Solution Manual for Calculus and Its Applications 11th Edition by Bittinger Ellenbogen Surgent ISBN 03219793979780321979391

Full link download Test Bank:

https://testbankpack.com/p/test-bank-for-calculus-and-its-applications-11th-edition-by-bittinger-ellenbogen-surgent-isbn-0321979397-9780321979391/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-calculus-and-its-applications-11th-edition-by-bittinger-ellenbogen-surgent-isbn-0321979397-9780321979391/

Chapter 2

Applications of Differentiation

Exercise Set 2.1

1. $f x x^{2} 6 x 3$

First, find the critical points.
$f^{\prime} x 2 x 6$
$f^{\prime} x$ exists for all real numbers. We
solve $f^{\prime} x 0$
$2 x 60$
2×6
$x 3$

The only critical value is 3 . We use 3 to divide the real number line into two intervals,

$$
\text { A: , } 3 \text { and B:3,. }
$$

We use a test value in each interval to determine the sign of the derivative in each interval.
A: Test 4,f'424620
B: Test $0, \quad f^{\prime} 020660$
We see that $f x$ is decreasing on, 3 and
increasing on 3 , , and the change from
decreasing to increasing indicates that a relative minimum occurs at $x 3$. We substitute into the original equation to find $f 3$:
2. $f x x^{2} 4 x 5 f^{\prime} x 2 x$
$f^{\prime} x$ exists for all real numbers. Solve $f^{\prime} x$ 0
2×40
2×4
$x 2$
The only critical value is 2 . We use 2 to divide the real number line into two intervals,
A: , 2 and B: 2, .
A: Test $3, f^{\prime} 323420$

B: Test $0 f^{\prime} 020440$
We see that $f x$ is decreasing on, 2
and increasing on 2 , , there is a relative minimum at $x 2$.
$f 22^{2} 4251$
Thus, there is a relative minimum at 2,1 . We
sketch the graph.

x	$f x$
5	10
4	5
3	2
2	1
1	2
0	5
1	10

Thus, there is a relative minimum at 3,12 . We use the information obtained to sketch the graph. Other function values are listed below.
3. $f x 23 x 2 x^{2}$
$f^{\prime} x 34 x$
$f^{\prime} x$ exists for all real numbers. We solve $f^{\prime} x 0$
34×0

$$
{ }_{x}{ }^{3} 4
$$

The solution is continued on the next page.

The only critical value is ${ }^{3}$. We use ${ }^{3}$ to 4
divide the real number line into two intervals, A: $\underline{\underline{3}}^{\text {and B: }}{ }^{\underline{3}}$.

$$
4
$$

We use a test value in each interval to determine the sign of the derivative in each interval.
A: Test $1, f^{\prime} 134110$
B: Test $0, \quad f^{\prime} 034030$
We see that $f x$ is increasing on, ${ }^{-}$
4
and decreasing on

${ }^{3}$, and the change_4

from increasing to decreasing indicates that a
relative maximum occurs at $x \quad \frac{3}{4}$. We substitute into the original equation to find
f^{3} :
4

$$
\begin{array}{cccc}
f^{\underline{3}} 23 & \underline{3}_{2} & \underline{3}^{2} & -\underline{25} \\
4 & 4 & 4 & 8
\end{array}
$$

Thus, there is a relative maximum at $-3,25$.

Chapter 2: Applications of Differentiation

$f^{\prime} x$ exists for all real numbers.
Solve $f^{\prime} x 0$
$12 x 0$
2×1
$\begin{array}{ll}x & 1 \\ 2\end{array}$
The only critical value is $\underline{1}$. We use $\quad-$ to 2 2
divide the real number line into two
intervals, 11
2
A: Test $1, f^{\prime} 112110$

B: Test $0, f$ f 012010
We see that $f x$ is increasing on, $\underline{1}$
and decreasing on $\quad 1$, which indicates
2
there is a relative maximum at $x \quad \dot{-}$
2

	1	$\underline{1}$	$\underline{1}^{2}$	$\underline{21}$
f	25	2	2	4

121
Thus, there is a relative maximum att $2,2,4$.
We sketch the graph.

We use the information obtained to sketch the graph. Other function values are listed below.

x	$f x$
3	7
2	0
1	3
$4 \underline{3}$	$\frac{25}{8}$
0	2
1	3
2	12

Exercise Set 2.1
The only critical value is 2 . We use 2 to
divide the real number line into two intervals, A: , 2 and $\mathrm{B}: 2$, .

We use a test value in each interval to determine the sign of the derivative in each interval.
A: Test $3, F^{\prime} 33210$

B: Test $0, \quad F^{\prime} 00220$

We see that $F x$ is decreasing on, 2 and increasing on 2 , and the change from decreasing to increasing indicates that a relative minimum occurs at $x 2$. We substitute into the original equation to find $F 2$:

$$
F 20.52^{2} 221113
$$

Thus, there is a relative minimum at 2,13 . We use the information obtained to sketch the graph. Other function values are listed below.

x	$F \underline{x}$
5	$1 \underline{\frac{1}{5}}$
4	$\underline{23}$
3	$\underline{2}$
2	13
1	25
0	11
1	$\underline{2}$

x	$f x$
3	1
2	3
1	5
$\frac{1}{2}$	$\frac{21}{4}$
0	5
1	3
2	1

5. $F x 0.5 x^{2} 2 \times 11$

First, find the critical points.
$F^{\prime} x \times 2$
$F^{\prime} x$ exists for all real numbers. We solve:
$F^{\prime} x 0$
$\times 20$
$\times 2$
The solution is continued on the next page

We see that $g^{\prime} x$ is decreasing on, 1
and increasing on 1 , , which indicates there is a relative minimum at $x 1$.
$g 116131^{2} \quad 2$
Thus, there is a relative minimum at 1,2 . We sketch the graph.

x	$g x$
4	25
3	10
2	- 1
1	- ${ }^{2}$
0	- 1
1	- 10
2	25

7. $g x x^{3} \frac{1}{4} x^{2} 2 x 5$ 2
First, find the critical points.

$$
g^{\prime} x \quad 3 x^{2} \quad x \quad 2
$$

$g^{\prime} x$ exists for all real numbers. We solve

$$
g^{\prime} x \quad 0
$$

$$
3 x^{2} \times 20
$$

$3 \times 2 \times 10$

$$
\begin{array}{rlrr}
3 x & 20 & \text { or } & x 10 \\
x \frac{2}{3} & \text { or } & x 1
\end{array}
$$

The critical values are 1 and $\underline{2} 3$. We use them
to divide the real number line into three intervals,
$\mathrm{A}:, 1, \mathrm{~B}: 1, \stackrel{2}{\underline{2}}$, and $\mathrm{C}: \underline{2}$,
6. $g \times 16 \times 3 x^{2}$
g'x $66 x$
$g^{\prime} x$ exists for all real numbers.
Solve g ' $x 0$
$66 x 0$
$x 1$
The only critical value is 1 . We use 1 to divide the real number line into two intervals,
A: , 1 and B: 1,:
A: Test 2, g' 266260
B: Test $0, \quad g{ }^{\prime} 066060$

We use a test value in each interval to determine the sign of the derivative in each interval.

The solution is continued on the next page.

A: Test 2,

$$
g^{\prime} 232^{2} 2280
$$

B: Test 0 ,
g'03020220
C: Test 1 ,

$$
g^{\prime} 131^{2} 1220
$$

We see that $g x$ is increasing on, 1 ,

$$
\underline{2}
$$

decreasing on 1, , and increasing on 3
$\underline{2}$
3, So there is a relative maximum at
$x 1$ and a relative minimum at x. 3 We find $g 1$:

$$
\begin{array}{r}
3 \underline{1} 2 \\
g 1121215 \\
1 \frac{1}{2} 25 \frac{13}{2}
\end{array}
$$

Then we find $g \stackrel{2}{3}$:

2793
27
There is a relative maximum at $1, \underline{13}$,
and 2
there is a relative minimum at $\stackrel{2}{2}_{3}, \frac{113}{27}$.

Chapter 2: Applications of Differentiation
$G^{\prime} x$ exists for all real numbers. We solve $G^{\prime} x 0$
$3 x^{2} 2 x 10$
$3 \times 1 \times 10$
$\begin{array}{rrr}3 x 10 & \text { or } & x 10 \\ 3 x 1 & \text { or } & x 1\end{array}$ $x \quad \frac{1}{3} \quad$ or $\quad x 1$ 1

The critical values are 3 and 1 . We use them
to divide the real number line into three intervals,

A: , $\underline{1}^{-1},{ }^{\underline{1}}, 1$, and C: $1,$.
3
3

A: Test 1,
$G^{\prime} 131$
21140

B: Test 0 ,
$G^{\prime} 030^{2} 20110$

C: Test 2 ,
$G^{\prime} 232^{2} 22170$

We see that $G x$ is increasing on,$\underline{1}$,
decreasing on $\quad \underline{1}$, and increasing on

3
1 ,. So there is a relative maximum at
$x \quad 1$ and a relative minimum at $x 1$.
3
$1 \quad \underline{1}^{3} \quad \underline{1}^{2} \quad \underline{1} \quad \underline{59}$

G 3
33
3
$G 11^{3} \quad 1^{2} 121$

There is a relative maximum at $1, \frac{59}{3}$, and
there is a relative minimum at 1,1 .

We use the information obtained to sketch the graph. Other function values are listed below.

x	$G x$
2	8
1	1
0	2
2	4
3	17

8. $G x x^{3} x^{2} \times 2$
$G^{\prime} x 3 x^{2} 2 x 1$

Exercise Set 2.1
9. $f x x^{3} 3 x^{2}$

First, find the critical points.
$f^{\prime} x 3 x^{2} 6 x$
$f^{\prime} x$ exists for all real numbers. We solve $f^{\prime} x 0$

$$
3 x^{2} 6 x 0
$$

$3 x \times 20$

$$
x 0 \quad \text { or } \quad x 2
$$

The critical values are 0 and 2 . We use them to divide the real number line into three intervals, A: , 0, B: 0, 2, and C:2, .

We use a test value in each interval to determine the sign of the derivative in each interval.
A: Test $1, f^{\prime} 131^{2} 6190$
B: Test $1, f^{\prime} 131^{2} 6130$
C: Test 3, f'333 $\quad 6390$
We see that $\quad f x$ is increasing on, 0 ,
decreasing on 0,2 , and increasing on 2 , . So there is a relative maximum at $x 0$ and a relative minimum at $x 2$.

We find $f 0$:
$f 00 \quad 30 \quad 0$.
$f 22^{3} 32^{2} 4$.
There is a relative maximum at 0,0 , and there is a relative minimum at 2,4 . We use the information obtained to sketch the graph. Other function values are listed below.
10. $f x x^{3} 3 x 6 f$
$f^{\prime} x$ exists for all real numbers. We solve $f^{\prime} x 0$
$3 x^{2} 30$
$3 x^{2} 3$
2
x 1
$x 1$

The critical values are 1 and 1 . We use them to divide the real number line into three intervals,
A: , 1, B: 1,1, and C:1, .
A: Test $3, f^{\prime} 333^{2} 3240$
B: Test $0 f^{\prime} 030^{2} 330$

C: Test $2 f^{\prime} 232^{2} 390$
We see that $\quad f x$ is increasing on, 1 ,
decreasing on 1,1 , and increasing on 1 ,
So there is a relative maximum at $x 1$ and a relative minimum at $x 1$.
$f 11^{3} 3161368$
$f 11^{3} \quad 3161364$
There is a relative maximum at 1,8 , and there is a relative minimum at 1,4 . We use the information obtained to sketch the graph.
Other function values are listed below.

x	$f x$
3	12
2	4
0	6
2	8
3	24

x	$f x$
2	20
1	4
1	2
3	0
4	16

11. $f x x^{3} 3 x$

First, find the critical points.
$f^{\prime} x 3 x^{2} 3$
$f^{\prime} x$ exists for all real numbers. We solve $f^{\prime} x 0$
$3 x^{2} 30$
$x^{2} 1$
There are no real solutions to this equation. Therefore, the function does not have any critical values.
We test a point
f'030 330
We see that $\quad f x$ is increasing on , , and
that there are no relative extrema. We use the information obtained to sketch the graph. Other function values are listed below.

x	$f x$
2	14
1	4
0	0
1	4
2	14

12. $f x 3 x^{2} 2 x^{3}$
$f^{\prime} x 6 x 6 x^{2}$
$f^{\prime} x$ exists for all real numbers. We solve f ' $x 0$
$6 x 6 x^{2} 0$
$6 \times 1 \times 0$

$6 x$	0	or	$x 10$	
x	0	or	x	1

We know the critical values are 1 and 0 . We use them to divide the real number line into three intervals,
A: , 1, B: 1,0 , and C: 0 .

A: Test 2,

We see that $f x$ is increasing on , 1 ,
decreasing on 1,0 , and increasing on 0, So there is a relative maximum at $x 1$ and a relative minimum at $x 0$.
$f 131^{2} \quad 21^{3} 1$
$f 030^{2} \quad 20^{3} 0$
There is a relative maximum at 1,1 , and there is a relative minimum at 0,0 . We use the information obtained to sketch the graph.
Other function values are listed below.

x	$f x$
3	27
2	4
$\frac{1}{2}$	1
2	28

13. $F x 1 x^{3}$

First, find the critical points.
$F^{\prime} x 3 x^{2}$
$F^{\prime} x$ exists for all real numbers. We solve $F^{\prime} x 0$
$3 x^{2} 0$
$x 0$
The only critical value is 0 . We use 0 to divide the real number line into two intervals, $\mathrm{A}:, 0$, and $\mathrm{B}: 0$,

0

B: Test

We use a test value in each interval to determine the sign of the derivative in each interval.
A: Test $1, F^{\prime} 131^{2} 30$
B: Test 1, F'131 30
$f^{\frac{1}{-}} \quad 66^{\underline{1}} \quad 6^{-\frac{1}{2}} \quad 0$

2	2	2	2

C: Test 1 ,

$$
f^{\prime} 16161^{2} \quad 120
$$

We see that $F x$ is decreasing on, 0 and decreasing on 0 , , so the function has no relative extema. We use the information obtained to sketch the graph on the next page.

Exercise Set 2.1
Using the information from the previous page and deteriming other function values are listed below, we sketch the graph.

x	$F x$
2	9
1	2
0	1
1	0
2	7

14. $g x 2 x^{3} 16$

First, find the critical points.
$g^{\prime} x 6 x^{2}$
$g^{\prime} x$ exists for all real numbers. We solve g ' $x 0$

$$
\begin{array}{rr}
6 x^{2} & 0 \\
x & 0
\end{array}
$$

The only critical value is 0 . We use 0 to
divide the real number line into two intervals, A: , 0 , and B: 0 ,

A: Test $1, g^{\prime} 161^{2} 60$

B: Test $1, \quad$ g' $161^{2} 60$
We see that $g x$ is increasing on, 0 and increasing on 0 , , so the function has no relative extema. We use the information obtained to sketch the graph. Other function values are listed below.

x	$g x$
2	32
1	18
0	16
1	14
2	0
3	38

$G x x^{3} 6 x^{2} 10$
15. First, find the critical points.
$G^{\prime} x 3 x^{2} 12 x$
$G^{\prime} x$ exists for all real numbers. We solve G ' $x 0$
$x^{2} 4 x$ 0Dividing by 3
$x \times 40$

The critical values are 0 and 4 . We use them to divide the real number line into three intervals, A: , $0, \mathrm{~B}: 0,4$, and $\mathrm{C}: 4$,

We use a test value in each interval to determine the sign of the derivative in each interval.
A: Test $1, G^{\prime} 131^{2} 121150$
B: Test $1, G^{\prime} 131^{2} 12190$
2
C: Test 5, G'5 35125150

We see that $G x$ is increasing on, 0 , decreasing on 0,4 , and increasing on 4 , So there is a relative maximum at $x 0$ and a relative minimum at $x 4$.
We find $G 0$:

$G 00$	60	10
10		

Then we find $G 4$:

$$
G 4 \quad 4^{3} 64^{2} 10
$$

649610
22
There is a relative maximum at 0,10 , and there is a relative minimum at 4,22 . We use the information obtained to sketch the graph. Other function values are listed below.

x	$G x$
2	22
1	3
1	5
2	6
3	17

| x | 0 | or | $x 40$ |
| ---: | ---: | ---: | ---: | ---: |
| x | 0 | or | $x 4$ |

16. $f x 129 x 3 x^{2} x^{3}$
$f^{\prime} \times 96 \times 3 x^{2}$
$f^{\prime} x$ exists for all real numbers. Solve

$$
\begin{gathered}
f^{\prime} x 0 \\
96 \times 3 x^{2} 0
\end{gathered}
$$

$$
x^{2} 2 x 30 \quad \text { Dividing by } 3
$$

$x 3 x 10$
$x 30$
or
$x 10$
$x 3$ or
$x 1$

The critical values are 3 and 1 . We use them to divide the real number line into three intervals, A: , 3, B: 3,1, and C:1, .

We use a test value in each interval to determine the sign of the derivative in each interval.
A: Test 4,
$f^{\prime} 496434^{2} 150$
B: Test 0 ,
$f^{\prime} 096030^{2} 90$
C: Test 2,
$f^{\prime} 296232^{2} 150$
We see that $\quad f x$ is decreasing on , 3,
increasing on 3,1 , and decreasing on 1, .

So there is a relative minimum at $x 3$ and a
relative maximum at $x 1$.
f3 $129333^{2} 3^{3} 15$
$f 1129131^{2} 1^{3} 17$

There is a relative minimum at 3,15 , and there is a relative maximum at 1,17 . We use the information obtained to sketch the graph.

Other function values are listed below.

Chapter 2: Applications of Differentiation

17. $g x x^{3} x^{4}$

First, find the critical points.

$$
\begin{aligned}
& g^{\prime} x \quad 3 x^{2} 4 x^{3} \\
& g^{\prime} x \text { exists for all real numbers. We } \\
& \text { solve } g^{\prime} x 0 \\
& 23 \\
& 3 x \quad 4 x \quad 0 \\
& 2 \\
& x 34 x 0 \\
& x^{2} 0 \quad \text { or } \quad 34 x 0 \\
& \begin{array}{lllll}
x & 0 & \text { or } & 4 x & 3
\end{array} \\
& \begin{array}{lllll}
x & 0 & \text { or } & x & \frac{3}{4} \\
& & &
\end{array} \\
& 3
\end{aligned}
$$

The critical values are 0 and 4 .
We use the critical values to divide the real number line into three intervals,

$$
\mathrm{A}:, 0, \mathrm{~B}: 0, \underline{3}^{\text {a }} \text {, and } \mathrm{C}: \underline{3},
$$

We use a test value in each interval to determine the sign of the derivative in each interval.
A: Test $1, g$ ' 131
41
70

$$
1 \quad 1 \quad 1^{2} \quad 1^{3}
$$

B: Test 2 , $g^{\prime} 2 \quad 3 \quad 2 \quad 4 \quad 2$

$$
3-4-\frac{1}{-} 0
$$

$$
\begin{array}{lll}
4 & 8 & 4
\end{array}
$$

C: Test $1, \quad g^{\prime} 131^{2} 41^{3} 10$
We see that $g x$ is increasing on, 0 and

${ }_{4}^{\underline{3}},$| $\underline{3}$ |
| :--- |
| 4 |, and is decreasing on ${ }_{4}$

is no relative extrema at $x 0$ but there is a
relative maximum at x
We find g

$$
\begin{array}{cccccccc}
\frac{3}{-} & \underline{3} & 3 & \underline{3} & 4 & \underline{27} & \frac{81}{g} & \frac{27}{2} \\
4 & 4 & 4 & 64 & 256 & 256
\end{array}
$$

The solution is continued on the next page.

Copyright © 2016 Pearson Education, Inc.

Exercise Set 2.1
From the previous page, we determine there is

$$
\underline{3} \quad 27
$$

a relative maximum at , We use the
$4 \quad 256$
information obtained to sketch the graph.
Other function values are listed below.

x	$g x$
2	$\frac{24}{2}$
$\frac{2}{0}$	
0	-
1	1
2	16
1	0
2	8

18. $f x x^{4} 2 x^{3}$
$f^{\prime} x 4 x^{3} 6 x^{2}$
$f^{\prime} x$ exists for all real numbers.
Solve $f^{\prime} x 0$
$4 x^{3} 6 x^{2} 0$
$2 x^{2} 2 \times 30$
$x^{2} 0 \quad$ or 2×30
3
$x \quad 0 \quad$ or $\quad x_{2}$

The critical values are 0 and $\underline{3}_{2}$. We use them to
divide the real number line into three intervals, A: , 0, B: $0, \underline{3}$, and C: ${ }^{3}$,

$2 \quad 2$

A: Test $1, f^{\prime} 141^{3} \quad 61^{2} 100$

B: Test $1, \quad f^{\prime} 141^{3} 61^{2} 20$

C: Test 2, $\quad f^{\prime} 2 \quad 42^{3} 62^{2} 8 \quad 0$

Since $f x$ is decreasing on both, 0 and
$0,-^{3}$
2 , and increasing on 2 , there is no
relative extrema at $x 0$ but there is a relative minimum at x

$$
\dot{\dot{2}}
$$

$$
f^{\underline{3}} \quad \underline{3}^{4} \quad 2^{3}
$$

2
2

There is a relative minimum at $\underline{3}, \underline{27}$
216

Copyright © 2016 Pearson Education, Inc.

20. $F x \quad \overline{-}^{1} x^{3} 3 x^{2} 9 x 2$

$$
F^{\prime} x x^{2} 6 x 9
$$

$F^{\prime} x$ exists for all real numbers.
Solve $F^{\prime} x 0$
$x^{2} 6 x 90$

$$
x^{2} 6 x 90
$$

$x 3$

$$
0
$$

$$
x 30
$$

$$
x 3
$$

The only critical value is 3 . We divide the real number line into two intervals, A: , 3 and B: 3, .

We use a test value in each interval to determine the sign of the derivative in each interval.

A: Test $0, F^{\prime} 00^{2} 60990$

B: Test $4, F^{\prime} 44^{2} 64910$
We see that $F x$ is decreasing on both ,3
and 3 , Therefore, there are no relative extrmea.

We use the information obtained to sketch the graph. Other function values are listed below.

x	$F x$
3	65
2	$\frac{104}{3}$
1	$\frac{43}{3}$
0	2
1	$\frac{13}{}$
2	$\frac{320}{3}$
3	7

Chapter 2: Applications of Differentiation
21. $f x 3 x^{4} 15 x^{2} 12$

First, find the critical points.
$f^{\prime} x 12 x^{3} 30 x$
$f^{\prime} x$ exists for all real numbers. We solve f ' $x 0$
$12 x^{3} 30 \times 0$
$6 x 2 x^{2} 50$

$6 x$	0			or	
		$2 x$	50		
x	0	or		x^{2}	5 2
x	0	or		x	$\frac{10}{}$

The critical values are $0, \frac{\square}{2}$ and $\frac{15}{2}$. We
use them to divide the real number line into four intervals,
$\mathrm{A}:, 2 \begin{aligned} & \sqrt{\frac{10}{10}} \\ & , \mathrm{~B}: \\ & 2,0,\end{aligned}$
$\mathrm{C}: 0, \frac{\sqrt{10}}{}$, and $\mathrm{D}: \frac{\sqrt{ }}{10}$,
$2 \quad 2$

We use a test value in each interval to determine the sign of the derivative in each interval.
A: Test 2,

$$
f^{\prime} 2122^{3} 302360
$$

B: Test 1,

$$
f^{\prime} 1121^{3} 301180
$$

C: Test 1 ,
$f^{\prime} 1121^{3} 301180$
D: Test 2 ,

$$
f^{\prime} 2122^{3} 302360
$$

The solution is continued on the next page.

Copyright © 2016 Pearson Education, Inc.

From the previous page, we see that $f x$ is

$$
\sqrt{10}
$$

decreasing on , 2, increasing on

2
and increasing again on $\sqrt{10}$,. Thus, there 2
is a relative minimum at $\quad x \quad \frac{\sqrt{10}}{2}$, a relative

Then we find $f 0$:
$f 030^{4} 150^{2} 1212$
Then we find $f{ }^{10}$:
2

27.

4
There are relative minima at

$$
\frac{\sqrt[1]{0}}{2}, \quad \frac{27}{4} \text { and }
$$

x	$f x$
3	120
2	0
1	0
1	0
2	0
3	120

22. $g x 2 x^{4} 20 x^{2} 18 g$
' $x 8 x^{3} 40 x$
$g^{\prime} x$ exists for all real numbers. We solve g ' $x 0$
$8 x^{3} 40 \times 0$

2
$8 x x \quad 50$
$8 x \quad 0 \quad$ or $\quad x 50$

$$
\begin{aligned}
& \begin{array}{lllll}
x & 0 & \text { or } & 2 x & 5
\end{array} \\
& \begin{array}{lllll}
x & 0 & \text { or } & x & 5 \sqrt{ }
\end{array}
\end{aligned}
$$

The critical values are $0, \sqrt{ }$ and 5 . We use them to divide the real number line anto four intervals,

C: 0,5 , and D: $5,$.

We use a test value in each interval to determine the sign of the derivative in each interval.
A: Test 3,

$$
g^{\prime} 383^{3} \quad 403960
$$

B: Test 1,
There is a relative maximum at 0,12 .

We use the information obtained above to sketch the graph. Other function values are listed at the top of the next column.

$$
\sigma^{\prime} 1 \times 1^{3} \quad 401320
$$

C: Test 1,
g' $181^{3} 401320$
D: Iest 3 ,

$$
g^{\prime} 383^{3} 403960
$$

The solution is continued on the next page.

Copyright © 2016 Pearson Education, Inc.

228
From the previoius page, we see that $g x$ is decreasing on ,

5 , increasing on $\sqrt{ }$

5,0 , decreasing again on 0,5 , and increasing again on $\sqrt{5}$, Thus, there is a relative minimum at $x \quad \sqrt{ }$, a relative maximum at $x \quad 0$, and another relative minimum at $x \quad \sqrt[5]{\text {. }}$

$$
\begin{aligned}
& g \quad \sqrt{52} \quad 5^{4} 20 \quad \sqrt{5}{ }^{2} 1832 \\
& g 020^{4} 200^{2} \quad 1818
\end{aligned}
$$

There are relative minima at $\sqrt{5}, 32$ and

32 . There is a relative maximum at
0,18 We use the information obtained to sketch the graph. Other function values are listed below.

x	$g x$
4	210
3	0
1	0
1	0
3	0
4	210

$G x^{3} \times 2 \times 2$
First, find the critical points.

$$
\begin{aligned}
& G^{\prime} \times \frac{1}{3} \times 22^{2 / 3} 1 \\
& 3 \times 23
\end{aligned}
$$

$G^{\prime} x$ does not exist when $x 2$. The equation
$G^{\prime} x 0$ has no solution, therefore, the only

Chapter 2: Applications of Differentiation
We use a test value in each interval to determine the sign of the derivative in each interval.
A: Test $3, G^{\prime} 3 \longrightarrow-1$ - $\boldsymbol{1}_{0}$

B: Test $1, G$ ' 1

$$
312^{3} \frac{}{4} \quad 30
$$

We see that $G x$ is increasing on both , 2 and 2 , . Thus, there are no
relative extrema for $G x$.
We use the information obtained to sketch the graph. Other function values are listed below.

x	$G x$
10	2
3	1
2	0
1	1
6	2

24.

$$
F^{\prime} x^{1} \times 1^{2 y} 1
$$

$$
3
$$

$$
\overline{3 \times 1}=\frac{1}{3}
$$

${ }_{3 x} F^{\prime} x$ does not exist when
when $x 1$. The equation $F^{\prime} x 0$ has
no solution, therefore, the only critical value is $x 1$.
We use 1 to divide the real number line into
two intervals,
A: , 1 and B: 1 ,

We use a test value in each interval to determine
the sign of the derivative in each interval.

number line into two
We use 2 to divide the real

A: Test $0, F^{\prime} 0$

B: Test $2, F^{\prime} 2$

$$
\begin{aligned}
& 301^{3}=3 \\
& 0
\end{aligned}
$$

1
$-\quad 1$
0
32133

A: , 2 and B: 2, :

We see that $F x$ is increasing on both ,1
and 1 ,. Thus, there are no relative extrema for
$F x$. We use the information obtained to sketch the graph at the top of the next page.

Copyright © 2016 Pearson Education, Inc.

Using the information from the previous page, we sketch the graph. Other function values are

isted x.	$\underline{F} x$
7	2
0	1
1	0
2	1
9	2

25. $f x x_{3}$

First, find the critical points.

$$
\frac{2}{2}
$$

$f^{\prime} x$ does not exist when
$3 \sqrt[3]{x} 0$, which means that $\quad f^{\prime} x$ does not
exist when $x 0$. The equation $\quad f^{\prime} x 0$ has
no solution, therefore, the only critical value is
$x 0$.
We use 0 to divide the real number line into
two intervals,
A: , 0 and B: 0, :

0
We use a test value in each interval to determine the sign of the derivative in each interval.

We see that
$f x$ is increasing on, 0 and decreasing on 0 , Thus, there is a relative maximum at $x 0$.

We find $f 0$:

x	$f x$
8	3
1	0
1	0
8	3

26. $f x x 3^{3} 5$
$f^{\prime} \times 3^{2} \times 3^{13 /}$

$3 x \quad 3^{3}$
$f^{\prime} x$ does not exist when $x 3$. The equation f ' $x 0$ has no solution, therefore, the only critical value is $x 3$.
We use 3 to divide the real number line into
two intervals, A: , 3 and B: 3,
A: Test $4, f^{\prime} 4 \xrightarrow{2} \underline{2}_{0}$

	$343{ }^{3}$	3
	2	2
B: Test $2, f^{\prime} 2$	$323{ }^{3}$	3

We see that $f x$ is decreasing on, 3 and
increasing on 3 , Thus, there is a relative minimum at $x 3$.
$f 333^{3} 55:$
Therefore, there is a relative minimum at 3,5 . We use the information obtained to sketch the graph. Other function values are listed below.

	$f x$
11	-1
4	4
2	4
5	1

$f 010^{3} 1$.
Therefore, there is a relative maximum at 0,1 . We use the information obtained to sketch the graph. Other function values are listed at the top of the next column.

230
27. $G x$
$\xrightarrow[2]{8} \quad 8 x^{2} 1$
$x \quad 1$
First, find the critical points.

$$
\begin{gathered}
G^{\prime} x 81 x^{2} \\
\frac{16 x}{x^{2} 1^{2}}
\end{gathered}
$$

$G^{\prime} x$ exists for all real numbers. Setting the derivative equal to zero, we have:

$$
G^{\prime} x 0
$$

$$
\frac{16 x}{x^{2} 1^{2}} 0
$$

16×0

$$
x 0
$$

The only critical value is 0 .
We use 0 to divide the real number line into two intervals,

$$
\mathrm{A}:, 0 \text { and } \mathrm{B}: 0,:
$$

0
We use a test value in each interval to determine the sign of the derivative in each interval.

$$
\text { A: Test } 1, G^{\prime} 1 \quad-\frac{161}{-} \begin{aligned}
& 16 \\
& 121^{2} 4
\end{aligned}
$$

B: Test 1, $\quad G^{\prime} 1 \quad{ }_{2} \frac{16}{} 40$

Chapter 2: Applications of Differentiation

28. $F x \frac{5}{x^{2} 1} x^{2} 1$

$$
\begin{aligned}
& F^{\prime} x 51 x^{2} 1 \stackrel{2}{2}_{2 x}^{2} \\
& \frac{10 x}{2}
\end{aligned}
$$

$$
x^{2} 1
$$

$F^{\prime} x$ exists for all real numbers. We solve $F^{\prime} x 0$
$10 x \quad 0$

2

$x^{2} \quad 1$

$$
x 0
$$

The only critical values is 0 .
We use 0 to divide the real number line into two intervals,
A: , 0 and B: 0, :
A: Test 1 ,
$F^{\prime} 1101 \underline{10} \underline{50}$

12142
B: Test 1,

10 5

We see that $G x$ is decreasing on, 0 and
$F^{\prime} 1$
2
increasing on 0 , Thus, a relative minimum
occurs at $x 0$.
We find $G 0$:
$G 0{\underset{-}{-}}_{2}^{-}$
01

Thus, there is a relative minimum at 0,8 .
We use the information obtained to sketch the graph. Other function values are listed at the top of the next column.

11
We see that $F x$ is increasing on, 0 and decreasing on 0 , Thus, a relative maximum occurs at $x 0$
We find $F 0$:
$F 0 \xrightarrow[5]{5}$
021
Thus, there is a relative maximum at 0,5 .

The solution is continued on the next page.

Exercise Set 2.1

We use the information obtained on the previous page to sketch the graph. Other
function values are listed belown

x	$F x$
3	$\frac{1}{2}$
2	1
1	$\frac{5}{2}$
1	$\frac{5}{2}$
2	1
3	$\frac{1}{2}$

29. $g x \quad-\frac{4}{x^{2}} \frac{x}{1}$

First, find the critical points.

$$
\begin{aligned}
& g^{\prime} x \quad \underline{x}^{2} \underline{1}^{\overline{44}} \underline{x} \underline{2} x \\
& \text { Quotient Rule } \\
& { }^{2} x 1^{2} \\
& \underline{4} \underline{x}^{2} \underline{48} x^{-2} \\
& 2 \\
& 2 \times 1 \\
& .44 x^{2} \\
& x^{2} \quad 1^{2}
\end{aligned}
$$

$g^{\prime} x$ exists for all real numbers. We solve g ' $x 0$
$44 x^{2}-$

$$
\begin{array}{cccc}
x_{1}^{2} & 2 & 0 & \\
44 x & 2 & 0 & \text { Multiplying by } x^{2} 1
\end{array}
$$

$x^{2} 10$
4.42^{2}
A: Test $2, g^{\prime} 2$
$\frac{12}{0}$

We see that $g x$ is decreasing on, 1 , increasing on 1,1 , and decreasing again on 1 , So there is a relative minimum at $x 1$ and a relative maximum at $x 1$. We find $g 1$:

11
Then we find $g 1$:

There is a relative minimum at 1,2 , and
there is a relative maximum at 1,2 . We use the
nformation obtained to sketch the graph.
Other fumetion vatues are listȩ̉d below.

x	$g x^{-}$
3	${ }^{-}$
2	5
	8
0	-5
2	8
3	

The critical values are 1 and 1 . We use them to divide the real number line into three intervals,

$$
\mathrm{A}:, 1, \mathrm{~B}: 1,1, \text { and } \mathrm{C}: 1,
$$

30. $g x \quad \frac{x^{2}}{x^{2} 1}$

$$
g^{\prime} x \quad \frac{x^{2}}{} \frac{12 x x^{2} \underline{2} x}{x^{2} 1^{2}}
$$

$$
g^{\prime} x-2 x=2
$$

$$
x^{2} \quad 1
$$

The solution is continued on the next page.

We use a test value in each interval to determine the sign of the derivative in each interval.

People also search:

calculus and its applications 11th edition mymathlab calculus and its applications 11th edition access code calculus and its applications 11th edition pdf free calculus and its applications 11th edition answers calculus and its applications 11th edition pdf download calculus and its applications 11th edition online calculus and its applications bittinger pdf calculus and its applications 11th edition amazon

