Solution Manual for Calculus and Its Applications 14th Edition by Goldstein Lay Schneider Asmar ISBN 01344377729780134437774

Full link download
Test Bank:
https://testbankpack.com/p/test-bank-for-calculus-and-its-applications-14th-edition-by-goldstein-lay-schneider-asmar-isbn-0134437772-9780134437774/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-calculus-and-its-applications-14th-edition-by-goldstein-lay-schneider-asmar-isbn-0134437772-9780134437774/

Chapter 2 Applications of the Derivative

2.1 Describing Graphs of Functions

(a), (e), (f)
(c), (d)
(b), (c), (d)
(a), (e)

Increasing for $x<.5$, relative maximum point at $x=.5$, maximum value $=1$, decreasing for $x>.5$, concave down, y-intercept $(0,0)$, x-intercepts $(0,0)$ and $(1,0)$.
Increasing for $x<-4$, relative maximum point at $x=-.4$, relative maximum value $=5.1$, decreasing for $x>-.4$, concave down for $x<3$, inflection point $(3,3)$, concave up for $>3, y$-intercept $(0,5), x$-intercept $(-3.5,0)$. The graph approaches the x-axis as a horizontal asymptote.

Decreasing for $x<0$, relative minimum point at $x=0$, relative minimum value $=2$, increasing for $0<x<2$, relative maximum point at $x=2$, relative maximum value $=4$, decreasing for $x>2$, concave up for $x<1$, inflection point at $(1,3)$, concave down for $>1, y$-intercept at $(0,2), x$-intercept $(3.6,0)$.
Increasing for $x<-1$, relative maximum at $x=$ -1 , relative maximum value $=5$, decreasing for $-1<x<2.9$, relative minimum at $x=2.9$, relative minimum value $=-2$,
increasing for $x>2.9$, concave down for $x<1$, inflection point at ($1, .5$), concave up for $x>1$, y-intercept $(0,3.3), x$-intercepts $(-2.5,0),(1.3$, $0)$, and $(4.4,0)$.

Decreasing for $x<2$, relative minimum at
$=2$, minimum value $=3$, increasing for
$x>2$, concave up for all x, no inflection point, defined for $x>0$, the line $y=x$ is an asymptote, the y-axis is an asymptote.

Increasing for all x, concave down for $x<3$, inflection point at $(3,3)$, concave up for $x>3$, y-intercept $(0,1)$, x-intercept $(-.5,0)$.

Decreasing for $1 \leq x<3$, relative minimum at $x=3$, relative minimum value $=.9$, increasing for $x>3$,
maximum value $=6$ (at $x=1$), minimum value $=.9($ at $x=3)$, concave up for $1 \leq x<4$, inflection point at $(4,1.5)$, concave down for $x>4$; the line $y=4$ is an asymptote.

Increasing for $x<-1.5$, relative maximum at $x=$ -1.5 , relative maximum value $=3.5$, decreasing for $-1.5<x<2$, relative minimum at $x=2$, relative minimum value $=-1.6$, increasing from $2<x<$ 5.5, relative maximum at $x=5.5$, relative maximum value $=3.4$, decreasing for $x>5.5$, concave down for $x<0$, inflection point at $(0,1)$, concave up for $0<x<4$, inflection point at $(4,1)$, concave down for $x>4, y$-intercept $(0,1), x$-intercepts $(-2.8,0),(.6,0),(3.5,0)$, and $(6.7,0)$.
The slope decreases for all x.
Slope decreases for $x<3$, increases for $x>3$.
Slope decreases for $x<1$, increases for $x>1$. Minimum slope occurs at $x=1$.
Slope decreases for $x<3$, increases for $x>3$.
17. a. C, F
b. $\quad A, B, F$

C
18. a. A, E
b. $\quad D$
19.

E

20.

21.

22.

23.

24.

25.

26.

27.

28. Oxygen content decreases until time a, at which time it reaches a minimum. After a, oxygen content steadily increases. The rate at which oxygen content grows increases until b, and then decreases. Time b is the time when oxygen content is increasing fastest.
29. 1960
30. 1999; 1985
31. The parachutist's speed levels off to $15 \mathrm{ft} / \mathrm{sec}$.
32. Bacteria population stabilizes at $25,000,000$.
33.

34.

37. a. Yes; there is a relative minimum point between the two relative maximum points.
b. Yes; there is an inflection point between the two relative extreme points.
38. No
\square
$\overline{\mathbf{A}}$
$\overline{\mathbf{A}}$

$[0,4]$ by $[-15,15]$
Vertical asymptote: $x=2$
40.

$[0,50]$ by $[-1,6]$
$c=4$
41.

$[-6,6]$ by $[-6,6]$
The line $y=x$ is the asymptote of the first $\underline{1}$
function, $y \quad x x$.

2.2 The First and Second Derivative Rules

(e)
(b), (c), (f)
(a), (b), (d), (e)
(f)
(d)
(c)
7.

\bar{A}
10.
11.

12.
13.

14.
 positive. The function $f(x)$ is decreasing for $2<x \leq 3$ because the values of $f(x)$ are negative. Therefore, $f(x)$ has a relative maximum at $x=2$. Since $f(2)=9$, the coordinates of the relative maximum point are $(2,9)$.

The function $f(x)$ is decreasing for $9 \leq x<10$ because the values of $f(x)$ are negative. The function $f(x)$ is increasing for $10<x \leq 11$ because the values of $f(x)$ are positive. Therefore, $f(x)$ has a relative minimum at $x=10$.
$f(2) 0$, so the graph is concave down.
$f(x) 0$, so the inflection point is at $=6$. Since $f(6)=5$, the coordinates of the inflection point are $(6,5)$.
The x-coordinate where $f(x) 6$ is
$=15$.
a. $f(2)=3$
$t=4$ or $t=6$
$f(t)$ attains its greatest value after 1 minute, at $t=1$. To confirm this, observe that $f(t) 0$ for $0 \leq t<1$ and $f(t) 0$ for $1<t \leq 2$.
$f(t)$ attains its least value after 5 minutes,
at $t=5$. To confirm this, observe that $f(t) 0$ for $4 \leq t<5$ and $f(t) 0$ for $5<$ $t \leq 6$.

Since $f(7.5) 1$, the rate of change is unit per minute.

The solutions to $f(t) 1$ are $t=2.5$
and $t=3.5$, so $f(t)$ is decreasing at the rate of 1 unit per minute after 2.5 minutes and after 3.5 minutes.
The greatest rate of decrease occurs when $f(t)$ is most negative, at $t=3$ (after minutes).

The greatest rate of increase occurs when $f(t$) is most positive, at $t=7$ (after minutes).

The slope is positive because $f(6) 2$.
The slope is negative because $f(4) 1$.
27. The slope is 0 because $f(3) 0$. Also $\quad f(x)$
is positive for x slightly less than 3 , and $f(x)$ is negative for x slightly greater than 3 . Hence $f(x)$ changes from increasing to decreasing at $x=3$.
28. The slope is 0 because $f(5) 0$. Also $\quad f(x)$ is negative for x slightly less than 5 , and $f(x)$ is positive for x slightly greater than 5 . Hence $f(x)$ changes from decreasing to increasing at $x=5$.
$f(x)$ is increasing at $x=0$, so the graph of $f(x)$ is concave up.
$f(x)$ is decreasing at $x=2$, so the graph of $f(x)$ is concave down.

At $x=1, f(x)$ changes from increasing to decreasing, so the slope of the graph of $f(x)$ changes from increasing to decreasing. The concavity of the graph of $f(x)$ changes from concave up to concave down.

At $x=4, f(x)$ changes from decreasing to increasing, so the slope of the graph of $f(x)$ changes from decreasing to increasing. The concavity of the graph of $f(x)$ changes from concave down to concave up.
33. $f(x)=2$, so $m=2$ y $32(x 6)$
y $2 x 9$
34. $f(6.5) f(6) f(6)(.5) 8 \quad \underline{1} \quad$ (2) 9
$\overline{\mathbf{A}}$
(0.25) $f(0) f$
(0)(.25) 3
(1)(.25) 3.25
36. $f(0)=3, f(0) 1 \quad y 31(x 0)$
$x 3$
a. $h(100.5) h(100) h(100)(.5)$ The
change $=h(100.5)-h(100)$
$h(100)(.5) \frac{1}{1} \frac{1}{3} 2 \quad \begin{aligned} & \text { inch. }\end{aligned}$
b. (ii) because the water level is falling.
38. a. $T(10) T(10.75) T(10)(0.75) 4^{-3}$ 4
3 degrees
(ii) because the temperature is falling (assuming cooler is better).

$$
f(x) 4\left(3 x^{2} 1\right)^{3}(6 x) 24 x\left(3 x^{2} 1\right)^{3}
$$

Graph II cannot be the graph of $f(x)$ because $f(x)$ is always positive for $x>0$.

$$
\begin{gathered}
f(x) 3 x^{2} 18 x 243\left(x^{2} 6 x 8\right) \\
3(x 2)(x 4)
\end{gathered}
$$

Graph I cannot be the graph because it does not have horizontal tangents at $x=2$ and $x=4$.
41. $f(x) \frac{5}{\frac{5}{2}}{ }_{2}^{3 / 2} ; f(x) \frac{15}{x}_{4}^{1 / 2}$

Graph I could be the graph of $f(x)$ since (x) 0
for $x>0$.
42. a. (C)
b. (D)
c. (B)
d. (A)
(E)
a. Since $f(65) \approx 2$, there were about 2 million farms.
È $\overline{\mathbf{A}} \quad \overline{\mathbf{A}} \overline{\mathbf{A}} \overline{\mathbf{A}}$
ince $f(65) .03$, the rate of change was -0.03 million farms per year. The number of farms was declining at the rate of about 30,000 farms per year.
È $\overline{\mathbf{A}} \quad \overline{\mathbf{A}} \overline{\mathbf{A}} \overline{\mathbf{A}}$
he solution of $f(t)=6$ is $t \approx 15$, so there were 6 million farms in 1940.
d. The solutions of $f(t) .06$ are $t \approx 20$ and $t \approx 53$, so the number of farms was declining at the rate of 60,000 farms per year in 1945 and in 1978.

The graph of $f(t)$ reaches its minimum at $t \approx 35$. Confirm this by observing that the graph of $y f(t)$ crosses the t-axis at $t \approx 35$. The number of farms was decreasing fastest in 1960.
a. Since $f(5) 0$, the amount is decreasing.

Since $f(5) 0$, the graph of $f(t)$ is concave up.

The graph of $f(t)$ reaches its minimum at $t=4$. Confirm this by observing that the graph of $f(t)$ crosses the t-axis at $t=4$. The level is decreasing fastest at $t=4$ (after 4 hours).

Since $f(t)$ is positive for $0 \leq t<2$ and $f(t)$ is negative for $t>2$, the greatest level of drug in the bloodstream is reached at $t=2$ (after 2 hours).

The solutions of $f(t) 3$ are $t \approx 2.6$ and $t \approx 7$, so the drug level is decreasing at the rate of 3 units per hour after 2.6 hours and after 7 hours.
$f x 3 x^{5} 20 x^{3} 120 x$
y $f(x)$

$$
y=f(x)
$$

$[-4,4]$ by $[-325,325]$
Note that $f(x) 15 x^{4} 60 x^{2} 120$, or use the calculator's ability to graph numerical derivatives.
Relative maximum: $x \approx-2.34$
Relative minimum: $x \approx 2.34$
Inflection point: $x \approx \pm 1.41, x=0$
$f x x^{4} x^{2}$
$y f(x)$

$$
y=f(x)
$$

$[-1.5,1.5]$ by $[-.75,1]$

Note that $f(x) 4 x \quad 2 x$, or use the
calculator's ability to graph numerical derivatives.
Relative maximum: $x=0$
Relative (and absolute) minimum: $x \approx \pm .71$
Inflection points: $x \approx \pm .41$

2.3 The First and Second Derivative
 Tests and Curve Sketching

$f(x) x^{3} 27 x$
$f(x) 3 x^{2} 273\left(x^{2} 9\right) 3(x 3)(x 3)$
$f(x) 0$ if $x 3$ or $x 3$
$f(3) 54, f(3) 54$
Critical points: $(-3,54),(3,-54)$

Critical Points, Intervals	$\boldsymbol{x}<\mathbf{- 3}$	$-\mathbf{3}<\boldsymbol{x}<\mathbf{3}$	$\mathbf{3}<\boldsymbol{x}$		
$x-3$	-	-	+		
$x+3$	-	+	+		
$f(x)$	+	-	+		
$f(x)$	Increasing on Relative minimum maximum at at (3, -54).	Decreasing on 3, 3,3			
relative				\quad	Increasing
:---					
on 3,					

$$
\begin{aligned}
& f(x) x^{3} 6 x^{2} 1 \\
& (x) 3 x^{2} 12 x \quad 3 x(x 4)
\end{aligned}
$$

$f(x) 0$ if $x 0$ or $x 4$
$f(0) 1 ; f(4) 31$
Critical points: $(0,1),(4,-31)$

Critical Points, Intervals	$\boldsymbol{x}<\mathbf{0}$	$\mathbf{0}<\boldsymbol{x}<\mathbf{4}$	$\mathbf{4}<\boldsymbol{x}$
$3 x$	-	+	+
$x-4$	-	-	+
$f(x)$	+	-	+
$f(x)$	Increasing on , 0	Decreasing on 0,4	Increasing on 4,

Relative maximum at $(0,1)$, relative minimum at $(4,-31)$.

$$
\begin{aligned}
& f(x) x^{3} 6 x^{2} 9 x \\
& 1 f(x) 3 x^{2} 12 x 9 \\
& 2
\end{aligned}
$$

$f(x) 0$ if $x 1$ or $x 3$
$f(1) 3, f(3) 1$
Critical points: $(1,-3),(3,1)$

Critical Points, Intervals	$\boldsymbol{x}<\mathbf{1}$	$\mathbf{1}<\boldsymbol{x}<\mathbf{3}$	$\mathbf{3}<\boldsymbol{x}$
$-3(x-1)$	+	-	-
$x-3$	-	-	+
$f(x)$	-	+	-
$f(x)$	Decreasing on ,1	Increasing on 1,3	Decreasing on 3,

Relative maximum at $(3,1)$, relative minimum at $(1,-3)$.
4. $f(x) 6 x^{3-3} x_{2}^{2} 3 x 3$

$$
\begin{gathered}
f(x) 18 x^{2} 3 x 33\left(6 x^{2} x 1\right) \\
3(2 x 1)(3 x 1) \\
f(x) 0 \text { if } x \quad 1 \quad \text { or } x 1
\end{gathered}
$$

$$
f^{1} \overline{2}^{33}, f-\frac{1}{8}{ }^{43} \quad \begin{gathered}
3 \\
3
\end{gathered} \overline{18}
$$

Critical points: 1, _33, 1, 43_ -			
Critical	$x \quad 1$	$\stackrel{8}{x}^{3} \quad 18$	$1 x$
Points, Intervals	$\underline{2}$	$\underline{2}$ - $\underline{3}$	3
2×1	-	$+$	\pm
3×1	$\stackrel{ }{ }$	-	\pm
$f(x)$	+		_+.
	Increasing on	Decreasing on	Increasing
$f(x)$	$\stackrel{1}{4}_{-2}$	11 ,$\quad 23$	$\underline{1}$ on ,$~ 3$

Relative maximum at $\quad \underline{1}^{3}, \underline{43}_{18}$, relative minimum at $\stackrel{1}{-33} \underset{2}{ }$.

$$
f(x) 3^{\frac{1}{1}} x^{3} x^{2} 1
$$

$$
f(x) x^{2} 2 x x(x 2) f
$$

$$
(x) 0 \text { if } x 0 \text { or } x 2
$$

$$
f(0) 1 ; f(2) \quad \underline{1}
$$

3

Critical points: $(0,1), 2,1$			
Critical Points, Intervals	$\boldsymbol{x}<\mathbf{0}$	$\mathbf{0}<\boldsymbol{x}<\mathbf{2}$	$\mathbf{2}<\boldsymbol{x}$
x	-	+	+
$x-2$	-	-	+
$f(x)$	+	-	+
$f(x)$	Increasing on $(, 0)$	Decreasing on $(0,2)$	Increasing on (2),

$f(x) 3^{\frac{4}{x}} x^{3} x 2$

$$
\begin{aligned}
& f(x) 4 x^{2} 1(2 x 1)(2 x 1) \\
& f(x) 0 \text { if } x \frac{1}{\operatorname{or} x} \frac{1}{2}
\end{aligned}
$$

Relative maximum 17 , relative

23
minimum $\frac{1}{2}, \underline{5}$.
7. $f(x) x^{3} 12 x^{2} 2$
$f(x) 3 x^{2} 24 x 3 x(x 8)$
$f(x) 0$ if $x 8$ or $x 0$
$f 8258, f 02$
Critical points: $8,258,0,2$

Critical Points, Intervals	$x 8$	$8 x 0$	$0 x$
$x 8$	-	+	+
$3 x$	+	+	-
$f(x)$	-	+	-
$f(x)$	Decreasing on , 8	Increasing on 8,0 Relative	Decreasing on 0,

Relative maximum at $(0,-2)$, relative minimum at. $(-8,-258)$.

Relative maximum at $(0,1)$, relative minimum
at 2,3 .

Copyright © 2018 Pearson Education Inc.

$$
\begin{aligned}
& f(x) 2 x^{3} 3 x^{2} 3 \\
& (x) 6 x^{2} 6 x \quad 6 x(x 1) \\
& f(x) 0 \text { if } x 1 \text { or } x 0 \\
& f 12, f 0 \quad 3
\end{aligned}
$$

Critical points: $1,2,0,3$

Critical Points, Interats	$x 1$	$1 x$	0	$0 x$
$x 1$				
$6 x$	-	-	+	
$f(x)$	+	+	+	
$f(x)$	Increasing on , 1	Decreasing on 1,0	Increasing on 0,	

Relative maximum at 1,2 , relative minimum at. 0,3 .

$$
\begin{aligned}
& x 2 x^{3} 8 \\
& f x 6 x^{2} \\
& f x 0 \text { if } x 0 \\
& f 08
\end{aligned}
$$

Critical point: 0,8

$f x x^{2}$
10.
$f x 2 x$
$f x 0$ if $x 0$ $f 00$
Critical point: $(0,0)$

$f x^{\underline{1}} x^{2} 2 x 4$
$f x \quad x 1$
$f x \quad 0$ if $x 1$
$f 1 \quad \underline{9}$
2

$f \times 3 x^{2} 12 \times 2$
$f x 6 \times 12$
$f x 0$ if $x 2$
$f 214$
Critical point: $(2,14)$

$$
\begin{aligned}
& f x 16 x x^{2} \\
& f x 62 x
\end{aligned}
$$

$f x 0$ if $x 3$
$f 310$
Critical point: $(3,10)$

14. $f x x_{2}^{1} x_{2}^{2}-\frac{1}{2}$
$f x \quad x$
$f x 0$ if $x \quad 0$
$f 0 \stackrel{1}{-} 2$
Critical point: $0, \underline{1}_{2}$
(continued)

$$
\begin{aligned}
& x 2 x 8 \\
& f x 0 \text { if } x 4 \\
& f 46
\end{aligned}
$$

Critical point: $(-4,6)$

$f x x^{2} 2 x 5 f$
$x 2 \times 2$
$f x 0$ if $x 1$ $f 14$
Critical point: $(1,-4)$

$f_{x} \stackrel{2}{2} x 2$
$f x \quad 0$ if $x 0$ or $x 6$
$f 000,0 \quad$ is a critical pt.
$f 6126,12$ is a critical pt.
$f 00$
Use first derivative test to determine concavity.
$f 6206,12$ is a local min.

fx $x^{3} 12 x f x$
$3 x^{2} \quad 12$
fx $6 x$
$f x 0$ if $x 2$ or $x 2$
$f 2162,16$ is a critical pt.
$f 242,16$ is a critical pt.
$f 212 \quad 02,16$ is a local max.
$f 212 \quad 02,16$ is a local min.

$f x \quad 1$ 3
20.

$$
3 x 9 x 2
$$

f $x x^{2} \quad 9$
f $x 2 x$
$f x 0$ if $x 3$ or $x 3$
$f 320 \quad 3,20$ is a critical pt.
$f 3163,16$ is a critical pt.
$f 3603$, 20 is a local max.
$f 3603,16$ is a local min.

21. $f x \quad \frac{1}{9} x^{3} x^{2} 9 x$
$f x \quad \frac{1}{3} x^{2} 2 x 9$
fx $\quad \frac{2}{3} \times 2$
$f x 0$ if $x 3$ or $x 9$
$f 303,15$ is a critical pt.
$f 9819,81$ is a critical pt.
$f 3403,15$ is a local min.
$f 9409,81$ is a local max.

$x 2 x^{3} 15 x^{2} 36 x 24$
fx $6 x^{2} 30 \times 36$
$x 12 \times 30$
$f x 0$ if $x 2$ or $x 3$
$f 242,4$ is a critical pt.
$f 3813,3$ is a critical pt.
$f 2602,4$ is a local max.
$f 3603,3$ is a local min.

23.
$f x \quad \frac{1}{3^{x}} 2 x^{2} 12$
fx $x^{x 2} 4 x$
fx 2×4
$f x 0$ if $x 0$ or $x 4$
$f 0120,12$ is a critical pt.
$f 4 \quad 4 . \quad 4, \quad \stackrel{4}{\text { is a critical pt. }}$
$3 \quad 3$
$f 0403,0$ is a local min.
4
$f 4404,3 \quad$ is a local max.

24. $f x \underline{1}_{x^{3}} 2 x^{2}{ }_{5 x} \underline{8}$

$$
23-3
$$

$$
x x^{2} 4 x 5
$$

$f \times 2 \times 4$
$f x 0$ if $x 5$ or $x 1$
$f 5365,36$ is a critical pt.
f 1811,0 is a critical pt.
$f 5603,0$ is a local max.
$f 1601,4$ is a local min.

$$
\begin{aligned}
& y x^{3} 3 x 2 \\
& 3 x^{2} 3 \\
& y 6 x
\end{aligned}
$$

0 if $x 1$ or $x 1$
$y 141,4$ is a critical pt.
$y 100,0$ is a critical pt.
$y 1601,4$ is a local max.
$y 1601,0$ is a local min.
Concavity reverses between $x=-1$ and $x=1$, so there must be an inflection point.

0 when $x 0$.
$y 020,2$ is an inflection pt.

y $3 x^{2} 12 x 9$
6×12
0 if $x 1$ or $x 3$
$y 171,7$ is a critical pt.
y 333,3 is a critical pt.
y 1601,7 is a local max.
y 3603,3 is a local min.
Concavity reverses between $x=1$ and $x=3$, so there must be an inflection point.

0 when $x 2$.
$y 252,5$ is an inflection pt.

$$
y 13 x^{2} x^{3}
$$

$$
6 x 3 x^{2}
$$

y $66 x$ 0 if $x 0$ or $x 2$
$y 010,1$ is a critical pt.
$y 252,5$ is a critical pt.
$y 0600,1$ is a local min.
$y 2602,5$ is a local max.
Concavity reverses between $x=0$ and $x=2$, so there must be an inflection point.

0 when $x 1$.
$y 131,3$ is an inflection pt.

y $3 x 212$
$6 x$

$$
0 \text { if } x 2 \text { or } x 2
$$

$y 2202,20$ is a critical pt.
$y 2122,12$ is a critical pt.
$y 21202,20$ is a local min.
$y 21202,12$ is a local max.
Concavity reverses between $x=-2$ and $x=2$, so there must be an inflection point.

0 when $x 0$.
$y 040,4$ is an inflection pt.

203
$y 140 \quad 1$, is a local max.
$y 3403$, 4 is a local min.
Concavity reverses between $x=-1$ and $x=3$, so there must be an inflection point. 0 when $x 1$.
$y 1 \underline{4}, \underline{4}$ is an inflection pt.

30. $y x^{4} \underline{1}_{x 3^{3}}^{2} x^{2} x 1$

$$
4 x^{3} x^{2} 4 x 1
$$

$$
y 12 x^{2} 2 x 4
$$

$y 0$ if $x 1$ or $x \xrightarrow{1}$ 4
$y 1 \stackrel{2}{-} 1, \underline{2}$ is a critical pt.

$y 160 \begin{aligned} & \\ & \\ & y\end{aligned}, \frac{3}{2}$ is a local min.
$1 \quad 15$
$\begin{array}{lll}y & 0 \\ & 863 & 4\end{array}$
, $\frac{863}{}$ is a local max.

4768
$y 11001, \stackrel{2}{2}$ is a local min.

$$
\begin{aligned}
& y^{1} x^{3} x^{2} 3 x 53 \\
& x^{2} 2 x 3 \\
& y 2 x 2 \\
& 0 \text { if } x 1 \text { or } x 3 \\
& y 1^{20} 1,{ }^{20} \text { is a c ritic cal pt. } \\
& 3 \quad 3 \\
& \text { y3 43,4 is a critical pt. }
\end{aligned}
$$

Note that 1 ,

$y 2 x 33 x=36 x 20$
$6 x^{2} 6 x 36$
y $12 x 6$
0 if $x 2$ or $x 3$
$y 2642,64$ is a critical pt.
$y 3613,61$ is a critical pt.
$y 23002,64$ is a local max.
$y 33003$, 61 is a local min.
Concavity reverses between $x=-2$ and $x=3$, so there must be an inflection point.
0 when $x \quad 12$
$y^{1} \quad 3 \quad 1 \quad 3 \quad$ is an inflection pt.

$$
0 \text { if } x 0 \text { or } x 1
$$

$$
y 0 \quad 0 \quad 1 \quad 0,0 \quad \frac{i}{1} \text { is a critical pt. }
$$

$$
\begin{aligned}
& y x^{4} \underline{4}_{x 3^{3}} \\
& y 4 x^{3} 4 x^{2} 4 x{ }^{2} \times 1 \\
& y 12 x^{2} 8 x
\end{aligned}
$$

$$
\begin{aligned}
& 0 \text { when } x \\
& \text { and } x \underline{1} \text {. } \\
& y \underset{2}{\underline{2}} \underline{2}, \quad \text { is an inflection pt. } 381
\end{aligned}
$$

3
Concavity reverses between $x=-1$ and
$x 4$, and $x \quad 4 \quad$ and $x=1$, so there must $1 \quad 1$
be inflection points.
$y 1 \quad 1, \quad$ is a critical pt.

3
$y 00$, so use the first derivative test.
(continued on next page)
(continued)

We have identified $(0,0)$ as a critical point.
However, it is neither a local maximum, nor a local minimum. Therefore, it must be an inflection point. Verify this by confirming that

0 when $x 0$.
Note that $1, \underset{3}{1}$ is an absolute minimum.

33. $f(x) 2 a x b ; \quad f(x) 2 a$

It is not possible for the graph of $f(x)$ to have an inflection point because $f(x) 2 a 0$.
34. $f(x) 3 a x^{2} 2 b x c ; \quad f(x) 6 a x 2 b$

No, $f(x)$ is a linear function of x and hence can be zero for at most one value of x.
35. $f(x) \frac{1}{4} x^{2} 2 x 7 ; \quad f(x)^{\frac{1}{2}} x 2$;

$$
f(x)^{-1} 2
$$

Set $f(x) 0$ and solve for x,
$1 \times 20, x 4$;
2

$$
\left.f(4) \underset{4}{\frac{1}{4}} \mathbf{4}\right)_{2} \quad 2(4) 7 \quad 3 ; \quad f(4) \quad \frac{1}{2}
$$

Since $f(4)$ is positive, the graph is concave up at $x=3$ and therefore $(4,3)$ is a relative minimum point.
36. $f(x) 512 x 2 x^{2} ; f(x) 124 x$; $f(x) 4$

Set $f(x) 0$ and solve for x.
$124 \times 0 \times 3$
$f(3) 512(3) 2(3)^{2} \quad 23$
$f(3) 4$
Since $f(3)$ is negative, the graph is concave down at $x=-3$ and therefore $(-3,23)$ is a relative maximum point.

4 Set $g(x) 0$ and solve for x.
$44 \times 0 \times 1$
$g(1) 34(1) 2(1)^{2} 5 ; g(1) 4$
Since $g(1)$ is negative, the graph is concave down at $x=1$ and therefore $(1,5)$ is a relative maximum point.
$g(x) x^{2} 10 x$ 10; $g(x) 2 x$
$10 g(x) 2$
Set $g(x) 0$ and solve for x.
$2 \times 100 \times 5$
$g(5)(5)^{2} \quad 10(5) 10 \quad 15$
$g(5) 2$
Since $g(5)$ is positive, the graph is concave up at $x=-5$ and therefore $(-5,-15)$ is a relative minimum point.

2
$f(x) 5 x \quad x 3 ; f(x) 10 x 1 ; f(x) 10$
Set $f(x) 0$ and solve for x.
$10 \times 10 \times \xrightarrow{-} .10$
$f .15 .1^{2} \quad .133 .05$
$f(.1) 10$

Since $f(.1)$ is positive, the graph is concave up at $x=-.1$ and therefore $(-.1,-3.05)$ is a relative minimum point.
40. $f(x) 30 x^{2} 1800 x 29,000$;
$f(x) 60 x 1800 ; f(x) 60$
Set $f(x) 0$ and solve for x.
$60 \times 18000 \times 30$
$f(30) 30(30)^{2} 1800(30) 29,0002000$;
$f(30) 60$
Since $f(30)$ is positive, the graph is concave up at $x=30$ and therefore $(30,2000)$ is a relative minimum point.
$y=g(x)$ is the derivative of $y=f(x)$ because the zero of $g(x)$ corresponds to the extreme point of $f(x)$.
$y=g(x)$ is the derivative of $y=f(x)$ because the zero of $g(x)$ corresponds to the extreme point of $f(x)$.
a. f has a relative minimum.
f has an inflection point.
a. Since $f(125)=125$, the population was 125 million.

The solution of $f(t)=25$ is $t=50$, so the population was 25 million in 1850.

Since $f(150)=2.2$, the population was growing at the rate of 2.2 million per year.
The solutions of $f(t) 1.8$ are $t \approx 110$ and $t \approx 175$, corresponding to the years 1910 and 1975. The desired answer is 1975.

The maximum value of $f(t)$ appears to occur at $t \approx 140$. To confirm, observe that the graph of $f(t)$ crosses the t-axis at $t=140$. The population was growing at the greatest rate in 1940.
45. a. $(.47,41),(.18,300) ; m \frac{30041}{259}$;
. 18.47 . 29
$41 \stackrel{259}{ } .29$ ($x .47$)
$\underline{259} x \underline{133.62}$
. 29.29
893.103x 460.759
$A(x) 893.103 x 460.759$ billion dollars
\underline{x}
b. $\quad R(x) \quad 100 A_{(x)}$
\underline{x}
$893.103 x 460.759$
$R(.3) \$.578484$ billion or
$\$ 578.484$ million
$R(.1) \$.371449$ billion or
$\$ 371.449$ million
$R(x) 17.8621 x 4.6076$
$R(x) 0$ when $x .258$, The fee that maximizes revenue is $.258 \%$ and the maximum revenue is
$R(.258) \$.594273$ billion or
$\$ 594.273$ million
$C(x) 2.5 x 1 ; P(x) R(x) C(x) ;$
\underline{x}
$P(x) \quad 100^{893.103 x} 460.7592 .5 x 1$
8.93103x ${ }^{2} 7.10759 x 1$
$P(x) 17.86206 x 7.10759$
$P(x) 0$ when $x .398$.
Profit is maximized when the fee is $.398 \%$. $P(.3)=\$.3285$ billion, $P(.1)=-\$.3786$ billion. They were better off before lowering their fees.
47.

Since $f(x)$ is always increasing, $f(x)$ is always nonnegative.
48.

Note that $f(x)+x^{2} \quad 5 x 13$ and
$f(x) x 5$. Solving $\quad f(x) 0$, the
inflection point occurs at $x=5$. Since $f(5) \underline{10}_{3}$, the coordinates of the inflection point are $5,1_{3}$.

$[0,16]$ by $[0,16]$
This graph is like the graph of a parabola
that opens upward because (for $x>0$) the entire graph is concave up and it has a minimum value. Unlike a parabola, it is not
symmetric. Also, this graph has a vertical asymptote ($x=0$), while a parabola does
50.

1

$[0,25]$ by $[0,50]$
The relative minimum occurs at $(5,5)$.
To determine this algebraically, observe that 75
$f(x) 3 \quad .{ }_{x}^{2}$ Solving $\quad f(x) 0$ gives
$x^{2} 25$, or $x= \pm 5$. This confirms that the
relative extreme value (for $x>0$) occurs at $x=5$.To show that there are no inflection
points, observe that $f(x) \quad \frac{150}{x^{3}}$. Since
$f(x)$ changes sign only at $x=0$ (where $f(x)$ is undefined), there are no inflection points.

2.4 Curve Sketching (Conclusion)

1. $y x^{2} 3 x 1$

\qquad

$$
2(1) \quad 3 \quad \sqrt{5}^{5}
$$

The x-intercepts are , 0 and 2
2. $y x^{2} 5 x 5$
6. $y 3 x^{2} 10 x 3$
$x \quad-\frac{10 \sqrt{10^{2} 4(3)(3)}}{2(3)}-\frac{108}{6}-$
The x-intercepts are $\quad \underline{1}_{0}$ and $(-3,0)$.

3
7. $f(x) \quad$ - $^{x} \quad 2 x \quad 5 x ; f(x) x \quad 4 \times 5$
(4) $(4)-\sqrt[2]{4(1)(5)} \quad 4-4 \cdot \sqrt{ }$
x
2(1)
2
Since $f(x)$ has no real zeros, $f(x)$ has no relative extreme points.
8. $f(x) x^{3} 2 x^{2} 6 x 3$ $f(x) 3 x^{2} 4 x 6$
x
5 5-7(1)(5)
2(1)

x

Since $f(x)$ has noreal zeros, $f(x)$ has no relative extreme points. Since, $f(x)<0$ for all $x, f(x)$ is always decreasing.

$$
\begin{aligned}
& f x x^{3} 6 x^{2} 12 x 6 \\
& f x 3 x^{2} 12 x 12 \\
& f x 6 x 12
\end{aligned}
$$

To find possible extrema, set $f(x) 0$ and solve for x.

$$
\begin{aligned}
& 3 x^{2} 12 x 120 \\
& 3 x^{2} 4 x 40
\end{aligned}
$$

$$
f 22^{x 2^{2} 0 x 2} 62^{2} 12262
$$

Thus, $(2,2)$ is a critical point.
(continued)

Critical Points, Intervals	$x \quad 2$	$2 x$
$x-2$	-	$\mathbf{+}$
$f(x)$	+	$\mathbf{+}$
$f(x)$	Increasing on , 2	Increasing on
Nor relam		

No relative maximum or relative minimum. Since $f(x) 0$ for all x, the graph is always increasing.
To find possible inflection points, set
$f(x) 0$ and solve for x.
$6 \times 120 \times 2$
Since $f x 0$ for $x<2$ (meaning the graph is
concave down) and f $x 0$ for $x>2$
(meaning the graph is concave up), the point $(2,2)$ is an inflection point.

06 , so the y-intercept is $(0,-6)$.

$$
\begin{array}{rl}
f x & x^{3} \\
x & 3 x^{2} \\
f x & 6 x
\end{array}
$$

To find possible extrema, set $f(x) 0$ and solve for x.
$3 x^{2} 0 x 0$
$f 00^{3} 0$
Thus, $(0,0)$ is a critical point.

Critical Points, Intervals	$\boldsymbol{x}<\mathbf{0}$	$\boldsymbol{x}>\mathbf{0}$
x	+	-
$f(x)$	-	-
$f(x)$	Decreasing on, 0	Decreasing on 0,

No relative maximum or relative minimum. Since $f(x) 0$ for all x, the graph is always decreasing.
To find possible inflection points, set
$f(x) 0$ and solve for x.
$6 \times 0 \times 0$
Since $f x 0$ for $x<0$ (meaning the graph is concave up) and $f x 0$ for $x>0$
(meaning the graph is concave down), the point $(0,0)$ is an inflection point.

00 , so the y-intercept is $(0,0)$.

To find possible extrema, $\operatorname{set} f(x) 0$ and solve for x.
$3 x^{2} 30$ no real solution
Thus, there are no extrema.
Since $f(x) 0$ for all x, the graph is always increasing.
To find possible inflection points, set $f(x) 0$ and solve for x.
$6 \times 0 \times 0$
$f 01$
Since $f x 0$ for $x<0$ (meaning the graph is concave down) and $f x 0$ for $x>0$ (meaning the graph is concave up), the point $(0,1)$ is an inflection point. This is also the y-intercept.
(continued on next page)

Chapter 2 Applications of the Derivative
(continued)

To find possible extrema, $\operatorname{set} f(x) 0$ and solve for x.
$3 x^{2} 4 x 40$ no real solution
Thus, there are no extrema.
Since $f(x) 0$ for all x, the graph is always increasing.
To find possible inflection points, set $f(x) 0$ and solve for x.
$6 \times 40 x^{\underline{2}}$
$f^{\underline{2}} \underset{3}{\underline{\underline{56}}} 27$

Since $f x \quad 0$ for $x^{2} \quad{ }_{3}$ (meaning the graph is concave down) and $f x 0$ for $x \quad \underline{2}$ (meaning the graph is concave up) ${ }_{3}$
the point $\underset{2}{2}, \underline{56}$ is an inflection point.
00 , so the y-intercept is $(0,0)$.

$x 1312 \times 3 x^{2}$
$x 126 x$
To find possible extrema, set $f(x) 0$ and solve for x.
$1312 \times 3 x^{2} 0$ no real solution Thus, there are no extrema.
Since $f(x) 0$ for all x, the graph is always decreasing.

To find possible inflection points, set $f(x) 0$ and solve for x.
$126 \times 0 \times 2$
$f 25$
Since $f x 0$ for $x 2$ (meaning the
graph is concave up) and $f x 0$ for 2 (meaning the graph is concave down), the point $(2,-5)$ is an inflection point. $f 05$, so the y-intercept is $(0,5)$.

14. $f x \quad 2 x_{2}^{3} \quad x 2$
$x 6 x \quad 1$
$f x 12 x$
To find possible extrema, set $f(x) 0$ and solve for x.

2
$6 x \quad 10$ no real solution
Thus, there are no extrema.
Since $f(x) 0$ for all x, the graph is always increasing.
To find possible inflection points, set $f(x) 0$ and solve for x.
$12 \times 0 \times 0$
f0 2
Since $f x 0$ for $x<0$ (meaning the graph is concave down) and $f x 0$ for $x>0$ (meaning the graph is concave up), the point $(0,2)$ is an inflection point. This is also the y-intercept.

15. $f x{ }^{4} x_{3}^{3} 2 x^{2} x$
$f x 4 x^{2} 4 x 4 x x 1$
fx $8 x 4$
To find possible extrema, set $f(x) 0$ and solve for x.
$4 x^{2} 4 x \quad 0 \quad x \quad 0,1$ $f 000,0$ is a critical point
$f 1^{1} 1, \frac{1}{-}$ is a critical point

We have identified $(0,0)$ and $1, \frac{1}{3}$ as critical points. However, neither is a local ${ }^{3}$ maximum, nor a local minimum. Therefore, they may be inflection points. However, $f 00$ and

0 , so neither is an inflection point.
Since $f(x) 0$ for all x, the graph is always increasing.
To find possible inflection points, set $f(x) 0$ and solve for x.

$$
8 \times 40 x^{\underline{1}}
$$

2
$f^{1} \quad \underline{1}$

$$
\begin{array}{cc}
2 & 6 \\
\text { Since } f & x
\end{array} 0 \text { for } x-\quad \text { (meaning the }
$$

graph is concave down) and $f x 0$ for
$2^{\frac{1}{-}}$ (meaning the graph is concave up), the point ${ }^{1}, \underline{1}_{6}$ is an inflection point.
$f 00 \quad(0,0)$ is the y-intercept.

decreasing, and thus, there are no extrema.
Therefore, $(1,0)$ may be an inflection point. Set $f(x) 0$ and solve for x.
$66 \times 0 \times 1$
Since $f x 0$ for $x 1$ (meaning the
$36 \times 3 x^{2} 0 \times 1$
f10
fx $66 x$
To find possible extrema, set $f(x) 0$ and
solve for x.

Since $\quad f(x) 0$ for all x, the graph is always
graph is concave up) and $f x$ 0 for $x 1$ (meaning the graph is concave down), the point $(1,0)$ is an inflection point.

01 , so the y-intercept is $(0,1)$.
(continued on
next page)

(continued)

fx $x x^{2} 4 x$
$f x 2 x 4$
$f x 0$ if $x \quad 0$ or $x \quad 4$ $f 000,0$ is a critical pt.

$$
\begin{array}{ccc}
f 4 & \frac{32}{} & 4, \\
& \left.\frac{32}{\text { is a critical pt. }} \begin{array}{cc}
& 3
\end{array}\right) .
\end{array}
$$

$f 040$, so the graph is concave down
at $x=0$, and $(0,0)$ is a relative maximum.
$f 440$, so the graph is concave up at
$x=4$, and 4, 32 is a relative minimum.
3
$f x 0$ when $x 2$.
$f 2 \quad \underline{16}$

2, $\frac{16}{\text { is an inflection pt. }}$ 3

$$
\begin{aligned}
& 4 x^{3} 12 x f x \\
& 12 x^{2} 12
\end{aligned}
$$

To find possible extrema, set $f(x) 0$ and solve for x.

$$
\begin{aligned}
& 4 x^{3} 12 x 0 \\
& 4 x x^{2} 30 x 0, x \\
& f 00^{4} 60^{2} 0 \\
& f \sqrt{3} \quad \sqrt{3}^{4} 6
\end{aligned}
$$

Thus, $(0,0), 3,9$, and 3,9 are critical points.

012 , so the graph is concave down at $x=0$, and $(0,0)$ is a relative maximum.
$f \sqrt{ } 12 \quad \sqrt{3}^{2} 12 \quad 24$ so the graph is concave up at $\quad x \quad \sqrt[3]{ }$ and $\quad \sqrt{3}, 9$, is a relative minimum.
$f \quad \sqrt{3} 123 \quad 21224$ so the graph is
concave up at $\sqrt{ } \sqrt{3}$, and $\sqrt{3}, 9$, is a relative minimum.
The concavity of this function reverses twice, so there must be at least two inflection points.

Set $\quad f x 0$ and solve for x :

$$
\begin{aligned}
& 12 x^{2} 12012 x^{2} 10 \\
& x 1 x 10 \quad x 1 \\
& f 11
\end{aligned}
$$

Thus, the inflection points are $(-1,-5)$ and $(1,-5)$.

$$
\begin{aligned}
& f x 12 x^{3} 12 x f x \\
& 36 x^{2} 12
\end{aligned}
$$

To find possible extrema, set $f(x) 0$ and solve for x.

3

$$
\begin{aligned}
& 12 x \quad 12 x 0 \\
& 12 x x^{2} 10 x 0, x 1 \\
& f 030^{4} 6_{1}^{6} 0^{2} 33 \\
& f 131^{4} 6^{2} 30 \\
& f 131^{4} 61^{2} 3 \quad 0
\end{aligned}
$$

Thus, $(0,3),(-1,0)$ and $(1,0)$ are critical points.

012 , so the graph is concave down at

$$
x=0 \text {, and }(0,3) \text { is a relative maximum. }
$$

(continued on next page)

Copyright © 2018 Pearson Education Inc.
(continued)
f $1361^{2} 1224$ so the graph is concave up at $x=-1$, and $(-1,0)$ is a relative minimum. $f 1361^{2} 1224$ so the graph is concave
up at $x=1$, and $(1,0)$ is a relative minimum.
The concavity of this function reverses twice,
so there must be at least two inflection points. Set $f x 0$ and solve for x :
$36 x^{2} 120$
$x \quad 0-\frac{4(36)(12)}{236}-3 \frac{\sqrt{2}}{3}$.
$f \begin{array}{lllllll}\frac{3}{3} & 3 & 3 & 3 & \frac{3}{3} & 2 & \frac{4}{3}\end{array}$

Thus, the inflection points are

$$
\frac{\sqrt{3}}{3} \frac{4}{3} \text { and }
$$

$1{ }^{4}$

33

21. $f x x^{4}$
f $x 4 \times 3^{3}$
$f x 12 \times 3$
To find possible extrema, set $f(x) 0$ and solve for x.
$4 \times 3{ }^{3} 0 \times 3$
f 30
Thus, $(3,0)$ is a critical point. $f 30$, so we must use the first derivative rule to determine if $(3,0)$ is a local maximum or minimum.

Critical Points, Intervals	$\boldsymbol{x}<\mathbf{3}$	$\boldsymbol{x}>\mathbf{3}$
$x-3$	-	+
$-\quad \frac{f(x)}{}$	-	+ $f(x)$
Decreasing on , 3	Increasing on 3,	

Thus, $(3,0)$ is local minimum.
Since $f x 0$, when $x=3,(3,0)$ is also an inflection point.

The y-intercept is $(0,81)$.

22. $f x \times 214$
fx 4×2
3
$f x 12 x \quad 2$
To find possible extrema, set $f(x) 0$ and solve for x.
$4 x 2^{3} \quad 0 \quad x \quad 2$
$f 21$
Thus, $(-2,-1)$ is a critical point.
$f 20$, so we must use the first

Thus, $(-2,-1)$ is local minimum.
Since $f x 0$, when $x=-2,(-2,-1)$ is also
an inflection point.
The y-intercept is $(0,15)$.

\qquad

Chapter 2 Applications of the Derivative

> 2.
> x^{3}

To find possible extrema, set $y 0$ and solve for x :

$$
\begin{array}{cc}
\frac{1}{0} & \frac{1}{0} x_{2}
\end{array}
$$

Note that we need to consider the positive solution only because the function is defined only for $x>0$. When $x=2, y=1$, and
$1_{4} 0$, so the graph is concave up, and
$(2,1)$ is a relative minimum.
Since y can never be zero, there are no
inflection points. The term ${ }^{1} x$ tells us that
the y-axis is an asymptote. As x, the graph
approaches $y^{\underline{1}} x$, so this is also an
asymptote of the graph.

To find possible extrema, set y 0 and solve for x :
$\frac{2}{2} 0$ no solution, so there are no
x
extrema.
Since $y 0$ for all x, the graph is always decreasing. Since y can never be zero, there
are no inflection points. The term $\frac{2}{x}$ tells us
that the y-axis is an asymptote. As x, the graph approaches $y=0$, so this is also an asymptote of the graph.

$$
\begin{array}{cc}
y & { }^{9} \times x 1, x 0 \\
y & 1^{9} \\
& x^{2} \\
& \underline{18} \\
x 3
\end{array}
$$

To find possible extrema, set $y 0$ and solve for x :

Note that we need to consider the positive solution only because the function is defined $\underline{9}$
only for $x>0$. When $x=3, y 3317$,
and $y \quad \frac{18}{0}$, so the graph is concave up,_3 ${ }^{3}$
and $(3,7)$ is a relative minimum.
Since y can never be zero, there are no inflection points. The term ${ }^{9} x$ tells us that the y-axis is an asymptote. As x, the graph approaches $y=x+1$, so this is an asymptote of the graph.

$$
\begin{aligned}
& y \frac{12}{x} x x 1, x 0 \\
& \underline{12} \\
& y \quad{ }^{2 x} 3 \\
& y \underset{x}{24}
\end{aligned}
$$

To find possible extrema, set $y 0$ and solve for x :

(continued on next page)

Copyright © 2018 Pearson Education Inc.

(continued)

Note that we need to consider the positive solution only because the function is defined only for $x>0$. When $x=2, y=13$ and
$\frac{24}{2} 30$, so the graph is concave up, and 2
$(2,13)$ is a relative minimum.
Since y can never be zero, there are no inflection 12
points. The term $\quad x$ tells us that the
y-axis is an asymptote. As x, the graph approaches $y=3 x+1$, so this is also an asymptote of the graph.

2

To find possible extrema, set $y 0$ and solve

for x :

Note that we need to consider the positive solution only because the function is defined only for $x>0$. When $x=2, y=4$ and

$$
y \frac{4}{23} 0, \quad \text { so the graph is concave up, and }
$$

$(2,4)$ is a relative minimum.
Since y can never be zero, there are no
$\underline{2}$
inflection points. The term ${ }_{x}$ tells us that the
y-axis is an asymptote. As x, the graph
approaches $y \underset{2}{-} 2$, so this is also an
asymptote of the graph.
Copyright © 2018 Pearson Education Inc.

Note that we need to consider the positive solution only because the function is defined only for $x>0$. When $x=9, y=9$, and $y 0$,
so the graph is concave down, and $(9,9)$ is a relative maximum. Since y can never be zero, there are no inflection points.
(continu
ed on
next
page)

When $x=0, y=0$, so $(0,0)$ is the y-intercept.

$$
y 6 \sqrt{x} \times 036 x x^{2} x 36 \text {, so }
$$

$(36,0)$ is an x-intercept

30. $y \frac{1}{\sqrt{x}} \frac{x}{2}, x 0$
y-1_- $\quad 1$
$y \frac{3}{4 x^{5} 2^{-}}$
To find possible extrema, set y 0 and solve for x :

$$
\frac{1}{2 x^{3 / 2}} \quad \frac{1}{0} \quad{ }_{21}
$$

When $x=1, y \underline{3}_{2}$, and $y \underline{3}_{4}^{0}, \quad$ so the 3
graph is concave up, and 1, 2 is a relative minimum. Since y can never be zero, there are no inflection points. The term $\frac{1}{\sqrt{x}}$ tells us that the y-axis is an asymptote. As x, the \underline{x}
graph approaches $y \quad 2$, so this is an asymptote of the graph. The graph has no intercepts.

$g(x) f(x)$. The 3 zeros of $g(x)$ correspond to the 3 extreme points of $f(x) . f(x) g(x)$, the zeros of $f(x)$ do not correspond with the extreme points of $g(x)$.
$g(x) f(x)$. The zeros of $g(x)$ correspond to the extreme points of $f(x)$. But the zeros of $f(x)$ also correspond to the extreme points of $g(x)$. Observe that at points where $f(x)$ is decreasing, $g(x)<0$ and that at points where $f(x)$ is increasing, $g(x)>0$. But at points where $g(x)$ is increasing, $f(x)<0$ and at points where $g(x)$ is decreasing, $f(x)>0$.
33. $f(x) a x^{2} b x c ; \quad f(x) 2 a x b$
$f(0) b \quad 0$ (There is a local maximum at $x 0 f(0) 0)$.
Therefore, $f(x) a x^{2} \quad c ; f(0) \quad c 1$;
$f(2) 04 a 2 b c \quad 0$
$4 a 10 a \quad \underline{1}$: 4
Thus, $f(x) \quad-x^{2} 1$. 4
34. $f(x) a x \quad 2 b x c ; \quad f(x) 2 a x b$
$f(1) 2 a b 0$ (There is a local maximum at $x 1 f(1) 0) ; b \quad 2 a$
Therefore, $f(x) a x^{2} \quad 2 a x c ; f(0) c 1$; $f(1) a 2 a 11 a \quad 2, b 4$:
$f(x) 2 x^{2} 4 x 1$.
35. Since $f(a) 0$ and $f(x)$ is increasing at
$x=a, f \quad 0$ for $x<a$ and $\quad f \quad 0$ for $x>a$. According to the first derivative test, f has a local minimum at $x=a$.
36. Since $f(a) 0$ and $f(x)$ is decreasing at $x=a, f 0$ for $x<a$ and $f \quad 0$ for $x>a$. According to the first derivative test, f has a local maximum at $x=a$.
37. a.

$f(7)=15.0036$, the rat weighed about 15.0 grams.
Using graphing calculator techniques, solve $f(t)=27$ to obtain $t \approx 12.0380$. The rat's weight reached 27 grams after about 12.0 days.
d.

$[0,20]$ by $[-2,5]$
Note that $f(t) .48 .34 t .0144 t^{2}$.
Since $\quad f(4) 1.6096$, the rat was gaining weight at the rate of about 1.6 grams per day.
Using graphing calculator techniques, solve $f(t) 2$ to obtain $t \approx 5.990$ or
$t \approx 17.6207$. The rat was gaining weight at the rate of 2 grams per day after about 6.0 days and after about 17.6 days.

The maximum value of $f(t)$ appears to occur at $t \approx 11.8$. To confirm, note that f (t). $34.0288 x$, so the solution of $f(t) 0$ is $t \approx 11.8056$. The rat was growing at the fastest rate after about 11.8 days.
a.

Since $f(100)=1.63$, the canopy was 1.63 meters tall.

The solution of $f(t)=2$ is $t \approx 143.9334$.
The canopy was 2 meters high after about 144 days.

Note that

$$
(t) .142 .0032 t .0000237 t^{2}
$$

$$
.0000000532 t^{3}
$$

(Alternately, use the calculator's numerical differentiation capability.) The graph of $y f(t)$ is shown. Since $f(80) .0104$, the canopy was growing at the rate of about .0104 meters per day.

$[32,250]$ by $[-.01, .065]$
e. The solutions of $f(t) .02$ are
$\approx 64.4040, t \approx 164.0962$, and
$t \approx 216.9885$. The canopy was growing at the rate of .02 meters per day after about 64.4 days, after about 164.1 days, and after 217.0 days.
f. Since the solution to $f(t) 0$ is
$t \approx 243.4488$, the canopy has completely stopped growing at this time and we may say that the canopy was growing slowest after about 243.4 days (see the graph in part (d)). (The growth rate also has a relative minimum after about 103.8 days.)

The graph shown in part (d) shows that $f(t)$ was greatest at $t=32$, after 32 days.
(The growth rate also has a relative maximum after about 193.2 days.)

2.5 Optimization Problems

1. $g(x) 1040 x x^{2} g(x) 402 x$ $g(x) 2$
The maximum value of $g(x)$ occurs at $x=20$; $g(20)=410$.

2. $f(x) 12^{2 x}$

The maximum value of $f(x)$ occurs at $x=$ $6 ; f(6)=36$.

3. $f(t) t^{3} 6 t^{2} 40 f(t) 3 t^{2} 12 t$
$f(t) 6 t 12$
The minimum value for $t \geq 0$ occurs at $t=$ $4 ; f(4)=8$.

(t) 2

The minimum value of $f(t)$ occurs at $t=$
$12 ; f(t)=-144$.

Solving $x+y=2$ for y gives $y=2-x$.

Substituting into $Q=x y$ gives

$$
\begin{aligned}
& Q(x) x(2 x) 2 x x^{2} . \\
& \frac{d Q}{d x} \quad 22 x \\
& \frac{d Q}{d x} \quad 0222 x \quad 0 \quad x \quad 1 \\
& \frac{d}{d x} \frac{2}{2} 2
\end{aligned}
$$

The maximum value of $Q(x)$ occurs at $x=1$,

$$
y=1 . Q(1) 2(1)(1)^{2} 1 .
$$

Solving $x+y=2$ for y gives $y=2-x$.
Substituting into $Q x^{2} y$ yields

$$
Q(x) x^{2}(2 x) 2 x^{2} x^{3} .
$$

$\frac{d O}{d x} 4 x 3 x^{2}$
$\frac{d O}{d x} 04 \times 3 x^{2} 0 \times 0$ or x

The maximum value of $Q(x)$ occurs at x. $4 \underline{2}$

Then $y 2$ 3. 3

The minimum of $Q(x)$ occurs at $x=3$. The minimum is $Q(3) 3^{2}(63)^{2} 18$

8. No maximum. $d x^{2} 4$, so the function is concave upward at all points.
9. $x y 36$ y $\frac{36}{} x$
$S(x) \times \underline{36}$.
$S(x) 1 \frac{36}{x}^{x}{ }^{2}$
$S(x) 01$ 36 $\quad \begin{gathered}0 \underset{2}{x} 6 \text { or } 6\end{gathered}$
$S(x) 1 \quad \begin{aligned} & \frac{72}{x^{3}}, \\ & x(6) \\ & 3\end{aligned}$

The positive value $x=6$ minimizes $S(x)$, and

$$
\begin{aligned}
& \begin{array}{rllll}
y & \frac{36}{6} & 6 . & S(6,6) & 6612 \\
x & y & 1 & y & 1
\end{array} \\
& y z \\
& y
\end{aligned} \quad \begin{aligned}
& \text { z }
\end{aligned}
$$

$Q(x) 13 x$

$$
\begin{array}{ccc}
& Q(x) 013 x^{2} 0 x \\
& & \frac{\sqrt{3}}{3} \\
- & \sqrt{3} \\
Q(x) & 6 x, Q & 2
\end{array}
$$

$Q(x)$ is a maximum when x

$$
y_{1} \quad \sqrt{3} \quad 33 \sqrt{5} \text {, and } z 1 \quad 3 \sqrt{33} \quad \sqrt{ }
$$

$$
\begin{array}{llll}
3 & 3 & 3 & 3
\end{array}
$$

The maximum value of $Q(x)$ is

$$
\begin{array}{llll}
\sqrt{1} & \underline{3}^{3} & \underline{2}^{3}
\end{array}
$$

```
4
```

Q

Let $A=$ area.
Objective equation: $A=x y$
Constraint equation: $8 x+4 y=320$
Solving constraint equation for y in terms of x gives $y=80-2 x$. Substituting into objective equation yields
$A=x(80-2 x)=2 x^{2} 80 x$.
c. $\xrightarrow{d A} 4 x 80$

$$
\underline{d}^{\underline{2}_{A}^{A}}
$$

$d x$
$d x^{2}$
The maximum value of A occurs at $x=20$.
Substituting this value into the equation for y in part b gives $y=80-40=40$.
Answer: $x=20 \mathrm{ft}, y=40 \mathrm{ft}$
Let $S=$ surface area.
a. Objective equation: $S x^{2} 4 x h$

Constraint: $x^{2} h 32$

From constraint equation, $h \quad x 2$. Thus,

c. $\quad \overline{d x}^{2 x} \quad \underset{x_{2}}{\Psi_{2}^{2}}{ }^{2} \quad \frac{2}{x}$

The minimum value of S for $x>0$ occurs
at $x=4$. Solving for h gives $h \quad 4^{2} 2$. Answer: $x=4 \mathrm{ft}, h=2 \mathrm{ft}$
a.

length + girth $=h+4 x$
Objective equation: $V x^{2} h$
Constraint equation: $h+4 x=84$
or $h=84-4 x$
Substituting $h=84-4 x$ into the objective equation, we have

$$
x^{2}(844 x) 4 x^{3} 84 x
$$

${ }^{2}$.e. $V 12 x^{2} 168 x$
14. a.

Let $P=$ perimeter.
Objective: $P=2 x+2 y$
Constraint: $100=x y$
$\underline{100}$
c. From the constraint, $y \quad x$. So

$$
\begin{aligned}
& P 2 x 2 \frac{100}{x} 2 x \underline{200} \\
& \frac{d P}{d x} 2 \frac{200}{x^{2}} ; \frac{d^{2} P}{d x^{2}} 400 x^{3}
\end{aligned}
$$

The minimum value of P for $x>0$ occurs at $x=10$. Solving for y gives $\frac{100}{} 1010$.
Answer: $x=10 \mathrm{~m}, y=10 \mathrm{~m}$

Let $C=$ cost of materials.
Objective: $C=15 x+20 y$
Constraint: $x y=75$
Solving the constraint for y and substituting

$$
\text { gives } C \quad 15 x \quad 20 \frac{75}{x} \quad 15 x ; \frac{1500}{x}
$$

$\frac{d C}{d x} 15 \quad \frac{1500}{x^{2}} ; \quad \frac{d^{2} C}{d x^{2}} \quad \frac{3000}{x^{3}}$
The minimum value for $x>0$ occurs at $x=10$. Answer: $x=10 \mathrm{ft}, y=7.5 \mathrm{ft}$
16.

Let $C=$ cost of materials.
Constraint: x^{2} y 12
Objective: $C 2 x^{2} 4$ xy $x^{2} 3 x^{2} 4 x y$ Solving the constraint for y and substituting

$$
\text { gives } C \quad 2 x^{2} 4 x \underline{12} 3 x^{2} \underline{48} \text {; }
$$

$$
\underline{d C} 6 x \quad 48-\underline{d}^{\underline{2}} \underline{C} \underline{C}^{x^{2}} \underline{\underline{9}}^{6}
$$

The maximum value of V for $x>0$ occurs at $x=14 \mathrm{in}$. Solving for h gives h $=84-4(14)=28 \mathrm{in}$.
$d x \quad x^{2} \quad d x^{2} \quad x^{3}$
The minimum value of C for $x>0$ occurs at $x=2$. Answer: $x=2 \mathrm{ft}, y=3 \mathrm{ft}$

Chapter 2 Applications of the Derivative

Let $x=$ length of base, $h=$
height, $M=$ surface area.
Constraint: $x^{2} h 8000 h \underline{8000} x 2$
Objective: $M 2 x^{2} 4 x h$
Solving the constraint for y and substituting

2	$\underline{8000}$	$2 \underline{32}, \underline{000}$
$\underline{d M} 4 x$	$\underline{32}, 000 ; \underline{d}-\underline{2} 4$	x
$d x$	$-\frac{64,000}{x^{2}}$	$d x^{2}$

The minimum value of M for $x>0$ occurs at $x=20$. Answer: 20 cm 20 cm 20 cm
18.

Let $C=$ cost of materials
Constraint: x^{2} y 250
Objective: C $2 x^{2} 2 x y$
Solving the constraint for y and substituting

$$
2-\underline{\underline{50} 0}
$$

gives $C 2 x$

The minimum value of C for $x>0$ occurs at $x=5$. Answer: $x=5 \mathrm{ft}, y=10 \mathrm{ft}$

Let $x=$ length of side parallel to river, $y=$ length of side perpendicular to river. Constraint: $6 x+15 y=1500$
Objective: $A=x y$
Solving the constraint for y and substituting gives $A x^{2} \times 100 \quad \frac{2}{-} x^{2} 100 x$
$5 \quad 5$

$d A$	4	$x 100 ; \frac{d^{2} A}{4}$	-
$d x$	5	$d x^{2}$	5

The minimum value of A for $x>0$ occurs at $=125$. Answer: $x=125 \mathrm{ft}, y=50 \mathrm{ft}$
Letd $x=$ length, $y=$ widdth of garden.
Constraint: $2 x+2 y=300$
Objective: A xy
Solving the constraint for y and substituting gives $A x(150 x) x^{2} 150 x$

Constraint: $x+y=100$
Objective: $P x y$
Solving the constraint for y and
$\underline{d P} \quad \underline{d}-\frac{P}{2}$
$d x \quad 2 x 100 ; \quad d x \quad 2$

Answer: $x=50, y=50$
Constraint: $x y=100$

Objective: $S x y$
Solving the constraint for y and substituting
gives $S \quad x \underline{\underline{100}}$

The minimum value of S for $x>0$ occurs at $x=10$. Answer: $x=10, y=10$
23.

Constraint: $2 x+2 h+\pi x=14$ or
$(2+\pi) x+2 h=14$

Objective: $A 2 x h \quad x 2$
Solving the constraint for h and substituting gives

The maximum value of A occurs at x
4

Answer: $x \underline{\underline{d}}$

The maximum value of A occurs at $x=75$
Answer: 75 ft 75 ft
24.

Let $S=$ surface area.
Constraint: $x^{2} h 16$ or $x^{2} h 16$
Objective: $S 2 x^{2} 2 x h$
Solving the constraint for h and substituting gives $S \quad 2 x^{2} 2 x \underset{x^{2}}{2 x^{2}}$
x

$$
\begin{array}{lllllll}
\underline{d S} & 2 & 2 x & \underline{16} & \underline{d} \underline{\underline{2}} \underline{\underline{S}} & 22 & \underline{3} \underline{2} \\
d x & & & x_{2} & d x^{2} & x^{3}
\end{array}
$$

The minimum value of S for $x>0$ occurs at $x=2$. Answer: $x=2$ in., $h=4 \mathrm{in}$.

2
25. A $20 w-\frac{1}{w} ; \quad \frac{d A}{d w} 20 w ; \quad \frac{d}{d w^{2}} \quad 1$

The maximum value of A occurs at $w=20$.

$$
20^{1}{ }_{\frac{2}{2} 2} 1_{(20 \nmid 10}
$$

Answer: $w=20 \mathrm{ft}, x=10 \mathrm{ft}$
26. Let x miles per hour be the speed. $d=s \cdot t$, so

500

time of the journey is hours. Cost per x
hour is $5 x^{2} 2000$ dollars. Cost of the journey is

$$
C\left(5 x^{2} 2000\right) \underline{500} 2500 x-\underline{0} 1
$$

The speed is 20 miles per hour.
27.

distance from P to M. Then cost is the objective: $C 6 x 10 y$ and the constraint
$y^{2}(20 x)^{2} 24^{2} 97640 x x^{2}$.
Solving the constraint for y and substituting 12 /
gives $C 6 x 1097640 x x \quad .^{2}$
$\underline{d C} 65\left(97640 x x^{2}\right) 1 \dot{1}(402 x)$.
$d x$
$6=-\frac{5(402 x)}{\sqrt{97640 x_{-}^{2}}}$
$\underline{d C}$
Solve $d x \quad 0$:

$$
\begin{aligned}
& \frac{6 \frac{5(402}{} \frac{x)}{\sqrt{97640 x x}} 0}{} 0 \\
& -\frac{5(402 x)}{\sqrt{97640 x x^{2}} 6}
\end{aligned}
$$

$20010 x 697640 x x^{2}$
$400004000 x 100 x \quad 236 x^{2} 1440 x 35136$ $64 x^{2} 2560 x 48640$
$x^{2} \quad 40 x 760 \quad x 2, x 38$.
But $x 20 \times 38$ and

0.

Therefore, the value of x that minimizes the cost of installing the cable is $x=2$ meters and the minimum cost is $C=\$ 312$.

Chapter 2 Applications of the Derivative

28.

Let P be the amount of paper used. The objective is $P(x 2)(y 1)$ and the
constraint is $x y 50$. Solving the constraint for y and substituting gives

$\left.\frac{d^{2} P}{d x_{2}}\right|_{x 10} ^{x} 0 . \quad$ Therefore, $x 10, y \quad 5$ and
the dimensions of the page that minimize the amount of paper used: $6 \mathrm{in} . \times 12 \mathrm{in}$.
29. Distance $=\sqrt{(x 2)^{2} y^{2}}$

By the hint we minimize

$$
\begin{aligned}
& D(x 2)^{2} y^{2}(x 2)^{2} x, \text { since } \\
& y x \sqrt{y} \\
& \frac{d D}{d x} 2(x 2) 1 \\
& \text { Set } \frac{d D}{d x} 0 \text { to give: } 2 x=3 \text {, or } \\
& x \frac{3}{x}, y \quad \sqrt{\frac{3}{2}} . \text { So the point is } 2, \sqrt{\underline{\underline{3}}} .
\end{aligned}
$$

30. Let D be the total distance.
$D(x) d 1 d 2 \quad \sqrt{x^{2} 36} \sqrt{16(11 x)^{2}}$
$D(x)-\frac{x}{\sqrt{x^{2} 36}}=-\frac{x}{\sqrt{x 222 \times 137}}$.

$$
\begin{array}{ll}
x{\sqrt{x^{2}} 22 x 137}^{2}(x 11) & \sqrt{x^{2} 36} \\
{\sqrt{x} x^{2} 22 x 137}_{2}^{2}(x 11) & \sqrt{x^{2} 36} 2 \\
x^{4} 22 x^{3} 137 x^{2} &
\end{array}
$$

$$
x^{4} 22 x^{3} 157 x^{2} 792 x 4356
$$

$$
20 x^{2} 792 x 43560
$$

$$
x \frac{792 \sqrt{792^{2} 4204356}}{220}
$$

$$
33 \text { or } 6.6
$$

Since $0 \leq x \leq 11$, we have $x=6.6$.
The minimum total distance is

22114.87 miles.
31. Distance

The distance has its smallest value when
$5 x^{2} 20 x 25$ does, so we minimize
$D(x) 5 x^{2} 20 x 25 D(x) 10 x 20$

Now set $D(x) 0$ and solve for x :
$10 \times 200 \times 2$
$y 2(2) 51$
The point is $(2,1)$.
32. Let $A=$ area of rectangle.

Objective: $A=2 x y$
Constraint: $y \sqrt{9 x^{2}}$
Substituting, the area of the rectangle is given

$$
\text { by } A 2 x \sqrt{x^{2}}
$$

Using graphing calculator techniques, this function has its maximum at $x \approx 2.1213$.
To confirm this, use the calculator's numerical differentiation capability to graph the derivative, and observe that the solution of $\underline{d A} 0$ is $x \approx 2.1213$.

Now set $D(x) \quad 0$ and solve for x :

$$
\begin{aligned}
& -\frac{x}{\sqrt{x^{2}} 36} \\
& \left.x \sqrt{x^{2} 22 \times 137(x} 11\right) \quad \sqrt{x^{2}}-\frac{x 11}{22 \times 137} \\
& \sqrt{x^{2} 36} 0
\end{aligned}
$$

(continued)

$[0,3]$ by $[-10,10]$
The maximum area occurs when $x \approx 2.12$.

2.6 Further Optimization Problems

a. At any given time during the order-reorder period, the inventory is between 180 pounds and 0 pounds. The average is 180 90 pounds.
2

The maximum is 180 pounds.
The number of orders placed during the year can be found by counting the peaks in the figure.

There were 6 orders placed during the year.

There were 180 pounds of cherries sold in each order-reorder period, and there
were 6-order-reorder periods in the year. So there were $6 \cdot 180=1080$ pounds sold in one year.
a. There are 6 orders in a year, so the ordering cost is $6 \cdot 50=\$ 300$. The average inventory is 90 pounds, so the carrying cost is $90 \cdot 7=\$ 630$. The inventory cost is $\$ 300+\$ 630=\$ 930$.
The maximum inventory is 180 pounds, so the carrying cost is $7 \cdot 180$ $=\$ 1260$. The inventory cost is $\$ 300+\$ 1260=\$ 1560$.
a. The order cost is $16 r$, and the carrying
cost is $4^{\underline{x}} 22 x$. The inventory $\operatorname{cost} C$ is

$$
=2 x+16 r
$$

The order quantity multiplied by the number of orders per year gives the total number of packages ordered per year. The constraint function is then $r x=800$.

Solving the constraint function for r gives r ${ }^{800} x$. Substituting into the cost equation yields $C(x) 2 x \frac{12,800}{x}$
$C(x) \quad 2 \underline{12,800} 2 \underline{12,800} 0$

$$
x^{2} \frac{12,800}{2} \begin{array}{cc}
x^{2} & x^{2} \\
6400 & x
\end{array} \quad 80, r 10
$$

The minimum inventory cost is $C(80) \quad \$ 320$.
a. The order cost is $160 r$, and the carrying
cost is $32^{x} 216 x$. The inventory cost
C is $C=160 r+16 x$.
The order quantity times the number of orders per year gives the total number of sofas ordered. The constraint function is $r x=640$.

Solving the constraint function for r gives $\underline{640}$ equation yields

$$
\begin{aligned}
& C(x) \frac{102,400}{x}-16 x . \\
& C(x) 16 \frac{102,400}{2} \\
& C(x) 016 \frac{102,400}{x^{2}} 0 x 80
\end{aligned}
$$

The minimum inventory cost is $C(80) \$ 2560$.

Let x be the order quantity and r the number of orders placed in the year. Then the inventory cost is $C=80 r+5 x$. The constraint is

$$
\begin{aligned}
& r x=10,000, \text { so } r \quad \frac{10,000}{x} \text { and we can write } \\
& C(x) \frac{800,000}{x} 5 x . \\
& C(500) 800,0005(500) \$ 4100500
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. } C(x) \quad \underline{800,000} 5 \\
& \quad \frac{800,000}{x^{2}} 50^{x^{2}} \\
& \quad x^{2} \frac{800,000}{5} 160,000 x 400
\end{aligned}
$$

The minimum value of $C(x)$ occurs

$$
\text { at } x=400 \text {. }
$$

Let x be the number of tires produced in each production run, and let r be the number of runs in the year. Then the production cost is $C=15,000 r+2.5 x$. The constraint is
$r x=600,000$, so $x \quad \underline{600}, \underline{000}$ and $r \frac{600,000}{x}$.
Then $C(r) 15,000 r \frac{1,500,000}{r}$ and

$$
C(x) \underline{15}, \frac{000(600}{x} \underline{000)} 2.5 x
$$

a. $C(10) 15,000(10) \frac{1,500,000}{10} 300,000$

$$
=\underline{9109}
$$

b. $C(x)$

$$
\frac{-9}{x^{2}} \frac{10}{2}^{9} 90 x \quad 2 \quad \frac{-910}{2.5} 9
$$

$$
x^{2} \frac{910}{.25}_{10}^{x}-10^{4} x \quad 60,000
$$

Each run should produce 60,000 tires.
Let x be the number of microscopes produced in each run and let r be the number of runs.
The objective function is

$$
\text { 2500r } 15 x 20 \quad \underline{x} \quad 2500 r 25 x .2
$$

The constraint is $x r=1600, x \frac{1600}{r}$, so
$C(r) 2500 r \frac{40,000}{r}$.
$C(r) 2500 \xrightarrow[40,000]{ }$
$2500 \frac{40,000}{r^{2}-0 r} \stackrel{r_{2}^{2} \underline{40,000}}{ } \quad r \quad 4$
C has a minimum at $r=4$. There should be 4 production runs.

Let x be the size of each order and let r be the number of orders placed in the year. Then the inventory cost is $C=40 r+2 x$ and $r x=8000$, so $x \quad \underline{8000}, C(r) 40 r \underline{1600}$
$C(r) 40 \stackrel{r}{16, \frac{000}{r^{2}}} 40 \stackrel{16,000}{r} 0^{r^{2}}$
$r^{2} \frac{16,000}{40} r 20$
The minimum value for C occurs at $r=20$ (for >0).
9.

is the number of orders placed and x is the order size. The constraint is $r x=Q$, so $r \underbrace{Q}_{x}$ and we can write $C(x) \frac{h O}{x} \frac{s x}{2}$.

$$
\begin{aligned}
& C(x) \underline{h Q} \underset{x^{2}}{\underline{s}} \text { Setting } C(x) \quad 0 \text { gives } \\
& \underline{h Q} \stackrel{s}{-} 0, \\
& x^{2} \quad \underline{2} h Q, x \quad \sqrt{\frac{2 h Q}{2}} . \text { The } \\
& x^{2} \quad 2
\end{aligned}
$$

positive value $\sqrt{\frac{2 h \sigma}{s}}$ gives the minimum value for $C(x)$ for $x>0$.

In this case, the inventory cost becomes

Now the function

$$
\begin{aligned}
& f(x) \frac{810,000}{x} 4 \times 1200 \text { has } \\
& f(x) \quad \frac{810,000}{2} \\
& 4, f(450) 0 \text { and }
\end{aligned}
$$

$f(x) 0$ for $x>450$.
Thus, $C(x)$ is increasing for $x>600$ so the optimal order quantity does not change.
11.

The objective is $A=(x+100) w$ and the constraint is

$$
+(x+100)+2 w=2 x+2 w+100=400 ; \text { or }
$$

$$
+w=150, w=150-x
$$

$A(x)(x 100)(150 x)$

$$
x^{2} 50 x 15,000
$$

$A(x) 2 x 50, A(25) 0$
The maximum value of A occurs at $x=25$. Thus the optimal values are $x=25 \mathrm{ft}$, $w=150-25=125 \mathrm{ft}$.

Refer to the figure for exercise 11. The objective remains $A=(x+100) w$, but the constraint becomes $2 x+2 w+100=200$; or $x+w=50$, so $A(x)=(x+100)(50-x)$
A $x \times 10050 \times x^{2} 50 \times 5000$, $A(x) 2 x 50$
$A(x) 02 \times 500 \times 25$.
In this case, the maximum value of A occurs at $=-25$, and $A(x)$ is decreasing for $x>-25$. Thus, the best non-negative value for x is x $=0$. The optimal dimensions are $x=0 \mathrm{ft}, w$ $=50 \mathrm{ft}$.
13.

The objective is $F=2 x+3 w$, and the constraint is $x w=54$, or $w \frac{54}{x}$, so

$$
F(x) 2 x \frac{162}{x}
$$

$$
F(x) 2 \underline{162} 2 \underline{162} 0
$$

$$
2162 \quad x^{2} \quad x^{2}
$$

$$
x \quad \overline{2} \quad x 9
$$

The minimum value of F for $x>0$ is $x=$ 9. The optimal dimensions are thus $x=9$ $\mathrm{m}, w=6 \mathrm{~m}$.
Refer to the figure for exercise 13. The objective is

$$
C 2(5 x) 2(5 w) 2 w 10 x 12 w
$$

The constraint is $x w=54$, so $w \frac{54}{x} x$ and 648
$C(x) 10^{\underline{648}}$
$C(x) 010 \frac{648}{} \int_{x^{2}} x^{x \underline{18}}$ $\sqrt{5}$

The optimal dimensions are $x \quad \frac{18}{\sqrt{5}} \mathrm{~m}$, w $35 \sqrt{\mathrm{~m}}$.
a. $(0,1000),(5,1500)$

$$
\begin{aligned}
& \frac{15001000}{50} 100 . \\
& y 1500100 x 5 ; y 100 \times 1000 A(
\end{aligned}
$$

x) 100×1000.

Let x be the discount per pizza. Then, for 0×18,
revenue $R(x)(100 x 1000)(18 x) 18000$

$$
800 \times 100 x^{2}
$$

$R^{\prime}(x) 800200 x$
$800200 x 0 x 4$
Therefore, revenue is maximized when the discount is $x \$ 4$.
Let each pizza cost $\$ 9$ and let x be the discount per pizza. Then $A(x) 100 \times 1000$ and, for 0×9,
revenue $R(x)(100 x 1000)(9 x)$.
$R(x) 9000100 \times 100 x^{2}$
$R(x) 100200 x$
$100200 \times 0 \times$. 5
In this case, revenue is maximized when the discount is $x=-\$.50$. Since 0×9, the revenue is maximized when $x=0$.
16.

The objective is $S 2 x^{2} 3 x y$ where x and y are the dimensions of the box. The constraint is $x^{2} y 36$, so $\quad y \frac{36}{x^{2}}$ and $S(x) \quad 2 x^{2} 3 x \frac{36}{x^{2}} 2 x^{2} \xrightarrow{\underline{108} .} x$

Chapter 2 Applications of the Derivative

(continued)

$$
S(x) \begin{array}{r}
\underline{108} \\
4 \underline{x} \begin{array}{l}
108 \\
\underline{108}
\end{array}
\end{array}
$$

$S(x) 04 x \quad 0 \times 3$.
$x^{2} y 369 y 36 y 4$
The optimal dimensions are 3 in. 3 in. 4 in.

Let x be the length and width of the base and let y be the height of the shed. The objective is

$$
4 x^{2} 2 x^{2} 42.5 x y 6 x^{2} 10 x y \text {. The }
$$

constraint is x^{2} y $150 y^{\underline{150}} \cdot x 2$
$C(x) 6 x^{2} \stackrel{1500}{-}, C(x) 12 x \stackrel{1500}{-}$
$C(x) 012 x \frac{x}{x} \frac{1500}{0} \underset{x^{2}}{x 5}$
The optimal dimensions are 5 ft 5 ft 6 ft .
Let x be the length of the front of the building
and let y be the other dimension. The objective is
$C=70 x+2 \cdot 50 y+50 x=120 x+100 y$ and
the constraint is $x y=12,000 y \xrightarrow{12,000}$.
So $C(x) 120 x \frac{1,200,000}{x}$,

1,200,000
$C(x) 120 \quad x 2, C(100) 0$.

The optimal dimensions are $x=100$
$\mathrm{ft}, y=120 \mathrm{ft}$.
Let x be the length of the square end and let h be the other dimension. The objective is $x^{2} h$ and the constraint is $2 x+h=$
$120 h=120-2 x$.
$V(x) 120 x^{2} 2 x^{3}, V(x) 240 x 6 x^{2}$
$V(x) 0240 x 6 x^{2} 0$
$6 x 40 \times 0 \times 0$ or $x 40$
The maximum value of V for $x>0$ occurs at $x=40 \mathrm{~cm}, h=40 \mathrm{~cm}$.
The optimal dimensions are 40 cm 40 cm 40 cm .
20.

dimensions should be $\underline{3}_{2} \mathrm{ft} 3 \mathrm{ft} 2 \mathrm{ft}$.

We want to find the maximum value of $f(t)$.

10200	
$f(t) \quad(t 10)^{2} \quad(t 10){ }^{3}$	
$f(t)-\frac{20}{(t}-\frac{600}{10)^{3} \quad(t 10) 4} \text { Setting }$$f(t) 0 \text { gives }$	
$20 \quad 600$	600
$\overline{(t 10)^{3}} \overline{(t 10)}^{4}{ }^{20}$	${ }_{(t 10)}{ }^{20 .}$
$\left.\left.f(t)-\frac{60}{(t} 10\right)^{4} \frac{2400}{(t} 10\right)^{5}$	$f(20) 0$, so

$t=20$ is the maximum value of $f(t)$. Oxygen content is increasing fastest after 20 days.

We want to find the maximum value of
1
$f(t) 402 t \quad t^{2} .{ }_{5}$
$f(t) 2 \underline{2} t{\underset{5}{2}}_{\underline{2}} \quad t 0 t 5$.
The maximum rate of output occurs at $t=5$. The maximum output rate is $f(5) 45$ tons/hour.

Let (x, y) be the top right-hand corner of the window. The objective is $A=2 x y$ and the constraint is $y 9 x^{2}$. Thus,
$A(x) 2 x\left(9 x^{2}\right) 18 x 2 x^{3}$,
$A(x) 186 x^{2}$
$A(x) 0186 x^{2} 0 x 3$
The maximum value of A for $x>0$ occurs at
$\sqrt[3]{ }$. Thus, the window should be 6
units high and 2 units wide.
We want to find the minimum value of $10 \underline{00} \xrightarrow{8000} ;$
$f(t) \quad(t 8)^{2} \quad(t 8)^{3}$
$f(t) \xrightarrow[(t 8)^{3}]{\frac{2000}{(t 8)}-\frac{24,000}{4} \text { Setting } \quad f(t) 0}$
gives
$\frac{2000}{(t 8)^{3}} \quad \frac{24,000}{(t \quad 8)^{4}} 2000$
27.
 the square base and h is the height.)

$$
\begin{array}{lll}
V x^{2} h 400 h & \underline{400} \text {, so } \\
& x^{2} \\
\underline{2} \underline{2000} & \underline{d A} & \underline{2000} \\
x & d x & x^{2}
\end{array}
$$

Setting $\frac{d A}{d x} 0$ gives $2 x^{3} \quad 2000$ or $x=10$
which in turn yields $h=4 \mathrm{in}$. The dimensions should be 10 in .10 in .4 in.

Since $f(x)$ is negative on the interval
$x 5, f(x)$ is decreasing on the interval 0.
Therefore $f(x)$ has its greatest value at zero.
29.

Let $V=$ volume of box, and let l and w represent the dimensions of the base of the box. Objective: $V=l w x$

$$
403 x
$$

Constraints: $l \quad 2 \quad, w=20-2 x$
Substituting, the volume of the box is given by
$V \frac{403 x}{2}(202 x) x 3^{3} 70 x^{2} 400 x$.

[0,10$]$ by [0, 700]
Since we require the dimensions of the box to Copyright © 2018 Pearson Education Inc.
$f(t) \frac{6000}{} \frac{96,000}{4}, \quad f(4) 0$, so $t=$ $\left(\begin{array}{ll}t & 8\end{array}\right)^{4}(t 8) \quad 5$
4 gives the minimum value of $f(t)$. Sales fall the fastest after 4 weeks.
be positive, the appropriate domain is $0<x<10$. Using graphing calculator techniques, the maximum function value on this domain occurs at $x \approx 3.7716$.

To confirm this, use the calculator's numerical differentiation capability or the function

$\frac{d V}{d x} \quad 9$	2
x	140×400 to graph the

$$
\frac{d V}{\text { of }} d x 0 \text { is } x \approx 3.7716
$$

The maximum volume occurs when $x \approx$ 3.77 cm .
30. a.

$[0,39]$ by $[0,3.5]$
Note that
(x) . 0848.01664 x. $000432 x^{2}$.

The solutions of $f(x) 0$ are $x \approx 6.0448$
and $x \approx 32.4738$. The solution corresponding to the least coffee consumption is $x \approx 32.4738$, which
corresponds to the year 1988. The coffee
consumption at that time was $f(32.4738) \approx 1.7$ cups per day per adult.

The solution of $f(x) 0$ corresponding to the greatest coffee consumption is $x \approx 6.0448$, which corresponds to the year 1961. The coffee consumption at that
time was $f(6.0448) \approx 3.0$ cups per day per adult.

The solution of $f(x)=0$ is $x \approx 19.2593$, which corresponds to the year 1975. Coffee consumption was decreasing at the greatest rate in 1975.

2.7 Applications of Derivatives

to
 Business and Economics

The marginal cost function is
$M(x) C(x) 3 x^{2} 12 x 13$.
$M(x) 6 x 12$
$M(x) 06 x 120 \times 2$
The minimum value of $M(x)$ occurs at $x=2$. The minimum marginal cost is $M(2)=\$ 1$.
$M(x) C(x) .0003 x^{2} .12 x 12$
$M(x) .0006 x .12, M(100) .060$, so the
marginal cost is decreasing at $x=100$.
$M(x) 0.0006 x .120 \times 200$
The minimal marginal cost is $M(200)=\$ 0$.
3. $R(x) 200 \quad \frac{1600}{x 8} x, R(x) \quad 1600 \frac{1,}{(x 8)_{2}}$
$R(x) 0-1600$
(x8) 2
$1600(x 8)^{2} 40 \times 8 \times 32$
The maximum value of $R(x)$ occurs at $x=32$.

$$
{ }^{2}, R(x)
$$

4. $R(x) 4 x .0001 x \quad 4.0002 x$,
$R(x) 04.0002 x 0 \quad x 20,000$
The maximum value of $R(x)$ occurs at $x=20,000$. The maximum possible revenue is $R(20,000)=40,000$.
The profit function is

$$
\begin{aligned}
& P(x) R(x) C(x) \\
& \quad 28 x\left(x^{3} 6 x^{2} 13 x 15\right) \\
& x^{5} 6 x^{2} 15 x 15 \\
& P(x) 3 x^{2} 12 x 15 \\
& P(x) 03 x^{2} 12 \times 150 \\
& 3 x 5 x 10 \times 5 \text { or } x 1 \\
& \text { The maximum value of } P(x) \text { for } x>0 \text { occurs } \\
& \text { at } x=5 \text {. }
\end{aligned}
$$

Copyright © 2018 Pearson Education Inc.

The revenue function is $R(x)=3.5 x$. Thus, the
profit function is $P(x)=R(x)-C(x)$
$P(x) R(x) C(x)$
$3.5 x\left(.0006 x^{3} .03 x^{2} 2 x 20\right)$
$.0006 x^{3} .03 x^{2} 1.5 x 20$
$P(x) .0018 x^{2} .06 x 1.5$
$P(x) 0.0018 x^{2} .06 x 1.50$
$x 50$ or $x \quad \underline{50}$
3
Thus, the maximum value of $P(x)$ for $x>$ 0 occurs at $x=50$.

The revenue function is

$$
\begin{aligned}
& R(x) x-x^{2} 10 \times 300 \\
& {\underset{x}{x} 10 x}^{3} 300 x=2 \\
& k(x) \frac{12}{\frac{1}{4}} \underset{4}{2} 20 \times 300 R(x) 0 \\
& x^{2} 20 x 3000 x^{2} 80 \times 12000 \\
& 4 \\
& x 60 \times 200 \quad x 60 \text { or } x 20 \\
& R(x)^{1} x 20 \\
& 2 \\
& R(20) 0, R(60) 0
\end{aligned}
$$

The maximum value of $R(x)$ occurs at $x=20$.

$$
\underline{1}
$$

The revenue function is

$$
\begin{aligned}
& R(x) x(2.001 x) 2 x .001 x^{2} . \\
& R(x) 2.002 x \\
& R(x) 02.002 x 0 x \times 1000
\end{aligned}
$$

The maximum value of $R(x)$ occurs at x $=1000$. The corresponding price is $p=2-.001(1000)=\$ 1$.
The revenue function is
$R(x) x(25650 x) 256 x 50 x^{2}$. Thus, the profit function is

$$
\begin{aligned}
& P(x) R(x) C(x) 256 x 50 x^{2} 18256 x \\
& 50 x^{2} 200 \times 182 \\
& P(x) 100 \times 200 \\
& P(x) 0100 \times 2000 \times 2
\end{aligned}
$$

The maximum profit occurs at $x=2$ (million tons). The corresponding price is
$256-50(2)=156$ dollars per ton .
10. The objective is $A=x y$ and the constraint is
$y=30-x . A(x)=x(30-x) 30 x x^{2}$,
$A(x) 302 x$
$A(x) 0302 x 0 \times 15$
The maximum value of $A(x)$ occurs at $x=15$. Thus, the optimal values are $a=15, b=15$. If $y=30-x$ is a demand curve, then $A(x)$ above corresponds to the revenue function $R(x)$ and the optimal values a, b correspond to the revenue-maximizing quantity and price, respectively.
11. a. Let p stand for the price of hamburgers and let x be the quantity. Using the point-slope equation,
\qquad
$p 4 \quad 800010,000(x 10,000)$ or
$=-.0002 x+6$. Thus, the
revenue function is
$R(x) x(.0002 x 6) .0002 x^{2} 6 x$.
$R(x) .0004 x 6$
$R(x) 0.0004 x 60$ 15, 000

The maximum value of $R(x)$ occurs at $x=15,000$. The optimal price is thus $-.0002(15,000)+6=\$ 3.00$
The cost function is $C(x)=1000+.6 x$, so the profit function is $P(x)=R(x)-$ $C(x) P(x) R(x) C(x)$

$$
.0002 x^{2} 6 x 1000.6 x
$$

$$
.0002 x^{2} 5.4 x 1000
$$

$P(x) .0004 x 5.4$
$P(x) 0.0004 x 5.40$ 13, 500
The maximum value of $P(x)$ occurs at $x=13,500$. The optimal price is $.0002(13,500)+6=\$ 3.30$.

Let $50+x$ denote the ticket price and y the attendance. Since a $\$ 2$ increase in price lowers the attendance by 200, we have $y=4000-100 x$.
We now have
Revenue R price attendance $(50 x)(4000100 x)$ 2
$100 x \quad 1000 \times 200,000$
$R(x) 200 x 1000$
$R(x) 0200 x 10000 \times 5$
$R=(50-5)(4000-100(-5))=$ 202,500 Answer: Charge $\$ 45$ per ticket. Revenue $=\$ 202,500$

Chapter 2 Applications of the Derivative

Let x be the number of prints the artist sells.
Then his revenue $=$ [price] \cdot [quantity].
(4005(x50)) x if $x 50$

$$
400 x \quad \text { if } x 50
$$

For $x>50, r(x) 5 x^{2} 650 x$,
$r(x) 10 x 650$
$r(x) 010 x 6500 \times 65$
The maximum value of $r(x)$ occurs at $x=65$.
The artist should sell 65 prints.
Let x be the number of memberships the club sells. Then their revenue is

$200 x$	if $x 100$
$r(x)$	if 100×160
$200(x 100)) x$	if $x 100$

$$
r(x) 02 x 3000 x 150
$$

The maximum value of $r(x)$ occurs at $x=150$. The club should try to sell 150 memberships.

Let $P(x)$ be the profit from x tables.

$$
\begin{aligned}
& \text { Then } P(x)\left(10(x 12)(.5) x .5 x^{2} 16 x\right. \\
& \text { For } x \geq 12, P(x) 16 x \\
& P(x) 016 x 0 x 16
\end{aligned}
$$

The maximum value of $P(x)$ occurs at $x=$ 16. The cafe should provide 16 tables.

The revenue function is

$$
\begin{array}{r}
R(x) \times 36,000300 \times 100 \\
300 x^{2} 66,000 x
\end{array}
$$

where x is the price in cents and $x \geq 100$.
$R(x)$ 66, $000600 x$
$R(x) 066,000600 x 0 \times 110$
The maximum value occurs at $x=110$.
The toll should be $\$ 1.10$.
17. a. $R(x) \times 6010^{5} \times 60 \times 10^{5} x^{2}$; so the profit function is $P(x)=R(x)-C(x)$
$P(x) R(x) C(x)$

$$
\begin{aligned}
& 60 x 10^{5} x^{2} 710^{6} 30 x \\
& 10 x^{2} 30 x 710^{6} \\
& P(x)-210^{5} \times 30 \\
& P(x) 0-210^{5} \times 300 \\
& 1510^{5}
\end{aligned}
$$

The maximum value of $P(x)$ occurs at 1.510^{5} (thousand kilowatt-hours). The corresponding price is
p $6010^{5} 1510^{5} 45$.
This represents \$45/thousand kilowatt-hours.

The new profit function is $P(x) R(x) C(x)$

$$
\begin{aligned}
& 60 x 10^{5} x^{2} 710^{6} 40 x \\
& 10^{5} x^{2} 20 x 710^{6}
\end{aligned}
$$

$P(x) 210^{5} x 20$
$P(x) 0210 \quad 5 \times 200 \times 10^{6}$.
The maximum value of $P(x)$ occurs at
$x 10{ }^{6}$ (thousand kilowatt-hours). The corresponding price is

6
$6010{ }^{5}\left(10{ }^{6}\right) 50$, representing
\$50/thousand kilowatt-hours.
The maximum profit will be obtained by charging \$50/thousand kilowatt-hours. Since this represents an increase of only \$5/thousand kilowatt-hours over the answer to part (a), the utility company should not pass all of the increase on to consumers.
a. $R(x) x(2003 x) 200 \times 3 x^{2}$, so the profit function is

$$
\begin{aligned}
& P(x) C(x) R(x) \\
& \quad 200 \times 3 x^{2}\left(7580 x x^{2}\right. \\
& \quad) 2 x^{2} 120 x 75
\end{aligned}
$$

$P(x) 4 \times 120$
$P(x) 04 x 1200 \times 30$
The corresponding price is $p=200-3(30)=110$. Thus, $x=30$ and the price is $\$ 110$.

The tax increases the cost function by $4 x$, so the new cost function is
$C(x) 7584 x x^{2}$ and the profit
function is now
$P(x)=R(x)-C(x)$
$P(x) R(x) C(x)$
$200 \times 3 x^{2}\left(7584 x x^{2}\right)$
$2 x^{2} 116 x 75$
$P(x) 4 x 116$
$P(x) 04 x 1160 \times 29$
The corresponding price is $p=200-3(29)=113$, or $\$ 113$.
c. The profit function is now

$$
\begin{aligned}
& P(x) R(x) C(x) \\
& 200 \times 3 x^{2} 75(80 T) x x^{2} \\
& 2 x^{2}(120 T) \times 75 \\
& P(x) 4 x(120 T) \\
& P(x) 04 x(120 T) \times 30 \quad \underline{T}
\end{aligned}
$$

The new value of x is $30 \frac{T}{4}$.
The government's tax revenue is given by
 4
$G(T) \quad 30 \underline{1} T$

The maximum value of $G(T)$ occurs at $T=$ 60. Thus a tax of $\$ 60 /$ unit will maximize the government's tax revenue.
Let r be the percentage rate of interest ($r=4$ represents a 4% interest rate).
Total deposit is $\$ 1,000,000 r$. Total interest paid out in one year is $10,000 r^{2}$. Total interest received on the loans of $1,000,000 r$ is $100,000 r$.
$100,000 r 10,000 r^{2}$
$\underline{d P}_{\underline{d P}} 100,00020,000 r d r$
Set $d r 0$ and solve for r :

An interest rate of 5\% generates the greatest profit.
a. $P(0)$ is the profit with no advertising budget.

As money is spent on advertising, the marginal profit initially increases. However, at some point the marginal profit begins to decrease.

Additional money spent on advertising is most advantageous at the inflection point.
a. Since $R(40)=75$, the revenue is $\$ 75,000$.

Since $R(17.5) 3.2$, the marginal revenue is about $\$ 3200$ per unit.
Since the solution of $R(x)=45$ is $x=15$, the production level in 15 units.

Since the solution of $R(x) .8$ is
32.5 , the production level is 32.5 units.

Looking at the graph of $y=R(x)$, the revenue appears to be greatest at $x \approx$ 35. To confirm, observe that the graph of $y R(x)$ crosses the x-axis at $x=35$.
The revenue is greatest at a production level of 35 units.
a. Since $C(60)=1100$, the cost is $\$ 1100$.

Since C (40) 12.5 , the marginal cost is \$12.50.

Since the solution of $C(x)=1200$ is

100, the production level is 100 units.
Since the solutions of $C(x) 22.5$ are $\bar{A} \square$
20 and $x=140$, the production levels are 20 units and 140 units.
Looking at the graph of $y C(x)$, the marginal cost appears to be least at $x \approx 80$. The production level is 80 units, and the marginal cost is $\$ 5$.

Chapter 2 Fundamental Concept Check Exercises

Increasing and decreasing functions relative maximum and minimum points absolute maximum and minimum points concave up and concave down inflection point, intercepts, asymptotes
A point is a relative maximum at $x=2$ if the function attains a maximum at $x=2$ relative to nearby points on the graph. The function has an absolute maximum at $x=2$ if it attains its largest value at $x=2$.

Concave up at $x=2$: The graph -opens $\|$ up as it passes through the point at $x=2$; there is an open interval containing $x=2$ throughout which the graph lies above its tangent line; the slope of the tangent line increases as we move from left to right through the point at x $=2$. Concave down at $x=2$: The graph -opensll down as it passes through the point at $x=2$; there is an open interval containing x $=2$ throughout which the graph lies below its tangent line; the slope of the tangent line decreases as we move from left to right through the point at $x=2$.

Copyright © 2018 Pearson Education Inc.

Chapter 2 Applications of the Derivative

$f x$ has an inflection point at $x=2$ if the concavity of the graph changes at the point 2，f2．

The x－coordinate of the x－intercept is a zero of the function．

To determine the y－intercept，set $x=0$ and compute $f 0$ ．

An asymptote is a line that a curve approaches as the curve approaches infinity．There are three types of asymptotes：horizontal，vertical，and oblique（or slant）asymptotes．Note that the distance between the curve and the asymptote approaches zero．For example，in the figure $y=$ 2 is a vertical asymptote and $x=2$ is a horizontal asymptote．

First derivative rule：If $f a 0$ ，then f is
increasing at $x=a$ ．If $f a 0$ ，then f is
decreasing at $x=a$ ．
Second derivative rule：If $f a 0$ ，then f is
concave up at $x=a$ ．If $f a 0$ ，then f is
concave down at $x=a$ ．
We can think of the derivative of $f x$ as a －slope functionll for $f x$ ．The y－values on
the graph of $y f x$ are the slopes of the corresponding points on the graph of $y f x$ ．Thus，on an interval where $f x 0, f$ is increasing．On an interval where $f x$ is increasing，f is concave up．

$$
f x 0 . \text { Let a solution be represented }
$$

10．Solve
by a ．If f changes from positive to negative at $x=a$ ，then f has a local maximum at a ．If changes from negative to positive at $x=$ a ，then f has a local minimum at a ．If f does not change sign at a（that is，f is either positive on both sides of a or negative on both sides of a ，then f has no local extremum at a ．

Solve $f x 0$ ．Let a solution be represented by a ．If $f a 0$ and $f x$ changes sign as we move from left to right through $x=a$ ，then there is an inflection point at $x=a$ ．
See pages 161－162 in section 2.4 for more detail．
1．Compute $f x$ and $f x$ ．
Find all relative extreme points．

pply the first and second derivative tests to find the relative extreme points．Set $f x 0$ ，and solve for x to find the critical value $x=a$ ．
${ }^{\ulcorner } \overline{\mathrm{A}} \square \quad \overline{\mathrm{A}} \square$
$\mathrm{f} f a 0$ ，the curve has a relative minimum at $x=a$ ．
「Ā
$\mathrm{f} f a 0$ ，the curve has a
relative maximum at $x=a$ ．
「 $\overline{\mathrm{A}}$
$\mathrm{f} f a 0$ ，there is an inflection point at $x=a$ ．

$\overline{\mathrm{A}}$

$\overline{\mathrm{A}}$
$\overline{\mathrm{A}}$都 \square

$$
\sqcup
$$

epeat the preceding steps for each solution to $f x 0$ ．
Find all the inflection points of $f x$ using the second derivative test． Consider other properties of the function and complete the sketch．

In an optimization problem，the quantity to be optimized（maximized or minimized）is given by the objective equation．

A constraint equation is an equation that places a limit，or a constraint，on the variables in an optimization problem．
1．Draw a picture，if possible．
Decide what quantity Q is to be maximized or minimized．
Assign variables to other quantities in the problem．
Determine the objective equation that expresses Q as a function of the variables assigned in step 3.
Find the constraint equation that relates the variable to each other and to any constants that are given in the problem． Use the constraint equation to simplify the objective equation in such a way that Q becomes a function of only one variable． Determine the domain of this function．
（continued on next page）

Copyright © 2018 Pearson Education Inc.

(continued)

Sketch the graph of the function obtained in step 6 and use this graph to solve the optimization problem. Alternatively, use the second derivative test.
$P x R x C x$

Chapter 2 Review Exercises

a. The graph of $f(x)$ is increasing when $f($

$$
\text { x) } 0:-3<x<1, x>5 .
$$

The graph of $f(x)$ is decreasing when $f(x) 0: x<-3,1<x<5$.

The graph of $f(x)$ is concave up when f (x) is increasing: $x<-1, x>3$.
The graph of $f(x)$ is concave down when $f(x)$ is decreasing: $-1<x<3$.
a. $f(3)=2$

1

b. The tangent line has slope 2 , so

Since the point $(3,2)$ appears to be an inflection point, $f(3) 0$.
3.

4.

5.

6.

7. (d), (e)
8. (b)
9. (c), (d)
10. (a)
11. (e)
12. (b)

Graph goes through $(1,2)$, increasing at $x=1$.
Graph goes through $(1,5)$, decreasing at $x=1$.
15. Increasing and concave up at x

$$
=3
$$

Decreasing and concave down at $x=2$.
$(10,2)$ is a relative minimum point.
Graph goes through $(4,-2)$, increasing and concave down at $x=4$.

Graph goes through $(5,-1)$, decreasing at
$=5$.
$(0,0)$ is a relative minimum point.
a. $f(t)=1$ at $t=2$, after 2 hours.
$f(5)=.8$
$f(t) .08$ at $t=3$, after 3 hours.
Since $f(8) .02$, the rate of change is -.02 unit per hour.
a. Since $f(50)=400$, the amount of energy produced was 400 trillion kilowatt-hours.

Since $f(50) 35$, the rate of change was 35 trillion kilowatt-hours per year.

Since $f(t)=3000$ at $t=95$, the production level reached 300 trillion kilowatt-hours in 1995.

Since $f(t) 10$ at $t=35$, the production level was rising at the rate of 10 trillion kilowatt-hours per year in 1935.
Looking at the graph of $y f(t)$, the value of $f(t)$ appears to be greatest at $t=70$. To confirm, observe that the graph of $y f(t)$ crosses the t-axis at $t=70$.
Energy production was growing at the greatest rate in 1970. Since $f(70)=1600$, the production level at that time was 1600 trillion kilowatt-hours.
$y 3 x^{2}$
$2 x y$
2
$y 0$ if $x 0$
If $x=0, y=3$, so $(0,3)$ is a critical point and the y-intercept. $y 0$, so $(0,3)$ is a relative maximum.
$03 x^{2} \quad x \quad \sqrt{3}$, so the x-intercepts are

$y 76 x x^{2} y 6$
$2 x y$
2
0 if $x 3$
If $x=3, y=16$, so $(3,16)$ is a critical point. 0 , so $(3,16)$ is a relative maximum.
$076 x x^{2} \quad x 1$ or $x 7$, so the x-intercepts are $(-1,0)$ and $(7,0)$.
The y-intercept is $(0,7)$.

$y x^{2} 3 x 10 y 2 x$
3
2

$$
\begin{array}{cc}
& 3 \\
0 \text { if } x & \\
2
\end{array}
$$

If $x 2,{ }^{3} \neq 4 \quad$ 49 \quad so $2^{\frac{3}{-}} 4 \quad$ isa critical
point. $y 0$, so $\quad \frac{3}{2}, \frac{49}{2}$ is a relative
minimum.
$x^{2} 3 x 100 \times 5$ or $x 2$, so the x-intercepts are $(-5,0)$ and $(2,0)$.
The y-intercept is $(0,-10)$.

$$
\begin{array}{llllll}
x & x, y & 4 \\
\text { If } & \underline{3} & \underline{49} & \underline{3} & \underline{25}
\end{array}
$$

point. $y 0$, so ${ }^{3-},{ }^{25}$ is ${ }^{4}$ a relative maximum.
$043 x x^{2} \quad x 1$ or $x 4$, so the x-intercepts are $(-1,0)$ and $(4,0)$. The y-intercept is $(0,4)$.

$$
\begin{aligned}
& y 2 x^{2} 10 \times 10 y \\
& 4 \times 10 \\
& 4 \\
& y 0 \text { if } x^{\underline{5}} 2 \\
& \text { If } x{ }^{\frac{5}{-}} 2, y \frac{5}{-} \text { so } 2^{\frac{5}{2}}, \frac{5}{-} \text { is a critical point. } \\
& y 0 \text {, so } 2_{2}, \frac{5_{2}^{2}}{2} \text { is a relative maximum. } \\
& 02 x^{2} \quad 10 x 10 x \quad \frac{55}{2} \text {, so the }
\end{aligned}
$$

The y-intercept is $(0,-10)$.


```
y x < 9x 19 y 2x
```

 2
 \(y 0\) if \(x^{\underline{9}}\)
 If \(x \quad \frac{9}{2}, y \quad 4 \quad \frac{5}{-}\) so \(2_{2^{-}}^{9}, 4 \stackrel{5}{\text { is }}\) a critical
 point. \(y 0\), so \(2, \frac{5}{2}\) is a relative
 minimum.
 \(0 x^{2} 9 x 19 x \quad \frac{955}{2}\), so the
 \(\frac{\sqrt{7}}{2}\)
 The \(y\)-intercept is \((0,19)\).
 \(-\int_{5}, 0\).

2
$y 0$ if $x \quad \underline{3}$
If $x_{\underline{3}}, y^{1} \quad 2$ so $-\frac{1}{-1}$ is a critical
point. $y^{2} 0$, so $\quad{ }^{4}, 1^{2} \quad$ is a relative
minimum.
$0 x^{2} 3 x 2 \times 2$ or x, so the x-intercepts are $(-2,0)$ and $(-1,0)$.
The y-intercept is $(0,2)$.

2
0 if $x 4$
If $x=4, y=3$, so $(4,3)$ is a critical point. 0 , so $(4,3)$ is a relative maximum.
$0 x^{2} 8 x 13 x 4$

31. $y x^{2} 20 x 90$
$2 x$
$20 y 2$
$y 0$ if $x 10$
If $x=10, y=10$, so $(10,10)$ is a critical point.
0 , so $(10,10)$ is a relative maximum.
$0 x^{2} 20 x 90 \times 10$, so the x intercepts are $10 \boldsymbol{\square}, 0$ and
10 【. 0 .
The y-intercept is $(0,-13)$.

$$
\begin{aligned}
& 4 x \\
& 1 y 4 \\
& y 0 \text { if } x \quad \underline{1} \\
& \text { If } x \quad 4 \quad y \quad 8 \text { so } \quad \underline{9} \\
& \underline{9} \quad
\end{aligned}
$$

is a critical
point. $y 0$, so $\frac{1}{-}, \underline{-}_{4} \quad 8$ is a relative
minimum.

$$
02 x^{2} \times 1 x \quad 1 \text { or } x_{2}, \text { so the } \frac{1}{-}
$$

x-intercepts are $(-1,0)$ and $-1,0$.
The y-intercept is $(0,-1)$.

x-intercepts are $4 \quad \sqrt{3}, 0$ and $4 \quad \sqrt{\beta}, 0$.
The y-intercept is $(0,-13)$.

$$
\begin{array}{r}
f x 2 x^{3} 3 x^{2} 1 \\
x \\
6 x^{2} 6 x f x
\end{array}
$$

12×6
$f x 0$ if $x 0$ or $x 1$
$f_{0} 10,1$ is a critical pt.
$f 121,2$ is a critical pt.
$f 060$, so the graph is concave up at $x=0$, and $(0,1)$ is a relative minimum.

160 , so the graph is concave down at $x=-1$, and $(-1,2)$ is a relative maximum.
$f x 0$ when $x \xrightarrow{1}$.

2

$f^{\underline{1}} \quad \underline{3} \quad \underline{1}, \underline{3}$ is an inflection pt.
$2 \quad 2 \quad 2 \quad 2$
The y-intercept is $(0,1)$.

$x 3 x^{2} 3 x 6 f$
$x 6 \times 3$
$f x 0$ if $x 1$ or $x 2$
$f 1 \xrightarrow{7} 1, \frac{7}{2}$ is a critical pt.
$f 2102,10$ is a critical pt.
190 , so the graph is concave down at $x=-$
1 , and $1, \frac{7}{-}$ is a relative maximum.
$f 290$, so the graph 2 is concave up at
$x=2$, and $(2,-10)$ is a relative minimum.
$f x 0$ when x^{1}. 2

The y-intercept is $(0,1)$.

$f x x^{3} 3 x^{2} 3 x 2 f$
$x 3 x \quad 6 x 3$
fx 6×6
To find possible extrema, set $f(x) 0$ and solve for x.
$3 x^{2} 6 x 30 \times 1$
$f 11$, so $(1,-1)$ is a critical point.
Since $f(x) 0$ for all x, the graph is always increasing, and $(1,-1)$ is neither a relative maximum nor a relative minimum. To find possible inflection points, set $f(x) 0$ and solve for x.
$6 \times 60 \times 1$

Since $f x 0$ for $x<1$ (meaning the graph is concave down) and $f x 0$ for $x>1$ (meaning the graph is concave up), the point $(1,-1)$ is an inflection point. The y-intercept is $(0,-2)$.

$3612 x 3 x^{2}$
$f x 126 x$
$f x 0$ if $x \quad 6$ or $x 2$
$f 61166,116$ is a critical pt. $f 21402,140$ is a critical pt.
$f 6240$, so the graph is concave up at $x=-6$, and $(-6,-116)$ is a relative minimum.
$f 2240$, so the graph is concave down at $x=-1$, and $(2,140)$ is a relative maximum.
$f x 0$ when $x 2$.
$f 2122,12$ is an inflection pt.
The y-intercept is $(0,100)$.

37. $f x \stackrel{11}{=} 3 x x^{2} \underline{1} x^{3}$
fx $32 x x^{2}$
fx $22 x$
$f x 0$ if $x 3$ or $x \quad 1$
$f 3 \underline{16} 3, \frac{16}{3}$ is a critical pt.
${ }_{f 1} \frac{16}{-} \underset{1,}{ } \xrightarrow{\underline{16}}$ is a critical pt.
$f 340$, so the graph is concave up at $x=-3$, and $3, \quad 16$ is a relative minimum. 3
140 , so the graph is concave down at $x=1$, and $1, \frac{16}{3}$ is a relative maximum.
$f x 0$ when $x 1$. $f 101,0$ is an inflection pt.

The y-intercept is $0, \underline{11}_{3}$.

$f 1121,12$ is a critical pt.
$f 3103,20$ is a critical pt.
1120 , so the graph is concave down at $x=-1$, and $(-1,12)$ is a relative maximum.

3120 ,so the graph is concave up at
$x=3$, and $(3,-20)$ is a relative minimum.
$f x 0$ when x.
$f 141,4$ is an inflection pt.
The y-intercept is $(0,7)$.

39. $f x \quad \frac{1}{3} x^{3} 2 x^{2} 5 x$
$f x x^{2} 4 x 5$
$f x 2 x 4$
To find possible extrema, set $f(x) 0$ and solve for x.
$x^{2} 4 x 50$ no real solution Thus, there are no extrema.
Since $f(x) 0$ for all x, the graph is always decreasing.
To find possible inflection points, set
$f(x) 0$ and solve for x.
$2 x 40 \times 2$
$f 2 \xrightarrow{14}$

Since $f x \quad 0$ for x ㄴ․ \quad (meaning the
graph is concave up) and $f x 0$ for
$\underline{14}_{3}$ (meaning the graph is concave down), the point $2, \frac{14}{3}$ is an inflection point.

06 , so the y-intercept is $(0,0)$.

$$
3 x^{2} 12 x
$$

$15 y 6 \times 12$
$y 0$ if $x 1$ or $x 5$
If $x=-1, y=58$. If $x=5, y=-50$. So, $(-1,58)$
and $(5,-50)$ are critical points.
If $x=-1, y \quad 180$, so the graph is
concave down and $(-1,58)$ is a relative maximum.
If $x=5, y 180$, so the graph is concave up and $(5,-50)$ is a relative minimum.

0 when $x=2$. If $x=2, y=4$, so $(2,4)$ is an inflection point. The y-intercept is $(0,50)$.

41. $y \quad x^{4} \quad 2 x^{2} y$

$$
4 x^{3} 4 x y 12
$$

$x^{2} 4$
0 if $x 0, x 1$, or $x 1$

$$
\begin{aligned}
& \text { If } x=-1, y=-1 \text {. If } x=0, y=0 \text {. If } x=1 \text {, } \\
& \quad=-1 \text {. So, }(-1,-1),(0,0) \text {, and }(1,-1)
\end{aligned}
$$

are critical points.
If $x=-1, y 80$, so the graph is concave
up and $(-1,-1)$ is a relative minimum.
If $x=1, y=-1, y 80$, so the graph is concave up and $(1,-1)$ is a relative minimum. If $x=0, y 0$, so we must use the first derivative test. Since $y 0$ when $x<0$ and also when $x>0,(0,0)$ is a relative maximum.

$$
\begin{equation*}
y \quad 0 \text { when } x \perp \cdot \operatorname{If}_{3} x-1, y \underset{-\sqrt{3}}{-} \tag{9}
\end{equation*}
$$

so $\frac{1}{-\sqrt{3}}-\underset{9}{-5}$ is an inflection point.
If $x \quad \frac{1}{\sqrt{3}}, y \quad 5,{ }_{9}$ so $\quad \frac{1}{\sqrt{3}}, \quad \underset{9}{5} \quad$ is an inflection point. The y-intercept is $(0,0)$.

$y x^{4} 4 x^{3}$
$4 x^{3} 12 x^{2} 4 x^{2} x$
$3 y 12 x^{2} 24 x$
$y 0$ if $x 0$ or $x 3$
If $x=0, y=0$. If $x=0, y=0$. If $x=3$, $y=-27$. So, $(0,0)$, and (3,-27) are critical points.
If $x=3, y 360$, so the graph is concave up and $(3,-27)$ is a relative minimum. If $x=0, y 0$, so we must use the first
derivative test.

Critical Points, Intervals	$x 0$	$0 x 3$	$3 x$
$4 x^{2}$	+	+	+
$x 3$	-	-	+
y	-	-	+
y	Decreasing on, 0	Decreasing on 0,3	Increasing on 3,

Thus, $(0,0)$ is neither a relative maximum nor a relative minimum. It may be an inflection point. Verify by using the second derivative test.
$y 0$ when $x 0$ or $x 2$.

Critical Points, Intervals$\| x 0$	0×2	2×3	$3 x$	
$12 x$	-	+	+	+
$x 2$	-	-	+	+
y	+	-	+	+
Concavity	up	down	up	up

If $x=0, y=0$ so $(0,0)$ is an inflection point. If $x=2, y=-16$ so $(2,-16)$ is an inflection point. The y-intercept is $(0,0)$.

$y=\frac{1}{5} x^{2}$
$y \frac{40}{x^{3}}$
0 if $x \quad 10$
Note that we need to consider the positive solution only because the function is defined only for $x>0$. When $x=10, y=7$, and $y \quad 1 \quad 0$, so the graph is concave up and $(10,7)$ is a relative minimum.
Since y can never be zero, there are no

$$
\underline{20}
$$

inflection points. The term $\quad x$ tells us that
the y-axis is an asymptote. As x, the graph approaches $y_{4} \quad \underset{3}{ }$, so this is also an asymptote of the graph.

Note that we need to consider the positive solution only because the function is defined only for $x>0$. When $x \quad \frac{1}{2}, y=3$, and $y 80$, so the graph is concave up and
$\frac{1}{-2}, 3$ is a relative minimum.
Since y can never be zero, there are no inflection points. The term $\frac{1}{2 x}$ tells us that the
y-axis is an asymptote. As x, the graph approaches $y 2 x 1$, so this is also an asymptote of the graph.

 Since $f(0) 0, \quad f$ has a possible extreme value at $x=0$.
46. $\begin{array}{ccccc}f(x) & 22 x^{2} & 3 & 4 x \quad 6 x 2 x & 2\end{array}{ }^{1 / 2}$ determined by the sign of $4 x$. Therefore, $f(x) 0$ if $x>0, \quad f(x) 0$ if $x<0$. This means that $f(x)$ is decreasing for $x<0$ and increasing for $x>0$.

$$
\stackrel{2 x}{ }
$$

47. $f(x) \quad\left(1 x^{2}\right)^{2}$ so $\quad f(0) 0$. Since
$f(x) 0$ for all x, it follows that 0 must be an inflection point.
48. $f(x)^{\frac{1}{-}} 5 \times 21^{1 / 2} 10 x-\frac{5 x}{}$, so

$$
\begin{array}{cc}
2 \\
f(0) 0 . \text { Since } & f(x) 0 \text { for all } x, \quad f(x)
\end{array}
$$

is positive for $x>0$ and negative for $x<0$, and it follows that 0 must be an inflection point.
$\mathrm{A}-\mathrm{c}, \mathrm{B}-\mathrm{e}, \mathrm{C}-\mathrm{f}, \mathrm{D}-\mathrm{b}, \mathrm{E}-\mathrm{a}, \mathrm{F}-\mathrm{d}$
A-c, B-e, C-f, D-b, E-a, F-d
a. The number of people living between $10+h$ and 10 miles from the center of the city.

If so, $f(x)$ would be decreasing at $x=$ 10 , which is not possible.
52. $f(x)^{\frac{1}{-}} x^{2} \quad x 2(0 \leq x \leq 8)$
$f(x) \frac{1}{2} x_{1}$
2
$f(x) 0 \quad \frac{1}{2} x 10 \times 2$
$f(x) \frac{1}{2}$
Since $f(2)$ is a relative minimum, the maximum value of $f(x)$ must occur at one of the endpoints. $f(0)=2, f(8)=10.10$ is the maximum value, attained $x=8$.
53. $f(x) 26 x x^{2} \quad(0 \leq x \leq 5)$
$f(x) 62 x$
Since $f(x) 0$ for all $x>0, f(x)$ is decreasing on the interval $[0,5]$. Thus, the maximum value occurs at $x=0$. The maximum value is $f(0)=2$.
54. $g(t) t^{2} 6 t 9(1 \leq t \leq 6)$
$g(t) 2 t 6$
$g(t) 02 t 60 t 3$
$g(t) 2$
The minimum value of $g(t)$ is $g(3)=0$.

120 Chapter 2 Applications of the Derivative
55. Let x be the width and h be the height. The objective is $S=2 x h+\underset{\underline{50}}{4 \underline{0}}+8 h$ and the
constraint is $4 x h 200 h$
Thus,

$S(x) 4 \frac{400}{x^{2}}$
$S(x) 04 \frac{400}{} 0 \times 10{ }_{x}{ }^{2}$
$h \underline{50} \underline{505}$
10
The minimum value of $S(x)$ for $x>0$ occurs at $x=10$. Thus, the dimensions of the box should be 10 ft 4 ft 5 ft .

Let x be the length of the base of the box and let y be the other dimension. The objective is

$$
\begin{aligned}
& x^{2} y \text { and the constraint is } \\
& 3 x^{2} x^{2} 4 x y 48 \\
& 484 x^{2} 12 x^{2} \\
& 4 x \\
& V(x) x^{2 \frac{12 x}{x}} 12 x x^{3} \\
& V(x) 123 x^{2} \\
& V(x) 0123 x^{2} 0 x 2 \\
& V(x) 6 x ; V(2) 0 .
\end{aligned}
$$

The maximum value for x for $x>0$ occurs at $x=2$. The optimal dimensions are thus $2 \mathrm{ft} 2 \mathrm{ft} \quad 4 \mathrm{ft}$.

Let x be the number of inches turned up on each side of the gutter. The objective is $A(x)=(30-2 x) x$
(A is the cross-sectional area of the guttermaximizing this will maximize the volume). $A(x) 304 x$
$A(x) 0304 x 0 x \underline{15}$
15
$A(x) 4, A \quad 0 \quad 2$
$x \frac{15}{2}$ inches gives the maximum value for A.

Let x be the number of trees planted. The objective is $\quad f(x) \quad 25 \quad 1(x 40) x(x \geq$ 2
40). $f(x) 45 x^{-1}{ }_{2}{ }_{2}^{2}$
$f(x) 45 x$
$f(x) 045 x \quad 0 \quad x \quad 45$
$f(x) 1 ; \quad f(45) \quad 0$.
The maximum value of $f(x)$ occurs at $x=45$.
Thus, 45 trees should be planted.
Let r be the number of production runs and let x be the lot size. Then the objective is
$C 1000 r .5^{-x} \quad$ and the constraint is
$r x 400,000 r \quad 400, \frac{000}{-x}$
so $C(x) \quad 4 \underline{1} \underline{0}^{8}-\quad \frac{x}{4}$
$C(x) \stackrel{\underline{410}-\frac{1}{-}}{x^{2}} \begin{aligned} & 4\end{aligned}$
$C(x) 0 \quad \frac{410^{8}}{x^{2}} \quad \frac{1}{4} 0 \times 410 \quad 4$
$C(x) \quad \frac{810-\frac{8}{3}}{3} ; C\left(410^{4}\right) 0$.

The minimum value of $C(x)$ for $x>0$ occurs 4
at $x 410 \quad 40,000$. Thus the economic lot
size is 40,000 books/run.
The revenue function is
$R(x)(150.02 x) x 150 x .02 x^{2}$.
Thus, the profit function is
$P(x)\left(150 x_{2} .02 x^{2}\right)(10 x 300)$
$.02 x \quad 140 \times 300$
$P(x) .04 x 140$
$P(x) 0.04 x 1400 \times 3500$
$P(x) .04 ; P(3500) 0$.
The maximum value of $P(x)$ occurs at $x=3500$.
61.

The distance from point A to point P is $\sqrt{25 x^{2}}$ and the distance from point P to point B is $15 x$. The time it takes to travel from point A to point P is $\frac{\sqrt{25 x} \frac{2}{8}}{2}$ and the time it takes to travel from point P to point B is $\frac{15 x}{17}$. Therefore, the total trip takes $T(x) \frac{1}{2} 25 x_{8}^{12}-\frac{1}{15 x}$ hours.
$T(x)-\underset{16}{1}\left(25 x^{2}\right)^{12}(2 x)^{1} 17$
$T(x) 0 \underline{-1}\left(25 x^{2}\right)^{12}(2 x) / \underline{1} 0 \times \underline{8}$
$16 \quad 173$
$T(x) \stackrel{1}{-}\left(25 x^{2}\right)^{12} \frac{1}{-2}\left(25 x^{2}\right)^{32}$

The minimum value for $T(x)$ occurs at $x \quad \underset{3}{8}$. Thus, Jane should drive from point A to point $P, \underline{8}_{3}$ miles from point C, then down to point B.
Let $12 x 25$ be the size of the tour group. Then, the revenue generated from a group of x people, $R(x)$, is $R($
$x) 800$ 20(x 12) x. To maximize revenue:
$R(x) 104040 x$
$R(x) 0104040 x 0 R 26$
$R(x) 40 ; R(26) 0$
Revenue is maximized for a group of 26 people, which exceeds the maximum allowed. Although, $R(x)$ is an increasing function on [12, 25], therefore $R(x)$ reaches its maximum at $x=25$ on the interval 12×25. The tour group that produces the greatest revenue is size 25 .

CHAPTER 2

Exercises 2.1, page 138

1. (a), (e), (f) 2. (c), (d) decreasing for $x 7 \frac{1}{2} \quad$, concave down, y-intercept $(0,0), x$-intercepts $(0,0)$ and $(1,0)$. 6. Increasing for $x 6 \quad-.4$, relative maximum
point at $x=-.4$, relative maximum value $=5.1$, decreasing for $x 7-.4$, concave down for $x 63$, inflection
$x 73, y$-intercept $(0,5), x$-intercept $(-3.5,0)$. The graph approaches the x-axis as a horizontal asymptote.
point $(3,3)$, concave up for maximum value $\quad=4$, decreasing for $x 72$, concave up for $x 61$, concave down for $x 71$, inflection point at $(1,3), y$-intercept $(0,2)$, x-intercept (3.6, 0). 8. Increasing for $x 6-1$, relative maximum at $x=-1$, relative maximum value $=5$, decreasing for -16×62.9, relative minimum at $x=2.9$, relative minimum value $\quad=-2$, increasing for $x 72.9$, concave down for $x 61$, inflection point at (1,.5), concave up for $x 71$, y-intercept $(0,3.3)$, x-intercepts ($-2.5,0$), ($1.3,0$), and ($4.4,0$). 9. Decreasing for $x 62$, relative minimum at $x=2$, minimum value $=3$, increasing for $x 72$, concave up for all x, no inflection point, defined for $x 70$, the line $y=x$ is an asymptote, the y-axis is an asymptote. 10. Increasing for all x, concave down for $x 63$, inflection point at $(3,3)$, concave up for $x 73$, y-intercept $(0,1)$, x-intercept $(-.5,0)$. 11. Decreasing for $1 \ldots x 63$, relative minimum point at $x=3$, increasing for $x 73$, maximum value $=6($ at $x=1)$, minimum value $=.9($ at $x=3)$, inflection point at $x=4$, concave up for $1 \ldots x 64$, concave down for $x 74$, the line $y=4$ is an asymptote. 12. Increasing for $x 6-1.5$, relative maximum at $x=-1.5$, relative maximum value $=3.5$, decreasing for $-1.56 x 62$, relative minimum at $x=2$, relative minimum value $=-1.6$, increasing from 26×65.5, relative maximum at $x=5.5$, relative maximum value $=3.4$, decreasing for $x 75.5$, concave down for $x 60$, inflection point at $(0,1)$, concave up for $06 x 64$, inflection point at $(4,1)$, concave down for $x 74$, y-intercept (0,1), x-intercepts ($-2.8,0$), $(.6,0),(3.5,0)$, and ($6.7,0$).

Slope decreases for all x. 14. Slope decreases for $x 63$, increases for $x 7$ 3. 15. Slope decreases for $x 61$, increases for $x 71$.
Minimum slope occurs at $x=1$.16. Slope decreases for $x 63$, increases for $x 73$. 17. (a) C, F (b) A, B, F (c) C 18. (a) A, E (b) D (c) E
19.

noon $\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
22.
26.

Oxygen content decreases until time a, at which time it reaches a minimum. After a, oxygen content steadily increases. The rate of increases until b, and then decreases. Time b is the time when oxygen content is increasing fastest. 29. 1960 30. 1999; 1985 31. The parachutist's velocity levels off to $15 \mathrm{ft} / \mathrm{sec}$. 32. Bacteria population stabilizes at 25,000 .
37. (a) Yes (b) Yes 38. No

35.

36. 1

41. $y=x$

Exercises 2.2, page 145

1. (e)
2. (b), (c), (f)
3. (a), (b), (d), (e)
4. (f)
5. (d)
6. (c)
7.

9.

10.

14.

15. y
16. y

17.

18. y

19.

20. (a) $x=2$ (b) $x=3$ and $x=4$ 21. $t=1 \quad$ 22. $t=2$
23. (a) Decreasing
(b) The function $f(x)$ is increasing for $1 \ldots x 62$ because the values of $f^{\prime}(x)$ are positive. The function $f(x)$ is decreasing for $26 x \ldots 3$ because the values of $\quad f^{\prime}(x)$ are negative. Therefore, $f(x)$ has a relative maximum at $x=2$. Coordinates: $(2,9) \quad$ (c) \quad The function $f(x)$ is decreasing for $9 \ldots x 610$ because the values of $f^{\prime}(x)$ are negative. The function $f(x)$ is increasing for $106 x \ldots 11$ because the values of $f^{\prime}(x)$ are positive. Therefore, $f(x)$ has a relative minimum at $x=10$.
(d) Concave down
(e) At $x=6$; coordinates: $(6,5)$
(f) $x=15$
24. (a) $f(2)=3$
(b) $t=4$ or $t=6$
(c) $t=1$
(d) $t=5$
(e) 1 unit per minute (f) The solutions to $f^{\prime}(t)=-1$ are $t=2.5$ and $t \quad=3.5$, so $f^{\prime}(t)$ is decreasing at the rate of 1 unit per minute after 2.5 minutes and after 3.5 minutes. (g) $t=3$ (h) $t=7$ 25. The slope is positive because $f^{\prime}(6)=2$, a positive number.
26. The slope is negative because $f^{\prime}(4)=-1$. 27. The slope is 0 because $f^{\prime}(3)=0$. Also, $f^{\prime}(x)$ is positive for x slightly less than 3 , and $f^{\prime}(x)$ is negative for x slightly greater than 3 . Hence, $f(x)$ changes from increasing to decreasing at $x=3$. 28. The slope is 0 because f ${ }^{\prime}(5)=0$. Also, $\quad f^{\prime}(x)$ is negative for x slightly less than $\quad 5$, and $f^{\prime}(x)$ is positive for x slightly greater than $\quad 5$. Hence, $f(x)$ changes from decreasing to increasing at $x=5$. 29. $f^{\prime}(x)$ is increasing at $x=0$, so the graph of $f(x)$ is concave up. 30. $f^{\prime}(x)$ is decreasing at $x=$ 2, so the graph of $f(x)$ is concave down. 31. At $x=1, f^{\prime}(x)$ changes from increasing to decreasing, so the concavity of the graph of f (x) changes from concave up to concave down. 32. At $x=4, f^{\prime}(x)$ changes from decreasing to increasing, so the slope of the graph of $f(x)$ changes from decreasing to increasing.
33. $y-3=2(x-6)$
34. 9 35. 3.25
36. $y-3=1(x-0) ; y=x+3$
37. (a) $\frac{1}{6}$ in. (b) (ii), Because the water level is falling. 38. (a) 3 degrees (b) (ii) Because the temperature is falling
II. The derivative is positive for $x 70$, so the function should be increasing. 40. $f^{\prime}(x)=3(x-2)(x-4)$ I cannot be the graph
since it does not have horizontal tangents at $x=2,4$. 41. \quad I 42. (a) (C) (b) (D) (c) (B) (d) (A) (e) (E) 43. (a) 2 million
(b) 30,000 farms per year
(c) 1940
(d) 1945 and 1978
(e) 1960
44. (a) Decreasing. (b)
(e) (E) 43. (a) 2 mi
up. (c) $\quad t=4$ (after

4 hours) (d) $t=2$ (after 2 hours) (e) After 2.6 hours and after 7 hours 45. Rel. max: $x \approx-2.34$; rel. min: $x \approx 2.34$;inflection point: $x=0, x \approx\{1.41$
46. $y=f^{\prime}(x)$

Relative max at $x=0$.
Relative \min at $x \approx .71$ and -.71 .
Inflection point at $x \approx .41$ and -.41

Exercises 2.3, page 156
$f^{\prime}(x)=3(x+3)(x-3)$; relative maximum point ($-3,54$); relative minimum point $(3,-54)$

Critical Values	23			3	3 , x
	$x, 23$		$23, x, 3$		
$f 9(x)$	1	0	2	0	1
$f(x)$	Increasing on (2, 23)		Decreasing on $(23,3)$		Increasing on (3, '才)

4. Relative minimum ($\left.-{ }^{1},-\underline{33}\right)$; relative maximum $\left(\frac{1}{-},-\underline{43}\right)$
5. $\quad f^{\prime}(x)=x(x-2)$; relative maximum point $(0,1)$; relative minimum point $\quad(2,-1>3)$

Relative maximum $(0,1)$; relative minimum $(4,-31)$
$f^{\prime}(x)=-3(x-1)(x-3)$; relative maximum point $(3,1)$; relative minimum point $(1,-3)$

6. Relative maximum ($\left.-\begin{array}{cc}1 & 7 \\ 5 & 7\end{array}\right)$; relative minimum ($\left.\begin{array}{cc}1 & \\ \hline\end{array} 5\right)$
7. $f^{\prime}(x)=-3 x(x+8)$; relative maximum point $\quad(0,-2)$; relative minimum point ($-8,-258$)

8. Relative maximum $(-1,-2)$; relative minimum $(0,-3)$
9.

10.

11.

12. y

13. y

14.

15.

16.

17.

18.

19.

20.

22.

$(6,212)$
23.

24.

25.

26.

27.

28.

29.

30.

2
33. No, $f^{\prime \prime}(x)=2 a \neq 0$. 34. No, $f^{\prime \prime}(x)$ is a linear function. It has at most one zero. 35. $(4,3) \min$. 36. $(-3,23) \max$ 37. $(1,5) \max$.

41. $f^{\prime}(x)=g(x)$ 42. $f^{\prime}(x)=g(x) \quad$ 43. (a) f has a relative min.
(b) f has an inflection point. 44. (a) 125 million (b) 1850
$\begin{array}{lll}\text { (c) } 2.2 \text { million/year } & \text { (d) } 1925 & \text { (e) } 1940 .\end{array}$
45. (a) $A(x)=-893.103 x+460.759$ (billion dollars).
(b) \quad Revenue is $x \%$ of assets or $R(x)=$
$R(.3) \approx .578484$ billion dollars \quad or $\$ 578.484$ million $\quad R(.1) \stackrel{100(-893.103 x+460.759) .}{\approx .371449 \text { billion }}$
dollars or $\$ 371.449$ million. (c) Maximum revenue when $R^{\prime}(x)=0$ or $x \approx .258$. Maximum revenue $R(.258) \approx .594273$ or $\$ 594.273$ million. 46. $x=.398 P(.3)=\$.3285$ billion $\quad P(.1)=\$-.3786$ billion. They were better off not lowering their fees. 47. $f^{\prime}(x)$ is always nonnegative. 48. Inflection point $\left(5, \underline{10}_{3}\right)$ 49. They both have a minimum point. The parabola does not have a vertical asymptote.

Minimum at (5, 5)
Exercises 2.4, page 162
21. y
$(3,0)$
25.

x
22. $y 5\left(\begin{array}{lll}x & 1 & 2\end{array}\right)^{4} 21$
26. y

23. y

24.

29.

30.

x
31. $g(x)=f^{\prime}(x)$
32. $g(x)=f^{\prime}(x)$
33. $f(2)=0$ implies $4 a+2 b+c=0$. Local maximum at $(0,1)$ implies $\quad f^{\prime}(0)=0$ and $f(0)=1 . a=-1>4, b=0, c=1, \quad f(x)=-1>4 x^{2}+1$.
34. $f(x)=2 x^{2}-4 x+1 \quad$ 35. If $f^{\prime}(a)=0$ and f^{\prime} is increasing at
$x=a$, then $\quad f^{\prime}(x) 60$ for $x 6 a$ and $f^{\prime}(x) 70$ for $x 7 a$. By the first-derivative test (case (b)), f has a local minimum at $x=a$.
36. Minimum at $x=a$
37. (a)

38. (a)

(b) 15.0 g (c) after 12.0 days (d) $1.6 \mathrm{~g} /$ day (e) after 6.0 days and after 17.6 days
(f) after 11.8 days
(b) 1.63 m
(c) About 144 days (d) About .0104 meter/day
(e) After 64 days (f) After 243 days (g) After 32 days.

Exercises 2.5, page 168

1. 20 2. $x=6, f(6)=36$
2. $x=3, y=3$, minimum $=18$
$t=4, f(4)=8 \quad$ 4. $\quad t=12, f(t)=-144$
3. $x=1, y=1$, maximum $=1$
4. $x=\frac{4}{3} y=\frac{2}{3}$
5. No maximum
6. $x=6, y=6$, minimum $=12$
7. $x=\frac{13}{\underline{13}}^{-} y=1-$
, $z=1+\underline{13}^{\circ}$,
maximum $\frac{2 T_{3}}{9}$
8. (a) Objective: $A=x y$; constraint: $8 x+4 y=320$ (b)
$A=-2 x^{2}+80 x$
(c) $x=20 \stackrel{3}{\mathrm{ft}}, y=40 \mathrm{ft}$
$\begin{array}{llll}\text { (a) Objective: } S=x^{2}+4 x h \text {; constraint: } x^{2} h=32 & \text { (b) } S=x^{2}+\frac{128}{x} & \text { (c) } x=4 \mathrm{ft}, h=2 \mathrm{ft}\end{array}$
(a)
9. (a)

$\begin{array}{lll}\text { (b) } h+4 x & \text { (c) Objective: } V=x^{2} h \text {; constraint: } h+4 x=84 & \text { (d) } V=-4 x^{3}+84 x^{2}\end{array}$
(e) $x=14 \mathrm{in}$., $h=28 \mathrm{in}$.
(b) Objective: $P=2 x+2 y$; constraint: $100=x y$ (c) $x=10 \mathrm{~m}, y=10 \mathrm{~m}$ 15. Let x be the length of the fence and y the other dimension. Objective: $C=15 x+20 y$; constraint: $x y=75 ; x=10 \mathrm{ft}, y=7.5 \mathrm{ft}$.
10.

Optimal values $x=2 \mathrm{ft}, y=3 \mathrm{ft}$
17. Let $\underset{2}{x}$ be the length of each edge of the base and h the height. Objective: $A=2 x \quad{ }^{2}+4 x h$; constraint: $x h=8000 ; 20 \mathrm{~cm}$ by 20 cm by 20 cm the fence parallel to the river and y the length
18. $x=5 \mathrm{ft}, y=10 \mathrm{ft} \quad$ 19. Let x be the length of of each section perpendicular to the river. Objective:
$A=x y$; constraint: $6 x+15 y=1500 ; x=125 \mathrm{ft}, y=50 \mathrm{ft}$
21. Objective: $P=x y$; constraint: $x+y=100 ; x=50, y=50$
20. Maximum area $75 \mathrm{ft} * 75 \mathrm{ft}$
23. Objective: $A=\begin{aligned} \mathrm{px}_{2}^{2} & +2 x h \text {; constraint: }(2+\mathrm{p}) x+2 h=14 ; x=\frac{14}{4+\mathrm{p} \mathrm{ft}} \text {, }\end{aligned}$
22. $x=10, y=10$
24. $x=2$ in, $h=4$ in
25. $w=20 \mathrm{ft}, x=10 \mathrm{ft}$
26. 20 miles per hour
27.
$C(x)=6 x+\overline{102(20-x)^{2}+24^{2}} ; C^{\prime}(x)=6-\frac{10(20-x)}{2(20-x)^{2}+242} ; C^{\prime}(x)=0$

$(0 \ldots x \ldots 20)$ implies $x=2$. Use the first-derivative test to conclude 28. $x=6$ in; $y=12$ in 29. $\left(\frac{3}{2}, 2^{3}\right)_{-}$30. $D(6,6) \approx 14.87$ miles
that the minimum cost is $C(2)=\$ 312$.
$\begin{array}{ll}\text { 31. } x=2, y=1 & \text { 32. } x \approx 2.12\end{array}$

Exercises 2.6, page 175

1. (a) 90 (b) 180 (c) 6 (d) 1080 pounds 2. (a)
$\$ 930$ (b) $\$ 1560$ 3. (a) $C=16 r+2 x$
(b) Constraint $r x=800$
(c) $x=80, r=10$, minimum inventory cost $=\$ 320$
2. (a) $C=160 r+16 x$
(b) $r x=640 \quad$ (c) $\quad C(80)=\$ 2560$

Let x be the number of cases per order and r the number of orders per year. Objective: $C=80 r+5 x$; constraint: $r x=10,000$ (a)
$\$ 4100$ (b) 400 cases 6. (a) $\$ 300,000 \quad$ (b) 60,000 tires 7. Let r be the number of production runs and x the number of microscopes manufactured per run. Objective: $C=2500 r+25 x$; constraint: $r x=1600$; 4 runs \quad 8. $r=20 \quad$ 10. The optimal order quantity does
not change 11. Objective: $A=(100+x) w$; constraint: $2 x+2 w=300 ; x=25 \mathrm{ft}, w=125 \mathrm{ft}$
12. $x=0 \mathrm{ft}, w=50 \mathrm{ft}$
13. Objective: $F=2 x+3 w$; constraint: $x w=54 ; x=9 \mathrm{~m}, w=6 \mathrm{~m} \quad 14 . \quad x=\frac{18}{15} \mathrm{~m}, w=315 \quad$ - $\mathrm{m} \quad$ 15. (a) $\quad A(x)=100 x+1000$
(b) $R(x)=A(x) \quad($ Price $)=(100 x+1000)(18-x)(0 \ldots x \ldots 18)$. The graph of $R(x)$ is a parabola looking downward, with a maximum
at $x=4$. (c) $A(x)$ does not change, $\quad R(x)=(100 x+1000)(9-x)(0 \ldots x \ldots 9)$. Maximum value when $x=0$. 16. 3 in. *3 in. *4 in. Let x be the length of each edge of the base and h the height. Objective: $C=6 x^{2}+10 x h$; constraint: $x^{2} h=150 ; 5 \mathrm{ft}$ by 5 ft by 6 ft
18. $x=100 \mathrm{ft}, y=120 \mathrm{ft} \quad$ 19. Let x be the length $\underset{220}{\text { of each edge of the end and } h \text { the length. Objective: } \quad V=x h \text {; constraint: }}$ $2 x+h=120 ; 40 \mathrm{~cm}$ by 40 cm by $40 \mathrm{~cm} \mathbf{2 0} . \quad x=\frac{220}{\mathrm{p}}$ yd, $y=110$ yd $21 . \quad$ objective: $V=w \quad \frac{2}{2}$; constraint: $2 x+w=16 ; \quad \frac{8}{5}$ in. 22. $\frac{3}{2} \mathrm{ft} * 3 \mathrm{ft} * 2 \mathrm{ft}$ 23. After 20 days 24. $t=5, f^{\prime}(5)=45$ or 45 tons per day. \quad 25. 213 by 6 26. After 4 weeks
27. 10 in. by 10 in. by 4 in. 28. Greatest value at $x=0 \quad$ 29. $\approx 3.77 \mathrm{~cm}$
30. (b) $x=32.47$ or $1988, \quad f(32.47) \approx 1.7$ cups per day $x=6$ or $1961, f(6) \approx 3$ or 3 cups per day. $\quad(\mathbf{d}) x \approx 19.26$ or 1975 .

Exercises 2.7, page 183

1. $\$ 1$ 2. Marginal cost is decreasing at $x=100 . M(200)=0$ is the minimal marginal cost. 3. 32 4. $R(20,000)=40,000$ is maximum possible. 5. 5 6. Maximum occurs at $x=50$. 7. $x=20$ units, $p=\$ 133.33$. 8. $x=1000, p=\$ 1 \quad$ 9. 2 million tons, $\$ 156$ per ton
2. $x=15, y=15$. 11. (a) $\$ 3.00$ (b) $\$ 3.30$ 12. $\$ 45$ per ticket 13. Let x be the number of prints and p the price per print. Demand equation: $p=650-5 x$; revenue: $R(x)=(650 \quad-5 x) x$; 65 prints \quad 14. $x=150$ memberships \quad 15. Let x be the number of tables and p the profit per table. $p=16-.5 x$; profit from the café: $R=$
$(16-.5 x) x ; 16$ tables. 16. Toll should be $\$ 1.10$.
3. (a) $x=15 \quad \# 10^{5}, p=\$ 45$.
(b) No. Profit is maximized when price is increased to $\$ 50$.
4. (a) $x=30$
(b) $\$ 113$ (c) $x=30-\frac{T}{4}, T=\$ 60>$ unit $\mathbf{1 9 . 5 \%}$ 20. (a) $P(0)$ is the profit with no advertising budget (b) As money is spent on advertising, the marginal profit initially increases. However, at some point the marginal profit begins to decrease. (c) Additional money spent on advertising is most advantageous at the inflection point. 21. (a) $\$ 75,000 \quad$ (b) $\$ 3200$ per unit (c) 15 units (d) 32.5 units
(e) 35 units
5. (a) $\$ 1,100$
(b) $\$ 12.5$ per unit
(c) 100 units
(d) 20 units and 140 units
(e) 80 units, $\$ 5$ per unit.

Chapter 2: Answers to Fundamental Concept Check Exercises, page 189
Increasing and decreasing functions, relative maximum and minimum points, absolute maximum and minimum points, concave up and concave down, inflection point, intercepts, asymptotes. 2 . A point is a relative maximum at $x=2$ if the function attains a maximum at $x=2$ relative to nearby points on the graph. The function has an absolute maximum at $x=2$ if it attains its largest value at $x=2$. 3. The graph of $f(x)$ is concave up at $x=2$ if the graph looks up as it goes through the point at $x=2$. Equivalently, there is an open interval containing $x=2$ throughout which the graph lies above its tangent line. Equivalently, the graph is concave up at $x=2$ if the slope of the tangent line increases as we move from left to right through the point at $x=2$. The graph of $f(x)$ is concave down at $x=2$ if the graph looks down as it goes through the point at $x=2$. Equivalently, there is an open interval containing $x=2$ throughout which the graph lies below its tangent line. Equivalently, the graph is concave down at $x=2$ if the slope of the tangent line decreases \quad as we move from left to right through the point at $x=2$. 4. $\quad f(x)$ has an inflection point at $x=2$ if the concavity of the graph changes at the point $(2, f(2))$. 5. The x-coordinate of the x-intercept is a zero of the function. 6. To determine the y-intercept, set $x=0$ and compute $f(0)$. 7. If the graph of a function becomes closer and closer to a straight line, the straight line is an asymptote. For example, $=0$ is a horizontal asymptote of $y={ }^{1} x$. 8. First-derivative rule: If $f^{\prime}(a) 70$, then f is increasing at $x=a$. If $f^{\prime}(a) 60$, then f is decreasing at $x=a$. Second-derivative rule: If $\quad f^{\prime \prime}(a) 70$, then f is concave up at $x=a$. If $f^{\prime \prime}(a) 60$, then f is concave down at $x=a$ 9. On an interval where $f^{\prime}(x) 70, f$ is increasing. On an interval where $f^{\prime}(x)$ is increasing, f is concave up. \quad 10. Solve $f^{\prime}(x)=0$. If $f^{\prime}(a)=0$ and $f^{\prime}(x)$ changes sign from positive to negative as we move from left to right through $x=a$, then there is a local maximum at
$x=a$. If $f^{\prime}(a)=0$ and $f^{\prime}(x)$ changes sign from negative to positive as we move from left to right through $x=a$, then there is a local minimum at x $=a$. 11. Solve $f^{\prime \prime}(x)=0$. If $f^{\prime \prime}(a)=0$ and $f^{\prime \prime}(x)$ changes sign as we move from left to right through $x=a$, then there is an inflection point at $x=a$. 12. See the summary of curve sketching at the end of Section 2.4. 13. In an optimization problem, the quantity to be optimized is given by an objective equation. 14. The equation that places a limit or a constraint on the variables in an optimization problem is a constraint equation. $\mathbf{1 5}$. See the Suggestions for Solving an Optimization Problem at the end of Section 2.5. 16. $P(x)=R(x)-C(x)$.

Chapter 2: Review Exercises, page 190

7. d, e 8. b 9. c, d 10. a 11. e 12. b 13. Graph goes through (1,2), increasing at $x=1$. 14. Graph goes through (1,5), decreasing at $x=$ 1. 15. Increasing and concave up at $x=3$. 16. Decreasing and concave down at $x=2$. 17. (10,2) is a relative minimum point. 18. Graph goes through (4, -2), increasing and concave down at $x=4$. 19. Graph goes through (5, -1), decreasing at $x=5.20 .(0,0)$ is a relative minimum. 21. (a) after 2 hours \quad (b) $.8 \quad$ (c)after 3 hours (d) -. 02 unit per hour 22. (a) 400 trillion kilowatt-hours \quad (b) 35 trillion kilowatt-hours per year \quad (c) 1995 (d) 10 trillion kilowatt-hours per year in 1935 1600 trillion kilowatt-hours in 1970
23.

24.

25.

27.

28.

$(0,210)$
31.

32.

29.

26.
26. $\left.\begin{array}{ll}2 & 4\end{array}\right)$
30.

33.

$(0,1)$
$(0,290)$
$\left(\begin{array}{ll}1 & 9 \\ 4\end{array}\right.$
2 , 2
$(0,21)$

36. y

37.

38.

34.

$\left(2^{1} 2^{13} 4\right)$
$(2,210)$

x

(1, 24)
$(26,2116)$
$\left(23,2 \frac{16}{3}_{3}\right)$
$(3,220)$
39.

41.

41.

42.

43.

44.

45. $f^{\prime}(x)=3 x\left(x^{2}+2\right)^{1>2}, f^{\prime}(0)=0 \quad$ 46. $f^{\prime}(x)=6 x\left(2 x^{2}+3\right)^{1>2}, f^{\prime}(x)$
$f^{\prime \prime}(x)=-2 x\left(1+x^{2}\right)^{-2}, f^{\prime \prime}(x)$ is positive for $x 60$ and negative for $x 70$
46. $f^{\prime}(x)=6 x\left(2 x^{2}+3\right)^{1>2}, f^{\prime}(x) 70$ if $x 70$ and $\quad f^{\prime}(x) 60$ if $x 60$.
4. 48. $f^{\prime \prime}(x)={ }^{1}\left(5 x^{2}+1\right)^{-1 \geq 2}(10 x)$, so $f^{\prime \prime}(0)=0$.

Since $f^{\prime}(x) 70$ for all $x, f^{\prime \prime}(x)$ is positive for $x 70$ and negative for $x 60$, and it follows that 0 must be an inflection point. 49. $\mathrm{A}-\mathrm{c}, \mathrm{B}-\mathrm{e}, \mathrm{C}-\mathrm{f}, \mathrm{D}-\mathrm{b}, \mathrm{E}-\mathrm{a}, \mathrm{F}-\mathrm{d} \quad$ 50. $\mathrm{A}-\mathrm{c}, \mathrm{B}-\mathrm{e}, \mathrm{C}-\mathrm{f}, \mathrm{D}-\mathrm{b}, \mathrm{E}-\mathrm{a}, \mathrm{F}-\mathrm{d} \quad$ 51. (a) the number of people living between $10+h$ and 10 mi from the center of the city (b) If so, $\quad f(x)$ would be decreasing at $x=10.5 \mathbf{5 2} . \quad x=8$ 53. The endpoint maximum value of 2 occurs at $x=0$. 54. $g(3)=0 \quad$ 55. Let x be the width and h the height. Objective: $A=4 x+2 x h+8 h$; constraint: $4 x h=200$; 4 ft by 10 ft by $5 \mathrm{ft} \quad$ 56. $2 \mathrm{ft} * 2 \mathrm{ft} * 4 \mathrm{ft} \quad \mathbf{5 7 .} \frac{15}{2} \mathrm{in}$. 58. 45 trees 59. Let r be the number of production runs and x the number of ${ }_{8}$ books manufactured per run. Objective: $C=1000 r{ }^{2}(.25) x$; constraint: $r x=400,000 ; x=40,000 \quad$ 60. $x=3500 \quad$ 61. A to $P,{ }^{8}$ miles
from C 62. Let x be the number of people and c the cost. Objective: $R=x c$; constraint: $c=1040-20 x$; 25 people.

People also search:

calculus and its applications 14th edition pdf calculus and its applications goldstein calculus and its applications 13th edition pdf download calculus and its applications goldstein pdf calculus and its applications 14th edition pdf download calculus \& its applications pdf calculus and its applications 13th edition pdf free calculus and its applications 14th edition ebook

