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Chapter 8

Sequences and Infinite Series

8.1 An Overview

8.1.1 A sequence is an ordered list of numbers a1 , a2, a3, ..., often written{az,a2,...}or {an}. For
example, the natural numbers {1, 2, 3, ...} are a sequence where an = n for every n.

T
W]

1
812 al =T =1,a2 = -;a3= 7 a4 = ,a5 =15 .

8.13 a1 =1(given);a2 =1-al1=1;a3 =2-a2 =2;a4 =3-a3 =6;a5 =4-a4 =24

8.1.4 Afinite sum is the sum of a finite number of items, for example the sum of a finite number of terms
of a sequence. N

8.1.5 Aninfinite seriesis an infinite sum of numbers. Thus if {an } is a sequence, thenal +a2 +--= = _,
is an infinite series. For example, if ak = 1, then <« ak= © 1 isan infinite series.
k k=1 k=1k
1 2 3 4
8.16 S1 = ke K =1,82 = ik =1+2=3;S3= k1K =1+42+3=6; S4 = @
1+2+3+4=10.
1 2 3 4
8.1.7 S1 = k=1 K2 = 1;S2 = k=1 k2 =1+4=5;S3 = k=1 K2 =1+4+ 9=14; S4 = k=1 K2
1+4+9+16=30.
11 1 2 11 13 3 1 1 1 1u 4 1

8.1.8 S1 = k=l k= 1 =1,92 = k=lk =1 + 2 =2; S3 = k=t k=1 42 +3 =5 SS4= ik
1 111 25
1 4.+ 344 =12
8.1.9 a1=1—;a2= —1;a3=1 ;a4=1

1

0
1 0
0 1000 10000
8.1.10 a1 =3(1)+1=4.a2 =32)+1=7a3 =33)+1=10,a4 =3(4) +1=13.
8111 a1 = —=1,a2 = = . =2 _=la-= =1
as = =
P 1 1 -
2 2y 23 2's
8112 a1 =2-1=1.a2 =2+1=3,a3 =2-1=1,a4 =2+1=3.

2 43 84 165 2



2 241 =5 .a3 T84 = 9 Cad T e+l 17

8.1.13 a1 = 24 =_3 Ta

11 5 _ 1 —10 1 i
8114 a1 =1+ | =2a2 =2+ , =,;a3 3 = 3;a4 =4+ , =4
8.1.15 a1 =1+sin(n/2)=2;a2 = 1+sin(27/2)=1+sinz=1; a3 = 1+sin(37/2) = 0; a4 = 1+sin(4x/2) =

1+sin27=1.
8116 a1 =2-12-3-1+1=0;a2=2-22-3-2+1 =3;a3 =2-3%2-3-3+1=10; a4 =28 _3441=21.
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8.1.17 a1=2,a2 =2-2=4,a3 =2(4)=8,a4 =2-8=16.
8.1.18 a1 =32,a2 =32/2=16,a3 =16/2=8,a4 =8/2=4.

8.1.19 a1=10(given);a2 =3-a1 -12=30-12=18;a3 =3-a2 -12=54-12=42;a4 =3-a3 - 12=
126 - 12=114.

8120 a1=1(given)az =a’1 -1=0;a3 =a’2 —1=-1;a4 =a’3 - 1=0.

8121 a1=0(given)az =3-a’1+1+1=2a3 =3-a%2+2+1=15a4 =3-a3+3+1=679.

8.1.22 ao =1 (given);a1 =1 (given);a2 =a1+ap =2;a3 =az+al =3;a4 =az+az2 =5.

8.1.23 8.1.24
1
a. %, 64% . a. —6,7.
an_ n
b.al =L an+l1= » . b.a1 =1 an+1=(-1)" (jan |+ 1).
can=2nt . c.an=(-1)""n.
8.1.25 8.1.26
a. —5,5. a. 14, 17.
b.a1 =-5an+1=-an. b.a1 =2;an+1=an+3.
can=(-1)"-5. c.an=—-1+3n.
8.1.27 8.1.28
a. 32, 64. a. 36, 49.
b.a1 =1;an+1=2an. b.ai =Lawi=( & +1)>2
n-1
can=2 . c.an=n2.
8.1.29 8.1.30
a. 243, 729. a. 2, 1.
b.a1 =1;an+1=3an. b.a1 =64; an+1 = 'a% .
C. an:3n_l. & 7-n
C. an = 2n1 -

8131 a1 =9,a2 =99,a3 =999, a4 =9999. This sequence diverges, because the terms get larger without
bound.

8132 a1 =2,a2 =17,a3 =82, a4 =257. This sequence diverges, because the terms get larger without
bound.

1 1 1 1
8133 al = § ,a= 100,283 = T000- 4 = Tgooo. Lhis sequence converges to zero.

1 1 1 .
,82= 100~ ,83 = 000, @4 = Tooo0. This sequence converges to zero.

Il
Sl

8.1.34 a1

1 . . .
8135 a1 =- #,a =,a3=-,4,a4 7% .Thissequence converges to 0 because each term is smaller in



absolute value than the preceding term and they get arbitrarily close to zero.

8.1.36 a1 =09,a2 =0.99,a3 =0.999, a4 =.9999. This sequence converges to 1.
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8137 a1=1+1=2a2 =1+1=2,a3 =2, a4 =2. This constant sequence converges to 2.

8138 al =9+ ©=99,a2 =9+ $£+=999,a3 =9+ == =9.999, a4 =9+ F2=9.9999. This sequence

converges to 10.

50 54.545 54.959 54.996
8.1.39 ar = IT +50~ 545452 = 11 +50 = 54.959, as = 11 +50 = 54996, a3 = 11 +50 » 55.000.
This sequence converges to 55.

8.1.40 a1 =0-1=-1. a2 =-10-1=-11,a3 =-110 - 1=-111,a4 =-1110 - 1 = -1111. This
sequence diverges.
8.1.41

n 1 2 3 4 4 6 7 8 9 10

an 0.4636 | 0.2450 | 0.1244 | 0.0624 | 0.0312 | 0.0156 | 0.0078 | 0.0039 | 0.0020 | 0.0010

This sequence appears to converge to 0.

8.1.42

n 1 2 3 4 5 6 7 8 9 10
an | 3.1396 |3.1406 |3.1409 |3.1411 |3.1412 | 3.1413 | 3.1413 | 3.1413 | 3.1414 | 3.1414

This sequence appears to converge to 7.

8.1.43

n | 11 2) 3| 4 5| 6 7] 8| 9] 10
an | 0] 2] 6| 12| 20| 30| 42| 56| 72 90

This sequence appears to diverge.

8.1.44

n 1 2 3 4 5 6 7 8 9 10
an | 9.9 9.95| 9.9667 | 9.975| 9.98| 9.9833| 9.9857( 9.9875| 9.9889| 9.99

This sequence appears to converge to 10.

8.1.45

n 1 2 3 4 5 6 7 8 9 10
an | 0.83333| 0.96154 | 0.99206  0.99840 [ 0.99968| 0.99994| 0.99999| 1.0000( 1.0000| 1.0000

This sequence appears to converge to 1.

8.1.46

n 1 2 3 4 5 6 7 8 9 10 11
an | 0.9589| 0.9896| 0.9974| 0.9993| 0.9998| 1.000| 1.000| 1.0000( 1.000| 1.000{ 1.000

This sequence converges to 1.
8.1.47 8.1.48

a. 2.5,2.25,2.125,2.0625. a. 1.33333,1.125, 1.06667, 1.04167.
b. The limitis 2. b. The limitis 1.
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8.1.49

Chapter 8. Sequences and Infinite Series6

n (o0 1 2

3 4 5

6 7 8 9 10

an [ 3] 3.500 [ 3.750

3.875 | 3.938 | 3.969

3984 3992 3996 3.998| 3.999

This sequence converges to 4.

8.1.50

n |0 1 2

5 6 7 g 9

an | 1] -275 |-3.688

T3 4
—3.922 | -3.981

-3.995 | -3.999 | -4.000 [ —-4.000 | -4.000

This sequence converges to —4.

8.1.51
n |0|1] 2 _3 415 61 7 81 9 10
an [0 [1] 3 —7 15| 31 |63 | 127 |255 | 511 | 1023
This sequence diverges.
8.1.52
n |0 |1]2 3 4 5 6 7 8 9 10

an | 10 |4 | 34 | 3.34

3.334| 3.333 | 3.333 [3.333 |3.333 |3.333 | 3.333

. 10
This sequence converges to 3 .

8.1.53

n 0 1 2

an | 1000 |18.811 | 5.1686 | 4.1367| 4.0169

4.0021 |4.0003 |4.0000 {4.0000 4.0000

This sequence converges to 4.

8.1.54
n |0 1 2 3 4 5 6 7 8 9 10
an | 1 ]1.4212 | 1.5538 |1.5981 | 1.6119| 1.6161| 1.6174| 1.6179| 1.6180]|1.6180 |1.6180
This sequence converges to ﬁE = 1.618.

8.1.55

a. 20, 10,5, 2.5.
n

b. hn=20(0.5) .

8.1.57
a. 30,7.5,1.875, 0.46875.
b. hn=30(0.25)".

8.159S1 =0.3,S2 =0.33,S3
0.3333.. =1
3

8.1.60S1 =0.6,S2 =0.66,S3
0.6666... = 2.
3

=0.333,S4 =0.3333.

=0.666, S4 =0.6666.

8.1.56

a. 10,9, 8.1, 7.29.
b. hn=10(0.9)".

8.1.58

a. 20, 15,11.25, 8.438
n

b. hn=20(0.75) .

It appears that the infinite series has a value of

It appears that the infinite series has a value of
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8.1.61S1 =4,S2 =4.9,S3 =4.99, S4 =4.999. The infinite series has a value of 4.999 - -- = 5.

8.1.62S1 =1,S2 = §2 =15,83 = I - 1.75,S4 = E8 =1.875. The infinite series has a value of 2.
4

8.1.63

a. S1= 23, S2= 45, S3= Q7, Sq= g9.

2
b. It appears that Sn = zﬁ,

c. The series has a value of 1 (the partial sums converge to 1).

8.1.64

a. S1=1p,52=34, 53=7g, 54=16%>.

b. Sn=1-2% .

c. The partial sums converge to 1, so that is the value of the series.
8.1.65

a. S1=13,50=25,53=37,54="%.

b 5 o™

c. The partial sums converge to 15, which is the value of the series.
8.1.66

a. 51 =23,52 =8, 53 =272, 54 =180,

b. Sn =1 -3 .

c. The partial sums converge to 1, which is the value of the series.
8.1.67

a. True. For example, S2 =1+2=3,and S4 =a1 +a2 +a3+a4 =1+2+3+4=10.

b. False. For example, l2 , 34 , Zg ,-wherean=1 - 21n converges to 1, but each term is greater than the

previous one.

c. True. In order for the partial sums to converge, they must get closer and closer together. In order for this
to happen, the diffierence between successive partial sums, which is just the value of an , must

approach Zero.
8.1.68  The height at the n" bounce s given by the recurrence hn =r-hn  1; an explicit form for this
sequence is hn=ho - " . The distance traveled by the ball between the nth and the (n + 1)St bounce is thus
2hn=2ho - ", so that Sp+1 = "y 2ho 1.
2
a.Herehgp =20,r =0.5,s0S1 =40, §)2 =40+40-0.5=60, S3 =52 +40-(0.5) =70,S4 =
3 — CL [« [, FANAAY 4 o A el
83 + 40 '(0-5) = 75, foe) o4 TU (U =770
n 1 2 3 4 5 6
an_ 40 ! 60 70 . 75 . 77.5 . 78.75
n 7 8 9 10 11 12
b an _79.375 _79.688 _79.844 79922 79.961 79.980
n 13 14 15 16 17 18

an__79.990 _79.995 _79998 _79.999 _79.999 _80.000
n 19 20 21 22 23 24




an _80.000 80.000 80.000 80.000 80.000 80.000

The sequence converges to 80.
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8.1.69  Using the work from the previous problem:

a.Herehg =20,r =0.75, soS1  =40,S2 =40+40-0.75=70,53 =S2 +40-(0.75)2 =92.5,
S4=S3  +40-0.75° =109.375,S5 =S4 +40-0.75* =122.03125
n 1 2 3 4 5 6
an 40 70 925 109375 122,031 131,523
n 7 8 9 10 11 12
an 138643 143982 147986 150.990 153242 _154.932
b. :
n 13 14 15 16 17 18
an _156.199 157149 _157.862 158.396 _ 158.797 159.098
n 19 20 21 2 23 24

an 159.323  159.493 159.619 159.715 159.786 159.839

The sequence converges to 160.
8.1.70 8.1.71

a.s1 =-1,52=0,83 =-1,54 =0. a. 0.9,0.99,0.999,.9999.

b. The limit does not exist. b. The limitis 1.

8.1.72 8.1.73
a.1.5,3.75,7.125, 12.1875. 1 4 13 40
a. 3,5, 2,8 .
b. The limit does not exist. b. The limitis 1/2.
8.1.74 8.1.75
a. 1,3, 6,10. a.-1, 0,-1,0.

b. The limit does not exist. b. The limit does not exist.

8.1.76
a. -1,1, -2,2.

b. The limit does not exist.
8.1.77

a. 10° =0.3, 100 =0.33, 1000522 =0.333, 100002223 = 0.3333.

33

b. The limit is 1/3.
8.1.78

a.po =250, p1 =250-1.03 =258, p2 =250 -1.03% =265, p3 =250 -1.03% =273, pa =250 -1.03* =281.
n

b. The initial population is 250, so that po = 250. Then pn =250 - (1.03) , because the population
increases by 3 percent each month.

C. pn+1=pn- 1.03.

d. The population increases without bound.
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8.1.79

a.Mg =20, M1 =20-0.5=10, M2 =20:0.52 =5, M3 =20-0.55 =25, Ma =20-0.5% =1.25
n

b. Mh=20-0.5 .

c. The initial mass is Mg = 20. We are given that 50% of the mass is gone after each decade, so that
Mn+1=05-Mn,n =>0.

d. The amount of material goes to 0.

8.1.80
a.co =100, c1 =103, c2 =106.09, c3 =109.27, c4=112.55.

b. cn=100(1.03)" forn > 0.

c. We are given that cg = 100 (where year 0 is 1984); because it increases by 3% per year, cn+1=1.03 - cn
. d. The sequence diverges.

8.1.81
a. dp =200, d1=200-.95=190, d2 =200 - 952 = 180.5, d3 =200 - 95° = 171.475, d4 =200 - 95% = 162.90125.

b. dn=20000.95)",n > 0.

c. We are given do = 200; because 5% of the drug is washed out every hour, that means that 95% of the
preceding amount is left every hour, so that dn+1=0.95-dn .

d. The sequence converges to 0.

8.1.82
a. Using the recurrence an+1 = { an+ L , we build a table:
2 an
n 0f 1 2 3 4 5

an | 10| 5.5| 3.659090909 | 3.196005081| 3.162455622( 3.162277665

The true valueis vV 10 = 3.162277660, so the sequence converges with an error of less than 0.01 after

only 4 iterations, and is within 0 . 0001 after only 5 iterations.

b. The recurrenceisnow an+1= 1 an + =

4 an
c | e |Of1 2 3 = 5 6
2 | 1414 [ 2 |15 | 1.417 [ 1.414 | 1414 | 1.414 | 1.414
3 |1732 [3 |2 |1.750 [ 1.732 | 1.732 | 1.732 | 1.732
|4 12.000 [ 4 [25 |2.050 | 2.001 |_2.000 |2.000 | 2.000
5 |2236 [ 5 | 3 |2.333 [2238 | 2236 |2.236 | 2.236
6 |2.449 | 6 [3.6 |2.607 | 2.454 | 2.449 | 2.449 | 2.449
7 |2.646 | 7 | 4 | 2.875 [ 2.655 | 2.646 | 2.646 | 2.646
8 |2.828 [ 8 [45 |3.139 | 2.844 | 2.828 | 2.828 | 2.828
9 |3.000 [ 9 [5.0 |3.400 |3.024 |_3.000 | 3.000 | 3.000
10 | 3.162 [10 [5.5 _| 3.659 | 3.196 | 3.162 | 3.162 | 3.162

For ¢ =2 the sequence converges to within 0.01 after two iterations.
For c=3,4,5, 6, and 7 the sequence converges to within 0.01 after three iterations.
For c=8,9, and 10 it requires four iterations.
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8.2  Sequences

8.2.1 There are many examples; one is an = ln. This sequence is nonincreasing (in fact, it is decreasing) and
has a limit of 0.

8.2.2 Again there are many examples; one is an = In(n). It is increasing, and has no limit.

8.2.3 There are many examples; oneis an= =p. This sequence is nonincreasing (in fact, it is decreasing), is

bounded above by 1 and below by 0, and has a limit of 0.

8.2.4 For example, an = (-1)" . For all values of n we have |an | =1, so it is bounded. All the odd terms are
-1 and all the even terms are 1, so the sequence does not have a limit.

8.2.5 {r"} converges for =1 < r < 1. It diverges for all other values of r (see Theorem 8.3).

8.2.6 By Theorem 8.1, if we can find a function f (x) such that f (n) = an for all positive integers n, then if
lim f (x) exists and is equal to L, we then have lim an exists and is also equal to L. This means that we x-e n-cw
can apply function-oriented limit methods such as L"Hopital’s rule to determine limits of sequences.

8.2.7 {en/100 } grows faster than {n100 }asn — oo,

8.2.8 The definition of the limit of a sequence involves only the behavior of the " term of a sequence as N gets large
(see the Definition of Limit of a Sequence). Thus suppose an , bn diffier in only finitely many terms, and that M is large
enough so that an = bn for n > M . Suppose an has limit L. Then for ¢ > 0, if N is such that |an - L| <& forn > N, first
increase N if required so that N > M as well. Then we also have |bn — L| <& for n > N . Thus a n and bp have the same
limit. A similar argument applies if an has no limit.

8.2.9 Divide numerator and denominator by n? to get lim _-20 =0.

1

1+

n—oo n4

8.2.10 Divide numerator and denominator by n'? to get lim —% 7= L
n—oo 3+ ni2 3

8.2.11 Divide numerator and denominatorby n 3 to get lim 31 = S

n— o0 2+n

8.2.12 Divide numerator and denominator by e" to get lim &de-_L =2

n—oo 1

8.2.13 Divide numerator and denominator by 3" to get lim &3 ) =3,

n—oo 1
v
i : - e : ~ 1 -1
8.2.14  Divide numerator by k and denominator by k= K to get lim -
k— o0 ok )
8215 limtan ‘n= =z
n—oo 2
v
n= +1— N _n2z +1_ 1
lim n‘ —y—— lim v - lim v =0
8.2.16 Multiply by 4_&;&,“‘“ to obtain
n~+1+n
Vi v ____*n
n—oo n— oo n2+1+n n— oo n2+1+n
1

8.2.17 Because limtan “n= ., lim @ =0 =0.



n— oo 2 n—oo n

8.2.18 Lety= n?/" Then In y= 2o ByL'Hopital’s" rule we havelim 2ox = lim 2 =0, solim n?/n -



X— 00

X— 00

n— oo
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8.2.19 Find the limit of the logarithm of the expression, whichisnln 1+ 2 . Using L'Hopital’s rule:

1 -2
+ 2 — _ 2
limnIn 1+_ = lim E 1 . —_— . =2.
n—oo n n—oo 1/n n—oo _1/n2 n—oo 1+ (2/n)
Thus the limit of the original expression is e2.
8.2.20 Take the logarithm of the expression and use L"Hopital’s rule:
n In —EEJL__ S d‘L
limnln = lim = lim 2 =lim =
n+5 - 5n =-5
n—eo n+5 n— oo 1/n n—oo _1/n2 n-oooN+5
5

Thus the original limitise ~.

8.2.21 Take the logarithm of the expression and use L"Hopital’s rule:

n 1 In(1 + (1/2n)) ;ﬁ_!:__ ! !

2 .
Iim _In 1+ __ . .. - - tim —2/n . lim =
n—oo 2 2n n—oo 2/n n—oo 4(1 + (1/2”)) 4
n—oco
1/4

Thus the original limitise™" .

8.2.22 Find the limit of the logarithm of the expression, whichis 3nln 1+ . Using L’Hopital’s rule:

4 L =12
lim3nln 1+ L_LL = lim 2:1__% ™ m N 12 -12.
n—oo n n—oo 1/n _1/n2 n—c 1+ (4/n)
n—oo
Thus the limit of the original expression is el?.
8.2.23 Using L'Hopital’s rule: lim _= =lim ! =0.
e e
n—eo +3n N +3
8.224 Inl=-Inn,sothisis —lim lya.ByL'H opital’srule, we have - lim ko =-1lim < =0.
nn—>oo n—oo n n— oo n
8.2.25 Takinglogs, wehave lim 1 In(1/n)= lim —mn = lim -1 =0byLHopital’srule. Thus the

n—co n— oo

>

n—oco

original sequence has limit ¥ =1,
8.2.26 Find the limit of the logarithm of the expression, which is n In 1-%, using L'H opital’s rule:
4 1 4

limnln 1 - = lim mw _ = lim IO —- = lm W— = —4. Thus the limit of the origi-

n—oo n n—oco 1/n n— oo =1/n n— o0 1-(4/n)

.. =4
nal expressionise .

8.2.27 Except for a finite number of terms, this sequence is just an=ne” ", so it has the same limit as this
sequence. Note that lim .. = lim < =0, by L'H opital’s rule.

e
n— oo n;.ooe

n

8228 In(n® +1)-In@3n® +10n)=In &t~ =In .0 5o the limitis In(1/3) = — In 3.




3 -3

3n3 +10n 3+10n 2

in(L/
8.2.29 In(sin(1/n))+In n = In(n sin(1/n)) = In S Asn = oo, sin(1/n)/(1/n) — 1, so the limit of
the original sequenceisIn1=0.
8.2.30 Using L’Hopital’s rule:

- — Qi — 2
lim n(1  cos(l/n))= pm ~L—<08AM - Zsin@MEN Y o) =0,

im ——— im



n— oo
n—oo
n—oo
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. —6 cos(6/n)
sin(6/n) e —

8.2.31 lim n sin(6/n) = lim = —=lim -~ = lim 6cos(6/n)=6 -cos0=6.

n—oo n— oo n— oo n— oo
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8.2.32 Because — nl < (:nll“— < -, and because both - n1 and n1 have limit 0 as n — oo, the limit of the given
1 —_
n

sequence is also 0 by the Squeeze Theorem.

8.2.33 The terms with odd-numbered subscripts have the form - n+1", so they-approach -1, while the terms with even-
numbered subscripts have the form = so they approach 1. Thus, the sequence has no limit.
+

n+l

2 n+l n 2 2 2 2

8.2.34 Because 2n3 +n - < 2n° +n < ===, and because both —7 and: —nh-n—z have limit 0 as n — oo, the
limit of the given sequence is also 0 by the Squeeze Theorem. Note that lim —+-— = lim—& =0 =(.
n— oo 2n o n— oo 2+1/n 2
V . . . .
When nis an integer, sin &7 oscillates be-
8.2.35 tween the values +1 and 0, so this sequence
does not converge. 5 10 15 20N
y
2n e e e e
The even terms form a sequence b2n= 7 :

which convergesto 1 (e.g. by L’'H opital’s
8.2.36 rule); the_oddterms form the sequence

banv1 = - ", which convergesto ~1. Thus '
n+.
the sequence as a whole does not converge. s 10 1 2N

The numerator is bounded in absolute value
8.2.37 by 1, while the denominator goes to o, so -
the limit of this sequence is 0.

y
(8
- -
-
-.-.-..-—*u'.-..‘
.
.a-"'"'eo".-.-loon
-
..'
y
015

The reciprocal of this sequence is bn = 1.
8.2.38 ., 4 ¥ 02d

n C . .
1+ =3 , which increases without bound asn — co.
Thus an converges to zero. 0.05 &

.
.,
Foay,
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lim (1 + cos(1/n)) =1 + cos(0) = 2.
8.2.39 o

By L'Hopital’s rule we have: lim —&" = =

n—oo 2sine )

8.2.40 lim ——e;"’_ = 1 =1
n—oo2cose (e ) 2cos0 2
. cosn . .
This is the sequence == = ; the numerator is

en

8.2.41 bounded in absolute value by 1 and the de-nominator
increases without bound, so the

limit is zero.

Using L'Hopital’s rule, we have lim Inn

n— oo

8.2.42 lim 1/n
0.

- = lim —_—t =

n—oo (1.1)n n—oo (1.1)n

Ignoring the factor of (—1)" for the moment,

we see, taki¢ng logs, that lim o =0, so
oo n
o _0 . .
8.2.43 that n}})om no=ed =1 Taking the sign

into account, the odd terms converge to —1
while the even terms converge to 1. Thus
the sequence does not converge.

20
P Y L] .
150 hd

10

0.5

0.6

0.5

0.4

03

0.2

0.1

02 »

0.1}

01"

0.2

0.20

.
.
.
.
015fF %
%
0.10

0.05

20 40 60 80 100

15

1.0 L] .

0.5

05 5 10 15* 20 25 30

109

15 *
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y
0.35F
.
0.30f
lim —s =z, using L’'H’opital’s rule. OB
8.2.44 020p e
Thus 05} -
n—co 2042 2 010 '-.‘.
the sequence converges to cot(n/2) = 0. ool .
10 20 30 @ N

8.2.45 Because 0.2 <1, this sequence converges to 0. Because 0.2 > 0, the convergence is monotone.
8.2.46 Because 1.2 > 1, this sequence diverges monotonically to oo.

8.2.47 Because |-0.7| < 1, the sequence converges to 0; because —0.7 < 0, it does not do so monotonically.
The sequence converges by oscillation.

8.2.48 Because |-1.01| > 1, the sequence diverges; because —1.01 < 0, the divergence is not monotone.

8.2.49 Because 1.00001 > 1, the sequence diverges; because 1.00001 > 0, the divergence is monotone.

8.2.50 This is the sequence
2n+1 — 2

3n

n;

2
3

because 0 < 7 <1, the sequence converges monotonically to zero.

8.2.51 Because |-2.5| > 1, the sequence diverges; because 2.5 < 0, the divergence is not monotone. The
sequence diverges by oscillation.

8.2.52 |-0.003| <1, so the sequence converges to zero; because —.003 < 0, the convergence is not monotone.

1

8.2.53 Because -1 £ cosn £ 1, we have _—nl < &L < nl . Because both _71- andn= havelimit0asn — oo,

the given sequence does as well.

8.2.54 Because —1 < sin 6n < 1, we have - sln < snen < sy, Because both — L and 5n have limit 0 as

5n

n — oo, the given sequence does as well.

8.2.55 Because —1 < sinn <1 for all n, the given sequence satisfies - 1 < sin < 1., and because
both
1 2 2 2

=+ n — 0asn — oo, the given sequence converges to zero as well by the Squeeze Theorem.
2

-1 cos(nzr  12) 1 1
n

8.2.56 Because ~1 < cos(na2) < 1 for all n, we have v < Vo £ n and because both + —0as

n — oo, the given sequence converges to 0 as well by the Squeeze Theorem.

8.2.57 The inverse tangent function takes values between —z/2 and #/2, so the numerator is always between

- 2tan 'p Z
—-m and 7. Thus n® +4 < n® +4 < n® +4 , and by the Squeeze Theorem, the given sequence converges to

Zero.

8.2.58 This sequence diverges. To see this, call the given sequence an , and assume it converges to limit L.
n

Then because the sequence bn =n+1 converges to 1, the sequence ¢y = bn  would converge to L as well. But
n
Cp =sin 2 doesn’t converge (becauseitis 1, -1,1, -1 + ), so the given sequence doesn’t converge either.

8.2.59



a. After the n dose is given, the amount of drug in the bloodstream is dn = 0.5 - dn 1 + 80, because the
half-life is one day. The initial conditionis d1 = 80.
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b. The limit of this sequence is 160 mg. lim dn =
c.LetL= lim dn. Then from the recurrence relation, we have dn=0.5 - dn-1 + 80, and thus n

oo n— oo

0.5 lim d,-1+80,s0L=05 - L + 80, and therefore L = 160.

n—oo

8.2.60

a.

Bo =$20, 000

B1 =1.005-Bo - $200=$19, 900
B2 =1.005-B1 - $200 = $19, 799.50
B3 =1.005-B2 - $200=$19, 698.50
B4 =1.005-B3 - $200=$19, 596.99
Bs =1.005-B4 - $200=$19, 494.97

b. Bn=1.005 - Bn-1 — $200

c. Using a calculator or computer program, Bn becomes negative after the 1391 payment, so 139
months or almost 11 years.

8.2.61
a.

Bo=0

b. Bn=1.0075-Bn-1+ $100.

c. Using a calculator or computer program, Bn > $5, 000 during the 4

8.2.62

B1 =1.0075 -Bo
B2 =1.0075 -B1
B3 =1.0075 -B2
B4 =1.0075 -B3
Bs =1.0075 -B4

+$100 = $100

+$100 = $200.75
+$100 = $302.26
+$100 = $404.52

+$100 = $507.56

3rd

a. Let Dn be the total number of liters of alcohol in the mixture after the n" replacement. At the next step, 2
liters of the 100 liters is removed, thus leaving 0.98 - Dn liters of alcohol, and then 0.1 - 2 = 0.2 liters of
alcohol are added. Thus Dn =0.98 - Dn-1+ 0.2. Now, Cn = Dn /100, so we obtain a recurrence relation for Cn
by dividing this equation by 100: Cn=0.98 - Cn-1+ 0.002.

Co =04

C1 =0.98-0.4 +0.002 = 0.394
C2 =0.98-C1 +0.002=0.38812
C3 =0.98 -C2 +0.002=0.38236
C4 =0.98-C3 +0.002=0.37671
Cs5 =0.98 -C4 +0.002=0.37118

The rounding is done to five decimal places.
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b. Using a calculator or a computer program, Cn < 0.15 after the goth replacement.

c. If the limit of Cn is L, then taking the limit of both sides of the recurrence equation yields L = 0.98L +
0.002, so0 .02L =.002, and L =.1 =10%.

8.2.63 Because n!n" by Theorem 8.6, we have lim oo =0
n—»oon
n
nt -
n—oo
8.2.65 9 . n nf_ 20p  pl , e =00
In
n—oco n
=00
8.2.66  Jncorem 6 nsicnes that n n ' npon oL L2 '
n_.ooln n
1
0
0
0
8.2.67 By Theorem 8.6, nP b", so nt000 2", and thus lim =—— =0.
n—oo
h 1/10 _ 10 - — euw . Ty n
8.2.68 Note thate = = =11 .Letr= 82 andnotethat0 <r<1.Thus lim emo =lim r
2 n—oo on n— oo =0.

8.2.69 Lete > 0be given and let N be an integer with N> 1. Thenifn>N, wehave L.-0 = 1< L <e.
€ n n N

8.2.70 Lete > 0be given. We wish to find N such that |(1/n2 )-0|< eifn > N. This means that

an N always exists for each ¢ and thus that the limit is zero.

2

8.2.71 Lete > 0 be given. We wish to find N such that forn>N, _3n s = LB =.__3__<e
n
- a@n®+1)
_ 4
ml+l 4 Eu +1)
But this means that 3 < 48(4“2 + - 1), or 16en% + (4¢ = 3) > 0. Solving the quadratic, we get n > L - 3 - 41
4 &

1 3

provided e <3/4.SoletN = 4 .if <3/4andletN =1 otherwise.

8.2.72 Lete > 0 be given. We wish to find N such that forn>N, |b™" -0|=b ™" <¢, so that -nInb <Ine.

So choose N tobe any integer greater than - I pe

8.2.73 Lete > 0 be given. We wish to find N such that forn>N, o o—c = _-c = & <

2 c E.
b(bn+1)

But this means thateb  n+(be —C) >0, sothat N> 2, will work.

8.2.74 Lete > 0 be given. We wish to find N such that forn>N, nzn+1 -0 = ,121 < ¢. Thus we want

2

n < e?(n2 +1), oren” —n+e¢>0. Whenever n is larger than the larger of the two roots of this quadratic,
the desired ineguality will hold. The roots of the quadratic are &&4=&—— so we choose N to be any integer
1+

. 2¢
greater than =%~ .

8.2.75

a. True. See Theorem 8.2 part 4.

b. False. For example, if an=1/n and bn = e", then lim an bp= oo,

n—oo

c. True. The definition of the limit of a sequence involves only the behavior of the nth term of a sequence as n gets
large (see the Definition of Limit of a Sequence). Thus suppose an , bn diffier in only finitely



many terms, and that M is large enough so that an = bn for n > M . Suppose an has limit L. Then for ¢ >
0, if Nis such that |an — L| < & forn > N, first increase N if required so that N > M as well. Then we
also have |bn — L| < & for n > N. Thus an and b have the same limit. A similar argument applies if an
has no limit.
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d. True. Note that an converges to zero. Intuitively, the nonzero terms of bn are those of an , which converge
to zero. More formally, given , choose N1 such that for n > N1, an <. Let N =2N1 + 1. Then forn > N,
consider bn . If n is even, then bn = 0 so certainly bn <. If n is odd, then
bn=a(n-1)/2, and (n - 1)/2 > ((2N1 + 1) — 1)/2 = N1 so that a(n-1)/2 <. Thus bn converges to zero as
well.

e. False. If {an } happens to converge to zero, the statement is true. But consider for example an =2 + 1. Then lim an =2,
but (-1)" an does not converge (it oscillates between positive and negative values

n— oo

increasingly close to +2).

f. True. Suppose {0.000001an } converged to L, and let > 0 be given. Choose N such that forn >N,
|0.000001an -L| < -0.000001. Dividing through by 0.000001, we get that for n >N, |an —1000000L| <
, so that an converges as well (to 1000000L).

8.2.76 {2n-3}"n=a.
8277 {(n-2)2 +6(n -2) - 9}®n=3 = {2 +2n - 17}%n=3.

8.2.78 Iff(t)= ' x72dx, then limf(tf)=liman.But

1 t—oo n—oco
imft  “x2dx-lm -1 °-lim -= +1 -1
t—o0
1 b— oo X1 b—co b
n-1 a a
8.2.79  Evaluate the limit of each term separately: lim —=n =1 lim n-1 =0, while < 5 s S
% —5n

n—oo 9 99 nooo 99 8 8

5l
& , so by the Squeeze Theorem, this second term converges to 0 as well. Thus the sum of the terms converges

to zero.

8.2.80 Because lim % =1, and because the inverse tangent function is continuous, the given sequence
n—eo  10n+4

has limittan 1==/4.

8.2.81 Because 1im099" =0, and because cosine is continuous, the first term converges to cos 0 = 1. The
n—oo o gn- n
1719 7 n 9
limit of the second term is lim . = lim - + lim = 0. Thus the sum converges to 1.
n—oo 63 n—oo 63 n—oo 63
(4 n nY+5
8.2.82 Dividing the numerator and denominator by n! gives an = 142ty By Theorem 8.6, we have
4" nrand 2" n!. Thus, lim an= 25 =5,
n— oo 1+0
1+(1/2)"
8.2.83 Dividing the numerator and denominator by 6" gives ap = 1+(n"/67) . By Theorem 8.6, nto0 6".
Thus liman= 140 =1,
n—oco 1+0
8.2.84 Dividing the numerator and denominator by n® gives an 1+wn)~ . Because 1+ (1/n) —1as
n — oo and (1/n) +Inn — o0 asn — oo, we have lim an=0. @/my+inn
n— oo

zi5 1,50 liman= o
8.2.85 We can write ap = 7 Theorem 8.6 indicates that n” n 4 °

0 b" forb oo
8.2.86 A graph shows that the sequence appears to converge. Assuming that it does, let its limit be L.
Then lim an+1 =1 Jiman+2,soL= il+2andthus’ = L=2,s0L=4.

n—oo 2 n—»o 2 2



8.2.87 A graph shows that the sequence appears to converge. Let its supposed limit be L, then lim an+1

n—oo

lim (2an (1-an)) =2( lim an )(1- lim an ), so L =2L(1-L) = 2L-2L2 ,and thus2L2 —L =0, s0 L=0,

Thus the limit appears to be either 0 or 1/2; with the given initial condition, doing a few iterations by hand
confirms that the sequence converges to 1/2: a0 =0.3;a1=2-0.3 - 0.7 = .42; a2 =2 - 0.42 - 0.58 = 0.4872.

Sl
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8.2.88 A graph shows that the sequence appears to converge, and to a value other than zero; let its limit be

L. Then liman+1 = Lim if(an+ erzn y= 1 liman+ —24— ,sol=1 L+Ll ,and therefore 1. '2l L2 +1.
So L2 = 2,and thusL = 2.
8.2.89 Computing three terms givesap =0.5,a1 =4-05-05=1,a2 =4-1-(1-1)=0. All successive
terms are obviously zero, so the sequence converges to 0.
8.2.90 A graph shows thavt the sequence appears to converge. Let its limit be L. Then lim an+1 =
n— oo
2+ lim an ,soL= TTL Thus we have L2 =2+1L,s0 L2 -L-2=0,and thus L = -1, 2. A square

n-oo

root can never be negative, so this sequence must converge to 2.

8.2.91 Forb=2, 23 >3lbutl6= 24 < 4! =24, so the crossover pointis n=4. For ¢, e5 =~ 148.41 > 5! =

120 while €8 ~403.4 < 6! =720, so the crossover point is n = 6. For 10, 24! ~ 62 x 1023 <10%*, while
25! = 1.55 x 10%° > 10?5 50 the crossover pointis n=25.

8.2.92

a. Rounded to the nearest fish, the populations are
Fo = 4000
F1= 1.015F0 - 80=23980
F2= 1.015F1 - 80 = 3960
F3= 1.015F2 - 80 = 3939
Fa= 1.015F3 - 80 = 3918
F5 = 1.015F4 - 80 = 3897

b. Fn=1.015Fn-1 - 80

c. The population decreases and eventually reaches zero.

d. With an initial population of 5500 fish, the population increases without bound.

e. If the initial population is less than 5333 fish, the population will decline to zero. This is essentially
because for a population of less than 5333, the natural increase of 1.5% does not make up for the loss
of 80 fish.

8.2.93

a. The profits for each of the first ten days, in dollars are:

n 0 1 2 3 4 5 6 7 8 9 10
hn | 130.00| 130.75( 131.40| 131.95| 13240 132.75| 133.00| 133.15| 133.20| 133.15| 133.00

b. The profit on an item is revenue minus cost. The total cost of keeping the heifer for n days is .45n, and the
revenue for selling the heifer on the ' day is (200 + 5n) - (.65 - .01n), because the heifer gains 5 pounds per day
but is worth a penny less per pound each day. Thus the total profit on the n™" day is hn = (200 + 5n) - (.65 — .01n)
- .45n =130 +0.8n - 0.05n" . The maximum profit occurs when
—.1In+ .8 =0, which occurs when n = 8. The maximum profit is achieved by selling the heifer on the

8th day.

8.2.94



a.X0=7,x1=6,x2=65= 2  x3=625x4=6375=21, x5=63125=101 , x6=6.34375=32
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b. For the formula given in the problem, we have xo = <& + 23 L 07 5= D42 =1 =18 =3

1

=6, so that the formula holds for n =0, 1. Now assume the formula holds for all integers < k; then

xei= 1 aawer)=d 1942 1owr 19,2l
2 2 3 2 3 3 2
1 38 21 k1 1
=2 3+3 -2 -7 +1
“lss 2 1
2 3 +4-3 -2 2
= 1 38 2 1 k+1
2 3+2-3 -2
21
=3 +3 2
c.Asn — oo, (—1/2)n — 0, so that the limitis 19/3, or 6 1/3.
8.2.95 The approximate first few values of this sequence are:
n 0 1 2 3 4 5 6

cn | .7071| .6325| .6136| .6088| .6076( .6074| .6073

The value of the constant appears to be around 0.607.

8.2.96 We first prove that dn is bounded by 200. If dn < 200, then dn+1 = 0.5-dn +100 < 0.5-200+100 < 200.
Because do = 100 < 200, all dn are at most 200. Thus the sequence is bounded. To see that it is monotone,
look at

dn —=dn-1=0.5-dn-1+100 - dn-1=100 — 0.5dn-1 .
But we know that dn-1 < 200, so that 100-0.5dn-1 > 0. Thus dn > dn-1 and the sequence is nondecreasing.

8.2.97

a. If we “cut offi ” the expression after n square roots, we get an from the recurrence given. We can

thus define the infinite expression to be the limit of anas n — co.
v
b.ao=1a1= 2 a2 = 1+ 2 z\/l.5538, a3 = 1.5981,a4 =~ 1.6118, and a5 = 1.6161.

c.alo0 = 1.618, which diffiers froml;z—5 = 1.61803394 by less than .001.

d. Assumeliman =L. Then liman+l = lim = = "= T+ limas ,soL = 1oL and thus
n—oo n— oo n— oo n—oo .
2 2 o
1+an
L =1+L. ThereforewehaveL—-L -1=0,s0L= 2
Because clearly the limitis positive, it must be the positive square root.
e. Letting an+1 = P+ . withao=pand assuming alimitexistswehave liman+1= lim —
Vv e eV
= p+lima, ,solL= ijI:,andthusL2=p+L. Therefore, L2 -L-p=0,s0L= L__ltp
n— oo \/ —_— 2
1+
and because we know that L is positive, we have L = .. ——- The limit exists for all positive p.

2
8.2.98 Note that 1 - 1 =I=1, so that the productis 1+ :3-4 -, sothatan= 1 forn > 2. The sequence



=

, ...} has limit zero.
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8.2.99
a. Define an as given in the problem statement. Then we can define the value of the continued fraction

to be liman.
n— oo

b.ap=la1 =1+ = =2a2 =1+ = =3=15a3=1+ ,—= ="=~1667,a4 =1+ 1_=s =

L6, ag ay - 2
a =1+ _1 =43 =1625

5 a4 8

c. From the list above, the values of the sequence alternately decrease and increase, so we would

expect that the limit is somewhere between 1.6 and 1.625.
1

d. Assume that the limit is equal to L. Then from an+1 =1+ -2 ,wehave liman+1 =1+ - ——=—,
0 L 2 w5 m
L=1+_ ,and thusL — L —1=0. Therefore, L= |, , and because L is clearly positive, it must

.

beequalto , =1.618.

liman=L wehaveL=a+ _h,soL2 =aL+b, and

e.Hereap =aand an+1=a+ -2 .Assuming that
an n—oo L _\/ ——

2 a+ a2 +4b a+ a‘+4b
thusL - aL — b =0. Therefore, L = ,and because L >0 wehavelL = >
8.2.100
a. With p = 0.5 we have for a =aP:
n+1 n
n 1 2 3 4 5 6 7

an | 0.707] 0.841| 0.971| 0.958| 0.979]| 0.989( 0.995

Experimenting with recurrence (1) one sees that for 0 < p < 1 the sequence converges to 1, while for

p > 1 the sequence diverges to co.

b. With p=1.2 and an =p?,: we obtain

n 1 2 3 4 5 6 7 8 9 10
an | 1.2 1.2446| 1.2547( 1.2570| 1.2577| 1.2577| 1.2577| 1.2577| 1.2577| 1.2577

With recurrence (2), in addition to converging for p <1 it also converges for values of p less than
approximately 1.444. Here is a table of approximate values for diffierent values of p:

p 1.1 1.2 1.3 1.4 1.44 1.444 1.445
lim an 1.1118 | 1.25776 | 1.471 | 1.887 | 2.39385 | 2.587 | Diverges
n—oo

It appears that the upper limit of convergence is about 1.444.

8.2.101
a.fo =f1 =1,f2=2,f3=3,f4=5,f5 =8, fe =13, f7 =21, fg =34, fg =55, f10 =89.



b. The sequence is clearly not bounded.
c. 10 ~ 161818

f9
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228.2. Sequences o

1 : 1o, 2 T 1 142 55w
1 ¢ 2 1 — - —
note that — — 5% 5 1+ 5 5 2(1+ 5)
L 8t s Z 1_ S0 554
——— I =1=f2.N, th
3+ 5 5 2375

fa-1+f-2=Vv 1 — (-1 — (1)Ll N2 (cy N2 427Ny

= VL 2 1) (2T - g )

Now, note that ¢ — 1 = '; , so that

1
¢n—1+¢n—2=¢n—l 1+¢ =¢n_l.¢= ¢n

and

G- NN (G2 - )= (B(p - 1) ="

Making these substitutions, we get

A=y

n=n-1+ n-2

5

8.2.102

a. We show that the arithmetic mean of any two positive numbers exceeds their geometric mean. Let a,
v ab =1 (a-2 Vb + b) = ! ("Ta- E)Z > 0. Because in addition a0 > bo, we have

2

—atb

2~ 2
an > bnp for all n.
b. To see that {an } is decreasing, note that

b > 0; then

Similarly,
bn+1= -8mrbn > Brbn="Dbn,
so that {bn } is increasing.

c. {an } is monotone and nonincreasing by part (b), and bounded below by part (a) (it is bounded below
by any of the bn ), so it converges by the monotone convergence theorem. Similarly, {bn } is
monotone and nondecreasing by part (b) and bounded above by part (a), so it too converges.

g pb 1 — 1 1
i anbn=- (an—Z anbn+bn)< (an—Z h_n?+bn)= (an—bn).
2

2 2 2
Thus the diffierence between an+1 and bn+1 is less than half the diffierence between an and bn, so

an+1 — bn+1 =

that diffierence goes to zero and the two limits are the same.
1
AGM(L, ) = (0.8346.

e. The AGM of 12 and 20 is approximately 15.745; Gauss’ constant is
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8.2.103
a.
21
3:10, 5, 16, 8, 4, 2, 1
4 :2,1
5: 16, 8, 42,1

6: 3, 10, 5, 16, 8, 4, 2, 1

7 : 22,11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16,8, 4, 2,1

8 :4.2]1

9 : 28,14, 7, 22, 11, 34, 17, 52, 26, 13,40, 20, 10, 5, 16, 8, 4, 2, 1
10: 5, 16, 8,4,2,1

b. From the above, H2 =1, H3 =7, and H4 =2.

120

This plotis for 1 < n < 100. Like hailstones, 100
the numbers in the sequence an rise and fall &
60
€ but eventually crash to the earth. The con-ecture appears
to be true. 40
20
n
0 20 40 60 80 100
ca C
- - X !_
8.2.104 {an} {bn } means that lim 87 =0.But lim , = lim <, =0, so that {can } {dbn}.
n— oo bn n— oo dbn d n—oo0 bn
8.2.105
v__ Yy v__
a. Note that a2 = 3a1 =33> 3 =a1. Now assume that 3=a1 <az <...ak-l<ak. Then
ak+l= 3ak > 3ak-1 =ak.
Thus {an } is increasing.
v v
b- Clearly beC\?use al = - v 3> (Oand {an } is increasing, the sequence is bounded below_/by 3> 0.
Further, a1 = 3 < 3;assume that ax <3. Then ak+1 = 3ak <Vv3:3 =3, so that ak+1 < 3. So by
induction, {ak } is bounded above by 3.
c. Because {an } is bounded and monotonically increasing, lim an exists by Theorem 8.5.
n—)OO
d. Because the limit exists, we have y y y
liman+1 = lim  37= 3lmvVsz= 3 liman.
LetL= liman+tl - liman; thenl = 3'\/ :so that L =3.

n—oo n—oo _\/

8.2.106 By Theorem 8.6,



2lnn Inn

lim ﬁ%.r =21lim =0,
n—oo oo n12

sothat  hasth e larger growth rate. Using computational software, we see that v 72 = 8.60233<2In74 ~

8.60813, while V 75 = 8.66025 > 2 In 75 = 8.63493.
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8.2.107 By Theorem 8.6,

lim _n

n/2

n—oo €

Chapter 8. Sequences and Infinite Series23

n/2

n—oo €

=2% lim (02) s =0,

so that e"2 has the Iar%%}r 2growth rate. Using computational software we see that 6352 ~ 3982 x 107 < 35

~5.252 x 107, while @92 = 6.566 x 107 > 36° ~ 6.047 x 10" .

8.2.108 By Theorem 8.6, In n 001001 56 that n* 0% has the larger growth rate. Using co
~ 355535 while 361001

software we see that 351'001 % 35.1247 <In 35

8.2.109 Experiment with a few widely separated values of n:

= 36.1292 > 1n 36

n n! no.7n

1 1 1
10 | 363x10% | 10
100 | 9.33 x 1057 | 10w
1000 | 4.02 x 10267 | 102100

It appears that n%"" starts out larger, but is overtaken by the factorial somewhere between n =10 and n =100,

and that the gap grows wider as n increas%s7 Looking between n =10 and n = 100 revels that for

n=18, wehaven! ~ 6402 x 107> <n>M %6553 x 101> while forn=19 we have n! = 1216 x 101" >
17

n%" % 1.017 x 10
8.2.110 By Theorem 8.6,

91,3 3
lim 05000 - jim InZn o,
n—oo nio n—oo n
19
sothatn®®  hasa larger growth rate. Using computational software we see that 9320 ~ 4.840 x 10 <

10
9391n3 93 ~ 4.846 x 1019 while 9419~ 5386 x 101° >94%1n394 ~5374x 19,

8.2.111 First note that for a=1 we already know that {n"} grows fast than {n!}.
n" >n" so that {n@"}

Soif a>1, then
grows faster than {n!} for a > 1 as well. To settle the case a < 1, recall Stirling’s

formula which states that for large values of n,
N~ 2mn"e ",
Thus
I vV
lim n = lim _27mnn e n
n—oo N n— oo nan
= limn L+(1-ane-n
\/_ n— oo
2% lLim N@-ane-n
= ? n;:o e(l-aninn@-n
\/ n—oo
= 2z lim €(@-a)Inn-Dn,
n—oo

Ifa<1then (1 —a)lnn-1>0 forlarge values of n because 1 — a > 0, so that this limit is infinite. Hence
{n!} grows faster than {n?"} exactly whena < 1.

8.3 Infinite Series

8.3.1 A geometric series is a series in which the rkatio of successive terms in the underlying sequence is a
constant. Thus a geometric series has the form ar” where r is the constant. One exampleis 3 + 6 + 12 + 24 +



48 + - ~inwhicha=3 and r =2.
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8.3.2 A geometric sum is the sum of a finite number of terms which have a constant ratio; a geometric
series is the sum of an infinite number of such terms.

8.3.3 The ratio is the common ratio between successive terms in the sum.
8.3.4 Yes, because there are only a finite number of terms.
8.3.5 No. For example, the geometric series with an=3 - 2" does not have a finite sum.

8.3.6 The series converges if and only if |r| < 1.

1-3% 19682
8.3.7S=1: 1-3 - 2 =0841.
1-(1/4)n 41 -1 4194303 1398101

8385=1- 1-(1/4) - 340- Zuugaze =-1048576 1.333.

1-(425)21  2520-4. 2.
839s-1 ——W2a  pa-ign g0

1-4/25 2521 _ 4.2520
1-2°
8310 S=16+ 1-2 =511-16=8176.

1-(-3/4) 0 40—510 141361

—_ [ ]
8311 S =1- 14304 =419+34% 262144 0539
1-(=25"°
8312 S =(-25) " 1,55 - 70.46875.

8313 S=1: 1-n =7n-1 =1409.84.

4 1-@)'" 375035564

8314 S= - ~ 1.328.
7 317 282475249
1-(-n&
8315 S =1- —1 =1.
8.3.16 &3 . 8.3.17 1093 .
2
9
1
276 )
1 1-05)° 7448 _1L_ 4
8318 5 1-3/5 = 15625 . 8319 1-1/4 = 3°
1 5 1

8.3.20 1-13/5



_2 . 8321

~3

8.3.23
Diver
gent,
becau
ser>
1.

8322 1-2/7 = 5.

8.3.24 1 T




1-1/x -1

o 2 2-3 1

8326 1-172 = 2 8327 1-273_ ,
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3-4%7° 64 1/625 1
8328 1-47 = 1-1/5 = s500°
8.3.29
49
8.3.30  Note that this is the same as ] .ThenS= = =4.
1-3/4
1 T
8331 1-er =r-e.(Notethate <z, sor <1 for this series.)
me6 1
8332 1-3/4 =4.
o0 3
8.3.93 1 K Bgk=5;3 1 kg3 1 2 20 2500
o 4 o 20 1-1120 19 19
3%/8% 729 1 10
_— - —_
8334 1-(38) = 248320 8335 1+9/10= 19.
2/3 2 _1 _ 3z
8.3.36— 1+2/3 =- 5. 8.3.37 3- 1+l/m Tl
2
8338~ 1« e _1 8339 Q1> =2 =x0.019%.
- == 1+1e ~"e+1- 1.15 460
k=1
83.40- 8% -—— 1.
1+18° 17
8.3.41_ 8.3.42
[ee] k _ o
2.03=0333...=  ke13(0.1) | 0.0.6=0666... = 11 6(0.1)K.
b. The limit of the sequence of partial sums is 1/3. b. The limit of the sequence of partial sumsis 2/3.
8.3.43_ 8.3.44
o K _ o
a.01=0.111...= k=1(0.1) . 2.05-0555... = et 50K
b. The limit of the sequence of partial sums is 1/9. b. The limit of the sequence of partial sumsis 5/9.
8.3.45 8.3.46
—_ o K _ o
a.0.09=0.0909... = k=19(0.01) . a.027=0272727 ...=  y1 27(0.01)K.
b. Tll}(lel limit of the sequence of partial sums is b. The limit of the sequence of partial sums is
’ 3/11.
8.3.47 8.3.48
— oo K - o
a.0037=0037037037...=  k=137(0.001) a.0.027 =0.027027027 ... =  1=127(0.001)¢
b. T:?; 9 919"21;757&16 sequence of partial sums is b. The limit of the sequence of partial sums is
B ' 27/999 = 1/37.
12 12 4



8.3.490.12=0.121212.. .=
k=0

8.3501.55  =1.252525...=1+

12-10"%K= 1-1/100 = 99 = 33-

2510 K=1 4—22
k=0

I

=~
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1 -1/100 9 99
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— g —-226 . 456 152
k=0
_ —2k 0039 _ 39 39 9939
8.3.52 1.0039 =1.00393939...=1+ 003910 " =1+—""= =1+~ =1+— - = ——=
B3
' k=0 1 -1/100 99 9900 9900 3300
00952-107%=" 00952 952 o950 238
8.3.53 0.00952=0.00952952.. . .= 1-11000 = 090 T P00 = 2P
k=0
T ) -0083 512 .8 128
8.3.54 5.1283=5.12838383...=5.12 + 00831072 =512+ 1 - 1/100 =100 + 99 = 25 +
k=0
50771
9900
8.3.55 The second part of each term cancels with the first part of the succeeding term, so Sn= 141
o ,and lim o =1,
2n+4 n— oo 2n+4 2
8.3.56 Thesecond part of each term cancels with the first part of the succeeding term, so Sn = -
o ,and lim o— =1.
3n+6 n—oo 3n+9 3
1 - A o ® _
8.3.57 — —_—= =" - —, s0 the series givenis the same as 1 - 4 . In that series,
K+ 6)(k+7) k+6 k+7 el ke ka7
the second part of each term cancels with the first part of the succeeding term, so Sp = T% —
lim Sn =1 .
n—oo 7
8.358 1 =1 1 - 1 , so the series given can be written
Bk +1)(3k + 4) 3 3k+1 3k+4
1% 1 1
3 o 3K+1 3k+4 Inthatseries, the second part of each term cancels with the first part of the
. L 1 1 n+l
succeeding term (because 3(k + 1) + 1 =3k +4), so we are left with Sp = 3 01— T3 -
im gy = .
n— oo 3n+4 3
oo 1
8.359 Notethat ___4—- - =_—1 —_ L .Thus the given series is the same as -
(4k=3)(4k+1) 4K-3 4+l w3 k-3 4k+1
In that series, the second part of each term cancels with the first part of the succeeding term (because
4(k+1) =3 =4k +1), so we have Sn = I - =i and thus limSn -
n—oco 9
8.3.60 Notethat ___2— - =_1 —_ L .Thus the given series is the same 1 - —1_
as
2k-= 1 2k+1

(2k—1)(2k+1) k-1 2K+l k=3

83

900

nf2"

. Thus

3n+4 and



In that series, the second part of each term cancels with the first part of the succeeding term (because

2(k+1) = 1=2k+1), so we have Sp = 1 - ﬁ . Thus, lim Sp= l' )

n—oo 5

8.3.61 In il In(k+1)-InKk, so the series given is the sameas «  (In(k+1)-Ink), in which the first
k k=1

part of each term cancels with the second part of the next term, so we have Sh=In(n+1) = In1=1In(n+1),
and thus the series diverges.

v VooV _V v v

8.3.62 Note that S, =( 2 - 1)+( 3 - D+-+( AT - n). The second part of each term cancels
' — N oo
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Vv

n+1-1=oo,the
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8.3.63 1 _— l._l‘_._, so that T = —1- 1
(K+p)k+p+1 ) Ktpk+p +1 k=t (k+p)k+p+1) k=1 K+p k+p+1
and this series telescopes to give Sn=lim — ~ = so that Sn = -
p+l n+p+1 n(p+1)+(p+l)2 n— oo p+1
1 11 1 B 1
8.3.64 _— == - , so that
(ak+1)(ak+a+1) a ak+1 ak+a+l 1 (ak+1)(ak+a+1)"

1 1 1
a o1 ak+1 ak+a+1 | This series telescopes - the second term of each summand cancels with the
1 _ 1 1 Lo
first term of the succeeding summage - so that Sp= a  atl — an+a+1 , and thus the limit of the sequence
i aga+1)-
8.3.65 Letan= + _1_ - v _1— . Then the second term of an cancels with the first term of an+2, so the
n+1 —_— 1—9—4-%—
series telescopes and Sn = Lo+ 4_1 -V d_- ¥ and thus the sum of the series is the limit of Sn, which

1 1 7 3 n-1+3 n+3
is - + \/‘
2 3
8.3.66 The first term of the ki summand is sin( k+l Y (e the second term of the (k + 1)St
summand is
. k+l . . (n+1)

- SIH( 2(k+1)7_[ 1); these two are equal except for sign, so they cancel. Thus Sn =—-sin0+ 51r1( 2n+1ﬂ )=

sin(—z) Because —@7 has limit #/2 as n — oo, and because the sine function is continuous, it follows

2n+1 2n+1

that lim Sy is sin( < )=l
n—oo 2 —
2 1 1 1 1 1
8.3.67 16k +8k — 3=(4k+3)(4k — 1), s0 16k +8k-3 “@kg@k-1 = "2 4k-1 - 4k+3 . Thus the series
(o]
1 1 1 .

given is equal to o 4k-1 4k +3 . This series telescopes, so Sn = 4 -1- anl+3 | s0 the sum of

the seriesisequal to lim  Sp=-1.

n— oo
8.3.68 This series clearly telescopes to give Sn = — tan_l (1) + ’cam_1 (n)= tan_1 (n) - -2 . Then
_ because

lim tan_l(n) = I, the sum of the series is equal to lim S =
n— oo 2 n—-o n 4
8.3.69

T -k & k
a. True. e_ = ; because e < 7, this is a geometric series with ratio less than 1.
[+ oo 11
k_ k _ k
b. True. If a =L, then a = a +L.
k=12 k=0 k=0

c. False. For example, let0 <a<1land b > 1.

. . _q1_ .1
. True. Suppose a > . Then we want a= : SOIVII’lg forr givesr=1-a

d - o™ =1 ¢ . Becausea >0



we haver<1;becausea> 1 wehaver>1-_1 =-1. Thus]|r| <1 so that o r converges, and

it converges to a. : vz k=0
e. True. Supposea > - L . Thenwewanta-= ::1 = 1__rl’_' Solving for r gives r = 5 '-31
clearly 0 <r <1 so that o rkm converges toa. For -1 <a <0, clearly r <0, but la| < la+1], so
that |r| < 1. Thus in this case k=1 ¥ also converges to a.
8.3.70 We have
Sn= sin" 11 -gin1 1 + sn 1l - -1l +e-+sint 1-ognl=1

. Fora>0,
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Note that the first part of each term cancels the second part of the previous term, so the nth partial sum

- - - - 1 -
telescopes to be sin 11 -sin"?!<— Becausesin 1= < and lim si * =sin"! 0= 0, we have
. n
n+l 2 oo n+1
limsn= £ .
n—oo 2
8.3.71 This can be writtenas 1 - % . Thisis a geometric series with ratior=—- 2 so the sum is
3 3
3 1 23 3 15
Lo——28. 1 2 2
_(_
1o 7 B

8.3.72 This can be written as g o e This is a geometric series with r = " >1, so the series diverges.

8.3.73 Note that

(kDY = InksD) - Ink =_1- 1.
(In k) In(k + 1) (Ink) In(k + 1) (Ink)In(k+1) Ink In(k+1)
In the partial sum Sn, the first part of each term cancels the second part of the preceding term, so we have

Sn=  _L- 1. Thus we have Sn= 1.

lim In2 In(n+1) oo In2
8.3.74
a. Because the first part of each term cancels the second part of the previous term, the nth partial sum
telescopestobe Sp= 1 — 1 . Thus, the sum of the seriesis lim Sn= l
n— oo 2
1 1 2kr1— 2k 1 -
b. Note that 2x — 21 = 242 = 2k . Thus, the original series can be written as k=1 2k*1 which is
1/4 1
geometric with r =1/2 and a = 1/4, so the sum is 1-12 =3 .
8.3.75

a. Because the first part of each term cancels the second part of the previous term, the nth partial sum

telescopestobe Sn= 4 — i Thus, the sum of the seriesis  limSn= 4
n— oo 3
4 adt-a 8 8
b. Note that ¢ — = - = 1 - Thus, the original series can be written as which
3 3 33 3 k=1 Ok
88 5 3 4
is geometric with r=1/3 and a = 8/9, so the sum is 1-1/3 = 2 =3 .

8.3.76 It will take Achilles 1/5  hour to cover the first mile. At this time, the tortoise has gone 1/5 mile

more, and it will take Achilles 1/25 hour to reach this new point. At that time, the tortoise has gone another
1/25 of a mile, and it will take Achilles 1/125 hour to reach this point. Adding the times up, we have

1 1 1 1/5 1
54+ 25 4125 +-= 1-15 =Z,



so it will take Achilles 1/4 of an hour (15 minutes) to catch the tortoise.
8.3.77 At the n stage, there are "1 triangles of area An = ! _An-1 = —L-=A1, so the total area of the

) th . gn-l 1 n-1
trlangles formed at the n stagei1s —=A .= = A1 . Thus the total area under the parabola is

8 4
o 1 n-1 © 1 n-1 1 4
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A1 = A1.
n=1 4 1-1/4 3

n=1
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8.3.78
k
a.Note that ___ —*— — =1 . _ 1 - 1 Then
@ “-pe -y 7 ¥ 1 3T 4
I 1 -1 1
k k
e G =1DGB " -1) 2., 37-1 3m- 1
1 T 1 1 -
k
b. We mimic the above computations.  First, A = _1- i —-_1_ |, sowesee
that
(a-1G@ -1) a-1 a-1 a -1
we cannot have a = 1, because the fraction would then be undefined. Continuing, we obtain Sp =
11 1 1
a-Ta-1" - ~ .Now,lim “EE~T converges if and only if the denominator grows without bound;
-1

a

a n—oo
this happens if and only if |a| > 1. Thus, the original series converges for |a| > 1, when it converges to
1

@-1° . Note that this is valid even for a negative.

It appears that the loan is paid offi after about

470 months. Let Bn be the loan balance after n

months. Then Bg = 180000 and Bn =1.005 - Bn-1 -

1000. Then Bp = 1.005 - Bn-1 — 1000 = 1.005(1.005 - y
Bn-2 — 1000) — 1000 = (1.005)2 -Bn2 = 1000(1 +

2 150000
1.005) = (1.005)? - (1.005 - Bn -3 — 1000) —

8.3.79

1000(1 100000
+ 1005) = (1005) - Bn-3 - 1000(1 + 50 000
1.005 + (1.005)% ) , = = (1,009)"Bo -
1000(1+ 1.005+ (1.005)2 + - +(1.005)" ) = o m e N
(1.005)" - 180000 ~ 1000 —+7’— . Solving
1.005 * 1

this equation for Bn= 0 givesn = 461.667
months, so the loan is paid offi after 462
months.

It appears that the loan is paid offi after about 38
months. Let Bpn be the loan bal-ance after n
months. Then Bg = 20000 and Bn = 1. 0075 - Bn-1 —
60. Then Bp = 1.0075 - Bn-1 — 600 = 1.0075(1.0075 -

Bn-2 — 600) — y
600 = (1.0075)° - Bn 2 = 600(1 +1.0075) = 200,
(1.0075)2 (1.0075 - Bré 3 —600) - 600(1+ 15000
8.3.80 1.0075) = (1.0075) " - Bn 3 — 600(1 +1.0075 + oo
n
(1.0075)2) = ~-= (1.0075) Bo - 600(1 +
1.0075 + (1.0075) +--+(1.0075) ) = 5000 .
i .
(1.0075)" - 20000 - 600 —aborm 1 n

1.0075-1 10 20 30 40
Solving this equation for Bn = 0 gives n =
38.501 months, so the loan is paid offi after
39 months.



8.3.81 Fn = (1.015)Fn-1 — 120 = (1 .015)((1.015)Fn-2 — 120) - 120 = (1.015)((1.015)((1.015)Fn-3 — 120) = —

(10151 =
1

(1.015)" (4000) - 120 = (~4000)(1.015)" + 8000.

1.015 -1
The long term population of the fish is 0.
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8.3.82 Let An be the amount of antibiotic in your blood after n 6-hour periods. Then Ag =200, An =
0.5An-1+200. We have An =.5An-1+200 = .5(.5An-2 + 200) + 200 = .5(.5(.5An-3+ 200) + 200) + 200 =

o= 50 (200) +200(1 + .5 + 524+ 5 n-1 )- This is equal to

S = 1

— 400) + 400 = (-200)(.5 ) + 400.
.57 (200) +200 =(.5")(00
5-1
The limit of this expression as n — o is 400, so the steady-state amount of antibiotic in your blood is 400
mg.

8.3.83 Under the one-child policy, each couple will have one child. Under the one-son policy, we compute the
expected number of children as follows: with probability 1/2 the first child will be a son; with probability (1/2) z
the first child will be a daughter and the second child will be a son; in general, with probability

(1/2)n , the first n — 1 children will be girls and the nth a boy. Thus the expected number of children
w o Li S
is the sum - . To evaluate this series, use the following “trick”: Letf (x) = ix'. Then
o =l o i=1
f(x)+ X' = (i+1)x' . Now, let
i=1 i=1
” N —1 9(
o1 ox+ K=-1-x+ 1-oxim
i=0
and
gx)=f()+ X'=fx)-1+ X=f()-1+1 .
i=1 i=0

1
Evaluateg (x)=-1- ~(1-x?2 ; then

1 1__ - 1+x+1 X
f=1- 1-x -1-1-x% = 1-x* =@1-x?
1 T ] T 1/2
Finally/ evaluateatx - _2 to get f : = =1l = (1-12% =2. There will thus be twice as many

children under the one-son policy as under the one-child policy.

8.3.84 Let Ln be the amount of light transmitted through the window the n'" time the beam hits the second

Lo Plo
pane. Then the amount of light that was available before the beam went through the pane was 17p ,s0 1op

is reflected back to the first pane, and2Ln  is then reflected back to the second pane. Of that, a fraction
equalto1l - pistransmitted through the window. Thus

2L
Lv=(1-p) F=2 =p2Ln.
I-p
The amount of light transmitted through the window the first time is (1 — p)2 . Thus the total amount is

p"1-pf-(d=p?-L_D

i=0 1-p? 1+p



8.3.85 Ignoring the initial drop for the moment, the height after the " bounce is 10p",

so the total
time spent in that bounceis2- 2-10p" /g seconds. The total time before the ball comes to rest (now
including the time for the initial drop) is then  20/g + 2-10p"/g= % 20w Voo
i=1? g+2 g =1 p)
' v
v
g t2 gl-p = g 1+1-vp = g 1= p seconds.
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8.3.86
a. The fraction of available wealth spent each monthis 1 — p, so the amount spent in the n" month is
W (1-p)". The total amount spent is then T W@a-p" = -iop) =W l_;p dollars.

b. As p — 1, the total amount spent approaches 0. This makes sense, because in the limit, if everyone
saves all of the money, none will be spent. As p — 0, the total amount spent gets larger and larger.
This also makes sense, because almost all of the available money is being respent each month.

8.3.87

a. In+1 is obtained by In by dividing each edge into three equal parts, removing the middle part, and

adding two parts equal to it. Thus 3 equal parts turn into 4, so Ln+1 = 43 Ln . Thisis a geometric

sequence with a ratio greater than 1, so the nt" term grows without bound.
. As the result of part (a), In has 3 - 4" sides of length 3w each of those sides turns into an added triangle in
In+1 of side length 3"~ . Thus the added area in In+1 consists of 3-4" equilateral triangles with side

-n- . . o . 3 —_—
3" The area of an equilateral triangle with side X is 2 rusa A 34N L
Vv v vi
n 3 4 i n+l n 2n 2
- 4
3 —_ 4 _3 n
An+ 12 ) , and Ao = T ThusAn=Ao + =0 12 -5, sothat
Vv _ ) _ Vv
T 4 -3 _B—-d- _3 3 2 vV
A= AQ + = 47 121-49"4 F5)75 3

1
2 =0 9
8.3.88

oo [e3) k

a.b 107 =I5 =5 110 =3.
i=1 i1 10 9/10 9
co _ co k
b, 54 1072k =54 T s 1/100 24
i1 =1 100 99/100 99
c.Supposex = 0.nin2...npnin2.... Then we can write this decimalasnin2 ...np “110-p =
o al —_—— 00
nin2 ...np i=1 100 Tz 0 oo _ n1 999.“9' , where hereninz ...np does not mean

P P~ P

multiplication but rather the digits in a decimal number, and where there are p 9’s in the denominator.

d. According to part (c), 0.12345678912345678912 . . . = 123456789 959490994
e. Again using part (c), 0.9 = 99=1.

n -
8.3.89 |S = Sn | = k= r because the latter sum is simply a geometric series with first term r"
1 -
i=n
and ratio r.
8.3.90
0.6n

-6 _
a. Solve o, <10 "fornto getn=29.



0.15p

b. Solve <107% fornto getn=8.
’ 0.85

8.3.91

1.8 1.8

n
a. Solve & T 107 forn to get n = 60.
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b. Solve 22 <1078 forn to getn=9.
08
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8.3.92

e -6
a.Solve 028~ <10  fornto getn=46.

b. Solve (-0.25)- Ln- <1078 fornto getn=10.
1.25 1.25
8.3.93
1"
a.Solve 1-1, <107° fornto getn=13.
et -6

b.Solve ;_j, <10 forntogetn=15.

8.3.94
© 1
a.f(x)= k=0 X< = = ; because f is represented by a geometric series, f () exists only for x <1
1 1
Thenf(0)=1,f(02) =08 — =125 (05)=1-05 =2. Neither f (1) nor f (1.5) exists.
b. The domain of fis {x: x| < 1}.
8.3.95
o 1
a.f(x)= k=0 (1)K xK = T+x ; because f is a geometric series, f (X) exists only when the ratio, -, is
?uCh that |_X| = |X| <L Then f (0) = 1/ f (02) = 1.2 _J: 6, 2 £(05)= 1+.05__;II =3 . Neither f (1) nor
f(1.5) exists.
b. The domain of fis {x: x| < 1}.
8.3.96
o 2k 12 -
a.f(x= k=0* = 1-x? . fis a geometric series, so f (x) is defined only when the ratio, x ,isless
1 25 1 4
than 1, which means |X| < 1. Then f (0) =1, f (0.2) =1-.04 = ,f05)= —1-0% =3 . Neither f (1)
nor f (1.5) exists.
b. The domain of fis {x: x| < 1}.
-1 1 j
8.3.97 f(x)is a geometric series with ratio 1+x ; thus f (x) converges when 1 = 1. Forx> -1, 1+x =
—1_ i —+ —1_
1+x and 1+x <1lwhenl<1+x,x> 0.Forx<-1, 1+x= -1-x , and thisis less than 1 when
1< -1-x1ie x<-2.Sof(x)converges for x >0 and for x < —-2. When f (x) converges, its value is
R Lix
- r= x,s0f(X)=3when1+x=3x,x= A
1+x
8.3.98

a. Clearly for k <n, hk is a leg of a right triangle whose hypotenuse is rk and whose other leg is formed
where the vertical line (in the picture) meets a diameter of the next smaller sphere; thus the other leg

of the triangle is rk+1 . The Pythagorean theorem then implies that h2k =%k - rPk+1.

n n-1 F_Z_
b. The heightis Hn=  i=thi~m” i1 -1 bypart(a).
c. From part (b), because ri = al™1

7

n-1 n-1



2 — 1t =a”

1

—+

i=1

azi-2 — azi
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& limHp= limani+ = 1-a_ —04V1-82 2 _i-a ' . ua

n—co n—co n—oo — —

n-1

1-a (1-a)(1-a)
8.3.99

a. Using Theorem 8.7 in each case except for r =0 gives

r f(r)
-0.9 | 0.526
-0.7 | 0.588
-0.5 | 0.667
-0.2 [_0.833

0 _1
0.2 11250
05 [__2
0.7 3333
0.9 10

b. A plot of fis
y
110 105 I 0.5 10r

c.For 1<r<1wehavef(r)= l__rl, so that

lim f(r)= lim 1 _ =1

+

r--1 r--1"1 —-r 2 r-1" r-1-1 —r

8.3.100



a. In each case (except for r = 0 where N (r) is clearly 0), compute |S — Sn | for various values of n gives
the following results:
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roINE | P-Cvol [IS-Ssnl
-09 | 81 10x107% [ 93x107°
07 | 24 11x107% [ 79x107°
05| 12 16x107% [ 81x107°
-0.2 27x107% | 53x107°
0 — 0
=2 -5
0.2 5 4.0 x 10 8.0 x 10
05 | 14 12x107% [ 61x107°
07 | 29 11x107% [ 75x107°
09 | 109 | 1.0x107% | 93x107°
b. A plot of r versus N (r) for these values of r is
y
100 o
80
®
60
40
®
20
®
® [
%5 05 r

c. The rate of convergence is faster for r closer to 0, since N (r) is smaller. The reason for this is that rk gets
smaller faster as k increases when |r| is closer to zero than when it is closer to 1.

8.4  The Divergence and Integral Tests

8.4.1 If the sequence of terms has limit 1, then the corresponding series diverges. It is necessary (but not
sufflcient) that the sequence of terms has limit 0 in order for the corresponding series to be convergent.

8.4.2  No. For example, the harmonic serkes

oo 1

1
k=1 diverges although i 20ask — oo.

8.4.3 Yes. Either the series and the integral both converge, or both diverge, if the terms are positive and

decreasing.

8.4.4 It converges for p > 1, and diverges for all other values of p.

8.4.5 For the same values of p as in the previous problem —it converges for p > 1, and diverges for all other

values of p.

8.4.6 LetSn be the partial sums. Then Sn+1 — Sn

partial sums is increasing.

an+1 >0 because an+1 > 0. Thus the sequence of

8.4.7 The remainder of an infinite series is the error in approximating a convergent infinite series by a

finite number of terms.
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8.4.8 Yes.Suppose  ak converges to S, and let the sequence of partial sums be {Sn }. Then for any >0
there is some N such that forany n >N, |[S = Sp| < . But|S — Sn | is simply the remainder Rn when the

series is approximated to n terms. Thus Rn —» 0 asn — .

8.4.9 ak = k and lim_ak = 1 ,  so the series
diverges.  2k+1 Koo 2
8.4.10 ak = k_ and lim ak =0, so the divergence test is inconclusive.

ko +1 k—oo

L

k— oo

8.4.12 ak = hz_ and lim ak =0, so the divergence test is inconclusive.

2 k— o0
84.13ak= =& and limak =0, so the divergence test is inconclusive.

k— oo

8.4.14 ak= ,i and lim ak=1, so the series diverges.

k  +1 k— oo

v

8.4.15 ak = k— and lim ak= oo, so the series diverges.

In k k—oo
8.4.16 ak= Vien and lima =1, so the series diverges.

— k

k— oo
8.4.17ak = kuk. Inorder to compute limk ak, weletyk=Inak = ¥ By Theorem 9.6, (or by
L’H opital’s rule), limk-« yk =0, so limk-« ak =e 0-1.The given series thus diverges.
k

8.4.18 By Theorem 9.6 i3 k!, so limk k » =0. The divergence test is inconclusive.

8.4.19 Clearly 4= e ¥ is continuous, positive, and decreasing for x > 2 (in fact, for all x), so the integral
test applies. Because
oo C C
e ¥ dx= lim e ¥dx=lim(-e™¥) =limEe ?-e°)=e7?,

2 c—oo 2 c—o0 2 c— 00

the Integral Test tells us that the original series converges as well.

X 4
8.4.20 Letf(x)= L . T(x)is continuous for x > 1. Note that fo= V. » > o Thusf
X +4)
is increasing, and the conditions of the Integral Test aren’t satisfied. The given series diverges by the

Divergence Test.

8.4.21 Letf(x)=x- e~2*2_ This function is continuous for x > 1. Its derivative is e %X 21 - 452 ) <0 for
X 21, so f(x) is decreasing. Because *x-e-2? dx= =k, the series converges.
1 de
V.1 o V1

8.4.22 Let f (x)= 3x+10. f (X) is obviously continuous and decreasing for X > 1. Because 1 3 wa0dx ™

oo, the series diverges.

8.4.23 Letf(x)= Lm%= f(X)is obviously continuous and decreasing for x > 1. Because YA dx= oo,
x+8 1 x+8
the series diverges.
. . . © 1
8.4.24 Letf(x)= x(In x) . f(x) is continuous and decreasing for x > 2. Because 2 f(x)dx= In  , the

series converges.

<

X —xe X



8425

is negative for X > 1 so that f (X) is decreasing. Because ®f(x) dx=2e 1, the series converges.
1

1 o 1
8.4.26 Letf(X)= ymxmmx -T(X)iscontinuousand decreasing for x> ; ..., xInxinlhx dx =00, The

given series therefore diverges.
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8.4.27 The integral test does not apply, because the sequence of terms is not decreasing.

8.4.28 f(x)= —x__ isdecreasing and continuous, and * —=2—_dx = <. Thus, the given series con-

verges. &+ o) 16

8.4.29 Thisis a p-series with p =10, so this series converges.

ok & o 1
8.4.30 k=2 ¥ = k=2 ke -Notethatz —e ~3.1416 - 2.71828 <1, so this series diverges.
8.4.31 o A = » 14 , which is a p-series with p =4, thus convergent.
8.4.32 _

k=3 (k-2) k=1 k
8.4.33 o 1 . . B

—— is a p-series with p = 3/2, thus convergent.

o 2k-3/2 =2 k=1 Kkse
8.4.34 o _1 o . _ .

1 1 7 is a p-series with p = 1/3, thus divergent.
8.4.35

Y] \/1 -

k=1 3k

o v_1 1 oo —1
k=1 227ke =3 k=1 K®  is a p-series with p =2/3, thus divergent.

a. The remainder Rn is bounded by n> Yle dx= E,Tls .

b. Wesolve5n's <107 ° to getn=3.

o 1 _ 1 © 1 1
c. Ln=Sn+ n+1 ¥ dx=Sn+ s5m+1® ,andUn=Sn+ n ¥ OX=Sn+ 5.
d. S10 = 1.017341512,s0 L10 = 1.017341512 + # =~ 1.017342754, and 1.017341512 + % &
Uto= 510

1.017343512.
8.4.36
a. The remainder Rn is bounded by * Ly dx= 4.
n x n
1 -3 ,

b. We solve 7n7 <10 toobtainn=3.

© 1 - 1 o 1 l_
c.Ln=Sn+ n+1 xe dX=Sn+ 7m+1)’ ,and Un=Sn+ o L dX=Sn+ ’.

Q

d.S10 = 1.004077346,s0 L10 =~ 1.004077346+ —— = 1.004077353, and 1.004077346 + ——
7-10

Uio~ -
1.004077360.

8.4.37
a. The remainder Rn is bounded by —1x dx= _1_,
n 3 3 In3
1 -3
b. We solve 3 "h3 <10 to obtainn="7.

o _1 —i o 1 dx=Sp+ i .



C.Ln=Sn+ n+1 3 dX=Sn+ 33 ,and Un=Sn+ n 3 3 In3

d. S10 = 0.4999915325,s0 L10 = 0.4999915325 + Py T 0.4999966708, and U10 = 0.4999915325 +
1
3%n3 = 0.5000069475.
8.4.38
a. The remainder Rn is bounded by <« _—1_dx= L,

n xIn x Inn

-3 1000 434
b. We solve Inth <10  to getn=e = 10



c.Ln=Sn+ ne1 xIn?x dX=Sn+ nmn+1) ,and Un=8n+ n  xin?x dX=Sn+ 1nn.
d.S11 = 1 —177 = 1.700396385, so L11 =~ 1.700396385 + rnllz = 2.102825989, and
Ui = 1.700396385 + mTll = 2.117428776.
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8.4.39
a. The remainder Rn is bounded by <« __1 -2
nooXae dx=2n
-1/2 -3 6
b. We solve 2n <10 " togetn> 4 x 10 ,soletn=4x106+1_
3 1 =12 o 1 =12

c.Ln=Sn+ g xe dx=Sn+20 +1) ,andUn=Sn+ , ym dx=Sn+2n
-1/2

d.s10 = 10 _1 =1.995336493, solL  =~1.995336493+2-11 ~ 2598359182, and U ; =
kel ko
-1/2
1.995336493 +2 10 ~ 2.627792025.
8.4.40

a. The remainder Rn is bounded by n™e *dx=e™".

b. We solvee "< 1072 to getn=7.

cLln=Sn+ « e Xdx=Sn+e ™D andun=sn+ e Xdx=Sp+e ",
n+1 n
d.510 =  °.  ~05819502852, soL10 ~0.5819502852+e ! ~ 05819669869, and Ut =~

0.5819502852 + e 10 =~ 0.5819956851.
8.4.41

a. The remainder R is bounded by 0> s dx =27,

1 -3
b. Wesolve 207 <10 togetn=23.

oS}

o 1 1 _ 1

—L

c.Ln=Sn+ nmtlx® dx=Sn+ 2mp? ,andUn=Sn+ , 3dX=Sn+ 22

1 1
d.S1o = 1197531986, s0 Lio = 1197531986 + 7T~ 1201664217, and Ui ~1.197531986 + o0 =
1.202531986.
8.4.42
. . oo
a. The remainder Rn is bounded by xe-x2 dx = —
n 2¢"
b. Wesolve ——<10"% togetn=3.
2"
8] —X?2 1 L -X2
c.Ln=Sn+ xe dx =Snp + ,and Un=Sn+ xe dx=Sn +
n+1 % o n 2t

d. S10 = 0.4048813986, so L10 = 0.4048813986 + 29;11 ~ (0.4048813986, and U10 ~ 0.4048813986 + 294,gl ~

0.4048813986.
1 1 © _4 1/3 3 4
8.4.43 This is a geometric series witha= zandr= 15,50 =1 12 = 1-1120 ~un2 T

2 © -k £ 2 lrez



8.4.44 This is a geometric series witha=23/e andr=1/&,s0 =2 3¢ 1wy =( e-pe=e CD -

o 2 56 _, " 2k ) 5k 1 1
4.4 — =
8.4.45 3 . 27

o wo 5 wo 7 =3 35 -2 2/7 =5-7=-2.
Bads 2 -2
o k=1 2k +3 4 k =2% 3 k +3 @ 4 k =2 35 +3 49 =34+ 12 5

5 9 w5 e 9 2/5 5/9 5

© 1 5, 3 7« 1 © 5 § 3o 7 156 379 5 21 113
8.4.47 = - - —

w 36 +509 =3 ., 6 5., 9 =316 +5209 =3+10 =30
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8.4.48 1o+ 3ok =1 2 2 @8k =1 1 3 1 =5 415 -65
2
ko 2 2 k=0 =0 2 08 2 02 82 8
- _le 1 _17
8449 (. a _e gk e g T
k=1 6 3 k1 6 ke 3 56213 10
o k o k e k [=9) k 1
2-3 ;3 1 1 — 1 2
8.4.50 — - Pos - oo, 1 :Z
k ek _ 12 =
k=0 6 k=0 6k 6 k=0 2 5/6 5
=2
6
8.4.51 k=0

a. True. The two series diffier by a finite amount (k=1 ak ), so if one converges, so does the other.
b. True. The same argument applies as in part (a).

c. False. Ifak converges, then ak — 0 as k — o, so that ak + 0.0001 — 0.0001 as k — oo, so that (ak +
0.0001) cannot converge.

d. False. Suppose p=-1.0001. Then pk diverges but p + 0.001 = —0.9991 so that (p+ .0001)k
converges.
e. False. Let p = 1.0005; then —p +.001 = —(p — .001) = —.9995, so that kP converges (p-series) but
K~ P+.001 diverges.
f. False. Let ak = %, the harmonic series.

8.4.52 Diverges by the Divergence Test because lim ak=  lim LE_1 =1=0.
k— oo k— oo
® 1 ® 1 1
8.4.53 Converges by the Integral Test because 1 (@Bx+1)3x+4) dx= 1 JBx+1) — 33x+4) dx=
b b

lim I 1 dx=lim 4 o 2%+l “lim =-71 - In(/7) = 0.06217 < oo.
b-oo 1 3(3x+1) 3(3x +4) b—co 9 3x+4 1 boow 9
11 1
Alternatively, this is a telescoping series with nth partial sum equal to Sp= 3 4~ 3n+4 which con-
verges to
—10 10 antz)P Wz o
8.4.54 Converges by the Integral Test because . dx = lim = 5236
2
. o X°+9 3 booo 0 32
8.4.55 Diverges by the Divergence Test because limak= lim ¥ k __  =1=0.
K,qk
8.4.56 Converges because it is the sum of two geometric series. In fact, © 2 “ k
© ) 112 34 4 = 1 (214 +
k=1 (3/4) = 1-z) +1-@W =1+3=4.
<) 4 _ 4 b 4

8.4.57 Converges by the Integral Test because dx= 2 lim =



< 00,
2 Xll’l X b—oo 11’1X2 11’12

8.4.58

) 1

2 x(nxP dx must exist. But

a. In order for the series to converge, the integral

x(Inx)p
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so in order for this improper integral to exist, we must have that1 —p<Oorp > 1.
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b. The series converges faster for p = 3 because the terms of the series get smaller faster.
8.4.59

a. Note that —1——pdx= L-(Inln 17 and thus the improper integral with bounds n and oo
X)

X Inx (In In x) =

exists only if p> 1 because In In x > 0 for x > e. So this series converges for p > 1.

v

b. For large valuesofz, clearly z~ > Inz sothat z > (In Z)Z. Write z = In X; then for large X,

Inx>(Inln x)2 ; multiplying both sides by x In x we have that x if x>x1In X(InIn X)2
series converges faster because the terms get smaller faster.

, so that the first

8.4.60
a. kzl.s :
2
b. ko.7s
1
C. ka2 ©

-

84.61  LetSp= 1 _L

. Thenthis looks likea left Riemann sum for the functiony = v on[1,n+1]

k=1 k X
Because each rectangle lies above the curve itself, we see that Sn is bounded below by the integral of 4 on
X
[1,n+1]. Now,
n+l 1 n+1 n+1
~__dx= x V2 gx=2 x =2 n+1-2
1 X 1 1

This integral diverges as n — o, so the series does as well by the bound above.
8462 k1 (ak thk)=limp—o " #bk)=limpooo( " ) lim "
k=1 a + k=1 bx n—co k=1 K +

limpn-co  k=abk “A%B- . .
ak, so that one sum diverges if and

8.4.63 o Cak = lim n cak =lim ¢ , ak =c lim

k=1 n— oo k=1 n—oco k=1 k=1
n—oo

only if the other one does.

8.4.64 - o _1 =limbh»w Inln x|b2= co,

k=2 kIn k

8.4.65 To approximate the sequence for {(m), note that the remainder Rn after n terms is bounded by
oo 1 1 1-m

m
n X dx= m-1n

1
-3 - 2 -3
For m =3, if we wish to approximate the value to within 10, we mustsolve jn <10  sothatn=23,
23
1
and I3 = 1.201151926. The true value is = 1.202056903.
k=1



Form =35, if we wish to approximate the value to within 10 , we must solve <10 ,sothatn=4,
4

1
and _I<5 ~ 1.036341789. The true value is = 1.036927755.
k=1
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8.4.66

1

2

a. Starting with cot?x< x° <1+ cot? X, substitute ké for x:

cot? (k) < =<1+ cot? (kA),
K2 6%

n n n
—1-
cot? (ko) < < _(1+cot
ko), k2 O
k=1 k=1 k=1
n 1 "
2 = = 2
cot” (k#) < <n+ cot” (ké).
2
k

k=1 # k=1 k=1

Note that the identity is valid because we are only summing for kup ton, so that k6 < % .

b. Substitute Q2= for the sum, using the identity:
3

n

n2n- 1. 1 l .y n2n-1)
3 0 ey K 3
kel

ph2n=1_ "1 _,_n@2n+2)
3 et 3

%(M)Lz _ n2n +2)m 2

<
3en+1)2 ., K2 3@n +1°2

c. By the Squeeze Theorem, if the expressions on either end have equal limits as n — oo, the expression
in the middle does as well, and its limit is the same. The expression on the left is
2 20’ - n _ __2-n
2 -

T — . —_

) . = ._1_1 __2. ,

12n +12n+3 12+12n +3n

which has a limit of 6L2 asn — oo, The expression on the right is

2n%-+2n 2420 - — —
22 1202 +12n+3 =72 12+12n 143073
1 1 7l
which has the same limit. Thus lim = = .
2 2

n— oo k k 6

k=1 k=1
00 _1 o _1 — o ___ l . w]
8.4.67 o e k2 + - 2k - 1)?, splitting the seriesinto even and odd terms. But 1 gt =

1 co 1 =2 1z 1. _ ﬁnz_- T2



- Thus = so that the sum in question is
. kelke 6 46 o+ kel(2k-10 questio 2 =8 .

8.4.68

a. {Fn}is a decreasing sequence because each term in Fn is smaller than the corresponding term in

Fn-1 and thus the sum of terms in Fn is smaller than the sum of terms in Fn-1 .
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107 -
08]
osf e
L . c. It appears that lim Fn=0.
0.4 ® . . ® . .. n—oo
02|
b 0 _5 10 - —20 N
8469 -
axi= 2 1 = ,x2= 4 L = 4= 1,x3= 6 1 = + + =2
k=2 k 2 k=3 k 3 4 12 k=4 k 7 5 6 60

b. xnhas n terms. Each term is bounded below by 2*n and bounded above by FTL . Thus xn = n - 2t = -
L andxn <masit<n-nl=1.

2

. The right Riemann sum for 1 L&y 1r1g n subintervals has n rectangles of width L =n; the right edges of

1 _ﬂ.,,l_
SPR— . The height of sucha rectangleis the value of r

at the right endpoint, which is n+ nl =N - Addmg up over
all the rectangles gives Xn .

d. The limit lim Xnis the limit of the right Riemann sum as the width of the rectangles approaches zero.

n—oo

2
This is precisely i SR ')
1

8.4.70

n =10 for purposes of drawing a graph). The
10X

-2 -3 nl . Thus

The second diagram is a right Riemann sum for

Considering only [1, n], we see that, compar-ing
the area under the curve and the sum of the
areas of the rectangles, that

Adding 1 to both sides gives the desired in-
equality.

b. According to part (a), In(n +1) < Sp forn=1,2,3, ..., so that En=Sn — In(n+1) > 0.



c. Using the second figure above and assuming n =9, the final rectangle corresponds to n+1l, and the
area under the curve between n + 1 and n + 2 is clearly In(n + 2) — In(n + 1).
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d. En+1 = En=Sn+1 - In(n+2) = (Sn = In(n+ 1)) = n+1l —={n(n+2) — In(n + 1)). But this is positive
because of the bound established in part (c).

e. Using part (a), En=Sn - In(n+1) <1+Inn-In(n+1) <1.

f. En is a monotone (increasing) sequence that is bounded, so it has a limit.

g. The first ten values (E1 through E10) are

.3068528194, 401387711, 447038972, 473895421, .491573864, .504089851, .513415601, .520632566, .526383161, .531072981.

E1000 ~ 0.576716082.
h. For Sn > 10 we need 10 - 0.5772 = 9.4228 > In(n + 1). Solving for n gives n = 12366.16, so n = 12367.
8.4.71

a. Note that the center of gravity of any stack of dominoes is the average of the locations of their centers.
Define the midpoint of the zeroth (top) domino to be x = 0, and stack additional dominoes down and to
its right (to increasingly positive x-coordinates). Let m(n) be the x-coordinate of the midpoint of
the nt' domino. Then in order for the stack not to fall over, the left edge of the nth domino must

be placed directly under the center of gravity of dominos 0 through n — 1, whichis L " o,
so that m(n)=1+ ﬁ r::_ol m(i). We claim that  in fact m(n) = . 1; . Useinduction. Thisis
certainly true forn =1. Note first that m(0) =0, so we can start the sum at 1 rather than at 0.
Now, m(n)=1+ 1 "‘mi)y=1+ Lon-1 it . Now, 1 appears n — 1 times in the double
n i=1 n i=1 =1]
sum, 2 appears n — 2 times, and so forth, so we can rewrite this sum as m(n)=1 + i n-1l=i =
— n i=1i

1+ 1 n-1 1 1 nn-11 “n-11 n=1
nl

nik2k g

no sl =1+n =1t i—-(n=-1) = =1 i+1-n = j=1i,and we are done
by induction (noting that the statement is clearly true for n=0, n =1). Thus the maximum overhang is

noien 1 =1+n =1 -(n-1) = = i+1-n = j=1i, and we are done

b. For an infinite number of dominos, because the overhang is the harmonic series, the distance is
poten-tially infinite.

8.4.72

a. The circumference of the kth layer is 27 - v Soitsareais 27 - Ek and thus the total vertical surface area

(o0}

2t =2 © 1 =oc0.The horizontal surface area, however, is z, since looking at the cake

k=t ketk

from above, the horizontal surface covers the circle of radius 1, which has area = - 12 =T
¥

b. The volume of a cylinder of radius r and height h is ar? h, so the volume of the kth layer is z - K 1=k 2.
Thus the volume of the cake is

s
|-
B
1

k=1 kz k=1 ke 6

c. This cake has infinite surface area, yet it has finite volume!

8.4.73

c g . . . fo+g fa-1
a. Dividing both sides of the recurrence equation by fn gives =% 1T et the limit of the ratio



of successive terms be L. Taking the limit of the previous equation gives L =1+ L.Thusl? =L+1,

1= -

sol? —L-1=0. The quadratic formula givesL = -, 'L, but we know that all the terms are
15
positive, so we musthave L= 2 =¢ = 1.618.

b. Write the recurrence in the form fn~1 =fn+1 — fn and divide both sides by fn+1 . Then we have
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far1 =1 — fas1 . Taking the limit gives1 -y on the right-hand side.
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IS
c. Consider the harmonic series with the given groupings, and compare it with the sum of fier as shown.
The first three terms match exactly. The sum of the next two are L +1>141 -2  Thesumof the
= = s vy 1 5
next threeare @ +! +! >t + 4+ =3 | The sum of the next fiveare : +-+ — >5 = =2
- - - - - - - - 13 13 13
o fi-1
Thus the harmonic series is bounded below by the series k=1 fisa
. . . . . . o fe-1 ..
d. The result above implies that the harmonic series diverges, because the series k=1 —Tm diverges,

since its general term has limit 1 - l{p=0.

8.5 The Ratio, Root, and Comparison Tests

8.5.1 Givenaseries ak of positive terms, compute limk—oco #4— and callitr. If0 <r <1, the given
series converges. If r > 1 (including r = o), the given series diverges. If r = 1, the test is inconclusive.

8.5.2 Givenaseries g of positive terms, compute limyeo * a “and callitr. If0 <r <1, the given

series converges. If r > 1 (including r = o), the given series diverges. If r = 1, the test is inconclusive.

8.5.3 Given a series of positive termsak that you suspect converges, find a series bk that you know
converges,for which im &= _L where L >0isa finite number. If you are successful, you will have
shown that the series  ak converges.

Given a series of positive terms ak that you suspect diverges, find a series bk that you know diverges,
for which limk & =L whereL > 0 (including the case L = o0). If you are successful, you will have

shown that ak diverges.
8.5.4 The Divergence Test.

8.5.5 The Ratio Test.
8.5.6 The Comparison Test or the Limit Comparison Test.

8.5.7 The diffierence between successive partial sums is a term in the sequence. Because the terms are positive,
diffierences between successive partial sums are as well, so the sequence of partial sums is increasing.

8.5.8 No. They all determine convergence or divergence by approximating or bounding the series by some
other series known to converge or diverge; thus, the actual value of the series cannot be determined.

1 .
8.5.9 The ratio between successive termsis g = __1 * (K o which goes to zero as k = o, so the
: o W (ST

a (k+1)! 1

given series converges by the Ratio Test.
2 ; the limit of this ratio is zero, so the

a2 (!

8.5.10 The ratio between successive terms is a =K+ T X o=k

given series converges by the Ratio Test.

fo— e 1 kel 2. The limitis 1/4 as k — oo,
8.5.11 The ratio between successive termsis m;fl = 4 o 4k
so the given series converges by the Ratio Test.
8.5.12 The ratio between successive termsis
(k+1) +1 k
§k+_l - (k +1) zl_( =_—+l _—
ak 2(+1) ki 2 K

kel K kel



Note thatlimk—oc | =¢, butlimk—oco , = oo,s0 the given series diverges by the Ratio Test.

. . . ak+l ,(k*‘_l]e_:—(kﬂ) k+1 . . . .
8.5.13 The ratio between successive termsis — = . = e - The limit of this ratio as k — oo

ak

is 1/e <1, so the given series converges by the Ratio Test.
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. . . k+1 . ..
8.5.14 The ratio between successive termsis zgi— = ®5—— . = Kkl | . Thishaslimite ask — o, so
. k)t ‘
the limit of the ratio of successive terms is € > 1, so the given series diverges by the Ratio Test.
2 k+l &) 2 K 99
8.5.15 The ratio between successive terms is 99 K .
) ; . . . = ; imi — 0 is 2, so the
given series diverges by the Ratio Test. (D) 2 2 k1 ; the limit as k g
8.5.16 The ratio between successive terms is (k+1) 8 <kt - _— 6 ki1 thelimitask — oo is zero, so the
1
given series converges by the Ratio Test.
_
85.17 ( k+1)! < .
e The ratio between successive terms is . T, = e ; the limitask — o0 is 1/4, so
@K+ (2k+2)(2k+1) ’
the given series converges by the Ratio Test.
00 k 2k 4 4
8518 Note that this series is 24 . The ratio between successive terms is k k ¢+ =2 X -2 as
k=1 k 2 (k+1) k+1

k — co. So the given series diverges by the ratio test.

3
10k% +3
8.5.19 The kth root of the kth termis =z . The limit of this as k — o is '1; > 1, so the given series

diverges by the Root Test.

8.5.20 The kth root of the kth term is k?+ . The limit of this as k — c0is2 > 1, so the given series diverges
by the Root Test.

2/k
8.5.21 The kth root of the kth term is K'z— . The limit of thisas k — oo is 5 < 1, so the given series
converges by the Root Test.

8.5.22 The kth root of the kth term is 1+ §|< k . The limit of thisask — o is = e3 > 1, so the given series
diverges by the Root Test.

2k
k

8.5.23 The kth root of the kth term is v.. . Thelimitof thisask — ooise ~2<1, so the given series

converges by the Root Test.

8.5.24 The kth root of the kth term is 'm(?l[y The limit of this as k — o is 0, so the given series converges
by the Root Test.

8.5.25 The kth root of the kth termis L . The limit of this as k — o0 is 0, so the given series converges
by the Root Test. “
1/k

K
8526 Thekth rootofthekth termis e . Thelimitof thisask — oois + < 1,so the given series
converges by the Root Test.

8.5.27 1 < 4,and o 1 converges, so —1 converges as well, by the Comparison Test.
oo
oo
Kaa K2 k=1 k2 k=1 K2 +4
4 3 2

8.5.28 Use the Limit Comparison Test with . The ratio of the terms of the two seriesis Kk =k
whichhaslimit 1 ask — oo.Because the comparison series converges, the given series does as well.

k3 —k
8529 Use the Limit Comparison Test with 112' . The ratio of the terms of the two series is —_— which has
limit 1 as k — o0. Because the comparison series diverges, the given series does as well.
8.5.30 1 0.0001k

Use the Limit Comparison Test with ket which

has limit 0.0001 as k — co. Because the comparison series diverges, the given series does as well.



8.5.31 For all k, —1_ < —L The series whose terms 1 isa p_series which converges, so the

are kar2

given 3241 ke
series converges as well by the Comparison Test.

8.5.32 Use the Limit Comparison Test with {1/k}. The ratio of the terms of the two series is k
-
K® 41, whichhaslimit1 as k — 0. Because the comparison series diverges, the given series does as well.
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2 in(1/k 1
8.5.33sin(1/k) > 0 for k > 1, so we can apply the Comparison Test with 1/k . sin(1/k) <1, so %)_ <%

Because the comparison series converges, the given series converges as well.
k

8.5.34 Use the Limit Comparison Test with {1/3k 1 The ratio of the terms of the two series is 3 -

, which has limit 1 as k — 0. Because the comparison series converges, the given series does as well.
1- %
8.5.35 Use the Limit Comparison Test with {1/k}. The ratio of the terms of the two series is =k -
—1v_,which haslimit1/2 ask — oo, Because the comparison series diverges, the given series does as
2-1/ k ~
well.
8536 _ L— < L =_1 .Becausethe series whose termsare —L isa p-serieswithp >1, it
converges. e K Kk K 32 K 32

Because the comparison series converges, the given series converges as well.

8.5.37 Use the Limit Comparison Test ~ with ks%2* The ratio of corresponding terms of the two series is
Y -

v — k
VoKl K o— Ko+ _V_A_

, which has limit 1 as k — co.The comparison seriesis the series whose terms

_—+1
k3

+1 Ko ] 3

are , which is a p-series with p <1, so it, and the given series, both diverge.
8.5.38 Forallk, —= .- <_' .Because the series whose terms are  converges, the given series converges
L 2 2 2
kInk) k k
as well.
8.5.39

a. False. For example, let {ak } be all zeros, and {bk } be all 1's.
b. True. This is a result of the Comparison Test.
c. True. Both of these statements follow from the Comparison Test.

d. True. The limit of the ratio is always 1 in the case, so the test is inconclusive.
8.5.40 Use the Divergence Test: limak = lim 1 - L k= 1=, so the given series diverges.

k— oo k— oo k e

8.5.41 Use the Divergence Test: limak = lim 1+ 2 k=g

k— oo k— oo k

=0, so the given series diverges.

k— 1
8.5.42 Use the Root Test: The kth root of the kth termis ~ %2.; . The limit of thisask - c0is 3 <1, s0
the given series converges by the Root Test.

«
8.5.43  Use the Ratio Test: the ratio of successive terms is 11) 100 e 1)1 K+l 100

(k+2)! . K100 = k

‘r—‘

+ k+2 - This has limit

119 .0=0ask - 0, so the given series converges by the Ratio Test.

in 2

2 sit “ k -t [ 1
8.5.44 Use the Comparison Test. Note that sin k <1 forall kr SO k 2 < k2 forallk. Because k=1 k .
converges, sO does the glven series.

8.5.45 Use the Root Test. The kth root of the kth term is (kll k_ 1)2 , which has limit 0 as k — oo, so the
given series converges by the Root Test.

2 k A= ek
8.5.46  Use the Limit Comparison Test with the series whose k th term is o . Note that lim k-« &1 2 k=
[
_e [SS) 2k

limg— oo « -1=1. The given series thus converges because k=1 e Converges (because itisa geometric



series withr= ¢ <1). Note that it is also possible to show convergence with the Ratio Test.

E‘Z +2k+1 L

8.5.47 Use the Divergence Test: limk-o K2+ =3 ~0, s the given series diverges.
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8.5.48 Use the Limit Comparison Test with the series whose kth termis ! . Note that lim Y
¥ keoogm1o1 17
and the series o 1 converges because it is a geometric series with r =1 . Thus, the given series also
k=15 5
converges. —
- Kk
8549 Use the Limit Comparison Test with the harmonic series. Note that limg— co K = limg —— = OO,

and because the harmonic series diverges, the given series does as well.

8.5.50 Use the Limit Comparison Test with the series whose kth termis 1 . Note that lim

. 5k =
5k k—oo Bk -3k * 1
limy _ 1- (@5 =1, and the series k=3 Bk converges because it is a geometric series with r=5. Thus,
1 co 1 1

the given series also converges.

8.5.51 Use the Limit Comparison Test with the series whose kth term is - Note that lim —_t—
_ k 32 ko—k+l

\i/ . o k— o0 3

k2 kK ® 1

1 =limkooo  ke-ks1 1=1, and the series k=1 k2 converges because it is a p-series withp=2.
Thus, the given series also converges.

8.5.52  Use the Ratio Test: aksl = @y T @ = _‘__- -‘ ) ’ which has limit 1/27 as k — oo.
a @3 (K (3K 1)(3k+2)(3k+3)

Thus the given series converges.

8.5.53 Use the Comparison Test. Each term 1r + 2_k > =. Because the harmonic series diverges, so does

this series.

8.5.54 Use the Comparison Test with {5/k}. Note that Ak 5 ¢ for k > 1. Because the series whose terms
are 5/k diverges, the given series diverges as well.

2K ey (o K k .
8.5.55 Use the Ratio Test. = el =2 £ whichhaslimit = ask — 0, so the given
a K1) K1 ok (k)1 kel e

series converges.

8.5.56 Use the Root Test. lim 1- 1 K =e l< 1, so the given series converges.

k— oo

8.5.57 Use the Limit Comparison Test with {1/k ? }. The ratio of corresponding terms is kL
limit 1 as k — oo. Because the comparison series converges, so does the given series.
8558 -1 —L <1 because p > 0, so the given series converges.

1p 1p

k— oo
8.5.59 This is a p-series with exponent greater than 1, so it converges.

8.5.60 Use the ComparisonTest: ~ —1— < -1 . Because the series whose terms are is a convergent

K Ink
p—series, the given series converges as well. ke ke

85.61In K2 =In(k+2) - In(k+ 1), so this series telescopes. We get ", In B =Inn+2)-In2.

Because limn-o In(n + 2) — In 2 = oo, the sequence of partial sums diverges, so the given series is divergent.

- 1/k

8.5.62 Use the Divergence Test. Note that limk—oo K = limkawﬁ =1= 0, so the given series

diverges.



8.5.63 Fork>7,Ink> 2 so note that _1 < 1 . Because = L converges, the given series
converges

oo

kink K2 k=1 K2
as well.
. 2
8.5.64 Use the Limit Comparison Test with {1/k 2 }. Note that Mk)__ = snld __  Becauselim sinx =1,
1k 1k x=0 X
the limit of this expression is 12 =1 ask — oo. Because © 3

L converges, the given series does as well.
k=1 k
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. . tan(1/k ..
8.5.65 Use the Limit Comparison Test with the harmonic series. an(l/k) has limit 1 as k — oo because

lim Jax =7, Thus the original series diverges.
x—0 X
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v
\/ - k_ 1
8.5.66 Use the Root Test. lim k ak=lim 100 = =0, so the given series converges.
k— oo k— oo
8.5.67 Note that 1l =1 _1 - _1 . Thus this series telescopes.
Qk+1) -(2k +3) 2 2k+1 2k+3
n—— 1 1 —1 1 r _1
= n — 3
2
2 2k+1 - 2k+3 -2n+3 +1,

k=0 2k + 1)(2k + 3) k=0

so the given series converges to 1/2, because that is the limit of the sequence of partial sums.

. . . [ee] JS—_l = oo — 0 1 . o . .
8.5.68 This series is o, = 1- 1 . Because 2 converges, if the original series also

o k=l k k k=1 k

1 K converged, which is false. Thus the original series diverges.

converged, we would have that

o K . . g1y e k . .
8.5.69 This series is k=1 ki . By the Ratio Test, "5 = g 22K which has limit 0 as

k — o0, so the given series converges.

8.5.70 For any p, if k is sufflcently large then KL/ > Ink because powers grow faster than logs, so that
k>(Ink)® andthus1/k<1/(Ink P . Because 1/k diverges, we see that the original series diverges for all
p.

1
8.5.71 Forp<landk>e, LE>k3 Theseries i1 kp diverges, so the given series diverges. Forp>1,

bet_ 0q<>pl,_s1f {hep for sufflciently large k, In k < k9, so that by the Comparison Test, _lnuk < ¥ =TT But

1 k koK
k=1 k- is a convergent p-series. Thus the original series is convergent precisely when
p>1.
8.5.72 Forp=1,
o 1-p b
dX =lim :(.13 ln X ) -
; xInx(Inlnx)’  pow 1-p 2

This improper integral converges if and only p > 1. If p=1, we have

®© __de_

== _ _ = limkhinlnx = 00,
2 X(Inx)Inlnx  b-oo 9 )
Thus the original series converges for p > 1.
(In kP -
8573 Forp <l "W ook 2o e diverges for p <1, so the original series diverges. For
| q
B >1,letq <p - 1, then for sufflciently large k, (In k) P <k® i <k 24 Butp-gq>1,

©o 1

SO k=1 ks converges, so the given series converges. Thus, the given series corverges exactly for p > 1.

At e — 1)« erDpktl)  « 1kl p- -,
+1 - :
8.5.74 Using the Ratio Test, ax = k2t (" = (k2T =p k+2 i

which has limit pe_l . The series converges if the ratio limit is less than 1, so if p <e. If p > g, the given
series diverges by the Ratio Test. If p = ¢, the given series diverges by the Divergence Test.

8.5.75 Use the Ratio Test: (k +1)pk+1 k1

k

lim &1 = lim
k—oo Ak k—oo k+2 kp
so the given series converges for p <1 and diverges for p > 1. For p =1 the given series diverges by limit
comparison with the harmonic series.
p
k
8576In T =p(n(k) - In(k+ 1)), so




p [e0)

In = p(In(k) - In(k + 1))

k+1
k=1 k=1

which telescopes, and the nth partial sum is —pIn(n + 1), and limn —-pIn(n +1) is not a finite number
for any value of p other than 0. The given series diverges for all values of p other than p =0.
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8577 limak = lim 1- 2 K =¢P= 0, so this sequence diverges for all p by the Divergence Test.
k—oo k—oo k
8.5.78 Use the Limit Comparison Test: lim &2 = limak = 0, because ak converges.By the Limit

koo ak k— oo

Comparison Test, the series a’ must converge as well.

8.5.79 These tests apply only for series with positive terms, so assume r > 0. Clearly the series do not
converge for r =1, so we assume =1 in what follows. Using the Integral Test, r- converges if and
© X b
only if r* dx converges. This improper integral has value lim I— , which converges only when lim r?
1 b—coInr 1 b—oo

exists, which occurs only for r < 1. Using the Ratio Test, % = —ff% =1, so by the Ratio Test, the series
k v

v k
converges if and only if r < 1. Using the Root Test, lim «a™— = lim = lim r =r, so again we have

k— oo k— oo k— oo

convergence if and only if r < 1. By the Divergence Test, we know that a geometric series diverges if |r| > 1.
8.5.80

a. Use the Limit Comparison Test with the divergent harmonic series. Note that lim =Sl =1,

. koo 14k

because lim ELDS = 1. Because the comparison series diverges, the given series does as well.

x=0  x
b. We use the Limit Comparison Test with the convergent series 1. Note that lim GMsindk) __ =
k k— oo 1k
lim -S00M- =1, so the given series converges.

koo 1k
8.5.81 To prove case (2), assume L =0 and that bk converges. Because L =0, for every ¢ > 0, there is
some N suchthatforalln>N,|p & |<e Take ¢=1; this then says that there is some N such that for all
n>N,0<ak <bk. By the Comparison Test, becausebk converges, so does ak. To prove case (3),
because L = o, then lim  bc =0, so by the argument above, we have 0 < bk < ak for sufflcient large k.

k—oco ak
Butbk diverges, so by the Comparison Test, ak does as well.
k+1 |
8.5.82 The series clearly converges for x = 0. For x=0, we have TR E— K x . This has
Tak (k+1)! xk k+1
limit 0 as k — oo for any value of X, so the series converges for all x > 0.
k+1 X L

8.5.83 The series clearly converges for x=0.  For x=0, we have T = X. This has limit x as

k — o0, s0 the series converges for x < 1. It clearly does not converge for x = 1. So the series converges for
x € [0, 1).
k+l
a XK k

=X -
8.5.84 The series clearly converges for x = 0. For x =0, we have . “kel K1

, which

has limit x as k — oo. Thus this series converges for X < 1; additionally, for x =1 (where the Ratio Test is
inconclusive), the series is the harmonic series which diverges. So the series converges for x € [0, 1).

kel 2 2
awn  X—— kS &
8.5.85 The series clearly converges for x =0. For x =0, we have ak =(k+ 1)2 e =X K ,
which has limit x as k — oo. Thus the series converges for x < 1. When x =1, the series is 1 .
converges. Thus the original series converges for 0 < x < 1. k2, which

8.5.86 The series clearly converges for x=0. For x=0, we have a1 - X =x- £




2
. . . ak k+1 X2k ,
which has limit x% ask — 0, 50 the series converges for x < 1. W%en x)= 1, the series is _i( +1

converges. Thus this series converges for 0 < x < 1. k 2, which
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k
k
1, Xl 2 =X which has limit

k
ak 2%kl X 2
X/2 as k — oo. Thus the series converges for 0 < x <2. For x =2, it is obviously divergent.
8.5.88

8.5.87 The series clearly converges for x=0. For x =0, we have

th . n n n
a. Let Pn be then partial product of the ak : Pn = ot ak- then - k0 Py
If In ak is a convergent series, then T(O ) Inag= lim InP,=L< . Butthenet= lim gln Pn =

= oo oo

lim Pn, so that the infinite product converges.

n—co
b In | 2| 3] 4|5]| 6|7z | 8
Pn [3/4 |23 (58 |3/ [ 712 | 4/7 [9/16
It appears that Pn= ntl o sothat limPn  =3.
2n n—oo 2
c.Because lim n 1-_1 = ,takinglogsand using part (a) weseethat lim n In 1 -1, -
n— oo k=2 k 2 n—oo k=1 k
Ind=-1In2.
2
8.5.89
=S} K =S} 1
aln k=0 el _ k=0 2¢ =2, so that the original product converges to e .
b.ln © 1-% =In © & ©=L * (In(k = 1) = In(k)).  This series telescopes
to k=2 k k=2« S e - k=2
give Sp= ln(n), so the original series has limit lim Pp= lime™ "M —.

n— oo n—oo

8.5.90 The sum on the left is simply the left Riemann sum over n equal intervals between 0 and 1 for
1

f (x) = xP . The limit of the sum is thus 01 xP dx = pfllxpﬂ =p +11, because pis positive.
0
8.5.91
a. Use the Ratio Test:
k
8y = 1:3-5--(2k+1) . p-(K)! (2k +1)
k+1 |
ak pr T (k+1)! 1-3-5--(2k-1) (k+1)p

and this expression has limit gp as k — co. Thus the series converges for p > 2.

(2K)! (2K)!
. . = . Using Stirling’
b. Following the hint, whenp =2wehave k=1 KK -4-6--2k) KL (@62 (k2 - DSmEStrng's
formula, the numerator is asymptotic It(o22 ) —21: b vk(_zk)”e'z‘(:z Ca KK )2 (K )2 e~ . while the denom-
inator is asymptotic to (2 ) 2zk(k ) e ,sothe quotientis asymptoticto v, x = Thus the original

series diverges for p = 2 by the Limit Comparison Test with the divergent p-series et klﬁ

8.6  Alternating Series

8.6.1 Because Sn+1 — Sn=(-1)"an+1 alternates signs.



8.6.2 Check that the terms of the series are nonincreasing in magnitude after some finite number of terms, and
that lim ak = 0.

k— oo
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8.6.3 We have
S =S2n+1+(a2n — az2n+1) + (a2n+2 — azn+3 ) + -~
and each term of the form a2k — a2k+1 >0, so that S2n+1 < S. Also

S =Son+ (—azn+1+az2n+2 )+ (—az2n+3+azn+4 ) + -+

and each term of the form —a2k+1 + a2k+2 < 0, so that S < Sn . Thus the sum of the series is trapped
between the odd partial sums and the even partial sums.

8.6.4 The diffierence between L and Sn is bounded in magnitude by an+1 .

8.6.5 The remainder is less than the first neglected term because
S —Sn=(-1)"" (an+1 + (—an+2+ an+3 ) + - -)

so that the sum of the series after the first disregarded term has the opposite sign from the first
disregarded term.

8.6.6 The alternating harmonic series (- 1)k L converges, but not absolutely.

8.6.7 No. If the terms are positive, then the absolute value of each term is the term itself, so convergence
and absolute convergence would mean the same thing in this context.
8.6.8 The idea of the proof is to note that 0 < |ak | +ak < 2 |ak | and apply the Comparison Test to conclude

thatif  |ak | converges, thenso does 2 |ak |, and thus so must (|ak | + ak ), and then conclude that  ak
must converge as well.

X
8.6.9 Yes. For example, K converges absolutely and thus not conditionally (see the definition).

k1
8.6.10 The alternating harmonicseries (—1) “k converges conditionally, but not absolutely.

1
8.6.11 The terms of the series decrease in magnitude, and limk Z+1 =0, so the given series converges.

8.6.12 The terms of the series decrease in magnitude, and limk — oo _1'k' =0, so the given series converges.

8.6.13 limk—oo 5k = ,1=0, so the given series diverges.

8.6.14 limk 1+ i K-g= 0, so the given series diverges.

8.6.15 The terms of the series decrease in magnitude, and lim L =0, so the given series converges.

=

k— oo k
8.6.16 The terms of the series decrease in magnitude, and lim _1__ =0, so the given series converges.
k
k—oo +10
K2 1/k
8.6.17 The terms of the series decrease in magnitude, and lim K3 = lim 1+1/ks =0, so the given series
converges. k= k—oo
8.6.18 The terms of the series eventually decrease in magnitude, because if f (X) = A thenf (x)
=20y =1-2nx whichis negative for large enough x. Further, lim Jnk =1lim J&k = lim -1 =
0.
X X koo K k—oo 2k koo X
Thus the given series converges.
2
8.6.19 lim K g =1, so the terms of the series do not tend to zero and thus the given series diverges.
k— oo k +3
k
o 1 k co k 1 k
8.6.20 k=0 - = = k=0 (-1) s . (1) is decreasing, and tends to zero as k = o, so the given

series converges.
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8621 lim 1+ L =1,s0the given series diverges.

k— oo
8.6.22 Note that cos(zk) = (—1)k , and so the given series is alternating. Because lim 12 =0 and 12 is
kooo K k
decreasing, the given series is convergent.
K042k 5 41 — (k0 +2k10 +12K5 —gK® +1)
8.6.23 The derivative of f (k) = oy s (k)= R 60 17 . The numerator is negative

for large enough values of k, and the denominator is always positive, so the derivative is negative for large
10 -54) -10

. +2K5_ . 142k == . .
enough k. Also, lim =mi@#) - =lim ——%ks = =(. Thus the given series converges.

k— oo k— oo

8.6.24 Clearly . -l--isnonincreasing, and lim__:_ =0, so the given series converges.

KIn k k— o0 kin k
8.6.25 lim kY =1 (for example, take logs and apply L’H"opital’s rule), so the given series diverges by the
k— oo

Divergence Test.
k

8.6.26 ak+1 < ak because kel etk K < 1. Additionally, g —0as k — o0, s0 the given
ak (k+1) k! k+1 k

series converges.

8.6.27  — isdecreasing and tends to zero as k — o, so the given series converges.
k +4

8.6.28  limksin(1/k)= lim sndl_ =1, so the given series diverges.
k— oo k— oo
8.6.29  we want iy <10 Y orn+1>10 *son= 10"

1
- 4

8.6.30 The series starts with k=0, so wewant , ! < 1074, orn!>10 =10000. This happens for n=8.

1 -4 4
8.6.31 The series starts withk =0, sowewant2n+1 <10 ,or2n+1 >10 , n=>5000.

1 -4 2 4
8.6.32 Wewant (n+12 <10 ,or(n +1) >10 ,son=100.

8.6.33 We want (n+—i)-1- <107, or (n+1)*>104 son=10.

1 -4 4/3

8.6.34 The series starts withk =0, so we want (2n+1)s <190 ,or2n+1>10 ,son=11.
1 -4 4

8.6.35 The series starts withk =0, sowewant3n+1 <10 ,or3n+1 >10 ,n=3334.

1 -4 6 4 T k=l (2n+l) 3
8.6.36 Wewant (mp)® <10 ,or(n +1) >10 =10000,s0n=4.
1 2 2 1 -4 28(an+1)(4n+2)(4n+3)
8.6.37 The seriesstarts with k=0, so we want 4™ 725 + ans2 rama < 10 ,or 4(20n2 +21n+5) >

10000, which occurs first for n = 6.

-4
8.6.38 The series starts with K o sowewantan,  —— <10 ,S03N+2 >10000, n =3333.



8.6.39 To figure out how many terms we need to sum, we must find n such that
<

-—L 1073, so that

(n+ l)5 > 1000; this occurs first for n = 3. Thus —=! +1 -1 = -0.973.

12 3
8.6.40 To figure out how many terms we need to sum, we must find n such that —(Zém < 1073 or
(2n+ 3)3 >10° ,502n+3 > 10 and n = 4. Thus the approximation is f D 5 _0.306.

: . n+1 -3
8.6.41 To figure out how many terms we need to sum, we must find nso that —FF7 <10 sothat

@) 241 -1 999 (=1 k

n+l =n+1+n+1 >1000. This occurs first for n =999. We have k=1 K+1 = —0.269.
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8.6.42 To figure outhow many terms we need to sum, we must find n kjulch that (n'Tl')Tﬂﬂ_' <1072 , so that
o) 241 _ ) E -1 >1000, which occurs for n=9. We 9 LD x —0.409.
have
n+l n+l kK +1
8.6.43 To figure how many terms we need to sum, we must find nsuch that — L— < 1073, or (n +1)n+1 >
1000, son =4 (5° =3125). Thus the approximation is PR S VLIPS
—-.783.
k=1 n

. : -3
8.6.44 To figure how many terms we need to sum, we must find n such that W <10 7, or 2n+3)! >
2 (~y™t

1000, so 2n +3 > 7 and n = 2. The approximation is k=1 (n +1)! = 0.158

8.6.45 The series of absolute values is a p-series with p = 2/3, so it diverges. The given alternating series
does converge, though, by the Alternating Series Test. Thus, the given series is conditionally convergent.

8.6.46 The series of absolute values is a p-series with p = 1/2, so it diverges. The given alternating series
does converge, though, by the Alternating Series Test. Thus, the given series is conditionally convergent.

8.6.47 The series of absolute values is a p-series with p = 3/2, so it converges absolutely.

8.6.48 The series of absolute values is 3—lk , which converges, so the series converges absolutely.

. . K . .
8.6.49 The series of absolute values is LC'QS{;M—, which converges by the Comparison Test because JEQ%EK)L <
k%3 . Thus the series converges absolutely.
. . 2_ o . . . .
8.6.50 The series of absolute values is Yk“= . The limit comparison test with gives lidk v__; =
1 k+1 k k—oo  k +1
lim —=
k— oo
original series converges conditionally, however, because the terms are nonincreasing and lim X -
k—oo  k +1
lim kGTk =0.
k— oo
8.6.51 The absolute value of the kth term of this series has limit 7/2 ask — oo, so the given series is

divergent by the Divergence Test.

8.6.52 Theseries of absolute values is a geometric series withr= e and [r| <1, so the given series converges
absolutely

8.6.53 The series of absolute values is - .=, but lim K 1

2k+1 Ko 2k =2, 50 by the Divergence Test, this series

diverges. The original series does not converge conditionally, either, because lim ax = 5 _=
k— oo

8.6.54 The series of absolute values is . ==, which diverges, so the series does not converge
absolutely. However, because lim -1y = 0and the terms are nonincreasing, the series does converge conditionally.
k— oo
1y
8.6.55 The series of absolute values is wn k&, which converges by the Comparison Test because
) ozl zL
< ,and

S 2k 2 ks converges because it is a constant multiple of a convergent p—series. So the
original series converges absolutely.

8.6.56 The series of absolute values is ¢ . Using theratio test, 2., = gu dodl _e_, which



o K (o2n

tends to zero as kK — o, so the original series converges absolutely. e
8.6.57
a. False. For example, consider the alternating harmonic series.

b. True. This is part of Theorem 8.21.
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c. True. This statement is simply saying that a convergent series converges.

d. True. This is part of Theorem 8.21.

e. False. Let ak = kL.

f. True. Use the Comparison Test: lim %. = lim ak=0because ak converges, so a%and ak

k—oo % k— oo k

converge or diverge together. Because the latter converges, so does the former.
g. True, by definition. If  |ak | converged, the original series would converge absolutely, not conditionally.

8.6.58 Neither condition is satisfied. ks =—(eD@k+l) =~ =253kl > 1 and limak = !
ak (2k+3)k 2k +3k k— o0 2
—_ kil —_—kl 2 2 2
oo 1 oo (,; _ 2 oo 1 1 o -, and thus - i _L PR .
8.659 k=1 K¥ - k=1 K k=l (202 =24 k=1 K k=1 k s §-2°'6 =12 .
g 1 s . ] 1 s 1 k1 4 4 4
vo=2 - , and thus -~ - ’ L —
8.6.60 k=1 ke — k=1 ke k=1 @0 =216 k=1 ke k=1 ke =90~ 5 '90 = 720.

8.6.61 Writer=-s;then0 <s<1and K= (—l)k K Because |s| < and tend 1, the terms s are nonincreasing

to zero, so by the Alternating Series Test, the series (—1)k K= X converges.
8.6.62
N
1 1% :
8 10}
6 107 [
4 10'L
2 10°f
o3 43 o4 .E 5 T 8r
p=1
N

10 000
8000
6000
As p gets larger, fewer terms are needed to
4000

a. achieve a particular level of accuracy; this means 2000
that for larger p, the series converge faster.

400

300

200

100
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N
10
8 -
b. This graph shows that ki converges much 6 ’
faster than any of the powers of k. 4% .
o
S A
8.6.63LetS=1-1 +13—... Then
1 1 R Ry
S=1- : F 374 T o576 o778
le _ 1 _ 1 1 _ 1
78 = 7 T toog 5
Add these two series together to get
3 5= m2-1+13-1p,15, ..
To see that the results are as desired, consider a collection of four terms:
1 A 1 _ 1
+ ak+1 4k+2 + 4k+3 4k+4 +..
1 L
+ 2 - k4

Adding these results in the desired sign pattern. This repeats for each group of four
elements. 8.6.64

a. Note that we can write

n-1 n
a1 k L1 an” _
Sn=-— 2 i) ) (1) (ai —ai+1) + 2,
=1
so that
CD=epy o2 1 "
Sn + 2 = 2 +2 (=1)"di
k=1

where di = ai — ai+1 . Now consider the expression on the right-hand side of this last equation as the nth
partial sum of a series which converges to S. Because the dj s are decreasing and positive, the error made
?y stoppm the sum after n terms is less than the absolute value of the first omitted term, which would be
=2 |dn+1 | = 2 |an+1 — an+2 |. The method in the text for approximating the error simply takes the absolute
value of the first unused term as an approximation of |S - Sn |. Here, Sn is modified by adding half the
next term. Because the terms are decreasing in magnitude, this should be a better approximation to S than
]ust Sn itself; the right side shows that this intuition is correct, because

1) |an+1 — an+2 | is at most an+1 and is generally less than that (because generally an+2 <an+1 ).

b.i. Using the method from the text, we need n such that n+1—1 < 10 ,i.e. n> 10 - 1. Using

the modified method from this problem, we want lan+1 - an+2| <1078, s0
2
r_ 11 _-__ 1 _ <y
2 n+l n+2 2(n+1)(n +2)

This is true when 10° < 2(n+ 1)(n + 2), which requires n > 705.6, so n > 706.
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ii. Using the method from the book, we need n such that k In k > 1P , which means k > 87848.
Using the method of this problem, we want

1 1 1 (kD) In(k+1) = Kink 1976

2 kink  (k+1)In(k+1) 2k(k + 1) In k In(k + 1)
6

so that [2k(k+ 1) Ink In(k+1)] > [10 (kInk — (k+ 1) In( k+ 1))|, which means k > 319.
v

iii. Using the method from the book, we need k such that k> 10%, sok > 10 . Using the method
of this problem, we want

A —
L1 1 s e
v -6
2 Vk- k+1 =2 kk+ 1) <10
which means that k > 3968.002 so that k > 3969.
8.6.65 Both series diverge, so comparisons of their values are not meaningful.
8.6.66
a. The first ten terms are
@1+ 1-1 +2-1 +1-1 +2-1
2 3 3 2 4 5 5
Suppose that k=2 i is even (and so k — 1=2i — 1is odd). Then the sum of the (k — 1)st term and
the kth term is % — & =2 I Then the sum of the first 2n terms of the given seriesis ~ nl )
ko ki i=1i
‘ﬁ. Note that limk— oo —2 =limk-co 2 =0.Thusgiven >0 there exists N1 so that for k> N1, we
ave

k+1 K
—2 < Also, there exist N2 so that for k > N2, Z < .LetN be the larger of N1 or N2 . Then for

k+1 k

k>N, wehaveak < , asdesired.
c. The series can be seen to diverge because the even partial sums have limit . This does not
contradict the alternating series test because the terms ak are not nonincreasing.

Chapter Eight Review
1
a. False. Letan=1 - 1n. This sequence has limit 1.

b. False. The terms of a sequence tending to zero is necessary but not sufflcient for convergence of the
series.

c. True. This is the definition of convergence of a series.
d. False. If a series converges absolutely, the definition says that it does not converge conditionally.
e. True. It haslimit1asn — oo,

f. False. The subsequence of the even terms has limit 1 and the subsequence of odd terms has limit
-1, so the sequence does not have a limit.
2
o. False. It diverges bv the Divergence Test because limk-o k 2 T; =1=0.

[ee)

h. True. The given series converges by the Limit Comparison Test with the T )
series sequence of partial sums converges. k=1k"2, and thus its
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n2 +4 1+4n~2 1

2 lim Y —— = lim v =

o oo ant+1 oo 4+N 2

3 1im 8" = 0 because exponentials grow more slowly than factorials.

n—oo N!

4 After taking logs, we want to compute

lim 20 In(1 +3/n) = lim In(1+3/m)
n-e 1/(2n)
6n

By L’'H opital’s rule, this is limn+3— (after some algebraic manipulations), which is 6. Thus the original
n— oo
limitis e®.

5 Takelogs and compute lim (1/n)Inn=lim (Inn)/n= lim ! =0by L'Hopital’s rule. Thus the original
of!

... Qh—ee n—oo -
limit is € =1. '
v v

6 lim(h- T"pZ-p=fim 0o ne-l ey ne-l lim 1 =0.

n—oo 1 n+ n2 -1 nN—ooo N+ n +1

n—oo

aKe logs, an enevaluate lim —-1n = im (-1) = -1, so the original limitise .

7 Takelogs, and th luate 1 L In(1/n lim (~1)= -1, so the original | !
n—oolnn n—oo

g This series oscillates among the values £1/2, = = 3/2, +1, and 0, so it has no limit.

9 an=(-1/09)" = (-10/9)" . The terms grow without bound so the sequence does not converge.

10 lim tan tn= limtan 1x= %
n—co X— 00 2
11

1 i 2L 17

a.S1 = ,,So= u,S3= 4,5 = 30_ .

b. Sn= 1y 1_ 1 1 , because the series telescopes.

12 n+1 n+2

N =

c. From part (b), limSn = 2, which is the sum of the series.

n—oo 4

9/10
12 This is a geometric series with ratio 9/10, so the sumis Tgig

13 3(1.001)k =3 (1.001)k . This is a geometric series with ratio greater than 1, so it diverges.
k=1
1 5
14 This is a geometric series with ratio —1/5, so the sumis T - §
15 L = -— -L 50 the series telescopes, and Sn =1 - — - 4 . Thus Sn =1, which is the
value of
lim K(k+1) K kil n+1 n—co
the series.

16 This series clearly telescopes, and Sn= 1.-1,s0 limSh=-1.

n n—oo

17 This series telescopes.Sn =3 - 3, so that lim  Sn =3, which is the value of the series.



3n+1l n—oo

[e) - [¢) k

18 1 4 - 1 (14 4) .'Thisis a geometric series with ratio 1/64, so its sum is
o 2 1 2,= 123 2

19 =7 o = k= ==

9 1-2/3 9

1/64
1-1/64

1
=63
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20 This is the diffierence of two convergent geometric series (because both have ratios less than 1). Thus
the sum of the series is equal to

102
I—

o 1 Kk o 2k 1 2/3

3 3 =1-1/3 - 1—2/3 =2—2=—2.

k=0 k=0
21

a. It appears that the series converges, because the sequence of partial sums appears to converge to 1.5.
b. The convergence is uncertain.
c. This series clearly appears to diverge, because the partial sums seem to be growing without bound.

22 This is p-series with p = 3/2 > 1, so this series is convergent.

23 The series can be written —12/3, which is a p-series with p=2/3 <1, so this series diverges.
k
24 ak = 2K+l — Akl 4]
Vas = =5, so the sequence of terms diverges. By the Divergence Test, the given series
k  +2 k  +2

diverges as well.

25 This is a geometric series with ratio 2/e <1, so the series converges.

2 2
k . 1
26 Notethat 1 = 1+4% ,so lim = = |im 1 L = (63 )2, so limak =~ =0, so the
ak k
k— oo ak k— oo k k— oo e6
given series diverges by the Divergence Test.
27 Applying the Ratio Test:
lim a1 2k+1 (K +1)! kk K k2
= lim = lim 2 -_ = <1,
k— oo
o D | LY N | e
so the given series converges.
28 Use the Limit Comparison Test with &
v _1 L = = Kk,
k
K +k kK o+k K +k
which has limit 1 as k — oo.Because 1/k diverges, the original series does as well.
29 Use the Comparison Test: —3 <. 3,but 3 converges because it is a geometric series with

. . ratio
2+e e e

1 . .
= < 1. Thus the original series converges as well.

30 limak= limksin(1/k)= lim sl =1, so the given series diverges by the Divergence Test.

k—oo gy koo g koo 1 1 . .
A me b i Forks 2 then < = ecause =3 converges, the given series also converges,
by the Comparison Test.
1 1

1. . .
= diverges, the given series does as well.

32 Use the Comparison Test: ~ 1+ink >k fork >1. Because  «
5 k




33 Use the Ratio Test; &+  —fen . 2= 1 kil 5

series converges. a - ew1r K -, Kk , which has limit 1/e <1 as k = . Thus the given
2 2 2 2 2
34 For k> 5, we have k -10> (k - 1) , so that ag = K2 -10 < k- 1)2. Because (k—1)2 converges, the

original series does as well.
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35 Use the Comparison Test. Because lim InK =0, we have that for sufflciently large k, In k < k2, so
oo K2
_oTmre 2% 7 . . . . B
thatak= " <7 -we.Now w 1s convergent, because it is a p-series with p = 3/2 > 1. Thus
the original series is convergent.
36 By the Ratio Test: lim &1 = lim ekkﬂ gk =1limi Kl 1 <1 Thusthe given series converges.
k— oo k— oo
k k— oo

241 Q) 4
37 Use the Ratio Test. The ratio of successive terms is @z T 24K = — ey - Lhis has limit 0 as
k — o0, so the given series converges.

Ok+1 2K 9
38 Use the Ratio Test.  The ratio of successive term is gem— - g = aawe - ThishaslimitO as
k — o0, so the given series converges.
39 Use the Limit Comparison Test with the harmonic series. Note that lim cothk k = limcothk=1.
k—oo k 1 k— o0

Because the harmonic series diverges, the given series does as well.

40 Use the Limit Comparison Test with the convergent geometric series whose kth term is e k- We have
1 e K _2¢ kb 1

‘ =2 lll’nk_) —2k

limk—oo siphk  +1 = limk—oco ¢k - e o 1-e ©° =2.The given series is therefore convergent.

ek eek

41 Use the Divergence Test. limk-eotanhk =limk-e ek - e+« =1=0, so the given series diverges.

1
42 Use the Limit Comparison Test with the convergent geometric series whose kth termis e k. We have

A & 2ek—
li =i =2 lim . .
1IMK— o0 coshk * 1 = lIMk— oo ex+ek k—oo 1+e-x =2. The given series is therefore convergent. .
1 1 -1
k2 — 00 k
lim  ——— =1, the given series converges absolutely. k

k— oo

44 This series does not converge, because lim |ak | = lim £ A
k=00 k— oo 2k +1 2
45 e ol
Use the Ratio Test on the absol ute valu L a = lim Py K
lim 1 k+_1 i < 1. Thus, the original series is absolutely convergent. o o
k—oo € k e
46 Using the Limit Comparison Test with the harmonic series, we consider lim ak /(1/k) = lim Y _k__
2 k—co k— oo k+1
k— oo

absolutely convergent. However, the terms are clearly decreasing to zero, so it is conditionally convergent.

47 Use the Ratio Test on the absolute values of the sequence of terms: lim ~aw1= lim —10 =0,sothe
series converges absolutely. koo a k— oo kil
oo
48 —— does not converge because  *° — dx = limb-e In(In X) =00, so the improper integral
kink 2 xInx
2
diverges. Thus the given series does not converge absolutely. However, it does converge conditionally

because the terms are decreasing and approach zero.

=22



2
49 Because k 2k , limk K2 = 0. The given series thus diverges by the Divergence Test.

50 The series of absolute values converges, by the Limit Comparison Test with the convergent geometric
series whose kth term is - . This follows because lim L_ & =lim 1 =1

ek k—oo gk +e-k * 1 k—oo ]1+e-2
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51

a.For|x|<1, lim xK=0, so this limit is zero.

k— oo

.. . . . . . 1 5
b. This is a geometric series with ratio —4/5, so the sumis 5 =7 .

52
a.lim 1-_1. =lim —1_ =0.

k k+1 k(k+1)

k— oo k— oo

b. This series telescopes, and Sn =1 — —L , so lim Sn =1, which is the sum of the series.
n+l n—oo
53 Consider the constant sequence with ak =1 for all k. The sequence {ak } converges to 1, but the
corresponding series ak diverges by the divergence test.

(o)

54 Thisis not possible. If the series ~ k=1ak converges, then we musthave limk—c ak = 0.
55

a. This sequence converges because limk-~ —k=limk-o L. =
k+1 1+= 1+0

b. Because the sequence of terms has limit 1 (which means its limit isn’t zero) this series diverges by
the divergence test.

56 No. The geometric sequence converges for -1 <r < 1, while the geometric series converges for -1 <r
< 1. So the geometric sequence converges for r =1 but the geometric series does not.

57 Because the series converges, we must have lim ak = 0. Because it converges to 8, the partial
sums
k— oo
converge to 8, so that lim Sk =8.
k— oo

58 Rn is given by

Rn < “l,dx=1im -1 v —_1
n x5 h— oo 4x4 n 4n4
-4 1 -4 4 4
Thus to approximate the sum to within 10 ,weneed 4ns<10 ,so4n >10 andn=8.

59 The series converges absolutely for p > 1, conditionally for 0 < p < 1 in which case {kP}is decreasing
to zero.

60 By the Integral Test, the series converges if and only if the following integral converges:

* 1 1 b 1, (- 1 1-p
I Ina-p(x) = lim —— W@P) gy - —L 7P oy

, XInP (x) bl — p 2 bool-p 1-p
This limit exists only if 1 — p < 0, i.e. p > 1. Note that the above calculation is for the case p = 1. In the case
p =1, the integral also diverges.
61 The sum is 0.2500000000 to ten decimal places. The maximum error is

b 1 -15
® _1dx=lm -_ 1 = = 6.5 x 10




0 5 bosoo 5%In 5 20 5% In5

62 The sum is 1.037. The maximum error is

o 1 1 -

dx=lim -~ — - 1 =16x1075
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1 -8 4 8

63 The maximum error is an+1 , SO we want anp+1 = (k+1) <10 ,or(k+1) >10 , so k=100.
64
Y kx Y x k 1 X X
a. ko® = € ) = 1=251 -e =1/2.Thuse =1/2 and X = - In(2).
) k 1 1

b. k=0 (3X) =1-3x =4,sothatl —3x= ., x= 4 .

oo 1 1

c. The X's cancel, so the equation reads ko =1z - W1 p = 0 The series telescopes, so that the
left side, up to n, is
n
1 1 = 1 - 1 -9 1
-12 n+1/2 n+1/2

k=0 k—1/2_k+1/2

and in the limit the equation then reads —2 = 6, so that there is no solution.
65
a. Let Tn be the amolnt of additional tunnel dug during week n. Then To =100 and Tn=.95-Tn-1=

(.95)n To=100(0.95", so the total distance dug in N weeks is
N -1 N

y 1- (0.95)
SN =100(0.95) =100 1"_(95 =2000(1 - 095").

Then S10 = 802.5 meters and S20 = 1283.03 meters.
o k 100

b. The longest possible tunnel is Sco = 100 k=0 (0.95) =1-95 =2000 meters.

66 Let tn be the time required to dig meters (n — 1) - 100 through n - 100, so that t1 =1 week. Thenth=1.1 -

th-1=(1.1) N1y = (1.1) N1 veeks. The time required to dig 1500 meters is then
15 15

k= (115! % 31.77 weeks.

So it is not possible.

67

a. The area of a circle of radius ris zr% . For r=217" , thisis 22720 1 There are 2" circles on the nt"
page, so the total area of circles on the nth pageis2" L. n2? =l

a»
b. The sum of the areas on all pagesis k=1 1 Kro2r e 27K =22 =22

68 x0=1,x1 = 1.540302, x2 = 1.57079, x3 ~ 1.570796327, which is £ to nine decimal places. Thus p = 2.

69

a. Bn=1.0025Bn-1+ 100 and Bo =100.

n 17 1.0025 n n+l

b.Bn =100 -1.0025 +100 1-10025 =100-1.0025 —40000(1 — 1.0025 )=40000(1.0025 -1).
70



a.an= X ix = 1 —Xn+1= _ = ,s0 liman=0.
n+1 n+ —oo
"l -1 1—(;” _%_ "
= p - _ 1-p 1-p
b.bn = dx = X = (n - 1). Becausep>1,n —(0asn — oo,so that
1 X 1-p 1 1-p
lim b = pTl .

n—oo
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71
v Y

a. T1 =163 and T2 =164§-

b. Atvstagenv/,3" ! triangles of side length 1/2" are removed. Each of those triangles has an area of

—3- 3
4-4" =4, ,s0atotal of v v
3 -1
3n-1. ==%F . 3
4 16 4
is removed at each stage. Thus
Vi vV _ v
n-1
S R | 3k 3 1- 2 .
1o _4 - 4 4 1
Th= k=L =16 k=0
¢ limTp= —3 because 3 N Oasn — oo,
n—oo 4 1
v

d. The area of the triangle was originally 43, 50 none of the original area is left.

72 Because the given sequence is non-decreasing and bounded above by 1, it must have a limit. A
reasonable conjecture is that the limit is 1.
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Chapter 9

Power Series

9.1 Approximating Functions With Polynomials
9.1.1 Let the polynomial be p(x). Then p(0)=f (0), p (0)=f (0), and p (0)=f (0).

9.1.2 It generally increases, because the more derivatives of f are taken into consideration, the better “fit”
the polynomial will provide to f.

9.1.3 The approximations are po (0.1) = 1, p1 (0.1) = 1 +%21=1.05, and p2(0.1) = 1 + %21 — 013 —1.04875.

9.1.4 The first three terms: f (a) + f (a)(x — a) + 2 f @ -ay.

9.1.5 The remainder is the diffierence between the value of the Taylor polynomial at a point and the true
value of the function at that point, Rn (X) = f (X) — pn (X).

9.1.6 This is explained in Theorem 9.2. The idea is that the error when using an nth order Taylor polynomial
centered at a is |Rn (X)| <M - [x=2lnsy where(.' Ml)ils an upper bound for the (n + 1)st derivative of f for values
n+1)!

between a and Xx.
9.1.7

v
a. Note thatf(1)=8,and f(x)=12 X, sof(1)=12. Thus, p1 (x)=8+12(x — 1).
v - 2
b. f (xX)=6/ Xx,s0f (1)=6.Thusp2 (X)=8+12(x —=2)+3(x—1) .
2
c. p1(1.1)=12-01+8 =9.2.p2 (1.1)=3(.1) +12-0.1+8 =9.23.

9.1.8

a. Note that f (1) = 1, and that f (x) = —=1/x?, so f (1) = =1. Thus, p1 (X) =1 — (x — 1) = —=x+2.
b.f (x)=2/x%,s0f (1)=2. Thus, p2 () =2 - x + (x - 1)2.
c. 1 (1.05) = 0.95. p2 (1.05) = (0.05)> - 0.05 +2 = .953.

9.1.9

a. f (x)=-e %, sop1 (X)=f(0)+f (O)x=1-x.

bt ()=e X, sop2()=FO)+f Ox+ 2 (Op2=1-x+ 2%,

c.p1(0.2)=0.8, and p2 (0.2)= 1 — 0.2 + 12 (0.04) = 0.82.
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9.1.10
=12 -1
af )= , X ,s0pL(X)=f(4)+f X —-4)=2+ 4 (x-4).
d 2 1 + 2

bf == . X 72, s0pa(0=f(@)+f @x-4)+ 2'f @)(x-4) =24 4 (- es (-4

1
. PL(B9)=2+ %  (=0.1)=2-0.025=1.975 and p2(3.9)=2 - 0.025 —  (0.001) = 1.975.
9.1.11

1
af(X)=-( x? ,sopt(¥)=f@O)+f O)x=1-x
1 2 2
b.f (x)= 2, sop2(X)=f(0)+f (O)x+ _ fOx =1-x+x .
(x+1) 2
c. p1 (0.05) = 0.95, and p2 (0.05) = 1 — 0.05 + 0.0025 = 0.953.

9.1.12
\/—
a. f (x) = — sin X, so p1 (X) = cos(n/4) — sin(z/4)(X — n/4) = - (1 = (x — 7/4)).
b.f (X)=- cosx, so
p2 (X) = cos(w/4) — sin(z/4)(x — nl4) — 1 cos(n/4)(X — 7r/4)2
2

L, 1
-T2 1-(x-nd) - A(x w4y

c. p1 (0.247) = 0.729, p2 (0.247) = 0.729.

9.1.13
a. fx)=(18x 23, sop1(x)=f@8)+f B)(x -8)=2+ 1‘2 (x - 8).
bt (X)=(=29)x"2R sop2 (x)=f(8)+f (8)(x — 8) + 7 (8)(x-8)% =2+12F (x-8) - 2887 (x - 8)2.

c.p1(7.5) = 1.958, p2 (7.5) =~ 1.957.

9.1.14
1

af (X)=1+x ,sop1(X)=f(0)+f (0)x=x.
X 1 2

b.f (X)=- @asé)? ,sop2(x)=f(0)+f (0O)x+ 2 (0)x - X

c.p1(0.1)=p2(0.1)=0.1.

1
9.1.15 f(0)=1,f(0)=-sin0=0,f (0)==-cos0=-1,sothatpo (X)=1,p1 (X)=1,p2(X)=1 - 7 X5,

y  po(x) p1(x)

q q

Il Il
T

U v X
A \/y COS X




y  p2x)

9.1.16 f(0)=1,f(0)= —e? = -1, f 0)=€® =1,s0thatpo () =1,p1 ()=1-%p2 ()=1-x+ ¥
2
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Yy

ye x
y P2 x
y PO X
7 1 2 3 4

R y P1x

9.1.17 f(0)=0,f(0)=-1-To— = -1,f (0)= -8y = -1, s0 that po (x) =0, p1 (X) = =X,
1 .2

P2 (X)= =X —=2X".

9.1.18 f(0) =1, (0) = (=1/2)(0+ 1) 32 = -1/, f (0)=(3/4)0+1)"%2 =3/4, 50 that po (x) = 1,
pl(x)=1—*,2pz <x>=1—§+sgz.

1.0 0.5 0.5 1.0 15 2.0

9.110 f(0)=0. f(X)=sec®xf  (x)=2tanxsec®x sothat f(©) =1,f (0)=0. Thuspo(x)=0,
P1 (X) =X, p2 (X) =X

YA

e y tanx

N y P16 P2

1= y pO(X)

V. x
q q

1—

2—-

3—-

4
9.1.20 f(0)=1,f(0)=(-2)(1+0) 3 = -2, f 0)=6(1+0)"*=6. Thuspo (x)=1, p1 (x)=1 = 2%,
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966.1. Approximating
Functions With Polynomials Chapter 9. Power Series66

P2 (X)=1 - 2x+3x%.
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With Polynomials Chapter 9. Power Series67

|l.0 0.5 I

9.1.21 f(0)=1,f(0)=-3(1+ 0)_4= -3, f 0)=12(1+ 0)_5= 12,sothatpo (X)=1, p1 (X) =1 — 3x,
p2 (x)=1 —3x+ 6%

Ya

T © y  p2(x)

-+ 2
y  po(x)
y 1 x 3
I PR
y p1(x)

9.1.22 f(0)=0,f (X)=v—2,,f ()= —F= ,sothatf(0)=1,f (0)=0.Thusop (X)=0, 1p (X) =X,

p2 (X) =y 1-x 1-x )
15y
1.0
0.5
X
9.1.23
a. p2 (0.05) = 1.025.
v
b. The absolute erroris 1.05 - p2(0.05)~7.68x 107° .

9.1.24
a. p2 (0.1) = 1.032.
b. The absolute error is 1.1% - pp (0.1) 5.8 x 107°.
9.1.25
a. p2 (0.08) ~ 0.962.

b. The absolute errorisp2 (0.08) ‘%5 1.5 1074
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9.1.26
a. p2 (0.06) = 0.058.

b. The absolute error is In 1.06 — p2 (0.06) = 6.9 x 1072,
9.1.27

a. p2 (0.15) = 0.861.

015 54 x107%.

b. The absolute error is p2 (0.15) — e~
9.1.28

a. p2(0.12) = 0.726.

b. The absolute error is p2 (0.12) = 1125 ~1.5x1072,

9.1.29

a. Note thatf(1)=1,f(1)=3,and f (1) =6. Thus, po (X)=1,p1 (X)=1+3(x = 1),and p2 (X)=1+3(x = 1) +

3(x - 1)%.
b.
y
po X
J N\ P2X
fx p1x

9.1.30

2

a. Note that f (1) =8, f (1) = =4,andf  (1)= —gm= = -2 Thus, po (X) =8, p1 (X) =8 +4(x — 1),

p2(x)=8+4x-1) - (x- 1) .

v
k

D2
1

9.1.31
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2P0 20 e 2x- E) s od o+ L xaE) - 2 x-a)
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Functions With Polynomials Chapter 9. Power Series70
b.
y 4 y p1(x)
11 y p2(x)
y  po(x) 1
y sinx
d v d q [
9.1.32 / i
v v L v v
a. po (X) = 2§,p1(x)= 23 ol x-gZ, P2 (X)= 23 =2l x-6 -7° x-% 2.
T
b.

pr x1.5

y CosX

y
N
\‘1 "
0.5
1.0
15

9.1.33
- - 1 = 1.y — 2
a.po(X)=3,p1(X)=3+=p(X—-9),p2(X)=3+"6 (X—9) - 2167 (x - 9)°.
b.
y
J
st y  p1(x)
6~ / y P2
- y X
44
2-/ y P
T oot %4 %
2L
9.1.34

a.p0 (X)=2, p1 (x) = 2 + 122x = 8), p2(X) = x + 12% (X = 8) - 2887 (x - 8)2.
b.

2.0
15
1.0

y X13
0.5
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9.1.35

a. po () =1,p1 () =1+2e (x —e), p2(x) =1+ Le (x— &) — 2e (x - )2,

b.
y A
5
pus
y  pix)
34
24 y Inx
1 y  Po(x)
y p(xg
= 2 3 '4'5 6 7 '8'9 X
Los-
2.
3]
9.1.36

a. po(x)=2,pL(x)=2+ 321—(x - 16), p2(x) =2 + 321 &x-16) - 40963—(X - 16)2 .

b.
y
9.1.37
a.f(l)= Z+2,f1)= ' +2=2f(1)=- 2L2=03  po(=2+47F, pL(X)=2+4 +_ &- 1;’,
4 2 2 2
pa(xX) =2+ = +5(x = 1P -1)2. N N
4 2 4
b.
¥ =pya
n I):ﬁ Iil‘) 15 ;
9.1.38
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a. f(In2)=2,f(In2)=2,f(In2)=2.Sopo (X)=2, p1 (X)=2+2(Xx—In2),p2 (X)=2+2(x = In2) + (X = In
2)2.
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=

p2 X

y PoX y PLXx

—

b. 05 10 15 0.

BN w s oo

9.1.39

a. Ue the Taylor polynomial centered at 0 with f (X) = eX. Wehavep3 (X)= 1+x+ 17x2 +1x°.

p3 (0.12) ~ 1.127. :
b. [f (0.12) - p3 (0.12)| = 8.9 x 10~ 6.
9.1.40
a. Use the Taylor polynomial centered at 0 with f (x) = cos(x). We have p3 (x) =1- 12X2 .p3(-0.2)=0.98.
b. |f(0.12) - p3 (0.12)] = 6.7 x 107°..
9.1.41
a. Use the Taylor polynomial centered at 0 with f (x) = tan(x). We have p3 (x) =x + 1 3 X3,

p3 (-0.1) = —0.100.
b. |p3 (-0.1) - f(=0.1)| 1.3 x 1076 .
9.1.42
a. Use the Taylor polynomial centered at 0 with f (X) = In(1 + x). We have p3 (x) =X - 1 2 X2 + 13 xS p3

(0.05) = 0.0488.
b. |p3 (0.05) - f (0.05)] = 1.5 x 1076 .

9.1.43
v
_13
a. Use the Taylor polynomial centered at 0 with f (x) = T+x Wehaveps (x)=1+1 x-lg P+
p3 (0.06) = 1.030.

b. |f (0.06) — p3 (0.06)| = 4.9 x 10" .

9.1.44
v

a. Use the Taylor polynomial centered at 81 with f (x) = ' X. We have P3 (X)=3+ T%.B(x - 81) - —233128 (X —
2 —_ 3
81)  + 22674816 (X — 81) - P3(79) = 2.981.
b. |p3 (79) — f (79)| ~ 4.3 x 1078
9.1.45

a. Use the Taylor polynomial centered at 100 withf (x) = x. Wehave p3 (x) =10+ 20 (x=100) -
1 2 il 3

8000 (x — 100) + 1600000(x — 100) . p3 (101) = 10.050.
b. |p3 (101) -  (101)| # 3.9 x 1072
9.1.46

—_—
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Vv
a. Use the Taylor polynomial centered at 125 with f (x) = 2 We have p3 X)=5+ 151 (x = 125) —
—L 2 1 3

28125 (X —125)  +6328125 (X — 125).p3 (125) = 5.013.
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b. |p3 (126) - f (126)| ~ 8.4 x 10710,
9.1.47

a. Use the Taylor polynomial centered at 0 with f (X) = sinh(x). Note that f (0)=0, f(0)=1,f(0)=0and f
(0) = 1. Then we have p3 (X) =X + X° /6, so sinh(.5) & (.5)° /6 + .5 = 0.521.
b. |p3 (.5) — sinh(.5)| = 2.6 x 10~ 4.
9.1.48
a. Use the Taylor polynomial centered at 0 with f (x) = tanh(x), Note that f (0)=0, f (0)=1, f 0)=0,
2

f (0)=-2. Then we have p3 (x) = X33+ X, so tanh(.5) = —(.5) /3 +.5 =~ 0.449.
-3
b. |p3 (x) — tanh(.5)| = 3.8 x 10

fS”_*D—Q n+l
9.1.49 With f (x) = sin X we have Rn (X) = n+1) x for ¢ between 0 and X.

(n+1) n+
9.1.50 With f (x) = cos 2x we have Rn (X) = f_”_(c)x !

for ¢ between 0 and x.

(n+1)!
n+l -x —_— ="
- —1)n+1
9.1.51 Withf(x)=e X we have f (n+1) X)=(-1) e ,sothatRn(x)= (=)re Xn+1  for ¢ between
!
0 and x. - (n+1):
f (o+l) (©) o ™l
9.1.52 With f (x) = cos X we have Rn (x) = Tx- - for c between * and x.
(n+1)! 2 2
f (n+1) (C) T n+l
9.1.53 With f (x) = sin x we have Rn (X) = B Tx- " for ¢ between <= and
X. (n+1)! 2 2
_1)n+1
054 Withf(g= 1 we have f ™D x)=(-1)™1  — 1__ sothatRny(x)=— "1 forc
1 a-x (I-c)™2

between 0 and x.

9.1.55f (x) =sin X, so f ©) (X) = cos x. Because cos X is bounded in magnitude by 1, the remainder is
bounded by [Ra (x)| <& 35%2.0x107°.

5!

9.1.56 f (x) = cos X, so f @) (X) = cos x. Because cos x is bounded in magnitude by 1, the remainder is

bounded by |R3 (x)] < %*®a14 ~ 1.7 x 1073,

9.157 f(x)=¢€, s0f® (x)=eX. Because %25 is bounded by 2, [Ra (x)] < 2 - %2515 % 1.63 x 10°.

9.1.58 f (X) = tan X, so f @) (x)=2 sec? X(sec2 xon t2 tan? X). Now, since both tan x and sec x are increasing upper



[0, #/2], and 0.3 < %5 ~ 0.524, we can get an bound on f @ (x) on [0, 0.3] by evaluating at  ; this

gives f @ (x) <183 on [0, 0.3]. Thus |R2(x)| < 18 - %3138 2.4 x 1072, 6

9.1.59f(x)=e %, s0f ®) (x)=—e ~*.Because f () achieves its maximum magnitude in the range at x=0,
which has absolute value 1, |R4 (X)| £ 1 O5P5 %06 x1074.

9.1.60 f(x)=In(1+x), s0 f® (x) = = (x+1)%—~—— On [0, 0.4], the maximum magnitude is 6, so |R 3(x)| <
6-%ar* =64 x1073.

(n/4) 5
9.161Heren =3 or4,sousen =4, and M =1 because f ®) (X) = cos X, so that R4 (X) < 51

~
~
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249 x 1073,
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(w/4) 4
9.162 n=2o0r3,sousen=3,and M =1 because f Q) (X) = cos X, so that |R3 ()| < n =16x102

90163 n-2andM —e2 <2, so[R2 ()| <2+ HaP® =42 x10-.
2 2 o

2 X(sec x+2tan X).On[ ' 6] this achieves its maximum

9.164 n=1or2, souse?2, and f ©) (X) =2 sec

16 g o -
value at £ 67 ; that value is; . Thus |R2(X)| < 3 a1 =128 x10 L

9.165 n=2;f ©) x) = — —=2, which achieves its maximum at x= -0.2: [f®) X)|=— 23 <4
Then

3 (1+x)° 038
0.2

IR2 (0| <4- 3 ~54x107°.

9.166 n=1,f x)=- (1+ x)_3/2 , which achieves its maximum magnitude at x = —0.1, where it is less

2

w = sl

than 1/3. Thus R1 (X) < s~ 1.7 x1073.

9.1.67 Use the Taylor series for e* atx=0. The derivatives of e are e*. On [-0.5, 0], the maximum

magnitude of any derivative is thus 1 at X =0, so |Rn (-0.5)| < —ost , 8o for Rp (-0.5) < 1073 we need
(n+1)!

n=4.

9.1.68 Use the Taylor series at x =0 for sin X. The magnitude of any derivative of sin X is bounded by 1,

n+l

s0[Rn (02)| € “umr , so forRn (0.2) <1073 we need n =3,

9.1.69 Use the Taylor series for cos xatx=0.  The magnitude of any derivative of cos x is bounded by 1,
-3

025™
50 [Rn (=0.25)| < (s1y1 , so for |Rn(=0.25)|<10  weneed n=3.
9.1.70 Use the Taylor series for f (x) = In(1 + x) at x=0. Then |f D ()| = L | which for x

e n+l o
[-0.15, 0] achieves its maximum at X= —.15. This maximum is less than (1.2) -n!. Thus |Rn (-0.15)| £
1.2y (n+;;!1 = l'mlnlS) , 50 for [Rn (=0.15)| < 10~ 3 we need n = 3.

V4 L@n=1)y _ons1y _which
9.1.71 Use the Taylor series for f (x)=  x atx=1. Then |f (n+1) (X)| = achieves 2

its maximum on [1, 1.06] at X = 1. Then

1-3---2n—-1) (1.06- 1)

IRn (1.06)] <
2n+1 (n+1)!
and for |Rn (0.06)| < 107 we need n=1. 1:-3---(2n+1
S X) =
9.1.72 Use the Taylor series for f (x) = (1 x) atx =0, Then f(™D) (*) 2041 (1

x)(7372W/2 \yhich achieves its maximum on [0, 0.15] at x = 0.15. Thus

137 Q#FHE ——

1 - 0261 (n+1)!
L 1:3--;@nd)
0 BN +1)!

IRn (0.15)| <




and for |Rn (0.15)] < 10 ™3 we need n = 3.
9.1.73

a. False. If f (x) = e , then f (") x)=(-1)"2" e , so that f M) (0) =0 and all powers of x are present in
the Taylor series.

b. True. The constant term of the Taylor series is f (0) = 1. Higher-order terms all involve derivatives of
f(x)= x° - 1 evaluated at x = 0; clearly forn <5, f ) (0) =0, and for n > 5, the derivative itself
vanishes. Only for n =5, where f ®) (X) = 5!, is the derivative nonzero, so the coefflcient of X°in the
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Taylor series is f ®) (0)/5!'=1 and the Taylor polynomial of order 10 is in fact X - 1. Note that this
statement is true of any polynomial of degree at most 10.
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v

c. True. The odd derivativesof 1+ X2 vanish at x = 0, while the even ones do not.
d. True. Clearly the second-order Taylor polynomial for f at a has degree at most 2. However, the

coefflcient of (x — a)2 is 7 f (a), which is zero because f has an inflection point at a.

9.1.74 Let p(X) = ::0 ok (x = &) be the n" polynomial for f (x) at a. Because f (a) = ) p(a), it follows that
co =f(0). Now, the K" derivative of p(x), 1 <k <n,is p(k) (X) = klck + terms involving (x — a)I ,1>0,s0
f—ls

that f® (2)=p® @ =k - ck sothatck =~
9.1.75
1/2 -3/2 w 1

a. This matches (C) because for f (x) = (1 + 2x) ST () =-(1+2x) SO 21 =—3.

b. This matches (E) because for f (x)=(1+2x) Y2, (0 =31+2x 2%, s0 L@ = ;.

c. This matches (A) because f (") x)=2" e , so that f (") (0)=2", which is (A)’s pattern.
d. This matches (D) because f () =8(1+2x) > andf  (0)=8,so thatf  (0)/2!=4

e. This matches (B) because f (x) = —=6(1 + 2x) "% so that f (0) = —6.
f. This matches (F) because f ") x) = (=2)" e X ,s0f () (0)=(-2)", whichis (F)’s pattern.

9.1.76

y y
0.06 0.015
0.05f
0.04¢ 0.010
0.03f
0.02F 0.00%
0.01F

X
a. 0.4 0.2 02 0.4 0.4 0.2 02 0.4
In(1 = x) - p2 (x| |In(1 = x) - p3 (x|

b. The error seems to be largest at x = 1) and smallest at x = 0.
c. The error bound found in Example 7 for [In(1 - x) = p3 (X)| was 0.25. The actual error seems much
less than that, about 0.02.

9.1.77

a. p2 (0.1)=0.1. The maximum error in the approximationis 1 - 0 lay167x1074,
-3

b. p2 (0.2) =0.2. The maximum error in the approximationis 1 - 0 235133x1073.
—3r

9.1.78
a.p1(0.1)=0.1. f (x)=2tan x(1 + tan? X). Because tan(0.1) < 0.2, |[f (c)| < 2(.2)(1 + 22 )=0.416.

. -3
Thus the maximum error is &2116 0.1 " =2.1x10

0.416

b. p1 (0.2)=0.2. The maximum error is 2 022 ~83x1073,
9.1.79



Copyright xc 2015 Pearson Education, Inc.



980.1. Approximating
Functions With Polynomials Chapter 9. Power Series80

a. p3(0.1)=1 - .01/2=0.995. The maximum error is 1 'O'ﬁg ~42x1075.

b. p3(0.2) =1 - .04/2=0.98. The maximum erroris 1 - 0'412—4 ~6.7%x107°.
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9.1.80
: 24 : ® ol-2
a. p2 (0.1) =0.1 (we can take n = 2 because the coefflcient of x mp2(x)is0). f 7 (x)= w2+ hasa
-4
maximum magnitude value of 2, the maximum error is 2 O3~ 33 x 10
02d _
b. p2 (0.2) =0.2. The maximumerroris2 - 3 =27 x 10 3

9.1.81
a. p1(0.1)=1.05. Because [f (x)| = 1 (1+ x)_3/2 has a maximum value of 1/4 at x = 0, the maximum error

sy 0ol2513 %1073,

-3
b. p1(0.2) =1.1. The maximum error is L. 0“22 2=5x10
9.1.82
a.p2 (0.1)=0.1 - 0.01/2 = 0.095. Because |f ®) (x)| = w1+ achieves a maximum of 2 at x = 0, the

maximum error is 2 e_'37!13 ~33 %1074

9—7'2 _3
b. p2 (0.2) =0.2 - 0.04/2 = 0.18. The maximum error is 2 - 3 %27 %10 .

9.1.83
2
a.p1(0.1)=1.1. Becausef (x)= e* isless than 2 on [0, 0.1], the maximum error is less than 2 - %
1072
22 2
b. p1(0.2) =1.2. The maximum error is less than2 - 5, =.04=4 x10 “.
9.1.84
D S 013
a.p (0.1)=0.1. Because f x)= 1-x )% is less than 1 on [0, 0.2], the maximum error is 1 : [
1.7 x107%4 “4 6
-0.2 34 x10 55 >61_02 3
b. pla(.().Z) i8% The ngximyaserror 1@1_) » f(!)_% =13x10 °.
9.1.85 0.0 0 0
gl 15ec% 5 52,00l sec X0 ks
-4 —g b. The errors are equal for positive and negative x.
0.2 34 x10 5.5 x 10 This makes sense, because sec(—X) = sec X and pn
9.1.86 (=Xx) = pn (X) for n = 2, 4. The errors appear to get
| lcos X — p2 (x)|| lcos x = pa (x)] larger as x gets farther from zero.
—02 666x107° 88 x1078
A -01 417x107%  139x107°

0.0 0 0

—voT  417x10°°  139x107°

b. The errors are equal for positive and negative X.
This makes sense, because cos(—x) = cos x and pn
(=X) = pn (X) for n =2, 4. The errors appear to get
larger as x gets farther from zero.

02  6.66x107° 8.88 x 108
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9.1.87
e oy ool] e ppal
02  214x1072  140x10°3
L -0l 517x107°  171x107%
0.0 10 0 0
01 484x 3 163x107%
02 187 x1072 127x1073
9.1.88
| 1r 0 = pr ool I ) = p2 ()
02 231x1072  314x107%
. -01 536x107°  361x107%
0.0 10 0 0
01 469x 3  310x107%
02 177x1072  232x1073
9.1.89
| |tan x - p1 (X)|| |tan X — p3 (x)|
02 271x1073 434 x 1075
-4 -6
a. -0.1 3.35 x 10 1.34 x 10
0.0 0 0
01 335x107% 134x 1076
0.2 2.71 x 1073 434x107°
T 1+ 3
9.1.90 The true value of cos = v =~ 0.966.
2 22
Xx=01is
p6(x)=1 -

v —

b. The errors are diffierent for positive and negative

displacements from zero, and appear to get larger

as X gets

farther from Zero.

b. The errors are diffierent for positive and negative

displacements from zero, and appear to get larger

as X gets

farther from Zero.

b. The errors are equal for positive and negative x.

This makes sense, because tan(-x) = — tan x and
pn (=x)= —pn (X) for n=1, 3. The errors appear

to get larger as x gets farther from zero.

X8

24 720

Evaluating the polynomials at x = 7/12 produces the following table:

n | pn = I —cos £ |
- I
1 1.0000000000 341 x 102
2 0.9657305403 195 x 1074
3 0.9657305403 195 x 1074
4 09659262729 447 x 1077
5 0.9659262729 447 x 1077
6 0.9659258257 547 x 10710

The 6" -order Taylor polynomial for cos X centered at x = z/6 is

The 6™ -order Taylor polynomial for cos x centered at



2V 2 6 4 6 V_12
+ 4 32X Z 4- 1 X I o5-
8 6 240 6 1440
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Evaluating the polynomials at x = 7/12 produces the following table:

n ph 2 |||pn£ - cos %

1 0.9969250977 3.10 x 10”2
2 0.9672468750 132x107°
3 0.9657515877 174 x 1074
4 0.9659210972 473 %1078
5 0.9659262214 3.95x10 '
6  0.9659258342 7.88 x 1079

Comparing the tables shows that using the polynomial centered at x = 0 is more accurate when n is
even while using the polynomial centered at x = 7/6 is more accurate when n is odd. To see why, consider
the remainder. Let f (X) = cos x. By Theorem 9.2, the magnitude of the remainder when approximating

f (7/12) by the polynomial Pn centered at 0 is:
n ) x
Rn = n+l
12 12 (n+1)12

for some c with0 < ¢ < &, while the magnitude of the remainder when approximating f (z/12) by the
polynomial pn centered at l6 is:

(@) 7

Rn - n+l

12 (n+1)112
for some ¢ with 12% < ¢ <% . When n is odd, |f (n+1) (¢)| = | cos c|. Because cos X is a positive and

decreasing function over [0, 7/6], the magnitude of the remainder in using the polynomial centered at 7/6
will be less than the remainder in using the polynomial centered at 0, and the former polynomial will be more
accurate. W‘h1 nn
is even, |f (n+ (c)| = | sin c|. Because sin X is a positive and increasing function over [0, #/6], the

remainder in using the polynomial centered at 0 will be less than the remainder in using the polynomial
centered at 7/6, and the former polynomial will be more accurate.

9.1.91 The true value of e2%° ~ 1.419067549. The 6" -order Taylor polynomial for € centered at x =0 is

X2 X X X X

pe(x) = 1+x+ _— ot e— +

2 6 24 120 720
Evaluating the polynomials at x = 0.35 produces the following table:

n | pn(0.35)lpn (035) - &%

1 1.350000000 6.91 x 1072
) 1.411250000 7.82 x 1072
3 1.418395833 672 x1074
4 1.419021094 465 x 1073
5 1.419064862 269 x 1070
6 1.419067415 133 x 107/

The 6 -order Taylor polynomial for €* centered at x =1In 2 is

p6 () =

1
2+2(x-In2)+(x - In2)? + 3(x In2)3
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—1

1 5 6
+—(X In2) + (X-1In2)".
60 360

Evaluating the polynomials at x = 0.35 produces the following table:
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n | pn(035)pn(0.35) - %
1 1.313705639 1.05 x 10~ %
) 1.431455626 124 x 102
3 1.417987101 1.08 x 1072
4 1419142523 750 x 107°
5 1419063227 432 %1078
6 1.419067762 213 x10°7

Comparing the tables shows that using the polynomial centered at x = 0 is more accurate for all n. To see

why, consider the remainder. Let f (x) = et By Theorem 9.2, the magnitude of the remainder when approximating
f (0.35) by the polynomial pn centered at 0 is:

Roa3)- L@l _ee—
(n+1)! (0.35) =(n+1)!(035)

for some ¢ with 0 < ¢ < 0.35 while the magnitude of the remainder when approximating f (0.35) by the
polynomial pn centered at In 2 is:

Rn (035)] = [[8-©ljo 35 - o™= _8— ) —0.35™1
(n+1)! (n+1)!

for some ¢ with 0.35 < ¢ < In 2. Because In 2 — 0.35 = 0.35, the relative size of the magnitudes of the

remainders is determined by € in each remainder. Because €* is an increasing function, the remainder in
using the polynomial centered at 0 will be less than the remainder in using the polynomial centered at In
2, and the former polynomial will be more accurate.

9.1.92

a. Let x be a point in the interval on which the derivatives of f are assumed continuous. Thenf  is con-
tinuous on [a, x], and the Fundamental Theorem of Calculus implies that because f is an

antiderivative of f, then g f (t) dt=f (x) - f (a), or f (x) = (a) + 2" f (t) dt.

b. Using integration by parts with u=f () and dv = dt, note that we may choose any antiderivative of
dv; we choose t — x=—(x — t). Then

X X

fx)=f@-fHx-1t + (x = t)f (t)dt
t=a a

=f(a) - f@)x —a)+ Xx-of (b dt.

. . L0’
c. Integrate by parts again, using u="f (t), dv=(x — t) dt, so that v= - 7

fo)=f(@)+f@x-a)+ *x-1tf (t)dt

=f@+f@)Xx-2a) _-6x—2_t-)._2f ) :+-; ax(x_t) 2f(t)dt
@ 1

=f@+f@x-a+ 2 (x a)2 +2 ’ (x—t)zf (1) dt.

It is clear that continuing this process will give the desired result, because successive integral of x —
tgive — kl!(x - t)k.
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d. Lemma: Let g and h be continuous functions on the interval [a, b] with g(t) > 0. Then there is a
number ¢ in [a, b] with

ht()t)g(t) dt=h(c) i g(t) dt.

Proof: We note first that if g(t) = 0 for all t in [a, b], then the result is clearly true. We can thus assume
that there is some t in [a, b] for which g(t) > 0. Because g is continuous, there must be an interval
about this t on which g is strictly positive, so we may assume that

b
g(t) dt > 0.

a

Because h is continuous on [a, b], the Extreme Value Theorem shows that h has an absolute
minimum value m and an absolute maximum value M on the interval [a, b]. Thus

m < h(t) <M

for all tin [a, b], so
b b b

mg(t)dt < h(t)gt)dt<M g(t) dt.
b

Because o 9(t)dt>0, wehave

ms-ag—(-)g-(—)—ht 0dt ¢y,

P o) dt
a

Now there are points in [a, b] at which h(t) m and M, so the Intermediate Value Theorem shows
equals that there is a point ¢ in [a, b] at which

b
h(c) = a_ h(t)g(t) dt
a® g(t) dt
or b b
h(t)g(t) dt= h(c) g(t) dt.
a a
n+1) N (n+1) (G ) X n
Applying the lemma with h(t) f nt (@, 9(t)=(X-1t) ,wesee that Rn (x) = f o a(x—t) dt=
20 1 x—a)™s F2— 9 x - a)™! forsomec € [a, b].
n! n+l (n+1)!
9.1.93

a. The slope of the tangent line to f (x) at x = a is by definition f (a); by the point-slope form for the
equation of a line, we havey - f (a)=f (a)(x — a), ory=f (a) +f (a)(x — a).

b. The Taylor polynomial centered at a is p1 (X) =f (a) + f (a)(x — @), which is the tangent line at a.
9.1.94
a.p2 (x)=f(a)+f(a)x-a)+ 1@ (x-a)2,sothatp(x)=f (@)+f (@)(x—a)andp (X)=F (a).

If f has a local maximum at a, then f (a) =0, f (a) ‘ <0, but then p2 () =0 and p2 (a) < 0 by the

above, so that p2 (x) also has a local maximum at a.
b. Similarly, if f has a local minimum at a, then f (a) =0, f (a) 2 0, but then p2(a) =0 and p2 (a) > 0 by the
above, so that p2 (X) also has a local minimum at a.



c. Recall that f has an inflection point at a if the second derivative of f changes sign at a. But p 2(x) is
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a constant, so p2 does not have an inflection point at a (or anywhere else).
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d. No. For example, let f (x) = x> . Then p2 (X) = 0, so that the second-order Taylor polynomial has a

local maximum at X = 0, but f (x) does not. It also has a local minimum at x = 0, but f (X) does not.
9.1.95

a. We have
FO=f® ©0)=sin0=0  f@=fD@=sinz=0
£(0)=f® (0)=cos0=1 f(r)=f® (0)=cos = -1
f (0)=-sin0=0 f (m)=-sinz=0
f (0)=-cos0=-1 f (m)=-cosm=1.
Thus
3 5
ps()=x- & 4
3L 5!

g5 (X)=—(X — ) + _1(X—7Z')3— l(X—7r)5.

3! 5!

b. A plot of the three functions, with sin X the black solid line, p5 (x) the dashed line, and g5 (x) the
dotted line is below.

1

I

p5 (x) and sin x are almost indistinguishable on [-#/2, /2], after which p5 (x) diverges pretty quickly
from sin X. g5 (X) is reasonably close to sin x over the entire range, but the two are almost indistin-

guishable on [#/2, 3z/2]. p5 (X) is a better approximation than g5 (x) on about [z, /2), while g5 () is
better on about (7/2, 2x].

c. Evaluating the errors gives

_x_| Isinx = p5 ()] | |sinx - g5 (¥)|

| 2| 36x107° | 7.4x1072

3| 45x107% | 45x1078
& 74x10 2 3.6 x10 >
- 2.3 3.6x10°
- 20.4 74 %102

d. p5 (x) is a better approximation than g5 (x) only at x = %4, in accordance with part (b). The two
are equal at x = 2, after which g5 (X) is a substantially better approximation than p5 (x).
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9.1.96
a. We have
f(1)=In1=0 fe)=lne=1
f(1)=1 fey= 1
3
f)=-1 f (e)=—%2
f (1)=2 f (e)=-2
. @3
Thus
9= -1 - dx-12+ 2 1 —e-1- lx-12+ tx 1)°
1 2! 1 3!2_1 3 2 3
- (x-e
g3 =1+ e(x-e) 2.0 ) +3°(x e).

b. A plot of the three functions, with In x the black solid line, p3 (X) the dashed line, and g3 (X) the dotted

line is below. /
[y //
.f/
,f( M‘-E"”‘
3 4
2
c. Evaluating the errors gives
x | [Inx-p3 )| | [Inx-q3X)
05| 26x10% | 36x10 "
1.0 0 8.4 x 1072
15| 1.1x1072 1.6 x 10~ 2
20| 14x1071 15%x 1073
25| 58x1071 11x107°
3.0 1.6 27x107°
3.5 3.3 14x1073

d. p3 (x) is a better approximation than g3 (x) for x=0.5, 1.0, and 1.5, and g3 (x) is a better approximation

for the other points. To see why this is true, note that on [0.5, 4] that f @ x)=- 8, isbounded in

6
magnitude by o05*

=96, so that (using Ps for the error term for p 3 and Q 3 as the error term for gs)

Qg(x)s%-M‘* —4lx-e¢f*.

Pa(x) <96 —[E= % =4|x-1[*,



4!
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Thus the relative sizes of P3 (x) and Q3 (X) are governed by the distance of x from 1 and e. Looking
at the diffierent possibilities for x reveals why the results in part (c) hold.
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9.1.97
a. We have
v Vv
f(36)= 36-6 f (49) = 49=7
fee)= 1 d=_1 fag)= 1 1. =1
2 36 12 2 49 14
Thus
pL(X)=6+ -L(x-36) gL () =7+ —L(x - 49).
12 14
b. Evaluating the errors gives
'\v/ '\V/
__L_-l—x_—pl—()()l-l—)_@-— 11X |
37| 57x107% [ 6.0x 1072
39 | 50x107° [La1x1072
41 | 14x107% [ 25x1072
43| 26x107% |_14x102
45 | 42x107 |_61x 1073
47 | 61x10 2 | 15x10°3

c. p1 (X) is a better approximation than g1 (x) for x < 41, and g1 (X) is a better approximation for x > 43.
To see why this is true, note thatf (x)=—- % x %2 so that on [36, 49] it is bounded in magnitude by

1 _ 1
136 82_ ... Thus (using P1 for the error term for p1 and Q1 for the error term forq1)

P1(x) < 1 -6l - x 362 Q1(x -1 b= 49] ,_1(x 49) * .
2

2

864 2! 1728 864 2! 1728

It follows that the relative sizes of P1 (X) and Q1 (X) are governed by the distance of x from 36 and 49.
Looking at the diffierent possibilities for x reveals why the results in part (b) hold.

9.1.98

a. The quadratic Taylor polynomial for sin X centered at *2 is

p2(X)=Sin7[+COS7T~X—7T ~Lgin™. x-"
2 2 2 2 2 2
1 —x?
=12x 2
2
——lXZ +5+1 =
2 2 8

b. Letq(x)= ax? + bx + ¢. Because g(0) = sin 0 = 0, we must have ¢ = 0, so that q(x) = ax? + bx. Then the
other two conditions give us a pair of linear equation in a and b:
T T
2+ p-=

1
42

n”a+ab=0



where the first equation comes from the fact that q(z/2) = sin(z/2) = 1 and the second from the fact that q(z) = sin 7 = 0. Solving
the linear system of equations gives b==and a=-", so that

q(x) = — m2 X
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c. A plot of the three function, with sin x the black solid line, p2 (x) the dashed line, and q(x) the dotted
line is below.

d. Evaluating the errors gives

x | |sinx —p2 (X)] | |sin x = q(x)|
Z ] 16x1072 | 43x1072
T

z 0 0
i 16 x10 2 43x10°°

e. § is a better approximation than p at X = z, and the two are equal at x = 2. At the other two points,
however, p2 (X) is a better approximation than q(x). Clearly q(x) will be exact at x =0, x =2, and x =
7, because it was chosen that way. Also clearly p2 (X) will be exact at x = %2 since it is the Taylor
polynomial centered at % . The fact that p2 (x) is a better approximation than q(x) at the two

intermediate points is a result of the way the polynomials were constructed: the goal of p2 (x) was to

be as good an approximation as possible near x = "2 , while the goal of g(X) was to match sin x at
three given points. Overall, it appears that q(x) does a better job over the full range (the total area
between ¢(x) and sin X is certainly smaller than the total area between p2 (x) and sin x).

9.2  Properties of Power Series
9.21 co+c1x+czx2+03x3.

9.2.2co+c1(x—3)+c2(x—3)2 +c3(x—3)3.

9.2.3 Generally the Ratio Test or Root Test is used.
9.2.4 Theorem 9.3 says that on the interior of the interval of convergence, a power series centered at a
converges absolutely, and that the interval of convergence is symmetric about a. So it makes sense to try

to find this interval using the Ratio Test, and check the endpoints individually.

9.2.5 The radius of convergence does not change, but the interval of convergence may change at the end-
points.

9.2.6 2R, because for |x| < 2R we have |[x/2| <R so that ck (x/2) converges.

927X <4.
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k

9.2.8 (1) ckx€ = ck (-x)¥, so the two series have the same radius of convergence, because |-X| = |X|.
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1
9.2.9 Using the Root Test: limk— oo © lak| = limk—co |2X| = |2X|. So the radius of convergence is -. At

X = 1/2 the series is1 which diverges, and at x = —1/2 the series is (- 1)k which also diverges. So the
interval of convergence is (—1/2, 1/2).

9.2.10 Using the Ratio Test: lim = lim k = lim = 0. So the radius of

ak+1 (2x) LK
k— 008 k=00 (k+1)! (2x) k+1

. . . k— oo
convergence is o and the interval of convergence is (- o0, o).

XA =|x = 1|. So the radius of convergenceis 1. Atx =2,

9.2.11 Using the Root Test, lim ) “ Jag| = lim .

— 00 k=00

we have the harmonic series (which diverges) and at X = 0 we have the-alternating harmonic series (which
converges). Thus the interval of convergence is [0, 2).
k+1

9.2.12 Using the Ratio Test: lim ;k = lim (k+1)! - (xeplimi =0. Thus the radius of

koo koo koo k+1

convergence is © and the interval of convergence is (—o0, ).
k+1 k+1 —
9.2.13 Using the Ratio Test: lim = lim = lim (k+1) kX = (for x=0)
ak+1 (k+1) X k+1
k— oo ak k— oo KKK k— oo | | o
K

because lim Kikl— k = e. Thus, the radius of convergence is 0, the series only converges at x =0.

k— oo
9.2.14 Using the Ratio Test: ~ lim = lim —=— —lim (k+1)x 10 = (for x=10).
s (k+1)1(x~10) | - |
k— oo ak k— oo k!(x—lO)k
k— oo

Thus, the radius of convergence is 0, the series only converges at x = 10.

9.2.15 Using the Root Test: lim ¥ 7~ = lim sin(1/k)|x| = sin(0)[x| = 0. Thus, the radius of convergence

k— oo k—co

is o0 and the interval of convergence is (-, o).

9.2.16 Using the Root Test: lim * fa-tm 2zl =2 |x - 3|. Thus, the radius of convergence is 1/2.

k— oo k— oo

When x = 7/2, we have the harmonic series (which diverges), and when x = 5/2, we have the alternating
harmonic series which converges. The interval of convergence is thus [5/2, 7/2).

9.2.17 Using the Root Test: lim « Jm] = lim X = 1x, so the radius of convergence is 3. At -3, the
k— o0 k— oo 3 ) 3

seriesis (~1)f, which diverges. At 3, the series is 1, which diverges. So the interval of convergence is

(-3, 3).

9.2.18 Using the Root Test:  1im * TJa = lim M- , so the radius of convergence is 5. At 5, we obtain

k— oo k—oo 5 5
(—1)k which diverges. At =5, we have 1, whichalso diverges. So the interval of convergence is (=5, 5).
9.2.19 Using the Root Test: lim * T = lim & - 0, so the radius of convergence is infinite and the

koo k—oo K

interval of convergence is (-0, o).

9.2.20 Using the Ratio Test: lim o fenes “ = lim k

k— oo — 00 .X_4 x= 4
k— oo



so that the radius of convergence is 2. The interval is (2, 6), because at the left endpoint, k 2 2
the series becomes

(which diverges) and at the right endpoint, it becomes (-1) k (which diverges).
k+1

2 242 _

. 2 . .
9.2.21 Using the Ratio Test: lim w2t~ —g— = lim~—x"=0, so the radius of convergence is

K= oo (k+1)! k x" kooo K

infinite, and the interval of convergence is (-0, ).

9.2.22 Usine the Root Test: lim . mr—= lim kYK Ix = 11 = Ix = 1I. The radius of convergence is therefore

k— o0 k—oo

1. Atboth x=2 and x = 0 the series diverges by the Divergence Test. The interval of convergence is
therefore (0, 2).

ae  ykE. gel X v
9.2.23 Using the Ratio Test: lim =

K ookl =3 so that the radius of convergence is 3. At
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v Ve k—oo ak 3 X v

Xx= 3 the series is 3 3, which diverges. Atx = - 3, the series is

theinterval of convergenceis (- 3 v 3).

Copyright xc 2015 Pearson Education, Inc.
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9.852. Properties of Power Series

—_ kK 2 =
2k 2 - <
9.2.24 = = x . Using the Root Test: lim « a = lim = x , so that the radius of
X -
100
10 100 koo | k| koo 100
convergence is 10. Atx= +10, the seriesis then 1, which diverges, so the interval of convergence is
(-10, 10).

9.2.25 Using the Root Test:  lim * T = lim =1l = |x — 1|, so the series converges when |x - 1| <1,

k—oo k—o0 k+1

sofor0<x<2. Theradiusof convergence is 1. At x = 2, the series diverges by the Divergence Test. At

x =0, the series diverges as well by the Divergence Test. Thus the interval of convergence is (0, 2).

9.2.26 Using the Ratio Test:

lim P = =2 x4 3
2
k— o0 + B
|ak | k+1 k+2 Kk+1 K+1 |X + 3|.
: Kk k
3 (-2)" (x+3) 3
Thus the series converges when 23 [x+3]<1,0or - 9 <x<-3. Atx=- 2, the series diverges by the Divergence Test. Atx = — ES
the series diverges by the Divergence Test. Thus the interval of convergence is
9, _3
-"2,7"2.
9.2.27 = 0k e — 20_k+ald
Using the Ratio Test: klfoo a = (2k+3)| :kx kznlvm K00 : K : (2k+2)220ki)3:})w
radius of convergence is infinite, and the interval of convergence is (- o, o).
. . 2 3

9.2.28 Using the Root Test: lim * Jax | = lim 'L | - k 1 , so the radius of convergence is 3. The series is

k—oo k— oo 27 27
divergent by the Divergence Test for x = %3, so the interval of convergence is (-3, 3).
9229 f3x)= -1! o K . ' .

13 = 1-n 3 x .whichconverees for Ix| <1/3. and diverees at the endpoints.
+ . . . .
< 3 o xk+3 , which converges for x| < 1 and is divergent at the endpoints.
9.230g(x)=1"_x* =
) k=0
9.2.31h(x)= <8 =
1-x ° k+3 . . . .
v o 2X" 2, which converges for Ixl < 1 and is divergent at the endpoints.
9232 f (X3 )= . = ng . By the Root m o« ] = X3 , so this series also converges for
Test,
(o)
13 k=0
. . k—oo
x| < 1. It is divergent at the endpoints.
Yo o k+12 o k+l12 . L
9.2.33 =14 - Y keo =4 o , which converges for [x| < 1. Itis divergent at the
endpoints.
1 o k o k k k

9.2.34 f(—4x)= T+x = k=0 (-4x) = o (-1) 4 X , which converges for |X| < 1/4 and is divergent

at the endpoints.



9.235 f(3x)=In(1-3x)=- k=1 k =— k1  x .Using the Ratio Test:

lim 84 = lim _3K

koo @k k—oo k+1 [X|=3 x|,

so the radius of convergence is 1/3. The series diverges at 1/3 (harmonic series), and converges at —1/3
(alternating harmonic series).

9.2.36 g(x) = X3 In(1 -x)=- e Lk+3  Using the Ratio Test: lim T =lim X = X, so the

ak+1 k
k=1 k —_—
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k—oo ak k—)OO k+1
Il

radius of convergence is 1. The series diverges at 1 and converges at —1.

9.2.37h(x)=xIn(1 - x) = - © X Using the Ratio Test: lim  — = lim X = X, sothe
- ) ak+1 ok [ [

Kk— 0% koo K¥1

radius O.f convergenceis 1, and the series diverges at 1 (harmonic series) but converges at —1 (alternating
harmonic series).
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0 . . . — .
L3k Using the Ratio Test: lim = lim X =X ,S0
k=1 K . ak+1 k 3 3

koo k k—oo

9238 f(x3)=In(1 -x3) = -

the radius of convergence is 1. The series diverges at 1 (harmonic series) but converges at —1 (alternating
harmonic series).

S k+6
9.2.39 p(x) = 2x8 In(1 -x)=-2 L. Using the Ratio Test: lim = lim X = X,s0

ak+1

K
k=1 k k—>0°ak k—oo  k+l | | | |

the radius of convergence is 1. The series diverges at 1 (harmonic series) but convergesat -1 (alternating
harmonic series).

(o8]

9.2.40 f(-4x)=In(1 +4x) = - =20 Using the Ratio Test: lim = lim 4% =4X,s0

k
k=1 k k—oo? e k—oo  k+1 || ||

the radius of convergence is 1/4. The series converges at 1/4 (alternating harmonic series) but diverges at
—1/4 (harmonic series).

9.2.41 The power series for f (X) is o (2xk. convergent for —1 < 2x < 1. so for —1/2 < x < 1/2. The
power series for g(x) =f (x) is o

k_ m
k=1 k(2X) L) k=1 k@)™, also convergent on [x| < 1/2.

OOO XK, convergent for =1 < x < 1, so the power series for g(x) =

9.2.42 The power series for f (X) is

(k+1)(k + 2)x" , also convergent on [x| <1.

k- -
1 . g ke2k(k—1)x 2=yt k=0
2=f (x)ig 9=
9.2.43 The power series for f (X) is fj)xk,mme,gem for -1 <x <1, so the power series for g(x) =
if X 1 o kk-T)k-2)x k3 1 o (k+1)(k+2)(k+3)x, also convergent on x| < 1.
6  ()is 6 k=3 =6 k=0
[e0)
9.2.44 The power series for f (x) is k=0 (- 1) x% , convergent on JXJ <1. Because g(x) = — 1 f (x), the
power series for g is - 1 © (—1)k 2kx 1= o (-1 kK1 also convergenton [x| < 1. 2
2 k=1 k=1
9.2.45 The power series for 5~ . .0 ¥, convergent on |x| < 1/3. Because g(x) = In(1 — 3x) =
1 =] k k+1 (=] 3k k
-3 1-3¢dx and because g(0) =0, the power series for g(x) is ~3 k=0 3 k+l x == k=1 "k X, also
convergent on [-1/3, 1/3).
X bl bl k 2k+1
9.2.46 The power series for T is X k=0 (-1)fx% = k=0 (_1) X 7 Convergent on |X| < 1 Be-
. . 3 k_1 2k+2
cause g(X) =2 f(x) dx, and because g(0) =0, the power series for g(x) is 2 ko (=1) Zm—X =
Lo ) 2k+2 k+1 71 2k
k=0 (-1) k+1 X . This can be written as k=1 (-1) k X ,whichis convergenton[-1,1].
l (e}
9.2.47 Start with g(x) = 1x . The power series for g(X) is k=0 (~1)f XX . Because f (x) = g(x? ), its power
seriesis % (—1)k % The radius of convergence is still 1, and the series is divergent at both endpoints.
The interval of convergence is (=1, 1).
1 [ee]
9.2.48 Start with g(x) = 1-x . The power series for g(x) is k=0 X Because f (x) = g(x* ), its power series
15 k=0 . The radius of convergence is still 1, and the series is divergent at both endpoints. The interval
of convergence is (-1, 1).
9.249 Notethatf(x)= _ & =. _-L- .Letg(x)= L . The powerseriesfor g(x)is 1) (-, so the
k Xk
foe]

3+X 1+(1/3)x 1+x -



k k=0 ak+1

—X

power series for f (x) = g((1/3)x) is ko (1)K 37K = . Using the Ratio Test: lim =
k=0 3 kooo  ak
lim 3-hxet = x|, sothe radius of convergence is 3. The series diverges at both endpoints. The
_
k—o0® X 3
interval of convergence is (-3, 3).
9.2.50 Note that f (x) = 1 In(1 - x? ). The power series for g(x) =In(1 - X) is -
series for f (x) = lg(x2 p =1l o —1 X2k
1 and -1, its interval of convergenceis (-1, 1).
9.2.51Notethatf(x)=1n 4—x2__= iln(4—X2)= 1 mn4+In 1-x2 —In2+ 111'1 1 - x 2 . Now,
2 2 4 2 4
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(00
the power series for g(x) = In(1 - x) is — - lk'xk, so the power series for f (x)isIn2 - U ;lx—; i
n2- % _x___.Now, lim Sl = lim X kR < lim L_X2= _x , so that the
radius
% A2 At k— o0 2
k=1 ko2t a koo (k#D)2 203w 4(k+1) 4

of convergence is 2. The series diverges at both endpoints, so its interval of convergence is (-2, 2).
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. 1 o el 2
9.2.52 By Example 5, the Taylor series for g(x) = tan =~ X is k=0 a+1 ,sothat  f(x)=g((2x)") has
i A C ) N2 . L e
Taylor series - . Using the Ratio Test: lim =
k=0 K 4k+2 k=0 k2l oy k— oo ak
2k+1 2k+1
q2ed yaes o 2k+l 16(2k+1) 4 4
lim . - 2k+1 4k+2 = lim — =16x , so that the radius of convergence is 1/2. The interval
k—co 2k+3 4 x kooo  2k+3

of convergence is (-1/2, 1/2).

9.2.53
a. True. This power series is centered at x = 3, so its interval of convergence will be symmetric about 3.
b. True. Use the Root Test.

c. True. Substitute X2 for x in the series.

d. True. Because the power series is zero on the interval, all its derivatives are as well, which implies

(diffierentiating the power series) that all the ck are zero.
K
9.2.54  Using the Root Test: lim % @l = lm 1+1 |X| = ex. Thus, the radius of convergence is * .
k— oo k— oo ke
. . .= S R ~ K .

9.2.55 Using the Ratio Test:  lim = lim = lim X = X . The radius

a1 (k+1)!x K k 1
| I
of convergence is therefore e. k- & k—oo  (k+1) koo Kkl ¢

oo

9256 1+ w1 2k

oo =Ll
9257 o (~1)K T xX
. K Xok+1

9258  ywo (-1) 1P

9259  k=1(-1)

9.2.60 The power series for f (ax) is  ck (ax)k .Then  ck (ax)k converges if and only if |ax| < R (because
ck X converges for |x| < R), which happens if and only if |x| < R.

lal

9.2.61 The power series for f (x —a)is Ck(X - ). Then ¢k (x - a)¥ converges if and only if [x — a| <R,

which happens if and only if a = R <x < a+ R, so the radius of convergence is the same.

9.2.62 Let’s first consider where this series converges. By the Root Test, lim « Tm] = lim (X2 + 1)2 =
k— oo k— oo

(X2 + 1)2 , which is always greater than 1 for x =0. This series also diverges when x = 0, because there

we have the divergent series 1. Because this series diverges everywhere, it doesn’t represent any function,

except perhaps the empty function.
Vo 1 1

9.2.63 Thisis a geome v ric series with ratio X = 2,50its sum s v _— Again using the Root

k

. v Y v
Test, lim lak|=]" x = 2|, so the interval of convergence is givenby | 'x =2/ <1,s01< x<3and

k— o0

1 < x <9. The series diverges at both endpoints.

9.2.64 Thisseriesisl * xx.Because
k

X i isthe power series for — In(1 — X), the power series given
4 k=1 k=1 k

%

2 2 2
is — L In(1 - x ). Using the Ratio Test: lim al = [im x*?. = lim «k &



k+1 =X , so the radius of

koo & k—oo dk+4 X k—oo
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convergence is 1. The series diverges at both endpoints (it is a multiple of the harmonic series). The
interval of convergenceis (-1, 1).

9.2.65 This is a geometric series with ratio e X , 80 its sum is —l— By the Root Test, lim X
g y

k— oo

so the power series converges for x > 0.

Copyright xc 2015 Pearson Education, Inc.
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x=2 (x=2)/9 x=2 x=2 .
9266 This is a geometric series with ratio 9 ,soitssumis TI=x=2)19 =9 Ty Tl . USlng the ROOt
Test: lim K =2 - %2 , so the series converges for |x — 2| <9, or =7 <x < 11. It diverges
k—oo k—oo ' '
at both endpoints.
2 . . 1 3 3
- 1)/3, so its sum is
9.2.67 This is a geometric series with ratio (x It 4 T sa-2-y =4 - . Using the
-
. 2 2 .
Root Test, the seriesconverges for X" =1 <3, sothat -2<x° <4or -2<x<2. It diverges at both
endpoints.
k+1 k
9.2.68 Replacing x by x — 1 gives In x= oo "“——ku—. Using the Ratio Test: TS —
k=1 koo %
k .
lim - lim k1 [X=1|=|x = 1], so that the series converges for |x - 1| < 1. Checking
(x=1) k11 k— oo kK

k— oo k+1

the endpoints, the interval of convergence is (0, 2].
9.2.69 The power series for e is o . Substitute —x for x to gete * = P (—1)k e

k=0 k! k=0 k!

converges for all x.
X 2x o (2« ©o Lk k
9.2.70 Substitute 2x for X in the power series for e to get e = k=0 T k! = k=0 kI x . The series
converges for all x.
x ~3x © (=30« o k3t
9.2.71 Substitute —3x for x in the power series for e to gete = k=0 [ = k=0 (-1) k! x . The
series converges for all X.

X 2 2 X N

9.2.72 Multiply the power seriesfor " by x” to getx” e" = k=0 _k , which converges for all x.

9.2.73 The power series for XM (x)is Ck XM The radius of convergence of this power series is deter-
mined by the limit

k+l+m k+l
lim gm X = lim Ck+1 X ,
+
(oo CkXEHT o kXS

and the right-hand side is the limit used to determine the radius of convergence for the power series for f (x).
Thus the two have the same radius of convergence.

9.2.74
oo k i
a.Rn=f(X) - Sn (x) = ken* . This i a geometric series with ratio x. Tts sum is then R n = 1-x
desired.

b. Rn (X) increases without bound as x approaches 1, and its absolute value smallest at x = 0 (where it is

as

zero). In general, for x > 0, Rn (X) < Rn-1 (X), so the approximations get better the more terms of the
series are included.

u.o Ny
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oLl — 0
-

c. To minimize |Rn (X)|, set its derivative to zero. Assumingn > 1, we have R (X) = e
n =X
which is zero for x = 0. There is a minimum at this critical point.

The following is a plot that shows, for each x €
(0, 1), the n required so that Rn (x) < 1078 The

d. closer x gets to 1, the more terms are required in order
for the estimate given by the power series to be
accurate. The number of terms increases rapidly as X
-

1.

1.0 x

9.2.75

a.f(x)g(x)=codo+(cod1+01do)x+(cod2+c1d1+c2do)x2+...
n

b. The coefflcient of X" in f (X)9(x) is =0 Ci dn-i -
-1
9.2.76 The function «* is the derivative of the inverse sine function, andsin  (0) =0, so the power
1-x
series for sin -1 x is the integral of the given power series, or X+ 6x 13 + 1??5* . 1‘55‘15‘5‘7*7 +.... This can also
o 13-(2k=1)
X . B
be written X + kel 24-2k(2ken)” 2K
9.2.77
y
1
1
1
For both graphs, the diffierence between the true N .
value and the estimate is greatest at the two ends 0 05 ' 05 10
a.  of the range; the diffierence at 0.9 is greater than y
that at —0.9.
15
10
5
X
V 0.5
b. The diffierence between f (x) and Sn (x) is greatest for x = 0.9; at that point, f (x) = ﬁ - 100,
so we want to find n such that Sp (x) is within 0.01 of 100. We find that S111 % 99.98991435 and

S112 = 99.99084790, so n =112.

9.3 Taylor Series

9.3.1 The nth Taylor Polynomial is the nth sum of the corresponding Taylor Series.
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9.3.2 In order to have a Taylor series centered at a, a function f must have derivatives of all orders on
some interval containing a.
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9.3.3 The n coefflcientis [ @ .

th ()
n!

9.3.4 The interval of convergence is found in the same manner that it is found for a more general power
series.

9.3.5 Substitute x° for X in the Taylor series. By theorems proved in the previous section about power
series, the interval of convergence does not change except perhaps at the endpoints of the interval.

9.3.6 The Taylor series terminates if f () (0)=0 for n> N for some N . For (1+xJ , this occurs if and only if
p is an integer > 0.

9.3.7 It means that the limit of the remainder term is zero.
K

2X= o 2

9.3.8 The Maclaurin series is € k=0 k. Thisis determined by substituting 2x for X in the Maclaurin

series for e* .
9.3.9

a. Note that f (0)=1, f(0) = -1, x> 2
6 f (0)=1,andf (0)=-1. So the Maclaurin seriesis 1 —x+x /2 —
+ LI
K xk

b, (-1) _.
k=0 k!

c. The series converges on (-0, o), as can be seen from the Ratio Test.
9.3.10

a. Note thatf(0)=1,f(0)=0, f 0)y=-4,f (0)=0,f ) (0)=16, . ... Thus the Maclaurin series is
1-2x%+ 234 _Mygb

o — k@0

b. k:O( 1) (2K)!

c. The series converges on (-, o), as can be seen from the Ratio Test.

9.3.11

1 2 3 1 2 4 6

a. Because the series for 4x iS1=X+X —-x +--, theseriesfor 1% is1—-X +x —X +--
°° k 2k
b. k=0 (—1) X"

c. The absolute value of the ratio of consecutive terms is X2 , so by the Ratio Test, the radius of
convergence is 1. The series diverges at the endpoints by the Divergence Test, so the interval of
convergenceis (-1, 1).

9.3.12
a. Note that f (0) =0, flgg);_ i];,sefx ((+))= -16, f (0)=128, and f (0)=-1526. Thus, the series is
— X2, 6 2
o Kl (= 1 o Kl (4 «
b. k1 (-1) ki = k=1 (1) ke

4 Ixk

c. The absolute value of the ratio of consecutive terms is k +1  , which has limit 4|x| as k = o, so the

interval of convergence is (—1/4, 1/4]. Note that for x = 1/4 we have the alternating harmonic series,
while for x = —1/4 we have negative 1 times the harmonic series, which diverges.

9.3.13
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