Solution Manual for Calculus for Scientists and Engineers 1st Edition by Briggs Cochran and Gillett ISBN 03218266989780321826695

Full link download
Test Bank:
https://testbankpack.com/p/test-bank-for-calculus-for-scientists-and-engineers-1st-edition-by-briggs-cochran-and-gillett-isbn-0321826698-9780321826695-2/
Solution Manual:
https://testbankpack.com/p/solution-manual-for-calculus-for-scientists-and-engineers-1st-edition-by-briggs-cochran-and-gillett-isbn-0321826698-9780321826695/

Contents

9 Sequences and In nite Series 3
9.1 An Overview 3
9.2 Sequences 9
9.3 In nite Series 21
9.4 The Divergence and Integral Tests 30
9.5 The Ratio, Root, and Comparison Tests 38
9.6 Alternating Series 44
9.7 Chapter Nine Review 50
10 Power Series 57
10.1 Approximating Functions With Polynomials 57
10.2 Properties of Power Series 72
10.3 Taylor Series 79
10.4 Working with Taylor Series 89
10.5 Chapter Ten Review 101
11 Parametric and Polar Curves 109
11.1 Parametric Equations 109
11.2 Polar Coordinates 129
11.3 Calculus in Polar Coordinates 148
11.4 Conic Sections 159
11.5 Chapter Eleven Review 181
12 Vectors and Vector-Valued Functions 199
12.1 Vectors in the Plane 199
12.2 Vectors in Three Dimensions 207
12.3 Dot Products 217
12.4 Cross Products 225
12.5 Lines and Curves in Space 233
12.6 Calculus of Vector-Valued Functions 241
12.7 Motion in Space 247
12.8 Lengths of Curves 263
12.9 Curvature and Normal Vectors 269
12.10 Chapter Twelve Review 279
13 Functions of Several Variables 291
13.1 Planes and Surfaces 291
13.3 Limits and Continuity . 323
13.4 Partial Derivatives . 328
13.5 The Chain Rule ... 335
13.6 Directional Derivatives and the Gradient . 342
13.7 Tangent Planes and Linear Approximation 354
13.8 Maximum/Minimum Problems 360
13.9 Lagrange Multipliers 369
13.10 Chapter Thirteen Review 378
14 Multiple Integration 395
14.1 Double Integrals over Rectangular Regions 395
14.2 Double Integrals over General Regions 401
14.3 Double Integrals in Polar Coordinates 417
14.4 Triple Integrals 430
14.5 Triple Integrals in Cylindrical and Spherical Coordinates 438
14.6 Integrals for Mass Calculations 447
14.7 Change of Variables in Multiple Integrals 454
14.8 Chapter Fourteen Review 465
15 Vector Calculus 477
15.1 Vector Fields 477
15.2 Line Integrals 488
15.3 Conservative Vector Fields 495
15.4 Green's Theorem 500
15.5 Divergence and Curl 509
15.6 Surface Integrals 518
15.7 Stokes' Theorem 527
15.8 The Divergence Theorem 533
15.9 Chapter Fifteen Review 542

Chapter 9

Sequences and In nite Series

9.1 An Overview

9.1.1 A sequence is an ordered list of numbers $a_{1} ; a_{2} ; a_{3} ;:::$, often written $f a_{1} ; \mathrm{a}_{2} ;::: g$ or fang. For example, the natural numbers $f 1 ; 2 ; 3 ;::: g$ are a sequence where $a_{n}=n$ for every n.
9.1.2 $\mathrm{a}_{1}={ }^{1}{ }_{1}=1 ; \mathrm{a}_{2}=\underline{1}_{2} ; \mathrm{a}_{3}={ }^{1} 3 ; a_{4}={ }^{1} 4 ; \mathrm{a}_{5}=\frac{1}{5}$.
9.1.3 $a_{1}=1$ (given); $a_{2}=1 \quad a_{1}=1 ; a_{3}=2 a_{2}=2 ; a_{4}=3 \quad a_{3}=6 ; a_{5}=4 a_{4}=24$.
9.1.4 A nite sum is the sum of a nite number of items, for example the sum of a nite number of terms of a sequence.
9.1.5 An in nite series is an in nite sum of numbers. Thus if fang is a sequence, then $a_{1}+a_{2}+=\underbrace{1}_{k=1}$

$$
\text { 9.1.7 } S_{1}={ }^{1} \quad k=1 k=1 ; S_{2}=\quad P^{2} \quad k=1 k=1+4=5 ; S_{3}=\quad{ }_{k=1} k=1+4+9=14 ; S_{4} \quad=\quad 4 \quad k=1 k=
$$

1
6
$=$
3
0

9.1.9 $a_{1}=\overline{10} ; a_{2}=\overline{1} 100 ; a_{3}=\frac{1}{1000} ; a_{4}=\frac{1}{10000}$.
9.1.10 $a_{1}=3(1)+1=4 . a_{2}=3(2)+1=7, a_{3}=3(3)+1=10, a_{4}=3(4)+1=13$.

9.1.12 $a_{1}=2 \quad 1=1 . a_{2}=2+1=3, a_{3}=21=1, a_{4}=2+1=3$.

9.1.15 $a_{1}=1+\sin (=2)=2 ; a_{2}=1+\sin (2=2)=1+\sin ()=1 ; a_{3}=1+\sin (3=2)=0 ; a_{4}$ $=$ $1+\sin (4=2)=1+\sin (2)=1$.
$9.1 .16 a_{1}=21^{2} \quad 31+1=0 ; a_{2}=22^{2} \quad 32+1=3 ; a_{3}=23^{2} \quad 33+1=10 ; a_{4}=24^{2} \quad 34+1=21$.
9.1.17 $a_{1}=2, a_{2}=2(2)=4, a_{3}=2(4)=8, a_{4}=2(8)=16$.
a
9.1.18 $1=32, a_{2}=32=2=16, a_{3}=16=2=8, a_{4}=8=2=4$.
9.1.19 $a_{1}=10$ (given); $a_{2}=3 a_{1} 12=30 \quad 12=18 ; a_{3}=3 a_{2} \quad 12=54 \quad 12=42 ; a_{4}=3 \quad a_{3} \quad 12=$ $12612=114$.
9.1.20 $a_{1}=1$ (given); $a_{2}=a_{1}^{2} \quad 1=0 ; a_{3}=a_{2}^{2} \quad 1=1 ; a_{4}=a_{3}^{2} \quad 1=0$.

$$
\begin{array}{lll}
2 & 2 & 2
\end{array}
$$

9.1.21 $a_{1}=0$ (given); $a_{2}=3 a_{1}+1+1=2 ; a_{3}=3 a_{2}+2+1=15 ; a_{4}=3 a_{3}+3+1=679$.
9.1.22 $a_{0}=1$ (given); $a_{1}=1$ (given); $a_{2}=a_{1}+a_{0}=2 ; a_{3}=a_{2}+a_{1}=3 ; a_{4}=a_{3}+a_{2}=5$.
9.1.23
9.1.24 $\sim^{1}-1$
a. 6, 7 .
a_
b. $a_{1}=1 ; a_{n+1}=2^{n}$.
b. $a_{1}=1 ; a_{n+1}=(1)^{n}\left(j a_{n} j+1\right)$.
c. $a_{n}=\overline{2 n \quad 1}$.
c. $a_{n}=(1)^{n+1} n$.
9.1 .25
a. 5,5 .
b. $a_{1}=5, a_{n+1}=a_{n}$.
c. $a_{n}=(1)^{n_{5}}$.
9.1.27
a. 32,64 .
b. $a_{1}=1 ; a_{n+1}=2 a_{n}$.
n 1
c. $a_{n}=2 \quad$.
9.1.29
a. 243,729 .
b. $a_{1}=1 ; a_{n+1}=3 a_{n}$.
n 1
c. $a_{n}=3$
9.1.31 $a_{1}=9, a_{2}=99, a_{3}=999, a_{4}=9999$. This sequence diverges, because the terms get larger without bound.
9.1.32 $a_{1}=2, a_{2}=17, a_{3}=82, a_{4}=257$. This sequence diverges, because the terms get larger without bound.
9.1.33 $1=\frac{1}{10}, a_{2}=\frac{1}{100}, a_{3}=\frac{1}{1000}, a_{4}=\frac{1}{10 ; 000}$. This sequence converges to zero.
9.1.34 $a_{1}=1=2, a_{2}=1=4, a_{3}=1=8, a_{4}=1=16$. This sequence converges to zero.
9.1.35 $a_{1}=1, a_{2}=\frac{1}{2}, a_{3}=\frac{1}{3}, a_{4}=\frac{1}{4}$. This sequence converges to 0 because each term is smaller in absolute value than the preceding term and they get arbitrarily close to zero.
$9.1 .36 a_{1}=0: 9, a_{2}=0: 99, a_{3}=0: 999, a_{4}=: 9999$. This sequence converges to 1.
C
Copyright 2013 Pearson Education, Inc.
$9.1 .37 a_{1}=1+1=2, a_{2}=1+1=2, a_{3}=2, a_{4}=2$. This constant sequence converges to 2.
9.1.38 $\mathrm{a}_{1}=1 \frac{1}{2} \frac{2}{3}=\frac{2}{3}$. Similarly, $\mathrm{a}_{2}=\mathrm{a}_{3}=\mathrm{a}_{4}=\frac{2}{3}$. This constant sequences converges to ${ }^{\frac{2}{3}}$.
9.1.39 $a_{0}=100, a_{1}=0: 5100+50=100, a_{2}=0: 5100+50=100, a_{3}=0: 5 \quad 100+50=100$,
$\mathrm{a}_{4}=0: 5100+50=100$. This constant sequence converges to 100 .
9.1.40 $a_{1}=0 \quad 1=1 . a_{2}=10 \quad 1=11, a_{3}=1101=111, a_{4}=11101=1111$. This sequence diverges.
9.1.41

n	1	2	3	4	4	6	7	8	9	10
a_{n}	0.4637	0.2450	0.1244	0.0624	0.0312	0.0156	0.0078	0.0039	0.0020	0.0010

This sequence appears to converge to 0 .
9.1.42

n	1	2	3	4	5	6	7	8	9	10
a_{n}	$3: 1396$	$3: 1406$	$3: 1409$	$3: 1411$	$3: 1412$	$3: 1413$	$3: 1413$	$3: 1413$	$3: 1414$	$3: 1414$

This sequence appears to converge to .
9.1.43

n	1	2	3	4	5	6	7	8	9	10
a_{n}	0	2	6	12	20	30	42	56	72	90

This sequence appears to diverge.
9.1.44

n	1	2	3	4	5	6	7	8	9	10
a_{n}	9.9	9.95	9.9667	9.975	9.98	9.9833	9.9857	9.9875	9.9889	9.99

This sequence appears to converge to 10 .
9.1.45

n	2	3	4	5	6	7	8	9	10	11
a_{n}	0.3333	0.5000	0.6000	0.6667	0.7143	0.7500	0.7778	0.8000	0.81818	0.8333

This sequence appears to converge to 1 .
9.1.46

n	1	2	3	4	5	6	7	8	9	10	11
a_{n}	0.9589	0.9896	0.9974	0.9993	0.9998	1.000	1.000	1.0000	1.000	1.000	1.000

This sequence converges to 1 .
9.1.47
a. $2.5,2.25,2.125,2.0625$.
b. The limit is 2 .

9.1.48

a. $1.33333,1.125,1.06667,1.04167$.
b. The limit is 1 .
9.1.49

This sequence converges to 4 .
9.1.50

n	0	1	2	3	4	5	6	7	8	9
a_{n}	1	2:75	3:6875	3:9219		:9951	:9988	3:9997	3.999	4.00

This sequence converges to 4 .
9.1.51

n	n	0	1	2	3	4	5	6	7	8	9
a_{n}	0	1	3	1	1	10					
	$\underline{31}$	$\underline{63}$	$\underline{127}$	$\underline{255}$	$\mathbf{5 1 1}$	1023					

This sequence diverges.
9.1.52

n	0	1	2	3	4	5	6	7	8	9	10
a_{n}	32	16	8	4	2	1	.5	.25	125	-0625	.03125

This sequence converges to 0 .
9.1.53

n	0	1	2	3	4	5	6	7	8	9
a_{n}	1000	18.811	5.1686	4.1367	4.0169	4.0021	4.0003	4.0000	4.0000	4.0000

This sequence converges to 4 .
9.1.54

n	0	1	2	3	4	5	6	7	8	9	10
a_{n}	1	1.4212	1.5538	+9 598	1.6119	1.6161	-1.6174	-1.6179	$\underline{1.6180}$	1.61	16180
his sequence converges to 2 1:6180339.											

9.1.55
a. $20,10,5,2.5$.
b. $h_{n}=20(0: 5)$.
b. $h_{n}=10(0: 9)^{n}$.
9.1.58
a. $20,15,11.25,8.4375$
b. $h_{n}=20(0: 75)^{n}$.
 $0: 3333::=1$

ง.ı.OU $\mathrm{O}_{2}=\mathrm{v} .6, \mathrm{~S}_{2}=0: 66, \mathrm{~S}_{3}=0: 666, \mathrm{~S}_{4}=0: 6666$. It appears that the in nite series has a value of $0: 6666::={ }^{2}$. 3
9.1.61 $\mathrm{S}_{1}=4, \mathrm{~S}_{2}=4: 9, \mathrm{~S}_{3}=4: 99, \mathrm{~S}_{4}=4: 999$. The in nite series has a value of $4: 999=5$.

9.1.63
a. $S_{1}=\frac{2}{3}_{3}, S_{2}=\frac{4}{5}, S_{3}=\frac{6}{7}_{7}, S_{4}=\frac{8}{9}$.
b. It appears that $S_{n}=2 \frac{2}{n+1}{ }^{n}$.
c. The series has a value of 1 (the partial sums converge to 1).
9.1.64
a. $S_{1}=\stackrel{1}{2}_{2}, S_{2}=\frac{3}{4}, S_{3}=\frac{7}{8}, S_{4}=\stackrel{15}{16}_{16}$.
b. $S_{n}=1 \quad \frac{1}{2}$.
c. The partial sums converge to 1 , so that is the value of the series.
9.1.65
a. $S_{1}=\frac{1}{3}_{3}, S_{2}=\stackrel{2}{5}_{5}, S_{3}=\frac{3}{7}, S_{4}=\frac{4}{9}$.
b. $S_{n}=\overline{2 n+1}$.
c. The partial sums converge to 2 , which is the value of the series.
9.1.66
a. $\mathrm{S}_{1}=\stackrel{2}{3}_{3}, \mathrm{~S}_{2}=\frac{8}{9}, \mathrm{~S}_{3}=\frac{26}{27}, \mathrm{~S}_{4}=\frac{80}{81}$.
b. $S_{n}=1 \quad \frac{1}{3}$.
c. The partial sums converge to 1 , which is the value of the series.

9.1.67

a. True. For example, $\mathrm{S}_{2}=1+2=3$, and $\mathrm{S}_{4}=\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\mathrm{a}_{4}=1+2+3+4=10$.
b. False. For example; $\frac{1}{2}_{2}, \frac{3}{4}, \frac{7}{8}$, where $a_{n}=12{ }_{n}{ }_{n}$ converges to 1 ; but each term is greater than the previous one.
c. True. In order for the partial sums to converge, they must get closer and closer together. In order for this to happen, the di erence between successive partial sums, which is just the value of a_{n}, must approach zero.
9.1.68 The height atnthe $n^{\text {th }}$ bounce is given by the recurrence $h_{n}=t h r h_{n} \quad 1$; an explicit form for ${ }_{n}$ this sequence is $h_{n}=h_{0} \quad r$. The distance traveled by the ball during the $n \quad 2$ bounce is thus $2 h_{n}=2 h_{0} \quad r$, so that $S_{n}={ }_{i=0}^{2 h}{ }_{0} r$.

$$
h=20, r=0: 5 \text {, so } S=40, S=40+40 \quad 0: 5=60, S \quad=S \quad+40 \quad(0: 5)=70, S=
$$

b.
$S_{2}+40(0: 5)^{3}=75, S_{4}=S_{3}+40(0: 5)^{4}=77: 5$

n	0	1	2	3	4	5
n	40	60	70	75	77.5	78.75
n	6	7	8	9	10	11
a_{n}	79.375	$\underline{79.6875}$	79.8438	79.9219	79.9609	79.9805
n	12	13	14	15	16	17
n	79.9902	79.9951	79.9976	79.9988	79.9994	79.9997

a

The sequence converges to 80 .
Copyright c 2013 Pearson Education, Inc.
9.1.69 Using the work from the previous problem:
a. Here $h_{0}=20, r=0: 75 ; \operatorname{so~} S_{0}=40, S_{1}=40+40 \quad 0: 75=70, S_{2}=S_{1}+40 \quad(0: 75)^{2}=92: 5$,
b.

n	0	1	2	3	4	5
a_{n}	40	70	92.5	109.375	122.0313	131.5234
n	6	7	8	9	10	11
a_{n}	- 138.6426	143.9819	147.9865	-150.9898	153.2424	154.9318
n	12	13	14	15	16	17
a_{n}	_156:1988	157:1491	157:8618	158:3964	158:7973	159:0980
n	18	19	20	21	22	23
a_{n}	159:3235	159:4926	159:6195	159.715	_159.786	159.839

The sequence converges to 160 .
9.1.70
a. $s_{1}=1, s_{2}=0, s_{3}=1, s_{4}=0$.
b. The limit does not exist.
9.1.72
a. 1:5, 3:75, 7:125, 12:1875.
b. The limit does not exist.
9.1.74
a. $1,3,6,10$.
b. The limit does not exist.
9.1.71
a. 0:9, 0:99, 0:999, :9999.
b. The limit is 1 .
9.1.73
a. $\frac{1}{3}, \frac{4}{9}, \frac{13}{27}, \frac{40}{81}$.
b. The limit is $1 / 2$.
9.1.75
a. $1,0,1,0$.
b. The limit does not exist.
9.1.76
a. 1, 1, 2, 2.
b. The limit does not exist.

9.1.77

a. $\overline{10}^{3}=0: 3, \overline{100}^{33}=0: \overline{33}, 1000 \quad=0: 333,10000 \quad{ }^{\text {年 }}=0: 33333$.
b. The limit is $1 / 3$.

9.1.78

a. $p_{0}=250, p_{1}=2501: 03=258, p_{2}=2501: 03^{2}=265, p_{3}=2501: 03^{3}=273, p_{4}=2501: 03^{4}=281$.
b. The initial population is 250 , so that $p_{0}=250$. Then $p_{n}=250(1: 03)$ increases by 3 percent each month.
c. $\mathrm{p}_{\mathrm{n}+1}=\mathrm{p}_{\mathrm{n}}$ 1:03.
d. The population increases without bound.
9.1.79
a. $M_{0}=20, M_{1}=200: 5=10, M_{2}=20 \quad 0: 5^{2}=5, M_{3}=20 \quad 0: 5^{3}=2: 5, M_{4}=20 \quad 0: 5^{4}=1: 25$
n
b. $M_{n}=200: 5$.
c. The initial mass is $M_{0}=20$. We are given that 50% of the mass is gone after each decade, so that $\mathrm{M}_{\mathrm{n}+1}=0: 5 \mathrm{M}_{\mathrm{n}}, \mathrm{n} 0$.
d. The amount of material goes to 0 .
9.1.80
a. $c_{0}=100, c_{1}=103, c_{2}=106: 09, c_{3}=109: 27, c_{4}=112: 55$.
b. $c_{n}=100(1: 03)^{n}$, nge0.
c. We are given that $c_{0}=100$ (where year 0 is 1984); because it increases by 3% per year, $c_{n+1}=1: 03 c_{n}$.
d. The sequence diverges.
9.1.81
a. $d_{0}=200, d_{1}=200: 95=190, d_{2}=200: 95^{2}=180: 5, d_{3}=200: 95^{3}=171: 475, d_{4}=200: 95^{4}=$ 162:90125.
b. $d_{n}=200(0: 95)^{n}, n \quad 0$.
c. We are given $d_{0}=200$; because 5% of the drug is washed out every hour, that means that 95% of the preceding amount is left every hour, so that $d_{n+1}=0: 95 d_{n}$.
d. The sequence converges to 0 .
9.1.82

The true value is 10 3:162277660, so the sequence converges with an error of less than 0:01 after only 4 iterations, and is within 0:0001 after only 5 iterations.
b. The recurrence is now $a_{n+1}=\frac{1}{2} a_{n}+\frac{2}{a_{n}}$

n	0	1	2	3	4	5	6
a_{n}	2	1.5	1.41666667	1.414215686	1.414213562	1.414213562	1.414213562

The true value is ${ }^{p} \overline{2} 1: 414213562$, so the sequence converges with an error of less than 0:01 after 2 iterations, and is within 0:0001 after only 3 iterations.

9.2 Sequences

9.2.1 There are many examples; one is $a_{n}=n^{1}$. This sequence is nonincreasing (in fact, it is decreasing) and has a limit of 0 .
9.2.2 Again there are many examples; one is $\mathrm{a}_{\mathrm{n}}=\ln (\mathrm{n})$. It is increasing, and has no limit.
9.2.3 There are many examples; one is $a_{n}=n^{1}$. This sequence is nonincreasing (in fact, it is decreasing), is bounded above by 1 and below by 0 , and has a limit of 0 .
9.2.4 For example, $a_{n}=(1)^{n \frac{n}{n} \cdot 1} . j a_{n} j<1$, so it is bounded, but the odd terms approach 1 while the even terms approach 1. Thus the sequence does not have a limit.
9.2.5 $\mathrm{fr}^{\mathrm{n}} \mathrm{g}$ converges for $\quad 1<r$ 1. It diverges for all other values of r (see Theorem 9.3).
9.2.6 By Theorem 9.1, if we can nd a function $f(x)$ such that $f(n)=a_{n}$ for all positive integers n, then if $\lim f(x)$ exists and is equal to L, we then have lim a_{n} exists and is also equal to L. This means that we $x!1$
can
apply
9.2.7 A sequence a_{n} converges to I if, given any > 0 , there exists a positive integer N , such that whenever $\mathrm{n}>\mathrm{N}, \mathrm{ja} \mathrm{n} \mathrm{Lj}$ < ".

9.2.8 The de nition of the limit of a sequence involves only the behavior of the $n{ }^{\text {th }}$ term of a sequence as n gets large (see the De nition of Limit of a Sequence). Thus suppose $a_{n} ; b_{n}$ di er in only nitely many terms, and that M is large enough so that $a_{n}=b_{n}$ for $n>M$. Suppose a_{n} has limit L. Then for " >0, if N is such that $j a_{n} L j<"$ for $n>N$, rst increase N if required so that $N>M$ as well. Then we also have $j b_{n} L j<"$ for n $>N$. Thus a_{n} and b_{n} have the same limit. A similar argument applies if a_{n} has no limit.
9.2.9 Divide numerator and denominator by n^{4} to get $\lim \quad 1=\mathrm{n}=0$.

$$
n!1^{1 \mp} \underset{n^{4}}{-}
$$

9.2.10 Divide numerator and denominator by n^{12} to get $\lim _{\mathrm{n}!1^{3+}} \frac{1}{\mathrm{n}^{12}}=\underline{1}=1$.
9.2.11 Divide numerator and denominator by n to get
9.2.12 Divide numerator and denominator by e^{n} to get $\begin{array}{cc}n!1 & 2+n \\ \lim _{n}^{2+1} & \frac{2}{2} \pm\left(1=e^{n}\right)\end{array}=2$:
9.2.13 Divide numerator and denominator by 3^{n} to get $\lim _{n!1} \frac{3+1=3^{n} 1}{1}=3$:
9.2.14 Divide numerator by k and denominator by $\mathrm{k}=\quad \mathrm{p}_{\mathrm{k}} \overline{2}$ to get $\mathrm{klim} \underline{\mathrm{p}_{5+\left(t-k^{2}\right)}}=\frac{1}{3}$:
$\stackrel{!}{9} 9.15$ lim $\tan _{2}^{1}(n)=\quad$:
9.2.16 ${ }^{\mathrm{n}!1} \lim \csc ^{1}(n)=\lim \sin \quad{ }^{1}(1=n)=\sin ^{1}(0)=0$:
n! 1
9.2.17 Because lim tan
${ }^{n!1}(n)=, \quad$ lim $\tan ^{1}(n)=0$.
n! 1
2=n $2 n!1 \quad n$
$2=n$
9.2.18 Let $\mathrm{y}=\mathrm{n}$. Then $\ln \mathrm{y}=\underline{2 \ln \mathrm{n}}$. By L'H^opital's rule we have $\lim \underline{\underline{2} \ln \mathrm{x}}=\lim _{\mathrm{x}} \quad \underline{2}=0$, so $\lim \mathrm{n}=$
$e^{0}=1$.
n
$x!1 \quad x \quad x!1$
n! 1
9.2.19 Find the limit of the logarithm of the expression, which is $n \ln 1+\frac{2}{n}$. Using $L^{\prime} H^{\wedge} o p i t a l ' s ~ r u l e: ~$

$!1$

$$
\begin{aligned}
& \lim _{\lim } \frac{n+5}{-\frac{5}{-}-\frac{5(n+5)}{-2}}=\underline{n^{2}(n+5)}=\lim 5 n^{3}+25 n^{2} \text {. To nd this limit, divide numerator and } \\
& n!1 \quad 1=n^{2} n!1 \quad n(n+5)^{2} n!1 n_{1}^{3}+10 n^{2}+\overline{25 n} \quad .
\end{aligned}
$$

9.2.21 Take the logarithm of the expression and use $\mathrm{L}^{\prime} \mathrm{H}^{\wedge}$ opital's rule:

Thus the original limit is $\mathrm{e}^{1=4}$.
9.2.22 Find the limit of the logarithm of the expression, which is $3 n \ln 1+\underline{4}$. Using $\mathrm{L}^{\prime} \mathrm{H}^{\wedge} \mathrm{opital}$'s rule:
 expression is
expr
e^{12}.

9.2.24 $\ln (1=n)=\quad \ln n$, so this is $\lim \quad-\frac{\ln n}{n}$. By L'H^opital's rule, we have $\lim \quad-\frac{\ln n}{n!1}=\lim _{n}^{n!1} \quad 1=0$: 9.2.25 Taking logs, we have $\lim 1 \ln (1=n)=\lim _{n!1} \quad \frac{\ln n}{n}=\lim _{-\frac{1}{n}}=0$ by $L^{\prime} H^{\wedge}$ opital's rule. Thus the original sequence has limit $e^{0}=1$.
$\lim n \ln 1 \quad n=\lim \quad 1=n=\lim \quad n^{2}=\lim 1(4=n)=4$:

n! 1

$$
n!1
$$

$n!1$
$n!1$
nal expression is e 4 .
9.2.27 Except for a nite number of terms, this sequence is just $a_{n}=n e \quad n$, so it has the same limit as this sequence. Note that $\lim \quad \underset{\sim}{n}=\lim =0$, by L'H^opital's rule.
$n!1^{e} \quad{ }_{n!1}^{e}$

$$
-^{n_{3}+1} . \quad \frac{1+n^{3}}{3+10 n^{2}} ; \text { so the limit is } \ln (1=3)=\ln 3 .
$$

9.2.29 $\ln (\sin (1=n))+\ln n=\ln (n \sin (1=n))=\ln$
$\sin (1=n)$
: As $n!1, \sin (1=n)=(1=n)!1$, so the limit of
the original sequence is $\ln 1=0$.
$1=n$
9.2.30 Using L'H^opital's rule:
$\lim n(1 \quad \cos (1=n))=\quad \lim \frac{1 \cos (1=n)}{n!1}=\lim _{n!1} \frac{\sin (1=n)\left(1=n^{2}\right)}{2}=\sin (0)=0$:
9.2.31 $\lim n \sin (6=n)=\lim \underline{\sin (6=n)}=\lim \frac{6 \cos (6=n)}{-n^{n^{2}}}=\lim 6 \cos (6=n)=6$:
 sequence is also 0 by the Squeeze Theorem.
9.2.33 The terms with odd-numbered subscripts have the form $\frac{n}{n+1}$, so they approach 1 , while the terms with even-numbered subscripts have the fofm n so they approach 1 . Thus, the sequence has no limit.

When n is an integer, $\sin \quad \mathrm{L}$ oscillates bedoes not converge.

The even terms form a sequence $b_{2 n}=2 n^{2} \neq 1^{n}$, which converges to 1 (e.g. by L'H^opital's n
which converges to 1 . Thus the sequence as a whole does not converge.
9.2.37

The numerator is bounded in absolute value by 1 , while the denominator goes to 1 , so the limit of this sequence is 0 .

The reciprocal of this sequence is $b_{n}=\frac{1}{a_{n}}=$ 9.2.38 $1+\frac{4}{3}{ }^{n}$, which increases without bound as $n!1$. Thus a_{n} converges to zero.

By L'H^opital's rule we have: $\lim \ldots e^{n}$.
9.2.40

This is the sequence ${ }^{\cos { }^{\mathrm{n}}{ }^{n} \text {; the numerator is } 9.2 .41}$ bounded in absolute value by 1 and the de-nominator increases without bound, so the limit is zero.

In \underline{n}
Using L'H^opital's rule, we have $\lim _{n!1} n \quad 1: 1=$ 9.2.42 $\lim _{n!1} \underset{(1: 1) n}{ } \underset{n!1}{ } \underset{(1: 1) n}{1}-=0$.

Ignoring the factor of $(1)^{\mathrm{n}}$ for the moment, we see, taking logs, that $\lim _{n!1} \frac{\ln n}{n}=0$; so ${ }_{9.243}$ that $\lim \quad n$ —. $-\quad=1$. \qquad
into account, the odd terms converge to 1 while the even terms converge to 1 . Thus the sequence does not converge.

y

9.2.45 Because $0: 2<1$, this sequence converges to 0 . Because $0: 2>0$, the convergence is monotone.
9.2.46 Because $1: 2>1$, this sequence diverges monotonically to 1 .
9.2.47 Because j $0: 7 \mathrm{j}<1$, the sequence converges to 0 ; because $0: 7<0$, it does not do so monotonically. The sequence converges by oscillation.
9.2.48 Because j $1: 01 \mathrm{j}>1$, the sequence diverges; because $1: 01<0$, the divergence is not monotone.
9.2.49 Because 1:00001 >1, the sequence diverges; because $1: 00001>0$, the divergence is monotone.
9.2.50 This is the sequence $\frac{2}{3}^{n}$; because $0<_{3}^{\frac{2}{3}}<1$, the sequence converges monotonically to zero.
9.2.51 Because j $2: 5 \mathrm{j}>1$, the sequence diverges; because $2: 5<0$, the divergence is not monotone. The sequence diverges by oscillation.
9.2.52 $\mathrm{j} 0: 003 \mathrm{j}<1$, so the sequence converges to zero; because : $003<0$, the convergence is not monotone. 9.2.53 Because $1 \cos (n) 1$, we have $\frac{1}{n} \frac{\cos (n)}{n} \frac{1}{n}$. Because both $\frac{1}{n}$ and $_{n}{ }^{1}$ have limit 0 as $n!1$, the given sequence does as well.
9.2.54 Because $1 \sin (6 n) \quad 1$, we have $\frac{1}{5 n} \quad \frac{\sin (6 n)}{5 n} \quad \frac{1}{5 n}$. Because both ${ }_{5 n}-1$ as
n ! 1 , the given sequence does as well.
9.2.55 Because $1 \sin n \quad 1$ for all n, the given sequence satis es $\quad \frac{2^{-1}}{2^{2}} \quad \frac{\sin n}{2^{1-1}}$; and because both
$2 \frac{1}{n!} 0$ as $n!1$, the given sequence converges to zero as well by the Squeeze Theorem.
9.2.56 Because $1 \cos (n=2) \quad 1$ for all n, we have $\quad p_{n}^{1} \quad \frac{\cos (n=2)}{p_{n}} \quad \frac{1}{p_{\bar{n}}} \quad$ and because bothp $\frac{1}{\pi} \quad!0$ as $n!1$, the given sequence converges to 0 as well by the Squeeze Theorem.
9.2.57 tan takes values between $=2$ and $=2$, so the numerator is always between and. Thus
$\overline{n^{3}+4} \quad \frac{n^{3}+4}{2 \tan } \overline{n^{3}+4}$; and by the Squeeze Theorem, the given sequence converges to zero.
9.2.58 This sequence diverges. To see this, call the given sequence a_{n}, and assume it converges to limit L. Then because the sequence $b_{n}=\quad-\quad$ converges to 1 , the sequence $c_{n}=\quad a_{n}$ would converge to L as well. $\mathrm{n}+1$
$c_{n}=\sin ^{3} n$ doesn't converge, so the given sequence doesn't converge either.
9.2.59
a. After the $n^{\text {th }}$ dose is given, the amount of drug in the bloodstream is $d_{n}=0: 5 d_{n} 1+80$, because the half-life is one day. The initial condition is $d_{1}=80$.
b. The limit of this sequence is 160 mg .
c. Let $L=\lim _{n^{\prime 1}} d_{n}$. Then from the recurrence relation, we have $d_{n}=0: 5 d_{n} 1+80$, and thus $\lim d_{n!1}=$ $0: 5 \lim _{n!1}^{n!} d_{n}+80$, so $L=0: 5 L+80$, and therefore $L=160$.
9.2.60
a.
$B_{0}=$
$\$ 20 ;$
000
$\mathrm{B}_{1}=$
1:005
B_{0}
$\$ 200=$
\$19;
900
$\mathrm{B}_{2}=$
1:005
B_{1}
$\$ 200=$
\$19;
799:50
$B_{3}=$
1:005
B_{2}
$\$ 200=$
\$19;
698:50
$B_{4}=$ 1:005
B_{3}
$\$ 200=$ \$19;
596:99
$B_{5}=$
1:005
B4
$\$ 200=$ \$19;
494:97
b: Btsing : QCeal|cernatbr or \$20@uter program, B_{n} becomes negative after the $139{ }^{\text {th }}$ payment, so 139 months or almost 11 years.
9.2.61
a.

$$
\begin{aligned}
& B_{0}=0 \\
& B_{1}=1: 0075 \quad B_{0}+\$ 100=\$ 100 \\
& B_{2}=1: 0075 \quad B_{1}+\$ 100=\$ 200: 75 \\
& B_{3}=1: 0075 \quad B_{2}+\$ 100=\$ 302: 26 \\
& B_{4}=1: 0075 \quad B_{3}+\$ 100=\$ 404: 52 \\
& B_{5}=1: 0075 \quad B_{4}+\$ 100=\$ 507: 56
\end{aligned}
$$

b. $B_{n}=1: 0075 B_{n 1}+\$ 100$.
c. Using a calculator or computer program, $\mathrm{B}_{\mathrm{n}}>\$ 5 ; 000$ during the $43^{\text {rd }}$ month.
9.2.62
a. Let D_{n} be the total number of liters of alcohol in the mixture after the $n{ }^{\text {th }}$ replacement. At the next step, 2 liters of the 100 liters is removed, thus leaving 0:98 D_{n} liters of alcohol, and then 0:12 $=0: 2$ liters of alcohol are added. Thus $D_{n}=0: 98 D_{n} 1+0: 2$. Now, $C_{n}=D_{n}=100$, so we obtain a recurrence relation for C_{n} by dividing this equation by 100: $C_{n}=0: 98 C_{n 1}+0: 002$:

$$
\begin{aligned}
& C_{0}=0: 4 \\
& C_{1}=0: 98 \quad 0: 4+0: 002=0: 394 \\
& C_{2}=0: 98 \quad C_{1}+0: 002=0: 38812 \\
& C_{3}=0: 98 \quad C_{2}+0: 002=0: 38236 \\
& C_{4}=0: 98 \quad C_{3}+0: 002=0: 37671 \\
& C_{5}=0: 98 \quad C_{4}+0: 002=0: 37118
\end{aligned}
$$

The rounding is done to ve decimal places.
b. Using a calculator or a computer program, $\mathrm{C}_{\mathrm{n}}<0: 15$ after the $89^{\text {th }}$ replacement.
c. If the limit of C_{n} is L, then taking the limit of both sides of the recurrence equation yields $L=0: 98 \mathrm{~L}+$ $0: 002$, so :02L $=: 002$, and $L=: 1=10 \%$.
9.2.63 Because $n!\quad n^{n}$ by Theorem 9.6, we have $\lim \frac{n!}{n!n^{n}}=0$.
$9.2 .64 \mathrm{f3}^{\mathrm{n}} \mathrm{g} \quad$ fn!g because $\mathrm{fb}^{\mathrm{n}} \mathrm{g} \quad$ fn!g in Theorem 9.6. Thus, $\lim _{n!1^{\frac{3}{n}}}^{n!}=0$.

	q	p	20	10	n^{10}
9.2.65 Theorem 9.6 indicates that In	,	, soln n n		, son ${ }_{n} \lim _{!1} 1 n^{20}{ }_{n}$	
	व	p	100	10	

9.2.66 Theorem 9.6 indicates that $\ln n$ n , soln $n n$, son ${ }^{!1} \ln ^{1000} \mathrm{n}=1$.
9.2.67 By Theorem 9.6, $n^{p} \quad b^{n}$, so $n^{1000} \quad 2^{n}$, and thus n lim $\quad!$
$=0$.
9.2.68 Note that $\mathrm{e}^{\mathrm{T}-10}=$

10-
$\underline{e}^{1=10}$

9.2.70 Let " >0 be given. We wish to nd $\underset{1}{\mathrm{~N}}$ such that
${ }_{2 j}^{(1=n)} \quad 0_{j}<"$ if $n>\underset{1}{\mathrm{~N}} . \quad \begin{aligned} & \text { This means that } \\ & \text {. This shows that such }\end{aligned}$

$$
\text { But this means that } 3<4 "(4 n \quad+1) \text {, or } 16^{\prime \prime} n \quad+\left(44^{\prime \prime} 3\right)>0 \text {. Solving }
$$

$1 \quad 3$
provided " $<3=4$. So let $N={ }_{4} q^{-} " \quad$ if $<3=4$ and let $N=1$ otherwise. n 9.2.72 Let " >0 be given. We wish to nd $N \underset{\ln "}{\operatorname{such}}$ that for $n>N, \mathrm{~b}_{\mathrm{j}} \quad 0_{j}=\mathrm{b}<$ "; so that $n \ln \mathrm{~b}<\ln "$. So choose N to be any integer greater than $\overline{\operatorname{lnb}}$:
 But this means that " $b^{2} n+(b " \quad c)>0$, so that $N>b 2 \frac{c^{2}}{"}$ will work.
$\begin{array}{lll}\text { 9.2.74 } 2 & \text { Let " }>0 \text { be given. We wish to } n d N \text { such that for } n>N, ~ \\ \text { want }\end{array}$
 the desired inequality will hold. The roots of the quadratic are $\quad \cdots$; so we choose N to be any integer greater than $\frac{1_{+}+\frac{T^{\prime \prime}}{}}{\dot{2}^{-7}}$:
9.2.75
a. True. See Theorem 9.2 part 4.
b. False. For example, if $a_{n}=e^{n}$ and $b_{n}=1=n$, then $\lim a_{n} b_{n}=1$.
$n!1$
c. True. The de nition of the limit of a sequence involves only the behavior of the $n^{\text {th }}$ term of a sequence as n gets large (see the De nition of Limit of a Sequence). Thus suppose $a_{n} ; b_{n}$ di er in only nitely many terms, and that M is large enough so that $a_{n}=b_{n}$ for $n>M$. Suppose a_{n} has limit L. Then for " >0, if N is such that $j a_{n} \mathrm{Lj}<"$ for $\mathrm{n}>\mathrm{N}$, rst increase N if required so that $\mathrm{N}>\mathrm{M}$ as well. Then we also have $j b_{n} L j<"$ for $n>N$. Thus a_{n} and b_{n} have the same limit. A similar argument applies if a_{n} has no limit.
d. True. Note that a_{n} converges to zero. Intuitively, the nonzero terms of b_{n} are those of a_{n}, which converge to zero. More formally, given, choose N_{1} such that for $n>N_{1}$, $a_{n}<$. Let $N=2 N_{1}+1$. bhen for n, and g.pnsider b_{n}. If n is even, then $b_{n}=0$ so certainly $b_{n}<$. If n is odd, then
 zero as well.

f. True. Suppose f0:000001 $a_{n} g$ converged to L, and let >0 be given. Choose N such that for $\mathrm{n}>\mathrm{N}$, $j 0: 000001 a_{n} \quad L j<0: 000001$. Dividing through by 0:000001, we get that for $n>N, j a_{n} 1000000 \mathrm{Lj}<$, so that a_{n} converges as well (to 1000000L).

9.2 .76 f2n	$3 g_{n}=3$.		
	2	1	2

9.2.77 f(n
2) $+6(n$
2) $9 g_{n}=3=f n+2 n$
$17 \mathrm{~g}_{\mathrm{n}}=3$.
b! 1

h
b! $1 \quad$ b
9.2.79 Evaluate the limit of each term separately: $n \lim \frac{75^{n 1}}{}=\frac{1}{n} n^{\lim } \frac{75}{n}^{n}=0$; while $\quad \frac{5^{n}}{5^{n} \sin n}$ $\frac{5^{n}}{8^{n}}$; so by the Squeeze Theorem, this second term converges to 0 as well. Thus the sum of the terms converges to zero.
9.2.80 Because $\lim _{n!1} \frac{10 n}{10 n+4}=1$, and because the inverse tangent function is continuous, the given sequence has limit $\tan \quad(1)==4$. n
9.2.81 Because $\lim 0: 99=0$, and because cosine is continuous, the rst term converges to $\cos 0=1$. The

$$
n!1 \quad \lim \underline{7^{n}+9^{n}}=\lim \quad \underline{7}+\lim \quad \underline{9} n=0 \text { : Thus the sum converges to } 1 .
$$

$$
4^{n} \quad n!\text { and } 2^{n} \quad n!\text {. Thus, } \lim \text { an }=\frac{0+5}{n!1}=5 . \quad 1+0
$$

9.2.83 Dividing the numerator and denominator by 6^{n} gives $a_{n}=1+(n 100=6 n) \cdot B y \operatorname{Theorem}^{1+(1=2)^{n}} 9 \cdot 0^{100} 6^{n}$.

$$
\begin{gathered}
\text { Thus } \lim a^{n}=\frac{1+0}{n!1}=1 . \quad 1+0 \\
n
\end{gathered}
$$

$8 \quad 1+(1=n)$
9.2.84 Dividing the numerator and denominator by $n \quad$ gives $a_{n}=\quad(1=n)+\ln n \quad$. Because $1+(1=n)!1$ as $n!1$ and $(1=n)+\ln n!1$ as $n!1$, we have $n{ }_{(7=5)^{n}} \lim _{1} a_{n}=0$.
9.2.86 A graph shows that the sequence appears to converge. Assuming that it does, let its limit be L. Then $\lim a_{n+1}={ }_{2}^{1} \lim _{n!1} a_{n}+2$, so $L=2_{2}^{1} L+2$, and thus ${ }_{2}^{1} L=2$, so $L=4$.
9.2.87 A graph shows that the sequence appears to converge. Let its supposed limit be L, then $\lim _{n!1} a_{n+1}=$ $\lim _{n!1}\left(2 a_{n}\left(1 \quad a_{n}\right)\right)=2\left(\lim _{n!1} a_{n}\right)\left(1 \quad \lim _{n!1} a_{n}\right)$, so $L=2 L(1 \quad L)=2 L \quad 2 L^{2}$, and thus $2 L^{2} L=0$, so $L=0$; $\frac{1}{2}$.

Thus the limit appears to be either 0 or $1=2$; with the given initial condition, doing a few iterations by hand con rms that the sequence converges to $1=2: a_{0}=0: 3 ; a_{1}=20: 30: 7=: 42 ; a_{2}=20: 420: 58=0: 4872$.
9.2.88 A graph shows that the sequence appears to converge, and to a value other than zero; let its limit be

$$
\left.{\underset{n}{2}}_{1}^{1}\right)=2^{-1} \operatorname{lima}+\frac{1}{\lim ^{2}} \text {, so } \mathrm{L}=\overline{2}_{2}^{1} \mathrm{~L}+\frac{1}{\mathrm{~L}} \text {, and therefore } \mathrm{L} \quad 2_{2^{-1}}^{2} \mathrm{~L}+1 \text {. }
$$

So $L^{2}=2$, and thus $L=P-$
9.2.89 Computing three terms gives $a_{0}=0: 5 ; a_{1}=4: 50: 5=1$; $a_{2}=41(1 \quad 1)=0$. All successive terms are obviously zero, so the sequence converges to 0 .
9.2.90 A graph shows that the sequence appears to converge. Let its limit be L . Then $\lim _{\mathrm{q}!1} \mathrm{a}_{\mathrm{n}+1}=$
व $\overline{2+\lim _{n!1} a_{n}}$, so $L=$
$p \overline{2+L}$. Thus we have $L^{2}=2+L$, so L^{2}
L $2=0$, and thus $L=1 ; 2$. A square
root can never be negative, so this sequence must converge to 2 .
 120 while e

25! 1:55 $10{ }^{25}$ 25
9.2.92 >10, so the crossover point is $n=25$.
a. Rounded to the nearest sh, the populations are

$$
\begin{array}{lll}
\mathrm{F}_{0}=4000 \\
\mathrm{~F}_{1}=1: 015 \mathrm{~F}_{0} & 80 & 3980 \\
\mathrm{~F}_{2}=1: 015 \mathrm{~F}_{1} & 80 & 3960 \\
\mathrm{~F}_{3}=1: 015 \mathrm{~F}_{2} & 80 & 3939 \\
\mathrm{~F}_{4}=1: 015 \mathrm{~F}_{3} & 80 & 3918 \\
\mathrm{~F}_{5}=1: 015 \mathrm{~F}_{4} & 80 & 3897
\end{array}
$$

b. $\mathrm{F}_{\mathrm{n}}=1: 015 \mathrm{~F}_{\mathrm{n}} \quad 80$
c. The population decreases and eventually reaches zero.
d. With an initial population of 5500 sh, the population increases without bound.
e. If the initial population is less than 5333 sh, the population will decline to zero. This is essentially because for a population of less than 5333, the natural increase of $1: 5 \%$ does not make up for the loss of 80 sh .

9.2.93

a. The pro ts for each of the rst ten days, in dollars are:

n	0	1	2	3	4	5	6	7	8	9	10
h_{n}	130.00	130.75	131.40	131.95	132.40	132.75	133.00	133.15	133.20	133.15	133.00

b. The pro t on an item is revenue minus cost. The total cost of keeping the hippo for n days is $: 45 n$, and the revenue for selling the hippo on the $n^{\text {th }}$ day is $(200+5 n)(: 65 \quad: 01 n)$; because the hippo gains 5 pounds per day but is worth a penny less per pound each day. Thus the total pro t on the n day is $\mathrm{h}_{\mathrm{n}}=(200+5 \mathrm{n})(: 65 \quad: 01 \mathrm{n}) \quad: 45 \mathrm{n}=130+0: 8 \mathrm{n} 0: 05 \mathrm{n}$: The maximum pro t occurs when $8^{\text {th }}: \begin{aligned} & \text { day } \\ & \text { day }\end{aligned}$. $8=0$, which occurs when $\mathrm{n}=8$. The maximum pro t is achieved by selling the hippo on the 9.2.94
a. $x_{0}=7, x_{1}=6, x_{2}=6: 5=$

so that the formula holds for $n=0 ; 1$. Now assume the formula holds for all integers k; then

$\begin{array}{llllll}-1 & 38 & \text {-2 } & \text { Т } & \text { к } & 11\end{array}$

$$
\begin{array}{llll}
19 & 2 & 1 \\
- &
\end{array}
$$

$$
=3+3 \quad 2:
$$

c. As $n!1,(1=2)^{n}!0$, so that the limit is $19=3$, or $61=3$.
9.2.95 The approximate rst few values of this sequence are:

n	0	1	2	3	4	5	6

Copyright c 2013 Pearson Education, Inc.

c_{n}	.7071	.6325	.6136	.6088	.6076	.6074	.6073

The value of the constant appears to be around 0:607.
9.2.96 We rst prove that d_{n} is bounded by 200. If $d_{n} 200$, then $d_{n+1}=0: 5 d_{n}+1000: 5200+100200$. Because $d_{0}=100<200$, all d_{n} are at most 200. Thus the sequence is bounded. To see that it is monotone, look at

$$
d_{n} d_{n} 1=0: 5 d_{n 1}+100 d_{n} 1=100 \quad 0: 5 d_{n 1}:
$$

But we know that $d_{n} 1200$, so that $1000: 5 d_{n} 10$. Thus $d_{n} \quad d_{n} \quad 1$ and the sequence is nondecreasing. 9.2.97
a. If we \cut o " the expression after n square roots, we get a_{n} from the recurrence given. We can thus de ne the in nite expression to be the limit of a_{n} as $n!1$.
b. $\mathrm{a}_{0}=1, \mathrm{a}_{1}=2, \mathrm{a}_{2}=1+2 \quad 1: 5538$, $\mathrm{a}_{3} 1: 598$, a $\mathrm{a}_{4} 1: 6118$, and $\mathrm{a}_{5} 1: 6161$.
c. a_{10} 1:618, which di ers from ${ }^{2} 1: 61803394$ by less than :001.
d. Assume lim $a_{n} \quad=L$. Then
$\lim a_{n+1}=l \lim ^{p 1+a_{n}}=$
$n!1$
$1+\lim a_{n}$, so $L={ }^{p}$
$n!1$
$L=1+L$. Therefore we have L
$L 1=0$, so $L=$
Because clearly the limit is positive, it must be the positive square root.

 $;{ }_{3} ; \frac{1}{4}_{4} ;::$:g has limit zero.
9.2.99
a. De ne a_{n} as given in the problem statement. Then we can de ne the value of the continued fraction to be $\lim _{n!1}$ an.

c. From the list above, the values of the sequence alternately decrease and increase, so we would expect that the limit is somewhere between 1:6 and 1:625.
d. Assume that the limit is equal to L. Then from a_{n+1}

$=1+\frac{1}{n!1} \frac{\lim a_{n}}{}$, so
$\mathrm{L}=1+\quad \mathrm{L} \underset{{ }_{+1} \mathrm{p}_{5}}{1}$, and thus $\mathrm{L} \quad \mathrm{L} \quad 1=0$: Therefore, $\mathrm{L}=\frac{15}{2}$; and because L is clearly positive, it must be equal to $\begin{aligned} & \frac{+1}{2} \\ & 2\end{aligned} \quad$ 1:618.

thus L
$a \mathrm{~L} \quad \mathrm{~b}=0$. Therefore, $\mathrm{L}=\overline{\mathrm{a}}$
a. Experimenting with recurrence (2) one sees that for $0<p 1$ the sequence converges to 1 , while for $p>1$ the sequence diverges to 1 .
b. With recurrence (1), in addition to converging for $p<1$ it also converges for values of p less than approximately $1: 445$. Here is a table of approximate values for di erent values of p :

p	1.1	1.2	1.3	1.4	1.44	1.444
$\lim _{\mathrm{n} 1}^{\mathrm{m}} \mathrm{a}_{\mathrm{n}}$	$1: 111$	$1: 258$	$1: 471$	$1: 887$	$2: 394$	$2: 586$

Copyright c 2013 Pearson Education, Inc.
9.2.101
a. $f_{0}=f_{1}=1 ; f_{2}=2 ; f_{3}=3 ; f_{4}=5 ; f_{5}=8 ; f_{6}=13 ; \mathfrak{f}_{7}=21 ; f_{8}=34 ; f_{9}=55 ; f_{10}=89$.
b. The sequence is clearly not bounded.

10
c. ${ }_{9} \quad 1: 61818$

$$
\begin{aligned}
f_{n}+f_{n 2} & =p_{1} 5\left(n_{1}(1)^{n 1,1 n_{+}, n^{2}} \quad(1)^{n 2,2 n^{n}}\right) \\
& =p^{\overline{5}}\left(\left(\text { 'n }_{+},{ }^{n 2}\right)(1)^{n}\left(2 n \quad, 1 n_{)}\right):\right.
\end{aligned}
$$

Now, note that ' $\quad 1=1$, so that
1

$$
\prime n 1+{ }^{\prime} n^{2}=\prime n 11++^{\prime}={ }^{\prime} n 1\left({ }^{\prime}\right)={ }^{\prime} n
$$

and

$$
\left.\left.\prime_{2 n}, 1 n_{n}=n_{(}, 2 \quad \prime\right)=, n_{(\prime}(\prime \quad 1)\right)=, n
$$

Making these substitutions, we get
1

$$
\left.f_{n} 1+f_{n} 2=\rho \overline{5}()^{n} \quad(1)^{n}, \quad n\right)=f_{n}
$$

9.2.102

a. We show that the arithmetic mean of any two positive numbers exceeds their geometric mean. Let a, $b>0$; then $\underset{2}{a+b} \quad p \overline{a b}=\frac{1}{-}\left(\begin{array}{ll}a & a b+b)=-1 \\ 2 & p b\end{array}\right)^{2}>0$: Because in addition $a_{0}>b_{0}$, we have $a_{n}>b_{n}$ for all n.
b. To see that fang is decreasing, note that

$$
{ }_{n+1}^{=} \frac{a_{n}+b_{n}}{2}<\frac{a_{n}+a_{n}}{2}=a_{n}:
$$

Similarly,

$$
\mathrm{b}_{\mathrm{n}+1}=\rho^{\mathrm{p}} \overline{a_{n} \mathrm{~b}_{\mathrm{n}}}>\quad \rho \quad \overline{\mathrm{b}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}}=\mathrm{b}_{\mathrm{n}}
$$

so that $\mathrm{fb}_{n} \mathrm{~g}$ is increasing.
c. fang is monotone and nonincreasing by part (b), and bounded below by part (a) (it is bounded below by any of the b_{n}), so it converges by the monotone convergence theorem. Similarly, $\mathrm{fb}_{\mathrm{n}} \mathrm{g}$ is monotone and nondecreasing by part (b) and bounded above by part (a), so it too converges.
d.

because $a_{n} b_{n} 0$. Thus the di erence between a_{n} and b_{n} gets arbitrarily small, so the di erence between their limits is arbitrarily small, so is zero. Thus lima $a_{n}=\lim b_{n}$.
$n!1$ n!
e. The AGM of 12 and 20 is approximately 15:745; Gauss' constant is $\frac{1}{\operatorname{AGM}(1 ; \mathrm{p} \overline{2})} \quad 0: 8346$.
9.2.103
a.

$$
\begin{aligned}
2 & : 1 \\
3 & : 10 ; 5 ; 16 ; 8 ; 4 ; 2 ; 1 \\
4 & : 2 ; 1 \\
5 & : 16 ; 8 ; 4 ; 2 ; 1 \\
6 & : 3 ; 10 ; 5 ; 16 ; 8 ; 4 ; 2 ; 1 \\
7 & : 22 ; 11 ; 34 ; 17 ; 52 ; 26 ; 13 ; 40 ; 20 ; 10 ; 5 ; 16 ; 8 ; 4 ; 2 ; 1 \\
8 & : 4 ; 2 ; 1 \\
9 & : 28 ; 14 ; 7 ; 22 ; 11 ; 34 ; 17 ; \quad 52 ; 26 ; 13 ; 40 ; 20 ; 10 ; 5 ; 16 ; 8 ; 4 ; 2 ; 1 \\
10 & : 5 ; 16 ; 8 ; 4 ; 2 ; 1
\end{aligned}
$$

b. From the above, $\mathrm{H}_{2}=1 ; \mathrm{H}_{3}=7$, and $\mathrm{H}_{4}=2$.

This plot is for 1 n 100 . Like hailstones, the numbers in the sequence a_{n} rise and fall
C. but eventually crash to the earth. The conjecture appears to be true.
$a_{n} \quad \underline{c a_{n}} \quad \underline{a_{n}}$
9.2.104 fang $f b_{n} g$ means that $\quad n^{\lim }!1 b_{n}=0$. But $n^{\lim }!1 \mathrm{db}_{n} \quad=d{ }_{n} \lim !1 b_{n}=0$; so that fcang fdbng.

9.3 In nite Series

9.3.1 A geometric series is a series in which the ratio of successive terms in the underlying sequence is a constant. Thus a geometric series has the form $P r^{k}$ where r is the constant. One example is $3+6+12$ $+24+48+$ in which $\mathrm{a}=3$ and $\mathrm{r}=2$.
9.3.2 A geometric sum is the sum of a nite number of terms which have a constant ratio; a geometric series is the sum of an in nite number of such terms.
9.3.3 The ratio is the common ratio between successive terms in the sum.
9.3.4 Yes, because there are only a nite number of terms.
9.3.5 No. For example, the geometric series with $a_{n}=32^{n}$ does not have a nite sum.
9.3.6 The series converges if and only if $\mathrm{jrj}<1$.

9
9.3.7 $\mathrm{S}=1 \quad \frac{13}{13}=\frac{19682}{=\frac{2}{11}}=9841$.
9.3.8 S = 1 $\frac{1(1=4)}{1(1=4)}=34^{10}=31048576=1048576 \quad 1: 333$.
$1 \frac{14=25)^{21}}{-25^{21}-4^{21}}$
9.3.9 $\mathrm{S}=1 \quad 14=25=25^{21} 425^{20} \quad 1: 1905$.

Copyright c 2013 Pearson Education, Inc.

23 9.3 - $\quad 3=44$
9.3.33 $\mathrm{k}=0 \quad 4 \quad 5^{6 \mathrm{k}}=5^{6} \mathrm{k}=0 \quad 20 \quad=5^{6} 1 \quad 1=20=$
$x \quad{ }^{1} \quad{ }^{1} x^{k}$
$3^{6}=8^{6}$
9.3.34 $\overline{1}(3=8)^{3}=\frac{729}{248320}$

2
$=$
3 ـ_2
$1=20=$

CHAPTER 9. SEQUENCES AND INFINITE SERIES
$19=$
19

$9.3 .35 \frac{1}{1+9=10}=\frac{10}{19}$.
$9.3 .373 \xrightarrow{1}=3$.

9.3.55 The second part of each term cancels with the rst part of the succeeding term, so $S_{n}=\frac{1}{1+1} \frac{1}{n+2}=$ $\underset{2 n+4}{\mathrm{n}}$; and $\underset{n!1}{\lim } \underset{2 n+4}{-1}=$
9.3.56 The second part of each term cancels with the rst part of the succeeding term, so $S_{n=} \frac{1}{1+2} \quad \frac{1}{n+3}=$ $\frac{n}{3 n+6}$; and $\lim _{n!13 n+9}^{n}=\frac{1}{3}$.

$\begin{aligned} & \text { 9.3.58 } \\ & 1_{1}^{(3 \mathrm{k}+1)(3 \mathrm{k}+4)} 1\end{aligned}=\frac{1}{3} \quad \frac{1}{3 \mathrm{k}+1^{-}} \quad \frac{1}{3 \mathrm{k}+4}$, so the series given can be written
1
-
x
$3 \mathrm{k}=0 \quad 3 \overline{\mathrm{k}}+\overline{1} \quad \overline{3 \mathrm{k}+4} \quad$. In that series, the second part of each term cancels with the rst part of the
 $n!1^{3 n+4} \quad 3$
 In that series, the second part of each term cancels with the rst part of the succeeding term (because $4(k+1) 3=4 k+1$), so we have $S_{n}=\frac{1}{9} \frac{1}{4 n+9}$, and thus $\lim _{n!1} S_{n}=\frac{1}{9}$.

$n!1 \quad 9$
9.3.60 Note that $\quad(2 k 1)(2 k+1) \quad=2 k \quad \quad 2 k+1$. Thus the given series is the same as $k=32 k \quad 1 \quad 2 k+1$. In that series, the second part of each term cancels with the rst part of the succeeding term (because $2(k+1) 1=2 k+1)$, so we have $S_{n}=\frac{1}{5} \quad \frac{1}{2 n+1}$. Thus, $\lim _{n!1} S_{n}=\frac{1}{5}$.
9.3.61 $\ln \frac{k+1}{k}=\ln (k+1) \quad \ln k$, so the series given is the same as $\sum_{\substack{\text { an } \\ k=1}}(\ln (k+1) \quad \ln k)$, in which the rst part of each term cancels with the second part of the next term,
 and thus the series diverges.

with the rst part of the previous term. Thus, $S_{n}=\quad n+1 \quad 1$: and because $\lim _{!1} p n+1 \quad 1=1$, the series diverges.
9.3.63 $\frac{1}{(k+p)(k+p+1)}=\frac{1}{k+p} \frac{1}{k+\overline{p+1}}$, so that ${ }_{k=1}^{1} \frac{1}{(k+p)(k+p+1)}={ }_{k=1}^{x} \frac{1}{k+p} \frac{1}{k+p+1}$
and this series telescopes to give $S_{n}=\ldots \quad$ _1 $=x_{\square}$ so that lim

$$
\underset{n!1}{ } S_{n}=\overline{p+1} .
$$

$\begin{array}{ccc}1 & 1 & 1 \\ a_{k=1} & & \text { : This series telescopes - the second term of each summand cancels with the }\end{array}$ $\stackrel{\text { is }}{\text { rst term of the succeeding summage }\left\{\text { so that } S^{n}=\stackrel{a}{a+1} \stackrel{a n+a+1}{ } \text {; and thus the limit of the sequence }\right.}$ $\overline{a(a+1)}$
9.3.65 Let $a_{n}=\frac{1}{p \overline{n+1}} \frac{1}{p \overline{n+3}}$. Then the second term of a_{n} cancels with the rst term of a_{n+2}, so the series telescopes and $\mathrm{S}_{\mathrm{n}}=$ $p z+p \frac{1}{3} \frac{1}{p \pi+3} \quad \frac{1}{p-1+3}$ and thus the sum of the series is the limit of S_{n}, which is $p_{2}^{1}+\frac{1}{3}$.
9.3.66 The r rt term of the $k^{\text {th }}$ summand is $\sin \left({ }_{2}{ }_{2}{ }^{+1)}{ }_{k+1}\right)$; the second term of the $(k+1){ }^{\text {st }}$ summand is $\sin (\ldots(k+1))$; these two are equal except for sign, so they cancel. Thus $S_{n} \quad=\sin 0+\sin (\underset{\sim}{(n+1)})$ $\sin \left(\frac{(n+1)^{2(k+1)}}{2 n+1}\right)$: Because $\frac{(n+1)}{2 n+1}$ has limit $=2$ as $n \quad!1$, and because the sine function is continuous, it follows that $\lim _{i m}$ s.is sint $\quad=\quad l=1$.
 given is equal to $4 \mathrm{k}=0 \quad 4 \mathrm{k} 1 \quad 4 \mathrm{k}+3$. This series telescopes, so $\mathrm{S}_{\mathrm{n}}=\quad 4 \quad 1 \quad 4 \mathrm{n}+3 \quad$;so the sum of the series is equal to $\lim S_{n}=\quad$ -
9.3.68 This series clearly telescopes to give $S_{n}=\tan (1)+\tan \quad(n)=\tan \quad(n) \quad \overline{4}$: Then because $\lim _{n!1} \tan ^{1}(n)=\quad \quad, \quad$, the sum of the series is equal to $\lim _{n!1} S_{n}=\quad$.
9.3.69
a. True. $\overline{\mathrm{e}} \quad \stackrel{\mathrm{e}}{\mathrm{k}}$; because $\mathrm{e}<$, this is a geometric series with ratio less than 1 .
b. True. If $1 \quad a^{k}=L$, then $1 a^{k}=11 a^{k^{k}}+L$:

c. False. For example, let $0<a<1$ and $b>1$.
9.3.70 We have $S_{n}=\left(\sin ^{1}(1) \sin ^{1}(1=2)\right)+\left(\sin ^{1}(1=2) \sin ^{1}(1=3)\right)++\left(\sin ^{1}(1=n) \sin ^{1}(1=(n+1))\right)$. Note that the rst part of each term cancels the second part of the previous term, so the nth partial sum telescopes to be $\sin \quad(1) \sin \quad\left(1^{(1)}(n+1)\right)$. Because $\sin \quad(1)=-2$ and $\left.\quad \lim \sin \quad 1_{(1)}=(n+1)\right)=\sin \quad{ }^{1}(0)=$ 0 , we have $\lim _{n!1} S_{n}=\frac{1}{2}$.

9.3.71 This can be written as $3 \mathrm{k}=1 \quad 3$. This is a geometric series with ratio $\mathrm{r}=\quad 3$ so the sum is
$\overline{3} \overline{1(2=3)}=\overline{3} \quad \overline{5} \quad \overline{15}$.
11 k
9.3.72 This can be written ap $\overline{\mathrm{e}}{ }_{\mathrm{k}=1} \overline{\mathrm{e}}$. This is a geometric series with $\mathrm{r}=\quad \bar{e}>1$, so the series diverges.
 $\stackrel{\text { rst part of each term cancels the second part of the preceding term, so we have } S_{n}=}{\text { = }}$ Thus
we have $\lim S_{n}=\frac{1}{\ln 2}$.
9.3.74
a. Because the rst part of each term cancels the second part of ${ }_{1}$ the previous term, the nth partial sum telescopes to be $\mathrm{S}_{\mathrm{n}}=\frac{1}{2}_{2} \quad \frac{1}{2 n}$. Thus, the sum of the series is $\lim \mathrm{S}_{\mathrm{n}}=$
n! $1 \quad 2$
 geometric with $r=1=2$ and $a=1=4$, so the sum is $\frac{1=4}{1=2}=\frac{1}{2}$.

9.3.75

a. Because the rst part of each term cancels the second part of the previous term, the nth partial sum telescopes to be $S=4 \quad 4.4$. Thus, the sum of the series is $\lim _{n} S=4$.

is geometric with $\mathrm{r}=1=3$ and $\mathrm{a}=8=9$, so the sum is $\overline{11=3}=\overline{9} \overline{2}=\overline{3}$.
9.3.76 It will take Achilles $1 / 5$ hour to cover the rst mile. At this time, the tortoise has gone $1 / 5$ mile more, and it will take Achilles $1 / 25$ hour to reach this new point. At that time, the tortoise has gone another 1/25 of a mile, and it will take Achilles $1 / 125$ hour to reach this point. Adding the times up, we have

$$
\frac{1}{5}+\frac{1}{25}+\frac{1}{125}+=\frac{1=5}{11=5}=\frac{1}{4}
$$

so it will take Achilles $1 / 4$ of an hour (15 minutes) to catch the tortoise. 9.3.77 At the $n^{\text {th }}$ stage, there are $2^{n} \quad{ }_{1}$ triangles of area $A_{n}={ }_{1} A_{n}{ }_{1} \quad \underset{1}{ }-A_{1}$, so the total area of the

9.3 .78

a. Note that $\quad\left(\begin{array}{lll}3^{k+1} & 1\end{array}\right)\left(\begin{array}{l}3\end{array}\right)$

b. We mimic the above computations. First, $\left.\quad \frac{a^{k}}{\left(a^{k+1} 1\right)\left(a^{k}\right.}-1\right)=\bar{a} \frac{1}{T} \quad \frac{1}{a^{\kappa 1}} 1^{-} \quad \frac{1}{a^{k+1} 1} \quad$; so we see that
we cannot have $\mathrm{a}=1$, because the fraction would then be unde
Continuing, we obtain s n $\frac{1}{a} \frac{1}{1}-\frac{1}{1}$: Now, $\lim \quad \frac{1}{j}$ converges if and only if the denominator grows without bound; this happens $^{\text {a }}$ if and only if ${ }_{a}^{j}{ }^{n!1}>1$. Thus, the original series converges for ${ }_{a}^{j}>1$, when it converges to
$\overline{(a 1)^{2}}$. Note that this is valid even for a negative.

It appears that the loan is paid o after about 470 months. Let B_{n} be the loan balance after n months. \quad Then $B_{0}=180000$ and

It appears that the loan is paid o after about 38 months. Let B_{n} be the loan balance after n months. Then $B_{0}=20000$ and
 B
$9.3 .801: 0075)_{2}=(1: 0075) \quad B_{n} 3 \quad{ }_{n} \quad 600(1+1: 0075+$ 0075 $^{\mathrm{n}} 1$) $=$

$$
1: 0075+(1: 0075) \quad++(1: n
$$

Solving this equation for $\mathrm{B}_{\mathrm{n}}^{--}=\overline{0}$ gives n 38:5 months, so the loan is paid o after 39 months.
$9.3 .81 \mathrm{~F}_{\mathrm{n}}=(1: 015) \mathrm{F}_{\mathrm{n}} 1_{\mathrm{n}} \quad 120=(1: 015)\left((1: 015) \mathrm{F}_{\mathrm{n}} 2 \quad 120\right) \quad 120=(1: 015)\left((1: 015)\left((1: 015) \mathrm{F}_{\mathrm{n}} 3120\right)\right.$ 120) $120=(1: 015)^{n}(4000) \quad 120\left(1+(1: 015)_{n}+(1: 015)^{2}++(1: 015)^{n} \quad 1\right)$. This is equal to

$$
(1: 015)^{n}(4000) \quad 120 \quad \frac{015) 1}{\frac{015}{1: 015 \quad 1}}=(\quad 4000)(1: 015)^{n}+8000:
$$

9.3.82 Let A_{n} be the amount of antibiotic in your blood after $n 6$-hour periods. Then $A_{0}=200 ; A_{n}=$ $0: 5 A_{n} 1+200$. We have $A_{n_{2}}=: 5 A_{n} n^{1+200}=: 5\left(: 5 A_{n} 2+200\right)+200=: 5\left(: 5\left(: 5 A_{n} 3+200\right)+200\right)+200=$ $=: 5^{n}(200)+200\left(1+: 5+: 5^{2}++: 5^{1}\right)$. This is equal to

$$
\left.\begin{array}{ccc}
n & : 5^{n}-1 \\
n^{n}(200)+200 & : 5 & 1
\end{array}=\left(: 5^{n}\right)(200 \quad 400)+400=(200)(: 5)^{n}\right)+400:
$$

The limit of this expression as $n!1$ is 400 , so the steady-state amount of antibiotic in your blood is 400 mg .
9.3.83 Under the one-child policy, each couple will have one child. Under the one-son policy, we compute the expected number of children as follows: with probability $1=2$ the \quad rst child will be a son; with probability $(1=2)_{n}^{2}$, the rst child will be a daughter and the second child will be a son; in general, with probability ($1=2$), the rst $\mathrm{n} \quad 1$ children will be girls and the n a boy. Thus the expected number of children is the sum ${ }_{\mathrm{x}}^{\mathrm{x}} \mathrm{i} \quad \stackrel{1}{\mathrm{i}} \quad$ use the following ltrick": Let $\mathrm{f}(\mathrm{x})={ }^{1} \mathrm{x}$

$$
f(x)+\underset{x^{1}}{x_{i}^{1}}=\quad{ }_{x_{i}}^{(i+1) x^{i} \text {. Now, let }}
$$

and

$$
\begin{aligned}
& (x)=1 \quad \frac{1}{(1 x)^{2}} \quad-\quad \begin{array}{l}
i \\
\end{array} \\
& \text {; } \\
& f(x)=1 \quad-1 \quad-\frac{1}{2}=-\frac{1+x+1}{2}=\xrightarrow{\underline{x}} \\
& 1 \mathrm{x} \quad\left(\begin{array}{ll}
1 \mathrm{x}) & (1 \mathrm{x}) \\
(1 \mathrm{x})
\end{array}\right.
\end{aligned}
$$

Finally, evaluate at $x=\underline{1}$ to get $f \quad 1=1 \quad 1 i=\underline{1=2}=2$: There will thus be twice as many P
9.3.84 Let L_{n} be the amount of light transmitted through the window the $n{ }^{\text {th }}$ time the beam hits the second $\frac{\mathrm{pL}_{n}-1}{\mathrm{~L}}$
pane. Then the amount of light that was available before the beam went through the pane was 1 np , so is re ected back to the rst pane, and $\frac{\mathrm{p}_{2} L_{n}}{}$ is then re ected back to the second pane. Of that, a fraction equal to $1 \quad \mathrm{p}$ is transmitted through the window. Thus

$$
L_{n+1}=\left(1 \quad p+1 p^{p} L_{n} p=p^{2} L_{n}:\right.
$$

The amount of light transmitted through the window the rst time is $\left(\begin{array}{ll}1 & p\end{array}\right)^{2}$. Thus the total amount is $=\quad \frac{(1 p)_{2}^{1}}{1-p} \frac{1-p}{1+p}$
9.3.85 Ignoring the initial drop for the moment, the height after the $n^{\text {th }}$ bounce is $10 p^{n}$, so the total time spent in that bounce is 2
$210 p^{n}=g$ seconds. The total time before the_ball comes to rest (now q

9.3 .86 p seconds. p
th
a. The fraction of available wealth spent each month is $1 \quad \mathrm{p}$, so the amount spent in the n month is $W(1 \quad \mathrm{p}) \quad$ (so that all $\$ \mathrm{~W}$ is spent during the rst month). The total amount spent is then

$$
\begin{aligned}
& P^{1}{ }^{n} \xrightarrow{W(1} . \underline{D} \quad \text { ——p } \\
& n=1 W(1 \quad p) \quad=1\left(\begin{array}{ll}
1 & p
\end{array}\right)=W \quad p \quad \text { dollars. }
\end{aligned}
$$

b. As p!1, the total amount spent approaches 0 . This makes sense, because in the limit, if everyone saves all of the money, none will be spent. As p!0, the total amount spent gets larger and larger. This also makes sense, because almost all of the available money is being respent each month.

9.3.87

a. I_{n+1} is obtained by I_{n} by dividing each edge into three equal parts, removing the middle part, and adding two parts equal to it. Thus 3 equal parts turn into 4 , so $L_{n+1}=$
${ }_{3}^{4} \mathrm{~L}_{n}$. This is a geometric sequence with a ratio greater than 1 , so the $n^{\text {th }}$ term grows without bound.
b. As the result of part (a), I_{n} has 34 sides of length 1 ; each of those sides turns into an added triangle
 $3 n \quad$. The area of an equilateral triangle with side x is

 $\begin{array}{llllllllll}A_{1}=A_{0} & P 3 & 1 & 4 & p & P 3 & 1 & p 3 & 3 & 2\end{array}$
9.3.88
a. $51_{1} \quad 10^{k} \quad 1 \mathrm{k}=5 \quad 1=10 \quad 5$

$x \quad x^{1} \quad$| 1 | $1=100$ | 54 |
| :--- | :--- | :--- |

b. $54_{\mathrm{n}}^{\mathrm{i}=1}{ }^{2 \mathrm{k}}=54 \underset{\mathrm{p}=1}{\mathrm{p}} \quad 100 \quad=54 . \mathrm{n} \quad 99=100={ }_{p} 99$

multiplication but rather the digits in a decimal number, and where there are p 9's in the denominator.
d. According to part (c), 0:1234523789723445678912 : : : = 999999999 9
e. Again using part (c), 0:9 $=9=1$.

1

and ratio r.
9.3.90
a. Solve $\frac{0: 6^{n}}{0: 4}<106$ for n to get $n=29$.
b. Solve $\frac{0: 15^{n}}{0: 85}<10^{6}$ for n to get $n=8$.
9.3.91 $\quad \frac{1}{\text { a. Solve }} \quad \frac{n^{n}}{(0: 8)^{n}}={ }_{: 8^{1}}^{0}: 8<10^{6}$ for n to get $n=60$.
$0.2^{\mathrm{n}} \quad 6$
b. Solve $0: 8<10 \quad$ for n to get $\mathrm{n}=9$.
9.3.92
a. Solve $\frac{0: 72^{n}}{0: 28}<10{ }^{6}$ for n to get $n=46$.
b. Solve (0:25) $\quad-: 25$
9.3.93
a. Solve $\frac{1==^{n}}{1+1=}<10^{6}$ for n to get $n=13$.
b. Solve $T^{\frac{1}{1=}} \frac{n}{1=e}<10^{6}$ for n to get $n=15$.
9.3.94
a. $f(x)=$

$$
\begin{aligned}
& { }_{1}{ }^{k} \text { k T } \\
& \mathrm{k}=0 \quad=\quad={ }_{1 \mathrm{x}} \mathrm{x} \text {; because } \mathrm{f} \text { is represented by a geometric series, } \mathrm{f}(\mathrm{x}) \text { exists only for } \mathrm{jxj}<1 \text {. } \\
& (0)=1, f(0: 2)=\quad \mathcal{1}=1: 25, f(0: 5)=-\quad 1=2 \text {. Neither } f(1) \text { nor } f(1: 5) \text { exists. }
\end{aligned}
$$

b. The domain of f is $\mathrm{fx}: \mathrm{jxj}<1 \mathrm{~g}$.
9.3.95
 that $x \quad=x<1$. Then $f(0)=1, f(0: 2)=\quad$ - $=5, f(0: 5)=\quad-\quad=2$. Neither $f(1)$ nor $f(1: 5)$ exists.
b. The domain of f is $\mathrm{fx}: \mathrm{jxj}<1 \mathrm{~g}$.
9.3.96

which means $x<1$. Then $f(0)=1, f(0: 2)=\quad-1 \overline{=\frac{25}{}, f(0: 5)}=\ldots \quad=\frac{1}{4}$. Neither $f(1)$
nor $f(1: 5)$ exists.
b. The domain of f is $\mathrm{fx}: \mathrm{jxj}<1 \mathrm{~g}$.

9.3.98
a. Clearly for $k<n$, h_{k} is a leg of a right triangle whose hypotenuse is r_{k} and whose other leg is formed where the vertical line (in the picture) meets a diameter of the next smaller sphere; thus the other leg of the triangle is r_{k+1}. The Pythagorean theorem then implies that $h_{k}^{2}=r_{k}^{2}{ }_{r_{k}+1}^{2}$.
b. The height is $H_{n}=\stackrel{p}{i=1}_{n}^{h_{i}}=\dot{r}_{n}^{1}+\quad P_{i=1}^{n 1} q_{r_{i}^{2}}^{r_{i}^{2}+1}$ by part (a).
c. From part (b), because $r_{i}=a \quad$,

$$
\begin{aligned}
& H_{n}=r_{n}+\quad \overline{n 1} \quad \overline{r_{i}^{2} \quad r_{i}{ }^{2}+1}=a^{n 1}+{ }^{n_{0} 1} \overline{a^{2 i} 2} \quad a^{2 i}
\end{aligned}
$$

$$
\begin{aligned}
& =a^{n 1}+P a^{p} \frac{1 a^{n 1}}{1 a}
\end{aligned}
$$

d.

9.4 The Divergence and Integral Tests

9.4.1 A series may diverge so slowly that no reasonable number of terms may de nitively show that it does so.
9.4.2 No. For example, the harmonic serkes $P_{k=1 \mathrm{k}}^{1} \quad$ diverges although $_{\mathrm{k}}$! 0 as $\mathrm{k}!1$.
9.4.3 Yes. Either the series and the integral both converge, or both diverge, if the terms are positive and decreasing.
9.4.4 It converges for $p>1$, and diverges for all other values of p.
9.4.5 For the same values of p as in the previous problem \{ it converges for $p>1$, and diverges for all other values of p.
9.4.6 Let S_{n} be the partial sums. Then $S_{n+1} S_{n}=a_{n+1}>0$ because $a_{n+1}>0$. Thus the sequence of partial sums is increasing.
9.4.7 The remainder of an in nite series is the error in approximating a convergent in nite series by a nite number of terms.

P
9.4.8 Yes. Suppose a_{k} converges to S, and let the sequence of partial sums be $f S_{n} g$. Then for any >0 there is some N such that for any $n>N, j S S_{n j}<$. But $j S S_{n j} j$ is simply the remainder R_{n} when the series is approximated to n terms. Thus $R_{n}!0$ as $n!1$. 9.4.9 $a_{k}=\frac{k}{2 k+1}$ and $\lim _{k!1} a_{k}=\frac{1}{2}$, so the series diverges.
9.4.10 $a_{k}=\underset{k+1}{k_{k+1}}$ - and $\lim a_{k!1}=0$, so the divergence test is inconclusive.
9.4.11 $a_{k}=\frac{k}{m_{k}}$ and ${ }_{k} \lim a_{k}=1$, so the series diverges.
$!1$
9.4.12 $a_{k}={\underset{2}{k}}_{2^{2}}^{2}$ and $\lim a_{k}=0$, so the divergence test is inconclusive. k!1
9.4.13 $a_{k}=\frac{1}{1000+k}=\quad$ and $\lim a_{k}=0$, so the divergence test is inconclusive.
9.4.14 $a_{k}=\frac{k^{3}}{k+1}$ and lim $a_{k}^{k!1}=1$, so the series diverges.
9.4.15 $a_{k}=\ldots, \ldots, \ldots,{ }_{k}^{p}$ and ${ }_{k} \lim a_{k}=1$, so the series diverges.
$!1$
9.4.16 $a_{k}=\frac{0 k+1}{k}$ and $\lim a_{k}=1$, so the series diverges.

1=k k 1 ln k
9.4.17 $a_{k}=k$. In order to compute $\lim _{k!1} a_{k}$, we let $y_{k}=\ln \left(a_{k}\right)=\bar{k}$. By Theorem 9.6, (or by

L'H^opital's rule) $\lim _{k!1} \mathrm{y}_{\mathrm{k}}=0$, so $\lim _{\mathrm{k}!1} \mathrm{a}_{\mathrm{k}}=\mathrm{e}=1$. The given series thus diverges.
9.4.18 By Theorem $9.6 \mathrm{k}^{3} \quad \mathrm{k}!$, so $\lim _{\mathrm{k} 11} \frac{\mathrm{k}_{3}}{\mathrm{k}!}=0$. The divergence test is inconclusive.
9.4.19 Let $f(x)=x \ln \frac{1}{x}$. Then $f(x)$ is continuous and decreasing on (1; 1), because $x \ln x$ is increasing there. Because ${ }_{1}{ }_{1} f(x) d x=1$; the series diverges.
9.4.20 Let $f(x)=\quad \overline{p \overline{x+4}} . f(x)$ is continuous for x 1. Note that $f^{0}(x)=\quad \overline{p_{x+4)}}>0$. Thus f is increasing, and the conditions of the Integral Test aren't satis ed. The given series diverges by the Divergence Test. $\quad 2^{2} \quad$ continuous for $x \quad 1$. Its derivative is e ${ }^{2 x_{2}}\left(\begin{array}{ll}1 & \left.4 x^{2}\right)<0 \text { for }\end{array}\right.$ 9.4.21 Let $f(x)=x e$. This function is $\quad 2 \quad 4 e^{2} \quad 1$ decreasing. Because ${ }^{1} \mathrm{X} \mathrm{e}^{2 \mathrm{x}} \mathrm{dx}=$ - ; the series converges.
9.4.22 Let $f(x)=\ldots \quad f(x)$ is obviously continuous and decreasing for $x \quad$. Because $\quad \begin{aligned} & 1 \\ & =\end{aligned}$ 1; the series diverges.
9.4.23 Let $f(x)=\overline{p^{-}}=\cdot f(x)$ is obviously continuous and decreasing for x

the series diverges. $x+8$

9.4.24 Let $\mathrm{f}(\mathrm{x})=\quad-=1$
series converges. $x(\ln x)^{2} \cdot f(x)$ is continuous and decreasing for x 2. Because $2 f(x) d x=\ln 2$ the
 is negative for $x>1$ so 1
R_{1}
$R_{1} \quad{ }^{1}$
9.4.26 Let $f(x)=\overline{x \ln x \ln \ln x} \cdot f(x)$ is continuous and decreasing for $x>3$, and $3 \quad x \ln x \ln \ln x \quad d x=1$. The given series therefore diverges.
9.4.27 The integral test does not apply, because the sequence of terms is not decreasing.
9.4.28 $f(x)=\quad-\quad$ - is decreasing and continuous, and $\quad x \quad-\quad$ Thus, the given series con-
984. THE DIVERGENCE AND INTEGRAL TESTSCHAPTER 9. SEQUENCES AND INFINITE SERIES31
verges.
$(x+1)$
$R 1(x+1) d x=16$
9.4.29 This is a p-series with $p=10$, so this series converges.
$1 \quad \underline{k^{e}}=P^{1} \quad 1$ _
9.4.30 $P_{k=2 k} \quad 1 \quad \mathrm{k}=2 \quad \mathrm{ke}$. Note thate $3: 1416$ 2:71828 < 1 , so this series diverges.

1 —— P^{1}
9.4.31 $P_{k=3}\left(k_{2}\right)^{4}=k=1 \quad k^{4}$, which is a p-series with $p=4$, thus convergent.
$1 \quad \begin{array}{llll}\mathrm{k} & 3=2 \quad \mathrm{P}^{1} \quad 1\end{array}$
9.4.32 $P_{k=1} 2_{1}=2^{k} 1=1 \quad k=2$ is a p-series with $p=3=2$, thus convergent.
9.4.33 ${ }_{P}^{1} \overline{\mathrm{p}_{3}^{3}}={ }_{27 \mathrm{k}^{2}}^{1} \mathrm{P} \quad{ }_{1}^{3} \quad$ is a p-series with $\mathrm{p}=1=3$, thus divergent.
9.4.34 $1 \quad=-1 \quad$ is a p-series with $p=2=3$, thus divergent.

9.4.35

a. The remainder R_{n} is bounded by $n{ }^{1} \frac{1}{x}{ }_{6} d x=\frac{1}{5 n}$:
b. We solve $5_{5 n}{ }_{5}^{1}<10^{3}$ to get $n=3$. R

$n \quad n \quad n+1 x^{6} d x=S_{n}+5(n+1)$, and $U_{n} \underset{\sim}{n} \quad R n x d x=S_{n}+5 n^{5}$
$\begin{array}{lllll}d . & S_{10} & 1: 017341512 \text {, so } L_{10} & 1: 017341512+ & 511^{5} \quad 1: 017342754 \text {, and } U_{10} \\ 1: 017341512+\end{array}$

510^{5} 1:017343512.
9.4.36
a. The remainder R_{n} is bounded by $\frac{1}{n} \frac{1}{x_{8}} d x=\frac{1}{7 n 7}$:
b. We solve $7 n^{1}{ }_{7}<10^{3}$ to obtain $n=3$.
$\mathrm{R}^{1} \underset{8}{1} \quad-\quad$ andU $\mathrm{R}^{1-} \quad{ }_{\mathrm{n}}$
c. $L_{n}=S_{n}+{ }_{n+1} \times d x=S_{n}+{ }_{7(n+1)^{7}} \quad n \underline{n} \equiv S_{n}+{ }_{n}{ }^{x_{8}} d x=S_{n}+7^{7}$.
d. $S_{10} \quad 1: 004077346$, so $L_{10} \quad 1: 004077346+711^{7} \quad 1: 00408$, and $U_{10} \quad 1: 004077346+710^{7} \quad 1: 00408$. 9.4.37

a. The

$$
n^{1} n^{3}
$$

$$
\text { to obtain } \mathrm{n}=7 \text {. }
$$

b. We solve ${ }_{3} \ln (3)<10 \quad$ to obtain $\mathrm{n}=7$.
c. $L_{n}=S_{n}+R_{n+13^{x}}^{\frac{1}{2}} d x=S_{n}+\frac{1}{3^{n+1} \ln (3)}$, and $\underset{n}{U_{-1}}=S+R^{\frac{11}{3_{x}}} d x=S_{n}+\frac{1}{3 \ln (3)}$.

9.4.38

a. The remainder R_{n} is bounded by $\quad \frac{1}{n^{2}} \quad \frac{1}{n}$
${ }^{1}$ b. We solve $\quad \overline{\pi R^{n}}<10 \quad 3_{\text {to get } n=e^{R}} \quad{ }^{1000} \quad 10 \quad{ }^{434}$.

$$
1: 700396385+\text { + } 2: 117428776 .
$$

9.4.39

1 1 $1=2$
a. The remainder R_{n} is bounded by $n \quad x 3=2 d x=2 n \quad$:
b. We solve $2 n^{1=2}<10^{3}$ to get $n>4 \quad 10^{6}$, so let $n=410^{6}+1$. R

$$
+1 \quad 1 \mathrm{dx}=\mathrm{S}+2(\mathrm{n}+1) \quad \text {, and } \mathrm{U}=\mathrm{S}+1+1 \mathrm{dx}=\mathrm{S}+2 \mathrm{n}^{1=2} \text {. }
$$

c. $L_{n}=S_{n} \quad{ }_{10}{ }^{R}{ }_{n+1}^{n+11 x^{3}=2} \quad n$
n n к $n X^{3}=2$ 1 $=2$ n
d. s_{0}

$$
995336494+2 \quad 10{ }^{=1=2} \quad 2: 627792026 .
$$

9.4.40

a. The remainder R_{n} is bounded by $n^{1} e^{x} d x=e^{n}$:
b. We solve $\mathrm{e}^{\mathrm{n}}<10^{3}$ to get $\mathrm{n}=7$.
c. $L_{n}=S_{n}+R_{n+1} e^{x} d x=S_{n}+e^{(n+1)}$; and $U_{n}=S_{n}+{ }_{n}{ }_{n} e^{x} d x=S_{n}+e^{n}$. ${ }^{R}$
d. $\mathrm{S}_{10}=\underset{\substack{0 \\ \mathrm{p} k=1 \\ 581950282+e}}{ }$
10 0:5819502852, so $L_{10} 0: 5819502852+e^{11}$
$0: 5819669869$, and U_{10}
9.4.41
a. The remainder R_{n} is bounded by $n^{1} \frac{1}{x^{3}} d x=\frac{1}{2 n}$:
b. We solve $\frac{1}{2 n}{ }_{2}<10^{3}$ to get $n=23$.
c. $\mathrm{L}=\mathrm{S}+\mathrm{R}^{1}+\mathrm{dx}=\mathrm{S}+\underset{\sim}{1}$, and $\mathrm{U}=\mathrm{S}+1 \underset{1}{1}$ -

1:202531986.
9.4.42
a. The remainder R_{n} is bounded by $n e_{1} x_{2} d x=\frac{1}{2 e_{n 2}}$:
b. We solve $\frac{1}{2 e^{n} 2}<10^{3}$ to get $\mathrm{n}=3$.

c. $L_{n}=S_{n}+{ }_{n+1} d x=S_{n}+2 e^{(n+1)}$, and $U_{n}=S_{n}+R n$ xe $d x=S_{n}+2 e^{n}$.

0:4048813986.
9.4.43 This is a geometric series with $\mathrm{a}=$

3

$$
12 \quad k=1 \quad 11=121
$$

9.4.51

a. True. The two series di er by a nite amount ($\mathrm{P}_{\mathrm{k}}^{9}=1 \mathrm{a}_{\mathrm{k}}$), so if one converges, so does the other.
b. True. The same argument applies as in part (a).
c. False. If $\quad a_{k}$ converges, then $a_{k}!0$ as $k!1$, so that $a_{k}+0: 0001!0: 0001$ as $k!1$, so that ($a_{k}+0: 0001$) cannot converge.

False. Suppose p	P	P
d. converges.	1:0001. Then p diverges but $p+: 0001=$	0:9991 so that ($p+0001$)

e. False. Let $p=1: 0005$; then $p+: 001=\quad(p \quad: 001)=: 9995$, so that $\quad p_{k}$ converges $(p$-series) but

P
f. False. Let $\mathrm{a}_{\mathrm{k}}=\mathrm{k}^{1}$, the harmonic series.

$$
\lim \mathrm{a}=\lim \underline{\mathrm{k}+1}
$$

9.4.52 Diverges by the Divergence Test because $k!1 \quad k \quad k!1 r \quad k \quad=16=0$.

 1
9.4.55 Diverges by the Divergence Test because ${ }_{k} \lim a_{k}=k \lim \quad \mathrm{p} . \underline{k} . \quad=16=0$. $!\quad!1 \quad k+1$
9.4.56 Converges because it is the sum of two geometric series. In fact, $\quad P{ }_{k=1} \frac{2^{k}+3^{k}}{4^{k}}=P_{k=1(2=4)}^{1} \quad{ }^{k}+$ $Z_{2} \frac{4!}{x \ln ^{2} x} \quad d x=\lim \quad \frac{4}{\ln x} \quad{ }^{2} \quad!=\frac{4}{\ln 2^{21}}$
9.4.58
a. In order for the series to converge, the integral R $2_{2}^{1}-\frac{1}{x(\ln x)^{\bar{p}}} \mathrm{dx}$ must exist. But

so in order for this improper integral to exist, we must have that $1 \quad p<0$ or $p>1$.
b. The series converges faster for $p=3$ because the terms of the series get smaller faster.

9.4.59

 exists only if $p>1$ because $\ln \ln x>0$ for $x>e$. So this series converges for $p>1$.
b. For large values of z, clearly $p \bar{z}>\ln z$, so that $z>(\ln z)^{2}$. Write $z=\ln x$; then for large $\quad x$, $\ln x>(\ln \ln x)^{2} ;$ multiplying both sides by $x \ln x$ we have that $x \ln ^{2} x>x \ln x(\ln \ln x)^{2}$, so that the rst
series converges faster because the terms get smaller faster.
9.4.60
$\mathrm{P}_{\frac{1}{\mathrm{k} 2}: 5}$.
b. $\quad P_{1}^{P_{1}} \frac{.}{\mathrm{k}^{2075}}$
C. $\quad \frac{1}{\mathrm{~K}_{3}=2}$.

Eopyrightc 2813 Bearson Education, |nc:

This integral diverges as $n!1$, so the series does as well by the bound above.

9.4.64 $k=2 \mathrm{k} \ln \mathrm{k}$ diverges by the Integral Test, because $2^{1}{ }_{\mathrm{x} \ln \mathrm{x}}=\lim _{\mathrm{b}!1} \ln \ln \mathrm{xj}{ }^{\mathrm{b}}=1$:
9.4.65 To approximate the sequence for (m), note that the remainder R_{n} after n terms is bounded by

$$
Z_{\mathrm{n}}{ }^{1} \frac{1}{\mathrm{X}^{\mathrm{m}}} \mathrm{dx}=\frac{1}{\mathrm{~m} 1 \mathrm{n}^{1} \mathrm{~m}:}{ }_{3} \quad 1 \quad 2
$$

For $\underset{23}{ }=3$, if we wish to approximate the value to within 10 , we must solve ${ }_{2} n<10$, so that $n=23$,
and $_{k=1} \overline{k^{3}} \quad$ 1:201151926. The true value is 1:202056903.
$3 \quad 143$

For $\mathrm{m}=5$, if we wish to approximate the value to within 10 , we must solve $4^{n}<10$, so that $\mathrm{n}=4$,
and ${ }_{k=1} \overline{k^{5}} \quad$ 1:036341789. The true value is 1:036927755.
$3 \quad 16$
For $m=7$, if we wish to approximate the value to within 10 , we must solve ${ }_{6} n<10$, so that $n=3$, 31
and ${ }_{k=1} \overrightarrow{k^{7}} \quad$ 1:008269747. The true value is 1:008349277.
9.4.66
$21 \quad 2$
Copyright c 2013 Bearson Education, Inc.
964. THE DIVERGENCE AND INTEGRAL TESTSCHAPTER 9. SEQUENCES AND INFINITE SERIES 36
a. Starting with $\cot x<x \quad 2<1+\cot x$, substitute k for x :

$$
\cot ^{2}(k)<-\frac{1}{k^{2}} 2 \cdot<1+\cot ^{2}(k)
$$

Note that the identity is valid because we are only summing for k up to n, so that $k<2$.

$n\left(2 n_{1}\right)$

b. Substitute \qquad for the sum, using the identity:
c. By the Squeeze Theorem, if the expressions on either end have equal limits as $n!1$, the expression in the middle does as well, and its limit is the same. The expression on the left is

$$
2 \frac{2 n^{2}}{12 n^{2}+12 n+3}=2-\frac{2 n}{12+12 n^{1}+3 n^{2}} \cdot \frac{1}{2}
$$

which has a limit of $\overline{6}$ as $n!1$. The expression on the right is

$$
\frac{2 n^{2}}{12 n^{2}+12 n} \cdot \frac{2}{12 n+3}=\frac{2+2 n}{12+\frac{12 n^{1}}{1}+3 n^{3}}
$$

which has the same limit. Thus $\lim _{n!1} X \underset{k=1}{k^{2}}=X \quad \overline{k^{2}}=\overline{6}$.

a. $f F_{n g}$ is a decreasing sequence because each term in F_{n} is smaller than the corresponding term in $F_{n 1}$ and thus the sum of terms in F_{n} is smaller than the sum of terms in $F_{n 1}$.

9.4.69

- $\frac{1}{2}$
$=\frac{37}{}_{60}$.
Copyright c 2013 Pearson Education, Inc.

984. THE BIVERGENCE ANQ INTEGRAL TESTSCHAPTERR 9. SEQUENCES AND INFINITE SERIES 38

b. x_{n} has n terms. Each term is bounded below by $\frac{1}{2} n$ and bounded above $\overline{n+1}^{1}$. Thus $x_{n} n \perp 1$, by and $\mathrm{x}_{\mathrm{n}} \mathrm{n} \frac{1}{\mathrm{n}+1}<\mathrm{n}_{\mathrm{n}}{ }^{1}=1$.
c. The right Riemann sum for ${ }_{1}{ }^{2} \mathrm{dx}$ - $\operatorname{using}_{+1} \mathrm{n}$ subintervals has n rectangles of width ${ }^{\frac{1}{n}}$; the right edges of those rectangles are at $\underline{1}+n \xrightarrow{i} \stackrel{x}{=} n$ for $i=1 ; 2 ;::: ; n$. The height of such a rectangle is the value of $x^{\frac{1}{1}}$ at the right endpoint, which_is $n^{n}+i$. Thus the area of the rectangle is $\underline{n}^{1} n^{n} \underline{+i} \equiv n+i{ }^{1}$. Adding up over all the rectangles gives x_{n}.
d. The limit $\lim \mathrm{x}_{\mathrm{n}}$ is the limit of the right Riemann sum as the width of the rectangles approaches zero.
9.4.70

The rst diagram is a left Riemann sum for $f(x)=-\quad$ on the interval $[1 ; 11]$ (we assume $\mathrm{n}=10$ for purposes of drawing a graph). The

Adding 1 to both sides gives the desired inequality.

b. According to part (a), $\ln (n+1)<S_{n}$ for $n=1 ; 2 ; 3 ;:::$, , so that $E_{n}=S_{n} \ln (n+1)>0$.
c. Using the second gure above and assuming $\mathrm{n}=9$, the nal rectangle corresponds to $\frac{1}{\mathrm{n}+1}$, and the area under the curve between $n+1$ and $n+2$ is clearly $\ln (n+2) \ln (n+1)$.
d. $E_{n+1} \quad E_{n}=S_{n+1} \ln (n+2)\left(S_{n} \ln (n+1)\right)=\quad$ _ $\quad(\ln (n+2) \ln (n+1))$. But this is positive
because of the bound established in part (c).
$n+1$
e. Using part (a), $E_{n}=S_{n} \quad \ln (n+1)<1+\ln (n) \quad \ln (n+1)<1$:
f. E_{n} is a monotone (increasing) sequence that is bounded, so it has a limit.
g. The rst ten values (E_{1} through E_{10}) are

$$
\begin{gathered}
: 3068528194 ;: 401387711 ;: 447038972 ;: 473895421 ;: 491573864 ; \\
: 504089851 ;: 513415601 ;: 520632565 ;: 526383161 ;: 531072981:
\end{gathered}
$$

E_{1000} 0:576716082.
h. For $S_{n}>10$ we need $10 \quad 0: 5772=9: 4228>\ln (n+1)$. Solving for n gives $n \quad 12366: 16$, so $n=12367$.

9.4.71

a. Note that the center of gravity of any stack of dominoes is the average of the locations of their centers.

De ne the midpoint of the zeroth (top) domino to be $x=0$, and stack additional dominoes down and to its right (to increasingly positive x-coordinates.) Let $m(n)$ be the x-coordinate of the midpoint of the $\mathrm{n}^{\text {th }}$ domino. Then in order for the stack not to fall over, the left edge of the $\mathrm{n}^{\text {th }}$ domino must

induction (noting that the statement is clearly true for $n=0, n=1$). Thus the maximum overhang

b. For an in nite number of dominos, because the overhang is the harmonic series, the distance is poten-tially in nite.

9.5 The Ratio, Root, and Comparison Tests

9.5.1 Given a series
a_{k} of positive terms, compute $\lim _{k!1}$ $\frac{a_{k+1}}{a_{k}}$
and call it r. If $0 \underset{\text {, the iven series diverges. It } r=1, \text { the test is in inconcususve. }}{ }$ given

P	1		
9.5.2 Given a series series converges. If $r>1$ (including $r=$	ak of positive terms, compute limut ${ }^{\text {Pax }}$	k 一	and call it r. If $0 \quad r<1$, the given), the given series diverges. If $r=1$, the test is inconclusive
P	1		

9.5.3 Given a series of positive terms $\quad a_{k}$ that you suspect converges, nd a series b_{k} that you know converges, for which $\lim _{k l_{b_{k}}} \quad a_{k_{k}}=L$ where $_{p} L \quad 0$ is a nite number. If you are successful, you will have shown that the series $\quad a_{k}$ converges.

Given a series of positive terms a_{k} that you suspect diverges, nd a series b that you know diverges,
 shown that ${ }^{\mathrm{a}_{k}}$ diverges.
9.5.4 The Divergence Test.

9.5.5 The Ratio Test.

9.5.6 The Comparison Test or the Limit Comparison Test.

9.5.7 The di erence between successive partial sums is a term in the sequence. Because the terms are positive, di erences between successive partial sums are as well, so the sequence of partial sums is increasing.
9.5.8 No. They all determine convergence or divergence by approximating or bounding the series by some other series known to converge or diverge; thus, the actual value of the series cannot be determined.
9.5.9 The ratio between successive terms is $a_{-2}^{a_{k+1}}=\frac{1}{(k+1)!} \frac{(k)!}{1}=\frac{1}{k+1}$, which goes to zero as $k!1$, so the given series converges by the Ratio Test.
9.5.10 The ratio between successive terms is ${\underset{k}{k+1}}_{-_{k}^{2}}^{a^{2}}=\frac{2^{k+1}}{(k+1)!} \frac{(k)!}{2}=\frac{2}{k+1} \quad$; the limit of this ratio is zero, so the given series converges by the Ratio Test.
9.5.11 The ratio between successive terms is $\xrightarrow[k+1]{(\underline{k}+1)} \quad \underline{4} \quad 1 \quad \underline{k}+1 \quad 2$ The limit is $1=4$ as k
so the given series converges by the Ratio Test. $=4 \mathrm{k}+1$) $(\mathrm{k})=4 \quad \mathrm{k}$
! 1 9.5.12 The ratio between successive terms is
a

Note that $\lim _{k!1} \quad \frac{k}{k+1} \quad=\lim _{k!1}\left(1+\quad \begin{array}{r}1 \\ k+1)^{k}\end{array} \stackrel{1}{=}\right.$, so the limit of the ratio is $0 \quad \frac{1}{e}=0$, so the given series converges by the Ratio Test.

is $1=\mathrm{e}<1$, so the given series converges by the Ratio Test.
a $\quad(k)_{k}=\quad k \quad k$. This is the reciprocal of
9.5.14 The ratio between successive terms is $\frac{k_{k}+1}{a_{k}}=\frac{(k+1)!}{(k+1)^{(k+1)}} \quad(k)!\quad k+1$
k+1 which has limite as $k!1$, so the limit of the ratio of successive terms is $1=e<1$, so the given
series converges by the Ratio Test.
9.5.15 The ratio between successive terms is $\underline{2}_{2_{k+1}}^{(k)} \quad-\underline{k}$.
given series diverges by the Ratio Test. $\begin{gathered}(k+1)^{99} \\ 6\end{gathered} \quad 2^{k}=2_{k+1} \quad$; the limit as $k!1$ is 2 , so the 9.5.16 The ratio between successive terms is $\left.\frac{(k+1)}{(k)}\right)^{\prime}=$ - $^{-} \underline{k+1}{ }^{6}$
given series converges by the Ratio Test. $\quad(k+1)!\quad(k)^{6} \quad k+1 \quad k \quad$; the limit as $k!1$ is zero, so the 9.5.17 The ratio between successive terms is $\frac{((k+1)!)}{(2(k+1)!} \quad \begin{aligned} & (2 k)! \\ & ((k))^{2}\end{aligned}=\frac{(k+1)}{(2 k+2)(2 k+1)} \quad$; the limit as $k!1$ is $1=4$, so the given series converges by the Ratio Test.
9.5.18 The ratio between successive terms is $\stackrel{\left.(k+1)^{4} 2^{(k+1)}\right)}{-} \quad 1 \quad \frac{k+1}{4}$
series converges by the Ratio Test.
9.5.19 The kth root of the kth term is converges by the Root Test.
9.5.20 The kth root of the kth term is converges by the Root Test.
9.5.21 The kth root of the kth term is converges by the Root Test.
9.5.24 The kth root of the kth term is $\frac{1}{\ln (k+1)}$. The limit of this as $k!1$ is 0 , so the given series converges
(k) $2 \mathrm{k}=2 \mathrm{k} \quad$; the limit as $\mathrm{k}!1$ is 2 , so the given $\underset{9 k^{2}+k+1}{4 \mathrm{k}}$. The limit of this as $\mathrm{k}!1$ is $\quad \boldsymbol{s}^{4}<1$, so the given series $\frac{k+1}{2 k}$. The limit of this as $k!1$ is $\quad \frac{1}{2}<1$, so the given series ${ }_{2}^{2-k}$. The limit of this as $k!1$ is $\quad \frac{1}{2}<1$, so the given series 3 k 3
$1+k$. The limit of this as $k!1$ is $=e>1$, so the given series $\frac{\mathrm{k}}{\mathrm{k}+1}$. The limit of this as $\mathrm{k}!1$ is e $\quad 2<1$, so the given series _1 . The limit of this as $k \quad$ is 0 , so the given series converges $k^{k} \quad!1$
k_{e}. The limit of this as $\mathrm{k}!1$ is $\quad \frac{1}{-}<1$, so the given series by the Root Test.
9.5.25 The kth root of the kth term is
9.5.26 The kth root of the kth term is converges by the Root Test.
by the Root Test.
9.5. THE RATIO, ROOT, AND COMPARISON TESTS
$9.5 .27 \mathrm{k}^{2}+4<\mathrm{k}^{2}$, amd $\mathrm{k}=1 \mathrm{k} 2 \mathrm{~m}^{2}$
9.5.28 Use the Limit Comparison Test with k^{2}. The ratio of the terms of the two series is $k^{4}+4 k^{2} \quad 3$ which has limit 1 as k

Because the comparison series converges, the given series does as well
! 1
 $!1$
 ! 1

Copyright c 2013 Pearson Education, Inc.
 series converges as well by the Comparison Test.
9. ${ }^{k^{3}} 5.32$ Use the Limit Comparison Test with $\quad \stackrel{f}{1=k}$. The ratio of the terms of the two series is $k \quad \xlongequal{q} \xrightarrow{q}=$ q
$\overline{k 3+1}$, which has limit 1 as $k!1$. Because the comparison series diverges, the given series does as well.
9.5.33 $\sin (1=k)>0$ for $k \quad$, so we can apply the Comparison Test with $1=k{ }^{2}$. $\sin (1=k)<1$, so $\frac{\sin (1=k)}{k^{2}}<\frac{1}{k^{2}}$. Because the comparison series converges, the given series converges as well.
9.5.34 Use the L_imit Comparison Test with $f 1=3 \quad{ }^{k}$ g. The ratio of the terms of the two series is $\quad \frac{3^{k}}{3^{k} 2^{k}}=$ ${ }_{3}^{z^{2 k}}$ which has limit 1 as $k!1$. Because the comparison series converges, the given series does as well.
9.5.35 Use the Limit Comparison Test with $\mathrm{f} 1=\mathrm{kg}$. The ratio of the terms of the two series is $2 \mathrm{k} \mathrm{k}_{\mathrm{pk}}=$ $\overline{21=\bar{K}} \quad$, which has limit $1=2$ as $k!1$. Because the comparison series diverges, the given series does as well.

Because the comparison series converges, the given series converges as well.
9.5.37 Use the Limit Comparison Test with $\xrightarrow[k]{2=3}$. The ratio of corresponding terms of the two series is

are $k^{2=3} \quad{ }_{3=2}=k^{5=6}$, which is a p-series with $p<1$, so it, and the given series, both diverge.
9.5.38 For all $k, \ldots \ldots<\ldots$. Because the series whose terms are \perp converges, the given series converges
as well.
9.5.39
a. False. For example, let fakg be all zeros, and $\mathrm{fb}_{\mathrm{k} g}$ be all 1 's.
b. True. This is a result of the Comparison Test.
c. True. Both of these statementş follow from the Comparison Test.

9.5.41 Use the Divergence Test: $\lim \quad \lim 1+\quad=e^{2}=0$, so the given series diverges.
9.5.42 Use the Root Test: The kth root of the kth term is $\overline{2 k+1}$. The limit of this as $k!1$ is ${ }_{2}<1$, so the given series converges by the Root Test.
9.5.43 Use the Ratio Test: the ratio of successive terms is $\underset{(k+1)^{100}}{(k+2)!} \underset{{ }_{10}}{(k+1)!}=\frac{k+1}{k} 100 \frac{1}{-}$. This has limit $1^{100} 0=0$ as $k!1$, so the given series converges by the Ratio Test.
 converges, so does the given series.

$$
k^{2} \quad k^{2}
$$

$$
\mathrm{k}=1 \mathrm{k}^{2}
$$

9.5.45 Use the Root Test. The k th root of the kth term is $\left(k^{1=k}\right.$ given series converges by the Root Test.
9.5.46 Use the Limit Comparison Test with the series whose kth term is $\frac{2}{e}^{k}$. Note that $\lim _{k!1} \quad \frac{e^{\frac{2}{k}} \cdot \frac{e^{k}}{2^{k}}=}{}=$ $\lim _{k!1} \frac{{ }^{\circ}}{{ }^{k_{1}}}=1$. The given series thus converges because $\quad{ }_{k=1}^{1} \quad \frac{2}{e}$? possible to show convergence with the Ratio Test.
it is a geometric series with $r=e<1$. Note that it is also P

