Full link download Calculus Early Transcendentals 2nd Edition by Briggs Cochran and Gillet Test bank:
 https://testbankpack.com/p/test-bank-for-calculus-early-transcendentals-2nd-edition-by-briggs-cochran-and-gillet-isbn-
 0321947347-9780321947345/

Solution manual:
https://testbankpack.com/p/solution-manual-for-calculus-early-transcendentals-2nd-edition-by-briggs-cochran-and-gillet-isbn-0321947347-9780321947345/

Contents

8 Sequences and Infinite Series 3
8.1 An Overview 3
8.2 Sequences 10
8.3 Infinite Series 23
8.4 The Divergence and Integral Tests 34
8.5 The Ratio, Root, and Comparison Tests 43
8.6 Alternating Series 49
Chapter Eight Review 55
9 Power Series 63
9.1 Approximating Functions With Polynomials 63
9.2 Properties of Power Series 82
9.3 Taylor Series 88
9.4 Working with Taylor Series 100
Chapter Nine Review 111
10 Parametric and Polar Curves 119
10.1 Parametric Equations 119
10.2 Polar Coordinates 139
10.3 Calculus in Polar Coordinates 159
10.4 Conic Sections 171
Chapter Ten Review 191
11 Vectors and Vector-Valued Functions 209
11.1 Vectors in the Plane
11.2 Vectors in Three Dimensions 217
11.3 Dot Products 227
11.4 Cross Products 235
11.5 Lines and Curves in Space 243
11.6 Calculus of Vector-Valued Functions 251
11.7 Motion in Space 257
11.8 Lengths of Curves 273
11.9 Curvature and Normal Vectors 279
Chapter Eleven Review 289
12 Functions of Several Variables 303
12.1 Planes and Surfaces 303
12.2 Graphs and Level Curves 324
12.3 Limits and Continuity 335
12.4 Partial Derivatives 340
12.5 The Chain Rule 348
12.6 Directional Derivatives and the Gradient 355
12.7 Tangent Planes and Linear Approximation 366
12.8 Maximum/Minimum Problems 372
12.9 Lagrange Multipliers 381
Chapter Twelve Review 390
13 Multiple Integration 407
13.1 Double Integrals over Rectangular Regions 407
13.2 Double Integrals over General Regions 413
13.3 Double Integrals in Polar Coordinates 432
13.4 Triple Integrals 446
13.5 Triple Integrals in Cylindrical and Spherical Coordinates 455
13.6 Integrals for Mass Calculations 463
13.7 Change of Variables in Multiple Integrals 471
Chapter Thirteen Review 482
14 Vector Calculus 493
14.1 Vector Fields 493
14.2 Line Integrals 504
14.3 Conservative Vector Fields 511
14.4 Green's Theorem 516
14.5 Divergence and Curl 526
14.6 Surface Integrals 534
14.7 Stokes' Theorem 543
14.8 The Divergence Theorem 549
Chapter Fourteen Review 558

Chapter

Sequences and Infinite Series

8.1 An Overview

8.1.1 A sequence is an ordered list of numbers $a_{1}, a_{2}, a_{3}, \ldots$, often written $\left\{a_{1}, a_{2}, \ldots\right\}$ or $\left\{a_{n}\right\}$. For example, the natural numbers $\{1,2,3, \ldots\}$ are a sequence where $a_{n}=n$ for every n.
8.1.2 $a_{1}=\frac{1}{1}=1 ; a_{2}=\frac{1}{2} ; a_{3}=\frac{1}{3} ; a_{4}=\frac{1}{4} ; a_{5}={ }^{1} 5$.
8.1.3 $a_{1}=1$ (given); $a_{2}=1 \cdot a_{1}=1 ; a_{3}=2 \cdot a_{2}=2 ; a_{4}=3 \cdot a_{3}=6 ; a_{5}=4 \cdot a_{4}=24$.
8.1.4 A finite sum is the sum of a finite number of items, for example the sum of a finite number of terms of a sequence.
8.1.5 An infinite series is an infinite sum of numbers. Thus if $\left\{a_{n}\right\}$ is a sequence, then $a 1+a 2+\cdots={ }_{k=1 a k}^{\infty}$ is an infinite series. For example, if $a_{k}=\quad \frac{1}{k}$, then $\quad \infty_{k=1}^{\infty} a_{k=1 k}=\infty \quad \infty \quad 1$ is an infinite series.
8.1.6 $S_{1}={ }_{k=1}^{1} k \quad=1 ; S_{2}={ }_{k=1}^{2} k \quad=1+2=3 ; S_{3}=\quad{ }_{k=1}^{3} k \quad=1+2+3=6 ; S 4 \quad={ }_{k=1}^{4} k=$ $1+2+3+4=10$.

| 1 | 1 | 1 | 1 | 25 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\overline{1}+\overline{2}+\overline{3}+\overline{4}=12$.

8.1.10 $a_{1}=3(1)+1=4 . a_{2} \quad=3(2)+1=7, a_{3} \quad=3(3)+1=10, a 4 \quad=3(4)+1=13$.
8.1.11 $a_{1}=-1, a_{2}=\quad$. $\quad-2 \quad-1, a_{4}=\quad=1$.
$a_{3}=$

1
2
8.1.12 $a_{1}=2-1=1 . a_{2}=2+1=3, a_{3}=2-1=1, a 4 \quad=2+1=3$.

8.1.13 $a_{1}={ }_{2+1}={ }_{3} \cdot a_{2}={ }_{2}{ }^{2}+1=5 \cdot a 3{ }^{=}{ }_{2^{3}+1}=9 \quad a_{4}={ }_{24+1}={ }_{17}$

8.1.15 $a_{1}=1+\sin (\pi / 2)=2 ; a_{2} \quad=1+\sin (2 \pi / 2)=1+\sin \pi=1 ; a_{3}=1+\sin (3 \pi / 2)=0 ; a_{4} \quad=1+\sin (4 \pi / 2)=$ $1+\sin 2 \pi=1$.
8.1.16 $a_{1}=2 \cdot 1^{2}-3 \cdot 1+1=0 ; a_{2}=2 \cdot 2^{2}-3 \cdot 2+1=3 ; a_{3}=2 \cdot 3^{2}-3 \cdot 3+1=10 ; a 4 \quad=2 \cdot 4^{2}-3 \cdot 4+1=21$.

Copyright \times c 2015 Pearson3 Education, Inc.
8.1.17 $a_{1}=2, a_{2}=2 \cdot 2=4, a_{3}=2(4)=8, a_{4}=2 \cdot 8=16$.
8.1.18 $a_{1}=32, a_{2}=32 / 2=16, a_{3}=16 / 2=8, a_{4}=8 / 2=4$.
8.1.19 $a_{1}=10$ (given); $a_{2}=3 \cdot a_{1}-12=30-12=18 ; a_{3}=3 \cdot a_{2}-12=54-12=42 ; a_{4}=3 \cdot a_{3}-12=$ $126-12=114$.
8.1.20 $a_{1}=1$ (given); $a_{2}=a^{2}{ }_{1}-1=0 ; a_{3}=a^{2}{ }_{2}-1=-1 ; a 4=a^{2} 3-1=0$.
8.1.21 $a_{1}=0$ (given); $a_{2}=3 \cdot a^{2}{ }_{1}+1+1=2 ; a_{3}=3 \cdot a^{2}{ }_{2}+2+1=15 ; a 4=3 \cdot a^{2} 3+3+1=679$.
8.1.22 $a_{0}=1$ (given); $a_{1}=1$ (given); $a_{2}=a_{1}+a_{0}=2 ; a_{3}=a_{2}+a_{1}=3 ; a_{4}=a_{3}+a_{2}=5$.
8.1.23
8.1.24
a. $\frac{1}{32}, 64^{4}$.
a. $-6,7$.
b. $a_{1}=1 ; a_{n+1}=\frac{a_{n}}{2}$.
b. $a_{1}=1 ; a_{n+1}=(-1)^{n}\left(\left|a_{n}\right|+1\right)$.
c. $a_{n}=2{ }^{n-}{ }^{1}$.
c. $a_{n}=(-1)^{n+1} n$.
8.1.25
a. $-5,5$.
b. $a_{1}=-5, a_{n+1}=-a_{n}$.
c. $a_{n}=(-1)^{n} \cdot 5$.
8.1.27
a. 32,64 .
b. $a_{1}=1 ; a_{n+1}=2 a_{n}$.
$n-1$
c. $a_{n}=2$
8.1.29
a. 243,729 .
b. $a_{1}=1 ; a_{n+1}=3 a_{n}$.
c. $a_{n}=3^{n-1}$.

8.1.26

a. 14,17 .
b. $a_{1}=2 ; a_{n+1}=a_{n}+3$.
c. $a_{n}=-1+3 n$.

8.1.28

a. 36,49 .
b. $a_{1}=1 ; a_{n+1}=\left(\begin{array}{ll}\sqrt{ } & -\overline{a_{n}}+1\end{array}\right)^{2}$.
c. $a_{n}=n^{2}$.
8.1.30
a. 2,1 .
b. $a_{1}=64 ; a_{n+1}=\quad \frac{a_{n}}{2}$.
c. $a_{n=2 n-1}=2^{7-n}$
8.1.31 $a_{1}=9, a_{2}=99, a_{3}=999, a_{4}=9999$. This sequence diverges, because the terms get larger without bound.
8.1.32 $a_{1}=2, a_{2}=17, a_{3}=82, a_{4} \quad=257$. This sequence diverges, because the terms get larger without bound.
8.1.33 $a_{1}=\frac{1}{10}, a_{2}=\frac{1}{100}, a_{3}=\frac{1}{1000}, a_{4}=\frac{1}{10,000}$. This sequence converges to zero.
8.1.34 $a_{1}=\frac{1}{10}, a_{2}=\frac{1}{100}, a_{3}=\frac{1}{1000}, a_{4}=\frac{1}{10,000}$. This sequence converges to zero.
8.1.35 $a_{1}=-\frac{1}{2}, a_{2}=\frac{1}{4}, a_{3}=-\frac{1}{8}, a 4 \quad \frac{1}{16}$. This sequence converges to 0 because each term is smaller in $=$
absolute value than the preceding term and they get arbitrarily close to zero.
8.1.36 $a_{1}=0.9, a_{2}=0.99, a_{3}=0.999, a_{4}=.9999$. This sequence converges to 1 .
8.1.37 $a_{1}=1+1=2, a_{2} \quad=1+1=2, a_{3}=2, a 4=2$. This constant sequence converges to 2 .
8.1.38 $a_{1}=9+\frac{9}{10}=9.9, a_{2}=9+\frac{9.9}{10}=9.99, a_{3}=9+\frac{9.99}{10}=9.999, a 4=9+\frac{9.999}{10}=9.9999$. This sequence converges to 10 .
8.1.39 $a_{1}={ }^{50}{ }_{1150}^{1} \approx 54.545, a_{2}=\quad \frac{54.545}{11}+50 \approx 54.959, a_{3}=\quad \frac{54.959}{11}+50 \quad \approx 54.996, a_{4}=\frac{54.996}{11}+50 \approx 55.000$.

This sequence converges to 55 .
8.1.40 $a_{1}=0-1=-1 . \quad a_{2}=-10-1=-11, a_{3}=-110-1=-111, a 4=-1110-1=-1111$. This sequence diverges.
8.1.41

n	1	2	3	4	4	6	7	8	9	10
a_{n}	0.4636	0.2450	0.1244	0.0624	0.0312	0.0156	0.0078	0.0039	0.0020	0.0010

This sequence appears to converge to 0 .
8.1.42

n	1	2	3	4	5	6	7	8	9	10
a_{n}	3.1396	3.1406	3.1409	3.1411	3.1412	3.1413	3.1413	3.1413	3.1414	3.1414

This sequence appears to converge to π.
8.1.43

n	1	2	3	4	5	6	7	8	9	10
a_{n}	0	2	6	12	20	30	42	56	72	90

This sequence appears to diverge.
8.1.44

n	1	2	3	4	5	6	7	8	9	10
a_{n}	9.9	9.95	9.9667	9.975	9.98	9.9833	9.9857	9.9875	9.9889	9.99

This sequence appears to converge to 10.
8.1.45

n	1	2	3	4	5	6	7	8	9	10
a_{n}	0.83333	0.96154	0.99206	0.99840	0.99968	0.99994	0.99999	1.0000	1.0000	1.0000

This sequence appears to converge to 1.
8.1.46

n	1	2	3	4	5	6	7	8	9	10	11
a_{n}	0.9589	0.9896	0.9974	0.9993	0.9998	1.000	1.000	1.0000	1.000	1.000	1.000

This sequence converges to 1 .
8.1.47
a. $2.5,2.25,2.125,2.0625$.
b. The limit is 2 .
8.1.48
a. $1.33333,1.125,1.06667,1.04167$.
b. The limit is 1 .
8.1.49

n	0	1	2	3	4	5	6	7	8	9	10
a_{n}	3	3.500	3.750	3.875	3.938	3.969	3.984	3.992	3.996	3.998	3.999

This sequence converges to 4 .
8.1.50

n	0	1	2	3	4	5	6	7	8	9
a_{n}	1	-2.75	-3.688	-3.922	-3.981	-3.995	-3.999	-4.000	-4.000	-4.000

This sequence converges to -4 .
8.1.51

n	0	1	2	3	4	5	6	7	8	9	10
a_{n}	0	1	3	7	15	31	63	127	255	511	1023

This sequence diverges.
8.1.52

n	0	1	2	3	4	5	6	7	8	9	10
a_{n}	10	4	3.4	3.34	3.334	3.333	3.333	3.333	3.333	3.333	3.333

This sequence converges to $\frac{10}{3}$.
8.1.53

n	0	1	2	3	4	5	6	7	8	9
a_{n}	1000	18.811	5.1686	4.1367	4.0169	4.0021	4.0003	4.0000	4.0000	4.0000

This sequence converges to 4 .
8.1.54

n	0	1	2	3	4	5	6	7	8	9	10
a_{n}	1	1.4212	1.5538	1.5981	1.6119	1.6161	1.6174	1.6179	1.6180	1.6180	1.6180

This sequence converges to $\quad \underline{\underline{1+}} \underline{\underline{T}} \approx 1.618$.
8.1.55
a. $20,10,5,2.5$.
b. $h_{n}=20(0.5)$.
8.1.57
a. $30,7.5,1.875,0.46875$.
b. $h_{n}=30(0.25)^{n}$.
8.1.59 $S_{1}=0.3, S_{2}=0.33, S_{3}=0.333, S_{4}=0.3333$.
$0.3333 . \ldots=1$.
8.1.60 $S_{1}=0.6, S_{2}=0.66, S_{3}=0.666, S_{4}=0.6666$.
$0.6666 \ldots=\underline{2}$.
8.1.56
a. $10,9,8.1,7.29$.
b. $h_{n}=10(0.9)^{n}$.

8.1.58

a. $20,15,11.25,8.438$
b. $h_{n}=20(0.75)$.

It appears that the infinite series has a value of It appears that the infinite series has a value of
8.1.61 $S_{1}=4, S_{2}=4.9, S_{3}=4.99, S_{4}=4.999$. The infinite series has a value of $4.999 \cdots=5$.
8.1.62 $S_{1}=1, S_{2}=\underline{3}_{2}=1.5, S_{3}=\underline{7}=1.75, S_{4}=\underline{15}_{8}=1.875$. The infinite series has a value of 2 .
8.1.63
a. $S_{1}=\underline{2}_{3}, S_{2}=\frac{4}{5}, S_{3}=\underline{6}_{7}, S_{4}=\frac{8}{8}$.
b. It appears that $S_{n}=\frac{2 n}{2 n+1}$.
c. The series has a value of 1 (the partial sums converge to 1).
8.1.64
a. $S_{1}=\frac{1}{2}, S_{2}=\underline{3}_{4}, S_{3}=\frac{7}{8}, S_{4}=16^{15}$.
b. $S_{n}=1-2 \frac{1}{n}$.
c. The partial sums converge to 1 , so that is the value of the series.
8.1.65
a. $S_{1}=\frac{1}{3}, S_{2}=\underline{2}_{5}, S_{3}=\frac{3}{7}, S_{4}=\frac{4}{9}$.
b. $S_{n}=\overline{2 n+1} \bar{n}$.
c. The partial sums converge to $\frac{1}{2}$, which is the value of the series.
8.1.66
a. $S_{1}=\underline{-}_{3}, S_{2}=\underline{8}_{9}, S_{3}=27^{\underline{26}}, S_{4}=81 \underline{80}$.
b. $S_{n}=1-3 \frac{1}{n}$.
c. The partial sums converge to 1 , which is the value of the series.
8.1.67
a. True. For example, $S_{2}=1+2=3$, and $S_{4}=a_{1}+a_{2}+a_{3}+a_{4}=1+2+3+4=10$.
b. False. For example, $\underline{1}_{2}, \underline{3}_{4}, \frac{7}{8}, \cdots$ where $a_{n}=1-2 \frac{1}{n}^{n}$ converges to 1 , but each term is greater than the previous one.
c. True. In order for the partial sums to converge, they must get closer and closer together. In order for this to happen, the diffierence between successive partial sums, which is just the value of a_{n}, must approach
zero.
8.1.68 The height at the $n^{\text {th }}$ bounce is given by the recurrence $h_{n}=r \cdot h_{n} \quad 1$; an explicit form for this sequence is $h_{n}=h_{0} \cdot r^{n}$. The distance traveled by the ball between the $n^{\text {th }}$ and the $(n+1)^{\text {st }}$ bounce is thus $2 h_{n}=2 h_{0} \cdot r^{n}$, so that $S_{n+1}=\quad{ }_{i=0}^{n} 2 h_{0} \cdot r^{i}$.

2
a. Here $h_{0}=20, r=0.5$, so $S_{1} \quad=40$, ff $\quad=40+40 \cdot 0.5=60, S_{3} \quad=S_{2}+40 \cdot(0.5)=70, S_{4}=$
$S_{3}+40 \cdot(0.5)^{3}=75, S_{5}=S_{4}+40 \cdot(0.4=77.5$

a_{n}	80.000	80.000	80.000	80.000	80.000	80.000

The sequence converges to 80 .
8.1.69 Using the work from the previous problem:

a. Here $h 0$ $S 4=S 3$	$\begin{aligned} & =20, r=0.75 \\ & +40 \cdot(0.75)^{3} \end{aligned}$	$\begin{aligned} & \text { so } S_{1} \\ & =109.375, \end{aligned}$	$\begin{gathered} =40, S_{2} \\ S 5=S 4+ \end{gathered}$	$\begin{gathered} =40+40 \cdot \\ 40 \cdot(0.75)^{4} \end{gathered}$	$\begin{gathered} 0.75=70, \\ =122.031 \end{gathered}$	$\begin{aligned} & S_{3}=S_{2}+4 \\ & 25 \end{aligned}$	$40 \cdot(0.75)^{2}$
	n	1	2	3	4	5	6
	a_{n}	40	70	92.5	109.375	122.031	131.523
	n	7	8	9	10	11	12
	$\underline{a_{n}}$	138.643	143.982	147.986	150.990	153.242	154.932
	b. n	13	14	15	16	17	18
	a_{n}	156.199	157.149	157.862	158.396	158.797	159.098
	n	19	20	21	22	23	24
	a_{n}	159.323	159.493	159.619	159.715	159.786	159.839

The sequence converges to 160 .
8.1.70
a. $s 1=-1, s 2=0, s 3=-1, s 4=0$.
b. The limit does not exist.
8.1.72
a. $1.5,3.75,7.125,12.1875$.
b. The limit does not exist.
8.1.74
a. $1,3,6,10$.
b. The limit does not exist.

8.1.71

a. $0.9,0.99,0.999, .9999$.
b. The limit is 1 .
8.1.73
a. $\frac{1}{3}, \frac{4}{9}, \frac{13}{27}, \frac{40}{81}$.
b. The limit is $1 / 2$.

8.1.75

a. $-1,0,-1,0$.
b. The limit does not exist.
8.1.76
a. $-1,1,-2,2$.
b. The limit does not exist.
8.1.77
a. $10^{3}=0.3,100=0.33,1000^{\underline{333}}=0.333,10000 \underline{\underline{3333}}=0.3333$.

33
b. The limit is $1 / 3$.
8.1.78
a. $p_{0}=250, p_{1}=250 \cdot 1.03=258, p_{2}=250 \cdot 1.03^{2}=265, p 3=250 \cdot 1.03^{3}=273, p 4=250 \cdot 1.03^{4}=281$.
b. The initial population is 250 , so that $p_{0}=250$. Then $p_{n}=250 \cdot(1.03)$, because the population increases by 3 percent each month.
c. $p_{n+1}=p_{n} \cdot 1.03$.
d. The population increases without bound.
8.1.79
a. $M_{0}=20, M_{n}=20 \cdot 0.5=10, \quad M_{2}=20 \cdot 0.5^{2}=5, M_{3}=20 \cdot 0.5^{3}=2.5, \quad M_{4}=20 \cdot 0.5^{4}=1.25$
b. $M_{n}=20 \cdot 0.5$.
c. The initial mass is $M_{0}=20$. We are given that 50% of the mass is gone after each decade, so that $M_{n+1}=0.5 \cdot M_{n}, n \geq 0$.
d. The amount of material goes to 0 .
8.1.80
a. $c_{0}=100, \quad c_{1}=103, c_{2}=106.09, \quad c_{3}=109.27, \quad c_{4}=112.55$.
b. $c_{n}=100(1.03)^{n}$ for $n \geq 0$.
c. We are given that $c_{0}=100$ (where year 0 is 1984); because it increases by 3% per year, $c_{n+1}=1.03 \cdot c_{n}$
. d. The sequence diverges.
8.1.81
a. $d_{0}=200, d_{1}=200 \cdot .95=190, d_{2}=200 \cdot .95^{2}=180.5, d_{3}=200 \cdot .95^{3}=171.475, d_{4}=200 \cdot .95^{4}=162.90125$.
b. $d_{n}=200(0.95)^{n}, n \geq 0$.
c. We are given $d 0=200$; because 5% of the drug is washed out every hour, that means that 95% of the preceding amount is left every hour, so that $d_{n+1}=0.95 \cdot d_{n}$.
d. The sequence converges to 0 .
8.1.82
a. Using the recurrence $a_{n+1}=\frac{1}{2} a_{n}+\frac{10}{a_{n}}$, we build a table:

n	0	1	2	3	4	5
a_{n}	10	5.5	3.659090909	3.196005081	3.162455622	3.162277665

The true value is $\sqrt{10} \approx 3.162277660$, so the sequence converges with an error of less than 0.01 after only 4 iterations, and is within 0.0001 after only 5 iterations.
b. The recurrence is now $a_{n+1}={ }_{2}^{1}$. $\quad a_{n} \quad+\frac{2}{a_{n}}$

$\underline{\sim}$	\bar{e}	0	1	2	3	4	5	6
2	1.414	2	1.5	1.417	1.414	1.414	1.414	1.414
3	1.732	3	2	1.750	1.732	1.732	1.732	1.732
4	2.000	4	2.5	2.050	2.001	$\underline{2.000}$	2.000	2.000
5	2.236	5	3	2.333	2.238	$\underline{2.236}$	2.236	2.236
6	2.449	6	3.6	2.607	2.454	2.44	2.449	2.449
7	2.646	7	4	2.875	2.655	$\underline{2.646}$	2.646	2.646
8	2.828	8	4.5	3.139	2.844	$\underline{2.828}$	2.828	2.828
9	3.000	9	5.0	3.400	3.024	3.000	3.000	3.000
10	3.162	10	5.5	3.659	3.196	3.162	3.162	3.162

For $c=2$ the sequence converges to within 0.01 after two iterations.
For $c=3,4,5,6$, and 7 the sequence converges to within 0.01 after three iterations.
For $c=8,9$, and 10 it requires four iterations.

8.2 Sequences

8.2.1 There are many examples; one is $a_{n}=\frac{1}{n}$. This sequence is nonincreasing (in fact, it is decreasing) and has a limit of 0 .
8.2.2 Again there are many examples; one is $a_{n}=\ln (n)$. It is increasing, and has no limit.
8.2.3 There are many examples; one is $a_{n}=1_{n}$. This sequence is nonincreasing (in fact, it is decreasing), is
bounded above by 1 and below by 0 , and has a limit of 0 .
8.2.4 For example, $a_{n}=(-1)^{n}$. For all values of n we have $\left|a_{n}\right|=1$, so it is bounded. All the odd terms are
-1 and all the even terms are 1 , so the sequence does not have a limit.
8.2.5 $\left\{r^{n}\right\}$ converges for $-1<r \leq 1$. It diverges for all other values of r (see Theorem 8.3).
8.2.6 By Theorem 8.1, if we can find a function $f(x)$ such that $f(n)=a_{n}$ for all positive integers n, then if $\lim f(x)$ exists and is equal to L, we then have $\lim a_{n}$ exists and is also equal to L. This means that we $x \rightarrow \infty n \rightarrow \infty$ can apply function-oriented limit methods such as L'H'opital's rule to determine limits of sequences.
8.2.7 $\left\{e^{n / 100}\right\}$ grows faster than $\left\{n^{100}\right\}$ as $n \rightarrow \infty$.
8.2.8 The definition of the limit of a sequence involves only the behavior of the $n^{\text {th }}$ term of a sequence as n gets large (see the Definition of Limit of a Sequence). Thus suppose a_{n}, b_{n} diffier in only finitely many terms, and that M is large enough so that $a_{n}=b_{n}$ for $n>M$. Suppose a_{n} has limit L. Then for $\varepsilon>0$, if N is such that $\left|a_{n}-L\right|<\varepsilon$ for $n>N$, first increase N if required so that $N>M$ as well. Then we also have $\left|b_{n}-L\right|<\varepsilon$ for $n>N$. Thus a_{n} and b_{n} have the same limit. A similar argument applies if a_{n} has no limit.
8.2.9 Divide numerator and denominator by n^{4} to get $\lim __{-}^{1 / n}=0$.
${ }_{n \rightarrow \infty}{ }^{1+}{ }_{n 4}$
8.2.10 Divide numerator and denominator by n^{12} to get $\lim _{n \rightarrow \infty} \frac{1}{3+{ }_{n^{12}}}=\frac{1}{3}$.
8.2.11 Divide numerator and denominator by n^{3} to get $\lim \underline{3-n^{-3}}=3$.
$n \rightarrow \infty 2+n \quad 2$
$\underset{n \rightarrow \infty}{\text { 8.2.12 }}$ Divide numerator and denominator by e^{n} to get $\left.\lim \frac{2+(1 / e}{1}\right]^{2}=2$.
${\underset{n}{n \rightarrow \infty}}_{\text {8.2.13 }}$ Divide numerator and denominator by 3^{n} to get $\lim \frac{3+(1 / 3}{-n-1}{ }_{1}=3$.
\checkmark
8.2.14 Divide numerator by k and denominator by $k=\quad \overline{k^{2}}$ to get $\lim \underset{\sim}{\forall}:=1$.
$k \rightarrow \infty \quad 9+(1 / k)$
8.2.15 $\lim \tan ^{-1} n=\quad \pi$.
$n \rightarrow \infty \quad 2$
\checkmark

8.2.16 Multiply by $\frac{\sqrt{n}-\frac{2}{2}+1+n}{n^{2}+1}+n$ to obtain

$$
{ }_{n \rightarrow \infty} \quad n_{n \rightarrow \infty}^{2}+1+n \quad{ }_{n \rightarrow \infty} \quad n^{2}+1+n
$$

8.2.17 Because $\lim \tan ^{-1} n={ }_{\#}, \lim \tan ^{-\perp_{\underline{n}}}=0$.
$n \rightarrow \infty$
8.2.18 Let $y=n^{2 / n}$. Then $\ln y=\quad \begin{aligned} & 2 n \rightarrow \infty \\ & \underline{2 \ln n}\end{aligned}$. By L'Hopital's^ rule we have $\lim \underline{2 \ln x}=\lim \quad \underline{2}=0$, so $\lim n^{2 / n}=$
$\underset{x \rightarrow \infty}{ } x \quad x \rightarrow \infty$
8.2.19 Find the limit of the logarithm of the expression, which is $n \ln 1+n^{\underline{2}}$. Using L'Hopital's rule:

$$
\lim _{n \rightarrow \infty} n \ln \quad 1+\frac{2}{n}=\lim _{n \rightarrow \infty} \frac{\ln 1+\frac{2}{n}}{1 / n}-\lim _{n \rightarrow \infty} \frac{\frac{1}{1+(2 n)}}{-1 / n^{2}} \cdot \frac{-2}{n^{2}}-\lim _{n \rightarrow \infty} \frac{2}{1+(2 / n)}=2
$$

Thus the limit of the original expression is e^{2}.
8.2.20 Take the logarithm of the expression and use L'Hopital's rule:

$$
\begin{aligned}
& \lim n \ln \underset{\substack{n \\
=\lim _{\underline{(n+5)}}}}{\underline{\ln }-\frac{n+5}{n}}=\lim \underset{-n}{\underline{n+5} \frac{5}{5}} \quad 2=\lim \underset{\underline{5 n}}{\underline{-n}}=-5 . \\
& n \rightarrow \infty \quad n+5 \quad{ }_{n \rightarrow \infty} \quad 1 / n \quad n \rightarrow \infty \quad-1 / n^{2} \quad{ }_{n \rightarrow \infty} n+5
\end{aligned}
$$

Thus the original limit is e^{-5}.
8.2.21 Take the logarithm of the expression and use L'Hopital's rule:

Thus the original limit is $e^{1 / 4}$.
8.2.22 Find the limit of the logarithm of the expression, which is $3 n \ln \quad 1+\frac{4}{n}$. Using L'Hopital's rule:

Thus the limit of the original expression is e^{12}.
8.2.23 Using L'Hopital's rule: $\lim __{\underline{n}}^{\underline{n}}=\lim$ __ $^{1}=0$.
${ }_{n \rightarrow \infty} e$

$$
+3 n n \rightarrow \infty
$$

8.2.24 $\ln \underline{1}=-\ln n$, so this is $-\lim \quad \underline{\ln } \underline{n}$. . By L'H'opital's rule, we have $-\lim \frac{\ln n}{}=-\lim \quad \underline{1}=0$.

$$
n_{n^{n \rightarrow \infty}} n \quad{ }_{n \rightarrow \infty} n \quad{ }_{n \rightarrow \infty} n
$$

$\underset{n \rightarrow \infty^{n}}{8.2 .25}$ Taking logs, we have $\lim \underline{1} \ln (1 / n)=\lim _{n \rightarrow \infty}-\frac{\ln n}{n}=\lim _{n \rightarrow \infty^{n}}-\frac{-1}{}=0$ by L'Hopital's rule. Thus the original sequence has limit $e^{0}=1$.
8.2.26 Find the limit of the logarithm of the expression, which is $n \ln 1-\frac{4}{n} n$, using L'H^opital's rule: $\lim _{n \rightarrow \infty} n \ln 1-\quad=\lim _{n \rightarrow \infty}-\frac{1}{1 / n}-=\lim _{n \rightarrow \infty} \frac{1}{-1 / n}-\frac{4}{-1 / n}-n^{n}-\lim _{n \rightarrow \infty}{ }_{1-(4 / n)}=-4$. Thus the limit of the original expression is e^{-4}.
8.2.27 Except for a finite number of terms, this sequence is just $a_{n}=n e^{-n}$, so it has the same limit as this sequence. Note that $\lim \quad-\frac{n}{4}=\lim \quad \perp=0$, by L'H'opital's rule.
$\underset{n}{n \rightarrow \infty^{e}} \underset{n \rightarrow \infty}{ }$
8.2.28 $\ln \left(n^{3}+1\right)-\ln \left(3 n^{3}+10 n\right)=\ln \quad \underline{n+1}=\ln \quad-\underline{1+n} \quad$, so the limit is $\ln (1 / 3)=-\ln 3$.

8.2.29 $\ln (\sin (1 / n))+\ln n=\ln (n \sin (1 / n))=\ln \quad \frac{\sin (1 / n)}{1 / n}$. As $n \rightarrow \infty, \sin (1 / n) /(1 / n) \rightarrow 1$, so the limit of the original sequence is $\ln 1=0$.
8.2.30 Using L'Hopital's rule:

$$
\lim n(1 \quad \cos (1 / n))=\quad \lim \underline{1-\cos (1 / n)}=\lim -\sin (1 / n)\left(-1 / n n^{2}\right)-=-\sin (0)=0 .
$$

8.2.31 $\lim _{n \rightarrow \infty} n \sin (6 / n)=\quad \lim _{n \rightarrow \infty} \frac{\sin (6 / n)}{1 / n}=\lim _{n \rightarrow \infty} \frac{-\frac{-6 \cos (6 / n)}{2}}{\left(-1 / n^{2}\right)}=\lim _{n \rightarrow \infty} 6 \cos (6 / n)=6 \quad \cos 0=6$.
8.2.32 Because $-n^{\frac{1}{2}} \leq \frac{(-1)_{n}}{n} \leq-$, and because both $-n^{1}$ and n^{1} have limit 0 as $n \rightarrow \infty$, the limit of the given n^{1}
sequence is also 0 by the Squeeze Theorem.
8.2.33 The terms with odd-numbered subscripts have the form $-{ }_{n+1}{ }^{n}$, so they approach -1 , while the terms with evennumbered subscripts have the form ${ }^{n}$ so they approach $\frac{1}{n+1}$. Thus, the sequence has no limit.
8.2.34 Because $2 n^{3}+n \quad 2 \quad \frac{2}{n+1} \leq \frac{n^{2}}{2 n^{n}+n} \leq \frac{2}{2 n^{2}+n}$, and because both $\quad \rightarrow \infty$, the
limit of the given sequence is also 0 by the Squeeze Theorem. Note that $\lim \frac{n}{-}=\lim \frac{1 / n}{=}=0$.

When n is an integer, $\sin \quad \frac{n \pi}{2} \pi$ oscillates be-
8.2.35 tween the values ± 1 and 0 , so this sequence does not converge.

$$
{ }_{n \rightarrow \infty}^{2 n} \quad+n \quad n \rightarrow \infty 2+1 / n \quad 2
$$

 which converges to 1 (e.g. by L'H'opital's 8.2.36 rule); the od derms form the sequence $b_{2 n+1}=-\underset{ }{n+1}$, which converges to -1 . Thus the sequence as a whole does not converge.

The numerator is bounded in absolute value
8.2 .37 by 1 , while the denominator goes to ∞, so

The reciprocal of this sequence is $b_{n}=1=$
8.2.38 $1+4_{3} n$, which increases without bound as $n \rightarrow \infty$. Thus a_{n} converges to zero.

$$
\begin{array}{lllll}
10 & 20 & 30 & 40 & 50
\end{array}
$$

$$
\text { 8.2.39 } \lim _{n \rightarrow \infty}(1+\cos (1 / n))=1+\cos (0)=2 \text {. }
$$

By L'Hopital's rule we have: $\lim -_{n}^{\Xi_{n}}{ }_{n}=$ 8.2.40 $\lim \frac{-e^{-n}}{e^{0}}=L_{-}^{n \rightarrow \infty 2 \sin \left(e^{-}\right)}=$ $n \rightarrow \infty 2 \cos \left(e^{-}\right)(-e \quad 2 \cos 0 \quad 2$

0.2

Using L'Hopital's rule, we have lim

This is the sequence $\frac{\cos }{e^{n}} \underline{n}$; the numerator is
8.2.41 bounded in absolute value by 1 and the de-nominator increases without bound, so the
limit is zero.
8.2 .42
$\lim \xrightarrow{1 / n}=\lim +\frac{1}{-}=$ 0.
$n \rightarrow \infty(1.1) n \quad n \rightarrow \infty(1.1) n$

Ignoring the factor of $(-1)^{n}$ for the moment, we see, taking logs, that $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$, so
8.2.43 that $\lim _{n \rightarrow \infty}{ }_{n}=e^{0}=1$. Taking the sign into account, the odd terms converge to -1 while the even terms converge to 1 . Thus the sequence does not converge.

```
8.2.44
```


8.2.45 Because $0.2<1$, this sequence converges to 0 . Because $0.2>0$, the convergence is monotone.
8.2.46 Because $1.2>1$, this sequence diverges monotonically to ∞.
8.2.47 Because $|-0.7|<1$, the sequence converges to 0 ; because $-0.7<0$, it does not do so monotonically. The sequence converges by oscillation.
8.2.48 Because $|-1.01|>1$, the sequence diverges; because $-1.01<0$, the divergence is not monotone.
8.2.49 Because $1.00001>1$, the sequence diverges; because $1.00001>0$, the divergence is monotone.
8.2.50 This is the sequence

$$
\frac{2 n+1}{3^{n}}=2 \quad \frac{2}{3} n
$$

2
because $0<\overline{3}<1$, the sequence converges monotonically to zero.
8.2.51 Because $|-2.5|>1$, the sequence diverges; because $-2.5<0$, the divergence is not monotone. The sequence diverges by oscillation.
8.2.52 $|-0.003|<1$, so the sequence converges to zero; because $-.003<0$, the convergence is not monotone.
8.2.53 Because $-1 \leq \cos n \leq 1$, we have $\frac{-1}{n} \leq \frac{\cos n}{n} \leq n^{1}$. Because both $\frac{-1}{n}$ and n^{1} have limit 0 as $n \rightarrow \infty$, the given sequence does as well.
8.2.54 Because $-1 \leq \sin 6 n \leq 1$, we have $-5^{1} \underline{n} \leq \frac{\sin 6 n}{s_{n}} \leq \Sigma^{1} n$. Because both $-\frac{1}{s_{n}}$ and $5^{1} n$ have limit 0 as $n \rightarrow \infty$, the given sequence does as well.
8.2.55 Because $-1 \leq \sin n \leq 1$ for all n, the given sequence satisfies - $1 \leq \frac{\sin n}{1} \leq 1_{n}$, and because both
$\pm-$
${ }_{n} \rightarrow 0$ as $n \rightarrow \infty$, the given sequence converges to zero as well by the Squeeze Theorem.
8.2.56 Because $-1 \leq \cos (n \pi / 2) \leq 1$ for all n, we have

$$
\frac{-1}{v_{n}} \leq{\left.\stackrel{\cos (n \pi}{v_{n}} \leq \quad 2\right)}_{\frac{1}{n} \text { and because both } \pm}^{\rightarrow 0 \text { as }}
$$

$n \rightarrow \infty$, the given sequence converges to 0 as well by the Squeeze Theorem.
8.2.57 The inverse tangent function takes values between $-\pi / 2$ and $\pi / 2$, so the numerator is always between
 zero.
8.2.58 This sequence diverges. To see this, call the given sequence a_{n}, and assume it converges to limit L.

	n	$\underline{a_{n}}$
Then because the sequence $b_{n}=n+1$	converges to 1 , the sequence $c_{n}=$	$\overline{b_{n}} \quad$ would converge to L as well. But
$3 \pi n$		
$c_{n}=\sin \quad 2$	doesn't converge (because it is $1,-1,1,-1$.. .), so the given sequence doesn't converge either.
8.2.59		

a. After the $n^{\text {th }}$ dose is given, the amount of drug in the bloodstream is $d_{n}=0.5 \cdot d_{n}+80$, because the half-life is one day. The initial condition is $d_{1}=80$.
b. The limit of this sequence is 160 mg .
c. Let $L=\lim d_{n}$. Then from the recurrence relation, we have $d_{n}=0.5 \cdot d_{n}-1+80$, and thus $\quad \lim d_{n}=$ $0.5 \lim _{n \rightarrow \infty} d_{n-1}+80$, so $L=0.5 \quad \cdot L+80$, and therefore $L=160$.
8.2.60
a.

$$
\begin{array}{ll}
B_{0}=\$ 20,000 & \\
B_{1}=1.005 \cdot B_{0} & -\$ 200=\$ 19,900 \\
B_{2}=1.005 \cdot B_{1} & -\$ 200=\$ 19,799.50 \\
B_{3}=1.005 \cdot B_{2} & -\$ 200=\$ 19,698.50 \\
B_{4}=1.005 \cdot B_{3} & -\$ 200=\$ 19,596.99 \\
B_{5}=1.005 \cdot B_{4} & -\$ 200=\$ 19,494.97
\end{array}
$$

b. $B_{n}=1.005 \cdot B_{n}-1-\$ 200$
c. Using a calculator or computer program, B_{n} becomes negative after the $139^{\text {th }}$ payment, so 139 months or almost 11 years.
8.2.61
a.

$$
\begin{array}{ll}
B_{0}=0 & \\
B 1=1.0075 \cdot B_{0} & +\$ 100=\$ 100 \\
B_{2}=1.0075 \cdot B_{1} & +\$ 100=\$ 200.75 \\
B_{3}=1.0075 \cdot B_{2} & +\$ 100=\$ 302.26 \\
B 4=1.0075 \cdot B_{3} & +\$ 100=\$ 404.52 \\
B 5=1.0075 \cdot B 4 & +\$ 100=\$ 507.56
\end{array}
$$

b. $B_{n}=1.0075 \cdot B_{n-1}+\$ 100$.
c. Using a calculator or computer program, $B_{n}>\$ 5,000$ during the $43^{\text {rd }}$ month.
8.2.62
a. Let D_{n} be the total number of liters of alcohol in the mixture after the $n^{\text {th }}$ replacement. At the next step, 2 liters of the 100 liters is removed, thus leaving $0.98 \cdot D_{n}$ liters of alcohol, and then $0.1 \cdot 2=0.2$ liters of alcohol are added. Thus $D_{n}=0.98 \cdot D_{n-1}+0.2$. Now, $C_{n}=D_{n} / 100$, so we obtain a recurrence relation for C_{n} by dividing this equation by 100: $C_{n}=0.98 \cdot C_{n-1}+0.002$.

$$
\begin{aligned}
& C_{0}=0.4 \\
& C_{1}=0.98 \cdot 0.4+0.002=0.394 \\
& C_{2}=0.98 \cdot C_{1}+0.002=0.38812 \\
& C_{3}=0.98 \cdot C_{2}+0.002=0.38236 \\
& C_{4}=0.98 \cdot C_{3}+0.002=0.37671 \\
& C_{5}=0.98 \cdot C 4+0.002=0.37118
\end{aligned}
$$

The rounding is done to five decimal places.
b. Using a calculator or a computer program, $C_{n}<0.15$ after the $89^{\text {th }}$ replacement.
c. If the limit of C_{n} is L, then taking the limit of both sides of the recurrence equation yields $L=0.98 L+$ 0.002 , so $.02 L=.002$, and $L=.1=10 \%$.
8.2.63 Because $n!n^{n}$ by Theorem 8.6, we have lim . $n!=0$. ${ }_{n \rightarrow \infty} n$

 8.2.70 Let $\varepsilon>0$ be given. We wish to find N such that $\left|\left(1 / n^{2}\right)-0\right|<\varepsilon$ if $n>N$. This means that
 an N always exists for each ε and thus that the limit is zero.
8.2.71 Let $\varepsilon>0$ be given. We wish to find N such that for $n>N, \quad-\frac{3 n^{2}}{3} \quad=\quad-\quad-\frac{3}{=}=3-2<\varepsilon$.

$1 \quad 3$
provided $\varepsilon<3 / 4$. So let $N=4 \quad{ }_{\varepsilon}$ if $<3 / 4$ and let $N=1$ otherwise.
8.2.72 Let $\varepsilon>0$ be given. We wish to find N such that for $n>N,\left|b^{-n}-0\right|=b^{-n}<\varepsilon$, so that $-n \ln b<\ln \varepsilon$. So choose N to be any integer greater than $-\ln \underline{\ln } b^{\underline{\varepsilon}}$.
8.2.73 Let $\varepsilon>0$ be given. We wish to find N such that for $n>N$, 2
But this means that $\varepsilon b \quad n+\left(\begin{array}{ll}b \varepsilon & -c\end{array}\right)>0$, so that $N>\quad \overline{b^{2}} \varepsilon$ will work.
8.2.74 Let $\varepsilon>0$ be given. We wish to find N such that for $n>N, \quad \frac{n}{n^{2}+1}-0=\frac{n}{n^{2}+1}<\varepsilon$. Thus we want $n<\varepsilon\left(n^{2}+1\right)$, or $\varepsilon n^{2}-n+\varepsilon>0$. Whenever n is larger than the larger of the two roots of this quadratic, the desired inequality will hold. The roots of the quadratic are $\frac{1 \pm 1-\overline{4 \varepsilon^{2}}}{2 \varepsilon}$, so we choose N to be any integer greater than $\frac{1+\sqrt{1-4 \varepsilon} \underline{2}}{2 \varepsilon}$.
8.2.75
a. True. See Theorem 8.2 part 4.
b. False. For example, if $a_{n}=1 / n$ and $b_{n}=e^{n}$, then $\lim _{n \rightarrow \infty} a_{n} b_{n}=\infty$.
c. True. The definition of the limit of a sequence involves only the behavior of the $n^{\text {th }}$ term of a sequence as n gets large (see the Definition of Limit of a Sequence). Thus suppose a_{n}, b_{n} diffier in only finitely
many terms, and that M is large enough so that $a_{n}=b_{n}$ for $n>M$. Suppose a_{n} has limit L. Then for $\varepsilon>$ 0 , if N is such that $\left|a_{n}-L\right|<\varepsilon$ for $n>N$, first increase N if required so that $N>M$ as well. Then we also have $\left|b_{n}-L\right|<\varepsilon$ for $n>N$. Thus a_{n} and b_{n} have the same limit. A similar argument applies if a_{n} has no limit.
d. True. Note that a_{n} converges to zero. Intuitively, the nonzero terms of b_{n} are those of a_{n}, which converge to zero. More formally, given, choose N_{1} such that for $n>N_{1}, a_{n}<$. Let $N=2 N_{1}+1$. Then for $n>N$, consider b_{n}. If n is even, then $b_{n}=0$ so certainly $b_{n}<$. If n is odd, then
$b_{n}=a(n-1) / 2$, and $(n-1) / 2>\left(\left(2 N_{1}+1\right)-1\right) / 2=N_{1}$ so that $a(n-1) / 2<$. Thus b_{n} converges to zero as well.
e. False. If $\left\{a_{n}\right\}$ happens to converge to zero, the statement is true. But consider for example $a_{n}=2+\frac{1}{n}$. Then $\lim a_{n}=2$, but (-1$)^{n} a_{n}$ does not converge (it oscillates between positive and negative values increasingly close to ± 2).
f. True. Suppose $\left\{0.000001 a_{n}\right\}$ converged to L, and let $\quad>0$ be given. Choose N such that for $n>N$, $\left|0.000001 a_{n}-L\right|<\cdot 0.000001$. Dividing through by 0.000001 , we get that for $n>N,\left|a_{n}-1000000 L\right|<$, so that a_{n} converges as well (to $1000000 L$).
8.2.76 $\quad\{2 n-3\}^{\infty}{ }_{n=3}$.
8.2.77 $\left\{(n-2)^{2}+6(n-2)-9\right\}^{\infty}{ }_{n=3}=\left\{n^{2}+2 n-17\right\}^{\infty}{ }_{n=3}$.
8.2.78 If $f(t)={ }_{1}^{t} x^{-2} d x$, then $\lim _{t \rightarrow \infty} f(t)=\lim _{n \rightarrow \infty} a_{n}$. But
$\lim _{t \rightarrow \infty} f t \quad{ }^{\infty} x^{-2} d x=\lim _{b \rightarrow \infty} \quad-x^{b}=\lim _{b \rightarrow \infty} \quad-\frac{1}{b}+1=1$.

$$
=n \quad n
$$

 to zero.
8.2.80 Because $\lim _{n \rightarrow \infty} \frac{10 n}{10 n+4}=1$, and because the inverse tangent function is continuous, the given sequence -1
has limittan $1=\pi / 4$.
8.2.81 Because $\lim _{n \rightarrow \infty} 0.99^{n}=0$, and because cosine is continuous, the first term converges to $\cos 0=1$. The

${ }_{n \rightarrow \infty} \quad 63 \quad{ }_{n \rightarrow \infty} \quad 63 \quad n \rightarrow \infty$
8.2.82 Dividing the numerator and denominator by $n!$ gives $a_{n}=\quad$ By Theorem 8.6, we have $4^{n} n!$ and $2^{n} \quad n!$ Thus, $\lim a_{n}=\quad \underline{0+5}=5$.
8.2.83 Dividing the numerator and denominator by 6^{n} gives $a_{n}=$

$$
\frac{1+(1 / 2)^{n}}{1+\left(n^{100} / 6^{n}\right)}
$$

By Theorem 8.6, $n^{100} \quad 6^{n}$.
Thus $\lim _{n \rightarrow \infty} a_{n}=\quad \frac{1+0}{1+0}=1$.
8.2.84 Dividing the numerator and denominator by n^{8} gives $a_{n} \quad \underline{1+(1 / n)}=$. Because $1+(1 / n) \rightarrow 1$ as $n \rightarrow \infty$ and $(1 / n)+\ln n \rightarrow \infty$ as $n \rightarrow \infty$, we have $\lim a_{n}=0$. $(1 / n)+\ln n$
${ }_{n \rightarrow \infty}$
8.25 Wean wite $e_{n}=$

$$
b^{n} \text { for } b>^{1,} \text { so } \lim _{n \rightarrow \infty} a_{n}=\infty
$$

8.2.86 A graph shows that the sequence appears to converge. Assuming that it does, let its limit be
8.2.87 A graph shows that the sequence appears to converge. Let its supposed limit be L, then $\lim a_{n+1}=$ $\lim _{n \rightarrow \infty}\left(2 a_{n}\left(1-a_{n}\right)\right)=2\left(\lim a_{n}\right)\left(1-\quad \quad \lim _{n \rightarrow \infty} a_{n}\right)$, so $L=2 L(1-L)=2 L-2 L^{2} \quad$, and thus $2 L^{2} \quad-L=0$, so $L=0, \quad{ }_{2}$.

Thus the limit appears to be either 0 or $1 / 2$; with the given initial condition, doing a few iterations by hand confirms that the sequence converges to $1 / 2$: $a_{0}=0.3 ; a_{1}=2 \cdot 0.3 \cdot 0.7=.42 ; a_{2}=2 \cdot 0.42 \cdot 0.58=0.4872$.
8.2.88 A graph shows that the sequence appears to converge, and to a value other than zero; let its limit be L. Then $\lim a_{n+1}=\lim { }^{1}\left(a_{n}+\frac{2}{a^{n}}\right)=1 \lim a_{n}+\quad$, so $L=1 L+L^{1}$, and therefore $2 \quad \frac{1}{2} \quad L^{2}+1$. $=$

So $L^{2}=2$, and thus $L=2$.
8.2.89 Computing three terms gives $a_{0}=0.5, a_{1}=4 \cdot 0.5 \cdot 0.5=1, a_{2}=4 \cdot 1 \cdot(1-1)=0 . \quad$ All successive terms are obviously zero, so the sequence converges to 0 .
8. 2.90 A graph shows that the sequence appears to converge. Let its limit be L. Then $\lim _{v \rightarrow \infty} a_{n+1}=$
$\overline{2+\underset{n \rightarrow \infty}{\lim a_{n}}}$, so $L=\quad \overline{2+L}$. Thus we have $L^{2} \quad=2+L$, so $L^{2}-L-2=0$, and thus $L=-1,2$. A square
root can never be negative, so this sequence must converge to 2 .
8.2.91 For $b=2,2^{3}>3!$ but $16=2^{4}<4!=24$, so the crossover point is $n=4$. For $e, e^{5} \approx 148.41>5!=$

120 while $e^{6} \approx 403.4<6!=720$, so the crossover point is $n=6$. For $10,24!\approx 6.2 \times 10^{23}<10^{24}$, while $25!\approx 1.55 \times 10^{25}>10^{25}$, so the crossover point is $n=25$.
8.2.92
a. Rounded to the nearest fish, the populations are

$$
\begin{aligned}
& F_{0}=4000 \\
& F_{1}=1.015 F_{0}-80=3980 \\
& F_{2}=1.015 F_{1}-80 \approx 3960 \\
& F_{3}=1.015 F_{2}-80 \approx 3939 \\
& F_{4}=1.015 F_{3}-80 \approx 3918 \\
& F 5=1.015 F 4-80 \approx 3897
\end{aligned}
$$

b. $F_{n}=1.015 F_{n-1}-80$
c. The population decreases and eventually reaches zero.
d. With an initial population of 5500 fish, the population increases without bound.
e. If the initial population is less than 5333 fish, the population will decline to zero. This is essentially because for a population of less than 5333 , the natural increase of 1.5% does not make up for the loss of 80 fish.
8.2.93
a. The profits for each of the first ten days, in dollars are:

n	0	1	2	3	4	5	6	7	8	9	10
h_{n}	130.00	130.75	131.40	131.95	132.40	132.75	133.00	133.15	133.20	133.15	133.00

b. The profit on an item is revenue minus cost. The total cost of keeping the heifer for n days is $.45 n$, and the revenue for selling the heifer on the $n^{\text {th }}$ day is $(200+5 n) \cdot(.65-.01 n)$, because the heifer gains 5 pounds per day but is worth a penny less per pound each day. Thus the total profit on the $n^{\text {th }}$ day is $h_{n}=(200+5 n) \cdot(.65-.01 n)$ $-.45 n=130+0.8 n-0.05 n^{2}$. The maximum profit occurs when
$-.1 n+.8=0$, which occurs when $n=8$. The maximum profit is achieved by selling the heifer on the $8^{\text {th }}$ day.

$$
\text { a. } x_{0}=7, x_{1}=6, x_{2}=6.5=\underline{13}, x_{3}=6.25, x_{4}=6.375=\underline{51}_{8}, x_{5}=6.3125=101 \quad, x_{6}=6.34375=32
$$

b. For the formula given in the problem, we have $x_{0}=\frac{19}{3}+{ }_{3}-1_{2} 0=7, x_{1}=\frac{19}{3}+\frac{2}{3} \cdot \frac{-1}{2^{2}}=\frac{19}{3}=3^{1}$ $=6$, so that the formula holds for $n=0,1$. Now assume the formula holds for all integers $\leq k$; then

$$
\begin{aligned}
& x_{k+1}=\frac{1}{2}\left(x_{k}+x_{k}-1\right)=\frac{1}{2} \quad \frac{19}{3}+\frac{2}{3} \quad-\frac{1}{2} \quad k+\frac{19}{3}+\frac{2}{3}-\frac{1}{2} k-1 \\
& \begin{array}{llllll}
1 & 38 & 2 & 1 & k-1 & 1
\end{array} \\
& =\overline{2} \overline{3}+\overline{3}-\overline{2} \quad-\overline{2}+1 \\
& =\begin{array}{ccccc}
1 & 38 & 2 & 1 & { }^{k+1} \\
\overline{2} & \overline{3}+4 \cdot \overline{3} & -2 & \cdot \overline{2}
\end{array} \\
& =\begin{array}{llrr}
1 & \frac{38}{3}+2 \cdot & 2 & 1 \\
2 & -2
\end{array} \\
& =\overline{3}+\overline{3} \begin{array}{rrr}
& 21 & \\
& & \\
&
\end{array} .
\end{aligned}
$$

c. As $n \rightarrow \infty,(-1 / 2)^{n} \rightarrow 0$, so that the limit is $19 / 3$, or $61 / 3$.
8.2.95 The approximate first few values of this sequence are:

n	0	1	2	3	4	5	6
c_{n}	.7071	.6325	.6136	.6088	.6076	.6074	.6073

The value of the constant appears to be around 0.607 .
8.2.96 We first prove that d_{n} is bounded by 200. If $d_{n} \leq 200$, then $d_{n+1}=0.5 \cdot d_{n}+100 \leq 0.5 \cdot 200+100 \leq 200$. Because $d_{0}=100<200$, all d_{n} are at most 200. Thus the sequence is bounded. To see that it is monotone, look at

$$
d_{n}-d_{n-1}=0.5 \cdot d_{n-1}+100-d_{n-1}=100-0.5 d_{n-1} .
$$

But we know that $d_{n-1} \leq 200$, so that $100-0.5 d_{n-1} \geq 0$. Thus $d_{n} \geq d_{n-1}$ and the sequence is nondecreasing.
8.2.97
a. If we "cut offi" the expression after n square roots, we get a_{n} from the recurrence given. We can thus define the infinite expression to be the limit of a_{n} as $n \rightarrow \infty$.
b. $a 0=1, a 1=\sqrt{ } 2, a 2=\quad-\overline{1}+\overline{2} \approx 1.5538, a 3 \approx 1.5981, a 4 \approx 1.6118$, and $a 5 \approx 1.6161$.
c. $a_{10} \approx 1.618$, which diffiers from $\frac{1+5}{2} \approx 1.61803394$ by less than .001 .

$L \quad=1+L$. Therefore we have $L-L-1=0$, so $L=2^{-}$.
Because clearly the limitis positive, it must be the positive square root.
e. Letting $a_{n+1}=\overline{p+}-\frac{\sqrt{ }}{a_{n}} \frac{\text { with }}{} a_{0}=p$ and assuming a limit exists we have $\lim a_{n+1}=\lim \quad \frac{\sqrt{ }}{p+a_{n}}$

and because we know that L is positive, we have $L=$ - ._- $\frac{4 p+1}{}$. The limit exists for all positive p.

$\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$ has limit zero.
a. Define a_{n} as given in the problem statement. Then we can define the value of the continued fraction to be $\lim a_{n}$.

1.6,
c. From the list above, the values of the sequence alternately decrease and increase, so we would expect that the limit is somewhere between 1.6 and 1.625 .
d. Assume that the limit is equal to L. Then from $a_{n+1} \quad=1+\quad 1$, we have $\lim a_{n+1}=1+\quad . \quad 1$, , so

e. Here $a_{0}=a$ and $a_{n+1}=a+\quad \frac{b}{a_{n}}$. Assuming that $\lim _{n \rightarrow \infty} a_{n}=L$ we have $L=a+{ }_{-}^{b}$, so $L^{2}=a L+b$, and thus $L^{2}-a L-b=0$. Therefore, $L=\frac{a \pm a^{2}+4 b}{2}$, and because $L>0$ we have $L \quad=\frac{a^{n} \sqrt{a^{2}+4 b}}{2}$.
8.2.100
a. With $p=0.5$ we have for $a_{n+1}=a^{p}$:

n	1	2	3	4	5	6	7
a_{n}	0.707	0.841	0.971	0.958	0.979	0.989	0.995

Experimenting with recurrence (1) one sees that for $0<p \leq 1$ the sequence converges to 1 , while for $p>1$ the sequence diverges to ∞.
b. With $p=1.2$ and $a_{n}=p^{a}{ }_{n-1}$ we obtain

n	1	2	3	4	5	6	7	8	9	10
a_{n}	1.2	1.2446	1.2547	1.2570	1.2577	1.2577	1.2577	1.2577	1.2577	1.2577

With recurrence (2), in addition to converging for $p<1$ it also converges for values of p less than approximately 1.444 . Here is a table of approximate values for diffierent values of p :

p	1.1	1.2	1.3	1.4	1.44	1.444	1.445
$\lim _{n \rightarrow \infty} a_{n}$	1.1118	1.25776	1.471	1.887	2.39385	2.587	Diverges

It appears that the upper limit of convergence is about 1.444.
8.2.101
a. $f_{0}=f_{1}=1, f_{2}=2, f_{3}=3, f_{4}=5, f_{5}=8, f_{6}=13, f_{7}=21, f_{8}=34, f_{9}=55, f_{10}=89$.
b. The sequence is clearly not bounded.
c. $f_{10} \approx 1.61818$
${ }_{f} 9$

$$
\begin{aligned}
& f_{n-1}+f_{n-2}=\sqrt{ }^{1}-\left(\phi^{n-1}-(-1)^{n-1} \phi^{1-n}+\phi^{n-2}-(-1)^{n-2} \phi^{2-n}\right) \\
& =\sqrt{1}^{1}\left(\left(\phi^{n-1}+\phi^{n-2}\right)-(-1)^{n}\left(\phi^{2-n}-\phi^{1-n}\right)\right) \cdot 5
\end{aligned}
$$

Now, note that $\phi-1=\frac{1}{6}$, so that

$$
\phi^{n-1}+\phi^{n-2}=\phi^{n-1} \quad \begin{array}{|}
1 \\
1+\phi
\end{array}=\phi^{n-1} \cdot \phi=\phi^{n}
$$

and

$$
\phi^{2-n}-\phi^{1-n}=\phi^{-n}\left(\phi^{2}-\phi\right)=\phi^{-n}(\phi(\phi-1))=\phi^{-n} .
$$

Making these substitutions, we get

$$
\begin{array}{ll}
\underset{\substack{f=\\
n-1+{ }_{n-2}}}{f}=\frac{1}{v}\left(\phi^{n}-(-1)^{n} \phi^{-n}\right) \\
5
\end{array}
$$

8.2.102
a. We show that the arithmetic mean of any two positive numbers exceeds their geometric mean. Let a, $b>0$; then $\quad \stackrel{a+b}{ }-\sqrt{ } a b={ }^{1}\left(a-2^{\sqrt{ }} \bar{a} b+b\right)={ }^{1}\left({ }^{\sqrt{ }}-a-\bar{b}\right)^{2} \geq 0$. Because in addition $a 0>b 0$, we have $>$ 2 $^{-} \quad$ z $a_{n}>b_{n}$ for all n.
b. To see that $\left\{a_{n}\right\}$ is decreasing, note that

$$
a_{n+1}=\frac{a_{n}+\frac{b_{n}}{2}<\frac{a_{n}+a_{n}}{2}=a_{n}}{}
$$

Similarly,

$$
b_{n+1}=\pi_{n} b_{n}>b_{n} t_{n}=b_{n},
$$

so that $\left\{b_{n}\right\}$ is increasing.
c. $\left\{a_{n}\right\}$ is monotone and nonincreasing by part (b), and bounded below by part (a) (it is bounded below by any of the b_{n}), so it converges by the monotone convergence theorem. Similarly, $\left\{b_{n}\right\}$ is monotone and nondecreasing by part (b) and bounded above by part (a), so it too converges.
d.

2 2 2

2
Thus the diffierence between a_{n+1} and b_{n+1} is less than half the diffierence between a_{n} and b_{n}, so that diffierence goes to zero and the two limits are the same.
e. The AGM of 12 and 20 is approximately 15.745; Gauss' constant is $\frac{1}{\operatorname{AGM}(1, \overline{2})} \approx 0.8346$.
8.2.103
a.

$$
\begin{aligned}
2 & : 1 \\
3 & : 10,5,16,8,4,2,1 \\
4 & : 2,1 \\
5 & : 16,8,4,2,1 \\
6 & : 3,10,5,16,8,4,2,1 \\
7 & : 22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1 \\
8 & : 4,2,1 \\
9 & : 28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1 \\
10 & : 5,16,8,4,2,1
\end{aligned}
$$

b. From the above, $H_{2}=1, H_{3}=7$, and $H_{4}=2$.

This plot is for $1 \leq n \leq 100$. Like hailstones, the numbers in the sequence a_{n} rise and fall
c. but eventually crash to the earth. The con-jecture appears to be true.

$n \rightarrow \infty b_{n} \quad n \rightarrow \infty d b_{n} \quad d n \rightarrow \infty b_{n}$
8.2.105
a. Note that $a_{2}=$

$a k+1=3 a_{k}>3 a_{k-1}=a_{k}$.
Thus $\left\{a_{n}\right\}$ is increasing.
b. Clearly because $a_{-}=\vee_{-} \quad \sqrt{ } \quad 3>0$ and $\left\{a_{n}\right\}$ is increasing, the sequence is bounded below by $3>0$. Further, $a_{1}=3<3$; assume that $a_{k}<3$. Then $a_{k+1}=3 a_{k}<\sqrt{ } 3 \cdot 3=3$, so that $a_{k+1}<3$. So by induction, $\left\{a_{k}\right\}$ is bounded above by 3 .
c. Because $\left\{a_{n}\right\}$ is bounded and monotonically increasing, lim $\quad a_{n}$ exists by Theorem 8.5. $n \rightarrow \infty$
d. Because the limit exists, we have

$$
\lim a_{n+1}=\lim \sqrt{ } \overrightarrow{3 a_{n}}=\sqrt{ } \quad 3 \lim \sqrt{a_{n}}=\sqrt{ } \quad 3 \overline{\lim a_{n}} .
$$

Let $L=\lim a_{n+1}=\lim _{n \rightarrow \infty} a_{n}$; then $L=\sqrt{n \rightarrow \infty} \sqrt{ } \sqrt{ } \bar{L}$, so that $L=3$.

$$
{ }_{n \rightarrow \infty}^{n \rightarrow \infty} \quad \sqrt{ }
$$

8.2.106 By Theorem 8.6,

$$
\lim _{n \rightarrow \infty} \frac{2 \ln n}{\sqrt{v}}=2 \lim \quad \frac{\ln n}{n \rightarrow \infty n^{1 / 2}}=0,
$$

so that $\quad \bar{n} \quad$ has the larger growth rate. Using computational software, we see that $\sqrt{ } \quad-\overline{74} \approx 8.60233<2 \ln 74 \approx$ 8.60813, while $\sqrt{ } 75 \approx 8.66025>2 \ln 75 \approx 8.63493$.
8.2.107 By Theorem 8.6,

$$
\lim \underline{n}^{\underline{5}}=2^{5} \lim \quad(n / 2)_{5}=0,
$$

${ }_{n \rightarrow \infty} e^{n / 2} \quad{ }_{n \rightarrow \infty} e^{n / 2} \quad-$
so that $e^{n / 2}$ has the larger growth rate. Using computational software we see that $e^{35 / 2} \approx 3.982 \times 10^{7}<35^{5}$ $\approx 5.252 \times 10^{7}$, while $e^{36 / 2} \approx 6.566 \times 10^{7}>36^{5} \approx 6.047 \times 10^{7}$.
8.2.108 By Theorem $8.6, \ln n^{10} n^{1.001}$, so that $n^{1.001}$ has the larger growth rate. Using computational software we see that $35^{1.001} \approx 35.1247<\ln 35^{10} \approx 35.5535$ while $36^{1.001} \approx 36.1292>\ln 36^{10} \approx 35.8352$.
8.2.109 Experiment with a few widely separated values of n :

n	$n!$	$n 0.7 n$
1	1	1
10	3.63×10^{6}	10^{7}
100	9.33×10^{157}	10_{140}
1000	4.02×10^{2567}	10_{2100}

It appears that $n^{0.7 n}$ starts out larger, but is overtaken by the factorial somewhere between $n=10$ and $n=100$, and that the gap grows wider as n increases. Looking between $n=10$ and $n=100$ revels that for $n=18$, we have $n!\approx 6.402 \times 10^{15}<n^{0.7 n} \approx 6.553 \times 10^{15}$ while for $n=19$ we have $n!\approx 1.216 \times 10^{17}>$
$n^{0.7 n} \approx 1.017 \times 10$.
8.2.110 By Theorem 8.6,

$$
\lim _{n \rightarrow \infty} \frac{n^{9}}{-\frac{\ln ^{3} n}{n^{10}}=\lim _{n \rightarrow \infty} \frac{\ln ^{3} n}{n}=0, ~ ; ~}
$$

so that $n^{10} \quad$ has a larger growth rate. Using computational software we see that $93{ }^{10}{ }_{10}$ $93^{9} \ln ^{3} 93 \approx 4.846 \times 10^{19}$ while $94^{10} \approx 5.386 \times 10^{19}>94^{9} \ln ^{3} 94 \approx 5.374 \times{ }^{19}$.
8.2.111 First note that for $a=1$ we already know that $\left\{n^{n}\right\}$ grows fast than $\{n!\}$. So if $a>1$, then $n^{a n} \geq n^{n}$, so that $\left\{n^{a n}\right\} \quad$ grows faster than $\{n!\}$ for $a>1$ as well. To settle the case $a<1$, recall Stirling's formula which that for large values of n,

$$
n!\sim \overline{2 \pi n n} n e^{-n}
$$

Thus

$$
\begin{aligned}
& \lim \underset{\substack{n!}}{n!} \overline{2 \pi n} n^{n} e^{-n} \\
& n \rightarrow \infty n \\
& =\sqrt[n]{-\infty} \lim n \frac{n^{a n}}{2 \pi}+(1-a) n e^{-n} \\
& \sqrt{\sum_{2 \pi}} \underset{\lim }{n \rightarrow \infty} n(1-a) n e^{-n} \\
& \sqrt{ } \lim _{2 \pi}^{n \rightarrow \infty} \underset{\lim }{ } \boldsymbol{e}(1-a) n \ln n \boldsymbol{e}^{-n} \\
& =\frac{V}{2 \pi}_{n \rightarrow \infty}^{n} \boldsymbol{\operatorname { l i m }} \boldsymbol{e}((1-a) \ln n-1) n .
\end{aligned}
$$

If $a<1$ then $(1-a) \ln n-1>0$ for large values of n because $1-a>0$, so that this limit is infinite. Hence $\{n!\}$ grows faster than $\left\{n^{a n}\right\}$ exactly when $a<1$.

8.3 Infinite Series

8.3.1 A geometric series is a series in which the ratio of successive terms in the underlying sequence is a constant. Thus a geometric series has the form $a r^{k}$ where r is the constant. One example is $3+6+12+24+$
$48+\cdots$ in which $a=3$ and $r=2$.
8.3.2 A geometric sum is the sum of a finite number of terms which have a constant ratio; a geometric series is the sum of an infinite number of such terms.
8.3.3 The ratio is the common ratio between successive terms in the sum.
8.3.4 Yes, because there are only a finite number of terms.
8.3.5 No. For example, the geometric series with $a_{n}=3 \cdot 2^{n}$ does not have a finite sum.
8.3.6 The series converges if and only if $|r|<1$.

8.3.14 $\left.S=^{\underline{4}} \cdot \underline{1-(4 / 7}\right)^{10}=\frac{375235564}{} \approx 1.328$.
$\begin{array}{lll}7 & 3 / 7 & 282475249\end{array}$
8.3.15 $S=1 \cdot \frac{1-(-1)}{2} \frac{21}{2}=1$.
8.3.16 65 .

2
9
1
276
$\underline{1} \underline{1-(3 / 5)^{6}} \xrightarrow{7448} \quad$ - $-=-4$
$\begin{array}{ccr}8.3 .18 & 1-3 / 5 \\ 1 & 5\end{array}=15625$.
8.3.19 $1-1 / 4=3^{\circ}$
$\overline{8.3 .20}$

$$
\begin{aligned}
& 1-1 / \pi \quad \overline{\pi-1} \\
& \underline{5 / 4} \quad \underline{5} \\
& \text { 8.3.26 } 1-1 / 2=2^{\circ} \\
& \begin{array}{l}
\frac{2-3}{} 1 \\
\text { 8.3.27 } 1-2^{-3}=7
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
8.3 .28 \frac{3 \cdot 4^{3} 7^{3}}{1-4 / 7}=\frac{64}{} \\
8.3 .29
\end{array}
$$

$$
\frac{1 / 625}{1-1 / 5}=\frac{1}{500} .
$$

$$
49
$$

8.3.30 Note that this is the same as

$$
\sum_{i=0}^{\infty} \quad \frac{3}{4}^{k} \quad . \text { Then } S=\frac{1}{1-3 / 4}=4
$$

$8.3 .31 \frac{1}{1-e / \pi}=\frac{\pi}{\pi-}$
$8.3 .32 \frac{1 / 16}{1-3 / 4}=4$.
$\infty \quad 3$
8.3.33 e. . (Note that $e<\pi$, so $r<1$ for this series.)

$$
1^{k} 5_{3-k}=53 \quad \infty \quad 1^{k}=5^{3} \xrightarrow{1}=\underline{5 \cdot 20}=-\frac{2500}{}
$$

\square

$$
k=0 \quad 20 \quad 1-1 / 2
$$

$$
\begin{array}{lll}
1-1 / 20 & 19 & 19
\end{array}
$$

8.3.41_
a. $0.3=0.333 \ldots=\quad{ }_{k=13(0.1)^{k} \text {. }}^{\infty}$.
b. The limit of the sequence of partial sums is $1 / 3$.
8.3.43_
a. $0.1=0.111 \ldots=\quad{ }_{k=1}^{\infty}(0.1)^{k}$.
b. The limit of the sequence of partial sums is $1 / 9$.
8.3 .45
a. $0.09=0.0909 \ldots \quad=\quad{ }_{k=1}^{\infty} 9(0.01)^{k}$.
b. The limit of the sequence of partial sums is 1/11.
8.3.47
a. $0.037=0.037037037 \ldots=\quad{ }_{k=1}^{\infty} 37(0.001)^{k}$.
b. The limit of the sequence of partial sums is $37 / 999=1 / 27$.
8.3.42
a. $0 . \overline{6}=0.666 \ldots={ }_{k=1}^{\infty} 6(0.1)^{k}$.
b. The limit of the sequence of partial sums is $2 / 3$.
8.3.44
a. $0 . \overline{5}^{-}=0.555 \ldots=\quad{ }_{k=1}^{\infty} 5(0.1)^{k}$.
b. The limit of the sequence of partial sums is 5/9.
8.3.46
a. $0 . \overline{27}=0.272727 \ldots=\quad{ }_{k=1}^{\infty} 27(0.01)^{k}$.
b. The limit of the sequence of partial sums is $3 / 11$.

8.3.48

a. $0 . \overline{027}=0.027027027 \ldots=\quad{ }_{k=1}^{\infty} 27(0.001)^{k}$
b. The limit of the sequence of partial sums is $27 / 999=1 / 37$.

$$
\begin{aligned}
& 8.3 .490 .12=0.121212 \ldots=\quad .12 \cdot 10^{-2 k}=1-1 / 100=99=33 . \\
& 8.3 .501 \cdot \frac{25}{} \quad=1.252525 \ldots=1+\quad .25 \cdot 10^{-2 k}=1+\underbrace{.25}_{k=0}=1+\frac{25}{}=\frac{124}{} .
\end{aligned}
$$

8.3.51 0. $\overline{456}=0.456456456 \ldots={ }_{k=0} .456 \cdot 10^{-3 k}=\frac{.456}{1-1 / 1000}=\frac{456}{999}=\frac{152}{333}-$.

$8.3 .54 \underset{k=0}{5.1283}=5.12838383 \ldots=5.12+\quad .0083 \cdot 10^{-2 k}=5.12+\frac{.0083}{1-1 / 100}=\frac{512}{100}+\frac{.83}{99}=\frac{128}{25}+\frac{83}{9900}=$
$\frac{50771}{9900}$.
8.3.55 The second part of each term cancels with the first part of the succeeding term, so $S_{n}=$
${ }_{1+1} \cdot \frac{1}{-1}{ }_{n+2} . \frac{1}{-}$
$\underset{2 n+4}{n}$, and $\lim \frac{n}{2 n+4}=\frac{1}{2}$.
8.3.56 The second part of each term cancels with the first part of the succeeding term, so $S_{n}=\frac{1}{1+2}-\frac{1}{n+3^{+}}=$ $\frac{n}{3 n+6}$, and $\lim \frac{n}{3 n+9}=\frac{1}{3}$.
8.3.57 $\frac{1}{(k+6)(k+7)}-=\frac{1}{k+6}-\frac{1}{k+7}-$, so the series given is the same as $\quad \infty_{k=1}^{-\frac{1}{k+6}}-\underset{k+7}{-1} \quad$. In that series,
the second part of each term cancels with the first part of the succeeding term, so $S_{n}=\quad \frac{1}{1+6^{\circ}}-\frac{1}{n+7}$. Thus $\lim S_{n}=1$.
$n \rightarrow \infty \quad 7$

succeeding term (because $3(k+1)+1 \quad=3 k+4$), so we are left with $S_{n}=\quad \frac{1}{3} \frac{1}{1}--\frac{1}{3 n+4} \quad=\quad{ }_{3 n+1}^{n+1}$ and $\lim _{n \rightarrow \infty} \frac{n+1}{3 n+4}=\frac{1}{3}$.

In that series, the second part of each term cancels with the first part of the succeeding term (because
$\underset{n \rightarrow \infty}{4(k+1)-3=4 k+1)}$, so we have $S_{n}=\quad-\quad-\frac{1}{4 n+1}$, and thus $\lim S_{n}=\frac{1}{9}$.
∞
 $(2 k-1)(2 k+1) \quad 2 k-1 \quad 2 k+1 \quad{ }_{k=3} \quad 2 k-1 \quad 2 k+1$

In that series, the second part of each term cancels with the first part of the succeeding term (because $\underset{n \rightarrow \infty}{2(k+1)-1=2 k+1)}$, so we have $S_{n}=\quad 1-\frac{1}{2_{n+1}}$. Thus, $\lim S_{n}=\frac{1}{5}$.
 part of each term cancels with the second part of the next term, so we have $S_{n}=\ln (n+1)-\ln 1=\ln (n+1)$, and thus the series diverges.

n). The second part of each term cancels
$n \rightarrow \infty$
28.3. Infinite Series

Chapter 8. Sequences and Infinite Series28
$\sqrt{ }$
$n+1-1=\infty$, the

$$
\text { 8.3.64 } \frac{1}{(a k+1)(a k+a+1)}=\frac{1}{a}-\frac{1}{a k+1} \quad \frac{1}{a k+a+1}, \text { so that } \frac{1}{\infty} \frac{1}{(a k+1)(a k+a+1)}=
$$

$$
1^{\infty} \quad 1 \begin{aligned}
& 1 \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

$a_{k=1} \quad a k+1 \quad a k+a+1 \quad$. This series telescopes - the second term of each summand cancels with the

 the series is equal to $\lim \quad S_{n}=-\frac{1}{4}$.
$n \rightarrow \infty$
8.3.68 This series clearly telescopes to give $S_{n}=-\tan ^{-1}(1)+\tan ^{-1}(n)=\tan ^{-1}(n)-\quad \begin{aligned} & \text { because }\end{aligned} \quad \pi$. Then
 8.3.69

b. True. If $a_{k=12}^{\infty}=L$, then $a_{k=0}^{\infty} a^{k}={ }_{k=0}^{11} a^{k}+L$.
c. False. For example, let $0<a<1$ and $b>1$.

we have $r<1$; because $a>\quad 1$ we have $r>1--^{1}=-1$. Thus $|r|<1$ so that $\quad \infty \quad r^{k}$ converges, and it converges to a. $k=0$
e. True. Suppose $a>-\frac{1}{2}$. Then we want $a=\quad \sum_{k=1}^{\infty} r^{k}=\quad \frac{r}{1-r}$. Solving for r gives $r=a \quad-\frac{a}{+1}$. For $a \geq 0$, clearly $0 \leq r<1$ so that $\quad \underset{\substack{c=1 \\ k=1}}{\infty} \quad r^{k} \quad$ converges to a. For $-\underline{1}<a<0$, clearly $r<0$, but $|a|<|a+1|$, so
that $|r|<1$. Thus in this case $\quad k=1 r^{k}$ also converges to a.
8.3.70 We have

$$
\begin{array}{r}
S_{n}=\sin ^{-1} 1-\sin ^{-1} 1+\sin ^{-1} \underline{1}-\operatorname{si}^{-1}+\cdots+\sin ^{-1} \\
2
\end{array}
$$

Note that the first part of each term cancels the second part of the previous term, so the nth partial sum telescopes to be $\sin ^{-1} 1-\sin ^{-1} \frac{1}{n+1}$. Because $\sin ^{-1} 1=\frac{\pi}{2}$ and $\lim _{2} \operatorname{si}_{n}^{-1} \frac{1}{n}=\sin ^{-1} 0=0$, we have

$$
\lim S_{n}=\underline{\pi}
$$

$n \rightarrow \infty \quad 2$
8.3.71 This can be written as $\underline{1} \quad-\frac{2}{2}$. This is a geometric series with ratio $r=-2$ so the sum is

$$
3_{k=1} \quad 3
$$

$\begin{array}{lllllr}3 & 1 & 2 / 3) & 3 & 5 & 15 \\ \underline{1} & -2 / 3 & \underline{1} & \underline{2} & 2\end{array}$

$$
\underline{1} \infty \quad \underset{\sim}{\pi} k \quad \bar{e}
$$

8.3.72 This can be written as $e_{k=1} \quad e$. This is a geometric series with $r=\pi>1$, so the series diverges.
8.3.73 Note that

$$
\frac{\ln \left((k+1) k^{-1}\right)}{(\ln k) \ln (k+1)}=\frac{\ln (k+1)}{(\ln k) \ln (k+1)}-\frac{\ln k}{(\ln k) \ln (k+1)}=\frac{1}{\ln k}-\frac{1}{\ln (k+1)} .
$$

In the partial sum S_{n}, the first part of each term cancels the second part of the preceding term, so we have $S_{n}=$
$\lim _{\ln 2}$
$\frac{1}{\ln (n+1)}-\frac{1}{n \rightarrow \infty}$. Thus we have $\quad S_{n}=\frac{1}{\ln 2}$.
8.3.74
a. Because the first part of each term cancels the second part of the previous term, the nth partial sum telescopes to be $S_{n}=1-\ldots$. Thus, the sum of the series is $\lim _{n \rightarrow \infty} S_{n}=\frac{1}{2}$.
b. Note that $2_{k}^{\frac{1}{2}}-\frac{1}{2^{k+1}}=\frac{2_{k+1}-2^{k}}{2^{k} 2^{k+1}} \frac{1}{=2^{k+1}}$. Thus, the original series can be written as $\quad{ }_{k=1}^{\infty} \frac{1}{2_{k+1}}$ which is geometric with $r=1 / 2$ and $a=1 / 4$, so the sum is $\quad \frac{1 / 4}{1-1 / 2} \quad=\frac{1}{2}$.
8.3.75
a. Because the first part of each term cancels the second part of the previous term, the nth partial sum telescopes to be $S_{n}=4-4$. Thus, the sum of the series is $\lim _{n \rightarrow \infty} S_{n}=\underline{4}$.

$$
\begin{array}{llll}
8 / 9 & \underline{8} & \underline{3} & \underline{4}
\end{array}
$$

is geometric with $r=1 / 3$ and $a=8 / 9$, so the sum is $1-1 / 3 \quad=9 \cdot 2=3$.
8.3.76 It will take Achilles $1 / 5$ hour to cover the first mile. At this time, the tortoise has gone $1 / 5$ mile more, and it will take Achilles $1 / 25$ hour to reach this new point. At that time, the tortoise has gone another $1 / 25$ of a mile, and it will take Achilles 1/125 hour to reach this point. Adding the times up, we have

$$
\frac{1}{5}+\frac{1}{25}+\overline{125}+\cdots=\frac{1 / 5}{1-1 / 5}=\frac{1}{4}
$$

so it will take Achilles $1 / 4$ of an hour (15 minutes) to catch the tortoise.
8.3.77 At the $n^{\text {th }}$ stage, there are 2^{n-1} triangles of area $A_{n}={ }^{1}{ }_{-\overline{8}} A_{n-1}=\frac{1}{r^{1}}-A_{1}$, so the total area of the triangles formed at the $n^{\text {th }}$ stage is $\frac{2-n-1}{n-1} A_{1}=\quad 1^{n-1} A_{1}$. Thus the total area under the parabola is

$8 \quad 4$

$\infty 1_{n-1} \quad \infty \quad 1_{n-1} \quad \underline{4}$
8.313. Infinite Series ____Chapter 8. Sequences and Infinite Series31
$n=1 \quad 4$

8.3.78

$$
n \rightarrow \infty
$$

 we cannot have $a=1$, because the fraction would then be undefined. Continuing, we obtain $S_{n}=$ $\frac{1}{a-1 a-1}-\frac{1}{\square}$. Now, lim $\frac{1}{-1}$ converges if and only if the denominator grows without bound; this happens if and only if $\stackrel{n}{ }{ }^{a}\left|a^{\infty}\right|^{a}>1$. Thus, the original series converges for $|a|>1$, when it converges to $\frac{1}{(a-1)^{2}}$. Note that this is valid even for a negative.

It appears that the loan is paid offi after about 470 months. Let B_{n} be the loan balance after n months. Then $B_{0}=180000$ and $B_{n}=1.005 \cdot B_{n-1}-$ 1000. Then $B_{n}=1.005 \cdot B_{n-1}-1000=1.005(1.005 \cdot$ $\left.B_{n-2}-1000\right)-1000=(1.005)^{2} \cdot B_{n} 2-1000(1+$
8.3.79

$$
\begin{aligned}
& .1 .005)=(1.005)^{2} \cdot\left(1.005 \cdot B_{n}-3-1000\right)- \\
& +1.005)=(1.005)^{3} \cdot B_{n-3}-1000(1+ \\
& =\quad \cdots=(1.005)^{n} B_{0}- \\
& \left.1.005+(1.005)^{2}\right) \\
& 1000\left(1+1.005+(1.005)^{2}+\cdots+(1.005)_{u}^{n-1}\right)=
\end{aligned}
$$

$$
(1.005)^{n} \cdot 180000-1000 \quad \underset{1.005}{\left.\frac{1}{1} \cdot 05\right)}-1 . \text { Solving }
$$

this equation for $B_{n}=0$ gives $n \approx 461.667$ months, so the loan is paid offi after 462 months.
It appears that the loan is paid offi after about 38 months. Let B_{n} be the loan bal-ance after n months. Then $B_{0}=20000$ and $B_{n}=1.0075 \cdot B_{n-1}-$ 60. Then $B_{n}=1.0075 \cdot B_{n-1}-600=1.0075(1.0075$. $\left.B_{n-2}-600\right)-$

$$
600=(1.0075)^{2} \cdot B_{n} \quad 2-600(1+1.0075)=
$$

$$
(1.0075)^{2}\left(1.0075 \cdot B_{n} \quad 3 \quad-600\right)-600(1+
$$

$$
8.3 .80 \quad 1.0075)=(1.0075)^{3} \cdot B_{n} \quad \begin{gathered}
3-600(1+1.0075+ \\
n
\end{gathered}
$$

$$
\left.(1.0075)^{2}\right)=\cdots=
$$

$$
\begin{aligned}
& (1.0075)-\cdots= \\
& 1.0075+(1.0075)^{2}
\end{aligned}
$$

$$
(1.0075) B 0-600(1+
$$

$$
\left.+\cdots+(1.0075)^{n-1}\right)=
$$

$$
(1.0075)^{n} \cdot 20000-600 \quad \frac{(1.6075)-1}{1.0075-1}
$$

Solving this equation for $B_{n}=0$ gives $n \approx$ 38.501 months, so the loan is paid offi after 39 months.

$$
\begin{aligned}
& { }_{k=1}\left(3_{k+1}-1\right)\left(3^{k}-1\right) \quad 2_{k=1} \quad 3^{k}-1 \quad 3_{k+1}-\quad 1 \\
& \text { - } 1-2-1
\end{aligned}
$$

8.3.81 $F_{n}=(1.015) F_{n-1}-120=(1.015)\left((1.015) F_{n-2}-120\right)-120=(1.015)\left((1.015)\left((1.015) F_{n-3}-120\right)--\right.$ $\frac{(1.015)^{n}}{\underline{1}}$
$\quad-1$
The long term population of the fish is 0 .
8.3.82 Let A_{n} be the amount of antibiotic in your blood after n 6-hour periods. Then $A_{0}=200, A_{n}=$ $0.5 A_{n}-1+200$. We have $A_{n}=.5 A_{n-1}+200=.5\left(.5 A_{n}-2+200\right)+200=.5\left(.5\left(5 A_{n}-3+200\right)+200\right)+200=$ $\cdots=.5^{n}(200)+200\left(1+.5+.5^{2}+\cdots+.5^{n-1}\right)$. This is equal to

$$
\left.\begin{array}{ll}
.5^{n}(200)+200 & . \frac{5}{n}-1^{.5-1}
\end{array}=\left(.5^{n}\right)(200) \quad-400\right)+400=(-200)\left(.5^{n}\right)+400
$$

The limit of this expression as $n \rightarrow \infty$ is 400 , so the steady-state amount of antibiotic in your blood is 400 mg.
8.3.83 Under the one-child policy, each couple will have one child. Under the one-son policy, we compute the expected number of children as follows: with probability $1 / 2$ the first child will be a son; with probability $(1 / 2)^{2}$, the first child will be a daughter and the second child will be a son; in general, with probability
$(1 / 2)^{n}$, the first $n-1$ children will be girls and the $n^{\text {th }}$ a boy. Thus the expected number of children
is the sum ${ }^{\infty} i . \frac{1}{2}^{i}$. To evaluate this series, use the following "trick": Let $f(x)=\quad{ }^{\infty} \quad i x^{i}$. Then
$f(x)+\quad x_{i=1}^{i}={ }_{i=1}(i+1) x^{i}$. Now, let

$$
=x^{\infty}=-1-x+\quad x^{i=0}, \quad \frac{1}{i} g(x)
$$

and

$$
g(x)=f(x)+\quad x_{i=1}^{\infty} x^{i}=f(x)-1+x_{i=0}^{\infty} x^{i}=f(x)-1+1-x .
$$

Evaluate $g(x)=-1-\frac{1}{(1-x)^{2}}$; then

$$
f(x)=1-\frac{1}{1-x-1-(1-x)^{2}}=\frac{1}{(1-x)^{2}}=\frac{x}{(1-x)^{2}}
$$

children under the one-son policy as under the one-child policy.
8.3.84 Let L_{n} be the amount of light transmitted through the window the $n{ }^{\text {th }}$ time the beam hits the second pane. Then the amount of light that was available before the beam went through the pane was $\quad \frac{p L_{n}}{1-p}$
is reflected back to the first pane, and $p^{2} L_{n}$ is then reflected back to the second pane. Of that, a fraction equal to $1-p$ is transmitted through the window. Thus

$$
L_{n+1}=(1-p)^{p^{2}-\underline{L}_{n}}=p^{2} L_{n} .
$$

$1-p$
The amount of light transmitted through the window the first time is $(1-p)^{2}$. Thus the total amount is

$$
\begin{aligned}
p^{2 n}(1-p)^{2}= & \frac{(1-p)}{}^{2}=\underline{1}-\underline{p} . \\
& 1-p^{2} \quad 1+p
\end{aligned} .
$$

8.3.85 Ignoring the initial drop for the moment, the height after the $n^{\text {th }}$ bounce is $10 p^{n}$, so the total time spent in that bounce is $2 \cdot 2 \cdot 10 p^{\bar{n}} / \mathrm{g}$ seconds. The total time before the ball comes to rest (now including the time for the initial drop) is then $20 / g+\infty \quad 2 \cdot 10 p^{n} / g=20 \quad 20 \quad V_{n}=$

8.3.86
a. The fraction of available wealth spent each month is $1-p$, so the amount spent in the $n^{\text {th }}$ month is $W(1-p)^{n}$. The total amount spent is then $\quad{ }_{n=1}^{\infty} W(1-p)^{n}=\frac{W(1-p)}{1-(1-p)}=W \quad \frac{1-}{p_{p} p} \quad$ dollars.
b. As $p \rightarrow 1$, the total amount spent approaches 0 . This makes sense, because in the limit, if everyone saves all of the money, none will be spent. As $p \rightarrow 0$, the total amount spent gets larger and larger. This also makes sense, because almost all of the available money is being respent each month.
8.3.87
a. I_{n+1} is obtained by I_{n} by dividing each edge into three equal parts, removing the middle part, and adding two parts equal to it. Thus 3 equal parts turn into 4 , so $L_{n+1}=4 \overline{3} L_{n}$. This is a geometric sequence with a ratio greater than 1 , so the $n^{\text {th }}$ term grows without bound.
b. As the result of part (a), I_{n} has $3 \cdot 4^{n}$ sides of length $3{ }_{n} \underset{\sim}{;}$; each of those sides turns into an added triangle in I_{n+1} of side length 3^{-n-1}. Thus the added area in I_{n+1} consists of $3 \cdot 4^{n}$ equilateral triangles with side 3^{-n-1}. The area of an equilateral triangle with side x is $\underline{\underline{x}}^{2}-\underline{3}$. Thus $A \quad=A+34^{n} \cdot \square=$

1
$2 \quad i=0 \quad 9$
8.3.88

c. Suppose $x=0 . n_{1} n 2 \ldots n_{p} n_{1} n_{2} \ldots$ Then we can write this decimal as $n_{1} n_{2} \ldots n_{p} \quad{ }_{i=1}^{\infty} 10_{-i p}=$
 multiplication but rather the digits in a decimal number, and where there are $p 9$'s in the denominator.
d. According to part (c), $0.12345678912345678912 \ldots=\underline{123456789} 999999999$
e. Again using part (c), $0.9={ }^{9} \overline{9}=1$.
8.3.89 $\left|S-S_{n}\right|=\quad \quad r^{k}=. \quad . \quad$ because the latter sum is simply a geometric series with first term r^{n}
and ratio r.
8.3 .90
a. Solve $\frac{0.6_{n}}{0.4}<10^{-6}$ for n to get $n=29$.
b. Solve $\frac{0.15_{n}}{0.85}<10^{-6}$ for n to get $n=8$.
8.3.91
a. Solve $\frac{n}{1.8}=\frac{a_{1}^{n}}{1.8}{ }^{<10^{-6}} \quad$ for n to get $n=60$.

Sequences and Infinite Series35
b. Solve $\frac{0.2_{n}}{0.8}<10^{-6}$ for n to get $n=9$.
8.3.92
a. Solve $\frac{0.72^{n}}{0.28^{-}}<10^{-6}$ for n to get $n=46$.

$$
\text { b. Solve } \quad \frac{n}{(-0.25)=} 1.25 \quad \stackrel{0.5}{1.25}<n^{n}<10^{-6} \text { for } n \text { to get } n=10 \text {. }
$$

8.3 .93
a. Solve $\begin{aligned} & \frac{1 / \pi^{n}}{1-1 / \pi} \\ & \frac{1 / e^{\underline{n}}}{}\end{aligned} \int_{-6}^{-6}$ for n to get $n=13$.
b. Solve ${ }_{1-1 / e}<10 \quad$ for n to get $n=15$.
8.3.94
$\infty \quad$ a. $f(x)=\quad \quad \quad$ = $x^{k}=\quad \frac{1}{1-x} \quad$ because f is represented by a geometric series, $f(x)$ exists only for $\quad x<1$.
$1 \quad$ Then $f(0)=1, f(0.2)=0.8 \quad-=1.25, f(0.5)=1-0.5 \quad=2$. Neither $f(1)$ nor $f(1.5)$ exists.
b. The domain of f is $\{x:|x|<1\}$.
8.3.95
a. $f(x)=\quad \frac{1}{1+x} \quad$; because f is a geometric series, $f(-1)^{k} x^{k}=\quad$ exists only when the ratio, $-x$, is
such that $|-x|=|x|<1$. Then $f(0)=1, f(0.2)=$ $\underline{2}$
$f(1.5)$ exists.
b. The domain of f is $\{x:|x|<1\}$.
8.3.96
∞

than 1 , which means $|x|<1$. Then $f(0)=1, f(0.2)=1-.04$ nor $f(1.5)$ exists.
b. The domain of f is $\{x:|x|<1\}$.
8.3.97 $f(x)$ is a geometric series with ratio
 $\frac{1}{1+\dot{x}}$ and $\frac{1}{1+x}<1$ when $\left.1<1+x, x\right\rangle \quad 0$. For $x<-1, \quad \frac{1}{1+x}=\frac{1}{-1-x}$, and this is less than 1 when $1<-1-x$, i.e. $x<-2$. So $f(x)$ converges for $x_{-}>0$ and for $x<-2$. When $f(x)$ converges, its value is $\frac{1}{\substack{1-x}}-\frac{1+x}{1+}=\frac{1}{x}$, so $f(x)=3$ when $1+x=3 x, x=$
8.3.98
a. Clearly for $k<n, h_{k}$ is a leg of a right triangle whose hypotenuse is r_{k} and whose other leg is formed where the vertical line (in the picture) meets a diameter of the next smaller sphere; thus the other leg of the triangle is r_{k+1}. The Pythagorean theorem then implies that $h^{2} k=r_{k}^{2}-r^{2}{ }_{k+1}$.

c. From part (b), because $r_{i}=a^{i-1}$,

$$
\begin{aligned}
H_{n} & =r_{n}+\quad \overline{r_{i=1}^{2}-r_{i}^{2}+1}=a^{n-1}+\quad a 2 i-2-a_{2 i} \\
& =a^{n-1}+{ }_{i=1}^{n-1 \quad a_{i-1} \overline{1-a^{2}}=a^{n-1}+\sqrt{1-a^{2}}{ }_{i=1}^{n-1} a_{i-1}} \\
& =a^{n-1}+\quad 1-a^{2} \frac{1-a-n}{1-a}
\end{aligned}
$$

\qquad ——— Chapter 8. Sequences and Infinite Series37
d. $\quad \lim H_{n}=\quad \lim a_{n-1}+^{\sqrt{ }} \frac{}{1-a^{2}} \lim \xrightarrow{1-a}-=0+{ }^{\sqrt{2}} 1-a^{2} \quad+1$ $-\underline{1-a \cdot}=\underline{1+a}$. ${ }_{n \rightarrow \infty}^{n \rightarrow \infty}$ $n-1$
$-a$ \qquad

$1-a$
$(1-a)(1-a)$
8.3.99
a. Using Theorem 8.7 in each case except for $r=0$ gives

r	$f(r)$
-0.9	0.526
-0.7	0.588
-0.5	0.667
-0.2	0.833
0	-1
0.2	-250
0.5	
0.7	333
0.9	10

b. A plot of f is

c. For $1<r<1$ we have $f(r)=\frac{1}{1-r}$, so that

$$
\begin{aligned}
\lim f(r)= & \lim _{r \rightarrow-1^{+}}-\frac{1}{2}=1
\end{aligned} \quad \lim f(r)=\lim _{-}-1-\infty .
$$

a. In each case (except for $r=0$ where $N(r)$ is clearly 0), compute $\left|S-S_{n}\right|$ for various values of n gives the following results:

r	$N(r)$	$S_{-} S_{N(r)-1} \mid$	$\left\|S-S_{N(r)}\right\|$
-0.9	81	1.0×10^{-4}	9.3×10^{-5}
-0.7	24	1.1×10^{-4}	7.9×10^{-5}
-0.5	12	1.6×10^{-4}	8.1×10^{-5}
-0.2	5	2.7×10^{-4}	5.3×10^{-5}
0	0	-	0
0.2	5	4.0×10^{-4}	8.0×10^{-5}
0.5	14	1.2×10^{-4}	6.1×10^{-5}
0.7	29	1.1×10^{-4}	7.5×10^{-5}
0.9	109	1.0×10^{-4}	9.3×10^{-5}

b. A plot of r versus $N(r)$ for these values of r is

c. The rate of convergence is faster for r closer to 0 , since $N(r)$ is smaller. The reason for this is that r^{k} gets smaller faster as k increases when $|r|$ is closer to zero than when it is closer to 1 .

8.4 The Divergence and Integral Tests

8.4.1 If the sequence of terms has limit 1 , then the corresponding series diverges. It is necessary (but not sufflcient) that the sequence of terms has limit 0 in order for the corresponding series to be convergent.
8.4.2 No. For example, the harmonic serkes
${ }_{k=1}^{\infty} \bar{k}^{1}$ diverges although $\quad \frac{1}{k} \rightarrow 0$ as $k \rightarrow \infty$.
8.4.3 Yes. Either the series and the integral both converge, or both diverge, if the terms are positive and decreasing.
8.4.4 It converges for $p>1$, and diverges for all other values of p.
8.4.5 For the same values of p as in the previous problem - it converges for $p>1$, and diverges for all other values of p.
8.4.6 Let S_{n} be the partial sums. Then $S_{n+1}-S_{n}=a_{n+1}>0$ because $a_{n+1}>0$. Thus the sequence of partial sums is increasing.
8.4.7 The remainder of an infinite series is the error in approximating a convergent infinite series by a finite number of terms.
8.4.8 Yes. Suppose $\quad a_{k}$ converges to S, and let the sequence of partial sums be $\left\{S_{n}\right\}$. Then for any >0 there is some N such that for any $n>N,\left|S-S_{n}\right|<$. But $\left|S-S_{n}\right|$ is simply the remainder R_{n} when the series is approximated to n terms. Thus $R_{n} \rightarrow 0$ as $n \rightarrow \infty$.
8.4.9 $a_{k}=\quad{ }_{k}$ and $\lim _{-} a_{k}=1$, so the series
diverges. $2 k+1 \quad k \rightarrow \infty \quad 2$
8.4.10 $a k=\frac{k}{k+1}$ and $\lim _{k \rightarrow \infty} a_{k}=0$, so the divergence test is inconclusive.
\ldots

8.4.12 $a_{k}=\frac{k^{2}}{2}$ and $\lim _{k \rightarrow \infty} a_{k}=0$, so the divergence test is inconclusive.
8.4.13 $a_{k}=\quad-\frac{1}{{ }_{1000+k}} \quad$ and $\lim a_{k \rightarrow \infty}=0$, so the divergence test is inconclusive.
8.4.14 $a_{k}=\quad \frac{k^{3}}{}$ and $\lim a_{k}=1$, so the series diverges.
8.4.15 $a_{k}=\quad \xrightarrow[k]{\vee}-$ and $\lim a_{k}=\infty$, so the series diverges.
8.4.16 $a k=\quad \begin{aligned} & \ln k\end{aligned} \quad \begin{aligned} & k \rightarrow \infty \\ & \sqrt{k^{2}+1}\end{aligned} \begin{gathered}\text { and } \lim a=1 \\ k \rightarrow \infty \\ k \rightarrow \infty\end{gathered}$, so the series diverges.
8.4.17 $a_{k}=k 1 / k$. In order to compute $\lim _{k} \quad a_{k}$, we let $y_{k}=\ln a_{k}=\frac{\ln k}{k}$. By Theorem 9.6, (or by L'H'opital's rule), $\lim _{k \rightarrow \infty} y_{k}=0$, so $\lim _{k \rightarrow \infty} a_{k} \quad=e^{0}=1$. The given series thus diverges.
8.4.18 By Theorem $9.6 k^{3} \quad k!$, so $\lim _{k} \quad \frac{k}{k}=0$. The divergence test is inconclusive.
8.4.19 Clearly $\quad \frac{1}{x}=e^{-x}$ is continuous, positive, and decreasing for $x \geq 2$ (in fact, for all x), so the integral test applies. Because
$e^{\infty} e^{-x} d x=\lim _{c \rightarrow \infty} c_{2}^{c} \quad e^{-x} d x=\lim _{c \rightarrow \infty}^{c}\left(-e^{-x}\right)={\underset{2}{c \rightarrow \infty}}_{\lim _{c \rightarrow \infty}\left(e^{-2}-e^{-c}\right)=e^{-2},}$
the Integral Test tells us that the original series converges as well.
8.4.20 Let $f(x)=\frac{\vee-}{x^{2}+4} . f(x)$ is continuous for $x \geq 1$. Note that $f(x)=\frac{4}{\left({ }_{2} 3_{3}\right.}>0$. Thus f is increasing, and the conditions of the Integral Test aren't satisfied. The given series diverges by the Divergence Test.
8.4.21 Let $f(x)=x \cdot e^{-2 x_{2}}$. This function is continuous for $x \geq 1$. Its derivative is $e^{-2 x^{2}}\left(1-4 x^{2}\right)<0$ for $x \geq 1$, so $f(x)$ is decreasing. Because $\quad{ }^{\infty} x \cdot e-2 x^{2} d x=\frac{1}{4 e}$, the series converges.
 ∞, the series diverges.
 the series diverges.
8.4.24 Let $f(x)=\frac{1}{x(\ln x)^{2}} . f(x)$ is continuous and decreasing for $x \geq \quad$ 2. Because $\quad 2 f(x) d x=\quad \frac{1}{\ln } \quad 2$ the series converges.
is negative for $x>1$ so that $f(x)$ is decreasing. Because 1
${ }^{\infty} f(x) d x=2 e^{-1}$, the series converges.
8.4.26 Let $f(x)=\frac{1}{x \cdot \ln x \cdot \ln \ln x} \cdot f(x)$ is continuous and decreasing for $x>_{3 \text {, and }}$ ${ }^{\infty} \frac{1}{x \cdot \ln x \cdot \ln \ln x} d x=\infty$. The given series therefore diverges.
8.4.27 The integral test does not apply, because the sequence of terms is not decreasing.
8.4.28 $f(x)=\ldots \underline{-}$, is decreasing and continuous, and $\infty \ldots \frac{x}{2} d x=\frac{1}{2}$. Thus, the given series con-
verges.
$(x+1)$
$1 \quad(x+1)$
16
8.4.29 This is a p-series with $p=10$, so this series converges.
8.4.30 $\quad k_{k=2 k^{\pi}}^{\infty}=\quad_{k=2}^{\infty} \frac{1}{k^{\pi} e}$. Note that $\pi-e \approx 3.1416-2.71828<1$, so this series diverges.
8.4.31 $\infty=\frac{1}{}=\infty \quad{ }_{4}$, which is a p-series with $p=4$, thus convergent.
8.4.32

8.4.33 $\quad \infty \quad 1$ is a p-series with $p=3 / 2$, thus convergent.

$$
\infty \quad 2 k-3 / 2 \quad=2 \quad k=1 \quad k 3 / 2
$$

8.4.34
$k=1 \quad \quad_{k=1}^{\infty} \frac{1}{k^{1 / 3}}$ is a p-series with $p=1 / 3$, thus divergent.
8.4.35

$$
\begin{aligned}
& { }_{k=1}^{\infty} 3{ }^{v^{1}}= \\
& \infty \quad \text { ㄴ T } \quad \infty \quad 1 \\
& k=1 \quad{ }^{3} 27 k^{2}=3 \quad k=1 k^{2 / 3} \quad \text { is a } p \text {-series with } p=2 / 3 \text {, thus divergent. }
\end{aligned}
$$

a. The remainder R_{n} is bounded by $n{ }^{\infty} \bar{x}_{6}^{1} d x=5 n_{5}$.
b. We solve $\overline{5 n}^{1} 5<10^{-3}$ to get $n=3$.
c. $L_{n}=S_{n}+n+1 \quad{ }^{\infty} \overline{x^{6}} \quad d x=S_{n}+\frac{1}{5(n+1)^{5}}$, and $U_{n}=S_{n}+\quad{ }_{n}^{\infty} \quad \overline{x 6} d x=S_{n}+\quad \frac{1}{5_{n}^{5}}$.
d. $S_{10} \approx 1.017341512$, so $L_{10} \approx 1.017341512+\frac{1}{5 \cdot 11^{\circ}}$
$U_{10} \approx$ $U_{10} \approx$ 1.017343512.
8.4.36
a. The remainder $R n$ is bounded by $\begin{array}{lll}\infty & \frac{1}{8} \\ n & x\end{array} d x=\frac{1}{7 n}$.
b. We solve $7 n^{7} \quad \stackrel{1}{-}<10^{-3}$ to obtain $n=3$.

d. $S_{10} \approx 1.004077346$, so $L_{10} \approx 1.004077346+\frac{1}{7 \cdot 11^{7}} \quad \approx 1.004077353$, and $1.004077346+\frac{1}{7 \cdot 10^{7}} \approx$ $U_{10} \approx$ 1.004077360 .
8.4.37
a. The remainder R_{n} is bounded by $\infty_{n} \frac{1}{3} x d x=-\frac{1}{3} \ln -\quad$.

b. We solve $3 \quad$| $\frac{1}{{ }^{n} \ln 3}<10$ | to obtain $n=7$. |
| :---: | :---: |
| | $\infty \ldots 1$ |

c. $L_{n}=S_{n}+{ }_{n+1} \quad 3 x d x=S_{n}+\quad 3^{n+1} \ln 3$, and $U_{n}=S_{n}+\quad n_{n} \quad 3^{2} \ln 3$
d. $S_{10} \approx 0.4999915325$, so $L_{10} \approx 0.4999915325+\quad{ }_{3^{1}}{ }^{\mathrm{ln} 3} \quad 1 \quad 0.4999966708$, and $U_{10} \approx 0.4999915325+$ \approx

$$
\frac{1}{3^{10} \ln 3} \approx 0.5000069475
$$

8.4.38
a. The remainder R_{n} is bounded by $\sum_{n}^{\infty} \frac{1}{x \ln -x} d x=\frac{1}{\ln n}$.
b. We solve $\ln ^{-1} n<10^{-3}$ to get $n=e^{1000} \approx 10^{434}$.

1
$\infty \quad 1$
1
c. $L_{n}=S_{n}+\quad{ }_{n+1} \quad \overline{x \ln ^{2} x} d x=S_{n}+\quad \overline{\ln (n+1)}$, and $U_{n}=S_{n}+\quad{ }_{n} \quad \overline{x \ln ^{2} x} d x=S_{n}+\overline{\ln n}$. d. $S_{11}={ }_{11} \underline{1}_{-k} \approx 1.700396385$, so $L_{11} \approx 1.700396385+\frac{1}{n} 12 \approx 2.102825989$, and $U_{11} \approx 1.700396385+\frac{1}{\ln } \frac{1}{11} \approx 2.117428776$.

b. We solve $2 n^{-1 / 2}<10^{-3}$ to get $n>4 \times 10$, so let $n=4 \times 10^{6}+1$.
c. $L_{n}=S_{n}+\quad \begin{array}{cc}\infty & 1 \\ n+1 & x_{3 / 2} \\ & d x=S_{n}+2(n \quad+1)^{-1 / 2}\end{array}$, and $U_{n}=S_{n}+{ }_{-1 / 2}^{\infty} \frac{1}{x^{3 / 2}} d x=S_{n}+2 n^{-1 / 2}$.
d. $S_{10}=10-\underline{1} \quad \approx 1.995336493$, so $L \quad \approx 1.995336493+2 \cdot 11 \quad \approx 2.598359182$, and $U{ }_{10} \approx$ $k=1 k^{3 / 2}$
$1.995336493+2 \cdot 10^{-1 / 2} \approx 2.627792025$.
8.4.40
a. The remainder R_{n} is bounded by $n^{\infty} e^{-x} d x=e^{-n}$.
b. We solve $e^{-n}<10^{-3}$ to get $n=7$.
c. $L_{n}=S_{n}+\quad \infty \quad e^{-x} d x=S_{n}+e^{-(n+1)}$, and $U_{n}=S_{n}+\quad \infty \quad e^{-x} d x=S_{n}+e^{-n}$.
d. $S_{10}={ }_{k=1 e^{-k}}^{10} \quad \approx 0.5819502852$, so $L_{10} \quad \approx 0.5819502852+e^{-11} \approx 0.5819669869$, and $U_{10} \quad \approx$ $0.5819502852+e^{-10} \approx 0.5819956851$.
8.4.41
a. The remainder R_{n} is bounded by $\quad{ }_{n}^{\infty} x^{1}{ }_{3} d x=2 \frac{1}{n^{2}}$.
b. We solve $\frac{1}{2 n^{2}}<10^{-3}$ to get $n=23$.

d. $S_{10} \approx 1.197531986$, so $L_{10} \approx 1.197531986+\quad \frac{1}{2 \cdot 11^{2}} \approx 1.201664217$, and $\quad 1$
1.202531986.
8.4.42
a. The remainder R_{n} is bounded by ${ }_{n}^{\infty} x e^{-x^{2}} d x=\frac{1}{2 e^{n^{2}}}$.
b. We solve $\quad \frac{1}{-}<10^{-3}$ to get $n=3$. $2 e^{n}$
c. $L_{n}=S_{n}+\quad \infty \quad x e^{-x^{2}} d x=S_{n}+\quad{ }^{1} \quad$, and $U_{n}=S_{n}+\quad{ }^{\infty} x e^{-x^{2}} \quad d x=S_{n}+{ }^{1}$
$n+1 \quad \overline{2 e{\overline{(n+1)^{2}}}^{2}} \quad n \quad \overline{2 e n^{2}}$
d. $S_{10} \approx 0.4048813986$, so $L_{10} \approx 0.4048813986+2 e{ }^{+1} \frac{1}{z}_{z} \approx 0.4048813986$, and $U_{10} \approx 0.4048813986+2 e 10^{\frac{1}{2}} \approx$ 0.4048813986 .

8.4.44 This is a geometric series with $a=3 / e \quad$ and $r=1 / e$, so $\quad k=23 e \quad{ }_{1-(1 / e)} \quad=(\quad e-1) / e=e e^{(e-1)}$.

8.4.48
 8.4.49
 8.4.51 $=2$ $=2$ $k=0 \quad 6$

 $k=0 \quad 6$}
a. True. The two series diffier by a finite amount ($\quad k=1 a_{k}$), so if one converges, so does the other.
b. True. The same argument applies as in part (a).
c. False. If $a k$ converges, then $a_{k} \rightarrow 0$ as $k \rightarrow \infty$, so that $a_{k}+0.0001 \rightarrow 0.0001$ as $k \rightarrow \infty$, so that ($a_{k}+$ 0.0001) cannot converge.
d. False. Suppose $p=-1.0001$. Then $\quad p^{k}$ diverges but $p+0.001=-0.9991$ so that $\quad(p+.0001)^{k}$ converges.
e. False. Let $p=1.0005$; then $-p+.001=-(p-.001)=-.9995$, so that $\quad k^{-p}$ converges $(p$-series $)$ but $k^{-p+.001}$ diverges.
f. False. Let $a k=\frac{1}{k}$, the harmonic series.
8.4.52 Diverges by the Divergence Test because $\lim _{k \rightarrow \infty} a_{k}=\lim _{k \rightarrow \infty} \overline{\frac{k+1}{k}} \quad=1=0$.
8.4.53 Converges by the Integral Test because $\quad{ }_{1}^{\infty} \frac{1}{(3 x+1)(3 x+\underset{b}{4})} d x=\quad_{1}^{\infty} \frac{1}{3(3 x+1)}-\frac{1}{3(3 x+4)} d x=$ $\lim -1-1 x=\lim 1 \quad \ln \underline{3 x+1} \quad=\lim =-1 \quad \cdot \ln (4 / 7) \approx 0.06217<\infty$. ${ }_{b \rightarrow \infty} 1 \quad 3(3 x+1) \quad 3(3 x+4) \quad b \rightarrow \infty 9 \quad 3 x+4 \quad 1 \quad{ }_{b \rightarrow \infty} \quad 9$

Alternatively, this is a telescoping series with nth partial sum equal to $S_{n}=\quad 3_{4-}^{3 n+4}$ which converges to ${ }_{12}$.
8.4.54 Converges by the Integral Test because
∞.

$$
\underset{-10}{\infty} d x=\underline{\lim }^{\tan ^{-1}(x / 3)^{b}}=\underline{10} \underline{\pi} \approx \underset{5236}{ }<
$$

8.4.55 Diverges by the Divergence Test because $\lim a_{k}=\lim \underline{\sqrt{ } k}=1=0$.
8.4.56 Converges because it is the sum of two geometric series. In fact, $\quad \infty \quad z^{k}+3^{k} \quad \infty \quad k$

$<\infty$.
${ }_{2} x \ln x \quad{ }_{b \rightarrow \infty} \quad \ln x 2 \quad \ln 2$
8.4.58
a. In order for the series to converge, the integral $\int_{2}^{\infty} \frac{1}{x(\ln x)^{p}} d x$ must exist. But
$\frac{1}{x(\ln x) p} d x=1 \stackrel{1}{-p(\ln)^{x^{1-p},}}$
so in order for this improper integral to exist, we must have that $1-p<0$ or $p>1$.
b. The series converges faster for $p=3$ because the terms of the series get smaller faster.
8.4.59
a. Note that $\quad \frac{1}{x}--p d x=\frac{1}{}\left(\ln \ln ^{1-p}\right.$, and thus the improper integral with bounds n and ∞ exists only if $p>1$ because $\ln \ln x>0$ for $x>e$. So this series converges for $p>1$.
b. For large values of z, clearly $z^{-}>\ln z$, so that $z>(\ln z)^{2}$. Write $z=\ln x$; then for large x,
$\ln x>(\ln \ln x)^{2}$; multiplying both sides by $x \ln x$ we have that $x \ln ^{2} x>x \ln x(\ln \ln x)^{2}$, so that the first series converges faster because the terms get smaller faster.
8.4.60
a. $\quad k 2 \frac{1}{-5}$.
b. $\quad \frac{1}{k^{0.75}}$.
c. $\quad k 3 / 2^{\circ}$

$k=1 \quad k$
Because each rectangle lies above the curve itself, we see that S_{n}
$\mathcal{L}_{\text {on }[1, n+1]}$
x is bounded below by the integral of $\quad \frac{1}{x}$ on
$[1, n+1]$. Now,

$$
\stackrel{V}{x}_{x}^{n+1} d x={ }_{1}^{n+1} \quad x^{-1 / 2} d x=2_{x}^{n+1} \quad=\overline{2 n+1}-2 .
$$

This integral diverges as $n \rightarrow \infty$, so the series does as well by the bound above.

 only if the other one does.
8.4.64

$$
\infty \quad \underline{1}=\left.\lim _{b \rightarrow \infty} \quad \ln \ln x\right|^{b}{ }_{2}=\infty .
$$

8.4.65 To approximate the sequence for $\zeta(m)$, note that the remainder R_{n} after n terms is bounded by

$$
{ }_{n}^{\infty} \frac{1}{x^{m}} d x=\frac{1}{m-1}^{1-m}
$$

For $m=3$, if we wish to approximate the value to within $10 \quad \begin{aligned} & -3 \\ & \text {, we must solve } \\ & \underline{1} 2^{-2}\end{aligned} 2^{n}<10^{-3}$, so that $n=23$, and $\frac{1}{k^{3}} \approx 1.201151926$. The true value is ≈ 1.202056903.

For $m=5$, if we wish to approximate the value to within 10 , we must solve $4 n<10$, so that $n=4$, ${ }^{4} 1$
and $\frac{1}{k^{5}} \approx 1.036341789$. The true value is ≈ 1.036927755.
8.4.66

$$
1
$$

a. Starting with $\cot ^{2} x<x^{2}<1+\cot ^{2} x$, substitute $k \theta$ for x :

$$
\begin{aligned}
& \cot ^{2}(k \theta)<-1<1+\cot ^{2}(k \theta) \text {, } \\
& { }_{n} k^{2} \theta^{2}
\end{aligned}
$$

Note that the identity is valid because we are only summing for k up to n, so that $k \theta<\frac{\pi}{2}$. b. Substitute $\frac{n(2 n-1)}{3}$ for the sum, using the identity:

$$
\begin{aligned}
& \frac{n(2 n-1)}{3}<\theta^{\frac{1}{2}}{ }_{k=1}^{n} k^{2}<n+\frac{n(2 n-1)}{3} \\
& \theta^{2} \frac{n(2 n-1)}{3}<\prod_{k=1}^{n} \frac{1}{k^{2}}<\theta^{2} \frac{n(2 n+2)}{3} \\
& \frac{n(2 n-1) \pi_{-}^{2}}{n}<\sum_{n}^{n} \underline{n(2 n+2) \pi 2^{2}} \\
& 3(2 n+1)^{2} \\
& k=1 k^{2}<3(2 n+12 .
\end{aligned}
$$

c. By the Squeeze Theorem, if the expressions on either end have equal limits as $n \rightarrow \infty$, the expression in the middle does as well, and its limit is the same. The expression on the left is

$$
\begin{gathered}
\pi^{2}-\frac{2 n^{2}-n}{2^{2}}=\pi^{2}-\frac{2-n}{-1^{-1}} \quad=2^{\prime}, \\
12 n+12 n+3 \quad 12+12 n \quad+3 n
\end{gathered}
$$

which has a limit of $\frac{\pi 2}{6}$ as $n \rightarrow \infty$. The expression on the right is

$$
\begin{aligned}
& 2 n^{2}+2 n=-\quad 2+2 n \frac{-1}{-} \\
& \pi^{2} 12 n^{2}+12 n+3=\pi^{2} \quad 12+12 n^{-1}+3 n^{-3} \text {, } \\
& k=1 \quad k=1
\end{aligned}
$$

which has the same limit. Thus lim

a. $\left\{F_{n}\right\}$ is a decreasing sequence because each term in F_{n} is smaller than the corresponding term in F_{n-1} and thus the sum of terms in F_{n} is smaller than the sum of terms in F_{n-1}.
8.4.69

$\begin{array}{llllll}k=2 k & \overline{2} & k=3 k & 3 & 4 & 12\end{array}$
$\begin{array}{lllll}k=4 k & \overline{4} & 5 & 6 & 60\end{array}$
b. x_{n} has n terms. Each term is bounded below by $2^{1} n$ and bounded above by $\overline{n+1}^{1}$. Thus $x_{n} \geq n \cdot 2^{1}=-$ 1_{2}, and $x_{n} \leq \overline{n \cdot n+1} 1<n \cdot n^{1}=1$.
c. The right Riemann sum for 1

2
 at the right end point, which is $n+\frac{n}{i}$. Thus the area of the rectangle is ${ }_{n}^{1} \quad \frac{n}{n+i}={ }_{n} \frac{1}{+i}$. Adding up over all the rectangles gives x_{n}.
d. The limit $\lim x_{n}$ is the limit of the right Riemann sum as the width of the rectangles approaches zero.
This is precisely ${ }_{1}^{2} \frac{d x}{x} \quad=\ln x^{2}=\ln 2$.
8.4 .70

$$
n=10 \text { for purposes of drawing a graph). The }
$$

$$
\begin{array}{ccc}
& & \bar{x} \\
-2 & -3 & \\
& n^{1} . \text { Thus }
\end{array}
$$

a. The second diagram is a right Riemann sum for

Considering only $[1, n]$, we see that, compar-ing the area under the curve and the sum of the areas of the rectangles, that

Adding 1 to both sides gives the desired inequality.

b. According to part (a), $\ln (n+1)<S_{n}$ for $n=1,2,3, \ldots$, so that $E_{n}=S_{n}-\ln (n+1)>0$.
c. Using the second figure above and assuming $n=9$, the final rectangle corresponds to $n+1$, and the area under the curve between $n+1$ and $n+2$ is clearly $\ln (n+2)-\ln (n+1)$.
d. $E_{n+1}-E_{n}=S_{n+1}-\ln (n+2)-\left(S_{n}-\ln (n+1)\right)=n+1^{1}-(\ln (n+2)-\ln (n+1))$. But this is positive because of the bound established in part (c).
e. Using part (a), $E_{n}=S_{n}-\ln (n+1)<1+\ln n-\ln (n+1)<1$.
f. E_{n} is a monotone (increasing) sequence that is bounded, so it has a limit.
g. The first ten values (E_{1} through E_{10}) are
.3068528194, .401387711, . $447038972, ~ 473895421$, . $491573864, .504089851, .513415601, .520632566, .526383161, .531072981$.
$E_{1000} \approx 0.576716082$.
h. For $S_{n}>10$ we need $10-0.5772=9.4228>\ln (n+1)$. Solving for n gives $n \approx 12366.16$, so $n=12367$.

8.4.71

a. Note that the center of gravity of any stack of dominoes is the average of the locations of their centers. Define the midpoint of the zeroth (top) domino to be $x=0$, and stack additional dominoes down and to its right (to increasingly positive x-coordinates). Let $m(n)$ be the x-coordinate of the midpoint of the $n^{\text {th }}$ domino. Then in order for the stack not to fall over, the left edge of the $n^{\text {th }}$ domino must
be placed directly under the center of gravity of dominos 0 through $n-1$, which is $\quad \frac{1}{n} \quad_{n-1}^{n=0 m(0),}$ so that $m(n)=1+{\underset{n}{n}}_{\substack{n-1 \\ i=0}} m(i)$. We claim that in fact $m(n)=\sum_{k=1}^{n}{ }_{\bar{k}}$. Use induction. This is certainly true for $n=1$. Note first that $m(0)=0$, so we can start the sum at 1 rather than at 0 . Now, $m(n)=1+\quad \underset{n}{\frac{1}{n}} \underset{i=1}{n-1} m(i)=1+\quad \frac{1}{n} \underset{\substack{n-1 \\ i=1}}{\substack{i 1 \\ j=1}} \quad$. Now, 1 appears $n-1$ times in the double sum, 2 appears $n-2$ times, and so forth, so we can rewrite this sum as $m(n)=1+1 \quad{ }_{n-1}^{n-i}=$

$$
\underset{n}{n 1 .-k=2 k} \underset{i=1 i}{n}-1 \quad=1+n \quad i=1 \quad i-(n-1) \quad=\quad i=1 \quad i+1-n \quad=\quad i=1 i \text {, and we are done }
$$

by induction (noting that the statement is clearly true for $n=0, n=1$). Thus the maximum overhang is

$$
n \quad i=1 i-1 \quad=1+n \quad i=1 \quad-(n-1) \quad=\quad i=1 \quad i+1-n \quad=\quad i=1 i \text {, and we are done }
$$

b. For an infinite number of dominos, because the overhang is the harmonic series, the distance is poten-tially infinite.
8.4.72
a. The circumference of the k th layer is $2 \pi \cdot{ }_{k}{ }^{\prime}$, so its area is $2 \pi \cdot \frac{1}{k}$ and thus the total vertical surface area $\sum_{\Delta}^{\infty} 2 \pi^{1}=2 \pi \quad \infty \quad 1=\infty$. The horizontal surface area, however, is π, since looking at the cake from above, the horizontal surface covers the circle of radius 1 , which has area $\pi \cdot 1^{2}=\pi$.
b. The volume of a cylinder of radius r and height h is $\pi r^{2} h$, so the volume of the k th layer is $\pi \cdot k^{1}{ }_{2} \cdot 1=k_{2}$. Thus the volume of the cake is

$$
\begin{aligned}
& \quad \begin{array}{l}
\pi \\
=\pi
\end{array} \quad \underline{1} \quad=\frac{\pi^{3}}{=} \approx 5.168 . \\
& k=1 \quad k^{2} \quad k=1 \quad k^{2} \quad 6
\end{aligned}
$$

c. This cake has infinite surface area, yet it has finite volume!

8.4.73

a. Dividing both sides of the recurrence equation by f_{n} gives $\frac{f_{n+1}}{f_{n}} \quad=1+\frac{f_{n-1}}{f_{n}}$. Let the limito f the ratio
of successive terms be L. Taking the limit of the previous equation gives $L=1+$ $\underset{L}{1} \cdot \operatorname{Thus} L^{2}=L+1$,
 positive, so we must have $L=\frac{1+5}{2}=\varphi \approx 1.618$.
b. Write the recurrence in the form $f_{n-1}=f_{n+1}-f_{n}$ and divide both sides by f_{n+1}. Then we have
$f_{n+1}=1-f_{n+1}$. Taking the limit gives $1-\varphi \quad$ on the right-hand side.

c. Consider the harmonic series with the given groupings, and compare it with the sum of f_{k+1} as shown. The first three terms match exactly. The sum of the next two are $\quad 1,+\frac{1}{5}>{ }^{1}+^{1}-{ }^{1}=\frac{2}{5}$. The sum of the

Thus the harmonic series is bounded below by the series

$$
k=1 \stackrel{\infty}{\frac{\infty}{f_{k-1}}} f_{k+1} .
$$

d. The result above implies that the harmonic series diverges, because the series

$$
{ }_{k=1}^{\infty} \frac{f_{k-1}}{f_{k+1}} \text { diverges, }
$$ since its general term has limit $1-\frac{1}{\varphi}=0$.

8.5 The Ratio, Root, and Comparison Tests

8.5.1 Given a series a_{k} of positive terms, compute $\lim _{k \rightarrow \infty} \frac{a k+1}{a}$ and call it r. If $0 \leq r<1$, the given series converges. If $r>1$ (including $r=\infty$), the given series diverges. If $r=1$, the test is inconclusive.
8.5.2 Given a series a_{k} of positive terms, compute $\lim _{k \rightarrow \infty}{ }^{k} a_{k}$ - and call it r. If $0 \leq r<1$, the given series converges. If $r>1$ (including $r=\infty$), the given series diverges. If $r=1$, the test is inconclusive.
8.5.3 Given a series of positive terms $a k$ that you suspect converges, find a series b_{k} that you know
converges, for wisish lime
$\frac{a k}{b k}=L$ where
shown that the series a_{k} converges.
Given a series of positive terms
Given a series of positive terms a_{k} that you suspect diverges, find a series b_{k} that you know diverges, for which $\lim k \quad \frac{a k}{b_{k}} \quad=L$ where $L>0$ (including the case $L=\infty$). If you are successful, you will have
shown that a_{k} diverges.
8.5.4 The Divergence Test.
8.5.5 The Ratio Test.
8.5.6 The Comparison Test or the Limit Comparison Test.
8.5.7 The diffierence between successive partial sums is a term in the sequence. Because the terms are positive, diffierences between successive partial sums are as well, so the sequence of partial sums is increasing.
8.5.8 No. They all determine convergence or divergence by approximating or bounding the series by some other series known to converge or diverge; thus, the actual value of the series cannot be determined.
8.5.9 The ratio between successive terms is $\frac{a+1}{\underline{\lfloor }}=-\frac{1}{-} \cdot-\frac{1}{\underline{(k)!}} \frac{1}{k+1}$, which goes to zero as $k \rightarrow \infty$, so the $=$
given series converges by the Ratio Test.
 given series converges by the Ratio Test.
8.5.11 The ratio between successive terms is $-\frac{a(+1}{a k}=\frac{(k+1)^{2}-}{4 k+1)}--\frac{4 k}{(k)^{2}} \quad=\frac{1}{4} \quad \frac{k+1}{k}{ }^{2}$. The limit is $1 / 4$ as $k \rightarrow \infty$, so the given series converges by the Ratio Test.
$L \geq 0$ is a finite number. If you are successful, you will have

Note that $\lim _{k \rightarrow \infty} \quad k \quad=e$, but $\lim _{k \rightarrow \infty} \quad 2=\infty$, so the given series diverges by the Ratio Test. 8.5.13 The ratio between successive terms is $\frac{a_{0}(k+1}{a_{k}}=\frac{(k+1) e}{\left(g e^{-(x)}\right.} \cdot \frac{-(}{k+1)}={ }_{(k) e}^{k+1}$. The limit of this ratio as $k \rightarrow \infty$ is $1 / e<1$, so the given series converges by the Ratio Test.
8.5.14 The ratio between successive terms is $\overline{a k+1}=(k+1)^{k+1} \cdot{ }_{\cdot k k}=\frac{k+1}{k} \quad$. This has limit e as $k \rightarrow \infty$, so $(k+1)$!
the limit of the ratio of successive terms is $e>1$, so the given series diverges by the Ratio Test.

8.5.16 The ratio between successive terms is given series converges by the Ratio Test.
8.5.17

The ratio between successive terms is
the given series converges by the Ratio Test.
8.5.18 Note that this series is $\quad \infty \quad \begin{gathered}\bar{k} \\ 24\end{gathered}$. The ratio between successive terms is $\frac{2}{\frac{k+1}{1} \quad 4}$

$$
{ }_{2}^{4} \quad k \quad 4 \quad=2 \quad \underset{k+1}{k} \quad \rightarrow 2 \text { as }
$$

$k=1 k$

$\underline{(k+1)}^{\underline{6}}-(k) \perp-\frac{1}{1} 6^{k+1} \quad$; the limit as $k \rightarrow \infty$ is zero, so the
$k \rightarrow \infty$. So the given series diverges by the ratio test.
8.5.19 The k th root of the k th term is $\frac{10 k^{3}+3}{9 k^{3}+k+1}$. The limit of this as $k \rightarrow \infty$ is $\frac{10}{9}>1$, so the given series diverges by the Root Test.
8.5.20 The k th root of the k th term is $k^{2}+1^{k}$. The limit of this as $k \rightarrow \infty$ is $2>1$, so the given series diverges by the Root Test.
8.5.21 The k th root of the k th term is $\quad \frac{k^{2 / k}}{2}$. The limit of this as $k \rightarrow \infty$ is $\frac{1}{2}<1$, so the given series converges by the Root Test.
8.5.22 The k th root of the k th term is $\quad 1+\underline{3}_{k}{ }^{k}$. The limit of this as $k \rightarrow \infty$ is $=e^{3}>1$, so the given series diverges by the Root Test.
8.5.23 The k th root of the k th term is converges by the Root Test.
${ }_{k+1} \quad{ }^{2 k} \quad$. The limit of this as $k \rightarrow \infty$ is $e^{-2}<1$, so the given series
8.5.24 The k th root of the k th term is $\frac{1}{\ln (k+1)}$. The limit of this as $k \rightarrow \infty$ is 0 , so the given series converges by the Root Test.
8.5.25 The k th root of the k th term is $\quad \frac{1}{k}$. The limit of this as $k \rightarrow \infty$ is 0 , so the given series converges by the Root Test.
8.5.26 The k th root of the k th term is $\frac{k^{1 / k}}{e}$. The limit of this as $k \rightarrow \infty$ is $\frac{1}{e}<1$, so the given series converges by the Root Test.
8.5.27 $\quad 1<\ldots$, and $\quad{ }^{1}$ converges, so $\quad 1$ converges as well, by the Comparison Test.
∞

$$
k^{2}+4 \quad k^{2} \quad k=1 k^{2} \quad k=1 k^{2}+4
$$

8.5.28 Use the Limit Comparison Test with $\quad 12$. The ratio of the terms of the two series is $\quad k+k-k$ which has limit 1 as $k \rightarrow \infty$. Because the comparison series converges, the given series does as well.
8.5.29 Use the Limit Comparison Test with

$$
\frac{1}{\pi} \text {. The ratio of the terms of the two series is }
$$

$\stackrel{k^{3}-k}{ }$
limit 1 as $k \rightarrow \infty$. Because the comparison series diverges, the given series does as well.
8.5.30 \qquad
\qquad
has limit 0.0001 as $k \rightarrow \infty$. Because the comparison series diverges, the given series does as well.
8.5.31 For all $k, \ldots _<\ldots$. The series whose terms $\quad 1$ is a p-series which converges, so the are k3/2
given $\quad k^{3 / 2}+1 \quad k_{3 / 2}$
series converges as well by the Comparison Test.
8.5.32 Use the Limit Comparison Test with $\{1 / k\}$. The ratio of the terms of the two series is k

$$
\frac{k}{k^{3}+1}=
$$ 느는

$k^{3}+1 \quad$, which has limit 1 as $k \rightarrow \infty$. Because the comparison series diverges, the given series does as well.
8.5.33 $\sin (1 / k)>0$ for $k \geq 1$, so we can apply the Comparison Test with $1 / k^{2} . \sin (1 / k)<1$, so $\frac{\sin (1 / k)}{k^{2}}<\frac{1}{k^{2}}$ Because the comparison series converges, the given series converges as well.
8.5.34 Use the Limit Comparison Test with $\left\{1 / 3^{k}\right\}$. The ratio of the terms of the two series is \qquad _= as well. 1- $3^{2} k$
8.5.35 Use the Limit Comparison Test with $\{1 / k\}$. The ratio of the terms of the two series is

Because the comparison series converges, the given series converges as well.
8.5.37 Use the Limit Comparison Test with $\underline{k}^{2} 3^{2} / 2^{3}-$. The ratio of corresponding terms of the two series is

${ }^{k^{3}+1}{ }^{2 \times 2} k^{2 / 3-3 / 2}=k^{-5^{3 / R} / 6}$, which is a p-series with $p<1$, so it, and the given series, both diverge.
8.5.38 For all k, _ _ _ . Because the series whose terms are converges, the given series converges - $(k \ln k)^{2} \quad k^{2} \quad k^{2}$
as well.

8.5.39

a. False. For example, let $\left\{a_{k}\right\}$ be all zeros, and $\left\{b_{k}\right\}$ be all 1 's.
b. True. This is a result of the Comparison Test.
c. True. Both of these statements follow from the Comparison Test.
d. True. The limit of the ratio is always 1 in the case, so the test is inconclusive.
8.5.40 Use the Divergence Test: $\lim _{k \rightarrow \infty} a_{k}=\lim _{k \rightarrow \infty} 1-\frac{1}{k} k=\frac{1}{e}=0$, so the given series diverges.
8.5.41 Use the Divergence Test: $\lim _{k \rightarrow \infty} a k=\lim _{k \rightarrow \infty} 1+\underline{2}_{k} k=e^{2}=0$, so the given series diverges.
8.5.42 Use the Root Test: The k th root of the k th term is $\frac{\frac{k^{2}}{2} k^{2}}{2}$. The limit of this as $k \rightarrow \infty$ is $\frac{1}{2}<1$, so the given series converges by the Root Test.
8.5.43 Use the Ratio Test: the ratio of successive terms is

\qquad $\cdot{ }_{k+2}$. This has limit
$1^{100} \cdot 0=0$ as $k \rightarrow \infty$, so the given series converges by the Ratio Test.
8.5.44 Use the Comparison Test. Note that sin .
${ }^{2} k \leq 1$ for all k, so ${\stackrel{\operatorname{sinf}}{ }{ }^{2} k}_{k_{2}} \leq \begin{gathered}+ \\ k 2\end{gathered} \quad \begin{aligned} & \infty \\ & k=1\end{aligned}{ }^{1}$ converges, so does the given series.
8.5.45 Use the Root Test. The k th root of the k th term is $\left(k^{1 / k}-1\right)^{2}$, which has limit 0 as $k \rightarrow \infty$, so the given series converges by the Root Test.

8.5.46 Use the Limit Comparison Test with the series whose k th term is
$\lim _{k \rightarrow \infty} \quad e^{\underline{k}}$
$-1=1$. The given series thus converges because

series with $r=e<1$). Note that it is also possible to show convergence with the Ratio Test.
8.5.47 Use the Divergence Test: $\lim _{k \rightarrow \infty} \frac{k^{-2}+2 k+1}{3} \quad \frac{1}{k^{2}+1}=3 \quad=0$, so the given series diverges.

8.5.49 Use the Limit Comparison Test with the harmonic series. Note that $\lim _{k \rightarrow \infty}$

$$
\begin{gathered}
\frac{1}{\underline{-}}-\quad=\lim _{k} \quad \underline{k}_{-}=\infty, ~ \\
\frac{k}{k}
\end{gathered}
$$

and because the harmonic series diverges, the given series does as well.
8.5.50 Use the Limit Comparison Test with the series whose k th term is $\underset{\sim}{1}$. Note that lim

$k \rightarrow \infty 5_{k}-3 k \cdot 1$
converges because it is a geometric series with $r=5$. Thus,
\qquad
the given series also converges.
 ${ }^{k^{3}{ }^{3}}=\lim _{k \rightarrow \infty} \quad{ }_{k 3-k+1}^{k^{3}}=\quad 1=1$, and the series $\quad{ }_{k=1} k^{--1} \quad$ converges because it is a p-series with $p=2$.
Thus, the given series also converges.
a_{k}

Thus the given series converges.
8.5.53 Use the Comparison Test. Each term $\frac{1}{k}+2^{-k}>-$. Because the harmonic series diverges, so does this series.
 are $5 / k$ diverges, the given series diverges as well.
 series converges.
8.5.56 Use the Root Test. $\lim 1-\underline{1}_{k} k=e^{-1}<1$, so the given series converges.
$k \rightarrow \infty$
8.5.57 Use the Limit Comparison Test with $\left\{1 / k^{3}\right\}$. The ratio of corresponding terms is $\frac{k_{11}}{k^{1+3}}$ limit 1 as $k \rightarrow \infty$. Because the comparison series converges, so does the given series.
8.5.58 _ _ <1 because $p>0$, so the given series converges.
$k \rightarrow \infty$
8.5.59 This is a p-series with exponent greater than 1 , so it converges.
8.5.60 Use the Comparison Test: $\quad \underset{k^{2} \ln k}{1}<1$. Because the series whose terms are \quad is a convergent p-series, the given series converges as well. $k^{k^{2} \ln k} k_{2}$
8.5.61 $\ln \quad \frac{k+2}{k+1}=\ln (k+2)-\ln (k+1)$, so this series telescopes. We get $\quad{ }_{k=1}^{n} \ln \frac{k+2}{k+1}=\ln (n+2)-\ln 2$. Because $\lim _{n \rightarrow \infty} \ln (n+2)-\ln 2=\infty$, the sequence of partial sums diverges, so the given series is divergent.
8.5.62 Use the Divergence Test. Note that $\lim _{k \rightarrow \infty} k^{-1 / k}=\lim _{k \rightarrow \infty} \frac{1}{k \bar{k}}=1=0$, so the given series diverges.

as well.
8.5.64 Use the Limit Comparison Test with $\left\{1 / k^{2}\right\}$. Note that $\frac{\sin ^{2}(1 / k)}{{ }^{1 / k}}-\quad=\frac{\sin (1 / k) 2}{1 / k} \quad$. Because $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, the limit of this expression is $1^{2}=1$ as $k \rightarrow \infty$. Because $\quad \sum_{k=1 k^{2}}^{\infty} \quad$ converges, the given series does as well.
8.5.65 Use the Limit Comparison Test with the harmonic series. $\frac{\tan (1 / k)}{1 / k}$ has limit 1 as $k \rightarrow \infty$ because $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$. Thus the original series diverges.
$x \rightarrow 0 \quad x$

$$
\begin{aligned}
& \lim _{k \rightarrow \infty}{ }_{k \rightarrow \infty} \lim _{k \rightarrow \infty}{ }_{k \rightarrow \infty} \quad \frac{1}{k}=0 \text {, so the given series converges. }
\end{aligned}
$$

8.5.67 Note that $\left.\overline{(2 k+1)} \cdot \frac{1}{\cdot(2 k} \cdot-\overline{3}\right)=\frac{1}{2} \quad-\frac{1}{2 k+1}-\overline{2 k+3} \quad$. Thus this series telescopes.
so the given series converges to $1 / 2$, because that is the limit of the sequence of partial sums.
8.5.68 This series is $\quad \sum_{k=1}^{\infty} \frac{k-1}{k}=\infty \quad \underline{-1}-\underline{1}$. Because $\quad \infty \quad \underline{1}$ converges, if the original series also converged, we would have that $\sum_{k=1}^{\sim} \sum_{k}^{k}$ converged, which is false. Thus the original series diverges.
 $k \rightarrow \infty$, so the given series converges.
8.5.70 For any p, if k is sufflcently large then $k^{1 / p} \quad>\ln k$ because powers grow faster than logs, so that $k>(\ln k)^{p} \quad$ and thus $1 / k<1 /\left(\ln k^{p}\right.$. Because $\quad 1 / k$ diverges, we see that the original series diverges for all p.
8.5.71 For $p \leq 1$ and $k>e, \quad \frac{\ln k}{k^{k}}>k \frac{1}{p}$. The series $\quad \sum_{k=1}^{\infty} \quad k_{p}$ diverges, so the given series diverges. For $p>1$,

$$
{\underset{k=1}{\infty} \frac{1}{k p-q} \quad \quad \text { is a convergent } p \text {-series. Thus the original series is convergent precisely when }}_{k}^{k} k^{p-q} k^{p} \quad{ }_{k}^{p}
$$

$p>1$.
8.5.72 For $p=1$,
∞

$$
2 \overline{x \ln x(\ln \ln x)^{p}}=\lim _{b \rightarrow \infty} \frac{d x}{\frac{(\ln \ln x)}{1-p}}{ }^{1-p}{ }_{2}^{b}
$$

This improper integral converges if and only $p>1$. If $p=1$, we have
∞

$$
-\underline{\frac{d x}{b}}-\mathbf{-}_{x(\ln x) \ln \ln x}^{=} \underset{b \rightarrow \infty}{\lim \ln \ln \ln x} \quad=\infty .
$$

Thus the original series converges for $p>1$.
 ${ }_{p}^{p}>1$, let $q<p-1$; then for sufflciently large $k,(\ln k)^{p}<k^{q} \quad \ldots<\underline{l n}^{q} \quad \perp$. But $p-q>1$,

which has limit $p e^{-1}$. The series converges if the ratio limit is less than 1 , so if $p<e$. If $p>e$, the given series diverges by the Ratio Test. If $p=e$, the given series diverges by the Divergence Test.
8.5.75 Use the Ratio Test:

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{(k+1) p^{k+1}}{k+2} \cdot \frac{k+1}{k p^{k}}=p,
$$

so the given series converges for $p<1$ and diverges for $p>1$. For $p=1$ the given series diverges by limit comparison with the harmonic series.
$8.5 .76 \ln \quad \frac{k}{k+1}^{p}=p(\ln (k)-\ln (k+1))$, so

$$
\ln _{k=1}^{\frac{k}{k+1}_{k=1}^{p}=p(\ln (k)-\ln (k+1))}{ }_{k}^{\infty}
$$

which telescopes, and the $n^{\text {th }}$ partial sum is $-p \ln (n+1)$, and $\lim _{n} \quad-p \ln (n+1)$ is not a finite number for any value of p other than 0 . The given series diverges for all values of p other than $p=0$.
8.5.77 $\lim _{k \rightarrow \infty} a k=\lim _{k \rightarrow \infty} 1-{\underset{k}{p}}^{k}=e^{-p}=0$, so this sequence diverges for all p by the Divergence Test.
8.5.78 Use the Limit Comparison Test: $\lim \underset{\substack{a_{k-\infty}^{2} \\ k-2}}{\lim _{k \rightarrow \infty}} a_{k}=0$, because a_{k} converges. By the Limit Comparison Test, the series $\quad a^{2} k$ must converge as well.
8.5.79 These tests apply only for series with positive terms, so assume $r>0$. Clearly the series do not converge for $r=1$, so we assume $r=1$ in what follows. Using the Integral Test, $\quad r^{k}$ converges if and only if $\quad r^{x} d x$ converges. This improper integral has value $\lim r^{x} \quad$, which converges only when $\lim r^{b}$ $1 \quad b \rightarrow \infty \ln r \quad 1 \quad b \rightarrow \infty$
exists, which occurs only for $r<1$. Using the Ratio Test, $\frac{a_{k+1}}{a_{k}}=\frac{r_{k+1}}{r^{k}-}{ }_{v}=r$, so by the Ratio Test, the series converges if and only if $r<1$. Using the Root Test, $\lim {\underset{k}{v} a_{k}}_{v}=\lim { }^{k} \overline{r^{k}=} \quad \lim r=r$, so again we have convergence if and only if $r<1$. By the Divergence Test, we know that geometric series diverges if $|r| \geq 1$. 8.5.80
a. Use the Limit Comparison Test with the divergent harmonic series. Note that $\lim _{k \rightarrow \infty} \frac{\sin (1 / k)}{1 / k}=1$, because $\lim _{x \rightarrow 0} \frac{\sin x}{x} \quad=1$. Because the comparison series diverges, the given series does as well.
b. We use the Limit Comparison Test with the convergent series $\quad{ }_{k} \underline{1}_{2}$. Note that $\lim _{k \rightarrow \infty} \frac{(1 / k) \sin (1 / k)}{1 / k}-=$ $\lim \frac{\sin (1 / k)}{}=1$, so the given series converges.
$k \rightarrow \infty \quad 1 / k$
8.5.81 To prove case (2), assume $L=0$ and that $\quad b_{k}$ converges. Because $L=0$, for every $\varepsilon>0$, there is some N such that for all $n>N,\left|b \frac{a_{k}}{k} \quad\right|<\varepsilon$. Take $\varepsilon=1$; this then says that there is some N such that for all $n>N, 0<a_{k}<b_{k}$. By the Comparison Test, because b_{k} converges, so does a_{k}. To prove case (3), because $L=\infty$, then $\lim \underline{b_{k}} \quad=0$, so by the argument above, we have $0<b_{k}<a_{k} \quad$ for sufflcie nt large k.

But b_{k} diverges, so by the Comparison Test, a_{k} does as well.
8.5.82 The series clearly converges for $x=0$. For $x=0$, we have

limit 0 as $k \rightarrow \infty$ for any value of x, so the series converges for all $x \geq 0$.
8.5.83 The series clearly converges for $x=0$. For $x=0$, we have $\frac{a}{-\frac{k+1}{a_{k}}}=\frac{x}{x} \frac{k+1}{x^{k}}=x$. This has limit x as $k \rightarrow \infty$, so the series converges for $x<1$. It clearly does not converge for $x=1$. So the series converges for $x \in[0,1)$.
8.5.84 The series clearly converges for $x=0$.

For $x=0$, we have

has limit x as $k \rightarrow \infty$. Thus this series converges for $x<1$; additionally, for $x=1$ (where the Ratio Test is inconclusive), the series is the harmonic series which diverges. So the series converges for $x \in[0,1)$.
8.5.85 The series clearly converges for $x=0$. For $x=0$, we have
which has limit x as $k \rightarrow \infty$. Thus the series converges for $x<1$. converges. Thus the original series converges for $0 \leq x \leq 1$.

8.5.86 The series clearly converges for $x=0$. For $x=0$, we have $\quad \underline{a_{k+1}}=\underline{x} \underline{2 k+2} \quad \underline{k}_{2}=x^{2} \quad k^{2}$
which has limit x^{2} as $k \rightarrow \infty$, so the series converges for $x<1$. converges. Thus this series converges for $0 \leq x \leq 1$.
ak $\begin{gathered}(k+1)^{2} \\ \text { When } x=1 \text {, the series is } \\ -1\end{gathered}{ }_{-1}^{k+1}$ k 2, which
8.5.87 The series clearly converges for $x=0$. For $x=0$, we have $\frac{a_{k+1}}{a_{k}}=\underset{x^{k+1}}{x_{k+1}} \quad \underbrace{}_{x^{k}} \quad=\underline{2}$, which has limit $x / 2$ as $k \rightarrow \infty$. Thus the series converges for $0 \leq x<2$. For $x=2$, it is obviously divergent. 8.5.88
 If $\ln a_{k}$ is a convergent series, then $\quad \infty_{k=1}^{\infty} \ln a_{k}=\lim _{n \rightarrow \infty}^{k=1} a^{k} \ln P_{n}=L$ <

```
n}
k=1 In ak= ln
``` \(\lim _{n \rightarrow \infty} P_{n}\)
b.

 \(\ln \frac{1}{2}=-\ln 2\).
8.5.89
a. \(\ln \quad{ }_{k=0}^{\infty} e^{1 / 2^{k}}={ }_{k=0}^{\infty} \quad 2^{\frac{1}{k}}=2\), so that the original product converges to \(e^{2}\).

8.5.90 The sum on the left is simply the left Riemann sum over \(n\) equal intervals between 0 and 1 for \(f(x)=x^{p}\). The limit of the sum is thus \(0^{1} x^{p} d x={\frac{1}{p+1} x^{p+1}}_{\quad=}^{=}=p+1^{\underline{1}}\), because \(p\) is positive.

0
8.5.91
a. Use the Ratio Test:
\[
\begin{gathered}
\underline{a}_{k+1}=\frac{1 \cdot 3 \cdot 5 \cdots(2 k+1)}{a_{k}^{k+1}(k+1)!} \cdot \frac{p^{k}(k)!}{1 \cdot 3 \cdot 5 \cdots(2 k-1)} \quad=\frac{(2 k+1)}{(k+1) p}
\end{gathered}
\]
and this expression has limit \(\underline{\underline{2}}_{p}\) as \(k \rightarrow \infty\). Thus the series converges for \(p>2\).
b. Following the hint, when \(p=2\) we have \(\quad \overline{k=1} \overline{2^{k} k!(2 \cdot 4 \cdot 6 \cdots 2 k)}={ }_{k=1} \frac{(2 k)!}{\left(2^{k}\right)^{2}(k!)^{2}}\). Using Stirling's formula, the numerator is asymptotic to \(k_{2} \quad k_{2}-2 k \pi \pi_{k}^{k} k\left(2(2)^{2 k} e^{-2 k}=2 \quad \sum^{2}\left(k^{k}\right)^{2} e^{-2 k} \quad 1 \quad\right.\) while the denominator is asymptotic to (2) \(2 \pi k(k) e \quad\), so the quotient is asymptotic to \(v \pi_{k}\). Thus the original series diverges for \(p=2\) by the Limit Comparison Test with the divergent \(p\)-series \(\quad \sum_{k=1}^{\infty} k^{\frac{1}{1 / 2}}\)

\subsection*{8.6 Alternating Series}
8.6.1 Because \(S_{n+1}-S_{n}=(-1)^{n} a_{n+1}\) alternates signs.
8.6.2 Check that the terms of the series are nonincreasing in magnitude after some finite number of terms, and that \(\lim a_{k}=0\).
\(k \rightarrow \infty\)

\subsection*{8.6.3 We have}
\[
S=S_{2 n+1}+\left(a_{2 n}-a_{2 n+1}\right)+\left(a_{2 n+2}-a_{2 n+3}\right)+\cdots
\]
and each term of the form \(a_{2 k}-a_{2 k+1}>0\), so that \(S_{2 n+1}<S\). Also
\[
S=S_{2 n}+(-a 2 n+1+a 2 n+2)+(-a 2 n+3+a 2 n+4)+\cdots
\]
and each term of the form \(-a 2 k+1+a 2 k+2<0\), so that \(S<S 2 n\). Thus the sum of the series is trapped between the odd partial sums and the even partial sums.
8.6.4 The diffierence between \(L\) and \(S_{n}\) is bounded in magnitude by \(a_{n+1}\).
8.6.5 The remainder is less than the first neglected term because
\[
S-S_{n}=(-1)^{n+1}\left(a_{n+1}+\left(-a_{n+2}+a_{n+3}\right)+\cdots\right)
\]
so that the sum of the series after the first disregarded term has the opposite sign from the first disregarded term.
8.6.6 The alternating harmonic series \((-1)^{k} \underline{1}_{k}\) converges, but not absolutely.
8.6.7 No. If the terms are positive, then the absolute value of each term is the term itself, so convergence and absolute convergence would mean the same thing in this context.
8.6.8 The idea of the proof is to note that \(0 \leq\left|a_{k}\right|+a_{k} \leq 2\left|a_{k}\right| \quad\) and apply the Comparison Test to conclude that if \(\quad\left|a_{k}\right|\) converges, then so does \(2\left|a_{k}\right|\), and thus so must \(\left(\left|a_{k}\right|+a_{k}\right)\), and then conclude that \(a_{k}\) must converge as well.
8.6.9 Yes. For example, \(\frac{(-1)^{k}}{k^{3}} \quad\) converges absolutely and thus not conditionally (see the definition).
8.6.10 The alternating harmonic series \((-1)^{k} \underline{1}_{k}\) converges conditionally, but not absolutely.
8.6.11 The terms of the series decrease in magnitude, and \(\lim _{k} \quad \frac{1}{2 k+1}=0\), so the given series converges.
8.6.12 The terms of the series decrease in magnitude, and \(\lim _{k \rightarrow \infty}{ }_{\bar{k}}^{\bar{k}}=0\), so the given series converges.
8.6.13 \(\lim _{k \rightarrow \infty} \frac{k}{3} k+\frac{k}{2}={ }_{3}^{1}=0\), so the given series diverges.
8.6.14 \(\lim _{k} \quad 1+\frac{1}{k} k=e=0\), so the given series diverges.
8.6.15 The terms of the series decrease in magnitude, and \(\lim _{k \rightarrow \infty} \underset{k}{1}=0\), so the given series converges.
8.6.16 The terms of the series decrease in magnitude, and \(\lim _{k \rightarrow \infty} \frac{1}{k}=0\), so the given series converges.
\(k^{2}\)
8.6.17 The terms of the series decrease in magnitude, and
converges. \(\quad k \rightarrow \infty\)
\[
\begin{array}{lll}
k_{k \rightarrow \infty} \begin{array}{l}
k \\
+10 \\
\lim ^{23}+1 \\
\\
\lim _{k \rightarrow \infty}
\end{array} \frac{1 / k}{1+1 / k 3} & =0 \text {, so the given series }
\end{array}
\]
8.6.18 The terms of the series eventually decrease in magnitude, because if \(f(x)=\quad \ln x\), then \(f(x)\) \(=\) \(\frac{x(1-2 \ln x)}{0} \underline{=} \underline{1-2 \ln x}\), which is negative for large enough \(x\). Further, \(\lim \ln k=\lim \quad \underline{1 / k}=\lim \underline{1}=\) 0.

Thus the given series converges.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 8.6.19 & lim & \(k_{-} \stackrel{2}{-1}\) & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(=1\), so the terms of the series do not tend to zero and thus the given series diverges.}} \\
\hline & \(k \rightarrow \infty\) & & & & & \\
\hline \(\infty\) & & 1 k & \(\infty\) & \({ }_{k} \quad{ }_{1} k\) & \(k\) & \(k\) \\
\hline 8.6.20 & \(k=0\) & \(-5=\) & \(k=0(-1)\) & Ј . (1/5) & & is decreasing, and tends to zero as \(k \rightarrow \infty\), so the given \\
\hline series & onver & ges. & & & & \\
\hline
\end{tabular}
8.6.21 \(\lim _{k \rightarrow \infty} 1+1_{k}=1\), so the given series diverges.
8.6.22 Note that \(\cos (\pi k)=(-1)^{k}\), and so the given series is alternating. Because lim \(\quad 1_{2}=0\) and \(\underline{1_{2}}\) is decreasing, the given series is convergent.
8.6.23 The derivative of \(f(k)=\frac{k^{10}+2 k^{5}+1}{k\left(k^{10}+1\right)}\) is \(f(k)=\frac{-\left(k^{20}+2 k^{10}+12 k^{15}-8 k^{5}+1\right)}{\left.k^{2} k^{10}+1\right)^{2}}\). The numerator is negative for large enough values of \(k\), and the denominator is always positive, so the derivative is negative for large

\(k \rightarrow \infty \quad k \rightarrow \infty\)
8.6.24 Clearly \(-\frac{1}{2}-\) is nonincreasing, and \(\lim \ldots \quad=0\), so the given series converges.
\(k \ln k \quad k \rightarrow \infty k \ln k\)
8.6.25 \(\lim k^{1 / k}=1\) (for example, take logs and apply L'H'opital's rule), so the given series diverges by the

Divergence Test.

series converges.
\({ }_{k}^{8.6 .27} \underset{+4}{1}\) is decreasing and tends to zero as \(k \rightarrow \infty\), so the given series converges.
\(\underset{k \rightarrow \infty}{8.6 .28} \lim k \sin (1 / k)=\lim _{k \rightarrow \infty} \frac{\sin (1 / k)}{l_{k}}-=1\), so the given series diverges.
8.6.29 We want \({ }_{n+1} \quad-10^{-4}\), or \(n+1>10^{4}\), so \(n=10^{4}\).
\(\underline{1} 4\)
8.6.30 The series starts with \(k=0\), so we want \(n!<10^{-4}\), or \(n!>10=10000\). This happens for \(n=8\).
\(\begin{array}{lll}1 & -4 & 4\end{array}\)
8.6.31 The series starts with \(k=0\), so we want \(2 n+1<10\), or \(2 n+1>10, n=5000\).
8.6.32 We want \(\frac{1}{(n+1)^{2}}<10^{-4}\), or \((n+1)^{2}>10^{4}\), so \(n=100\).
8.6.33 We want \(\frac{1}{(n+1)^{-4}}<10^{-4}\), or \((n+1)^{4}>10^{4}\), so \(n=10\).
8.6.34 The series starts with \(k=0\), so we want \(\begin{gathered}\frac{1}{(2 n+1)^{3}} \\ \underline{1}\end{gathered}{\underset{-4}{10}}_{-4}^{-4}\), or \(2 n+1>10 \quad\), so \(n=11\).
8.6.35 The series starts with \(k=0\), so we want \(3 n+1<10\), or \(3 n+1>10, n=3334\).
8.6.36 We want \(\frac{1}{(n+1)^{0}}<10^{-4}\), or \((n+1)^{6}>10^{4}=10000\), so \(n=4 . \quad k=1(2 n+1)^{3}\)
 10000, which occurs first for \(n=6\).
8.6.38 The series starts with \(k=0\), so we want \({ }_{3 n+2} \quad{ }^{1}<{ }_{10}{ }^{-4}\), so \(3 n+2>10000, n=3333\).
8.6.39 To figure out how many terms we need to sum, we must find \(n\) such that \(\quad-\frac{1}{(n+1)^{5}} \quad 10^{-3}\), so that <
\((n+1)^{5}>1000\); this occurs first for \(n=3\). Thus \(\quad \overline{-\overline{2}}^{1}+\frac{1}{5}={ }_{3}^{1} \approx-0.973\).
8.6.40 To figure out how many terms we need to sum, we must find \(n\) such that \(\frac{1}{(2(n+1)+1)^{3}}<10^{-3}\), or \((2 n+3)^{3}>10^{3}\), so \(2 n+3>10\) and \(n=4\). Thus the approximation is \(4 \overline{(-1)}^{n} \approx-0.306\).
8.6.41 To figure out how many terms we need to sum, we must find \(n\) so that \(\frac{n+1}{(n+1)^{2}+1}<10^{-3}\), so that
\((n+1)^{2}+1 \quad-1\)
\(n+1=n+1+n+1>1000\). This occurs first for \(n=999\). We have
\(999 \xlongequal[(-1)^{k^{-}} k]{ }\)
\(k=1 \quad k^{2}+1 \quad \approx-0.269\).
8.6.42 To figure out how many terms we need to sum, we must find \(n \underset{\text { such that }}{k=1} \frac{n+1}{(n+1)^{4}+1}-<10^{-3}\), so that \(\underline{(n+1)} \underline{\underline{4}+1}=(n+1)^{3}+\quad \underline{1}>1000\), which occurs for \(n=9\). We \(9 \quad(\rightarrow T)=-0.409\). have
\(n+1\) \(n+1\) \(k \quad+1\)
8.6.43 To figure how many terms we need to sum, we must find \(n\) such that __m \(\frac{1}{n+1}<10^{-3}\), or \((n+1)^{n+1}>\) 1000 , so \(n=4\left(5^{5}=3125\right)\). Thus the approximation is
\[
\begin{array}{ll}
4 & \frac{(-1)^{n}}{n} \approx \\
& -.783 . \\
k=1 & n
\end{array}
\]
8.6.44 To figure how many terms we need to sum, we must find \(n\) such that \(\frac{1}{(2(n+1)+1)!}<10^{-3}\), or \((2 n+3)\) ! > \(2 \underline{(-1)^{n+1}}\)

1000, so \(2 n+3 \geq 7\) and \(n=2\). The approximation is \(\quad k=1 \quad(2 n+1)!\approx 0.158\)
8.6.45 The series of absolute values is a \(p\)-series with \(p=2 \beta\), so it diverges. The given alternating series does converge, though, by the Alternating Series Test. Thus, the given series is conditionally convergent.
8.6.46 The series of absolute values is a \(p\)-series with \(p=1 / 2\), so it diverges. The given alternating series does converge, though, by the Alternating Series Test. Thus, the given series is conditionally convergent.
8.6.47 The series of absolute values is a \(p\)-series with \(p=3 / 2\), so it converges absolutely.
8.6.48 The series of absolute values is \(3^{\frac{1}{k}}\), which converges, so the series converges absolutely.
8.6.49 The series of absolute values is \(\frac{\lfloor\cos (k) \mid}{k_{3}}\), which converges by the Comparison Test because \(\frac{\mid \cos (k) \downarrow}{k 3} \leq\) \(\vec{k}_{3}\). Thus the series converges absolutely.
8.6.50 The series of absolute values is \(\frac{\sqrt{ } k^{2}-}{\sqrt{k+1}}\). The limit comparison test with gives \(\lim _{k \rightarrow \infty} \underset{k}{\sqrt{ }} \underset{. k+1}{3}=\)

\(\lim ^{\overline{\frac{k^{2}}{k 6+1}}}=0\).
\(k \rightarrow \infty\)
8.6.51 The absolute value of the \(k\) th term of this series has limit \(\pi / 2\) as \(k \rightarrow \infty\), so the given series is divergent by the Divergence Test.
8.6.52 The series of absolute values is a geometric series with \(r={ }^{1} e^{-}\)and \(|r|<1\), so the given series converges absolutely
8.6.53 The series of absolute values is \(\underset{2 k+1}{-\underline{k}-}\), but \(\lim _{k \rightarrow \infty} \quad \underset{k}{k} \quad \underline{1}\)
diverges. The original series does not converge conditionally, either, because lim \(a_{k}={ }^{1}{ }_{2}\)
\(=2\), so by the Divergence Test, this series
\(-=0\). \(-=0\).
\(k \rightarrow \infty\)
8.6.54 The series of absolute values is in \(\frac{1}{1}\), which diverges, so the series does not converge absolutely. However, because \(\lim \mathcal{L}_{k} \rightarrow 0\) and the terms are nonincreasing, the series does converge conditionally. \(k \rightarrow \infty\)
8.6.55 The series of absolute values is \(\frac{-1}{\tan k^{3}(k)}\), which converges by the Comparison Test because
\[
\begin{array}{ll}
\underline{\tan -1} \underline{(k)}<\frac{\pi}{1}, \text { and } & \underline{1}- \\
k^{3} & 2 k^{3}
\end{array} \quad 2 k_{3} \text { converges because it is a constant multiple of a convergent } p-\text { series. So the }
\]
original series converges absolutely.
8.6.56 The series of absolute values is \(\underline{e}^{k}\). Using the ratio test, \(\underline{\underline{a}}_{\underline{k+1}} \quad=_{e^{k+1}} \quad \underline{(k+1)!}=e \quad\), which
tends to zero as \(k \rightarrow \infty\), so the original series converges absolutely.
8.6.57
a. False. For example, consider the alternating harmonic series.
b. True. This is part of Theorem 8.21.
c. True. This statement is simply saying that a convergent series converges.
d. True. This is part of Theorem 8.21.
e. False. Let \(a k=k^{\underline{1}}\).
f. True. Use the Comparison Test: \(\lim \underset{k_{k \rightarrow \infty} a_{k}}{a_{-2}}=\lim _{k \rightarrow \infty} a_{k}=0\) because \(a_{k}\) converges, so \(\quad a^{2}\) and \(a_{k}\) converge or diverge together. Because the latter converges, so does the former.
g. True, by definition. If \(\quad\left|a_{k}\right|\) converged, the original series would converge absolutely, not conditionally. 8.6.58 Neither condition is satisfied. \(\quad \underset{a}{a k+1}=\underline{(k+1)(2 k+1)}=\underline{2 k} \underset{2}{2}+\frac{3 k+1}{a}>1\), and \(\lim a k=\frac{1}{-}\).

8.6.61 Write \(r=-s\); then \(0<s<1\) and \(r^{k}=(-1)^{k} s^{k}\). Because \(|s|<\) and tend 1 , the terms \(s^{k}\) are nonincreasing to zero, so by the Alternating Series Test, the series \((-1)^{k} s^{k}=\quad r^{k}\) converges. 8.6.62

As \(p\) gets larger, fewer terms are needed to
a. achieve a particular level of accuracy; this means that for larger \(p\), the series converge faster.

\(N\)

b. This graph shows that \(k\) ! converges much faster than any of the powers of \(k\).

8.6.63 Let \(S=1-\frac{1}{2}+1_{3}-\cdots\). Then
\[
\begin{aligned}
& S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4} \quad+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\ldots \\
& \frac{1}{2} S=\frac{1}{2}-1+\frac{1}{4}
\end{aligned}
\]

Add these two series together to get
\[
\underline{3}_{2 S} S=\underline{3}_{2} \ln 2=1+\underline{1}_{3}-\underline{1}_{2}+\underline{1}_{5}+\cdots
\]

To see that the results are as desired, consider a collection of four terms:
\[
\begin{array}{cccccc}
\cdots+ & \frac{1}{4 k+1} & - & \frac{1}{4 k+2} & + & \frac{1}{4 k+3}-\frac{1}{4 k+4} \\
& + & \frac{1}{4 k+2} & - & & +\ldots \\
\cdots & & & & & \\
\cdots k+4 & &
\end{array}
\]

Adding these results in the desired sign pattern. This repeats for each group of four elements. 8.6.64
a. Note that we can write
\[
\begin{array}{ccccc}
\underline{a} . & 1^{n-1} & & k & (-1) \underline{a}_{n}^{n} \\
S_{n}=- & 2 & +2 & & \\
k=1 & (-1)\left(a_{i}-a_{i+1}\right)+ & 2
\end{array},
\]
so that
\[
S_{n}+\frac{(-1)}{2^{n+1} \underline{a}_{n+1}}=\frac{a_{1}}{2} \frac{1}{+2}{ }_{k=1}^{n}(-1)^{k} d i
\]
where \(d_{i}=a_{i}-a_{i+1}\). Now consider the expression on the right-hand side of this last equation as the \(n\)th partial sum of a series which converges to \(S\). Because the \(d_{i}\) 's are decreasing and positive, the error made by stopping the sum after \(n\) terms is less than the absolute value of the first omitted term, which would be \(\underline{1}_{2}\left|d_{n+1}\right|={ }_{-}\left|a_{n+1}-a_{n+2}\right|\). The method in the text for approximating the error simply takes the absolute value of the first unused term as an approximation of \(\left|S-S_{n}\right|\). Here, \(S_{n}\) is modified by adding half the next term. Because the terms are decreasing in magnitude, this should be a better approximation to \(S\) than just \(S_{n}\) itself; the right side shows that this intuition is correct, because
\(1_{2}\left|a_{n+1}-a_{n+2}\right|\) is at most \(a_{n+1}\) and is generally less than that (because generally \(a_{n+2}<a_{n+1}\)).
b.i. Using the method from the text, we need \(n\) such that \(\quad{ }_{n+1}-1<10^{-6}\), i.e. \(n>10^{6}-1\). Using
the modified method from this problem, we want \(\quad\left|a_{n+1}-a_{n+2}\right|<10^{-6}\), so
\[
\frac{1}{2} \frac{1}{n+1}-\frac{1}{n+2}=\frac{2}{2(n+1)(n} \cdot \frac{1}{+2)}<10^{-6}
\]

This is true when \(10^{6}<2(n+1)(n+2)\), which requires \(n>705.6\), so \(n \geq 706\).
ii. Using the method from the book, we need \(n\) such that \(k \ln k>10^{6}\), which means \(k \geq 87848\).

Using the method of this problem, we want
\[
\frac{1}{2} \frac{1}{k \ln k}-\frac{1}{(k+1) \ln (k+1)} \underset{6}{2 k(k+1) \ln k \ln (k+1)}<\frac{(k+1) \ln (k+1)-k \ln k}{20^{-6},}
\]
so that \(|2 k(k+1) \ln k \ln (k+1)|>\mid 10 \quad(k \ln k-(k+1) \ln (\underset{V}{k+1)}) \mid\), which means \(k \geq 319\).
iii. Using the method from the book, we need \(k\) such that \(k>10^{6}\), so \(k>10^{12}\). Using the method of this problem, we want
\[
\begin{array}{lll}
\frac{1}{1} & -^{1} & \frac{1}{\sqrt{ }} \\
2 & \sqrt{ } k- & \underline{V_{\dot{k}+1}}-\mathbb{V}_{k} \\
\hline
\end{array}
\]
which means that \(k>3968.002\) so that \(k \geq 3969\).
8.6.65 Both series diverge, so comparisons of their values are not meaningful.
8.6.66
a. The first ten terms are
\[
(2-1)+\quad 1-\frac{1}{2} \quad+\frac{2}{3}-\frac{1}{3} \quad+\frac{1}{2}-\frac{1}{4} \quad+\frac{2}{5}-\frac{1}{5}
\]

Suppose that \(k=2 i\)
is even (and so \(k-1=2 i-1\) is odd). Then the sum of the \((k-1)\) st term and
 b. Note that \(\lim _{k \rightarrow \infty} \quad \underline{4}=\lim _{k \rightarrow \infty} \quad \underline{2}=0\). Thus given \(\quad>0\) there exists \(N_{1}\) so that for \(k>N_{1}\), we have
\(\underset{k+1}{4}<\). Also, there exist \(N 2\) so that for \(k>N_{2}, \stackrel{2}{-}<\). Let \(N\) be the larger of \(N_{1}\) or \(N_{2}\). Then for \(k>N\), we have \(a_{k}<\), as desired.
c. The series can be seen to diverge because the even partial sums have limit \(\infty\). This does not contradict the alternating series test because the terms \(a_{k}\) are not nonincreasing.

\section*{Chapter Eight Review}

1
a. False. Let \(a_{n}=1-1_{n}\). This sequence has limit 1 .
b. False. The terms of a sequence tending to zero is necessary but not sufflcient for convergence of the series.
c. True. This is the definition of convergence of a series.
d. False. If a series converges absolutely, the definition says that it does not converge conditionally.
e. True. It has limit 1 as \(n \rightarrow \infty\).
f. False. The subsequence of the even terms has limit 1 and the subsequence of odd terms has limit -1 , so the sequence does not have a limit.
g. False. It diverges bv the Divergence Test because \(\lim _{k \rightarrow \infty} k_{2} \frac{\ell^{2}}{+1} \quad=1=0\).
h. True. The given series converges by the Limit Comparison Test with the series sequence of partial sums converges.
\(2 \lim _{n \rightarrow \infty} \underset{\underline{-}}{4 n^{4}+1}=\lim _{n \rightarrow \infty} \underset{-4 n^{-2}}{4+n^{-4}}=\frac{1}{2}\)
\(3 \lim ^{8 n}=0\) because exponentials grow more slowly than factorials. \(n \rightarrow \infty n \overline{!}\)
4 After taking logs, we want to compute
\[
\lim _{\substack{n \rightarrow \infty \\ n \rightarrow \infty}} 2 n \ln (1+3 / n)=\lim \quad \frac{\ln (1+3 / n)}{1 /(2 n)}
\]

By L'H^opital's rule, this is \(\lim _{n \rightarrow \infty} \frac{6 n}{n+3}\) (after some algebraic manipulations), which is 6 . Thus the original limit is \(e^{6}\).

5 Take logs and compute \(\lim (1 / n) \ln n=\lim _{n \rightarrow \infty}(\ln n) / n=\lim \underset{n \rightarrow \infty}{\underline{1}=0}=0\) by L'Hopital's rule. Thus the original \(\operatorname{limit}\) is \(e^{0^{n \rightarrow \infty}}=1\).

\[
\begin{array}{llll}
n \rightarrow \infty \\
n \rightarrow \infty
\end{array} \quad 1 \quad n+n^{2}-1 \quad n \rightarrow \infty n+n \quad+1
\]

7 Take logs, and then evaluate \(\lim \perp \ln (1 / n)=\lim (-1)=-1\), so the original limit is \(e^{-1}\).
\({ }_{n \rightarrow \infty} \ln n \quad n \rightarrow \infty\)
8 This series oscillates among the values \(\pm 1 / 2, \pm \sqrt{ }-\)
\(9 a_{n}=(-1 / 0.9)^{n}=(-10 / 9)^{n}\). The terms grow without bound so the sequence does not converge.
\({\underset{n}{n \rightarrow \infty}}_{10} \lim \tan ^{-1} n=\underset{x \rightarrow \infty}{\lim } \tan ^{-1} x=\frac{\pi}{4}\).
11
a. \(S_{1}={ }_{3}^{\frac{1}{3}}, S_{2}=\quad{ }_{24}^{4}, S 3=\quad \stackrel{21}{40}, S_{4}=30 \quad \underline{17}\).
b. \(S_{n}=\frac{1}{2} \frac{1}{12}+\frac{1}{-} \frac{1}{n+1} \quad \frac{1}{n+2}\), because the series telescopes.
c. From part (b), \(\lim S_{n}=\frac{3}{4}\), which is the sum of the series.

12 This is a geometric series with ratio 9/10, so the sum is \(\frac{9 / 10}{1-9 / 10}=9\).
\(13 \sum_{k=1}^{\infty} 3(1.001)^{k}=3{ }^{\infty}(1.001)^{k}\). This is a geometric series with ratio greater than 1 , so it diverges.
\(k=1\)
14 This is a geometric series with ratio \(-1 / 5\), so the sum is \(\frac{1}{1+1 / 5}=\frac{5}{6}\)
\(15-1-\quad=-\frac{1}{-}\), so the series telescopes, and \(S_{n}=1-\quad-\quad 1\). Thus \(S_{n}=1\), which is the value of
\(\lim _{k(k+1)} \quad k \quad k+1 \quad n+1 \quad n \rightarrow \infty\)
the series.
16 This series clearly telescopes, and \(S_{n}=1 .-1\), so \(\quad \lim S_{n}=-1\).
n
17 This series telescopes. \(S_{n}=3-3\), so that \(\lim \quad S_{n}=3\), which is the value of the series.
\(3 n+1 n \rightarrow \infty\)
\(18 \sum_{k=1}^{\infty} 4^{-3 k}={ }_{k=1}^{\infty}(1 / 4)^{k}\). Ihis is a geometric series \(W\) ith ratio \(1 / 64\), so its sum is \(\begin{gathered}1 / 64 \\ 1-1 / 64\end{gathered}=63\)
\(19^{\infty} \quad \underline{2^{k}}=\underline{1}_{\infty} \quad \underline{2}_{k}=\underline{1} \underline{\underline{2} \sqrt{3}} \quad=\underline{2}\).
\(\begin{array}{lllll}k=1 & 3_{k+2} & 9_{k=1} & 3 & 9 \\ 1-2 / 3 & 9\end{array}\)

20 This is the diffierence of two convergent geometric series (because both have ratios less than 1). Thus the sum of the series is equal to

21
a. It appears that the series converges, because the sequence of partial sums appears to converge to 1.5.
b. The convergence is uncertain.
c. This series clearly appears to diverge, because the partial sums seem to be growing without bound.

22 This is \(p\)-series with \(p=3 / 2>1\), so this series is convergent.
23 The series can be written \(\quad \underset{k}{1} 23\), which is a \(p\)-series with \(p=2 / 3<1\), so this series diverges.
\(24 a k=\frac{2 k+1}{v_{23}}-\quad=\frac{4 k+4 k+1}{{ }_{k}^{3} \quad} \quad\), so the sequence of terms diverges. By the Divergence Test, the given series
diverges as well.
25 This is a geometric series with ratio \(2 / e<1\), so the series converges.
 given series diverges by the Divergence Test.
27 Applying the Ratio Test:
\[
\begin{aligned}
& \lim \underline{a_{k+1}}=\lim \quad \underline{2 k+1(k+1)!} \cdot \underline{k}^{\underline{k}}=\lim 2 \quad \underline{k} \quad{ }^{k} \quad \underline{2}<1, \\
& { }_{k \rightarrow \infty} a_{k} \quad{ }_{k \rightarrow \infty}(k+1)^{k+1} \quad 2^{k} k!\quad{ }_{k \rightarrow \infty} \quad k+1 \quad e
\end{aligned}
\]
so the given series converges.
28 Use the Limit Comparison Test with \(\frac{1}{k}\) :
\[
\begin{aligned}
& \frac{\sqrt{ }-1}{k}-2=-\frac{k^{2}}{-}, \\
& k^{2}+k \quad k \quad k^{2}+k \quad k^{2}+k
\end{aligned}
\]
which has limit 1 as \(k \rightarrow \infty\). Because \(\quad 1 / k\) diverges, the original series does as well.
29 Use the Comparison Test:
\(\frac{1}{e}<1\). Thus the original series converges as well.
 by the Comparison Test.
32 Use the Comparison Test: \(\frac{1}{\substack{1+\ln k \\ 5}}>k_{k}\) for \(k>1\). Because \(\quad \frac{1}{k}\) diverges, the given series does as well.

33 Use the Ratio Test: \(\xrightarrow{a k+1} \xrightarrow{(k+1)} \quad-\quad 1 \quad k+1 \quad 5\)
series converges. \(\quad a_{k}=e^{k+1} \cdot k^{5}=e^{\prime} \quad\), which has limit \(1 / e<1\) as \(k \rightarrow \infty\). Thus the given

34 For \(k>5\), we have \(k \quad{ }^{2}-10>(k-1)^{2}\), so that \(a_{k}=\quad \frac{2}{k^{2}-10}<\frac{2}{k-1)^{2}}\). Because \(\quad \frac{2}{(k-1)^{2}}\) converges, the original series does as well.

35 Use the Comparison Test. Because \(\lim _{k \rightarrow \infty} \underline{\ln } \underline{k}=0\), we have that for sufflciently large \(k, \ln k<k^{1 / 2}\), so
 the original series is convergent.
36 By the Ratio Test: \(\lim _{k \rightarrow \infty} \frac{a k+1}{a k}=\lim _{k \rightarrow \infty} e^{\frac{k}{k}+1} \cdot \underline{e}^{k}=\lim \frac{1}{e} \cdot \frac{k+1}{k}=\frac{1}{e}<1\). Thus the given series converges.
37 Use the Ratio Test. The ratio of successive terms is \(\frac{2 \cdot 4^{k+1}}{(2 k+3)!} \cdot \stackrel{(2 k+1)!}{2 \cdot 4^{k}}=\frac{4}{(2 k+3)(2 k+2)}\). This has limit 0 as \(k \rightarrow \infty\), so the given series converges.
 \(k \rightarrow \infty\), so the given series converges.

39 Use the Limit Comparison Test with the harmonic series. Note that \(\lim _{k \rightarrow \infty} \frac{\operatorname{coth} k}{k} \quad \frac{k}{1} \quad=\lim _{k \rightarrow \infty} \operatorname{coth} k=1\).
Because the harmonic series diverges, the given series does as well.
40 Use the Limit Comparison Test with the convergent geometric series whose \(k\) th term is \(e{ }_{k}^{1-}\). We have \(\lim _{k \rightarrow \infty} \frac{2 e^{-\frac{e^{k}}{-}}}{\sinh k} \quad{ }_{1}=\lim _{k \rightarrow \infty} e_{e^{k}-e^{-k}}=2 \lim _{k \rightarrow \infty} \quad 1-e^{-2 k}=2\). The given series is therefore convergent.

41 Use the Divergence Test. \(\lim _{k \rightarrow \infty} \tanh k=\lim _{k \rightarrow \infty} \quad \frac{\frac{e^{k}+e^{-k}}{e k-e-k}}{e k-e^{2}}=0\), so the given series diverges.
42 Use the Limit Comparison Test with the convergent geometric series whose \(k\) th term is \(e \underset{k}{1}\). We have

44 This series does not converge, because \(\lim \left|a_{k}\right|=\lim \quad \quad^{k^{2}} \overline{+4}=\overline{1}\).

absolutely convergent. However, the terms are clearly decreasing to zero, so it is conditionally convergent.
47 Use the Ratio Test on the absolute values of the sequence of terms: \(\lim \bar{a}_{k+1}=\lim \quad 10 \quad=0\), so the series converges absolutely.
\(k \rightarrow \infty \quad a k \quad k \rightarrow \infty k+1\)
\(48 \quad \frac{1}{k \ln k}\) does not converge because \(\quad \infty \underset{x_{\ln x}}{\infty} d x=\lim _{b \rightarrow \infty} \ln (\ln x)\)
\(\infty\)
diverges. Thus the given series does not converge absolutely. However, it \({ }^{2}\) does converge conditionally because the terms are decreasing and approach zero.

49 Because \(k^{2} \quad 2^{k}, \lim k \quad k^{2} \quad=0\). The given series thus diverges by the Divergence Test.

50 The series of absolute values converges, by the Limit Comparison Test with the convergent geometric series whose \(k\) th term is \(\perp\). This follows because \(\lim \quad 1 \quad e_{k}^{e_{k}}=\lim \quad 1\).
\(e_{k}\) \(k \rightarrow \infty e_{k}+e_{-k} \cdot 1 \quad k \rightarrow \infty 1+e-2 k\)

51
a. For \(|x|<1, \quad \lim _{k \rightarrow \infty} x^{k}=0\), so this limit is zero.
b. This is a geometric series with ratio \(-4 / 5\), so the sum is \(\frac{1}{1+4 / 5} \quad=\frac{5}{9}\).

52
a. \(\lim \underline{1}-\ldots=\lim \xrightarrow{1}=0\).
\({ }_{k \rightarrow \infty} \quad k \quad k+1 \quad k \rightarrow \infty \quad k(k+1)\)
b. This series telescopes, and \(S_{n}=1-\frac{1}{n+1}\), so \(\lim _{n \rightarrow \infty} S_{n}=1\), which is the sum of the series.

53 Consider the constant sequence with \(a_{k}=1\) for all \(k\). The sequence \(\left\{a_{k}\right\}\) converges to 1 , but the corresponding series \(a_{k}\) diverges by the divergence test.
\(\infty\)
54 This is not possible. If the series \(\quad k=1 a_{k}\) converges, then we must have \(\lim _{k \rightarrow \infty} a_{k}=0\).
a. This sequence converges because \(\lim _{k \rightarrow \infty} \quad \frac{k}{k+1}=\lim _{k \rightarrow \infty} \frac{1}{1+\frac{-}{k}}=\frac{1}{1+0} \quad=1\).
b. Because the sequence of terms has limit 1 (which means its limit isn't zero) this series diverges by the divergence test.

56 No. The geometric sequence converges for \(-1<r \leq 1\), while the geometric series converges for \(-1<r\) \(<1\). So the geometric sequence converges for \(r=1\) but the geometric series does not.

57 Because the series converges, we must have \(\lim a_{k}=0\). Because it converges to 8 , the partial
\[
\underset{k \rightarrow \infty}{\operatorname{sums}^{2}}
\]
converge to 8 , so that
\[
\lim _{k \rightarrow \infty} S_{k}=8
\]
\(58 R_{n}\) is given by

59 The series converges absolutely for \(p>1\), conditionally for \(0<p \leq 1\) in which case \(\left\{k^{-p}\right\}\) is decreasing to zero.

60 By the Integral Test, the series converges if and only if the following integral converges:

This limit exists only if \(1-p<0\), i.e. \(p>1\). Note that the above calculation is for the case \(p=1\). In the case \(p=1\), the integral also diverges.

61 The sum is 0.2500000000 to ten decimal places. The maximum error is
\[
{ }^{\infty} 11 d x=\lim -1^{b}=\frac{1}{=} \approx 6.5 \times 10^{-15} .
\]
\[
\begin{aligned}
& { }^{\infty} \quad 1 \quad d x=\lim \quad 1 \ln _{(1-p)}(x) \quad \begin{array}{l}
b \\
1 \\
\ln ^{(1-p)}(b)-\ldots \ln ^{(1-p)}(2) .
\end{array} \\
& { }_{2} x \ln ^{p}(x) \quad{ }_{b \rightarrow \infty} 1-p \quad{ }_{b \rightarrow \infty} 1-p \quad 1-p
\end{aligned}
\]
\[
\begin{aligned}
& R_{n} \leq \quad \infty \underline{1}_{.} d x=\lim -1 \quad b=1 . \\
& { }_{n} x^{5} \quad{ }_{b \rightarrow \infty} \quad 4 x^{4} \quad n \quad 4 n^{4}
\end{aligned}
\]
\[
205^{x} \quad{ }_{b \rightarrow \infty} \quad 5^{x} \ln 520 \quad 5^{20} \ln 5
\]

62 The sum is 1.037 . The maximum error is
\[
\infty 1_{d x=\lim -1}{ }^{b}=\frac{1}{=} \approx 1.6 \times 10^{-6} .
\]

Chapter60 Eight Review
\[
20 \overline{x^{5}} \quad \quad b \rightarrow \infty 4 x^{4} \quad 20 \quad 4 \cdot 20^{4}
\]

63 The maximum error is \(a_{n+1}\), so we want \(a_{n+1}=\)
\[
\frac{1}{(k+1)^{4}}<10^{-8}, \text { or }(k+1) \quad 4 \quad>10^{8}, \text { so } k=100 .
\]

64
a. \(\sum_{k=0}^{\infty} e^{k x}=\sum_{k=0}^{\infty}\left(^{x}\right)^{k}=\frac{1}{1-e^{x}}=2\), so \(1 \quad-e^{x}=1 / 2\). Thus \(e^{x}=1 / 2\) and \(x=-\ln (2)\).
b. \(\quad k^{\infty}{ }^{\infty}(3 x)^{k}=\frac{1}{1-3 x}=4\), so that \(1-3 x={ }_{4}^{-1}, \begin{aligned} & 1 \\ & 4\end{aligned}\).
c. The \(x^{\prime}\) s cancel, so the equation reads \({\underset{k=0}{\infty} \quad \frac{1}{k-1 / 2}-\frac{1}{k+1} / 2=6 \text {. The series telescopes, so that the }}^{\infty}\) left side, up to \(n\), is
\[
\sum_{k=0}^{n} \frac{1}{k-1 / 2-k+1 / 2}{ }^{n}=\frac{1}{-1 / z}-\frac{1}{n+1 / 2}=-2-\frac{1}{n+1 / 2}
\]
and in the limit the equation then reads \(-2=6\), so that there is no solution.
65
a. Let \(T_{n}\) be the amount of additional tunnel dug during week \(n\). Then \(T_{0}=100\) and \(T_{n}=.95 \cdot T_{n-1}=\) \((.95)^{n} T_{0}=100\left(0.95^{n}\right.\), so the total distance dug in \(N\) weeks is
\[
S_{N=100(0.95)}^{N-1} \quad{ }^{k=0} \quad=100 \frac{N}{1-(0.95)} \frac{1-0.95}{1-2000\left(1-0.95^{N}\right) .}
\]

Then \(S_{10} \approx 802.5\) meters and \(S_{20} \approx 1283.03\) meters.
b. The longest possible tunnel is \(S_{\infty}=100 \quad \sum_{k=0}^{\infty}(0.95){ }_{=1-.95}^{{ }^{k}}=2000\) meters.

66 Let \(t_{n}\) be the time required to dig meters \((n-1) \cdot 100\) through \(n \cdot 100\), so that \(t_{1}=1\) week. Then \(t_{n}=1.1\). \(t_{n-1}=(1.1)^{n-1} t_{1}=(1.1)^{n-1}\) weeks. The time required to dig 1500 meters is then
\[
t_{k=1}^{15}={ }_{k=1}^{15}(1.1)^{k-1} \approx 31.77 \text { weeks. }
\]

So it is not possible.
67
a. The area of a circle of radius \(r\) is \(\pi r^{2}\). For \(r=2^{1-n}\), this is \(2^{2-2 n} \pi\). There are \(2^{n-1}\) circles on the \(n^{\text {th }}\) page, so the total area of circles on the \(n^{\text {th }}\) page is \(2^{n-1} \cdot \pi 2^{2-2 n}=2^{1-n} \pi\).
b. The sum of the areas on all pages is \(\quad \sum_{k=1}^{\infty} 2^{1-k} \pi=2 \pi \quad{ }_{k=1}^{\infty} 2^{-k}=2 \pi \cdot{ }_{1 / 2}^{1 / 2}=2 \pi\).
\(68 x_{0}=1, x_{1} \approx 1.540302, x_{2} \approx 1.57079, x_{3} \approx 1.570796327\), which is \(\underline{\pi}\) to nine decimal places. Thus \(p=2\).

69
a. \(B_{n}=1.0025 B_{n-1}+100\) and \(B_{0}=100\).
b. \(B_{n}=100 \cdot 1.0025^{n}+100^{-\frac{1-1.0025^{n}}{1-1.0025}}=100 \cdot 1.0025^{n}-40000\left(1-1.0025^{n}\right)=40000\left(1.0025^{n+1}-1\right)\).

 \(\lim b=, \ldots\).

71
a. \(T_{1}={ }^{\vee} 6^{\frac{\sqrt[3]{3}}{-1}}\) and \(T_{2}=\frac{7}{64}^{\sqrt{ }}-\)
b. At \(\sqrt{ }\) stage \(n \sqrt{ }, 3^{n-1}\) triangles of side length \(1 / 2^{n}\) are removed. Each of those triangles has an area of \(\overline{4 \cdot 4^{\frac{3}{n}}}-\overline{\mathbf{n}_{n+1}}-\frac{\overline{3}}{}\), so a total of \(\quad \sqrt{ } \quad \sqrt{ }\)
\[
\begin{gathered}
3_{n-1} \cdot \frac{3}{n+1}=\frac{3}{3}_{4}^{16} \cdot \frac{3}{3}^{n-1} \\
4
\end{gathered}
\]
is removed at each stage. Thus

d. The area of the triangle was originally \(4^{\frac{\mathcal{F}^{-}}{3}}\), so none of the original area is left.

72 Because the given sequence is non-decreasing and bounded above by 1 , it must have a limit. A reasonable conjecture is that the limit is 1 .

\section*{Chapter 9}

\section*{Power Series}

\subsection*{9.1 Approximating Functions With Polynomials}
9.1.1 Let the polynomial be \(p(x)\). Then \(p(0)=f(0), p(0)=f(0)\), and \(p(0)=f\)
(0).
9.1.2 It generally increases, because the more derivatives of \(f\) are taken into consideration, the better "fit" the polynomial will provide to \(f\).
9.1.3 The approximations are \(p 0(0.1)=1, p_{1}(0.1)=1+-^{0} 2^{\underline{1}}=1.05\), and \(p 2(0.1)=1+\frac{0 .}{2} \underline{1}_{-} .01_{8}=1.04875\).
9.1.4 The first three terms: \(f(a)+f(a)(x-a)+{ }_{-}^{1} f \quad(a)(x-a)^{2}\).
9.1.5 The remainder is the diffierence between the value of the Taylor polynomial at a point and the true value of the function at that point, \(R_{n}(x)=f(x)-p_{n}(x)\).
9.1.6 This is explained in Theorem 9.2. The idea is that the error when using an \(n\)th order Taylor polynomial

between \(a\) and \(x\).
9.1.7
a. Note that \(f(1)=8\), and \(f(x)=12^{\sqrt{ }} \quad x\), so \(f(1)=12\). Thus, \(p_{1}(x)=8+12(x-1)\).
\[
\sqrt{ }-\quad 2
\]
b. \(f(x)=6 / \quad x\), so \(f(1)=6\). Thus \(p 2(x)=8+12(x-2)+3(x-1)\).
c. \(p_{1}(1.1)=12 \cdot 0.1+8=9.2\). \(p_{2}(1.1)=3(.1)^{2}+12 \cdot 0.1+8=9.23\).
9.1.8
a. Note that \(f(1)=1\), and that \(f(x)=-1 / x^{2}\), so \(f(1)=-1\). Thus, \(p_{1}(x)=1-(x-1)=-x+2\).
b. \(f(x)=2 / x^{3}\), so \(f(1)=2\). Thus, \(p 2(x)=2-x+(x-1)^{2}\).
c. \(p_{1}(1.05)=0.95 . p_{2}(1.05)=(0.05)^{2}-0.05+2=.953\).
9.1.9
a. \(f\)
\((x)=-e^{-x}\), so \(p_{1}(x)=f(0)+f(0) x=1-x\).
b. \(f(x)=e^{-x}\), so \(p 2(x)=f(0)+f(0) x+\quad-12(0) x^{2}=1-x+\frac{2}{2}^{-1} x^{2}\).
c. \(p_{1}(0.2)=0.8\), and \(p_{2}(0.2)=1-0.2+\frac{1}{2}_{2}(0.04)=0.82\).

Copyright \(\times \mathrm{c} 2015\) Pearson63 Education, Inc.
9.1.10
a. \(f(x)=\frac{\frac{1}{2}}{2} x^{-1 / 2}\), so \(p_{1}(x)=f(4)+f(4)(x-4)=2+{ }_{-}^{-} 4^{1}(x-4)\).
b. \(f(x)=-{ }_{4} \quad x^{-3 / 2}\), so \(p 2(x)=f(4)+f(4)(x-4)+2^{1} f(4)(x-4) \quad{ }_{2}^{2} \underset{64}{2+4(x-4)-64} \quad(x-4)\).
c. \(p_{1}(3.9)=2+\frac{1}{4} \quad(-0.1)=2-0.025=1.975\), and \(p_{2}(3.9)=2-0.025-\quad 1_{-(0.001)}=1.975\).
9.1.11
a. \(f(x)=-\left(\frac{1}{x+1)^{2}}\right.\), so \(p_{1}(x)=f(0)+f(0) x=1-x\).

22
b. \(f(x)=\quad \underset{(x+1)}{2}\), so \(p_{2}(x)=f(0)+f(0) x+{ }_{2}-f(0) x=1-x+x\).
c. \(p_{1}(0.05)=0.95\), and \(p_{2}(0.05)=1-0.05+0.0025=0.953\).
9.1 .12
a. \(f(x)=-\sin x\), so \(p_{1}(x)=\cos (\pi / 4)-\sin (\pi / 4)(x-\pi / 4)=\quad \frac{{ }^{\frac{V}{2}}}{2}(1-(x-\pi / 4))\).
b. \(f \quad(x)=-\cos x\), so
\[
\begin{aligned}
& p 2(x)=\cos (\pi / 4)-\sin (\pi / 4)(x-\pi / 4)- \\
& \underline{V} 2 \frac{1}{2} \cos (\pi / 4)(x-\pi / 4)^{2} \\
&=-\frac{1}{2} 1-(x-\pi / 4)-\overline{2}(x \\
&\pi / 4)^{2} .
\end{aligned}
\]
c. \(p_{1}(0.24 \pi) \approx 0.729, p_{2}(0.24 \pi) \approx 0.729\).
9.1.13
a. \(f(x)=(1 / 3) x^{-2 / 3}\), so \(p_{1}(x)=f(8)+f(8)(x-8)=2+\quad \frac{1}{12}(x-8)\).
b. \(f \quad(x)=(-2 / 9) x^{-5 / 3}\), so \(p 2(x)=f(8)+f(8)(x-8)+\quad 2^{-1} f(8)(x-8)^{2}=2+12^{+}(x-8)-2 \overline{88}(x-8)^{2}\).
c. \(p_{1}(7.5) \approx 1.958, p_{2}(7.5) \approx 1.957\).
9.1.14
a. \(f \quad(x)=1+x^{2} \quad\), so \(p_{1}(x)=f(0)+f(0) x=x\).
b. \(f \quad(x)=-\underset{\left(1+x^{2}\right)^{2}}{-2 x} \quad\), so \(p 2(x)=f(0)+f(0) x+\begin{aligned} & -1 \\ & 2\end{aligned} f(0) x \quad=x\).
c. \(p_{1}(0.1)=p 2(0.1)=0.1\).
9.1.15 \(f(0)=1, f(0)=-\sin 0=0, f \quad(0)=-\cos 0=-1\), so that \(p 0(x)=1, p_{1}(x)=1, p_{2}(x)=1-\quad \frac{1}{2} x^{2}\).

\[
\text { 9.1.16 } f(0)=1, f(0)=-e^{0}=-1, f \quad(0)=e^{0}=1 \text {, so that } p_{0}(x)=1, p_{1}(x)=1-x, p_{2} \quad(x)=1-x+\quad \begin{gathered}
1 \\
22(x) \\
2
\end{gathered}
\]

Copyright \(\times\) c 2015 Pearson63 Education, Inc.

9.1.17 \(f(0)=0, f(0)=-1-{ }^{1} 0-=-1, f \quad(0)=-\left(1-1_{0}\right)^{2}=-1\), so that \(p_{0}(x)=0, p_{1}(x)=-x\), \(p_{2}(x)=-x-\frac{1}{2} x^{2}\).

\[
\begin{array}{ll}
\text { 9.1.18 } f(0)=1, f(0)=(-1 / 2)(0+1)^{-3 / 2} \\
p_{1}(x)=1-\underline{x}, p_{2} & (x)=1-\frac{x}{2}+3-x_{2} .
\end{array} \quad=-1 / 2, f \quad(0)=(3 / 4)(0+1)^{-5 / 2}=3 / 4 \text {, so that } p 0(x)=1 \text {, }
\]

9.1.19 \(f(0)=0 . \quad f(x)=\sec ^{2} x, f\)
\((x)=2 \tan x \sec ^{2} x\), so that \(f(0) \quad=1, f(0)=0\). Thus \(p 0(x)=0\), \(p_{1}(x)=x, p_{2}(x)=x\).

9.1.20 \(f(0)=1, f(0)=(-2)(1+0)^{-3}=-2, f \quad(0)=6(1+0)^{-4}=6\). Thus \(p_{0}(x)=1, p_{1}(x)=1-2 x\),
\[
p 2(x)=1-2 x+3 x^{2} .
\]

9.1.21 \(f(0)=1, f(0)=-3(1+0)^{-4}=-3, f \quad(0)=12(1+0)^{-5}=12\), so that \(p_{0}(x)=1, p_{1}(x)=1-3 x\), \(p 2(x)=1-3 x+6 x^{2}\).

9.1.22 \(f(0)=0, f \quad(x)=v \underset{1-x}{1}, f\)
\((x)=\frac{x}{\left(1-x^{2}\right)^{3 / 2}} \quad\), so that \(f(0)=1, f(0)=0\). Thus \(0 p(x)=0,1 p(x)=x\), \(p 2(x)=x\).

9.1.23
a. \(p 2(0.05) \approx 1.025\).
b. The absolute error is \(1.05-p 2(0.05) \approx 7.68 \times 10^{-6}\). 9.1.24
a. \(p 2(0.1) \approx 1.032\).
b. The absolute error is \(1.1^{1 / 3}-p 2(0.1) \approx 5.8 \times 10^{-5}\).
9.1.25
a. \(p 2(0.08) \approx 0.962\).
b. The absolute error is \(p_{2}(0.08) \quad \frac{\vee}{1.08} \quad 1.5 \quad 10^{-4}\).
9.1.26
a. \(p 2(0.06)=0.058\).
b. The absolute error is \(\ln 1.06-p_{2}(0.06) \approx 6.9 \times 10^{-5}\).
9.1.27
a. \(p 2(0.15) \approx 0.861\).
b. The absolute error is \(p 2(0.15)-e^{-0.15} \approx 5.4 \times 10^{-4}\).
9.1.28
a. \(p 2(0.12) \approx 0.726\).
b. The absolute error is \(p 2(0.12)=1.12 \frac{1}{3} \approx 1.5 \times 10^{-2}\).
9.1.29
a. Note that \(f(1)=1, f(1)=3\), and \(f(1)=6\). Thus, \(p_{0}(x)=1, p_{1}(x)=1+3(x-1)\), and \(p_{2}(x)=1+3(x-1)+\) \(3(x-1)^{2}\).
b.

9.1.30
a. Note that \(f(1)=8, f(1)=\) \(\frac{4}{2}=4\), and \(f \quad(1)=\frac{-2}{(1)^{m^{2}}}=-2\) Thus, \(p_{0}(x)=8, p_{1}(x)=8+4(x-1)\), \(p 2(x)=8+4(x-1)-(x-\) 1).
b.

9.1.31

b.
9.1 .32

a. \(p 0(x)=2^{\underline{3}}, p 1(x)=2^{\underline{3}} \quad-\overline{2}^{1} \quad x-6 \underline{\pi}, p 2(x)=2_{-3}-2^{1} \quad x-6-\overline{4}^{3} x-\underline{\pi}_{6} \quad\).
\(\underline{\pi}\)
b.

9.1.33
a. \(p_{0}(x)=3, p_{1}(x)=3+{ }^{1} 6(x-9), p_{2}(x)=3+{ }_{6}(x-9)-216^{1-}(x-9)^{2}\).
b.

9.1.34
a. \(p_{0}(x)=2, p_{1}(x)=2+12^{1}(x-8), p_{2}(x)=x+12^{1}(\bar{x}-8)-288^{1}-(x-8)^{2}\).
b.

9.1.35
a. \(p_{0}(x)=1, p_{1}(x)=1+\frac{1}{e}(x-e), p_{2}(x)=1+{ }^{1} e(x-e)-2 e \frac{1}{2}_{2}(x-e)^{2}\).
b.

9.1.36
a. \(p_{0}(x)=2, p_{1}(x)=2+32^{1}(x-16), p_{2}(x)=2+32^{1}(x-16)-4096^{3}-(x-16)^{2}\).
b.
9.1.37

b.

a. \(f(\ln 2)=2, f(\ln 2)=2, f(\ln 2)=2\). So \(p_{0}(x)=2, p_{1}(x)=2+2(x-\ln 2), p_{2}(x)=2+2(x-\ln 2)+(x-\ln\) \(2)^{2}\).
b.

9.1.39
a. Ue the Taylor polynomial centered at 0 with \(f(x)=e^{x}\). We have \(p 3(x)=1+x+\frac{1}{2} x^{2}+\underset{6}{1} x^{3}\). \(p 3(0.12) \approx 1.127\).
b. \(|f(0.12)-p 3(0.12)| \approx 8.9 \times 10^{-6}\).
9.1.40
a. Use the Taylor polynomial centered at 0 with \(f(x)=\cos (x)\). We have \(p 3(x)=1-{ }^{1} 2 x^{2} \cdot p 3(-0.2)=0.98\).
b. \(|f(0.12)-p 3(0.12)| \approx 6.7 \times 10^{-5}\).
9.1.41
a. Use the Taylor polynomial centered at 0 with \(f(x)=\tan (x)\). We have \(p 3(x)=x+{ }^{1} 3 x^{3}\).
\[
p 3(-0.1) \approx-0.100
\]
b. \(|p 3(-0.1)-f(-0.1)| \approx 1.3 \times 10^{-6}\).
9.1.42
a. Use the Taylor polynomial centered at 0 with \(f(x)=\ln (1+x)\). We have \(p 3(x)=x-{ }^{1}{ }_{2} x^{2}+{ }_{3}{ }_{3} x^{3} \cdot p 3-\) \((0.05) \approx 0.0488\).
b. \(|p 3(0.05)-f(0.05)| \approx 1.5 \times 10^{-6}\).
9.1.43
a. Use the Taylor polynomial centered at 0 with \(f(x)=\overline{1+x}\). We have \(p 3(x)=1+{ }^{1} 2 \quad-x-1_{8}-x^{2}+\overline{1}_{16}^{1} x^{3}\). \(p 3(0.06) \approx 1.030\).
b. \(|f(0.06)-p 3(0.06)| \approx 4.9 \times 10^{-7}\).
9.1.44
a. Use the Taylor polynomial centered at 81 with \(f(x)=\)
\[
{ }_{4}^{\sqrt{x} .} \text { We have } p_{3}(x)=3+\quad \frac{1}{108}(x-81)-\frac{1}{23328}(x-
\]
\[
81)^{2}+\frac{7}{22674816}(x-81)^{3} \cdot p 3(79) \approx 2.981
\]
b. \(|p 3(79)-f(79)| \approx 4.3 \times 10^{-8}\).
9.1.45
a. Use the Taylor polynomial centered at 100 with \(f(x) \quad=\quad \sqrt{ }\). We have \(p 3(x)=10+\quad z 0^{1}(x-100)-\)
\[
8000(x-100)+\frac{1}{1600000}(x-100) \cdot p 3(101) \approx 10.050
\]
b. \(|p 3(101)-f(101)| \approx 3.9 \times 10^{-9}\).
9.1.46

Copyright ×c 2015 Pearson Education, Inc.
\(\qquad\) Chapter 9. Power Series74
a. Use the Taylor polynomial centered at 125 with \(f(x)=\) \({ }_{3} \overline{3}\). We have \(p_{3}\)
\((x)=5+\quad 75^{1}(x-125)-\) \(\frac{1}{28125}(x-125){ }^{2} \frac{1}{+6328125}(x-125) \cdot p 3(125) \approx 5.013\).
b. \(|p 3(126)-f(126)| \approx 8.4 \times 10^{-10}\).
9.1.47
a. Use the Taylor polynomial centered at 0 with \(f(x)=\sinh (x)\). Note that \(f(0)=0, f(0)=1, f(0)=0\) and \(f\)
\((0)=1\). Then we have \(p 3(x)=x+x^{3} / 6\), so \(\sinh (.5) \approx(.5)^{3} / 6+.5 \approx 0.521\).
b. \(|p 3(.5)-\sinh (.5)| \approx 2.6 \times 10^{-4}\).
9.1.48
a. Use the Taylor polynomial centered at 0 with \(f(x)=\tanh (x)\), Note that \(f(0)=0, f(0)=1, f \quad(0)=0\),
\(f(0)=-2\). Then we have \(p 3(x)=-x^{3} \beta+x\), so \(\tanh (.5) \approx-(.5) \quad \beta+.5 \approx 0.449\).
b. \(|p 3(x)-\tanh (.5)| \approx 3.8 \times 10\)
9.1.49 With \(f(x)=\sin x\) we have \(R_{n}(x)=\frac{f(n+1)(c)}{(n+1)!}{ }^{n+1} \quad\) for \(c\) between 0 and \(x\).
9.1.50 With \(f(x)=\cos 2 x\) we have \(R_{n}(x)=\frac{f(n+1)}{}(c)_{x}^{n+1} \quad\) for \(c\) between 0 and \(x\).
\[
(n+1)!
\]
\[
n+1 \quad-x
\]

9.1.51 With \(f(x)=e^{-x}\) we have \(f^{(n+1)}(x)=(-1) \quad e \quad\), so that \(R_{n}(x)=\quad(-1)^{n+1} e \quad x^{n+1}\) for \(c\) between 0 and \(x\).
\[
(n+1)!
\]
 9.1.54 \(\operatorname{With} f(x)=\quad \perp\) we have \(f^{(n+1)}(x)=(-1)^{n+1} \quad=\perp\) so that \(R_{n}(x)=\frac{-1)^{n+1}}{} x^{n+1}\) for \(c\) between 0 and \(x\).
9.1.55 \(f(x)=\sin x\), so \(f^{(5)}(x)=\cos x\). Because \(\cos x\) is bounded in magnitude by 1 , the remainder is bounded by \(|R 4(x)| \leq \frac{0 .}{5!-5} \approx 2.0 \times 10^{-5}\).
9.1.56 \(f(x)=\cos x\), so \(f^{(4)}(x)=\cos x\). Because \(\cos x\) is bounded in magnitude by 1 , the remainder is bounded by \(\left|R_{3}(x)\right| \leq{ }^{0.45} 4!^{4} \approx 1.7 \times 10^{-3}\).
9.1.57 \(f(x)=e^{x}\), so \(f^{(5)}(x)=e^{x}\). Because \(e^{0.25} \quad\) is bounded by \(2,|R 4(x)| \leq 2 \cdot{ }^{0.25} 5!{ }^{5} \approx 1.63 \times 10^{-5}\).
9.1.58 \(f(x)=\tan x\), so \(f^{(3)}(x)=2 \sec ^{2} x\left(\sec ^{2} x\right.\) on \(\left.+2 \tan ^{2} x\right)\). Now, since both \(\tan x\) and \(\sec x\) are increasing upper
\([0, \pi / 2]\), and \(0.3<\underline{\pi}_{6} \approx 0.524\), we can get an bound on \(f^{(3)}(x)\) on \([0,0.3]\) by evaluating at \({ }^{\pi}\); this gives \(f^{(3)}(x)<\underline{16}_{3}\) on \([0,0.3]\). Thus \(\left|R_{2}(x)\right| \leq \underline{16}_{3} \cdot \underline{0}_{3}!^{\underline{\beta}_{3}}=2.4 \times 10^{-2}\).

6
9.1.59 \(f(x)=e^{-x}\), so \(f^{(5)}(x)=-e^{-x}\). Because \(f^{(5)}\) achieves its maximum magnitude in the range at \(x=0\), which has absolute value \(1,|R 4(x)| \leq 1 \cdot{ }^{\theta} \cdot{ }_{5!}{ }^{5}{ }^{5} \approx 2.6 \times 10^{-4}\).
9.1.60 \(f(x)=\ln (1+x)\), so \(f^{(4)}(x)=-(x+1)^{6}\)._- On \([0,0.4]\), the maximum magnitude is 6 , so \(\left|R_{3}(x)\right| \leq\) \(6 \cdot{ }^{0} \cdot 4!^{4_{4}}=6.4 \times 10^{-3}\).
9.1.61 Here \(n=3\) or 4 , so use \(n=4\), and \(M=1\) because \(f^{(5)}(x)=\cos x\), so that \(R 4(x) \leq \quad \frac{(\pi / 4)^{5}}{5!} \approx\)

Copyright ×c 2015 Pearson Education, Inc.
\(2.49 \times 10^{-3}\).
9.1.62 \(n=2\) or 3 , so use \(n=3\), and \(M=1\) because \(f^{(4)}(x)=\cos x\), so that \(\left|R_{3}(x)\right| \leq \frac{(\pi / 4)}{4!} \approx 1.6 \times 10^{-2}\).
9.1.63 \(n=2\) and \(M=e^{1 / 2}<2\), so \(\left|R_{2}(x)\right| \leq 2 . \quad \frac{(1 / 2)^{2}}{3} 3 \approx 4.2 \times 10-2\).
9.1.64 \(n=1\) or 2 , so use 2 , and \(f^{(3)}(x)=2 \sec ^{2} x\left(\sec ^{2} x_{3}+2 \tan ^{2} x\right)\). On [\(\left.\overline{-\pi}, \frac{\pi}{6}\right]\) this achieves its maximum value at \(\pm 6 \frac{\pi}{3}\); that value is \(\frac{16}{3}\). Thus \(\left|R_{2}(x)\right| \leq \frac{16}{3} \frac{(\pi / 0)}{3!} \approx 1.28 \times 10^{-1}\).
9.1.65 \(n=2 ; f^{(3)}(x)=\quad-\frac{2}{(1+x)^{3}}\), which achieves its maximum at \(x=-0.2:\left|f^{(3)} \quad(x)\right|=-{ }^{2} 3<4\).
Then
\(\left|R_{2}(x)\right| \leq 4 \cdot \overline{3!} \approx 5.4 \times 10^{-3}\).
9.1.66 \(n=1, f(x)=-\quad \frac{1}{4}(1+x)^{-3 / 2}\), which achieves its maximum magnitude at \(x=-0.1\), where it is less than \(1 / 3\). Thus \(R_{1}(x) \leq \frac{1}{3} \cdot \frac{0.1^{2}}{2!} \approx 1.7 \times 10^{-3}\).
9.1.67 Use the Taylor series for \(e^{x}\) at \(x=0\). The derivatives of \(e^{x}\) are \(e^{x}\). On \([-0.5,0]\), the maximum magnitude of any derivative is thus 1 at \(x=0\), so \(\left|R_{n}(-0.5)\right| \leq \quad \frac{0.5^{n+1}}{(n+1)!} \quad\), so for \(R_{n}(-0.5)<10^{-3}\) we need \(n=4\).
9.1.68 Use the Taylor series at \(x=0\) for \(\sin x\). The magnitude of any derivative of \(\sin x\) is bounded by 1 , so \(\left|R_{n}(0.2)\right| \leq \frac{{ }_{(n+1)!}^{n+1}}{\left(\text {, so for } R_{n}(0.2)<10^{-3}\right.}\) we need \(n=3\).
9.1.69 Use the Taylor series for \(\cos x\) at \(x=0\). The magnitude of any derivative of \(\cos x\) is bounded by 1, so \(\left|R_{n}(-0.25)\right| \leq \frac{0_{0.25^{n+1}}^{(n+1)!}}{}\), so for \(\left|R_{n}(-0.25)\right|<10 \quad\) we need \(n=3\).
9.1.70
\(\in\) \([-0.15,0]\) achieves its maximum at \(x=-.15\). This maximum is less than (1.2) \(\cdot n!\). Thus \(\left|R_{n}(-0.15)\right| \leq\) \((1.2)^{n+1} \cdot n!\cdot \frac{n+1}{(n+1)!}=\frac{1 \cdot 2 \cdot(0.15)^{n+1}}{n}\), so for \(\left|R_{n}(-0.15)\right|<10^{-3}\) we need \(n=3\).
\[
\sqrt{ } \quad \frac{1 \cdot 3 \cdots \cdots(2 n-1)}{} x-(2 n+1) / 2 \text {, which }
\]
9.1.71 Use the Taylor series for \(f(x)=\quad x\) at \(\underline{x}=1\). Then \(\left|f^{(n+1)}(x)\right|=\) achieves \(\quad{ }_{2 n+1}\) its maximum on \([1,1.06]\) at \(x=1\). Then
\[
\left|R_{n}(1.06)\right| \leq \begin{aligned}
& \frac{1 \cdot 3 \cdot \cdots \cdot(2 n-1)}{,}(1.06-1)^{n+1} \\
& 2 n+1
\end{aligned}
\]
and for \(\left|R_{n}(0.06)\right|<1 U^{-3}\) we need \(n=1\).
\[
1 \cdot 3 \cdots(2 n+1)
\]
9.1.72 Use the Taylor series for \(f(x)=\quad \overline{1 /(1 x)} \quad\) at \(x=0\). Then \(f^{(n+1)}(x)=\quad 2_{n+1}\)
\(x)^{(-3-2 n) / 2}\), which achieves its maximum on \([0,0.15]\) at \(x=0.15\). Thus
\[
\begin{aligned}
& \left|R_{n}(0.15)\right| \leq \\
& . \frac{\left.1 \cdot 3 \cdot \eta \cdot\left(2 r^{2 n}+\right)^{2}\right)^{2}}{} \\
& 1-0.4{ }^{5} \\
& \overline{0.1^{5+1}} \\
& =\frac{1 \cdot 3 \cdot \cdots \cdot(2 n+ \pm 1)}{0.88^{n+1}(2 n+3) /(n+1)!}
\end{aligned}
\]
and for \(\left|R_{n}(0.15)\right|<10^{-3}\) we need \(n=3\).
9.1.73
a. False. If \(f(x)=e^{-2 x}\), then \(f^{(n)}(x)=(-1)^{n} 2^{n} e^{-2 x}\), so that \(f^{(n)}(0)=0\) and all powers of \(x\) are present in the Taylor series.
b. True. The constant term of the Taylor series is \(f(0)=1\). Higher-order terms all involve derivatives of \(f(x)=x^{5}-1\) evaluated at \(x=0\); clearly for \(n<5, f^{(n)}(0)=0\), and for \(n>5\), the derivative itself vanishes. Only for \(n=5\), where \(f^{(5)}(x)=5\) !, is the derivative nonzero, so the coefflcient of \(x^{5}\) in the

Copyright \(\times \mathrm{c} 2015\) Pearson Education, Inc.

Taylor series is \(f^{(5)}(0) / 5!=1\) and the Taylor polynomial of order 10 is in fact \(x^{5}-1\). Note that this statement is true of any polynomial of degree at most 10 .
\(\checkmark\)
c. True. The odd derivatives of \(1+x^{2}\) vanish at \(x=0\), while the even ones do not.
d. True. Clearly the second-order Taylor polynomial for \(f\) at \(a\) has degree at most 2. However, the coefflcient of \((x-a)^{2}\) is \(\frac{1}{2} \quad f(a)\), which is zero because \(f\) has an inflection point at \(a\).
9.1.74 Let \(p(x)=\quad{ }_{k=0}^{n} c_{k}(x-a)^{k}\) be the \(n^{\text {th }}\) polynomial for \(f(x)\) at \(a\). Because \(f(a)=\quad p(a)\), it follows that \(c_{0}=f(0)\). Now, the \(k^{\text {th }}\) derivative of \(p(x), 1 \leq k \leq n\), is \(p^{(k)}(x)=k!c_{k}+\) terms involving \((x-a)^{i}, i>0\), so that \(f^{(k)}(a)=p^{(k)}(a)=k!\cdot c_{k}\) so that \(c_{k}=\mathbf{-}_{k!}\). 9.1.75

b. This matches (E) because for \(f(x)=(1+2 x)^{-1 / 2}, f \quad(x)=3(1+2 x)^{-5 / 2}\), so \(\quad \frac{f}{2!} \frac{(0)}{=} \frac{3}{2}\).
c. This matches (A) because \(f^{(n)}(x)=2^{n} e^{2 x}\), so that \(f^{(n)}(0)=2^{n}\), which is (A)'s pattern.
d. This matches (D) because \(f \quad(x)=8(1+2 x)^{-3}\) and \(f \quad(0)=8\), so that \(f \quad(0) / 2!=4\)
e. This matches (B) because \(f(x)=-6(1+2 x)^{-4}\) so that \(f(0)=-6\).
f. This matches (F) because \(f^{(n)}(x)=(-2)^{n} e^{-2 x}\), so \(f^{(n)}(0)=(-2)^{n}\), which is (F)'s pattern. 9.1.76
a.

b. The error seems to be largest at \(x=\frac{1}{2}\) and smallest at \(x=0\).
c. The error bound found in Example 7 for \(|\ln (1-x)-p 3(x)|\) was 0.25 . The actual error seems much less than that, about 0.02.
9.1.77
a. \(p 2(0.1)=0.1\). The maximum error in the approximation is \(1 \cdot{ }^{0 .} \quad{ }^{1} 3 \approx 1.67 \times 10^{-4}\).

\section*{\(3!\)}
b. \(p 2(0.2)=0.2\). The maximum error in the approximation is \(1 \cdot \frac{0}{0 .} 2_{3!}^{2} \approx 1.33 \times 10^{-3}\).
9.1.78
a. \(p 1(0.1)=0.1 . f(x)=2 \tan x\left(1+\tan ^{2} x\right)\). Because \(\tan (0.1)<0.2,|f(c)| \leq 2(.2)\left(1+.2^{2}\right)=0.416\).

Thus the maximum error is \(\frac{0.416}{2!} \cdot 0.1^{2} \approx 2.1 \times 10^{-3}\).
b. \(p_{1}(0.2)=0.2\). The maximum error is \(\frac{0.416}{2} \cdot 0.2^{2} \approx 8.3 \times 10^{-3}\).
9.1.79

Copyright \(\times\) c 2015 Pearson Education, Inc.
a. \(p 3(0.1)=1-.01 / 2=0.995\). The maximum error is \(1^{\circ}{ }^{0 .}{ }_{4!}^{14} \approx 4.2 \times 10^{-6}\).
b. \(p 3(0.2)=1-.04 / 2=0.98\). The maximum error is \(1 \cdot{ }^{0 .} 4!^{2} 4 \approx 6.7 \times 10^{-5}\).
9.1 .80
a. \(p 2(0.1)=0.1\) (we can take \(n=2\) because the coefflcient of \(x \quad{ }^{2}\) in \(p 2(x)\) is 0\() . f^{(3)}(x)=\frac{6 x^{2}-2}{\left(x^{2}+1\right)^{3}}\) has a -4 maximum magnitude value of 2 , the maximum error is \(2 \cdot{ }^{\theta} \cdot 3!{ }^{13} \approx 3.3 \times 10\).
b. \(p 2(0.2)=0.2\). The maximum error is \(2 \cdot \frac{\frac{0.2}{}_{\frac{3}{2}}^{3!}}{3!} \approx 2.7 \times 10^{-3}\).
9.1.81
a. \(p_{1}(0.1)=1.05\). Because \(|f(x)|=\frac{1}{4} 4(1+x)^{-3 / 2}\) has a maximum value of \(1 / 4\) at \(x=0\), the maximum error
\[
\text { is } \underline{1}_{4} \cdot 0_{2}{ }^{1} \underline{2} \approx 1.3 \times 10^{-3} .
\]
b. \(p_{1}(0.2)=1.1\). The maximum error is \(\frac{1}{4} \cdot 0.2_{2}^{2}=5 \times 10^{-3}\).
9.1.82
a. \(p 2(0.1)=0.1-0.01 / 2=0.095\). Because \(\left|f^{(3)}(x)\right|=\quad(x+1)^{\frac{2}{3}} \quad\) achieves a maximum of 2 at \(x=0\), the maximum error is \(2^{\theta \cdot} 3!{ }^{13} \approx 3.3 \times 10^{-4}\).
b. \(p 2(0.2)=0.2-0.04 / 2=0.18\). The maximum error is \(2 \cdot{ }^{\theta \cdot} 3!2_{3} \approx 2.7 \times 10^{-3}\).
9.1.83
a. \(p 1(0.1)=1.1\). Because \(f(x)=e^{x}\) is less than 2 on \([0,0.1]\), the maximum error is less than \(2 \cdot \frac{0.1}{2!^{-}}=\) \(10^{-2}\).
b. \(p 1(0.2)=1.2\). The maximum error is less than \(2 \cdot \frac{0_{2}^{2}}{2!}=.04=4 \times 10^{-2}\).
9.1.84
a. \(p_{1} \quad(0.1)=0.1 . \quad\) Because \(f \quad \frac{x}{\left(1-x^{2}\right)^{3 / 2}}\) is less than 1 on \([0,0.2]\), the maximum error is \(1 \quad 0.1\). \(\quad=\)
\[
1.7 \times 10^{-4} . \dot{2} \quad 3.4 \times 10^{-4} \quad 5.5 \times 10^{-6}
\]

9.1.85
\[
0.2 \quad 3.4 \times 10^{-4} \quad 5.5 \times 10^{-6}
\]
9.1.86

b. The errors are equal for positive and negative \(x\). This makes sense, because \(\sec (-x)=\sec x\) and \(p_{n}\) \((-x)=p_{n}(x)\) for \(n=2,4\). The errors appear to get larger as \(x\) gets farther from zero.
b. The errors are equal for positive and negative \(x\). This makes sense, because \(\cos (-x)=\cos x\) and \(p_{n}\) \((-x)=p_{n}(x)\) for \(n=2,4\). The errors appear to get larger as \(x\) gets farther from zero.

Copyright ×c 2015 Pearson Education, Inc.
9.1 .87
b. The errors are diffierent for positive and negative displacements from zero, and appear to get larger
0.01000 as \(x\) gets farther from zero.
\(0.1 \quad 4.84 \times \quad-3 \quad 1.63 \times 10^{-4}\)
\(0.2 \quad 1.87 \times 10^{-2} \quad 1.27 \times 10^{-3}\)
as gets farther from zero.
9.1.88
\begin{tabular}{ccc}
& \(\left|f(x)-p_{1}(x)\right|\) & \(\left|f(x)-p_{2}(x)\right|\) \\
\hline-0.2 & \(2.31 \times 10^{-2}\) & \(3.14 \times 10^{-4}\)
\end{tabular}
a. \(\quad-0.1 \quad 5.36 \times 10^{-3} \quad 3.61 \times 10^{-4}\)
b. The errors are diffierent for positive and negative displacements from zero, and appear to get larger
\(0.0 \quad 10^{0} 0\)
\(0.1 \quad 4.69 \times \quad-3 \quad 3.10 \times 10^{-4}\)
0.2
\(1.77 \times 10^{-2}\)
\(2.32 \times 10^{-3}\) as \(x\) gets farther from zero.
9.1.89
\begin{tabular}{ccc}
& \(\left|\tan x-p_{1}(x)\right|\) & \(\left|\tan x-p_{3}(x)\right|\) \\
\hline-0.2 & \(2.71 \times 10^{-3}\) & \(4.34 \times 10^{-5}\)
\end{tabular}
b. The errors are equal for positive and negative \(x\).
\begin{tabular}{rrr}
a. & -0.1 & \(3.35 \times 10^{-4}\) \\
& \(1.34 \times 10^{-6}\) \\
0.0 & 0 & 0 \\
& \(3.35 \times 10^{-4}\) & \(1.34 \times 10^{-6}\) \\
0.1 & \(3.71 \times 10^{-3}\) & \(4.34 \times 10^{-5}\)
\end{tabular}

This makes sense, because \(\tan (-x)=-\tan x\) and \(p_{n}(-x)=-p_{n}(x)\) for \(n=1,3\). The errors appear to get larger as \(x\) gets farther from zero.
9.1.90 The true value of cos
\[
\frac{\pi}{12}=\frac{1+{ }_{v} \overline{3}}{22} \approx 0.966 . \quad \text { The } 6^{\text {th }} \text {-order Taylor polynomial for } \cos x \text { centered at }
\]
\[
x=0 \text { is }
\]
\[
p 6(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24} \quad \frac{x^{6}}{720}
\]

Evaluating the polynomials at \(x=\pi / 12\) produces the following table:
\begin{tabular}{|c|c|c|}
\hline \(\stackrel{n}{+p_{n}}\) & \(p_{n} \quad \frac{\pi}{\square}\) & \(\underline{\pi}-\cos \underline{\pi}\) - \\
\hline 1 & 1.000000000 & \(3.41 \times 10^{-2}\) \\
\hline 2 & 0.9657305403 & \(1.95 \times 10^{-4}\) \\
\hline 3 & 0.9657305403 & \(1.95 \times 10^{-4}\) \\
\hline 4 & 0.9659262729 & \(4.47 \times 10^{-7}\) \\
\hline 5 & 0.9659262729 & \(4.47 \times 10^{-7}\) \\
\hline 6 & 0.9659258257 & \(5.47 \times 10^{-10}\) \\
\hline
\end{tabular}

The \(6^{\text {th }}\)-order Taylor polynomial for \(\cos x\) centered at \(x=\pi / 6\) is
\(\sqrt{ } \quad \sqrt{ } \pi\)

> a. -0.1
> \(5.17 \times 10^{-3}\)
> \(1.71 \times 10^{-4}\)

Copyright \(\times \mathrm{c} 2015\) Pearson Education, Inc.

Evaluating the polynomials at \(x=\pi / 12\) produces the following table:
\begin{tabular}{|c|c|c|}
\hline \(n\) & \(p_{n} \frac{\pi}{\text { I }}\) & \(\underline{\mid p n}{ }^{\pi}-\cos { }^{\text {a }}\) \\
\hline 1 & 0.9969250977 & \(3.10 \times 10^{-2}\) \\
\hline 2 & 0.9672468750 & \(1.32 \times 10^{-3}\) \\
\hline 3 & 0.9657515877 & \(1.74 \times 10^{-4}\) \\
\hline 4 & 0.9659210972 & \(4.73 \times 10^{-6}\) \\
\hline 5 & 0.9659262214 & \(3.95 \times 10^{-7}\) \\
\hline 6 & 0.9659258342 & \(7.88 \times 10^{-9}\) \\
\hline
\end{tabular}

Comparing the tables shows that using the polynomial centered at \(x=0\) is more accurate when \(n\) is even while using the polynomial centered at \(x=\pi / 6\) is more accurate when \(n\) is odd. To see why, consider the remainder. Let \(f(x)=\cos x\). By Theorem 9.2, the magnitude of the remainder when approximating \(f(\pi / 12)\) by the polynomial \(p_{n}\) centered at 0 is:
\(R_{n}\)
12

12
\((n+1)!12\)
for some \(c\) with \(0<c<\)
\(\underline{\pi}\), while the magnitude of the remainder when approximating \(f(\pi / 12)\) by the polynomial \(p_{n}\) centered at \(\pi / 6\) is:
\[
R_{n} \quad \pi=\left\lvert\, f\left(\left.\frac{n+1)}{-}(\underline{c}) \right\rvert\, \underline{\pi}\right.\right.
\]
\(12 \quad(n+1)!12\)
for some \(c\) with \(12 \frac{\pi}{\underline{\pi}}<c<6 \underline{\pi}\). When \(n\) is odd, \(\left|f^{(n+1)}(c)\right|=|\cos c|\). Because \(\cos x\) is a positive and decreasing function over \([0, \pi / 6]\), the magnitude of the remainder in using the polynomial centered at \(\pi / 6\) will be less than the remainder in using the polynomial centered at 0 , and the former polynomial will be more accurate. When \(n\)
is even, \(\left|f^{(n+1)}(c)\right|=|\sin c|\). Because \(\sin x\) is a positive and increasing function over \([0, \pi / 6]\), the remainder in using the polynomial centered at 0 will be less than the remainder in using the polynomial centered at \(\pi / 6\), and the former polynomial will be more accurate.
9.1.91 The true value of \(e^{0.35} \approx 1.419067549\). The \(6^{\text {th }}\)-order Taylor polynomial for \(e^{x}\) centered at \(x=0\) is

\[
\begin{array}{lllll}
2 & 6 & 24 & 120 & 720
\end{array}
\]

Evaluating the polynomials at \(x=0.35\) produces the following table:
\(n\left|p_{n}(0.35)\right| p_{n}(0.35)-e^{0.35} \mid\)
\begin{tabular}{llll}
1 & 1.350000000 & & \(6.91 \times 10^{-2}\) \\
2 & 1.411250000 & & \(7.82 \times 10^{-3}\) \\
3 & 1.418395833 & \(6.72 \times 10^{-4}\) \\
4 & 1.419021094 & \(4.65 \times 10^{-5}\) \\
5 & 1.419064862 & \(2.69 \times 10^{-6}\) \\
6 & 1.419067415 & \(1.33 \times 10^{-7}\)
\end{tabular}

The \(6^{\text {th }}\)-order Taylor polynomial for \(e^{x}\) centered at \(x=\ln 2\) is
\[
2+2(x-\ln 2)+(x-\ln 2)^{2}+\frac{1}{3}(x \ln 2)^{3}
\]

Copyright \(\times\) c 2015 Pearson Education, Inc.

Evaluating the polynomials at \(x=0.35\) produces the following table:
\begin{tabular}{c|lr}
\(n\) & \(p_{n}(0.35)\left|p_{n}(0.35)-e^{0.35}\right|\) \\
\hline 1 & 1.313705639 & \(1.05 \times 10^{-1}\) \\
2 & 1.431455626 & \(1.24 \times 10^{-2}\) \\
3 & 1.417987101 & \(1.08 \times 10^{-3}\) \\
4 & 1.419142523 & \(7.50 \times 10^{-5}\) \\
5 & 1.419063227 & \(4.32 \times 10^{-6}\) \\
6 & 1.419067762 & \(2.13 \times 10^{-7}\)
\end{tabular}

Comparing the tables shows that using the polynomial centered at \(x=0\) is more accurate for all \(n\). To see why, consider the remainder. Let \(f(x)=e^{x}\). By Theorem 9.2, the magnitude of the remainder when approximating \(f(0.35)\) by the polynomial \(p_{n}\) centered at 0 is:
\[
\begin{array}{rlrl}
\left|R_{n}(0.35)\right|= & \underline{\underline{(n+1)}(c) \mid} & \underline{e c}{ }_{n+1} & - \\
& (n+1)!\quad(0.35) & =(n+1)!(035)
\end{array}
\]
for some \(c\) with \(0<c<0.35\) while the magnitude of the remainder when approximating \(f(0.35)\) by the polynomial \(p_{n}\) centered at \(\ln 2\) is:
\[
\left|R_{n}(0.35)\right|=\frac{\mid f \underline{(n+1)}}{(n+1)!} \underline{(c) \mid}|0.35-\ln 2|^{n+1}=\frac{e \underline{c}}{(n+1)!}(\ln 2-0.35)^{n+1}
\]
for some \(c\) with \(0.35<c<\ln 2\). Because \(\ln 2-0.35 \approx 0.35\), the relative size of the magnitudes of the remainders is determined by \(e^{c}\) in each remainder. Because \(e^{x}\) is an increasing function, the remainder in using the polynomial centered at 0 will be less than the remainder in using the polynomial centered at ln 2 , and the former polynomial will be more accurate.
9.1.92
a. Let \(x\) be a point in the interval on which the derivatives of \(f\) are assumed continuous. Then \(f\) is continuous on \([a, x]\), and the Fundamental Theorem of Calculus implies that because \(f\) is an antiderivative of \(f\), then \(a^{x} f(t) d t=f(x)-f(a)\), or \(f(x)=f(a)+a^{x} f(t) d t\).
b. Using integration by parts with \(u=f(t)\) and \(d v=d t\), note that we may choose any antiderivative of \(d v\); we choose \(t-x=-(x-t)\). Then
\[
\begin{aligned}
& f(x)=f(a)-f(t)(x-t)_{t=a}^{x}+\quad{ }_{a}^{x}(x-t) f(t) d t \\
& =f(a)-f(a)(x-a)+\quad{ }_{a}^{x}(x-t) f \quad(t) d t
\end{aligned}
\]
c. Integrate by parts again, using \(u=f(t), d v=(x-t) d t\), so that \(v=-\quad \frac{(x-t)^{2}}{2}\) :
\[
\begin{aligned}
& f(x)=f(a)+f(a)(x-a)+{ }_{a}^{x}(x-t) f(t) d t \\
& =f(a)+f(a)(x-a)-\frac{(x-t)-z^{2}}{2} f \quad(t)^{x}+\begin{array}{cc}
4 & { }_{a}^{x} \\
a^{(x-t)} & { }^{2} f(t) d t
\end{array} \\
& =f(a)+f(a)(x-a)+\frac{f-(t)}{2}\left(\begin{array}{ll}
x & a)^{2} \\
+\frac{1}{2} & a^{x} \\
(x-t)^{2} f & (t) d t .
\end{array}\right.
\end{aligned}
\]

It is clear that continuing this process will give the desired result, because successive integral of \(x-\) \(t\) give \(-k^{\frac{1}{l}!}(x-t)^{k}\).

Copyright \(\times \mathrm{c} 2015\) Pearson Education, Inc.
d. Lemma: Let \(g\) and \(h\) be continuous functions on the interval \([a, b]\) with \(g(t) \geq 0\). Then there is a number \(c\) in \([a, b]\) with
\[
{ }_{a}^{h}(t) g(t) d t=h(c) \quad{ }_{a}^{b} g(t) d t .
\]

Proof: We note first that if \(g(t)=0\) for all \(t\) in \([a, b]\), then the result is clearly true. We can thus assume that there is some \(t\) in \([a, b]\) for which \(g(t)>0\). Because \(g\) is continuous, there must be an interval about this \(t\) on which \(g\) is strictly positive, so we may assume that
\[
{ }_{a}^{b} g(t) d t>0 .
\]

Because \(h\) is continuous on \([a, b]\), the Extreme Value Theorem shows that \(h\) has an absolute minimum value \(m\) and an absolute maximum value \(M\) on the interval [\(a, b\)]. Thus
\[
m \leq h(t) \leq M
\]
for all \(t\) in \([a, b]\), so
\[
{ }_{a}^{b} m g(t) d t \leq{ }_{a}^{b} h(t) g(t) d t \leq M \quad{ }_{a}^{b} g(t) d t
\]
b
Because \(a g(t) d t>0\), we have
\[
m \leq \underline{a}^{a} \frac{b}{b_{g}} \frac{h(t) g(t) d t}{a(t) d t} \leq M .
\]

Now there are points in \([a, b]\) at which \(h(t) \quad m\) and \(M\), so the Intermediate Value Theorem shows equals that there is a point \(c\) in \([a, b]\) at which
\[
h(c)=\frac{a^{b} h(t) g(t) d t}{a^{b} g(t) d t}
\]
or
\[
=\frac{(n+1)}{n!} \frac{(c)}{n!} \cdot \frac{1}{n+1}(x-a)^{n+1}=\quad f \frac{(n+1)}{(n+1)!} \underline{(c)}(x-a)^{n+1} \text { for some } c \in[a, b]
\]
9.1.93
a. The slope of the tangent line to \(f(x)\) at \(x=a\) is by definition \(f(a)\); by the point-slope form for the equation of a line, we have \(y-f(a)=f(a)(x-a)\), or \(y=f(a)+f(a)(x-a)\).
b. The Taylor polynomial centered at \(a\) is \(p_{1}(x)=f(a)+f(a)(x-a)\), which is the tangent line at \(a\).
9.1.94
a. \(p 2(x)=f(a)+f(a)(x-a)+\quad \underline{f(a)}(x-a)^{2}\), so that \(p(x)=f(a)+f \quad(a)(x-a)\) and \(p(x)=f(a)\).

If \(f\) has a local maximum at \(a\), then \(f(a)=0, f(a) \quad \leq 0\), but then \(p_{2}(a)=0\) and \(p_{2}(a) \leq 0\) by the above, so that \(p_{2}(x)\) also has a local maximum at \(a\).
b. Similarly, if \(f\) has a local minimum at \(a\), then \(f(a)=0, f(a) \geq 0\), but then \(p_{2}(a)=0\) and \(p_{2}(a) \geq 0\) by the above, so that \(p 2(x)\) also has a local minimum at \(a\).
c. Recall that \(f\) has an inflection point at \(a\) if the second derivative of \(f\) changes sign at \(a\). But \(p 2(x)\) is

Copyright ×c 2015 Pearson Education, Inc.
a constant, so p2 does not have an inflection point at \(a\) (or anywhere else).
d. No. For example, let \(f(x)=x^{3}\). Then \(p 2(x)=0\), so that the second-order Taylor polynomial has a local maximum at \(x=0\), but \(f(x)\) does not. It also has a local minimum at \(x=0\), but \(f(x)\) does not.
9.1.95
a. We have
\[
\begin{array}{rlrl}
f(0) & =f^{(4)}(0)=\sin 0=0 & & f(\pi)=f^{(4)}(\pi)=\sin \pi=0 \\
f(0) & =f^{(5)}(0)=\cos 0=1 & & f(\pi)=f^{(5)}(0)=\cos \pi=-1 \\
f & (0) & =-\sin 0=0 & f \\
f & (0) & =-\cos 0=-1 & f(\pi)=-\sin \pi=0 \\
f & & f(\pi)=-\cos \pi=1 .
\end{array}
\]

Thus
\[
\begin{aligned}
& p 5(x)=x-\underline{x}^{3}+\underline{\underline{x}}^{5} \\
& \quad 3!\quad 5! \\
& q 5(x)=-(x-\pi)+\underline{1}_{(x-\pi)^{3}-\underline{1}_{(x-\pi)^{5}}} .
\end{aligned}
\]
\[
3!\quad 5!
\]
b. A plot of the three functions, with \(\sin x\) the black solid line, \(p 5(x)\) the dashed line, and \(q 5(x)\) the dotted line is below.

\(p 5(x)\) and \(\sin x\) are almost indistinguishable on \([-\pi / 2, \pi / 2]\), after which \(p 5(x)\) diverges pretty quickly from \(\sin x . q 5(x)\) is reasonably close to \(\sin x\) over the entire range, but the two are almost indistinguishable on \([\pi / 2,3 \pi / 2]\). \(p 5(x)\) is a better approximation than \(q 5(x)\) on about \([-\pi, \pi / 2)\), while \(q 5(x)\) is better on about \((\pi / 2,2 \pi]\).
c. Evaluating the errors gives
\begin{tabular}{|c|c|c|}
\hline\(-\frac{x}{x}\) & \(|\sin x-p 5(x)|\) & \(|\sin x-q 5(x)|\) \\
\hline\(-\frac{\pi}{4}\) & \(3.6 \times 10^{-5}\) & \(7.4 \times 10^{-2}\) \\
\hline\(\frac{\pi}{2}\) & \(4.5 \times 10^{-3}\) & \(4.5 \times 10^{-3}\) \\
\hline\(\frac{3 \pi}{2}\) & \(7.4 \times 10^{-2}\) & \(3.6 \times 10^{-5}\) \\
\hline\(\frac{5 \pi}{4}\) & 2.3 & \(3.6 \times 10^{-5}\) \\
\hline\(\frac{7 \pi}{4}\) & 20.4 & \(7.4 \times 10^{-2}\) \\
\hline
\end{tabular}
d. \(p 5(x)\) is a better approximation than \(q 5(x)\) only at \(x=\frac{\pi}{4}\), in accordance with part (b). The two are equal at \(x=2 \frac{\pi}{}\), after which \(q 5(x)\) is a substantially better approximation than \(p 5(x)\).
9.1.96
a. We have
\[
\begin{array}{ll}
f(1)=\ln 1=0 & f(e)=\ln e=1 \\
f(1)=1 & f(e)=\frac{1}{3} \\
f(1)=-1 & f(e)=-\frac{1}{e^{2}} \\
f(1)=2 & f(e)=\frac{2}{2}
\end{array}
\]

Thus
\[
\begin{aligned}
& p 3(x)=(x-1)-\frac{1}{(x-1)^{2}+\underline{2}}(x 1)^{3}=(x-1)-\underline{1}(x-1)^{2}+{ }^{\underline{1}}(x 1)^{3} \\
& \begin{array}{llllllll}
1 & 2! & \underline{1} & 3!2 & & 1 & 3 & 2
\end{array} \\
& q 3(x)=1+e(x-e)^{-} 2 e^{2}(x-e)+3 e^{3}\left(\begin{array}{ll}
x & e
\end{array}\right) .
\end{aligned}
\]
b. A plot of the three functions, with \(\ln x\) the black solid line, \(p 3(x)\) the dashed line, and \(q 3(x)\) the dotted line is below.

c. Evaluating the errors gives
\begin{tabular}{c|c|c|}
\hline\(x\) & \(|\ln x-p 3(x)|\) & \(|\ln x-q 3(x)|\) \\
\hline 0.5 & \(2.6 \times 10^{-2}\) & \(3.6 \times 10^{-1}\) \\
\hline 1.0 & 0 & \(8.4 \times 10^{-2}\) \\
\hline 1.5 & \(1.1 \times 10^{-2}\) & \(1.6 \times 10^{-2}\) \\
\hline 2.0 & \(1.4 \times 10^{-1}\) & \(1.5 \times 10^{-3}\) \\
\hline 2.5 & \(5.8 \times 10^{-1}\) & \(1.1 \times 10^{-5}\) \\
\hline 3.0 & 1.6 & \(2.7 \times 10^{-5}\) \\
\hline 3.5 & 3.3 & \(1.4 \times 10^{-3}\) \\
\hline
\end{tabular}
d. \(p 3(x)\) is a better approximation than \(q 3(x)\) for \(x=0.5,1.0\), and 1.5 , and \(q 3(x)\) is a better approximation for the other points. To see why this is true, note that on \([0.5,4]\) that \(f^{(4)}(x)=-\)
magnitude by \(\frac{6}{0.5^{4}}=96\), so that (using \(P_{3}\) for the error term for \(p_{3}\) and \(Q_{3}\) as the error term for \(q_{3}\))
\[
P_{3}(x) \leq 96 \cdot-|\underline{x-} 4=4| x-\left.1\right|^{4}, \quad Q 3(x) \leq 96 \cdot|x-e|_{4}=4|x-e|^{4}
\]

1] 4! 4!

Copyright \(\times \mathrm{c} 2015\) Pearson Education, Inc.

Thus the relative sizes of \(P_{3}(x)\) and \(Q_{3}(x)\) are governed by the distance of \(x\) from 1 and \(e\). Looking at the diffierent possibilities for \(x\) reveals why the results in part (c) hold.
9.1 .97
a. We have
\[
\begin{array}{ll}
f(36)=\begin{array}{l}
\sqrt{ } \\
36=6
\end{array} & f(49)= \\
f(36)=\frac{\sqrt{ }}{}-\frac{1}{2} \quad \frac{1}{36}=\frac{1}{12} & f(49)=\frac{1}{2} \quad-\frac{1}{-2}=\frac{1}{14} .
\end{array}
\]

Thus
\[
p_{1}(x)=6+\frac{1}{12}(x-36) \quad \quad q 1(x)=7+\frac{1}{14}(x-49) .
\]
b. Evaluating the errors gives
\begin{tabular}{|c|c|c|}
\hline & & \(\checkmark\) \\
\hline & \(\underline{x}-p 1(x)\) & \[
V^{-x}-q 1(x)
\] \\
\hline 37 & \(5.7 \times 10^{-4}\) & \(6.0 \times 10^{-2}\) \\
\hline 39 & \(5.0 \times 10^{-3}\) & \(4.1 \times 10^{-2}\) \\
\hline 41 & \(1.4 \times 10^{-2}\) & \(2.5 \times 10^{-2}\) \\
\hline 43 & \(2.6 \times 10^{-2}\) & \(1.4 \times 10^{-2}\) \\
\hline 45 & \(4.2 \times 10^{-2}\) & \(6.1 \times 10^{-3}\) \\
\hline 47 & \(6.1 \times 10^{-2}\) & \(1.5 \times 10^{-3}\) \\
\hline
\end{tabular}
c. \(p_{1}(x)\) is a better approximation than \(q_{1}(x)\) for \(x \leq 41\), and \(q_{1}(x)\) is a better approximation for \(x \geq 43\).

To see why this is true, note that \(f \quad(x)=-\frac{1}{4} \quad x^{-3 / 2}\), so that on \([36,49]\) it is bounded in magnitude by
\(\frac{1}{4} \cdot 36^{-3 / 2}=\frac{1}{864} .\). Thus (using \(P_{1}\) for the error term for \(p_{1}\) and \(Q_{1}\) for the error term for \(q_{1}\))
\[
\begin{gathered}
P_{2}(x) \leq \frac{1}{-|x-36|}=\frac{1}{1}(x 36)^{2}, \quad Q_{1}(x) \frac{1}{2} \quad \underline{|x-49|}=\frac{1}{2}\left(\begin{array}{ll}
x & 49
\end{array}\right)^{2} . \\
864 \quad 2!\quad 1728
\end{gathered}
\]

It follows that the relative sizes of \(P_{1}(x)\) and \(Q_{1}(x)\) are governed by the distance of \(x\) from 36 and 49 .
Looking at the diffierent possibilities for \(x\) reveals why the results in part (b) hold.
9.1.98
a. The quadratic Taylor polynomial for \(\sin x\) centered at \({ }^{\pi}-2\) is
b. Let \(q(x)=a x^{2}+b x+c\). Because \(q(0)=\sin 0=0\), we must have \(c=0\), so that \(q(x)=a x^{2}+b x\). Then the other two conditions give us a pair of linear equation in \(a\) and \(b\) :
\[
\underline{\pi}_{2} a+\frac{\pi}{}_{b=}=
\]
\[
\pi^{2} a+\pi b=0
\]
\[
\begin{aligned}
& p 2(x)=\sin ^{\pi}+\cos \pi \cdot x-\pi \quad-1 \sin ^{\pi} . \quad x-\pi
\end{aligned}
\]
\[
\begin{aligned}
& =12 x 2 \\
& =-1_{x 2}+\frac{\pi}{x+1} \quad \pi^{2} . \\
& 2 \quad 2 \quad 8
\end{aligned}
\]
where the first equation comes from the fact that \(q(\pi / 2)=\sin (\pi / 2)=1\) and the second from the fact that \(q(\pi)=\sin \pi=0\). Solving the linear system of equations gives \(b=4\) and \(a=-4\), so that
\[
q(x)=-\pi 2 x
\]

Copyright \(\times \mathrm{c} 2015\) Pearson Education, Inc.
\(+\pi^{4} x\).
c. A plot of the three function, with \(\sin x\) the black solid line, \(p 2(x)\) the dashed line, and \(q(x)\) the dotted line is below.
d. Evaluating the errors gives

\begin{tabular}{|c|c|c|}
\hline\(x\) & \(|\sin x-p 2(x)|\) & \(|\sin x-q(x)|\) \\
\hline\(\frac{\pi}{4}\) & \(1.6 \times 10^{-2}\) & \(4.3 \times 10^{-2}\) \\
\hline\(-\pi\) & & \\
\hline\(-\overline{2}\) & 0 & 0 \\
\hline\(\frac{3 \pi}{4}\) & \(1.6 \times 10^{-2}\) & \(4.3 \times 10^{-2}\) \\
\hline \multicolumn{4}{c|}{\(\frac{\pi}{4} 18.3 \times\)} & -1 \\
\multicolumn{3}{c|}{0}
\end{tabular}
e. \(q\) is a better approximation than \(p\) at \(x=\pi\), and the two are equal at \(x=\pi 2\). At the other two points, however, \(p_{2}(x)\) is a better approximation than \(q(x)\). Clearly \(q(x)\) will be exact at \(x=0, x=\frac{\pi}{2}\), and \(x=\) \(\pi\), because it was chosen that way. Also clearly \(p 2(x)\) will be exact at \(x=\pi_{2}\) since it is the Taylor polynomial centered at \(\pi\). The fact that \(p 2(x)\) is a better approximation than \(q(x)\) at the two
intermediate points is a result of the way the polynomials were constructed: the goal of \(p_{2}(x)\) was to be as good an approximation as possible near \(x=\frac{\pi}{2}\), while the goal of \(q(x)\) was to match \(\sin x\) at three given points. Overall, it appears that \(q(x)\) does a better job over the full range (the total area between \(q(x)\) and \(\sin x\) is certainly smaller than the total area between \(p 2(x)\) and \(\sin x)\).

\subsection*{9.2 Properties of Power Series}
9.2.1 \(c 0+c 1 x+c 2 x^{2}+c 3 x^{3}\).
9.2.2 \(c_{0}+c_{1}(x-3)+c_{2}(x-3)^{2}+c_{3}(x-3)^{3}\).
9.2.3 Generally the Ratio Test or Root Test is used.
9.2.4 Theorem 9.3 says that on the interior of the interval of convergence, a power series centered at \(a\) converges absolutely, and that the interval of convergence is symmetric about \(a\). So it makes sense to try to find this interval using the Ratio Test, and check the endpoints individually.
9.2.5 The radius of convergence does not change, but the interval of convergence may change at the endpoints.
9.2.6 \(2 R\), because for \(|x|<2 R\) we have \(|x / 2|<R\) so that \(\quad c_{k}(x / 2)^{k}\) converges.

Copyright \(\times \mathrm{c} 2015\) Pearson Education, Inc.
9.2.8 \((-1)^{k} c_{k} x^{k}=c_{k}(-x)^{k}\), so the two series have the same radius of convergence, because \(|-x|=|x|\).
9.2.9 Using the Root Test: \(\lim _{k \rightarrow \infty}{ }^{k} \quad \overline{\left|a_{k}\right|}=\lim _{k \rightarrow \infty}|2 x|=|2 x|\). So the radius of convergence is \(\quad\) I . At
\(x=1 / 2\) the series is 1 which diverges, and at \(x=-1 / 2\) the series is \(\quad(-1)^{k}\) which also diverges. So the interval of convergence is \((-1 / 2,1 / 2)\).

convergence is \(\infty\) and the interval of convergence is \((-\infty, \infty)\).
9.2.11 Using the Root Test, \(\lim \quad{ }_{k \rightarrow \infty}{ }^{k} \overline{\left|a_{k}\right|=} \lim _{k \rightarrow \infty^{k}} \frac{|x-1|}{1 k}=|x-1|\). So the radius of convergence is 1 . At \(x=2\),
we have the harmonic series (which diverges) and at \(x=0\) we have the-alternating harmonic series (which converges). Thus the interval of convergence is \([0,2)\).

convergence is \(\infty\) and the interval of convergence is \((-\infty, \infty)\).

because \(\lim _{k \rightarrow \infty} \frac{k+1}{k}^{k}=e\). Thus, the radius of convergence is 0 , the series only converges at \(x=0\).

Thus, the radius of convergence is 0 , the series only converges at \(x=10\).
9.2.15 Using the Root Test: \(\lim ^{k} \frac{\overline{\left|a_{k}\right|}}{}=\lim \sin (1 / k)|x|=\sin (0)|x|=0\). Thus, the radius of convergence \(\quad k \rightarrow \infty \quad k \rightarrow \infty\)
is \(\infty\) and the interval of convergence is \((-\infty, \infty)\).
9.2.16 Using the Root Test: \(\left.\quad \lim _{k \rightarrow \infty}{ }^{k} \overline{\left|a_{k}\right|=} \lim _{k \rightarrow \infty^{k}}-2\left|\frac{2 x-3 \mid}{\mid / k}=2\right| x-3 \right\rvert\,\). Thus, the radius of convergence is \(1 / 2\).

When \(x=7 / 2\), we have the harmonic series (which diverges), and when \(x=5 / 2\), we have the alternating harmonic series which converges. The interval of convergence is thus [5/2, 7/2).
9.2.17 Using the Root Test: \(\quad \lim k_{k} \overline{\left|a_{k}\right|}=\lim \underline{|x|}=|\underline{x}|\), so the radius of convergence is 3 . At -3 , the series is \((-1)^{k}\), which diverges. At 3 , the series is \(\quad \stackrel{k \rightarrow \infty}{ } \quad 3 \quad{ }^{k \rightarrow \infty}\) which diverges. So the interval of convergence is \((-3,3)\).
9.2.18 Using the Root Test: \(\quad \lim ^{k} \overline{\mid a_{k}}=\lim \underline{|x|}=\underline{|x|}\), so the radius of convergence is 5. At 5, we obtain \(k \rightarrow \infty \quad k \rightarrow \infty \quad 5 \quad 5\)
\((-1)^{k}\) which diverges. At -5 , we have 1 , which also diverges. So the interval of convergence is \((-5,5)\). 9.2.19 Using the Root Test: \(\quad \lim { }^{k} \mid \overline{a_{k} \mid}=\lim \underline{|x|}=0\), so the radius of convergence is infinite and the interval of convergence is \(\left(-\infty, \infty^{k \rightarrow \infty}\right)\).
9.2.20 Using the Ratio Test: lim

so that the radius of convergence is 2 . The interval is \((2,6)\), because at the left endpoint, \(k\) (which diverges) and at the right endpoint, it becomes \((-1) k\) (which diverges).
9.2.21 Using the Ratio Test: lim
\[
\begin{aligned}
& { }_{(k+1))^{2} x^{2+2}}^{-\underline{\underline{c}}-}=\lim \frac{k+1}{} x^{2}=0 \text {, so the radius of convergence is } \\
& { }_{k \rightarrow \infty} \quad(k+1)!\quad k^{2} x^{3} \quad k \rightarrow \infty \quad k^{2}
\end{aligned}
\]
infinite, and the interval of convergence is \((-\infty, \infty)\).
9.2.22 Using the Root Test: \(\lim _{k \rightarrow \infty} \quad \sqrt{m+1}=\lim _{k \rightarrow \infty} k^{1 / k}|x-1|=|x-1|\). The radius of convergence is therefore
1. At both \(x=2\) and \(x=0\) the series diverges by the Divergence Test. The interval of convergence is therefore \((0,2)\).
9.2.23 Using the Ratio Test: lim

Copyright \(\times \mathrm{c} 2015\) Pearson Education, Inc.
849.2. Properties of Power Series

Series84

convergence is 10 . At \(x= \pm 10\), the series is then 1 , which diverges, so the interval of convergence is \((-10,10)\).
 so for \(0<x<2\). The radius of convergence \({ }_{\substack{k-\infty \\ \text { is } \\ k-\infty}}\). \(\mathrm{A}^{k+1} x=2\), the series diverges by the Divergence Test. At \(x=0\), the series diverges as well by the Divergence Test. Thus the interval of convergence is \((0,2)\).
9.2.26 Using the Ratio Test:
\[
\begin{aligned}
& -\lim \left|a_{k+1}\right|=. \frac{(-2)}{(x+3) \ldots---\underline{3}} \\
& { }^{k \rightarrow \infty}\left|a_{k}\right| \quad{ }_{k+1}{ }^{k+2}{ }_{k+1} \quad{ }_{k+1} \quad=\quad|x+3| . \\
& 3 \quad(-2)^{k}(x+3)^{k} \quad 3
\end{aligned}
\]

Thus the series converges when \({ }^{2} 3|x+3| \leq 1\), or \(-{ }^{9} 2<x<-3_{2}\). At \(x=-9_{2}\), the series diverges by the Divergence Test. At \(x=-\frac{3}{}\), the series diverges by the Divergence Test. Thus the interval of convergence is \(-\underline{9}_{2},-\underline{3}_{2}\).

radius of convergence is infinite, and the interval of convergence is \((-\infty, \infty)\).

divergent by the Divergence Test for \(x= \pm 3\), so the interval of convergence is \((-3,3)\).
9.2.29 \(f(3 x)=\frac{-1}{13 x}=\underset{k=n}{\infty} 3{ }^{k} x\). which converges for \(|x|<1 / 3\). and diverges at the endooints.
9.2.30 \(g(x)=1^{x}-x^{3}=\quad{ }_{k=0}^{\infty} x^{k+3}\), which converges for \(|x|<1\) and is divergent at the endpoints.
9.2.31 \(h(x)={ }^{2 x_{3}}=\)
\(\overline{1-x}\) 。
\(\therefore\).n \(2 x^{k+3}\), which converges for \(|x|<1\) and is divergent at the endpoints.
9.2.32 \(f\left(x^{3}\right)=-\perp=\quad x^{3 k}\). By the Root \(\quad \lim { }_{k} \overline{\left|a_{k}\right|}=x^{3}\), so this series also converges for Test,
\(\infty\)
\[
1-x^{3} \quad k=0
\]
\(|x|<1\). It is divergent at the endpoints.
 endpoints.
9.2.34 \(f(-4 x)=\quad \frac{1}{1+4 x}=\quad{ }_{k=0}^{\infty}(-4 x) \quad k \quad{ }_{k=0}^{\infty}(-1) \quad k_{k} k \quad 4 \quad\) which converges for \(|x|<1 / 4\) and is divergent at the endpoints.
\[
\infty \quad \underline{(3 x)^{k}} \quad \infty 3^{k}-\quad k
\]
9.2.35 \(f(3 x)=\ln (1-3 x)=-\quad k=1 \quad k=-\quad k=1 \quad k x\). Using the Ratio Test:
\[
\begin{aligned}
\lim \underline{a}_{k+1} & =\lim \underline{3 k} \\
a_{k \rightarrow \infty} & \quad k \rightarrow \infty k+1 \quad|x|=3|x|
\end{aligned}
\]
so the radius of convergence is \(1 / 3\). The series diverges at \(1 / 3\) (harmonic series), and converges at \(-1 / 3\) (alternating harmonic series).
9.2.36 \(g(x)=x^{3} \ln (1-x)=-\infty \quad \underline{x}^{\underline{x} k+3}\). Using the Ratio Test: \(\lim \underset{a_{k+1}}{ }=\lim _{k} \quad x=x\), so the

Copyright \(\times\) c 2015 Pearson Education, Inc.
\(k \rightarrow \infty \quad a k \quad k \rightarrow \infty k+1\)
radius of convergence is 1 . The series diverges at 1 and converges at -1 .

radius of convergence is 1 , and the series diverges at 1 (harmonic series) but converges at -1 (alternating harmonic series).

the radius of convergence is 1 . The series diverges at 1 (harmonic series) but converges at -1 (alternating harmonic series).

the radius of convergence is 1 . The series diverges at 1 (harmonic series) but converges at -1 (alternating harmonic series).
9.2.40 \(f(-4 x)=\ln (1+4 x)=-\infty \quad \underline{(-4 x){ }^{k}}\). Using the Ratio Test: \(\lim \quad \begin{aligned} & \text { lim } \quad 4 x=4 x \text {, so }\end{aligned}\)
the radius of convergence is \(1 / 4\). The series converges at \(1 / 4\) (alternating harmonic series) but diverges at -1/4 (harmonic series).
9.2.41 The power series for \(f(x)\) is \(\quad_{\infty}^{\infty} \quad(2 x) k\). convergent for \(-1<2 x<1\). so for \(-1 / 2<x<1 / 2\). The power series for \(g(x)=f(x)\) is \(\quad \quad_{k=1}^{\infty} k(2 x)^{k-1} . \jmath=〕 \quad \sum_{k=1}^{\infty} k(2 x)^{k-1}\), also convergent on \(|x|<1 / 2\).
9.2.42 The power series for \(f(x)\) is \(\quad \sum_{k=0}^{\infty} x^{k}\), convergent for \(-1<x<1\), so the power series for \(g(x)=\)
\(\rightarrow \underline{1} f(x)\) is \(\cap \underline{1} \quad k=2 k(k-1) x^{k-2}=2^{1}\)
9.2.43 The power series for \(f(x)\) is \(\quad \infty_{k=0}^{\infty} x^{k}\), convergent for \(\quad-1<x<1\), so the power series for \(g(x)=\)

9.2.45 The power series for \(\mathrm{T}_{\mathrm{T}-\frac{1}{3 x}-}\) is \(\underset{\substack{\text { en }(3 x)}}{\infty} \quad{ }^{k}\), convergent on \(|x|<1 / 3 . \quad\) Because \(g(x)=\ln (1-3 x)=\)
 convergent on \([-1 / 3,1 / 3)\).

cause \(g(x)=2 f(x) d x\), and because \(g(0)=0\), the power series for \(g(x)\) is \(2 \quad{ }_{\infty}^{\infty}(-1)^{k} \frac{1}{2 k+2}-x^{2 k+2}=\)
 \(\mathcal{L}^{\infty}\)
9.2.47 Start with \(g(x)=\quad 1+x \quad\). The power series for \(g(x)\) is \(\quad k=0(-1)^{k} x^{k}\). Because \(f(x)=g\left(x^{2}\right)\), its power series is \({\underset{c}{k=0}}_{\infty}^{k=0}(-1)^{k} x^{2 k}\). The radius of convergence is still 1 , and the series is divergent at both endpoints. The interval of convergence is \((-1,1)\).
\[
\underline{L}^{\infty}
\]
 of convergence is \((-1,1)\).
9. 2.49 Note that \(f(x)=\quad-\underline{3}=\ldots-\). Let \(g(x)=1\). The power series for \(g(x)\) is 1\()(-\), so the \(k_{x}{ }^{k}\)
\(\infty\)

Copyright ×c 2015 Pearson Education, Inc.
the power series for \(g(x)=\ln (1-x)\) is - \(\quad \sum_{k=1}^{\infty} \frac{1}{k} x^{k}\), so the power series for \(f(x)\) is \(\ln 2-\quad \int_{2}^{1} \quad \sum_{k=1}^{\infty} \frac{1 x}{4} \quad=\)
 radius
of convergence is 2 . The series diverges at both endpoints, so its interval of convergence is (\(-2,2\)).
9.2.52 By Example 5, the Taylor series for \(g(x)=\tan ^{-1} x\) is \(\quad \sum_{k=0}^{\infty} \frac{11^{k} 2^{2 k+1}}{2 k+1}\), so that \(f(x)=g\left((2 x)^{2}\right)\) has

of convergence is \((-1 / 2,1 / 2)\).
9.2.53
a. True. This power series is centered at \(x=3\), so its interval of convergence will be symmetric about 3 .
b. True. Use the Root Test.
c. True. Substitute \(x^{2}\) for \(x\) in the series.
d. True. Because the power series is zero on the interval, all its derivatives are as well, which implies (diffierentiating the power series) that all the \(c_{k} \quad\) are zero.
 \(\infty\)
9.2.56 \(1+\quad{ }_{k=1}{ }^{-1} k x^{k}\)
9.2.57 \(\quad{ }_{k=0}^{\infty}(-1)^{k} \frac{1}{k+1} x^{k}\)
9.2.58 \(\sum_{k=0}^{\infty}(-1) \frac{k \times 2 k+1}{(k+1)^{2}}\).
\({ }^{\infty} 259 \quad k=1(-1)^{k \underline{x}_{2 k}^{2 k}}\)
9.2.60 The power series for \(f(a x)\) is \(c_{k}(a x)^{k}\). Then \(\quad c_{k}(a x)^{k}\) converges if and only if \(|a x|<R\) (because \(c_{k} x^{k}\) converges for \(\left.|x|<R\right)\), which happens if and only if \(|x|<\quad \underline{R}\).
\(|a|\)
9.2.61 The power series for \(f(x-a)\) is \(\quad c_{k}(x-a)^{k}\). Then \(\quad c_{k}(x-a)^{k}\) converges if and only if \(|x-a|<R\), which happens if and only if \(a-R<x<a+R\), so the radius of convergence is the same. 9.2.62 Let's first consider where this series converges. By the Root Test, \(\quad \lim { }_{k} \overline{\left|a_{k}\right|}=\lim \left(x^{2}+1\right)^{2}=\) \(\left(x^{2}+1\right)^{2}\), which is always greater than 1 for \(x=0 . \quad\) This series also diverges when \(x=0\), because there we have the divergent series 1. Because this series diverges everywhere, it doesn't represent any function, except perhaps the empty function.
\(\qquad\)
\[
{ }^{\sqrt{x}-2 \text { moisamis }} \quad 1 \quad 1
\]

Test, \(\lim { }^{k}\)
\(|a k|=\left.\right|^{\vee} x-2 \mid\), so the interval of convergence is given by \(\left.\right|^{\vee} x-2 \mid<1\), so \(1<{ }^{\vee} x<3\) and \(\stackrel{k \rightarrow \infty}{1}<x<9\). The series diverges at both endpoints.
 is \(-\underline{1} \ln \left(1-x^{2}\right)\). Using the Ratio Test: \(\quad \lim \quad a_{k+1}=\lim x^{2 k+2}\).
\[
{ }_{2 k}^{2}=\lim _{k} a_{X}
\]
\(k+1=x\), so the radius of

Copyright \(\times\) c 2015 Pearson Education, Inc.
convergence is 1 . The series diverges at both endpoints (it is a multiple of the harmonic series). The interval of convergence is \((-1,1)\).
9.2.65 This is a geometric series with ratio \(e\)
\(k \rightarrow \infty\)
so the power series converges for \(x>0\).

at both endpoints.

9.2.67 This is a geometric series with ratio (\(x\)

Root Test, the series converges for \(x^{2}-1<3\), so that \(-2<x^{2}<4\) or \(-2<x<2\). It diverges at both endpoints.

the endpoints, the interval of convergence is \((0,2]\).
9.2.69 The power series for \(e^{x}\) is \(\quad \infty \quad \underset{k=0}{x_{k}^{k}}\). Substitute \(-x\) for \(x\) to get \(e^{-x}=\quad \underset{k=0}{\infty}(-1)^{k x} . \quad{ }_{k!}^{k} \quad\) The series converges for all \(x\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(x\) & & & \(2 x\) & & \(\infty\) & \((\underline{2 x}){ }^{k}\) & & \(\infty\) & \(\underline{2^{k}}\) & & \(k\) & & & \\
\hline 9.2.70 & Substitute \(2 x\) for \(x\) in the power series for \(e\) & to get & \(e\) & = & \(k=0\) & - \(k\) ! & \(=\) & \(k=0\) & \(k\) ! & \(x\) & & & & The series \\
\hline \multicolumn{15}{|l|}{converges for all \(x\).} \\
\hline \(x\) & & & \(-3 x\) & & \(\infty\) & \((-3 x)\) & & \(\infty\) & & & & \(k 3^{k}\) & \(k\) & \\
\hline 9.2 .71 & Substitute \(-3 x\) for \(x\) in the power series for \(e\) & to get \(e\) & & = & \(k=0\) & \(k\) ! & & \(k=0\) & & & (-1) & \(k!x\) & & The \\
\hline
\end{tabular} series converges for all \(x\).

9.2.73 The power series for \(x^{m} f(x)\) is \(c_{k} x^{k+m}\). The radius of convergence of this power series is determined by the limit
\[
\begin{array}{lcc}
\lim _{k \rightarrow \infty} \underline{c_{k+1}} \underline{x}^{\underline{k+1+m}}=\lim _{k} x^{k+m} & \underline{c_{k+1}} \underline{x}^{\underline{k+1}}, \\
k \rightarrow \infty & c k x^{k}
\end{array}
\]
and the right-hand side is the limit used to determine the radius of convergence for the power series for \(f(x)\). Thus the two have the same radius of convergence.
9.2.74
a. \(R_{n}=f(x)-S_{n}(x)=\) \(\sum_{k=n}^{\infty} \quad k \quad\). This is a geometric series with ratio \(x\). Its sum is then \(R_{n}=\) desired.
b. \(R_{n}(x)\) increases without bound as \(x\) approaches 1 , and its absolute value smallest at \(x=0\) (where it is zero). In general, for \(x>0, R_{n}(x)<R_{n}-1(x)\), so the approximations get better the more terms of the series are included.

Copyright ×c 2015 Pearson Education, Inc.
92.2. Properties

c. To minimize \(\left|R_{n}(x)\right|\), set its derivative to zero. Assuming \(n>1\), we have \(R(x)=\quad \frac{n(1-x) x}{(1-x)} \frac{n-1}{-n}-\frac{n}{n}\), which is zero for \(x=0\). There is a minimum at this critical point.

The following is a plot that shows, for each \(x \in\) \((0,1)\), the \(n\) required so that \(R_{n}(x)<10^{-6}\). The
d. closer \(x\) gets to 1 , the more terms are required in order for the estimate given by the power series to be accurate. The number of terms increases rapidly as \(x\) \(\rightarrow 1\).

9.2.75
a. \(f(x) g(x)=c 0 d_{0}+\left(c 0 d_{1}+c 1 d_{0}\right) x+\left(c 0 d_{2}+c 1 d_{1}+c 2 d 0\right) x^{2}+\ldots\)
b. The coefflcient of \(x^{n}\) in \(f(x) g(x)\) is \(\quad i=0 c_{i} d_{n-i}\).
9.2.76 The function \(\stackrel{\downarrow}{ } \quad\) is the derivative of the inverse sine function, and \(\sin (0)=0\), so the power
be written \(x+\quad k=12 \cdot 4 \cdots 2 k \cdot(2 k+1) \quad x_{2 k+1}\).
9.2.77

For both graphs, the diffierence between the true value and the estimate is greatest at the two ends
a. of the range; the diffierence at 0.9 is greater than that at -0.9 .

b. The diffierence between \(f(x)\) and \(S_{n}(x)\) is greatest for \(x=0.9\); at that point, \(f(x)=\) so we want to find \(n\) such that \(S_{n}(x)\) is within 0.01 of 100 . We find that \(S_{111}\)
\[
\frac{1}{(1-0.9)^{2}}=100,
\]
\(S_{112} \approx 99.99084790\), so \(n=112\).

\subsection*{9.3 Taylor Series}
9.3.1 The \(n\)th Taylor Polynomial is the \(n\)th sum of the corresponding Taylor Series.

Copyright \(\times \mathrm{c} 2015\) Pearson Education, Inc.
9.3.2 In order to have a Taylor series centered at \(a\), a function \(f\) must have derivatives of all orders on some interval containing \(a\).
9.3.3 The \(n\) coefflcient is \(\quad \underline{f(a)}\).
th \(\quad{ }_{n!}^{(n)}\)
9.3.4 The interval of convergence is found in the same manner that it is found for a more general power series.
9.3.5 Substitute \(x^{2}\) for \(x\) in the Taylor series. By theorems proved in the previous section about power series, the interval of convergence does not change except perhaps at the endpoints of the interval.
9.3.6 The Taylor series terminates if \(f^{(n)}(0)=0\) for \(n>N\) for some \(N\). For \((1+x)^{p}\), this occurs if and only if \(p\) is an integer \(\geq 0\).
9.3.7 It means that the limit of the remainder term is zero.
9.3.8 The Maclaurin series is \(e^{2 x}=\quad \sum_{k=0}^{\infty} \xlongequal[k!]{(2 x)}\). This is determined by substituting \(2 x\) for \(x\) in the Maclaurin series for \(e^{x}\).
9.3.9
a. Note that \(f(0)=1, f(0)=-1, x^{3}\)
\(f(0)=1\), and \(f(0)=-1\). So the Maclaurin series is \(1-x+x^{2} / 2-\) \(/ 6+\cdots\).
\(k_{x}{ }^{k}\)
b. \(\quad \sum_{k=0}^{\infty}(-1) \quad\).
c. The series converges on \((-\infty, \infty)\), as can be seen from the Ratio Test.
9.3.10
a. Note that \(f(0)=1, f(0)=0, f \quad(0)=-4, f \quad(0)=0, f^{(4)}(0)=16, \ldots\) Thus the Maclaurin series is \(1-2 x^{2}+\underline{2 x}_{3}{ }^{4}-4 x 45^{6}+\cdots\).
\({ }^{\infty} \quad-k\left(2 x^{2 k}\right.\) \(\qquad\)
c. The series converges on \((-\infty, \infty)\), as can be seen from the Ratio Test.
9.3.11
a. Because the series for \(\quad \frac{1}{1+x}\) is \(1-x+x^{2}-x^{3}+\cdots\), the series for \(\frac{1}{1+x^{2}}\) is \(1-x^{2}+x^{4}-x^{6}+\cdots\).
b. \(\quad{ }_{k=0}^{\infty}(-1)^{k} x^{2 k}\).
c. The absolute value of the ratio of consecutive terms is \(x^{2}\), so by the Ratio Test, the radius of convergence is 1 . The series diverges at the endpoints by the Divergence Test, so the interval of convergence is \((-1,1)\).
9.3.12
\(\begin{array}{ll}\text { a. Note that } f(0)=0, & f(0)=4, f \\ -\underline{x}_{2}+\frac{128 x^{3}}{6}-\underline{1536 x}^{4} & (0)=-16, f \quad(0)=128 \text {, and } f \quad(0)=-1526 . \quad \text { Thus, the series is }\end{array}\)
b. \(\quad{ }_{k=1}^{\infty}(-1)^{k+1} \frac{(k-1)!(4 x)^{k}}{k!}={ }_{k=1}^{\infty}(-1)^{k+1} \frac{(4 x)}{k}\).
\(4 \quad \underline{x} \mid \underline{k}\)
c. The absolute value of the ratio of consecutive terms is \(k+1 \quad\), which has limit \(4|x|\) as \(k \rightarrow \infty\), so the interval of convergence is \((-1 / 4,1 / 4]\). Note that for \(x=1 / 4\) we have the alternating harmonic series, while for \(x=-1 / 4\) we have negative 1 times the harmonic series, which diverges.

Copyright \(\times \mathrm{c} 2015\) Pearson Education, Inc.```

