1 | if $\leq 1 \leq$ |
| :--- | :--- | :--- | :--- |
| $\sqrt{2}$ | if | 4 |

is continuous on $(-\infty 1),(14)$, and (4∞), where it is a polynomial, a polynomial, and a root function, respectively. Now
$\lim _{\rightarrow 1^{-}}()=\lim _{\rightarrow 1^{-}}\left({ }^{2}+1\right)=2 \quad \lim ()=\quad \lim _{\rightarrow 1^{+}}\left(3 \quad\right.$ and $\rightarrow 1^{+} \quad=2$

$-^{V}=2$

Since , we have continuity at . Also, $\rightarrow 4^{-} \quad \rightarrow 4^{-} \quad-\quad$ - and $\rightarrow 4+$
so is discontinuous at 4 , but it is continuous from the left at 4 .
43. $\left(\begin{array}{llll} & =2^{2} & \text { if } & 0 \\ & +2 & \text { if } & 0\end{array} \leq\right.$

$$
2 \text { - }
$$

is

$$
-\infty \quad \infty
$$

since on each of

$$
\text { these intervals it is a polynomial. Now } \lim \stackrel{\infty}{(})=\lim (+2)=2 \text { and }^{-\infty}
$$

$\lim _{\rightarrow 0^{+}}()=\lim _{\rightarrow 0^{+}} 2^{2}=0$, so is discontinuous at 0. Since $_{\rightarrow 0^{-}}(0)=0$, is continuous from the right at 0 . Also
\rightarrow and $_{\rightarrow 1^{+}}()={\rightarrow 1^{+}}^{-} \quad$, so is discontinuous at . Since
is continuous from the left at 1 .
By Theorem 5, each piece of is continuous on its domain. We need to check for continuity at $=$.

is continuous at . Therefore, is a continuous function of .
45. ()$=3-\quad$ if ≥ 2

$$
2+2 \quad \text { if2 }
$$

$$
\lim _{\rightarrow 2^{-}}()=\lim _{\rightarrow 2^{-}} \frac{2}{}+2=4+4
$$

$$
\begin{aligned}
& 76 \text { a CHAPTER } 1 \\
& \begin{array}{llllllll}
\\
\lim ()= & \lim & 3 & =8 & \\
\rightarrow 2^{+} & \rightarrow 2^{+} & - & - & 4+4=8 & 2 & 6=4 & =2
\end{array}
\end{aligned}
$$

to be continuous on $(-\infty \infty), \quad=\frac{2}{3}$.
46. ()$=\begin{array}{ll}-2 \\ 2-4 & \text { if } 2 \\ 2-4 & \text { if } \geq 3\end{array}$

$$
\begin{aligned}
& \text { At }=2: \quad \lim ()=\quad \lim \quad-4=\lim \quad(+2)(-2)=\lim (+2)=2+2=4 \\
& \left.\lim _{\rightarrow 2^{+}}^{\rightarrow 2^{-}}()=\underset{\rightarrow 2^{+}}{\rightarrow 2^{-}} \lim _{-2}^{-2}+3\right)=2^{-} \quad-2, ~ 2+3 \quad \rightarrow 2^{-}
\end{aligned}
$$

We must have $4-2+3=4$, or $4-2=1$

$$
\text { At }: \lim _{\rightarrow 3^{-}}: \quad \lim _{\rightarrow 3^{+}}()=\underset{\rightarrow 3^{+}}{\rightarrow 3^{-}}(2 \quad-\quad+3)=9 \quad 3+3
$$

We must have $9-3+3=6-+$, or $10-4=3(2)$.

Now solve the system of equations by adding -2 times equation (1) to equation (2).

$$
\begin{array}{r}
-8+4=-2 \\
-10-4=3 \\
\hline 2 \quad=\quad 1
\end{array}
$$

So $=\underline{1}_{2}$. Substituting $\underline{1}_{2}$ for in (1) gives us $-2=-1$, so $\quad=\underline{1}_{2}$ as well. Thus, for to be continuous on $(-\infty \infty)$,

$$
==-12
$$

47. If and are continuous and $(2)=6$, then

$$
\begin{aligned}
& \begin{array}{l}
3 \lim _{\rightarrow 2}()+\underset{\rightarrow 2}{ } \lim _{\rightarrow \rightarrow 2}() \quad \Rightarrow \quad 3(2)+(2) \quad . \quad 6=36 \Rightarrow 9(2)=36 \quad \Rightarrow \quad(2)=4 .
\end{array} \\
& 11- \\
& \text { (a) }()=\text { and }()=2 \text {, so }(\circ)()=(())=\left(1^{2}\right)=1\left(1^{2}\right)=2 \text {. }
\end{aligned}
$$

The domain of \circ is the set of numbers in the domain of (all nonzero reals) such that () is in the domain of (also
\qquad the composite of two rational functions, it is continuous throughout its domain; that is, everywhere except $=0$.
 for $6=.1$ The discontinuity is removable and ()$={ }^{3}+{ }^{2}+\quad+1$ agrees with for $6=1$ and is continuous on R.
(b) ()$=\frac{\underline{3}_{-}-\underline{2}-2}{2}=\frac{(\underline{2}--2)}{z^{2}}=\frac{(-2)(+1)}{2}=(+1)\left[\mathrm{or}^{2}+\right] \quad$ for $=.2$ The discontinuity is removable and ()$={ }^{2}+$ agrees with for $6=2$ and is continuous on R.

exist. The discontinuity at $=$ is a jump discontinuity.
50.

does not satisfy the conclusion of the Intermediate Value Theorem.

does satisfy the conclusion of the Intermediate Value Theorem.
()$={ }^{2}+10 \sin$ is continuous on the interval [31 32], (31) ≈ 957, and (32) ≈ 1030. Since 95710001030 , there is a number C in (3132) such that ()$=1000$ by the Intermediate Value Theorem. Note: There is also a number C in $(-32-31)$ such that ()$=1000$

Suppose that (3) 6. By the Intermediate Value Theorem applied to the continuous function on the closed interval [2 3], the fact that $(2)=86$ and $(3) 6$ implies that there is a number in (23) such that ()$=6$. This contradicts the fact that the only solutions of the equation ()$=6$ are $=1$ and $=4$. Hence, our supposition that $(3) 6$ was incorrect. It follows that $(3) \geq 6$. But (3) $6=6$ because the only solutions of ()$=6$ are $=1$ and $=4$. Therefore, (3) 6 .
() $=^{4}+-3$ is continuous on the interval [12] $(1)=-1$, and $(2)=15$. Since -1015 , there is a number in (12) such that () = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation ${ }^{4}+-3=0$ in the interval (12)

The equation $2=-\sqrt{ }$ is equivalent to the equation $2-+{ }^{\sqrt{ }}=0 .()=2-+{ }$ is continuous on the interval [2 3], (2) $=1-2$ $\sqrt{ }-\sqrt{ }-$
$+2 \approx 0414$, and (3) $==_{3}-3+3 \approx-0601$. Since (2) $0(3)$, there is a number in (23) such that ()$=0$ by the
Intermediate Value Theorem. Thus, there is a root of the equation $2-+\sqrt{ }=0$, or $2=-\sqrt{ }$, in the interval (2 3).
()$=\cos -$ is continuous on the interval [01], $(0)=1$, and $(1)=\cos 1-1 \approx-046$. Since -04601 , there is a number in (01) such that () = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation $\cos -=0$, or $\cos =$, in the interval (01).

The equation $\sin =^{2}-$ is equivalent to the equation $\sin -^{2}+=0 .()=\sin -^{2}+$ is continuous on the interval [12] (1) $=$ $\sin 1 \approx 084$, and $(2)=\sin 2-2 \approx-109$. Since $\sin 10 \sin 2-2$, there is a number in (12) such that ()$=0$ by the Intermediate Value Theorem. Thus, there is a root of the equation $\sin -^{2}+=0$ or $\sin ={ }^{2}$ - , in the interval (12).
(a) ()$=\cos -{ }^{3}$ is continuous on the interval [01], (0) = 0 , and (1) $=\cos 1-1 \approx-0460$. Since $10-046$, there is a number in (01) such that ()$=0$ by the Intermediate Value Theorem. Thus, there is a root of the equation $\cos ^{-3}=0$, or $\cos =^{3}$, in the interval (01).
$(086) \approx 00160$ and $(087) \approx-00140$, so there is a root between 086 and 087 , that is, in the interval (0 86087).
(a) () $=^{5}{ }^{2}+2+3$ is continuous on $[-10],(-1)=-10$, and $(0)=30$. Since -103 , there is a number in (-10) such that ()$=0$ by the Intermediate Value Theorem. Thus, there is a root of the equation ${ }^{5}{ }^{2}+2+3=0$ in the interval (-1 0). $(-088) \approx-00620$ and $(-087) \approx 000470$, so there is a root between -088 and -087 .
(a) Let ()$={ }^{5}-2-4$. Then $(1)=1^{5}-1^{2}-4=-40$ and (2) $=2^{5}-2^{2}-4=240$. So by the Intermediate Value Theorem, there is a number in (12) such that ()$=5-2-4=0$.
We can see from the graphs that, correct to three decimal places, the root is ≈ 1434.

(a) Let ()$=\sqrt{ }-\overline{5-+} 3$. Then $(5)=-\frac{1}{8}_{8} \quad 0$ and (6) $=_{9}^{8} \quad 0$, and is continuous on $[5 \infty)$. So by the Intermediate Value Theorem, there is a number in (56) such that ()$=0$. This implies that $\frac{1}{+3}=-\frac{\sqrt{2}}{-5}$.
(b) Using the intersect feature of the graphing device, we find that the root of the equation is $=5016$, correct to three decimal places.

Let ()$=\sin ^{3}$. Then is continuous on [12] since is the composite of the sine function and the cubing function, both of which are continuous on R. The zeros of the sine are at, so we note that $01 \underline{3}_{2} 283$, and that the pertinent cube roots are related by 1
${ }^{3} \frac{3}{2}$ [call this value] 2. [By observation, we might notice that $=$ $=V_{32}$ are zeros of .]

Now $(1)=\sin 10,()=\sin \underline{3}_{2}=-10$, and $(2)=\sin 80$. Applying the Intermediate Value Theorem on [1] and then on
[2], we see there are numbers and in (1) and (2) such that ()$=()=0$. Thus, has at least two -intercepts in (12).

Let ()$={ }^{2}-3+1$. Then is continuous on (02] since is a rational function whose domain is (0∞). By inspection, we see that $\underline{1}_{4}=\underline{17}_{16} 0,(1)=-10$, and $(2)=\underline{3}_{2} 0$. Appling the Intermediate Value Theorem on
$1_{4} 1$ and then on [12], we see there are numbers and in $1_{4} 1$ and (12) such that ()$=()=0$. Thus, has at least two intercepts in (0 2).
(\Rightarrow) If is continuous at, then by Theorem 8 with ()$=+$, we have

```
    \(\lim (+)=\quad \lim (+)=()\).
```

 \(\rightarrow 0 \quad \rightarrow 0\)
 (\Leftarrow) Let0. Since $\rightarrow 0 \quad$, there exists such that || \Rightarrow
$|(+)-()|$. So if $0 \quad|-|$, then $|()-()|=|(+(-))-()|$.
Thus, $\lim \quad()=()$ and so is continuous at .
64. $\lim _{\rightarrow 0} \sin (+)=\lim \left(\underset{\rightarrow 0}{\left.(\sin \cos +\cos \sin)=\lim (\sin \cos)+\lim \left(\cos \sin _{\rightarrow 0}\right)\right) ~(1) ~}\right.$

$$
=\lim \quad \rightarrow \sin _{\lim \cos }^{\rightarrow 0}+\lim \cos \quad \lim _{\rightarrow 0} \sin \quad=(\sin)(1)+(\cos)(0)=\sin
$$

65. As in the previous exercise, we must show that $\lim \cos (+)=\cos$ to prove that the cosine function is continuous.

$$
\begin{aligned}
\lim _{\rightarrow 0} \cos (+)= & \lim _{\rightarrow 0}\left(\cos \cos \quad \mathrm{C}^{\rightarrow 0} \sin \sin \right)=\lim _{\rightarrow 0}(\cos \cos) \quad \lim _{-0}(\sin \sin) \\
& =\xrightarrow{\rightarrow 0 \cos \rightarrow 0^{\lim } \quad \lim \cos \quad-\rightarrow 0} \lim \sin \xrightarrow{\rightarrow 0} \lim \sin \quad=(\cos)(1)^{-} \quad(\sin)(0)=\cos
\end{aligned}
$$

66. (a) Since is continuous at, $\lim ()=()$. Thus, using the Constant Multiple Law of Limits, we have

$$
\lim ()()=\lim ()=\overrightarrow{\lim }()=()=()() \text {. Therefore, is continuous at } .
$$

(b) Since and are continuous at,$\rightarrow()=()$ and $\rightarrow()=()$. Since () $6=, 0$ we can use the Quotient Law of Limits: $\lim \ldots()=\lim \longrightarrow()=\underset{()}{\rightarrow \rightarrow}=-\quad$. Thus, - is continuous at.

$$
\rightarrow
$$

0 if is rational
67. () = $\quad 1$ if is irrational \quad is continuous nowhere. For, given any number and any0, the interval $(-+)$ contains both infinitely many rational and infinitely many irrational numbers. Since ()$=0$ or 1 , there are infinitely many $\lim _{\rightarrow \quad}()=() \quad \lim ^{()}$.[In fact, $\rightarrow \quad$ does not even exist.] numbers with $0|-|$ and $|()-()|=1$. Thus, $\rightarrow 6 \quad .[$ In fact, $\rightarrow \quad$ does not even exist.] 0 if is rational
68. ()$=\quad$ if is irrational is continuous at 0 . To see why, note that $-| | \leq() \leq \|$, so by the Squeeze Theorem $\lim _{\rightarrow 0}()=0=(0)$. But \quad is continuous nowhere else. For if $6=0$ and 0 , the interval $(-\quad+)$ contains both $\rightarrow 0$
infinitely many rational and infinitely many irrational numbers. Since ()$=0$ or , there are infinitely many numbers with $0 \mid$ $-\mid$ and $|()-()||\mid 2$. Thus, $\lim () 6=()$.
69. If there is such a number, it satisfies the equation ${ }^{3}+1=\Leftrightarrow^{3}-+1=0$. Let the left-hand side of this equation be called (). Now $(-2)=-50$, and $(-1)=10$. Note also that () is a polynomial, and thus continuous. So by the Intermediate Value Theorem, there is a number between -2 and -1 such that ()$=0$, so that $=^{3}+1$.
a CHAPTER 1 FUNCTIONS AND LIMITS
70. $-2+22^{2}-1+2 \Rightarrow\left({ }^{3}+-2\right)+\left({ }^{3}+2^{2}-1\right)=0$. Let () denote the left side of the last equation. Since is continuous on $[-11],(-1)=-40$, and $(1)=20$, there exists a in (-11) such that ()$=0$ by the Intermediate Value Theorem. Note that the only root of either denominator that is in (-11) is
$(-1+\sqrt{ } \overline{5}) 2=$, but ()$=(3 \sqrt{ } 5-\overline{9}) \quad 26=.0$ Thus, is not a root of either denominator, so ()$=0 \Rightarrow$ $=$ is a root of the given equation.
()$={ }^{4} \sin (1)$ is continuous on $(-\infty 0) \cup(0 \infty)$ since it is the product of a polynomial and a composite of a trigonometric function and a rational function. Now since $-1 \leq \sin (1) \leq 1$, we have $-{ }^{4} \leq 4 \sin (1) \leq 4$. Because $\lim _{\rightarrow 0}\left(-{ }^{4}\right)=0$ and $\lim { }^{4}=0$, the Squeeze Theorem gives us $\lim \left({ }_{\rightarrow 0}^{4} \sin (1)\right)=0$, which equals (0). Thus, is continuous at 0 and, hence, on $(-\infty \infty)$.
72. (a) $\lim \quad()=0$ and $\lim ()=0$, so $\lim ()=0$, which is (0), and hence is continuous at $=$ if $=0$. For

$=$; that is, continuous everywhere.
(b) Assume that is continuous on the interval . Then for $\in, \lim _{-} \quad()=\lim _{-}() \quad={ }_{\mid}()$ \qquad is
an endpoint of, use the appropriate one-sided limit.) So \| is continuous on .
(c) No, the converse is false. For example, the function ()$=\begin{array}{ll}1 & \text { if } \geq 0 \\ 1 & \text { if } 0 \text { is not continuous at }=0, \text { but }|()|=1 \text { is }\end{array}$ continuous on R.

Define () to be the monk's distance from the monastery, as a function of time (in hours), on the first day, and define () to be his distance from the monastery, as a function of time, on the second day. Let be the distance from the monastery to the top of the mountain. From the given information we know that $(0)=0,(12)=,(0)=$ and $(12)=0$. Now consider the function - , which is clearly continuous. We calculate that $(-)(0)=-$ and $(-)(12)=$.

So by the Intermediate Value Theorem, there must be some time 0 between 0 and 12 such that $(-)(0)=0 \Leftrightarrow(0)=$
(0). So at time 0 after 7:00 AM, the monk will be at the same place on both days.

1 Review

TRUE-FALSE QUIZ

1. False. Let ()$=2,=-1$, and $=1$. Then $(+)=(-1+1)^{2}=0^{2}=0$, but ()$+()=(-1)^{2}+1^{2}=26=0=(+)$.
2. False. Let ()$={ }^{2}$. Then $(-2)=4=(2)$, but $-26=.2$
3. False. Let ()$={ }^{2}$. Then $(3)=(3)^{2}=9^{2}$ and 3()$=3^{2}$. So (3) $6=3()$.

CHAPTER 1

True.
Thus, (1)(2).
True. See the Vertical Line Test.
False.
For example, if $=-3$, then $\quad(-3)_{2}=\sqrt{ } \quad 9=3$, not -3 .
False. Limit Law 2 applies only if the individual limits exist (these don't).
False. Limit Law 5 cannot be applied if the limit of the denominator is 0 (it is).
True. Limit Law 5 applies.
False. $\quad \underline{2}-9$ is not defined when $=3$, but +3 is.

- 3

True. $\quad \lim ^{2} \underline{-9}=\lim \quad \underline{(+3)(-3)}=\lim (+3)$
$\rightarrow 3-3 \quad \rightarrow 3 \quad(-3) \quad \rightarrow 3$
True. The limit doesn't exist since () () doesn't approach any real number as approaches 5.
(The denominator approaches 0 and the numerator doesn't.)

False. Consider $\lim .(-5)$ or $\lim \sin (-5)$. The first limit exists and is equal to 5. By Example 1.5.3, we know that $\rightarrow 5 \quad-5 \quad \rightarrow 5 \quad-5$
the latter limit exists (and it is equal to 1).

False.
If ()$=1,()=-1$, and $=0$, then $\rightarrow 0 \quad$ does not exist, $\rightarrow 0 \quad$ does not exist, but $\lim [()+()]=\lim 0=0$ exists.
$\rightarrow 0 \quad \rightarrow 0$
True. Suppose that $\lim [()+()]$ exists. Now $\lim ()$ exists and $\lim ()$ does not exist, but

$\overrightarrow{\text { we have a contradiction. Thus, } \lim \left[()+{ }^{-}()\right] \text {does not exist. }}$

False. $\lim _{\text {Consider }}[()()]=\lim _{\rightarrow 6}\left({ }^{(6)^{-}} \frac{1}{-6}\right.$. It exists (its value is \quad but $\quad 1 \quad(6)=0 \quad$ and \quad does not exist,
so (6) (6) $6=.1$
True. A polynomial is continuous everywhere, so lim () exists and is equal to ().

False.

$$
\begin{aligned}
& \lim [() \quad()]=\lim \quad 1 \quad 1 \\
& \text { Consider } \rightarrow 0 \quad \rightarrow \quad 2-4 \text {. This limit is }-\infty \text { (not } 0 \text {), but each of the individual functions } \\
& \text { approaches } \infty \text {. }
\end{aligned}
$$

$$
1(-1) \text { if } 6=1
$$

False.

82 - CHAPTER 1 FUNCTIONS AND LIMITS
20. False. The function must be continuous in order to use the Intermediate Value Theorem. For example, let

1 if $0 \leq 3$

$$
()=\quad-1 \quad \text { if }=3 \quad \text { There is no number } \in\left[\begin{array}{lll}
0 & 3
\end{array}\right] \text { with }()=0 .
$$

21. True. Use Theorem 1.8.8 with $=2,=5$, and ()$=4^{2}-11$. Note that $(4)=3$ is not needed.
22. True. Use the Intermediate Value Theorem with $=-1,=1$, and $=$, since 34 .

True, by the definition of a limit with $=1$.

$$
()=\quad 2+1 \text { if } 6=0
$$

24. False.For example, let

$$
2 \quad \text { if }=0
$$

Then () 1 for all, but $\lim \quad()=\lim \quad 2+1=1$.

$$
\rightarrow 0 \quad \rightarrow 0
$$

True. ()$={ }^{10}-10^{2}+5$ is continuous on the interval [02], $(0)=5,(1)=-4$, and $(2)=989$. Since
-405 , there is a number in (01) such that ()$=0$ by the Intermediate Value Theorem. Thus, there is a root of
the equation ${ }^{10}-10^{2}+5=0$ in the interval (0 1). Similarly, there is a root in (12).
26. True. See Exercise 1.8.72(b).
27. False \quad See Exercise 1.8.72(c).

EXERCISES

1. (a) When $=2, \approx 27$. Thus, $(2) \approx 27$.
(c) The domain of is $-6 \leq \leq 6$, or [-6 6].
(e) is increasing on [-4 4], that is, on $-4 \leq \leq 4$.
(b) $\quad()=3 \quad \Rightarrow \quad \approx 23,56$
(d) The range of is $-4 \leq \leq 4$, or $[-44]$.
(f) is odd since its graph is symmetric about the origin.
(a) This curve is not the graph of a function of since it fails the Vertical Line Test. This curve is the graph of a function of since it passes the Vertical Line Test. The domain is [-3 3] and the range is [-2 3].
() $=^{2}-2+3$, so $(+)=(+)^{2}-2(+)+3=^{2}+2+{ }^{2}-2-2+3$, and
$(+)-()=\underline{\left({ }^{2}+2+2\right.} \underline{2}-2 \underline{-2+3)-\left({ }^{2}-2+3\right)}=\underline{(2+\underline{-2})}=2+-2$.
2. There will be some yield with no fertilizer, increasing yields with increasing fertilizer use, a leveling-off of yields at some point, and disaster with too much fertilizer use.

3. $=1+\sin . \quad$ Domain: R.

$$
\text { Range: }-1 \leq \sin \leq 1 \quad \Rightarrow 0 \leq 1+\sin \leq 2 \quad \Rightarrow 0 \leq \leq 2 . \quad=\left[\begin{array}{ll}
0 & 2
\end{array}\right]
$$

8. $=()=3+\cos 2$.

$$
\begin{array}{ll}
\text { Domain: } & \text { R. }=(-\infty \infty) \\
\text { Range: } & -1 \leq \cos 2 \leq 1 \Rightarrow 2 \leq 3+\cos 2 \leq 4 \Rightarrow 2 \leq \leq 4 . \\
& =[24]
\end{array}
$$

(a) To obtain the graph of $=()+8$, we shift the graph of $=()$ up 8 units.

To obtain the graph of $=(+8)$, we shift the graph of $=()$ left 8 units.
To obtain the graph of $=1+2()$, we stretch the graph of $=()$ vertically by a factor of 2 , and then shift the resulting graph 1 unit upward.

To obtain the graph of $=(-2)-2$, we shift the graph of $=()$ right 2 units (for the " -2 " inside the parentheses), and then shift the resulting graph 2 units downward.

To obtain the graph of $=-()$, we reflect the graph of $=()$ about the -axis.
To obtain the graph of $=3-()$, we reflect the graph of $=()$ about the -axis, and then shift the resulting graph 3 units upward.
10. (a) To obtain the graph of $=(-8)$, we shift the graph of $=()$ right 8 units.

To obtain the graph of $=2-()$, we reflect the graph of $=()$ about the -axis, and then shift the resulting graph 2 units upward.
(b) To obtain the graph of $=-$ (), we reflect the graph of $=()$ about the -axis.

To obtain the graph of $=1_{2}()-1$, we shrink the graph of $=()$ by a factor of 2 , and then shift the resulting graph 1 unit dowaward.

11. $=(-2)^{3}$: Start with the graph of $={ }^{3}$ and shift 2 units to the right.

$$
\sqrt{ }
$$

$\sqrt{ }$

12. $=2$: Start with the graph of $=$ and stretch $=^{2}-2+2=\left({ }^{2}-2+1\right)+1=(-1)^{2}+1$: Start with the graph of $={ }^{2}$, shift 1 unit to the right, and shift 1 unit upward.

14. $=\frac{1}{-1}:$ Start with the graph of $=\frac{1}{-1}$ and shift 1 unit to

()$=-\cos 2:$ Start with the graph of $=\cos$, shrink horizontally by a factor of 2 , and reflect about the - axis.

16. ()$=$
$1+$ if
\geq
On $(-\infty 0)$, graph $=1+($ the line with slope 1 and -intercept 1$)$ with open endpoint (01).

On $[0 \infty)$, graph $=1+{ }^{2}$ (the rightmost half of the parabola $=2$ shifted 1 unit upward) with closed endpoint (01).
(a) The terms of are a mixture of odd and even powers of , so is neither even nor odd.

The terms of are all odd powers of , so is odd.
$(-)=\cos (-)^{2}=\cos \left({ }^{2}\right)=()$, so is even .
$(-)=1+\sin (-)=1-\sin$. Now $(-) 6=()$ and $(-) 6=-()$, so is neither even nor odd.
18. For the line segment from (22) to (10), the slope is $\frac{0-2}{-2_{1+2}}=2$, and an equation is $-0=2(+1)$ or, equivalently, $=-2-2$. The circle has equation ${ }_{-2}^{2}+^{2}=1$; the top half has equation $=\sqrt[{\sqrt{\prime}}]{\text { eqsitive }) \text {. Thus, }()=\sqrt{1}} \quad \overline{1-2}$ (we have solved for

19. ()$^{\sqrt{ } \quad,} \quad=[0 \infty) ; \quad()=\sin , \quad=R$.
(a) $(\circ)()=(())=(\sin)=\sqrt{\sin }$. For $\sqrt{\frac{\sqrt{ }}{\sin }}$ to be defined, we must have $\sin \geq 0 \Leftrightarrow$
$\in\left[\begin{array}{ll}0\end{array}\right],\left[\begin{array}{ll}2 & 3\end{array}\right],\left[\begin{array}{ll}-2 & -\end{array}\right],\left[\begin{array}{ll}4 & 5\end{array}\right],\left[\begin{array}{ll}-4 & -3\end{array}\right]$, , so $=\{\mid \in[2+2]$, where is an integer $\}$.
$(\circ)()=(())=\left(^{\sqrt{ }}\right)=\sin ^{\forall}$. must be greater than or equal to 0 for ${ }^{\forall}$ to be defined, so $=[0 \infty)$. $\sqrt[V]{f} V_{4}$
$(\circ)()=(())=(\quad)=\quad=[0 \infty)$.
$(\circ)()=(())=(\sin)=\sin (\sin) .=R$.
Let ()$=+^{\sqrt{ }},()=\sqrt{ }$, and ()$=1$. Then $(\circ \circ)()=+^{1} \sqrt{ }=()$.

Many models appear to be plausible. Your choice depends on whether you think medical advances will keep increasing life expectancy, or if there is bound to be a natural leveling-off of life expectancy. A linear model,
$=02493-4234818$, gives us an estimate of 776 years for the year 2010 .
22. (a) Let denote the number of toaster ovens produced in one week and the associated cost. Using the points (1000 9000) and (1500 12,000), we get an equation of a line:

$$
\begin{aligned}
& -9000=\frac{12,000-9000}{1500}(-1000 \\
& =6(-1000)+9000 \Rightarrow=6+3000 .
\end{aligned}
$$

The slope of 6 means that each additional toaster oven produced adds $\$ 6$ to the weekly production cost.
The -intercept of 3000 represents the overhead cost — the cost incurred without producing anything.
23. (a)
(i) $\lim \quad()=3$
(ii) $\lim \quad()=0$
(iii) $\underset{\rightarrow-3}{\rightarrow 2^{+}} \quad$ ()
$\rightarrow{ }_{\mathrm{lim}}^{4}$
$\lim _{(\mathrm{vi}) \rightarrow 2^{-}}()=-\infty$
(v) $\rightarrow 0 \quad()=\infty$

The equations of the vertical asymptotes are $=0$ and $=2$.
is discontinuous at $=-3,0,2$, and 4 . The discontinuities are jump, infinite, infinite, and removable, respectively.
24. $\quad \lim 0_{+}()=-2, \quad \lim \quad()=1 \quad(0)=1$

$\rightarrow-$	
$\lim _{\rightarrow 2^{-}}()=\infty$,	\rightarrow
$\rightarrow 2^{+}$	$\lim ()=$

25. $\lim \cos (+\sin)=\cos \quad \lim (+\sin) \quad[$ by Theorem 1.8.8] $=\cos 0=1$
$\rightarrow 0$
26. Since rational functions are continuous, $\lim \frac{2}{\rightarrow 3^{2}+2-9}=\frac{3^{2}-9}{32+2(3)-3}=\frac{0}{12}=0$.
27. $\lim _{-3} \frac{2}{2+2}-9 \lim _{-3(+3)} \quad(+3)(-3)=\lim _{-\rightarrow-3} \quad \frac{-3}{1}=\frac{-3-3}{3}=\frac{-6}{4}=\frac{3}{2}$
28. $\lim \frac{2}{2}-9 \quad$ since ${ }^{2}+230^{+}$as 1^{+}and ${ }^{2}-9$ for 13 .

Another solution: Factor the numerator as a sum of two cubes and then simplify.

$$
\text { 31. } \rightarrow 9 \quad(-9)_{4} \quad \infty \text { since } \quad-\quad \rightarrow \quad \text { as } \quad \rightarrow \quad(-9)^{4} \quad \text { for } 6
$$

32. $\lim \underline{4-}=\lim \underline{4-\quad}=\lim _1=1$
$\rightarrow 4^{+}|4-|$
$\rightarrow 4+-(4-)$
$\rightarrow 4^{+}-1 \quad-$
© Cengage Learning. All Rights Reserved.

$$
\begin{aligned}
& \left.\lim _{\rightarrow 0}(=1)^{3}+1=\lim \int=1\right)^{3}+1^{3}=\lim [(-1)+1](-1)^{2}-1(-1)+1^{2} \\
& =\lim (-1)^{2}-\quad+2=\overrightarrow{1}-0+2=3 \\
& \text { 30. } \lim \underline{2}-4=\lim \quad(+2)(-2)=\lim \ldots+2 \ldots=-2+2=4=1 \\
& \rightarrow 2^{3}-8 \quad \rightarrow 2(-2)\left({ }^{2}+2+4\right) \quad \rightarrow 2^{2}+2+4 \quad 4+4+4 \quad 12 \quad 3 \\
& \lim _{-_{-}} ป_{-}^{-}=\quad\left(\begin{array}{ccc}
4 & 0^{4} \quad 9 \quad ل_{-}^{-} 0 & =9
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow 1^{+} 2+2-3-\infty \quad-\quad \rightarrow \quad \rightarrow \quad 2+2-3
\end{aligned}
$$

33. lim	$4-1$	$=\lim$.	1)($\left.{ }^{2}-1\right)$		$(\underline{2}+1)$			2(2)	$=4$
$\rightarrow 1$	$3+5{ }_{2}-6$	$\rightarrow 1$	$(2+5-6)$	$\rightarrow 1$	$(+6)(-1)$	$\rightarrow 1$	(+6)	1(7)	7

$$
=\lim \frac{(-1)(-2)}{-1}=\lim ^{\rightarrow 1} \frac{1^{-2}}{}=\frac{1-2}{-}=1
$$

39. Since $2-1 \leq() \leq$ for 03 and $\quad \lim ^{2}(2 \quad 1)=1=\lim ^{2} \quad \lim ^{2}()=1$, we have $\rightarrow 1 \quad$ by the Squeeze Theorem. Let ()$=-^{2},()={ }^{2} \cos 1^{2}$ and ()$={ }^{2}$. Then since $\cos 1^{2} \leq 1$ for $6=, 0$ we have
() () $\quad() \quad \lim ()=\lim ()=0 \quad \lim ()=0$

$$
\Rightarrow \quad \text { by the Squeeze Theorem. }
$$

41. Given0, we need0 such that if $0|-2|$, then $|(14-5)-4|$. But $|(14-5)-4|$
$|-5+10| \quad \Leftrightarrow \quad \lim |-5||-2| \Leftrightarrow|-2| \quad$. So if we choose $=5$, then $0 \quad|-2| \Rightarrow$
$|(14-5)-4|$. Thus, $\rightarrow 2(14-5)=4$ by the definition of a limit.

$=\sqrt{3}^{3}-3^{3} \quad 3 \quad 0=\quad 3 \quad \sqrt{3} \quad 0=3^{-}={ }_{3}-\sqrt{3} \quad 3=$

\qquad
Given0, we need0 so that if $0|-2|, \begin{aligned} & \rightarrow 0 \\ & \text {, then }\end{aligned}{ }^{2}-3-(-2)$. First, note that if $|-2| 1$, then
$-1-21$, so $0-12 \Rightarrow|-1| 2$. Now let $=\min \{21\}$. Then $0|-2| \Rightarrow$ ${ }_{\text {Thus }}^{2}-3-(2-2)=|(-2)(-1)|=|-2||-1|(2)(2)=$.
42. Given 0 , we need 0 such that if $0-4$, then 2

$$
\begin{aligned}
& \sqrt{ }-4 \quad \text { This is true } \Leftrightarrow \sqrt{ } \\
& \lim _{\rightarrow 4^{+}} 2^{\sqrt{ }}=4=\infty
\end{aligned}
$$

$$
-42 \Leftrightarrow-44^{2}
$$

$$
\begin{array}{ll}
& \text { So if we choose } \\
=4^{2} \text {, then } 0-4 \quad \Rightarrow 2^{\sqrt{2}}-4
\end{array}
$$

(a) ()$=\stackrel{V}{-i f f},()=3-$ if $0 \leq 3,()=(-3)^{2}$ if3.
$\lim ()=\quad \lim (3 \quad)=3$
(i) $\rightarrow 0^{+}$
$\rightarrow 0^{+} \quad-$
(iii) Because of (i) and (ii), $\lim _{\rightarrow 0} \quad()$ does not exist.
$\lim ()=\quad \lim V-=0$
(ii) $\rightarrow 0^{-}$ $\rightarrow 0^{-} \quad-$ $\lim ()=\lim (3-)=0$
$\rightarrow 3^{-} \rightarrow 3$
(v) $\lim ()=\lim (-3)^{2}=0$
$\rightarrow 3^{+} \quad \rightarrow 3^{+}$
(vi) Because of (iv) and (v), $\lim _{\rightarrow 3} \quad()=0$.
(c)

(a) () $=2-{ }^{2}$ if $0 \leq \leq 2,()=2-$ if $2 \leq 3,()=-4$ if $34,()=$ if ≥ 4.
 $\lim ()==(4)$, so is continuous from the right at 4 .
$\rightarrow 4^{+}$
${ }^{3}$ is continuous on R since it is a polynomial and cos is also continuous on R, so the product ${ }^{3} \cos$ is continuous on R.
The root function $\sqrt{-}_{4}$ is continuous on its domain, $[0 \infty)$, and so the sum, ($)={ }^{4}+{ }^{3} \cos$, is continuous on its domain, [0
∞).
$2-9$ is continuous on R since it is a polynomial and V is continuous on [0 ∞) by Theorem 1.8.7, so the composition V_{2-}
 so the quotient function ()$=\underline{V_{2}-9}$ is continuous on its domain, $(-\infty-3] \cup[3 \infty)$ by Theorem 1.8.4. $2-2$
()$=^{5}-{ }^{3}+3-5$ is continuous on the interval [12], (1) $=-2$, and (2) $=25$. Since -2025 , there is a number in (12) such that ($)=0$ by the Intermediate Value Theorem. Thus, there is a root of the equation
$5-3+3-5=0$ in the interval (12).
Let ()$=2 \sin -3+2$. Now is continuous on [01] and $(0)=-30$ and $(1)=2 \sin 1-1 \approx 0680$. So by the Intermediate Value Theorem there is a number in (01) such that ()$=0$, that is, the equation $2 \sin =3-2$ has a root in (01).

Thus, by the Squeeze Theorem, $\lim \quad()=0$.
52. (a) Note that is an even function since ()$=(-)$. Now for any integer , [[]] + $[[-]]=-=0$, and for any real number which is not an integer, $[[]]+[[-]]=[[]]+(-[[]]-1)=-1$. So lim $\quad()$ exists (and is equal to -1)
 for all values of .
(b) is discontinuous at all integers.

\square PRINCIPLES OF PROBLEM SOLVING

If -5 , we must have $1-2-(--5)=3 \Leftrightarrow=3$, which is false, since we are considering -5 .
If $-5 \leq \frac{1}{2}$, we must have $1-2-(+5)=3 \Leftrightarrow=-\quad \frac{7}{3}$. 1

If $\geq \quad 2$, we must have $2-1-(+5)=3 \Leftrightarrow=9$.
$\underline{\square}$
So the two solutions of the equation are $=-\quad 3$ and $=9$.
2. $|-1|=1$ if1 and $|-3|=3$ if 3
1 if ≥ 1
3 if ≥ 3

Therefore, we consider the three cases $1,1 \leq 3$, and ≥ 3.
If1, we must have $1--(3-) \geq 5 \quad \Leftrightarrow 0 \geq 7$, which is false.
If $1 \leq 3$, we must have $-1-(3-) \geq 5 \Leftrightarrow \geq \frac{9}{2}$, which is false because3.

If ≥ 3, we must have $-1-(-3) \geq 5 \quad \Leftrightarrow 2 \geq 5$, which is false.
All three cases lead to falsehoods, so the inequality has no solution.
()$=^{2}-4| |+3$. If ≥ 0, then ()$=^{2}-4+3=|(-1)(-3)|$.

Case (i): If $0 \leq 1$, then ()$={ }^{2}-4+3$.
Case (ii): If $1 \leq 3$, then ()$=-\left({ }^{2}-4+3\right)=-{ }^{2}+4-3$.
Case (iii): If $\quad 3$, then ()$={ }^{2}-4+3$.
This enables us to sketch the graph for ≥ 0. Then we use the fact that is an even function to reflect this part of the graph about the -axis to obtain the entire graph. Or, we could
 consider also the cases $-3,-3 \leq-1$, and $-1 \leq 0$.

$\left|\mid \geq 2,()={ }^{2}-1-\left({ }^{2}-4\right)=3\right.$

Remember that $|\mid=$ if ≥ 0 and that $| \mid=-$ if0. Thus,

We will consider the equation $+||=+| |$ in four cases.

Case 1 gives us the line $=$ with nonnegative and.
Case 2 gives us the portion of the -axis with negative.
Case 3 gives us the portion of the -axis with negative.
Case 4 gives us the entire third quadrant.

6. $|-|+||-| | \leq 2 \quad$ [call this inequality ()]

Case (i):	$\geq \geq 0$.	Then ()	\Leftrightarrow	-+- ≤ 2	\Leftrightarrow	- ≤ 1	\Leftrightarrow	≥-1.
Case (ii):	$\geq \geq 0$.	Then ()	\Leftrightarrow	-+->2	\Leftrightarrow	$0 \leq 2$ (true).		
Case (iii):	≥ 0 and ≤ 0.	Then ()	\Leftrightarrow	-++ 52	\Leftrightarrow	$2 \leq 2$	\Leftrightarrow	≤ 1.
Case (iv):	≤ 0 and ≥ 0.	Then ()	\Leftrightarrow	--- ≤ 2	\Leftrightarrow	$-2 \leq 2$	\Leftrightarrow	≥-1.
Case (v):	$\leq \leq 0$.	Then ()	\Leftrightarrow	$--+\leq 2$	\Leftrightarrow	$0 \leq 2$ (true).		
Case (vi):	$\leq \leq 0$.	Then ()	\Leftrightarrow	$--+\leq 2$	\Leftrightarrow	$-\leq 1$	\Leftrightarrow	$\leq+1$.

Note: Instead of considering cases (iv), (v), and (vi), we could have noted that the region is unchanged if and are replaced by - and - , so the region is symmetric about the origin. Therefore, we need only draw cases (i), (ii), and (iii), and rotate through 180° about the origin.

7. (a) To sketch the graph of
() = max \{ 1 \}, we first graph
()$=$ and ()$=1 \quad$ on the same coordinate axes. Then create the graph of by plotting the largest -value of and for every value of .

(b)

(c)

On the TI-84 Plus, max is found under LIST, then under MATH. To graph ()$=\max \quad{ }^{2} 2+2-\quad$, use $=\max \left({ }^{2} \max (2+2-)\right)$.
8. (a) If $\max \{2\}=1$, then either $=1$ and $2 \leq 1$
≤ 1 and $2=1$. Thus, we obtain the set of points such that $=1$ and $\leq \frac{1}{2}$ a vertical line

2
2

a horizontal line with rightmost point ($1 \frac{1}{-}$).
2
(b) The graph of $\max \{2\}=1$ is shown in part (a), and the graph of $\max \{2\}=-1$ can be found in a similar manner. The inequalities in
$-1 \leq \max \{2\} \leq 1$ give us all the points on or inside the boundaries.

(c) $\max \left\{{ }^{2}\right\}=1 \Leftrightarrow$
$=1$ and $\quad 2 \leq 1[-1 \leq \leq 1]$
≤ 1 and $^{2}=1[= \pm 1]$.

Let be the distance traveled on each half of the trip. Let 1 and 2 be the times taken for the first and second halves of the trip.
For the first half of the trip we have $1=30$ and for the second half we have $2=60$. Thus, the average speed for the entire trip is $\frac{\text { total distance }}{\text { total time }}=\frac{2}{1+2}=\underline{+} \cdot \begin{array}{r}2 \\ + \\ 60 \\ \hline\end{array} \mathbf{2}_{ \pm}^{120}=\frac{120}{3}=40$. The average speed for the entire trip $30 \quad 60$ is 40 mi h .

Let ()$=\sin ,()=$, and ()$=$. Then the left-hand side of the equation is
$[\circ(+)]()=\sin (+)=\sin 2=2 \sin \cos$; and the right-hand side is
$(\circ)()+(\circ)()=\sin +\sin =2 \sin$. The two sides are not equal, so the given statement is false.

Let be the statement that $7-1$ is divisible by 6
1 is true because $7^{1}-1=6$ is divisible by 6 .
Assume is true, that is, $7-1$ is divisible by 6 . In other words, $7-1=6$ for some positive integer. Then $7^{+1}-1$
$=7 \cdot 7-1=(6+1) \cdot 7-1=42+6=6(7+1)$, which is divisible by 6 , so +1 is true.
Therefore, by mathematical induction, $7-1$ is divisible by 6 for every positive integer .
Let be the statement that $1+3+5+\cdots+(2-1)={ }^{2}$.
1 is true because $[2(1)-1]=1=1^{2}$.
Assume is true, that is, $1+3+5+\cdots+(2-1)={ }^{2}$. Then
$1+3+5+\cdots+(2-1)+[2(+1)-1]=1+3+5+\cdots+(2-1)+(2+1)={ }^{2}+(2+1)=(+1)^{2}$ which shows that +1 is true.

Therefore, by mathematical induction, $1+3+5+\cdots+(2-1)={ }^{2}$ for every positive integer.
0()$={ }^{2}$ and +1()$=0(())$ for $=012$.
1()$=0(0())=0^{2}={ }^{2}{ }^{2}={ }^{4}, 2()=0(1())=0\left({ }^{4}\right)=\left({ }^{4}\right)^{2}={ }^{8}$,
3()$=0(2())=0\left({ }^{8}\right)=\left({ }^{8}\right)^{2}={ }^{16}$, Thus, a general formula is ()$={ }^{2}+1$.
(a) 0()$=1(2-)$ and $+1=0 \circ$ for $=012$.

$4-3 \quad 2 \begin{gathered}-3-2 \\ 3-2\end{gathered} \quad 2(4-3)-(3-2) \quad 5-4$
3()$=0 \quad \underline{3-2}=\underline{1}=\underline{4-3}=\underline{4-3}$

$$
-4-3
$$

Thus, we conjecture that the general formula is ()$=$
$\frac{+1-}{+2-(+1)}$.

To prove this, we use the Principle of Mathematical Induction. We have already verified that is true for $=1$. Assume that the formula is true for $=$; that is, ()$=$ \qquad . Then
 $=\frac{+2-(+1)}{2[+2-(+1)]-(+1-)}=\frac{+2-(+1)}{+3-(+2)}$

This shows that the formula for is true for $=+1$. Therefore, by mathematical induction, the formula is true for all positive integers .
(b) From the graph, we can make several observations:

- The values at each fixed $=$ keep increasing as increases.
- The vertical asymptote gets closer to $=1$ as increases.
- The horizontal asymptote gets closer to $=1$ as increases.
- The -intercept for +1 is the value of the vertical asymptote for
- The -intercept for is the value of the horizontal asymptote for +1 .

15. Let $={ }_{6}-\quad$, so $={ }^{6}$. Then $\rightarrow 1$ as $\rightarrow 1$, so

$$
\lim _{\rightarrow 1} \frac{\sqrt{3}^{-}-1}{-\sqrt{-1}}=\lim _{\rightarrow 1} \underset{-1}{\underline{2}-1}=\lim _{3-1} \frac{(-1)(+1)}{\rightarrow 1(-1)\left({ }^{2}++1\right)}=\frac{1+1}{\rightarrow 1^{2}+1}=2
$$

Another method: Multiply both the numerator and the denominator by $(\sqrt{ }-1)^{\sqrt{ }}{ }^{-}+{ }_{3}+1$.
 approaches 0 as $\rightarrow 0$, the limit will exist only if the numerator also approaches 0 as $\rightarrow 0$. So we require that
$(0)+-4=0 \Rightarrow=4$. So the equation becomes

$$
\lim _{\rightarrow 0} \frac{1}{\sqrt{2}-4+2} \quad=1 \Rightarrow \sqrt{ } \quad=1 \quad=4
$$ Therefore, $==4$.

For $-\underline{1}_{2} \underline{1}_{2}$, we have_2_-_ 10 and $2+10$, so_ $\mid 2_{-}-1 \perp=-\left(2 _-1\right)$ and $|2+1|=2+1$.

Let be the midpoint of, so the coordinates of are $\underline{1}_{2} \underline{1}_{2}{ }^{2}$ since the coordinates of are ${ }^{2}$. Let $=(0)$.

(b) ForO, $1-1 \leq\left[\left[\begin{array}{ll}1 &]\end{array}\right] \leq 1 \quad \Rightarrow\left(\begin{array}{ll}1 & -1) \leq[[1]] \leq(1)\end{array} \quad \Rightarrow 1-\leq\left[\left[\begin{array}{ll}1 &]\end{array}\right] \leq 1\right.\right.\right.$.

As $\rightarrow 0 \quad, 1-\rightarrow 1$, so by the Squeeze Theorem, $\rightarrow 0^{+}$
For0, $1-1 \leq[[1]] \leq 1$
$\Rightarrow(1-1) \geq[[1]] \geq(1)$
$\Rightarrow 1-\geq[[1]] \geq 1$.
As $\rightarrow 0 \quad, 1-\rightarrow 1$, so by the Squeeze Theorem, $\rightarrow 0^{-}$ Since the one-sided limits are equal, $\lim \quad\left[\begin{array}{ll}1 &]\end{array}\right]=1$.
20. (a) $[[]]^{2}+[[]]^{2}=1$. Since $[[]]^{2}$ and $[[]]^{2}$ are positive integers or 0 , there are only 4 cases:

$$
\begin{aligned}
& \text { Case (i): }[[]]=1,[[]]=0 \quad \Rightarrow 1 \leq 2 \text { and } 0 \leq 1 \\
& \text { Case (ii): }[[]]=-1,[[]]=0 \Rightarrow-1 \leq 0 \text { and } 0 \leq 1 \\
& \text { Case (iii):[[]]=0, [[]]=1 } \Rightarrow 0 \leq 1 \text { and } 1 \leq 2 \\
& \text { Case (iv): }[[]]=0,[[]]=-1 \Rightarrow 0 \leq 1 \text { and }-1 \leq 0
\end{aligned}
$$

(b) $[[]]^{2}-[[]]^{2}=3$. The only integral solution of ${ }^{2}{ }^{2}{ }^{2}=3$ is $= \pm 2$ and $= \pm 1$. So the graph is
(c) $[[+]]=1^{2} \Rightarrow[[+]]= \pm 1 \Rightarrow 1 \leq+2$
or $-1 \leq+0$

(d) For $\leq \quad+1,[[]]=$. Then $[[]]+[[]]=1 \quad \Rightarrow[[]]=1-\quad \Rightarrow$ $1-\leq 2-$. Choosing integer values for produces the graph.

is continuous on $(-\infty)$ and (∞). To make continuous on R, we must have continuity at . Thus,

$$
\lim _{\rightarrow^{+}}()=\lim _{\rightarrow-}() \Rightarrow \lim _{\rightarrow^{+}}^{2}=\lim _{\rightarrow-}(+1) \Rightarrow{ }^{2}=+1 \Rightarrow{ }^{2}{ }^{-} 1=0 \Rightarrow
$$

[by the quadratic formula] $=1 \pm \quad 52 \approx 1618$ or -0618 .
(a) Here are a few possibilities:

The "obstacle" is the line $=($ see diagram $)$. Any intersection of the graph of with the line $=$ constitutes a fixed point, and if the graph of the function does not cross the line somewhere in (01), then it must either start at (00) (in which case 0 is a fixed point) or finish at (11) (in which case 1 is a fixed point).

Consider the function ()$=()-$, where is any continuous function with domain [01] and range in [01]. We shall prove that has a fixed point. Now if $(0)=0$ then we are done: has a fixed point (the number 0), which is what we are trying to prove. So assume (0) $6=.0$ For the same reason we can assume that $(1) 6=.1$ Then $(0)=(0) 0$ and $(1)=$ (1) - 10 . So by the Intermediate Value Theorem, there exists some number in the interval (01) such that ()$=()-=0$.

So ()$=$, and therefore has a fixed point.

$$
\lim
$$

$\rightarrow[()()]=$

$$
\begin{array}{rlrl}
\lim () & \lim ()=3 \quad \overline{1}=3 \\
\rightarrow \quad & \rightarrow \quad 2 \cdot 2 & 4
\end{array}
$$

24. (a) Solution 1: We introduce a coordinate system and drop a perpendicular from , as shown. We see from $\angle \quad$ that $\tan 2=\underline{1-\quad \text {, and from }}$ \angle that $\tan =$. Using the double-angle formula for tangents, we get

simplification, this becomes $\frac{1}{1-}=\frac{2}{2-2} \Leftrightarrow{ }^{2}=(3-2)$.
As the altitude decreases in length, the point will approach the -axis, that is, $\rightarrow 0$, so the limiting location of must be one of the roots of the equation $(3-2)=0$. Obviously it is not $=0$ (the point can never be to the left of the altitude, which it would have to be in order to approach 0) so it must be $3-2=0$, that is, $=\frac{2}{-} 3$.

Solution 2: We add a few lines to the original diagram, as shown. Now note that $\angle=\angle$ (alternate angles; k by symmetry) and similarly $\angle=\angle$. So Δ and Δ are isosceles, and the line segments , and are all of equal length. As | $\mid \rightarrow 0$, and approach points on the base, and the point is seen to approach a
 position two-thirds of the way between and, as above.
(b) The equation ${ }^{2}=(3-2)$ calculated in part (a) is the equation of the curve traced out by. Now as $\| \rightarrow \infty, 2 \rightarrow 2, \rightarrow 4, \rightarrow 1$, and since $\tan =, \rightarrow 1$. Thus, only traces out the part of the curve with $0 \leq 1$.

(a) Consider ()$=\left(+180^{\circ}\right)-()$. Fix any number. If ()$=0$, we are done: Temperature at $=$ Temperature at $+180^{\circ}$. If () 0 , then $\left(+180^{\circ}\right)=\left(+360^{\circ}\right)-\left(+180^{\circ}\right)=()-\left(+180^{\circ}\right)=-() 0$. Also, is continuous since temperature varies continuously. So, by the Intermediate Value Theorem, has a zero on the interval [$+180^{\circ}$]. If () 0, then a similar argument applies.
Yes. The same argument applies.
The same argument applies for quantities that vary continuously, such as barometric pressure. But one could argue that altitude above sea level is sometimes discontinuous, so the result might not always hold for that quantity.

[^0]: $|()-|$. Let be the smaller of 1 and 2 . Then $0 \quad|-|$
 $\Rightarrow-1$ or +2 so

[^1]: $\underset{40 .()=\cos }{\text { is continuous at }}=\underset{\text { if }}{1}$. We conclude that is continuous on $(-\infty \infty)$.
 sin
 if $\quad 4$

