Solution Manual for Calculus for Business Economics and the Social and Life Science Brief Edition 11th Edition by Hoffmann Bradley Sobecki and Price ISBN 007353238X 9780073532387

Full link download

Solution Manual:
https://testbankpack.com/p/solution-manual-for-calculus-for-business-economics-and-the-social-and-life-science-brief-edition-11th-edition-by-hoffmann-bradley-sobecki-and-price-isbn-007353238x-9780073532387/

Chapter 2

Differentiation: Basic Concepts

2.1 The Derivative

If $f(x)=4$, then $f(x+h)=4$. The The slope of the line tangent to the graph
difference quotient (DQ) is

$$
\begin{gathered}
f(x h) f(x) \underline{44} 0 \\
h
\end{gathered}
$$ of f at $x=1$ is $\quad f(1) 7$.

$f(x) \lim ^{f(* h)} f(x) 0$
2
If $f(x) 2 x \quad 3 x 5$, then
2
$f(x h) 2(x h) \quad 3(x h) 5$.
$h 0 \quad h$

The slope is $m f(0) 0$.
$f(x)=3$
The difference quotient is
$f(x h) f(x) \underline{3}(\underline{3}) \underline{0}$

The difference quotient (DQ) is
$\underline{f}(x h) f(x)$.
h

Then $f(x) \lim 00$.
$h 0$
The slope of the line tangent to the graph
of f at $x=1$ is $f(1) 0$.

If $f(x)=5 \times 3$, then
$f(x+h)=5(x+h) 3$.

h
$4 \times 2 h 3$
$f(x h) f(x)$
$f(x) \lim _{h 0} \quad h \quad 4 x 3$ The difference quotient (DQ) is $f(x h) f(x)$ [5($x h) 3][5 x 3]$

$$
\begin{gathered}
h \\
\frac{5 h}{5} h \\
f(x) \lim f(f h) f(x) 5 \\
h 0 \quad h \\
\text { The slope is } m f(2) 5 \text {. } \\
f(x)=27 x \\
\text { The difference quotient is } \\
\frac{\left.(x h) f(x) \frac{(27(x h))(27}{h} \underline{x}\right)}{h} \frac{27}{7 h} \underline{x} \frac{7 h}{7} \underline{27} \underline{x} h \\
h
\end{gathered}
$$

The slope is $m f(0) 3$.
6. $f(x) x^{2} 1$ The difference quotient is 2 $f(x h) f(x) \quad\left(\begin{array}{ll}(x h) & 1)\left(x^{2}\right. \\ 1)\end{array}\right.$
\bar{h}

h

Then $f(x) \lim (2 x h) 2 x$.
The slope of the line tangent to the graph of f at $x 1$ is $\quad f(1) 2$.

Then $f(x) \lim (7) 7$.
7. If $f(x) x^{3} 1,3$ then

$$
3^{2} h 3 x h^{2} h^{3}
$$

$$
\begin{aligned}
& \frac{2^{h}}{h\left(3 x x^{2} 3 x h h^{2}\right)} \\
& 2 \quad 2
\end{aligned}
$$

3x $3 x h h$
$f(x) \lim _{h 0} \begin{gathered}f(x h) f(x) \\ h\end{gathered}$

$$
\lim _{2} 3 x^{2} 3 x h h^{2}
$$

$$
3 x
$$

The slope is $m f(2) 3(2){ }^{2} 12$.
$f(x) x^{3}$
The difference quotient is $f(x h) f(x) \quad((x h))(x)$

h
$32^{h} 233$
$\frac{x 3 x h 3 x h \quad h \quad}{h}$
$\frac{3 x h 3 x h h^{h}}{h}$
$3 x 3 x h h^{2}$

Then
222

$$
\begin{aligned}
& f(x h)(x h) \quad 1 \quad 2 \\
& \left(\begin{array}{ll}
x & 2 x h h
\end{array}\right)(x h) 1
\end{aligned}
$$

$$
g(t) \lim \underline{g(t h) g(t)}
$$

$$
\frac{2}{-2}
$$

$h 0$

The slope is $m g$
8. $\overline{2}$

1
$f(x)$
10.

$$
x^{2}
$$

The difference quotient is

(x 2hxh $) x$
Then $f(x) \lim _{{ }_{h 0}\left(x^{2} 2 h x h^{2}\right) x^{2}}^{4}$

$$
\begin{aligned}
& h \quad t(t h) \\
& 2 t 2(t h) \\
& h(t)(t h) \\
& --\frac{2}{t(t h)}
\end{aligned}
$$

$(x) \lim (3 x \quad 3 x h h) 3 x$.
$h 0$
The slope of the line tangent to the graph of f at $x=1$ is $f(1) 3$.
9. If $g(t)^{\underline{2}}$, then $g(t h) \frac{2}{t h}$.
\qquad
x^{3}
The slope of the line tangent to the graph of f at $x \quad 2$ is $\quad f(2) \quad-\frac{1}{4}$
11. If $H(u) \quad \frac{1}{\sqrt{u}}$, then $H(u h) \quad \frac{1}{\sqrt{u h}}$.

The difference quotient is

$H(u) \quad \lim \underline{f(x h) f(x)}$
$h 0 \quad h$

$u 2 \sqrt{y}$
\qquad
$2 u$.
The slope is $m H(4) \quad 1$

Then $f(x) \lim \xrightarrow{1}$

$$
h 0 \sqrt{x h x} \quad 2 x
$$

The slope of the line tangent to the graph of f at $x=9$ is $f(9) \underline{1}$.

6

If $f(x)=2$, then $f(x+h)=2$. The difference quotient (DQ) is
$\underline{f(x h) f(x)} \underline{22}$
$h \quad h 0$.
$f(x) \lim \frac{f(x h) f(x)}{} \lim 00$
h0
h
$h 0$
The slope of the tangent is zero for all values of x. Since $f(13)=2$.
$y 2=0(x 13)$, or $y=2$.

For $f(x) 3$,

for all x. So at the point $c 4$, the slope of the tangent line is $m f(4) 0$. The point $(4,3)$ is on the tangent line so by the point-slope formula the equation of the tangent line is y $30[x(4)]$ or

3 .
If $f(x)=72 x$, then $f(x+h)=72(x+h)$.

The difference quotient is
($x h) f(x)$

$h 0 \quad h$
The slope of the line is $m f(5) 2$.
Since $f(5)=3,(5,3)$ is a point on the curve and the equation of the tangent line is $y(3)=2(x 5)$ or $y=2 x+7$.

For $f(x)=3 x$,
$f(x) \lim$
h0

$$
f(x h) f(x)
$$

h

```
lim
```

3
for all x. So at the point $c=1$, the slope of
the tangent line is $m f(1) 3$. The point $(1,3)$ is on the tangent line so by the
point-slope formula the equation of the tangent line is $y 3=3(x 1)$ or $y=3 x$.
17. If $f(x) x^{2}$, then $f(x h)(x h)^{2}$.

The difference quotient (DQ) is $f(x h) f(x)(x \underline{h}) \underline{x^{2}}$ h

$$
\frac{2 x h^{h}}{2 x h^{h}}
$$

$f(x) \lim \xrightarrow{f(x h) f(x)} 2 x$
$h 0 \quad h$
The slope of the line is $m f(1) 2$.

Since $f(1)=1,(1,1)$ is a point on the curve and the equation of the tangent line is $y 1=2(x 1)$ or $y=2 \times 1$.

2

For $f(x) 23 x$,

$\lim (6 \times 3 h)$
h0
x
for all x. At the point $c 1$, the slope of the tangent line is $m f(1) 6$. The
point $(1,1)$ is on the tangent line so by the
point-slope formula the equation of the

$$
f(x) \lim \frac{f(x h) f(x)}{} \quad \underline{2}
$$

The slope of the line is $m f(1) 2$. Since $f(1)=2,(1,2)$ is a point on the curve and the equation of the tangent line

$$
\text { is } y 22(x(1))
$$

$$
2 \times 4
$$

x_{3}
At the point $\frac{1}{c} 2$, the slope of
the tangent line is $m f$ 48. The
2
1
point , 12 is on the tangent line so by 2
the point-slope formula the equation of the tangent line is

$$
y 1248 x^{\frac{1}{2}} \begin{gathered}
\text { or } \\
2
\end{gathered} \quad y 48 x 36
$$

First we obtain the derivative of
The difference quotient is $g(x)=\sqrt{x}$.
19. If
$x \quad f(x h) \cdot \chi h$

The difference quotient (DQ) is

$f(x h) f(x)$	
h	h
	$\underline{\underline{22}} \underline{x(x h)}$
	$\underline{x} \quad \underline{ }$
	$h \quad x$
	$h \quad x(x h)$
	$\underline{2 \times 2(x h)}$
	$h(x)(x h)$
	2
	$x(x h)$

$$
\begin{aligned}
& \frac{g(x+h)-g(x)}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{h}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{1}{\sqrt{x+h}+\sqrt{x}} \\
& \quad g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} \\
& \quad \frac{d}{d x} k \cdot f(x)=k \cdot \frac{d}{d x} f(x),
\end{aligned}
$$

Then

Now since

$$
f(x) 2 \frac{1}{2 \sqrt{\underline{x}}}-\frac{1}{4} .
$$

The slope is $m \quad f(4) \frac{1}{1}, f(4)=4$, the equation of the tangent line is

$$
y 4 \frac{1}{(x 4), \text { or }} \quad y 1_{2} x 2
$$

22. For $f(x) \underset{\sqrt{x}}{ }$

$$
\begin{aligned}
& f(x) \lim f(* h) f(x)
\end{aligned}
$$

$$
\begin{aligned}
& h 0 \quad h
\end{aligned}
$$

\lim \qquad $\underline{\underline{x}(x h)}$

So at the point $c=1$, the slope of the tangent line is $f(1)$ point (1,_2
is on the tangent line so by the pointslope formula, the equation of the tangent

23. If $f(x) \stackrel{+}{ }$, then $f(x h) \xrightarrow{1 .(x}$
x
h) 3

The difference quotient (DQ) is

$$
\frac{f(x+h)-f(x)}{h}
$$

$$
=\frac{(x+h)^{3}-\begin{array}{c}
1 \\
x^{3}
\end{array}}{h} \cdot \frac{x^{3}(x+h)^{3}}{x^{3}(x+h)^{3}}
$$

$$
=\frac{x^{3}-(x+h)^{3}}{h x^{3}(x+h)^{3}}
$$

$$
=\frac{x^{3}-\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)}{h x^{3}(x+h)^{3}}
$$

$$
=\frac{-3 x^{2} h-3 x h^{2}-h^{3}}{h x^{3}(x+h)^{3}}
$$

$$
=\frac{h\left(-3 x^{2}-3 x h-h^{2}\right)}{h x^{3}(x+h)^{3}}
$$

$$
=\frac{-3 x^{2}-3 x h-h^{2}}{x^{3}(x+h)^{3}}
$$

$$
\frac{3^{2}}{x^{3}(x)} 3
$$

4 The slope is $m f(1)-\underline{3} 3$.

$$
\begin{align*}
& \frac{h 0 \sqrt{2}}{\sqrt[x]{x h} \sqrt{x} / \sqrt{x h}} \tag{4}\\
& \frac{1}{\sqrt{x} 2 \sqrt{x}_{2}^{1}} \\
& \underbrace{}_{x_{3 / 2}}
\end{align*}
$$

(1)

Further, $f(1)=1$ so the equation of the line is $y 1=3(x 1)$, or $y=3 x+4$.

From Exercise 7 of this section
$f(x) 3 x$. At the point $c 1$, the slope
of the tangent line is $m f(1) 3$. The
point $(1,0)$ is on the tangent line so by the point-slope formula the equation of the
tangent line is $y 03(x 1)$ or 3×3.

If $y=f(x)=3$, then $f(x+h)=3$.
The difference quotient (DQ) is

$\underline{d y} \lim \underline{f(x} \underline{h}) f(x) \quad 0$
$d x \quad h 0 \quad h$
$\xrightarrow{d y} 0 \quad$ when $x=2$.
$d x$
26. For $f(x)=17, \stackrel{d v}{ } \quad$ at $x \quad 14$ is

$$
d x \quad 0
$$

$f(14) \lim _{h 0} \frac{f(14 h) f(14)}{h}$
$\lim 17$ (17)

29. If $y=f(x)=x(1 x)$, or $f(x) x x^{2}$,
then $f(x h)(x h)(x h)^{2}$.
The difference quotient (DQ)

$$
\begin{aligned}
& \frac{\text { is }(x h) f(x)}{h} \\
& \frac{\left[(x h)(x h){ }_{2}\right.}{2} \\
& \frac{h 2 x h h}{2} h \\
& 2 x h^{2}
\end{aligned}
$$

$$
\amalg(x h)(x h){ }_{2} \quad \amalg x x
$$

$$
1 h
$$

$\underline{d y} \lim f(x h) f(x) \underline{1} 2 x$
$d x \quad h 0 \quad h$
dy
$d x^{3}$ when $x=1$.
30. For $f(x) x \quad 2 x, \quad$ at $x 1$ is

$$
d x
$$

$f(1) \lim ^{-} \underline{(1 h) f(1)}$.

0

1
If $y f(x) x \quad x$, then -

$$
f(x h) x h-\frac{1}{-} \cdot{ }_{x h}
$$

The difference quotient (DQ) is

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{x+h-\frac{1}{x+h}-\left(x-\frac{1}{x}\right)}{h} \\
& =\frac{h-\frac{1}{x+h}+\frac{1}{x}}{h} \cdot \frac{x(x+h)}{x(x+h)}
\end{aligned}
$$

```
    dx 3 when }x=-1
28. For }f(x)62x,dx\mathrm{ at }\mp@subsup{x}{0}{3}3\mathrm{ is
f(3) lim}f(})\mp@code{#
```

```
h0 h
lim}\frac{(62(3)}{h))(62(3))
h0}2
h0 h
2
```


(b) If $f(x) x$, then

$$
f(x h)(x h){ }^{2} x^{2} \quad 2 x h h^{2} .
$$

The difference quotient (DQ) is
222
$\underline{f(x h) f(x)} \quad \underline{x} 2 x h \underline{x}$
h
$\frac{2 x h h^{2}}{h}$
$m_{\text {sec }} \quad 3.31$.
$x 2 \quad x 1 \quad 1.11$

3
If $f(x) x$, then f
3
$(x h)(x h)$.

The difference quotient (DQ)
is
33
$\underline{(x h) f(x)}(x h) \underline{x}$
$f(x) \lim f(x h) f(x)$
$h 0 \quad h$
$\lim 2 x h$
$h 0$
x
The slope of the tangent line at the point $(2,4)$ on the graph of f is $m \tan f(2) 2(2) 4$.
$h \quad 2^{h} 23$

$3 x$	$h 3 x h \quad h$

The slope is $m \tan \quad f(1) 3$.
Notice that this slope was approximated by the slope of the secant in part (a).
36. (a) $m \frac{f_{2} \frac{1}{\frac{1}{2}}}{\frac{f(1)}{(1)}}$

$f(1 h) f(1)$
 $f(1) \lim$
 $h_{\underline{1 h} \underline{1}} h$

$\lim _{h 0} \frac{1 h 1}{h} \frac{11}{h}$
$\lim \xrightarrow{1}$
$\underline{1}^{h 02(h 2)}$

4
The answer in part (a) is a relatively good approximation to the slope of the tangent line.
37. (a) If $f(x) 3 x^{2} x, \quad$ the average rate of change of f is $f \underline{2} \underline{2}) f(x \underline{1} \underline{\underline{1}}$
$x_{2} x_{1}$
Since $f(0)=0$ and

$$
{\underset{16}{f}}_{\frac{1}{3}}^{16} \quad \frac{1}{16} \quad \underbrace{13}_{256}
$$

The instantaneous rate of change
at $x=0$ is $f(0) 1$. Notice that this rate is estimated by the average rate in part (a).
38. (a)

$$
\begin{aligned}
& f \begin{array}{l}
f{ }_{2}^{\perp} \quad f(0) \\
\xrightarrow{2} \cdots
\end{array} \\
& \text { ave } \quad \frac{1}{2} 0
\end{aligned}
$$

$$
\begin{aligned}
& 02^{\frac{1}{1}} \\
& \text { 0﹎ }
\end{aligned}
$$

0
(b) $f(0) \lim \underline{f(0 \underline{h} f(0)}$

$h 0$	h
m	$\ldots(\underline{2} \underline{2 h} \underline{0} \underline{0}$
li	h
$h 0$	
$\lim (12 h)$	
$h 0$	
1	

16 0.8125 .

The answer in part a is not a very good approximation to the average rate of change.
(a) If $s(t)$

1
$t 1$, the average rate of $\underline{s(t \underline{2})} s(t \underline{1}) \quad-$
(b) If $f(x) 3 x^{2} x$, then
($x h$) $3(x h)^{2}(x h)$.
The difference quotient (DQ) is
change of s is $t 2 t 1$

1 _ 1
Since $s \quad 3$ and
1
$2 \quad 12$
$s(0) 0 \underline{0} 1, \frac{3}{1}-\frac{1}{0} \quad 4$. 01 - $\quad \begin{aligned} & -1 \\ & 0\end{aligned}$

The difference quotient (DQ) is

$$
\underline{s(t h) s(t)} \quad \frac{t h \frac{t h 1}{1+1}}{t} .
$$

$h \quad h$

Multiplying numerator and denominator by $(t+h+1)(t+1)$.
$\underline{(t h 1)(t 1)(t 1)(t h 1)}$

$\frac{\underline{2} \quad$| $h(t h 1)(t 1)$ |
| :--- |
| $t h t t h 1 t$ |
| $t h t t h 1$ |
| $h(t h 1)(t 1)$ |}{$\frac{2 h}{h(t h 1)(t 1)}$}

$\frac{2}{(t h 1)(t 1)}$
$s(t) \lim -\frac{2}{(t h 1)(t 1)} \cdot \frac{2^{2}}{(t 1)}$

The instantaneous rate of change when $t^{1}{ }_{-i s}$

2

Notice that the estimate given by the average rate in part (a) differs significantly.
40. (a)

The answer in part a is a relatively good approximation to the instantaneous rate of change.
(a) The average rate of temperature
change between t_{0} and $t_{0} h$ hours after midnight. The instantaneous rate
of temperature change $t 0$ hours after midnight.

The average rate of change in blood alcohol level between $t(0$ and
${ }^{t} 0 h$ hours after consumption. The instantaneous rate of change in blood alcohol level t (hours after consumption.

The average rate of change of the 30 -year fixed mortgage rate between

3
1^{4}

4

$$
\mathfrak{r}
$$

$$
\begin{aligned}
& \mathrm{s} \\
& \mathrm{a}
\end{aligned}
$$

-

$$
\rightarrow+
$$

30-year
fixed
mortga
ge rate
$t 0$
years
after
2005.
(a).
t
h
e
a
v
e
r
a
g

> e rate of change of revenue when the production level
> changes from $x 0$ to $x 0 h$ units.
... the instantaneous rate of change of revenue when the production level is x_{0} units.
.. the average rate of change in the fuel level, in lb/ft, as the rocket
travels between x_{0} and $x_{0} h$ feet above the ground.
... the instantaneous rate in fuel level when the rocket is x_{0} feet above the ground.
... the average rate of change in volume of the growth as the drug dosage changes from x_{0} to $x_{0} h \mathrm{mg}$.
... the instantaneous rate in the growth's volume when $x_{0} \mathrm{mg}$ of the drug have been injected.
$P(x)=4,000(15 x)(x 2)$
The difference quotient (DQ) is
$\frac{P(x h) P(x)}{h}$
[4, 000 (15(xh))((xh)2)]
h
[4, 000(15x)(x2)]
h
$4,000[(15 x h)(x h 2)(15 x)(x 2)]$

4,000(172xh)
$P(x) \quad \lim \underline{P(x h)} \underline{P(x)}$ $h_{0} \quad h$ 4, 000(17 2x)
$P(x) 0$ when $4,000(172 x)=0$.
17
$x \quad 28.5$, or 850 units.
When $P(x) 0$, the line tangent to
the graph of P is horizontal. Since the graph of P is a parabola which opens down, this horizontal tangent indicates a maximum profit.
(a) Profit $=($ number sold $)($ profit on each $)$ Profit on each
selling price cost to obtain $P(p)(120 p)(p 50)$

The average rate as q increases from $q=0$ to $q=20$ is

The rate the profit is changing at $q=20$ is $P(20)$.
The difference quotient $\frac{\text { is } P(q h) P(q)}{h}$

$$
[70(q h)(q h)][70 q q]
$$

$$
\begin{array}{r}
70 q 70 h q{ }_{2}^{2} \underset{2}{2} h^{2}{ }_{h}^{70 q q} q^{2} \\
2
\end{array}
$$

$$
\begin{gathered}
\overline{70 h 2 q h h} \\
h
\end{gathered}
$$

$$
2 q h
$$

$P(q) \lim _{h 0} \frac{P(q h)}{} \frac{P(q)}{h} 2 q$
$P(20) 702(20) \$ 30$ per
recorder.
Since $P(20)$ is positive, profit is increasing.

S $\quad q)=q[(120 q) 50]$
i
n
c
e
q
$=$
1
2
45.

$$
C(x)=0.04 x^{2}+2.1 x+60
$$

$$
\begin{aligned}
& \text { A } \\
& { }^{\prime} C(11)=0.04(11)^{2}+2.1(11)+60=87.94 \\
& C(10)=0.04(10)^{2}+2.1(10)+60=85 \\
& \begin{array}{ll}
\text { i } \\
\mathrm{n} & \frac{87.94-85}{11-10}=2.94
\end{array} \\
& \text { r or } \$ 2,940 \text { per unit. } \\
& \text { e } \\
& \text { a } \\
& \text { s } \\
& \text { e } \\
& \text { S } \\
& \text { f } \\
& \text { r } \\
& \text { O } \\
& \text { m } \\
& 1 \\
& 0 \\
& \text { t } \\
& \text { o }
\end{aligned}
$$

or $P(q) q(70 q) 70 q q^{2}$.
(b) $C(x+h)$
$=0.04(x+h)^{2}+2.1(x+h)+60$
So, the difference quotient (DQ) is

$$
\frac{C(x+h)-C(x)}{h}
$$

$$
=\frac{\left[0.04(x+h)^{2}+2.1(x+h)+60\right.}{h}
$$

$$
\left.-\left(0.04 x^{2}+2.1 x+60\right)\right]
$$

h
$=\frac{\left[0.04 x^{2}+0.08 x h+0.04 h^{2}+2.1 x\right.}{h}$
$\frac{\left.+2.1 h+60-0.04 x^{2}-2.1 x-60\right]}{h}$
$=\frac{0.08 x h+0.04 h^{2}+2.1 h}{h}$
$=0.08 x+0.04 h+2.1$
46. (a)
$Q_{\text {ave }} \frac{O(3,100) O(3,025)}{3,1003,025}$
$3,1 0 0 \longdiv { 3 , 1 0 0 3 }, 1003,02 \mathbf{4}$

75
$\frac{3,1001 \square 155}{75}$
28.01

The average rate of change in output is about 28 units per worker-hour.
$Q(3,025) \quad \lim \varrho(3,025 \underline{h} \underline{Q(3,025)}$

The instantaneous rate of change is 28.2 units per worker-hour.
Writing ExerciseAnswers will vary.
(a) $E(x) x D(x)$
$x\left(35{ }_{2} 200\right)$

The average change in consumer expenditures is $\$ 115$ per unit.

```
        \(E\) (4h)E(4)
\(E(4) \lim\)
```



```
    \(\lim _{h 0} \frac{35 h^{2} 80 h}{h}\)
    \(\lim (35 h 80)\)
    80
```

The instantaneous rate of change is $\$ 80$ per unit when $x=4$. The expenditure is decreasing when $x=4$. $\underline{d V} 65503$
When $t=30$,

```
dt 5030 4
```

In the "long run," the rate at which V is changing with respect to time is getting smaller and smaller, decreasing to zero.

Answers will vary. Drawing a tangent line at each of the indicated points on the curve shows the population is growing at approximately 10/day after 20 days and 8/day after 36 days. The tangent line slope is steepest between 24 and 30 days at approximately 27 days.

$$
\frac{d T}{d h} \frac{60}{2,0001,000}
$$

51. When $h=1,000$ meters, 6 1,000 $0.006 \mathrm{C} /$ meter
When $h=2,000$ meters, $\frac{d T}{d h} 0 \mathrm{C} /$ meter.
Since the line tangent to the graph at $h=2,000$ is horizontal, its slope is zero.
52. $P(t)=-6 t^{2}+12 t+151$
(a) The average rate of change is $\frac{P\left(t_{2}\right)-P\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{P(2)-P(0)}{2-0}$.

Since $P(2)=-6(2)^{2}+12(2)+151=151$
and $P(0)=-6(0)^{2}+12(0)+151=151$,

$$
\frac{P(2)-P(0)}{2-0}=\frac{151-151}{2}=0
$$

The population's average rate of change for 2010-2012 is zero.
To find the instantaneous rate, calculate $P^{\prime}(2)$.
$P(t+h)=-6(t+h)^{2}+12(t+h)+151$ so the difference quotient (DQ) is
$\mathrm{DQ}=\frac{P(t+h)-P(t)}{h}$
$=\frac{-6(t+h)^{2}+12(t+h)+151-\left(-6 t^{2}+12 t+151\right)}{h}$
$=\frac{-6 t^{2}-12 h t-6 h^{2}+12 t+12 h+151+6 t^{2}-12 t-151}{h}$
$=\frac{-12 h t-6 h^{2}+12 h}{h}$
$=-12 t-6 h+12$
$P^{\prime}(x)=\lim _{h \rightarrow 0} \mathrm{DQ}=\lim _{h \rightarrow 0}(-12 t-6 h+12)=-12 t+12$
For $2012, t=2$, so the instantaneous rate of change is $P^{\prime}(2)=-12(2)+12$ $=-12$, or a decrease of 12,000 people/year.

$$
\begin{aligned}
& H(t) 4.4 t 4.9 t \\
& H(t+h) \\
&=4.4(t+h)-4.9(t+h)^{2} \\
&=4.4 t+4.4 h-4.9\left(t^{2}+2 t h+h^{2}\right) \\
&(\text { a) }=4.4 t+4.4 h-4.9 t^{2}-9.8 t h-4.9 h^{2} \\
& \text { The difference quotient (DQ) is } \\
& \frac{H(t+h)-H(t)}{h} \\
&=\frac{4.4 t+4.4 h-4.9 t^{2}-9.8 t h}{h} H^{\prime}(t) \\
&=\frac{4.4 h-9.8 t h-4.9 h^{2}}{h} \\
&=\frac{h(4.4-9.8 t-4.9 h)}{h}
\end{aligned} \quad \begin{aligned}
& =\lim _{h \rightarrow 0} 4.4-9.8 t-4.9 h \\
& \\
&
\end{aligned}
$$

Affed 1-se.cnad4 4 的s changing at a rate of H (1) $4.49 .8(1) 5.4 \mathrm{~m} / \mathrm{sec}$, where the negative represents that H is decreasing.
$H(t) 0$ when $4.49 .8 t=0$, or
$t 0.449$ seconds.
This represents the time when the height is not changing (neither increasing nor decreasing). That is, this represents the highest point in the jump.

When the flea lands, the height $H(t)$ will be zero (as it was when $t=0$).

$$
\begin{aligned}
& 4.4 t 4.9 t^{2} 0 \\
& \text { (4.4 4.9t)t } 0 \\
& 4.44 .9 t 0 \\
& t \stackrel{44}{ } \quad \underset{49}{ } 0.898 \text { seconds } \\
& H \underline{44} 4.49 .8 \underline{44}
\end{aligned}
$$

At this time, the rate of change is

Again, the negative represents that H is decreasing.
(a) If $P(t)$ represents the blood pressure function then $P(0.7) 80, P(0.75) 77$, and $P(0.8) 85$.

The average rate of change on $[0.7,0.75]$ is approximately $\frac{7780}{} 6 \mathrm{~mm} / \mathrm{sec}$ while
8577 on 0.5
[$0.75,0.8]$ the average rate of change is about $16 \mathrm{~mm} / \mathrm{sec}$. The rate of change is greater in magnitude in the period following the burst of blood.

Writing exerciseanswers will vary.
$D(p) 0.0009 p^{2} \quad 0.13 p$ 17.81 The
average rate of change is

$$
\underset{p_{2}}{\underline{D}\left(p_{2}\right)} \frac{D\left(p_{1}\right.}{p_{1}}
$$

Since
$D(60) \quad 2$
$0.0009(60) \quad 0.13(60) 17.81$
22.37
and
$D(61)$
2
$0.0009(61) \quad 0.13(61) 17.81$
22.3911,
$\underline{22.391122 .37}$
6160
0.0211 mm per mm ${ }_{2}$ f mercury
$D(p h) 0.0009(p h) 0.13$
So, the difference quotient (DQ) is $D(p h) D(p)$

$\frac{h \quad 2}{[0.0009(p h)}$| 17.81 |
| :--- |
| $0.13(p h)$ |

$(0.0009 p \quad 0.13 p 17.81)]$

$2 h$

[0.0009p 0.0018 ph $0.0009 h$

$0.13 p 0.2^{3 h} 17.81$
$0.0009 \quad \begin{array}{l}0.13 p 17.81]\end{array}$
${ }_{2}^{h}$

$0.0018 p h 0.0009 h \quad 0.13 h$
0.0018 p $0.0009 h 0.13$
$D(x)$
$\lim _{h 0}(0.0018 p 0.0009 h 0.13)$
$h 0$
0.0018 p 0.13

The instantaneous rate of change when $p=60$ is
$D(60) 0.0018(60) 0.13$
$0.0018 p 0.130$
p 72.22 mm of
mercury
At this pressure, the diameter is neither increasing nor decreasing.
(a) The rocket is

$$
h(6)=-576+1200=624
$$

feet above ground.

The average velocity between 0 and 40 seconds is given by

$$
\frac{h(6)-h(0)}{6}=\frac{624}{6}=104 \text { feet } / \text { second. }
$$

(c) $h^{\prime}(0)=200 \mathrm{ft} / \mathrm{sec}$ and
$h^{\prime}(40)=-1080 \mathrm{ft} / \mathrm{sec}$. The negative sign in the second velocity indicates the rocket is falling.
57. $s(t)=4 \sqrt{t+1}-4$

$$
=4(t+1)^{1 / 2}-4
$$

(a) $s(t+h)=4[(t+h)+1]^{1 / 2}-4$

So, the difference quotient (DQ) is

$$
\begin{aligned}
& \frac{4(t+h+1)^{1 / 2}-4-\left[4(t+1)^{1 / 2}-4\right]}{h} \\
& =\frac{4(t+h+1)^{1 / 2}-4-4(t+1)^{1 / 2}+4}{h}
\end{aligned}
$$

$$
\begin{aligned}
& D(60) \text { is Multiplying the } \\
& \text { positive, the numerator and }
\end{aligned}
$$

gives

$$
\begin{aligned}
& \frac{16(t+h+1)-16(t+1)}{h\left[4(t+h+1)^{1 / 2}+4(t+1)^{1 / 2}\right]} \\
& =\frac{16 t+16 h+16-16 t-16}{4 h\left[(t+h+1)^{1 / 2}+(t+1)^{1 / 2}\right]} \\
& =\frac{16 h}{4 h\left[(t+h+1)^{1 / 2}+(t+1)^{1 / 2}\right]} \\
& =\frac{4}{(t+h+1)^{1 / 2}+(t+1)^{1 / 2}} \\
& s^{\prime}(t)=\lim _{h \rightarrow 0} \frac{4}{(t+h+1)^{1 / 2}+(t+1)^{1 / 2}} \\
& =\frac{4}{(t+1)^{1 / 2}+(t+1)^{1 / 2}} \\
& =\frac{4}{2(t+1)^{1 / 2}}
\end{aligned}
$$

$$
v_{\mathrm{ins}}(t)=\frac{2}{(t+1)^{1 / 2}}=\frac{2}{\sqrt{t+1}}
$$

(b) $v_{\text {ins }}(0)=\frac{2}{(0+1)^{1 / 2}}=\frac{2}{\sqrt{1}}=2 \mathrm{~m} / \mathrm{sec} \sqrt{2}$
(c) $s(3)=4 \sqrt{3+1}-4=8-4=4 \mathrm{~m}$

$$
v_{\text {ins }}(3)=\frac{2}{\sqrt{3+1}}=\frac{2}{2}=1 \mathrm{~m} / \mathrm{sec}
$$

$$
(3(x h) 2)(3 x 2)
$$

(a) $f(x) \lim$

$$
{ }^{h 0} \quad \underline{3 h}
$$

lim $h 0 h$

The line tangent to a straight line at any point is the line itself.
(a) For $y f(x) x$,
$(x h)(x h)^{2}$.
The difference quotient $(2 \mathrm{Q})$ is

$$
\left.\lim _{h 0} \frac{f(x h) f(}{h} x\right)
$$

For $y f(x) x^{2}$,
$f(x h)(x h){ }^{2} 3$.
The difference quotient (DQ) is [(
$\left.x h)^{2} 3\right]\left(\begin{array}{ll}x & 3\end{array}\right) 2 x h^{2}$

$$
\lim _{h 0} \frac{f(x h) f(x)}{h}
$$

The graph of $y \quad x^{2} 3$ is the graph 2
of $y x$ shifted down 3 units. So the
graphs are parallel and their tangent lines have the same slopes for any value of x. This accounts geometrically for the fact that their derivatives are identical.

2
(b) Since $y x \quad 5$ is the parabola 2

3

At $x 1, y 3(1) 25$ and
$(1,5)$ is a point on the tangent line.
Using the point-slope formula with
x shifted up 5 units and the constant appears to have no effect on the derivative, the derivative of the 2
function $y x \quad 5$ is also $2 x$.
$m 3$ gives $\quad y(5) 3(x(1))$ or
3×2.
60. (a) $\operatorname{For} f(x) \quad x^{2} 3 x$, the derivative is

(b) For $g(x) x^{2}$, the derivative is

$$
\begin{aligned}
& g(x) \lim _{h 0} \frac{(x h)^{2} x^{h} 22}{22^{h}} \\
& \lim _{h 0} \frac{x 2 h x h x}{h} \\
& \lim (2 x h) \\
& h 0 \\
& x
\end{aligned}
$$

While for $h(x) 3 x$, the derivative is

$$
h(x) \lim _{h 0} \frac{3(x h) 3 x}{h} \lim \frac{3 h}{3} h
$$

The derivative of the sum is the sum of the derivatives.

The derivative of $f(x)$ is the sum of the derivative of $g(x)$ and $h(x)$.
61. (a) For y

$$
f(x) x^{2}
$$

$(x h)(x h)^{2}$.
The difference quotient (DQ) is f
$\frac{(x h) f(x)(x h)^{2}}{h} \frac{x^{2}}{\frac{2}{2}}$
$d x \quad f(x)$
$\lim ^{f(x h) f(x)}$

33	2 23
	$3 x h 3 x h$

$\frac{d y}{d x} f(x)$

$$
\begin{aligned}
& \lim _{-} \frac{f(x h) f(x)}{h 0} h \\
& 2
\end{aligned}
$$

The pattern seems to be that the derivative of x raised to a power (x) power decreased by one (nx $n{ }^{n 1}$). So, the derivative of the function $y x$ is $4 x^{3}$ and the derivative of the function $y x^{27}$ is $27 x^{26}$.

If $y m x b$ then

$\underline{d y}$	$\underline{[m(x h) b](m x b)}$
$d x$	$\lim _{h 0} \quad h$
$\operatorname{limmx~mhhmx~} b$	
$\underline{m h}$	
li	
$h 0 \mathrm{~h}$	
$\lim _{h 0} m$	
	m, a constant.

When $x<0$, the difference quotient (DQ)

So, $f(x) \lim 11$.
When $x>0$, the difference quotient (DQ)
is $f(x h) f(x) \underline{(x h)} \underline{x} 1$.

h
 h

$h 0 \quad h$
x
For $y f(x) x^{3}$,
3
($x h$) ($x h$).
The difference quotient (DQ) is

So, $\quad f(x) \underset{h 0}{\lim } 11$.

Since there is a sharp corner at $x=0$
(graph changes from $y=x$ to $y=x$), the
graph makes an abrupt change in direction at $x=0$. So, f is not differentiable at $x=0$.
(a) Write any number x as $x c h$. If
the value of x is approaching c, then h is approaching 0 and vice versa. Thus
the indicated limit is the same as the
limit in the definition of the derivative.
Less formally, note that if
$x c$ then $\frac{f(x) f(c)}{x c} \quad$ is the slope of
a secant line. s x approaches c the slopes of the secant lines approach the slope of the tangent at c.

$$
\begin{aligned}
& \lim _{x c}[f(x) f(c)] \\
& \lim \frac{f(x) f(c)}{x c} x(x c)
\end{aligned}
$$

$$
\lim [f(x) f(c)]
$$

$$
x c
$$

$$
\lim f(x) f(c) \lim (x c)
$$

$x c \quad x c \quad x c$
(c) 0

0

using part (a) for the first limit on the right.

Using the properties of limits and the result of part (b)
$0 \lim [f(x) f(c)]$
xc

$$
\begin{aligned}
& \lim _{x c} f(x) \lim _{x c} f(c) \\
& \lim _{x c} f(x) f(c)
\end{aligned}
$$

so $\lim _{x c} f(x) f(c)$ meaning $f(x)$ is
continuous at $x c$.

65. To show that $f(x) \mathcal{X} 1 \quad$ is not differentiable at $x=1$,

Using the TRACE feature of a calculator
with the graph of $y 2 x^{3} 0.8 x^{2} 4$
shows a peak at $x 0$ and a valley at
0.2667 . Note the peaks and valleys are hard to see on the graph unless a small rectangle such as $[0.3,0.5][3.8$, 4.1] is used.

To find the slope of line tangent to the

$$
\text { graph of } f(x) x \quad \begin{array}{cc}
\sqrt{2} & \sqrt{3} \\
3 x
\end{array} \text { at }
$$

$x=3.85$, fill in the table below.
The $x+h$ row can be filled in manually.
For $f(x)$, press $y=$ and input
$\sqrt{x^{\wedge} 22 x} \sqrt{ }(3 x)$ for y_{1}

Use window dimensions [1, 10]1 by $[1,10] 1$.
Use the value function under the calc
menu and enter $x=3.85$ to
find $f(x)=4.37310$.
For $f(x+h)$, use the value function under the calc menu and enter $x=3.83$ to find
for $y 1$
1)) $/\left(\begin{array}{ll}x & 1\end{array}\right)$

$$
f(x+h)=4.35192 . \text { Repeat this process for }
$$

The abs is under the NUM menu in the math application.

Use window dimensions [4, 4] 1 by $[4,4] 1$

Press Graph
We see that f is not defined at $x=1$. There can be no point of tangency.
$x=3.84,3.849,3.85,3.851,3.86$, and 3.87 .

The $\frac{f(x h) f(x)}{h} \quad$ can be filled in
manually given that the rest of the table is now complete. So, slope $f(3.85) 1.059$.

2.2 Techniques of Differentiation

Since the derivative of any constant is zero,
$y 2$
dy $d x^{0}$
(Note: $y=2$ is a horizontal line and all horizontal lines have a slope of zero, so
$\underline{d y}$
$d x$ must be zero.)
$y=3 \underline{d y}$
$0^{d x}$
y 5×3
$\underline{d y} \underline{d}{ }_{(5 x)^{d}}^{(3)}$
$d x \quad d x \quad d x$
$\frac{d y}{d x} \quad 505$

$$
\text { dy }_{2} 3^{3}{ }_{3 / 41} \quad \stackrel{3}{x^{1 / 4}}-3
$$

$$
\begin{array}{clll}
d x & 4 & 2 & 2_{x}^{4-} \\
-9 & & &
\end{array}
$$

$$
\text { 13. } \int_{\sqrt{t}} \quad 9 t_{1 / 2}
$$

$$
\begin{aligned}
& \text { y } \sqrt[2 x]{\sqrt[x]{7^{2}} \sqrt{1 / 2}} \\
& \frac{d y}{d x}=\sqrt{2}\left(\frac{1}{2} x^{1 / 2-1}\right) \\
& =\sqrt{2}\left(\frac{1}{2} x^{-1 / 2}\right) \\
& =\sqrt{2} \cdot \frac{1}{2 x^{1 / 2}} \text { or } \frac{\sqrt{2}}{2 \sqrt{x}} \\
& \text { 12. } 2 \int_{x}^{\sqrt[4]{3}} \quad 2 x
\end{aligned}
$$

$$
\begin{aligned}
& y x^{7 / 3} \\
& \underline{d y} \underline{7}_{x}{ }^{7 / 31} \underline{7}_{x}{ }^{4 / 3} \\
& \begin{array}{lll}
d x & 3 & 3
\end{array} \\
& \begin{array}{c}
y \\
x_{d y}^{3.7}
\end{array} \\
& 3.71 \\
& 2.7 \\
& { }_{1.2}^{d .7} \\
& y 4 x \\
& \begin{array}{lll}
d y & 1.21 & 2.2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 3 \\
& { }^{4} \pi\left(3 r^{2}\right) 4 \pi r^{2} \\
& d r 3
\end{aligned}
$$

$d x$

$$
\frac{d v}{d x} 9{ }_{2}^{1} t_{1 / 21}
$$

5. $y x^{4}$

2
or
2t3/2

Chapter 2. Differentiation: Basic Concepts

14. $y \quad \frac{3}{-}-\frac{3}{2} t^{2}$

$$
\underline{d y}_{3\left(5 x^{4}\right) 4\left(3 x^{2}\right) 9(1) 0}
$$

$$
d x
$$

$$
4 \quad 2
$$

$$
15 x \quad 12 x \quad 9
$$

$$
102 x^{7} 3 x^{5} 1
$$

$$
3
$$

$$
\begin{aligned}
& f(x) 0.02 x \\
& d \begin{array}{rr}
0.3 x \\
3 & d \\
f(x) & \frac{(0.02 x}{d x d x}
\end{array} \quad \underline{(0.3 x)}
\end{aligned}
$$

$$
2 \quad 2
$$

$$
\begin{aligned}
& f(x) 84^{\underline{1}} x^{7} 6_{2} \frac{1}{x^{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { dy } \underline{3}^{2 t^{2}} 3^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& d x \quad d x \quad d x \quad d x \\
& \xrightarrow{d y} 2 \times 2 \\
& d x \\
& { }_{y} 3 x^{5} \underset{4}{ }{ }^{3} 9 \times 6
\end{aligned}
$$

```
3 0.3
20. f(u) 0.07u 1.21u 3u5.2
3 2
f(u)4(0.07u ) 3(1.21u ) 3
00.28u 3 3.63u 2 3
```

21. $y=\frac{1}{t}+\frac{1}{t^{2}}-\frac{1}{\sqrt{t}}=t^{-1}+t^{-2}-t^{-1 / 2}$

$$
1 t^{2} \quad 2 t^{3} \underline{1}_{t 3 / 2} \quad 2
$$

$$
\underline{1} \underline{2}-1-
$$

$$
t_{t}^{2}{ }_{t}^{3} 2 t 3 / 2
$$

$$
\begin{array}{cccc}
\frac{1}{2} & \overline{2} & \frac{1}{{ }^{2}} \\
\text { or } & t_{3} & 2
\end{array}
$$

$$
3^{-\quad-\quad 1} 22 \quad-3
$$

22. $y \begin{array}{lllll}2 & 2 & 2 x & 2 x & 3\end{array}$

$$
\begin{aligned}
& \underline{d y} \quad \begin{array}{ccccc}
2 & 3 & \underline{2} \\
(1)(3 x &)(2)(2 x &)(3) & x & 4
\end{array}
\end{aligned}
$$

$$
d x
$$

23. $f(x) \quad \bar{x}_{3} \quad{ }_{x}^{3} \overline{X_{3} / 2} x_{3 / 2}$,

$$
\begin{aligned}
& f(x)^{d}{ }_{d x}\left(x^{3 / 2}\right)_{d x}^{d}\left(x^{3 / 2}\right) \\
& \underline{-}^{-} x^{3 / 21} \quad \underline{3} x^{3 / 21} \\
& 3_{1 / 2}^{2} 3_{*}{ }^{5 /} 2_{2}^{2}{ }_{2 x}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 24. } f(t) 2^{2} \sqrt{t}^{3} \frac{2 x_{5 / 2}}{\sqrt{t}} 2^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
\begin{array}{ccc}
3 x & 4 x & 3 \\
3 & 2 x & 4
\end{array} \\
3 & 4 & 2
\end{array} \\
& x^{2} \sqrt{x}^{3} \frac{4}{1^{1}}
\end{aligned}
$$

$$
\begin{aligned}
& 1 t^{11} \quad 2 t^{21} \underline{1}_{t}^{1 / 21} \\
& 2
\end{aligned}
$$

Chapter 2. Differentiation: Basic Concepts 118

$$
\begin{array}{ccc}
2 t_{3 / 2} & 4 t_{1 / 2} & 2 \\
(t) & -
\end{array}
$$

119 Chapter 2. Differentiation: Basic Concepts
$3\left(2 t^{3 / 21}\right)$

Chapter 2. Differentiation: Basic Concepts 119
1
$\left(4 t_{1 /}\right.$
21) $0 \quad 2 \quad 2$
$3 t_{1 / 2} \quad 2 t_{3 / 2}$
$\sqrt{3} \quad \begin{array}{ll}t & -\frac{2}{-} \\ & t_{t_{3}}\end{array}$

$$
y^{-75} 7-x_{1.2} 5 x_{2.1} x_{1.2}
$$

$$
x_{2.1}
$$

$$
\underline{d y}
$$

$$
1.21 \quad 2.11
$$

$$
d x+2.2^{1.2(7)}
$$

$$
8.4 x \quad 10.5 x
$$

$$
\stackrel{8 .}{ }_{-}^{10.5 x^{1.1}}
$$

$$
x^{2.2}
$$

27. $y \frac{x^{5}-\frac{4 x^{2}}{3}}{}$

\[

\]

$$
\begin{aligned}
& \begin{array}{lllll}
\underline{x}_{x}^{2} & \underline{2} & 3 / 2 & -1
\end{array} \\
& \text { 25. } y \quad x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(-\frac{1}{16} x^{2}\right)+\frac{d}{d x}\left(2 x^{-1}\right)-\frac{d}{d x}\left(x^{3 / 2}\right) \\
& +\frac{d}{d x}\left(\frac{1}{3} x^{-2}\right)+\frac{d}{d x}\left(\frac{1}{3} x\right) \\
& =-\frac{1}{16}(2 x)+2\left(-1 x^{-1-1}\right)-\frac{3}{2} x^{3 / 2-1} \\
& +\frac{1}{3}\left(-2 x^{-2-1}\right)+\frac{1}{3} \\
& =-\frac{1}{8} x-2 x^{-2}-\frac{3}{2} x^{1 / 2}-\frac{2}{3} x^{-3}+\frac{1}{3} \\
& =-\frac{1}{8} x-\frac{2}{x^{2}}-\frac{3}{2} x^{1 / 2}-\frac{2}{3 x^{3}}+\frac{1}{3} \text {, } \\
& \text { or }-\frac{1}{8} x-\frac{2}{x^{2}}-\frac{3}{2} \sqrt{x}-\frac{2}{3 x^{3}}+\frac{1}{3}
\end{aligned}
$$

29. $y x \quad 3 x^{2} \quad 3 x 1$
$\underline{d v}$
$d x x^{3 x^{2} 10 \times 3}$
At $x=1, \underline{d y}$
$d x$ 10. The equation of the tangent line at $(1,8)$ is $y+8=10(x+1)$, or $y=10 x+2$.

53
Given $y x \quad 3 x \quad 5 x 2$ and the point

$$
\begin{array}{ccc}
\underline{d y} & 4 & 2 \\
(1,5), \text { then } & d x^{5 x} & 9 x \quad 5 \text { and }
\end{array}
$$

the slope of the tangent line at $x 1$ is

$$
\left(1^{4}\right) 9\left(1^{2}\right) 59 \text {. The equation of }
$$

the tangent line is then

$$
\begin{aligned}
& y(5) 9(x 1) \text { or } y 9 x 4 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { At } 4, \begin{array}{llll}
-7 & \underline{d y} & \underline{1} \text { The equation of } \\
& 4 & d x & 16
\end{array} \\
& 1 \quad 1
\end{aligned}
$$

the tangent line is $y \quad(x 4)$, or

$$
\begin{array}{lll}
\overline{1} & 4 & 16 \\
16^{x 2} & &
\end{array}
$$

Given $y x \quad 3 \quad 2 \begin{aligned} & 16 \\ & \text { and the point } x\end{aligned}$
$(4,7)$, then $\underline{d v} \underline{3} \quad \sqrt{\sqrt{2}} \frac{32}{3} \underset{3}{\operatorname{and}}$ the dx $\quad 2$
2
$x \quad 4$
2 21
$d y \underline{d}(x) d(4 x)$
$d x d x$ $d x$ 11

$$
2 x 4\left(1 x^{11}\right)
$$

42(4) 32 44
.The equation3

$$
4 \quad 2
$$

of the tangent line is then
of the tangent line is then

II

$$
\underline{11}
$$

$$
y(7) \quad(x 4) \text { or } \quad y \quad x 15
$$

$$
2
$$2

$2 x 4 x^{2}$
$2 x$
4
x^{2}
28. $y x^{2}{\underset{(x}{3} 6 x 7)}^{5}{ }_{6} x^{3}{ }_{7}$
$x_{x}^{2} \underline{d y}_{5 x} 4{ }_{18 x}^{2}{ }_{14 x} d x$

At $x=1, \frac{d y}{x}$. The equation of the
tangent line at $(1,2)$ is $y 2=1(x+1)$, or $y=x+3$.
34. Given $y 2 x \quad \sqrt{x}^{4} \begin{aligned} & \text { 3 } \\ & \\ & \\ & \end{aligned}$ $(1,4)$, then $\frac{d y}{} 3 x-\frac{1}{-}$ and the $d x \quad 2^{\sqrt{x}} \quad x_{2}$ slope of the tangent line at $x 1$ is

$$
{\underset{2}{3}}_{3}-1-3
$$

$m 8(1)^{-\cdots}$

of the tangent line is then $\quad y 4 \frac{9}{2}(x)$
or $y \underset{2}{ }-\frac{9}{2}$.
35. $f(x) 2 x^{3} \frac{1}{2}-2 x^{3} x^{2}$

$$
f(x) 6 x \underset{x^{3}}{2} \underset{\underline{2}}{2}
$$

At $x=1, \quad f(1) 4$. Further,
$y=f(1)=3$. The equation of the tangent line at $(1,3)$ is $y 3=4(x+1)$, or
$=4 \times 1$.

$$
4 \quad 3 \quad 2
$$

36. $f(x) x\left[\begin{array}{rrrr} & 3 x & 2 x & 6 ; \\ & 3 & 2 & \end{array}\right.$
$x 2$
(x) $4 x \quad 9 x \quad 4 x$
$f(2) 1624866$ so $(2,6)$ is a point on the tangent line. The slope is
$f(2) 323684$. The equation
$f^{\prime}(2) 48 \frac{1193}{44}$. The equation of

37. $f(x)$

	-			
$f(x)$	1			
	1	3	3	1/2
	x		x	$8 x$
		$\sqrt{ }$		
	3		3	
2		$\sqrt{8}$		
$f(x){ }^{x}$		$2 x_{1 / 2}$		
			$\sqrt{8}$	

At $x=2, f(2) 4$

3.

Further, $y f(2) \quad 43$.The 3

$$
\underline{4}
$$

equation of the tangent line at 2,3 is

$$
y 4_{3} 3(x 2), \text { or } \quad y 3 x \quad \frac{22}{3} .
$$

3/2
40. $f(x) \quad x(x 1) x \quad x ; \quad x 4$ $f(x) \frac{3}{2} \sqrt{x} \quad 1$
$4 x 14$.

$$
f(x) x^{1} x x^{2} x^{2}
$$

$$
\underline{2}
$$

$$
(x) 1 x 3
$$

$f(4) 844$ so $(4,4)$ is a point on the tangent line. The slope is
$f(4) 312$. The equation of the
tangent line is $y 42(x 4)$ or $2 x 4$.

$$
f(x) x^{4} 3 x_{1}
$$

$$
\text { At } x=1
$$

$f(1)$ 3. Further, $f(x) 8 x 3$
$y=f(1)=0$.

The equation of the tangent line at $(1,0)$ is $0=3(x 1)$, or $y=3 x 3$.

3
38. $f(x) x_{2} \quad \sqrt{\sqrt{x}} ; x 4$
$f(x) 3 x-\frac{}{2 \sqrt{x}}$
$f(4) 64266$ so $(4,66)$ is a point on the tangent line. The slope is

The rate of change of f at $x=1$ is $f(1) 5$.
42. $f(x) \quad \begin{gathered}3 \\ 3\end{gathered} \frac{3}{2} 5 ; \quad x 2$ $f(x) 3 x \quad 3$
43.

$$
f(x) x \quad \sqrt{-1} \quad \begin{array}{cc}
1 / 2 & 2 \\
x x
\end{array}
$$

$$
\begin{aligned}
f(x) 1-1 & -\underline{2}^{2} \\
2 x_{1 / 2} & x_{3}
\end{aligned}
$$

The rate of change of f at $x=1$
is $f(1)^{3} \cdot 2$
44. $f(x) \quad \sqrt{ } \quad 5 x ; \quad x 4$

$$
\begin{aligned}
& f(x) \frac{1}{\sqrt{5}} \\
& f(4)-\frac{1}{2} 5 \frac{21}{2(2)}
\end{aligned}
$$

$$
f(x) \frac{x x_{\sqrt{ }}}{\sqrt{V}}
$$

$$
\begin{aligned}
& -\frac{x}{\sqrt{ }} \sqrt{\sqrt{V}}
\end{aligned}
$$

$$
\begin{aligned}
& x \\
& 1
\end{aligned}
$$

$$
x_{1 / 2} 1
$$

$$
f(x) \frac{1}{2 x^{1 / 2}}
$$

The rate of change of f at $x=1$

$$
\text { is } f(1)^{\frac{1}{2}} \cdot 2
$$

46. $f(x)^{\underline{2}} x \times ; \quad{ }^{2} 1$

$$
\begin{array}{cc}
x & \sqrt{ } \\
f(x) & \frac{2}{2}-\frac{3}{2} \\
x & x \sqrt{2} \\
f(1) & 2^{\frac{3}{2}}-\frac{1}{2}
\end{array}
$$

47. $f(x) 2 x^{3}{ }_{5 x^{2}} \quad 4$

$$
{ }_{x}^{2} 10 x
$$

The relative rate of change is $f(x) \quad 6 x \quad 10 x$

$$
f(x) \quad 3 \quad 24 .
$$

$$
\begin{aligned}
& f(x) x \frac{1}{x x} ; f(1)=1+1=2 x \\
& 2 \quad \frac{1}{2} \\
& f(x) 1 x \quad 1-f(1) 2_{2}^{110}
\end{aligned}
$$

At $c=1$, the relative rate of change is
f(1) 00
$f(1) \quad 2$
$f(x) x x^{2}$

$$
x_{1 / 2} \quad x_{2}
$$

$$
f(x) \begin{gathered}
x_{3 / 2} x_{2} \\
3 \\
1 / 2 \\
-x^{x} \\
2
\end{gathered} \quad 2 x \quad \begin{aligned}
& \\
& \\
&
\end{aligned}
$$

The relative rate of change is

When $x=4, f(x) \frac{\sqrt{4} 4(4)}{\sqrt{2}} 11$

$$
f(4) \quad 24 \quad 4 \quad 4 \quad 2 \quad 24
$$

50. $f(x) \quad(4 \quad x) x \quad 1 \quad 1$,

$f(3) \stackrel{4}{4} \quad$| | |
| :--- | :--- |
| | |
| | |

$f(x) 4 x^{2} ; f(3) \quad \stackrel{4}{ } \quad 9$
At $c=3$, the relative rate of change is

$$
\frac{f(3)}{f(3)} \quad \frac{{ }^{-4} 9}{\frac{1}{3}} \quad 4
$$

(a) $A(t) 0.1 t^{2} \quad 10 t 20$
$A(t) 0.2 t 10$
In the year 2008, the rate of change is $A(4) 0.810$ or $\$ 10,800$ per year.
f(1) 610

When $x=1$,
4.
$A(4)=(0.1)(16)+40+20=61.6$, so the percentage rate of change is
(100)(10.8) 17.53%.
61.6
$f(1) \quad 254$
(a) Since $f(x) x^{3} 6 x^{2} \quad 15 x$ is the
number of radios assembled x hours after 8:00 A.M., the rate of assembly after x hours is
$f(x) 3 x^{2} 12 x 15$ radios per hour.
The rate of assembly at 9:00 A.M.
($x 1$) is
$f(1) 3121524$ radios per hour.
At noon, $t=4$.
$f^{\prime}(4)=-3(4)^{2}+12(4)+15=15$ and $f^{\prime}(1)=24$. So, Lupe is correct: the assembly rate is less at noon than at 9 A.M.
(a) $T(x) 20 x^{2} \quad 40 \times 600$ dollars

The rate of change of property tax is $T(x) 40 \times 40$ dollars/year. In the year 2008, $x=0$, $T(0) 40$ dollars/year.

In the year 2012, $x=4$ and $T(4)=\$ 1,080$. In the year 2008, $x=0$ and $T(0)=\$ 600$.
The change in property tax is $T(4) T(0)=\$ 480$.
54. ${ }^{M(x) 2,300}{ }^{\underline{125} \underline{517}} 2$
$M(x)^{\underline{125} \underline{1034}}$

\[

\]

decreasing at a rate of approximately $1 / 8$ motorcycle per $\$ 1,000$ of advertising.
cost gasoline
4.0(\# gals)

$$
\begin{aligned}
& 4.0(250) \frac{11,200}{250 x} x \\
& 4,800
\end{aligned}
$$

$4.0 x$ dollars
$\stackrel{x}{x}$ So, the cost function is 9, 800
$C(x) \quad 4 x$.

The rate of change of the cost is $C(x)$.

When $x=40$,
$C(40) 2.125$ dollars/mi per hr.
Since $C(40)$ is negative, the cost is decreasing.
(a) Since $C(t) 100 t^{2} 400 t 5,000$ is the circulation t years from now, the rate of change of the circulation in t years is
$C(t) 200 t 400$ newspapers per year.

The rate of change of the circulation 5 years from now is

$$
C \text { (5) 200(5) } 4001,400 \text { newspap }
$$

ers per year. The circulation is increasing.

The actual change in the circulation during the $6{ }^{\text {th }}$ year is
$\underline{5,000}$
x
(a) Cost $=$ cost driver + cost gasoline cost driver 20(\# hrs)

$20 \underline{250 \mathrm{mi}}$

```
C (6) C (5) 11,000
    9,500
        1,500 newspapers.
```

(a) Since Gary's starting salary is
$\$ 45,000$ and he gets a raise of
\$2,000 per year,
his salary t years from now will be
$S(t)=45,000+2,000 t$ dollars.
The percentage rate of change of this salary t years from now is

$$
\begin{aligned}
100\left[\frac{S^{\prime}(t)}{S(t)}\right] & =100\left(\frac{2,000}{45,000+2,000 t}\right) \\
& =\frac{200}{45+2 t} \text { percent per year } \\
&
\end{aligned}
$$

The percentage rate of change after 1 year is

$$
\frac{200}{47} \approx 4.26 \%
$$

In the long run, $\frac{200}{45+2 t}$ approaches 0 . That is, the percentage rate of

Gary's salary will approach 0 (even though Gary's salary will continue to increase at a constant rate.)

Let $G(t)$ be the GDP in billions of dollars where t is years and $t 0$ represents 1997. Since the GDP is growing at a constant
rate, $G(t)$ is a linear function passing through the points $(0,125)$ and $(8,155)$.
Then
$G(t) \frac{155125}{80} t 125 \frac{15}{} t 125$.
In 2012, $t 15$ and the model predicts a
GDP of $G(15) 181.25$ billion dollars.
(a) $f(x)=6 x+582$

The rate of change of SAT scores is
(x) 6 .

The rate of change is constant, so the drop will not vary from year to year.
$N(x) 18 x^{2} 500$ commuters per
week. After 8 weeks this rate is $N(8) 18\left(8{ }^{2}\right) 5001652$ users per week.

The actual change in usage during the 8 week is $N(8) N(7) 15,07213,5581$,
(a) $P(x) 2 x 4 x^{3 / 2} \begin{gathered}514 \text { riders. } \\ 5,000 \text { is the }\end{gathered}$
population x months from now. The rate of population growth is
$\begin{array}{rl}P(x) & 24 x^{\frac{3 x^{1 / 2}}{2}} 2 \\ 26 x & 1 / 2 \text { people per month. }\end{array}$
Nine months from now, the population will be changipg at the rate
of $P(9) 26(9 \quad) 20$ people per month.

The percentage rate at which the population will be changing 9 months from now is

$100 \frac{P(9)}{P(9)}$	$\frac{100(20)}{2(9) 4\left(9^{3 / 2}\right) 5,000}$
$\frac{2,000}{5,126}$	
2	0.39%.

62. (a) $P(t) t \quad 200 t 10,000 \quad(t 100)$
$P(t) 2 t 2002(t 100)$
The percentage rate of change is
$100 \underline{P(t)}) \frac{200(t 100)}{2} \underline{200}$.

$\underbrace{3}$| $P(t)$ | $(t 100)$ | $t 100$ |
| :--- | :--- | :--- |

The rate of change is negative, so the scores are declining.

3
(a) Since $N(x) 6 x 500 \times 8,000$ is
the number of people using rapid transit after x weeks, the rate at which system use is changing after x weeks
is

The percentage rate of changes
$\underline{200}$
approaches 0 since lim
tt 100
63. $N(t) \quad{ }^{3}{ }^{3} \quad{ }^{5}{ }_{t 10 t}^{3} 5 t t^{1 / 2}$

The rate of change of the infected population is
$N(t) 30 t^{2} 5-1$ people/day.
$2 t_{1 / 2}$
On the 9 th day, $N(9) 2,435$ people/day.
(a) $N(t) 5,175 t^{3}{ }_{(t 8)}$

$N(3) 4(3) 83(3 \quad) 108$ people
per week.

The percentage rate of change of N is given by

$$
\left.100 \frac{N(t)}{N(t)} \frac{100(4 t}{5,175 t} \frac{324 t}{4} \frac{2}{3}\right)
$$

A graph of this function shows that
it never exceeds 25%.
Writing exerciseanswers will vary.
(a) $T(t) 68.07 t^{3} 30.98 t^{2}{ }_{12.52 t}$
$T(t) 204.21 t \begin{aligned} & \left.2 \begin{array}{l}37.1 \\ 61.96 t 12.52\end{array}\right)\end{aligned}$
$T(t)$ represents the rate at which the bird's temperature is changing after t days, measured in C per day.
(b) $T(0) 12.52 \mathrm{C} /$ day \quad since $T(0)$ is
positive, the bird's temperature is increasing.
is $T(0.442) 42.8 \mathrm{C}$.
The bird's temperature starts at $T(0)=37.1 \mathrm{C}$, increases to $T(0.442)=42.8 \mathrm{C}$, and then begins to decrease.
(a) Using the graph, the x-value (tax rate) that appears to correspond to a y-value (percentage reduction) of 50 is 150 , or a tax rate of 150 dollars per ton carbon.

Using the points $(200,60)$ and (300, 80), from the graph, the rate of change is approximately

$$
\frac{d P}{d T} \approx \frac{80-60}{300-200}=\frac{20}{100}=0.2 \%
$$

or increasing at approximately 0.2%
per dollar. (Answers will vary depending on the choice of h.)
(c) Writing exercise - Answers will vary.
2
(a) $Q(t) 0.05 t \quad{ }^{2} \quad 0.1 t 3.4 \mathrm{PPM}$ $Q(t) 0.1 t 0.1 \mathrm{PPM} /$ year

The rate of change of Q at $t=1$ is $Q(1) 0.2 \mathrm{PPM} / \mathrm{year}$.
$Q(1)=3.55 \mathrm{PPM}, Q(0)=3.40$, and $Q(1) Q(0)=0.15$ PPM.

Since T (0.713) is negative, the bird's
$Q(2)=0.2+0.2+3.4=$ $3.8, Q(0)=3.4$, and
$Q(2) Q(0)=0.4 \mathrm{PPM}$.

| 4π | 2 | 2 | $\underline{d P}$ | $\underline{4 \pi N} 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

68. $P \quad-$
T^{1} πN
3 3kT $9 k$
$d t \quad 9 k$
$9 k T$

Find t so that $T(t) 0$. 2

Since g represents the acceleration due to gravity for
$t \frac{{ }^{61.96} \sqrt{\sqrt{61.96)} 4(204.21)(12.52)}}{2(204.21)}$
the planet our spy is on, the formula for the rock's height is

$$
H(t)=-\frac{1}{0} g t^{2}+V_{0} t+H_{0}
$$

Since he throws the rock from ground
level, $H_{0}=0$. Also, since it returns to the ground after 5 seconds,

$$
\begin{aligned}
0 & =-\frac{1}{2} g(5)^{2}+V_{0}(5) \\
0 & =-12.5 g+5 V_{0} \\
V_{0} & =\frac{12.5 g}{5}=2.5 g
\end{aligned}
$$

The rock reaches its maximum height halfway through its trip, or when $t=2.5$. So,

$$
37.5=-\frac{1}{2} g(2.5)^{2}+V_{0}(2.5)
$$

$37.5=-3.125 g+2.5 V_{0}$
Substituting $V_{0}=2.5 \mathrm{~g}$
$37.5=-3.125 g+2.5(2.5 g)$
$37.5=-3.125 g+6.25 g$
$37.5=3.125 g$
$g=12 \mathrm{ft} / \mathrm{sec}^{2}$
So, our spy is on Mars.
70. (a) $s(t) t^{2} 2 t 6 \quad$ for $0 t 2$

$$
\begin{aligned}
& v(t) 2 t 2 \\
& a(t) 2
\end{aligned}
$$

The particle is stationary when $v(t) 2 t 20$ which is at time t.
(a) $s(t) 3 t^{2} \quad 2 t 5$ for $0 t 1$

$$
v(t)=6 t+2 \text { and } a(t)=6
$$

$6 t+2=0$ at $t=3$. The particle is not stationary between $t=0$ and $t=1$.
(a) $s(t) t^{3} 9_{2}^{2} 15 t 25$ for $0 t 6$
$v(t) 3 t \quad 18 t 153(t 1)(t 5)$
73. (a) $s(t) t^{4} \quad \begin{array}{r}3 \\ 3\end{array} \quad 8 t \quad$ for $0 t 4$
$v(t) 4 t \quad 12 t \quad 8$ and

To find all time in given interval when stationary,

$$
\begin{aligned}
& 4 t^{3}-12 t^{2}+8=0 \\
& 4\left(t^{3}-3 t^{2}+2\right)=0 \\
& t^{3}-3 t^{2}+2=0 \\
& (t-1)\left(t^{2}-2 t-2\right)=0 \\
& t=1 \text { or } t=\frac{2 \pm \sqrt{4-4 \cdot 1 \cdot(-2)}}{2}
\end{aligned}
$$

Since $0 \leq t \leq 4, t=1$ or $t=1+\sqrt{3}$.
(a) Since the initial velocity is $V 00$ feet per second, the initial height is

0144 feet and $g 32$ feet per second per second, the height of the stone at time t is
$H(t) \quad g t_{-}{ }^{2} _V t H$
$16 t^{2} 144$.
The stone hits the ground when $\underset{2}{H}(t) 16 t \quad 1440$, that is when
$t \quad 9$ or after $t 3$ seconds.
The velocity at time t is given by H $(t) 32 t$. When the stone hits the
ground, its velocity is $H(3) 96$
feet per second.
(a) If after 2 seconds the ball passes you on the way down, then $H(2) H 0$, where $H(t) 16 t V t H$.
times
$t 1$ and $t 5$.

The particle is stationary when $v(t) 3(t 1)(t 5) 0$ which is at

The height of the building is $H 0$ feet.
From part (a) you know that

```
                2
```

$H(t) 16 t \quad 32 t H 0$. Moreover,
$H(4)=0$ since the ball hits the ground after 4 seconds. So,
$f(x h) f(x)$
$4 x^{3} 6 x^{2} h 4 x h^{2}$
${ }_{16(4)}{ }^{2} 32(4) H_{0} 0$ or

$$
0128 \text { feet. }
$$

From parts (a) and (b) you know that 2
speed of the ball is
$H(t) 32 t 32 \xrightarrow{\mathrm{ft}}$
sec
After 2 seconds, the speed will be $H(2) 32$ feet per second, where the minus sign indicates that the direction of motion is down.

The speed at which the ball hits the

$$
\mathrm{ft}
$$

sec
Let (x, y) be a point on the curve where the tangent line goes through $(0,0)$. Then the slope of the tangent line is equal to $y 0 y$
$\frac{x}{x 0} \frac{-}{x}$. The slope is also given by $x 0 x$ y
$f(x) 2 x 4$. Thus -2×4 or

$$
x^{2} 4 x
$$

Since (x, y) is a point on the curve, we must have $y x^{2} 4 \times 25$. Setting the
two expressions for y equal to each other

$$
4
$$

78. (a) If $f(x) x$ then

$$
\begin{aligned}
& (x h)(x h)^{4} \\
& x \quad 4 x \quad h 6 x \quad h \quad 4 x h \quad h \quad f \\
& \begin{array}{lllll}
3 & 22 & 3
\end{array} \\
& (x h) f(x) 4 x h 6 x h 4 x h h
\end{aligned}
$$

gives

If $x 5$, then $\quad y 70$, the slope is

14 and the tangent line is $y 14 x$.

If $x 5$, then $y 30$, the slope is 6 and
the tangent line is $y 6 x$.
$f(x) a x^{2} b x c$
Since $f(0)=0, c=0$ and $f(x) a x^{2} b x$.
Since $f(5)=0,0=25 a+5 b$.
Further, since the slope of the tangent is 1
when $x=2, f(2) 1$.
$f(x) 2 a x b$
$12 a(2) b 4 a b$
Now, solve the system: $0=25 a+5 b$ and $1=4 a+b$. Since $14 a=b$, using substitution

25a 5(14a)
$25 a 520 a$
$05 a 5$
or $a=1$ and $b=14(1)=5$.
So, $f(x) x^{2} 5 x$.


```
and
\(\frac{f(x h)}{f(x)}{ }_{n x}^{n 1} \quad \frac{n(\underline{n}-1)}{x}{ }_{x}^{n 2} \quad{\underset{2}{h \ldots n h}}_{n 2}^{n}{ }_{h}^{n 1}\)
```


h

The first term on the right does not involve h while the second term approaches 0 as h.

$(f g)(x)$

```
lim
```

$\left.\left.\lim _{h 0}-\frac{f(x h) g(x h)[f(x)}{h} \underline{g}-x\right)\right]$
$\lim _{h 0} f(x h) f(x) g\left(\frac{x h) g}{h}-\underline{x}\right)$
$\lim f(x h) f(x) \lim g(x h) g(x)$
$h 0 \quad h \quad h 0 \quad h$
(x) $g(x)$

2.3 Product and Quotient Rules; Higher-Order Derivatives

$$
\begin{aligned}
& f(x)=(2 x+1)(3 x 2), \\
& \underline{l}(3 x 2) \\
& f(x)(2 x 1) \quad d x \\
& (3 \times 2)^{d}-(2 \times 1) \\
& \text { (3x 1)(3) (3x 2)(2) } \\
& 12 \times 1 \\
& f(x)(x 5)(12 x) d \\
& f(x)(x 5) \text { _ }(12 x)(12 x) _(x 5) \\
& d x \\
& d x \\
& \text { 2(} x \text { 5) 1(12x) } \\
& 114 x
\end{aligned}
$$

$$
\begin{aligned}
& y=10(3 u+1)(15 u), \\
& \frac{d y}{d} \\
& \text { du } d \\
& \frac{(3 u 1)(15 u)}{d u} \\
& \underset{10(3 u 1)}{d u}{ }_{+5 u 15 u}{ }_{(3 * 1)} \\
& d u d u \\
& \text { 10[(3u1)(5)(15u)(3)] } \\
& \text { 300u } 20 \\
& y 400\left(15 x^{2}\right)(3 x 2) \\
& \begin{array}{l}
\frac{d y}{d x} 400 \frac{d}{d x}\left(15 x^{2}\right)(3 \times 2) \\
400\left(15 x^{2}\right) \frac{d}{d x}(3 x 2)(3 x 2) \frac{d}{2}\left(15 x^{2}\right) \\
d x
\end{array} \\
& \begin{array}{c}
400\left(15 x^{2}\right)(3)(3 x 2)(2 x) \\
2
\end{array} \\
& \text { 400(9x } \quad 4 x 45)
\end{aligned}
$$

$$
\begin{aligned}
& { }^{1}\left(x^{5} 2 x^{3} 1\right) 11- \\
& 3 \\
& x \underset{x}{\left.\underset{x}{x} \underset{x}{4} 6 x^{2}\right)} \\
& \begin{array}{ccc}
2 x^{5} 4 x^{3} 4 & \frac{1}{-1} & \frac{1}{3} 2 \\
3 & 3 & \sqrt{-}
\end{array} \\
& \text { 6. } f(x) 3(5 x \quad 2 x 5)\left(\begin{array}{ll}
x & x
\end{array}\right) \\
& f(x) 3\left(\begin{array}{ll}
5 x^{3} & 2 \times 5
\end{array}\right) \quad \begin{array}{l}
-\frac{1}{2} \\
2 \sqrt[2]{ }
\end{array} \quad \sqrt{x} 2 \times\left(\begin{array}{ll}
15 x & 2
\end{array}\right) \\
& { }^{\underline{105}} x^{5 / 2} 120 x^{3}{ }_{9 x} 1 / 224 x \xrightarrow{15} 30
\end{aligned}
$$

13. $f(x) \quad \underline{x}_{2}^{2} \frac{3 \times 2}{}=$

(2x $\quad 5 \times 1$)

| $11 \times 10 \times 7$ |
| :--- | :--- |

14. $g(x)(\underbrace{2} x 1)(4 x) 2 x$

$$
\begin{aligned}
& g(x) \begin{array}{l}
\frac{1}{(2 \times 1)\left[1\left(x^{2} \times 1\right)(4 x)(2 \times 1)\right]\left(x^{2} x 1\right)(4 x)(2)} \\
\frac{4 x^{3} 9 x^{2} 6 \times 11}{(2 x 1)}
\end{array}
\end{aligned}
$$

15. $f(x)(25 x) d{ }_{d}^{2}(25 x)(25 x) f$
$(x)(25 x) \quad(25 x)$
$d x$

$$
(25 x) \frac{d}{d x}(25 x)
$$

$$
2(25 x)-(25 x)
$$

$$
2(25 x)(5)
$$

16. $f(x) x{ } \begin{array}{cccc}1 & 2^{2} & x^{2} & 1 \\ f(x) 2 x^{2} & & & x^{2}\end{array}$
17. $g(t)-\frac{t_{2}}{f_{-}} \underline{t_{2}} \underline{t}_{1 / 2}$

$$
2 t \quad 5 \quad 2 t 5
$$

$$
(2 t 5) \underline{d} \quad\left(\begin{array}{c}
t \\
d t
\end{array} t^{1 / 2}\right)
$$

$$
\left(t^{2} t^{1 / 2}\right) d(2 t 5)
$$

| $4 t \quad 20 t \quad 2 t 5$ |
| :--- | :--- | :--- |
| $1 / 22$ |

$h(x) \quad 4 x$

$$
\begin{aligned}
& y(5 x 1)(43 x) \\
& \frac{d y}{d x} 30 \times 17 \\
& \text { When } x=0, y=4 \text { and } \frac{d y}{d x} 17 . \\
& \text { is } y+4=17(x 0) \text {, or } y=17 x 4 . \\
& 2 \\
& y\binom{x}{3}(2 x) \\
& \quad 2 \\
& \quad\binom{x}{3}(1)(2 \times 3)(2 x)
\end{aligned}
$$ $d x$ 17. The equation of the tangent line at $(0,4)$

At $x 01, y(3)(1) 3$ and $y(3)(1)(5)(1) 2$. The equation of the tangent line is then
$y 32(x 1)$ or $\quad y 2 x 1$.
21. $y \frac{x}{2 x 3}$
$\underline{d \nu}=3$

```
dx(2x3)
When }x=1,y=1\mathrm{ and }\frac{dy}{dx}3\mathrm{ . The equation of the tangent line at (1,1) is
y+1=3(x+1), or y=3x+2.
```

$$
\begin{aligned}
& y^{x} \underline{7}_{52 x} \\
& \begin{array}{l}
52 x \\
(52 x)(1)(x 7)(2)(52 x)^{2}
\end{array}
\end{aligned}
$$

The equation of the tangent line is then $y^{\underline{7}} \underline{19}(x 0)$ or $\quad y \underline{19} x^{7}$.

$$
\begin{array}{lll}
5 \quad 25 & 25 \quad 5
\end{array}
$$

$$
\begin{aligned}
& \left.y 3 \sqrt{ } x x^{\sqrt{(2}} x^{2}\right) \\
& \left.\quad 1 / 2^{2} 2^{2}\right)
\end{aligned}
$$

$\underline{d y}_{3 x} \underline{15}_{x 3 / 2} \quad 3$
$d x \quad 2 \quad x_{1 / 2}$
When $x=1, y=4$ and $\underline{d y} \underline{\underline{\#}}$.
$d x \quad 2$
The equation of the tangent line at $(1,4)$ is $y 4 \underset{2}{11}(x)$, or $y \underline{11} \underset{2}{x} \underline{19}$.

$$
\begin{gathered}
f(x)(x 1)\left(x_{2} 8 x 7\right) \\
f(x) 1\left(x_{2} 8 \times 7\right)(x 1)(2 x 8) \\
3 x \quad 18 \times 15 \\
3(x 1)(x 5)
\end{gathered}
$$

$f(x) 0$ when $x=1$ and $x=5$.

	2	
$f(1)$	$(1)(1)$	$817) 0$
$f(5)$	$(51)(5$	$857) 32$

The tangent lines at $(1,0)$ and $(5,32)$ are horizontal.

$$
\begin{aligned}
& f(x)(x 1)\binom{2}{x} \\
& f(x)(x 1)(2 x 1)\left(\begin{array}{ll}
x & x 2)(1)
\end{array}\right.
\end{aligned}
$$

Since $f(x)$ represents the slope of the

tangent line and the slope of a

 horizontal line is zero, need to solve26. $f(x) \frac{x_{2}}{\underline{x} 1} \frac{2}{x 1 x}$
(x)
$\left(\underline{2 x 1)\left(x^{2} \quad x 1\right)\left(x^{2} \quad x 1\right)(2 \times 1)}\right.$
$\left.{ }_{\left(x^{2} x\right.} \quad 2\right)^{2}$
$2 x^{2} 4 x$
$03 x^{2} 33(x 1)(x 1) \quad$ or $x=1,1 . \quad\binom{2}{x}^{2}$

When $x=1, f(1)=0$ and when $x=$ $1, f(1)=4$. So, the tangent line is horizontal at the points $(1,0)$ and
(1, 4).

$$
\begin{aligned}
& f(x) 0 \text { when } x=0 \text { and } x=2
\end{aligned}
$$

31. $y x \rightarrow 3$
$24 x$
dy
$1 \underline{(24 x)(0) 3(4)}$
$d x \quad(24 x)^{2}$

When $x=0, \begin{gathered}\frac{d y}{} \\ \\ \frac{12}{2}\end{gathered}$
When $x=0, \begin{gathered}\frac{d y}{} \\ \\ \frac{12}{2}\end{gathered}$
$y x^{2} 3 x 5$
2×3
At $x 0, y 3$ so the slope of the 1
perpendicular line is $m \quad . \bar{T} h e$ 3 perpendicular line passes through the point $(0,5)$ and so has equation

$y x^{\frac{2}{2}}=\sqrt{2} 2 x^{1} x^{1 / 2}$
$\frac{d y}{2} 2 \cdot \xrightarrow{2}$
$d x x \quad 2 x_{1 / 2}$
When $x=1, \underline{\underline{d v}} \quad 2^{\underline{1}} \underline{5}$.
$d x \quad 2 \quad 2$
The slope of a line perpendicular to the

$$
2
$$

tangent line at $x=1$ is 5 .
The equation of the normal line at $(1,1)$ is

$$
\begin{aligned}
& y 1^{\frac{2}{2}}(x 1), \text { or } \quad y^{\underline{2}} x^{\underline{3}} . \\
& \quad \underline{d y} 2
\end{aligned}
$$

$d x$

```
\[
\text { 3)(6x } \left.{ }^{2}\right)\left(52 x^{3}\right)(2 x)
\]
When \(x=1\),
dy
\(d x(13)(6)(52)(2) 18\).
    3)(6\mp@subsup{x}{}{2})(52\mp@subsup{x}{}{3})(2x)
    \(1 )(6)(52)(2)
```

5
55

