Solution Manual for Calculus of a Single Variable Early Transcendental Functions 6th Edition by Larson and HEdwards ISBN 1285774795 9781285774794
 Full Link Dowload
 Solution Manual
 https://testbankpack.com/p/solution-manual-for-calculus-of-a-single-variable-early-transcendental-functions-6th-edition-by-larson-and-hedwards-isbn-1285774795-9781285774794/ Test Bank
 https://testbankpack.com/p/test-bank-for-calculus-of-a-single-variable-early-transcendental-functions-6th-edition-by-larson-and-hedwards-isbn-1285774795-9781285774794/

 CHAPTER 2

 CHAPTER 2 Limits and Their Properties

Section 2.1 A Preview of Calculus 81
Section 2.2 Finding Limits Graphically and Numerically 82
Section 2.3 Evaluating Limits Analytically 93
Section 2.4 Continuity and One-Sided Limits 105
Section 2.5 Infinite Limits 117
Review Exercises 125
Problem Solving 133

CHAPTER 2
 Limits and Their Properties

Section 2.1 A Preview of Calculus

1. Precalculus: $(20 \mathrm{ft} / \mathrm{sec})(15 \mathrm{sec})=300 \mathrm{ft}$
2. Calculus required: Velocity is not constant.

Distance $\approx(20 \mathrm{ft} / \mathrm{sec})(15 \mathrm{sec})=300 \mathrm{ft}$
3. Calculus required: Slope of the tangent line at $x=2$ is the rate of change, and equals about 0.16 .
4. Precalculus: rate of change $=$ slope $=0.08$
5. (a) Precalculus: Area $=\frac{1}{2} b h=\frac{1}{2}(5)(4)=10$ sq. units
(b) Calculus required: Area $=b h$

$$
\begin{aligned}
& \approx 2(2.5) \\
& =5 \text { sq. units }
\end{aligned}
$$

6. $f(x)=\sqrt{x}$
(a)

(b) slope $=m=\frac{\sqrt{x}-2}{x-4}$

$$
=\frac{\sqrt{x}-2}{(\sqrt{x+2})(x-2)}
$$

$$
=\frac{1}{\sqrt{x}+2}, x \neq 4
$$

$x=1: m=\frac{1}{\sqrt{ }}=\frac{1}{-}$
$x=3: m=\frac{1+2}{\sqrt{3}+2} \approx 0.2679$
$x=5: m=\frac{1}{\sqrt{5}+2} \approx 0.2361$
(c) At $P(4,2)$ the slope is $\frac{1}{1}=0.25$.

$$
\sqrt{4}+2 \quad 4
$$

You can improve your approximation of the slope at $x=4$ by considering x-values very close to 4 .
7. $f(x)=6 x-x^{2}$
(a)

(b) slope $=m=\frac{\left(6 x-x^{2}\right)-8}{x-2}=\frac{(\underline{x-2})(4-x)}{x-2}$

$$
=(4-x), x \neq 2
$$

For $x=3, m=4-3=1$
For $x=2.5, m=4-2.5=1.5=\quad \frac{3}{2}$
For $x=1.5, m=4-1.5=2.5={ }^{5}$
(c) At $P(2,8)$, the slope is 2 . You can improve your approximation by considering values of x close to 2 .
8. Answers will vary. Sample answer:

The instantaneous rate of change of an automobile's position is the velocity of the automobile, and can be determined by the speedometer.
9. (a) Area $\approx 5+\frac{5}{2}+\frac{5}{2}+\frac{5}{3} \quad{ }_{4} \approx 10.417$

$$
\text { Area } \approx \underline{1}\left(5+\frac{5}{5}+\frac{5}{5}+\frac{5}{5}+\frac{5}{5}+\frac{5}{} \approx 9.14\right.
$$

(b) You could improve the approximation by using more rectangles.
10. (a) $D_{1}=\sqrt{(5-1)^{2}+(1-5)^{2}}=16+16 \approx 5.66$

$$
\approx 2.693+1.302+1.083+1.031 \approx 6.11
$$

(c) Increase the number of line segments.

Section 2.2 Finding Limits Graphically and Numerically

1.

x	3.9	3.99	3.999	4.001	4.01	4.1
$f(x)$	${ }^{0} 0.2041$	0.2004	0.2000	0.2000	0.1996	0.1961
$\mathrm{lim} \quad \approx 0.2000$						
2			\square Actual limit is $\square \square$			
$x \rightarrow 4 x$	$-3 x-4$		\square		$5 \square$	

2.

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	0.5132	0.5013	0.5001	$?$	0.4999	0.4988	0.4881

$\lim \sqrt{x+1}-1 \approx 0.5000$
\square Actual limit is $\square \square$
$\begin{array}{lll}x \rightarrow 0 & x & \square\end{array}$
3.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	0.9983	0.99998	1.0000	1.0000	0.99998	0.9983

4.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	0.0500	0.0050	0.0005	-0.0005	-0.0050	-0.0500

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x} \approx 0.0000 \quad \text { (Actual limit is } 0 \text {.) (Make sure you use radian mode.) }
$$

5.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	0.9516	0.9950	0.9995	1.0005	1.0050	1.0517

$\lim _{x \rightarrow 0} \frac{e^{x}-1}{x} \approx 1.0000$
(Actual limit is 1.)
6.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	1.0536	1.0050	1.0005	0.9995	0.9950	0.9531

$\lim \underline{\ln (x+1)} \approx 1.0000 \quad$ (Actual limit is 1.)
© 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible

8.

x	-4.1	-4.01	-4.001	-4	-3.999	-3.99	-3.9
$f(x)$	1.1111	1.0101	1.0010	$?$	0.9990	0.9901	0.9091

$\lim _{x \rightarrow-4} \frac{x+4}{x^{2}+9 x+20} \approx 1.0000 \quad$ (Actual limit is 1.)
9.

x	0.9	0.99	0.999	1.001	1.01	1.1
$f(x){ }_{4}^{4}$	0.7340	0.6733	0.6673	0.6660	0.6600	0.6015

$\lim _{x \rightarrow 1}{ }^{4}{ }^{6}-1$
$x-0.6666$
\square
10.

x	-3.1	-3.01	-3.001	-3	-2.999	-2.99	-2.9
$f(x)$	27.91	27.0901	27.0090	$?$	26.9910	26.9101	26.11

3
$\lim \frac{x+27}{} \approx 27.0000 \quad$ (Actual limit is 27.)
$x \rightarrow-3 \quad x+3$
11.

x	-6.1	-6.01	-6.001	-6	-5.999	-5.99	-5.9
$f(x)$	-0.1248	-0.1250	-0.1250	$?$	-0.1250	-0.1250	-0.1252

$\lim \underline{\sqrt{10-x}-4} \approx-0.1250 \quad \square$ Actual limit is -
$x \rightarrow-6 \quad x+6 \quad \square \quad 8$
12.

x	1.9	1.99	1.999	2	2.001	2.01	2.1
$f(x)$	0.1149	0.115	0.1111	$?$	0.1111	0.1107	0.1075

$$
\lim _{x /(x+1)-23 /} \approx 0.1111
$$

$$
\begin{array}{lll}
x \rightarrow 2 & x-2 & \square \text { Actual limit is }- \\
\square \\
\square
\end{array}
$$

13.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	1.9867	1.9999	2.0000	2.0000	1.9999	1.9867

$\lim _{x \rightarrow 0} \frac{\sin 2 x}{x} \approx 2.0000 \quad$ (Actual limit is 2.) (Make sure you use radian mode.)
14.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	0.4950	0.5000	0.5000	0.5000	0.5000	0.4950

$\lim _{x \rightarrow 0} \overline{\tan x} \approx 0.5000 \quad \square \quad$| $\square \square$ |
| :---: |
| $\tan 2 x$ |

15.

16. | x | -0.1 | -0.01 | -0.001 | 0.001 | 0.01 | 0.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 3.99982 | 4 | 4 | 0 | 0 | 0.00018 |

$\lim _{x \rightarrow 0} \frac{4}{1+e^{1 / x}}$ does not exist.
17. $\lim _{x \rightarrow 3}(4-x)=1$
18. $\lim _{x \rightarrow 0} \sec x=1$
19. $\lim f(x)=\lim (4-x)=2$

$$
x \rightarrow 2 \quad x \rightarrow 2
$$

20. $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}\left(x^{2}+3\right)=4$
21. $\left.\lim \frac{x-2}{} \right\rvert\,$ does not exist.
$x \rightarrow 2 x-2$
For values of x to the left of $2, \frac{|x-2|}{(x-2)}=-1$, whereas

$$
|x-2|
$$

for values of x to the right of $2, \frac{}{(x-2)}=1$.

4

22. $\lim _{x \rightarrow 0} \frac{}{2+e^{I / x}}$ does not exist. The function approaches

2 from the left side of 0 by it approaches 0 from the left side of 0 .
23. $\lim _{x \rightarrow 0} \cos (1 / x)$ does not exist because the function oscillates between -1 and 1 as x approaches 0 .
24. lim $\tan x$ does not exist because the function increases
$x \rightarrow \pi / 2$
without bound as x approaches $\frac{\pi}{}$ from the left and 2 decreases without bound as x approaches $\frac{\pi}{2}$ from the right.
25. (a) $f(1)$ exists. The black dot at $(1,2)$ indicates that $f(1)=2$.
(b) $\lim _{x \rightarrow 1} f(x)$ does not exist. As x approaches 1 from the left, $f(x)$ approaches 3.5 , whereas as x approaches 1 from the right, $f(x)$ approaches 1.
(c) $f(4)$ does not exist. The hollow circle at $(4,2)$ indicates that f is not defined at 4 .
(d) $\lim f(x)$ exists. As x approaches $4, f(x)$ approaches $x \rightarrow 4$
2: $\lim _{x \rightarrow 4} f(x)=2$.
26. (a) $f(-2)$ does not exist. The vertical dotted line
indicates that f is not defined at -2 .
(b) $\lim _{x \rightarrow-2} f(x)$ does not exist. As x approaches -2 , the values of $f(x)$ do not approach a specific number.
(c) $f(0)$ exists. The black dot at $(0,4)$ indicates that $f(0)=4$.
(d) $\lim _{x \rightarrow 0} f(x)$ does not exist. As x approaches 0 from the
$\underline{1}$, whereas as x approaches 0 left, $f(x)$ approaches $\quad 2$
from the right, $f(x)$ approaches 4.
(e) $f(2)$ does not exist. The hollow circle at
$\left(2, \frac{1}{2}\right)$ indicates that $f(2)$ is not defined.
(f) $\lim _{x \rightarrow 2} f(x)$ exists. As x approaches 2, $f(x)$ approaches $\frac{1}{2}: \lim _{x \rightarrow 2} f(x)=\frac{1}{2}$.
(g) $f(4)$ exists. The black dot at $(4,2)$ indicates that $f(4)=2$.
(h) $\lim f(x)$ does not exist. As x approaches 4 , the
values of $f(x)$ do not approach a specific number.
27.

$\lim _{x \rightarrow c} f(x)$ exists for all values of $c \neq 4$.
28.

$\lim f(x)$ exists for all values of $c \neq \pi$. $x \rightarrow c$
29. One possible answer is

30. One possible answer is

31. You need $|f(x)-3|=|(x+1)-3||x-2|<0.4$.

So, take $\delta=0.4$. If $0<|x-2|<0.4$, then
$|x-2|=(x+1)-3=|f(x)-3|<0.4$, as desired.
32. You need $|f(x)-1|=\left|\frac{1}{x-1}-1\right|=\left|\frac{2-}{x-\underline{x} 1}\right|<0.01$.

$$
\text { Let } \delta=\frac{1}{101} \text {. If } 0<\left.\left.\right|_{x-2}\right|_{10 \text { then }}
$$

$$
-\frac{1}{101} x-2<^{1} \Rightarrow \frac{1-}{101}^{1}<x-1 \frac{<1}{101}+{ }^{1} \quad-
$$

$$
\Rightarrow{ }_{\overline{101}}{ }^{100}<x-1<\frac{102}{101}
$$

$$
\Rightarrow|x-1|>\frac{100}{101}
$$

and you have

$$
\begin{aligned}
\mid f(x)-1 & =\left|\frac{1}{x-1}-1\right|=\left|\frac{2-x}{x-1}\right|<\frac{1 / 101}{100101}=\frac{1}{100} \\
& =0.01 .
\end{aligned}
$$

33. You need to find δ such that $0<x \mid-1<\$$ implies

$$
|f(x)-1|=\left|\begin{array}{l}
\underline{1} \\
x
\end{array}-1\right|<0.1 \text {. That is, }
$$

$$
-\frac{1_{1}^{11}}{\Pi}<x-1<{ }_{9}^{11}{ }_{9}^{1} .
$$

Using the first series of equivalent inequalities, you obtain
$|f(x)-1|=\left|\frac{1}{x}-1\right|<0.1$.

$$
\begin{aligned}
& -0.1<\frac{1}{x}-1<0.1 \\
& 1-0.1<\quad \frac{1}{x}<1+0.1 \\
& \frac{9}{10}<\frac{1}{x}<\frac{11}{10} \\
& { }_{\overline{9}}^{10}>\quad x>\frac{10}{11} \\
& \frac{10}{9}-1>x-1>{ }^{10}=\frac{1}{1} \\
& \frac{1}{9}>x-1>-\frac{1}{11} . \\
& \text { So take } \delta=\frac{1}{11} \text {. Then } 0<|x-1| k \delta \text { implies } \\
& -1_{<x-1}<^{1}-
\end{aligned}
$$

34. You need to find δ such that $0<x|-2 \quad|<\delta$ implies

$$
\begin{aligned}
|f(x)-3| & =\left.x\right|^{2}-1-3=x^{2}-4 \quad \mid<0.2 . \text { That is, } \\
-0.2 & <x^{2}-4<0.2 \\
4-0.2 & <x^{2}<4+0.2 \\
3.8 & <x^{2}<4.2 \\
\sqrt{3.8} & <x<\sqrt{4.2} \\
\sqrt{3.8}-2 & <x-2<\sqrt{4.2}-2
\end{aligned}
$$

So take $\delta=\sqrt{4.2}-2 \approx 0.0494$.

Then $0<|x-2|<\delta$ implies

$$
\begin{array}{r}
-(\sqrt{4.2}-2)<x-2<\sqrt{4.2}-2 \\
\sqrt{3.8}-2<x-2<\sqrt{4.2}-2
\end{array}
$$

Using the first series of equivalent inequalities, you obtain $|f(x)-3|=x^{2}-4<\phi .2$.
35. $\lim (3 x+2)=3(2)+2=8=L$

$$
\mid(3 x+2)-8 \nless 0.01
$$

$$
\begin{aligned}
|3 x-6| & <0.01 \\
3 \mid x-2 & \mid<0.01 \\
0 & <\nmid-2 \quad \left\lvert\,<\frac{0.01}{3} \approx 0.0033=\delta\right.
\end{aligned}
$$

So, if $0<\left\lvert\, x-2 \nless \delta \quad=\frac{0.01}{3}\right.$, you have

$$
\begin{aligned}
& 3|x-2|<0.01 \\
& |3 x-6|<0.01
\end{aligned}
$$

$$
|(3 x+2)-8|<0.01
$$

$$
|f(x)-L|<0.01
$$

36.

$$
\begin{gathered}
\lim _{x \rightarrow 6} 6-\square=6-\quad=4=L \\
\left\lvert\, \begin{array}{l}
\square \\
6-\frac{x}{\square}-4 \\
3 \square \\
\left|2-\frac{x}{3}\right|<0.01
\end{array}\right. \\
\left|-\frac{1}{3}(x-6)\right|<0.01 \\
|x-6|<0.03 \\
0<x-6 \mid<0.03=\delta
\end{gathered}
$$

So, if $0<\mid x-6 \nless \delta=0.03$, you have
$\left\lvert\,-\frac{1}{3}(x-6) \nmid 0.01\right.$
$\left|\begin{array}{c}2-\underline{x} \\ 6- \\ 6-4 \\ \square \\ \square \\ \square\end{array}\right|<0.01$
$|f(x)-L|<0.01$.
39. $\lim _{x \rightarrow 4}(x+2)=4+2=6$

Given $\varepsilon>0$:

$$
\begin{aligned}
& \mid(x+2)-6 \nmid \varepsilon \\
& \mid x-4 \nmid \varepsilon=\delta
\end{aligned}
$$

So, let $\delta=\varepsilon$. So, if $0<\quad \mid x-4 \nless \delta=\varepsilon$, you have

$$
\begin{array}{r}
|x-4|<\varepsilon \\
|(x+2)-\phi|<\varepsilon \\
|f(x)-L|<\varepsilon .
\end{array}
$$

40. $\lim (4 x+5)=4(-2)+5=-3$
$x \rightarrow-2$
Given $\varepsilon>0$:
$|(4 x+5)-(-3)|<\varepsilon$

$$
\begin{aligned}
& |4 x+\delta|<\varepsilon \\
& 4|x+2|<\varepsilon \\
& |x+2|<\frac{\varepsilon}{=}=\delta
\end{aligned}
$$

So, let $\delta={ }^{\varepsilon}{ }_{\overline{4}}$
So, if $0<\mid x+2 \nless \delta=\stackrel{\underline{\varepsilon}}{\underset{4}{ } \text {, you have }}$

$$
\begin{array}{r}
|x+2|<\frac{\varepsilon}{4} \\
|4 x+q|<\varepsilon \\
|(4 x+5)-(-3)|<\varepsilon \\
\mid f(x)-L<\varepsilon .
\end{array}
$$

41. $\lim _{x \rightarrow-4}\left(\frac{1}{2} x-1\right)=\stackrel{1}{2}(-4)-1=-3$

Given $\varepsilon>0$:

$$
\begin{aligned}
\left|\left(\frac{1}{2} x-1\right)-(-3)\right| & <\varepsilon \\
\left|\frac{1}{2} x+2\right| & <\varepsilon \\
\frac{1}{2}|x-(-4)| & <\varepsilon \\
|x-(-4)| & <2 \varepsilon
\end{aligned}
$$

So, let $\delta=2 \varepsilon$.
So, if $0<|x-(-4)|<\delta=2 \varepsilon$, you have
44. $\lim (-1)=-1$
$x \rightarrow 2$
Given $\varepsilon>0:|-1-(-1)|<\varepsilon$

$$
0<\varepsilon
$$

So, any $\delta>0$ will work.
So, for any $\delta>0$, you have
$|(-1)-(-1)|<\varepsilon$
$|f(x)-L|<\varepsilon$.

$$
\begin{aligned}
\left|\frac{1}{2} x+2\right| & <\varepsilon \\
\left|\left(\frac{1}{2} x-1\right)+3\right| & <\varepsilon \\
|f(x)-L| & <\varepsilon .
\end{aligned}
$$

45. $\lim _{x \rightarrow 0} \sqrt[3]{x}=0$

Given $\varepsilon>0: \quad \mid \sqrt{3}-0<\varepsilon$

$$
\begin{gathered}
|\sqrt[3]{x}|<\varepsilon \\
\left|\left.\right|_{x<\varepsilon^{3}=\delta}\right.
\end{gathered}
$$

So, let $\delta=\varepsilon^{3}$.

So, for $|\sqrt{0}| x+0 \delta \mid=\varepsilon^{3}$, you have
$\mid x<\varepsilon^{3}$
${ }^{3} x<\varepsilon$
$|\sqrt[3]{x}-0|<\varepsilon$
$|f(x)-L|<\varepsilon$.
46. $\lim _{x \rightarrow 4} \sqrt{x}=\sqrt{4}=2$

$$
\begin{array}{rr}
\text { Given } \varepsilon>0 \text { : } & |\sqrt{x}-2|<\varepsilon \mid \\
& |\sqrt{x}-2|-\sqrt{x}+2 \mid<\varepsilon \quad \\
|x+4|<\varepsilon|\sqrt{x}+2|
\end{array}
$$

Assuming $1<x<9$, you can choose $\delta=3 \varepsilon$. Then,

$$
0<x-4<\delta \quad=3 \varepsilon \Rightarrow|x-4|<\varepsilon|\sqrt{x}+2|
$$

$$
\Rightarrow|\sqrt{x}-2|<\varepsilon
$$

47. $\lim _{x \rightarrow-5}|x-5 \neq(-5)-5=-10|=10$

$$
\begin{gathered}
\text { Given } \varepsilon>0: \quad| | x-5|-10|<\varepsilon \\
\mid-(x-5)-10<\varepsilon \quad(x-5<0) \\
-x-5<\varepsilon \\
|x-(-5)|<\varepsilon
\end{gathered}
$$

So, let $\delta=\varepsilon$.
So for $\not \downarrow-(-5) \triangleleft \delta=\varepsilon$, you have

$$
\begin{aligned}
\mid-(x+5) & <\varepsilon \\
\mid-(x-5)-10 & \leqslant \varepsilon \\
||x-5|-10| & <\varepsilon \quad \quad(\text { because } x-5<0) \\
|f(x)-L| & <\varepsilon .
\end{aligned}
$$

48. $\lim _{x \rightarrow 3} x-3 \neq \mid 3-3 \neq 0$

Given $\varepsilon>0$: $\quad x-3-0<\varepsilon$

$$
|x-3|<\varepsilon
$$

So, let $\delta=\varepsilon$.
So, for $0<x-3<\delta=\varepsilon$, you have
\|

$$
x-3 \mid<\varepsilon
$$

$$
\left\lvert\, \begin{aligned}
& x-b+0<\varepsilon \\
& f(x)-L \leqslant \varepsilon .
\end{aligned}\right.
$$

49. $\lim _{\rightarrow 1}\left(x^{2}+1=\right) 1^{2}+1=2$

Given $\varepsilon>0: \quad\left|\left(x^{2}+1\right)-2\right|<\varepsilon$

$$
x^{2}-1 \mid<\varepsilon
$$

$$
|(x+1)(x-1)|<\varepsilon
$$

$$
\left|\left\lvert\, x-1<\frac{\varepsilon}{|x+1|}\right.\right.
$$

If you assume $0<x<2$, then $\delta=\varepsilon p$. $\underline{\varepsilon}$
So for $0<|x-1|<\delta=3$, you have

$$
|x-1|<\frac{1}{\varepsilon} \varepsilon<\frac{1}{1} \varepsilon
$$

$$
\left|x^{2}-1\right|<\varepsilon
$$

$\left|\left(x^{2}+1\right)-2\right|<\varepsilon$

$$
f(x)-2<\varepsilon .
$$

50. $\left.\lim _{x \rightarrow-4} x^{2}+4 x=()-4\right)^{2}+4(-4)=0$

Given $\varepsilon>0$: $\quad\left|\left(x^{2}+4 x\right)-0\right|<\varepsilon$

$$
\begin{gathered}
|x(x+4)|<\varepsilon \\
\left.\right|^{x+4 \leftarrow^{\varepsilon}}|x|
\end{gathered}
$$

$\underline{\varepsilon}$
If you assume $-5<x<-3$, then $\delta=$.
So for $0<x-(-4)<\delta \quad=\frac{\varepsilon}{5}$, you have

$$
\begin{array}{rr}
|x+4| & \left(x^{2}+4 x\right)-0 \\
|x(x+4)| & f(x)-L
\end{array}
$$

$<{ }^{\underline{\varepsilon}}{ }^{1}{ }^{1} \frac{\varepsilon}{x}$
$<\varepsilon$
51. $\lim f(x)=\lim _{x \rightarrow \pi} 4=4$
52. $\lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi} x=\pi$

$$
x \sqrt{5-3}
$$

53. $f(x)=$

-0.1667
$\lim f x=1$
${ }_{x \rightarrow 4}$ () 6

The domain is
$[-5,4) \cup(4, \infty)$.
The graphing utility does not show the hole

$$
\begin{gathered}
\square \quad 1 \square \\
\text { at } \square 4, \\
\square \quad 6 \square
\end{gathered}
$$

54. $f(x)=\frac{x-3}{x^{2}-4 x+3}$
$\lim _{x \rightarrow 3} f(x)=\frac{1}{2}$

The domain is all $x \neq 1,3$. The graphing utility does not show the hole at $\square 3, \square \square$.
55.
$f(x)=\underline{x-9}$
$\lim _{x \rightarrow 9} f(x) \stackrel{\sqrt{\sqrt{x}}}{=} 6$

The domain is all $x \geq 0$ except $x=9$. The graphing utility does not show the hole at $(9,6)$.

$$
e_{/}^{x^{2}}-1
$$

56. $f(x)=$ \qquad
$\lim _{x \rightarrow 0} f(x)=\begin{gathered}x \\ 2\end{gathered}$

The domain is all $x \neq 0$. The graphing utility does not show the hole at $\square 0, \stackrel{\square}{2} \square$
57. $C(t)=9.99-0.79 \underline{x}-(t-7$
(a)

58. $C(t)=5.79-0.99\} \underline{f}-(t-1) / f f$
(a)

(b)

t	3	3.3	3.4	3.5	3.6	3.7	4
C	7.77	8.76	8.76	8.76	8.76	8.76	8.76

$\lim _{t \rightarrow 3.5} C(t)=8.76$

(c) | t | 2 | 2.5 | 2.9 | 3 | 3.1 | 3.5 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C | 6.78 | 7.77 | 7.77 | 7.77 | 8.76 | 8.76 | 8.76 |

The limit $\lim _{t \rightarrow 3} C(t)$ does not exist because the values of C approach different values as t approaches 3 from both sides.
59. $\lim _{x \rightarrow 8} f(x)=25$ means that the values of f approach 25 as x gets closer and closer to 8 .
60. In the definition of $\lim _{x \rightarrow c} f(x), f$ must be defined on both
sides of c, but does not have to be defined at c itself. The value of f at c has no bearing on the limit as x approaches c.
61. (i) The values of f approach different numbers as x approaches c from different sides of c :

(ii) The values of f increase without bound as x approaches c :

62. (a) No. The fact that $f(2)=4$ has no bearing on the existence of the limit of $f(x)$ as x approaches 2 .
(b) No. The fact that $\lim _{x \rightarrow 2} f(x)=4$ has no bearing on the value of f at 2 .
63. (a) $C=2 \pi r$

$$
r=\frac{C}{2 \bar{\pi}}-\frac{6}{2 \pi}=\underset{\pi}{\pi} \approx 0.9549 \mathrm{~cm}
$$

(b) When $C=5.5: r=\frac{5.5}{2 \pi} \approx 0.87535 \mathrm{~cm}$

When $C=6.5: r={ }^{6.5} \underset{2 \pi}{\approx} \underline{1} .03451 \mathrm{~cm}$
So $0.87535<r<1.03451$.
(c) $\lim _{x \rightarrow 3 / \pi}(2 \pi r)=6 ; \varepsilon=0.5 ; \delta \approx 0.0796$
64. $V={ }^{4} \underline{\pi} r^{3}, V=2.48$

3
(a) $2.48=\frac{4}{3} \pi r^{3}$

$$
r^{3}=\frac{1.86}{\pi}
$$

$$
r \approx 0.8397 \mathrm{in} .
$$

(b) $2.45 \leq V \leq 2.51$

$$
\begin{aligned}
2.45 & \leq{ }^{4} \pi r^{3} \leq 2.51 \\
0.5849 & \leq \quad r^{3} \leq 0.5992 \\
0.8363 & \leq r \leq 0.8431
\end{aligned}
$$

(c) For $\varepsilon=2.51-2.48=0.03, \delta \approx 0.003$ 65. $f(x)=(1+x)^{1 x}$

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=e \approx 2.71828
$$

x	$f(x)$
-0.1	2.867972
-0.01	2.731999
-0.001	2.719642
-0.0001	2.718418
-0.00001	2.718295
-0.000001	2.718283

x	$f(x)$
0.1	2.593742
0.01	2.704814
0.001	2.716942
0.0001	2.718146
0.00001	2.718268
0.000001	2.718280

66. $f(x)=$
$|x+1|-|x-1|$
67. $f(x) x$

x	-1	-0.5	-0.1	0	0.1	0.5	1.0
$f(x)$	2	2	2	Undef.	2	2	2

$\lim f(x)=2$
$x \rightarrow 0$
Note that for
$-1<x<1, x \neq 0, f(x)=\frac{(x+1)+(x-1)}{x}=2$.

67.

Using the zoom and trace feature, $\delta=0.001$. So $(2-\delta, 2+\delta)=(1.999,2.001)$.

2
68. (a) $\lim _{x \rightarrow c} f(x)$ exists for all $c \neq-3$.
(b) $\lim _{x \rightarrow c} f(x)$ exists for all $c \neq-2,0$.
69. False. The existence or nonexistence of $f(x)$ at $x=c$ has no bearing on the existence of the limit of $f(x)$ as $x \rightarrow c$.
70. True
71. False. Let
$f(x)=\begin{array}{ll}* x-4 & x \neq 2 \\ \bullet 0, & x=2\end{array}$
$f(2)=0$
$\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2}(x-4)=2 \neq 0$
72. False. Let

$$
(f) x=\begin{array}{ll}
\bullet x-4 & x \neq 2 \\
\bullet 0, & x=2
\end{array}
$$

$\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2}(x-4)=2$ and $\quad f(2)=0 \neq 2$
73. $f(x)=\sqrt{x}$
$\lim _{x \rightarrow 0.25} \sqrt{x}=0.5$ is true.
As x approaches $0.25={ }_{4}^{\frac{1}{4}}$ from either side,
$f(x)=\quad x$ approaches ${ }_{2}^{\overline{1}}=0.5$.
74. $f(x)=\sqrt{x}$
$\lim _{x \rightarrow 0} \sqrt{x}=0$ is false.
$f(x)=\sqrt{x}$ is not defined on an open interval
containing 0 because the domain of f is $x \geq 0$.
75. Using a graphing utility, you see that
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
$\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=2$, etc.
So, $\lim \frac{\sin n x}{}=n$.

$$
x \rightarrow 0 \quad x
$$

76. Using a graphing utility, you see that

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\tan x}{x}=1 \\
& \lim ^{\tan 2 x}=2, \quad \text { etc. }
\end{aligned}
$$

Note: $\frac{x-4}{x-2}=x+2$ for $x \neq 2$.
$x \rightarrow 0 \quad x$

$x \rightarrow 0 \quad x$
77. If $\lim f(x)=L_{1}$ and $\lim f(x)=L_{2}$, then for every $\varepsilon>0$, there exists $\delta_{1}>0$ and $\delta_{2}>0$ such that $\mid x-c \nless \delta_{1} \Rightarrow f(\nmid)-L_{1}<\varepsilon$ and $x-c \nless \delta_{2} \Rightarrow \mid f(x)-L_{2} k \varepsilon$. Let δ equal the smaller of δ_{1} and δ_{2}.
Then for $|x-c|<\delta$, you have $\left|L_{1}-L_{2}\right|=L_{1}-f(x)+f(x)-L_{2}\left|\leq\left|L_{1}-f(x)\right|+\left|f(x)-L_{2}\right|<\varepsilon+\varepsilon\right.$.
Therefore, $\left|L_{1}-L_{2}\right|<2 \varepsilon$. Since $\varepsilon>0$ is arbitrary, it follows that $L_{1}=L_{2}$.
78. $f(x)=m x+b, m \neq 0$. Let $\varepsilon>0$ be given. Take $\delta=\stackrel{\varepsilon}{|m|}$.

If $0<\left\lvert\, x-c \nleftarrow \delta=\frac{\underline{\varepsilon}}{|m|}\right.$, then
$|m| \nmid-c<\varepsilon$
$\mid m x-m c \nmid \varepsilon$
$\mid(m x+b)-(m c+b) \nmid \varepsilon$
which shows that $\lim _{x \rightarrow c}(m x+b)=m c+b$.
79. $\lim _{\preceq} f(x)-L=0$ means that for every $\varepsilon>0$ there
$x \rightarrow c$
exists $\delta>0$ such that if
$0<x-c<\beta$,
then
$|(f(x)-L)-0|<\varepsilon$.

() $\mid \varepsilon$

This means the same as $f x-L<$ when
$0<\nless-c<\beta$.
So, $\lim f(x)=L$.
$x \rightarrow c$
80. (a) $(3 x+1)(3 x-1) x^{2}+0.01=\left(9 x^{2}-1\right) x^{2}+\frac{1}{100}$

$$
\begin{aligned}
& =9 x^{4}-x^{2}+\frac{1}{100} \\
& =\frac{1}{10}\left(10 x^{2}-1\right)\left(90 x^{2}-1\right)
\end{aligned}
$$

So, $(3 x+1)(3 x-1) x^{2}+0.01>0$ if
$10 x^{2}-1<0$ and $90 x^{2}-1<0$.
Let $(a, b)=-1$,

$$
\square \frac{1}{\sqrt{90}} \frac{{ }^{90}}{}
$$

(b) You are given $\lim _{x \rightarrow c} g(x)=L>0$. Let $\varepsilon=\frac{1}{2}$. There exists $\delta>0$ such that

$$
\begin{aligned}
& 0<|x-c|<\delta \text { implies that } \\
& \left\lvert\, g(x)-L<\varepsilon=\frac{L}{2}\right. \text {. That is, }
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{L}{2}<g(x)-L<\frac{L}{-2} \\
& \underline{L}<g(x)<\frac{3 L}{2} \\
& 2
\end{aligned}
$$

For x in the interval $(c-\delta, c+\delta), x \neq c$, you

$$
\underline{L}
$$

$$
\text { have } g(x)>\quad 2>0, \text { as desired. }
$$

81. The radius $O P$ has a length equal to the altitude z of the triangle plus $\frac{h}{\overline{2}}$ So, $z=1-{ }^{h}{ }^{-}{ }_{2}$
Area triangle $=1 \square{ }^{2} \square^{2}$

$$
\overline{2}^{b} \square 1
$$

Area rectangle $=b h$
$1 \square \quad h \square$
Because these are equal, $\bar{b}_{\square} \square 1-{ }_{2}^{-} \square=b h$

$$
\begin{aligned}
& 1-\frac{h}{5^{2}}=2 h \\
& 5^{2} \\
& 2^{h=1} \\
& h=\frac{-}{5} \text {. }
\end{aligned}
$$

For all $x \neq 0$ in (a, b), the graph is positive.
You can verify this with a graphing utility.
82. Consider a cross section of the cone, where $E F$ is a diagonal of the inscribed cube. $A D=3, B C=2$.

Let x be the length of a side of the cube. Then $E F=x 2 \sqrt{ }$
By similar triangles,

$$
\begin{gathered}
\frac{E F}{B C}=\frac{A G}{A D} \\
\frac{x 25}{2}=3-\frac{x}{3}
\end{gathered}
$$

Solving for $x, \quad 3 \sqrt[2]{x}=6-2 x$

$$
\begin{aligned}
(3 \sqrt{2}+2) x & =6 \\
x & =\frac{6}{\sqrt{2}+2}=\frac{92 \sqrt{-} 6}{7} \approx 0.96 .
\end{aligned}
$$

Section 2.3 Evaluating Limits Analytically

1.

(a) $\lim _{x \rightarrow 4} h(x)=0$
(b) $\lim _{x \rightarrow-1} h(x)=-5$
2. 10

$g(x)=$ $x-9$
4.

$f(t)=t|-4 \quad|$
(a) $\lim _{t \rightarrow 4} f(t)=0$
(b) $\lim _{t \rightarrow-1} f(t)=-5$
5. $\lim _{x \rightarrow 2} x^{3}=2^{3}=8$
6. $\lim _{x \rightarrow-3} x^{4}=(-3)^{4}=81$
7. $\lim _{x \rightarrow 0}(2 x-1)=2(0)-1=-1$
(a) $\lim _{x \rightarrow 4} g(x)=2.4$
(b) $\lim _{x \rightarrow 0} g(x)=4$
8. $\lim _{x \rightarrow-4}(2 x+3)=2(-4)+3=-8+3=-5$
2
3.

$f(x)=x \cos x$
9. $\lim _{x \rightarrow-3}\left(x^{2}+3 x\right)=(-3)+3(-3)=9-9=0$
10. $\lim _{x \rightarrow 2}\left(-x^{3}+1\right)=(-2)^{3}+1=-8+1=-7$
11. $\lim _{x \rightarrow-3}\left(2 x^{2}+4 x \ngtr 1\right)=2(-3)^{2}+4(-3)+1$

$$
=18-12+1=7
$$

3
12. $\lim _{x \rightarrow 1}\left(2 x^{3}-6 x+5\right)=2(1)-6(1)+5$
(a) $\lim _{x \rightarrow 0} f(x)=0$
(b) $\lim _{x \rightarrow \pi \beta} f(x) \approx 0.524$

$$
=2-6+5=1
$$

$$
\begin{aligned}
& \text { 13. } \lim _{x \rightarrow 3} \sqrt{x+1}=3+1=2 \\
& \text { 14. } \lim _{x \rightarrow 2} \sqrt[3]{12 x+3}=\sqrt[3]{12(2)+3} \\
& \\
&
\end{aligned} \quad=\sqrt[3]{24+3}=\sqrt[3]{27}=3 .
$$

15. $\lim _{x \rightarrow-4}(x+3)^{2}=(-4+3)^{2}=1$
16. $\lim (3 x-2)^{4}=(3(0)-2)^{4}=(-2)^{4}=16$
$x \rightarrow 0$
17. $\lim _{-}^{1}=1$

$$
x \rightarrow 2 x \quad 2
$$

18. $\lim \frac{5}{5}=-\frac{5}{5}$

$$
x \rightarrow-5 x+3 \quad-5+3 \quad 2
$$

19. $\lim _{x \rightarrow 1} \xlongequal{x}=1=1$
$x \rightarrow 1 x^{2}+4 \quad 1^{2}+4 \quad 5$
20. $\lim \frac{3 x+5}{}=\frac{3(1)+5}{=}=\frac{3+5}{=}=4$
$\begin{array}{lllll}x \rightarrow 1 & x+1 & 1+1 & 2 & 2\end{array}$
21. $\lim \frac{3 x}{\sqrt{ }}=\frac{3(7)}{21}=7$
$x_{x \rightarrow 7} \sqrt{x+2} \quad 7+2 \quad 3$
22. $\lim _{x \rightarrow 3} \frac{\sqrt{x+6}}{x+2}=\frac{\sqrt{3+6}}{3+2}=\frac{\sqrt{5}}{5}=3$
23. $\lim \sin x=\sin =1$
$x \rightarrow \pi / 2$
2
24. $\lim \tan x=\tan \pi=0$
$x \rightarrow \pi$
25. $\lim \cos \underline{-}=\cos _{-}^{\pi}={ }_{-}^{1}$
$\begin{array}{llll}x \rightarrow 1 & 3 & 3 & 2\end{array}$
$\pi x \quad \pi(2)$
26. $\lim _{x \rightarrow 2} \sin \overline{2}=\sin \overline{2}=0$
27. $\lim \sec 2 x=\sec 0=1$
$x \rightarrow 0$
28. $\lim _{x \rightarrow \pi} \cos 3 x=\cos 3 \pi=-1$
$\underline{5 \pi} \quad 1$
29. $\lim \sin x=\sin =$
$x \rightarrow 5 \pi / 6 \quad 6 \quad 2$
30. $\lim _{x \rightarrow 5 \pi / 3} \cos x=\cos 5 \pi \underset{3}{5 \pi} \quad 2$
$\square \pi x \square \quad 3 \pi$
31. $\lim \tan \square — \square=\tan \ldots=-1$ $x \rightarrow 3 \quad \square 4 \square \square 4$
32. $\operatorname{limsec}_{x \rightarrow 7}^{\square \mathbf{6} \square} \quad=\sec \overline{6}^{-}=\frac{-23}{3}$
33. $\lim _{x \rightarrow 0} e^{x} \cos 2 x=e^{0} \cos 0=1$
34. $\lim _{x \rightarrow 0} e^{x} \sin \pi x=e^{0} \sin 0=0$
35. $\lim \left(\ln 3 x+e^{x}\right)=\ln 3+e$
$x \rightarrow 1$
36. $\lim \ln \underline{x} \square=\ln \underline{1} \square=\ln e^{-1}=-1$ $x \rightarrow 1 \quad \square e^{x} \square \quad \square e \square$
37. (a) $\lim _{x \rightarrow 1} f(x)=5-1=4$
(b) $\lim g(x)=4^{3}=64$
$x \rightarrow 4$
(c) $\lim _{x \mapsto} g(f(x))=g(f(1))=g(4)=64$
38. (a) $\lim _{x \rightarrow-3} f(x)=(-3)+7=4$
(b) $\lim g(x)=4^{2}=16$
$x \rightarrow 4$
(c) $\lim _{x \rightarrow-3} g(f(x))=g(4)=16$
39. (a) $\lim _{x \rightarrow 1} f(x)=4-1=3$

$$
\sqrt{3+1}
$$

(b) $\lim _{x \rightarrow 3} g(x)=\quad=2$
(c) $\lim _{x \rightarrow} g(f(x))=g(3)=2$
40. (a) $\lim f(x)=2\left(4^{2}\right)-3(4)+1=21$
$x \rightarrow 4$
(b) $\lim _{x \rightarrow 21} g(x)=\sqrt[3]{21+6}=3$
41. (a)
(c) $\lim _{x \rightrightarrows} g(f(x))=g(21)=3$
(b)
$\lim _{x \rightarrow c^{-}} \check{ } 5 g(x)=5 \lim _{x \rightarrow c} g(x)=5(2)=10$
$\lim _{x \rightarrow c^{-}} \bigwedge^{-} f(x)+g(x)=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)=3+2=5$
$\lim \npreceq f(x) g(x)_{f}={ }^{\Upsilon} \lim f(x)^{\Upsilon}{ }^{\Upsilon} \lim g(x)=(3)(2)=6$
$\underset{x \rightarrow c}{ } \quad \dot{x}_{x \rightarrow c} \quad \phi \dot{\Delta}_{x \rightarrow c} \quad \phi$
(d) $\lim f(\underline{x})=\frac{\lim f(\underline{x})}{x \rightarrow c}=\underline{3}$
$x \rightarrow c g(x) \quad \lim _{x \rightarrow c} g(x)=2$
42. (a) $\lim _{x \rightarrow c^{-}} \Upsilon f(x)=4 \lim _{x \rightarrow c} f(x)=4(2)=8$
(b) $\lim _{x \rightarrow c} \underset{x}{ } f(x)+g(x)_{f}=\lim f(x)+\underset{x \rightarrow c}{ } \lim g(x)=2+\underset{x \rightarrow c}{\frac{3}{=}}=\frac{11}{4}$
(c) $\lim \Upsilon f(x) g(x)=\Upsilon \lim f(x)^{\Upsilon} \lim g(x)=2 \quad \square 3 \square=3$

$$
\stackrel{f(\underline{x})}{=\lim _{x \rightarrow c} f(x)}=2=-
$$

$$
\operatorname{lic}_{x \rightarrow c} g(x) \quad \overline{\lim _{x \rightarrow c} g(x)} \quad \overline{(3 / 4)} \quad 3
$$

43. (a) $\lim \Upsilon f(x)^{3}=\Upsilon_{\lim } f(x)^{3}=\left(\theta^{3} \quad=64\right.$
(b) $\lim _{x \rightarrow c} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow c} f(x)}=4=2$
(c) $\lim _{x \rightarrow c} \nless 3 f(x)_{f}=3 \lim _{x \rightarrow c} f(x)=3(4)=\mathbb{R}$
(d) $\lim \Upsilon(x)^{32}=\Upsilon_{\lim } f(x)^{1 /}=(4)^{32 /}=8$

$$
x_{x \rightarrow c}^{\leq} \quad f \quad \leq_{x \rightarrow c} \quad \varphi
$$

44. (a) $\lim _{x \rightarrow c} \sqrt[3]{f(x)}=\sqrt[3]{\lim _{x \rightarrow c} f(x)}=\sqrt[3]{27}=3$
(b) $\lim _{x \rightarrow c} \frac{f(x)}{18}=\frac{\lim _{x \rightarrow c} f(x)}{x \rightarrow 27} \underset{x \rightarrow c}{\lim _{x \rightarrow c} 18}=\frac{27}{3-}$
(c) $\lim \Upsilon f(x)^{2}=\Upsilon_{\lim } f(x)^{2}=(2)^{2} \quad=729$ $x_{x \rightarrow c^{-}} \quad f \quad \leq_{x \rightarrow c} \quad \varnothing$
(d) $\lim \llbracket f(x)_{f}^{23} /=\Upsilon_{\lim } f(x)^{23} /=(27)^{23} /=9$

$$
x_{x \rightarrow c} \quad \leq_{x \rightarrow c} \quad \varphi
$$

45. $f(x)=\underline{x^{2}-1}=\underline{(x+1)(x-1)}$ and

$$
x+1 \quad x+1
$$

$g(x)=x-1$ agree except at $x=-1$.
$\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} g(x)=\lim _{x \rightarrow-1}(x-1)=-1-1=-2$

46. $f(y)=3 x^{2}+5 x-2=(x+2)(3 x-1)$ and

$$
x+2 \quad x+2
$$

$g(x)=3 x-1$ agree except at $x=-2$.
47. $f(x)=\underline{x}^{3} \underline{-8}$ and $g(x)=x+2 x+4$ agree except

$$
x-2
$$

at $x=2$.
$\lim f(x)=\lim g(x)=\lim \left(x^{2}+2 x+4\right)$
$x \rightarrow 2 \quad x \rightarrow 2 \quad x \rightarrow 2$ $=2_{12}^{2}+2(2)+4=12$

48. $f(x)=\frac{x^{3}+1}{x+1}$ and $g(x)=x^{2} \quad-x+1$ agree except at $x=-1$. $\lim _{x \rightarrow-1}^{x} f(x)=\lim _{x \rightarrow-1} g(x)=\lim _{x \rightarrow-1}\left(x^{2}-x+1\right)$

$$
=(-1)^{2}-(-1)+1=3
$$

-1
49. $f(x)=\frac{(x+4) \ln \left(\frac{x+6}{}\right)}{x^{2}-16}$ and $g(x)=\frac{\ln (x+6)}{x-4}$ agree except at $x=-4$.

$$
\lim _{x \rightarrow-4} f(x)=\lim _{x \rightarrow-4} g(x)=\frac{\ln 2}{-\widetilde{8}^{\tilde{0}}-0.0866}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-2} g(x)= \lim _{\substack{1) \\
x \rightarrow-2}}\left(3 x-3_{3}^{-7}\right. \\
&=3(-2)-1=-7
\end{aligned}
$$

-2
50. $f(x)=\underline{e^{2 x}-1}$ and $g(x)=e \underset{x}{+1} 1$ agree except at
$x=0 . \quad e^{x}-1$
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=e^{0}+1=2$

51. $\lim \xrightarrow{x}=\lim \xrightarrow{x}=\lim \frac{1}{\square}=\frac{1}{}=-1$

$$
x \rightarrow 0 x^{2}-x \quad x \rightarrow 0 x(x-1) \quad x \rightarrow 0 x-1 \quad 0-1
$$

52. $\lim 2 x=\lim 2 x=\lim 2$

$$
\begin{aligned}
& x \rightarrow 0 \overline{x^{2}+4 x} \quad x \rightarrow 0 \overline{x(x+4)} \quad x \rightarrow 0 \overline{x+4} \\
& =\stackrel{2}{2}={ }_{-}{ }^{1} \\
& 0+4 \quad 4 \quad 2
\end{aligned}
$$

53. $\lim ^{-x-4}=\lim \frac{x-4}{(x+4)(x-4)}$
$x \rightarrow 4 x^{2}-16 \quad x \rightarrow 4$

$$
=\lim _{x \rightarrow 4} \frac{1}{x+4}=\frac{1}{4+4}=\frac{1}{8}
$$

54. $\lim \underline{5-x}=\lim =x-\underset{x}{5})$ $x \rightarrow 5 x^{2}-25 \quad x \rightarrow 5(x-5)(x+5)$ $=\lim ^{-1}=-1=-\underline{1}$
$x \rightarrow 5 x+5 \quad 5+5 \quad 10$
55. $\lim \underline{x}^{2}+x-6=\lim (\underline{x+3})(\underline{x-2})$
$x \rightarrow-3 \quad x^{2}-9 \quad x \rightarrow 3(x+3)(x-3)$
$=\lim ^{x-2} \equiv \quad \underline{-3-2}=\underline{-5}=5$
$x \rightarrow-3 x-3 \quad-3-3 \quad-6 \quad 6$
56. $\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x^{2}-x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+4)}{(x-2)(x+1)}$

$$
=\lim _{x \rightarrow 2} \frac{x+4}{x+1}=\frac{2+4}{2+1}=\frac{6}{3}=2
$$

57. $\lim _{x \rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}=\lim _{x \rightarrow 4} \frac{\sqrt{x+5-3}}{x-4} \cdot \frac{x \sqrt{+5+3}}{\sqrt{x+5}+3}$

$$
=\lim _{x \rightarrow 4} \frac{(x+5)-9}{(x-4)(\sqrt{x+5}+3)}=\lim _{x \rightarrow 4} \frac{1}{\square} \sqrt{x+5}+3-\frac{1}{\sqrt{9}+3}=-
$$

58. $\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3}=\lim _{x \rightarrow 3} \frac{\sqrt{x+1-2}}{x-3} \cdot \frac{x \sqrt{+1+2}}{\sqrt{x+1}+2}=\lim _{x \rightarrow 3(x-3)^{r} y+1+2}^{\leq x}$

$$
=\lim _{x \rightarrow 3} \frac{1}{\sqrt{x+1}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{4}
$$

59. $\lim \frac{\sqrt{x+5}-5}{}=\lim \xrightarrow{\sqrt{x+5}-\sqrt{5}} \sqrt{x+5}+\sqrt{5}$

$$
\begin{aligned}
& x \rightarrow 0 \quad x \quad x \rightarrow 0 \quad x \quad \sqrt{x+5}+5 \\
& =\lim (x+5)-5=\lim \frac{1}{\square}=\square ـ^{5} \sqrt{ } \\
& { }^{x \rightarrow 0} x(\sqrt{x+5}+\sqrt{5}) \quad{ }^{x \rightarrow 0} \sqrt{x+5}+\sqrt{5} \quad \sqrt{5}+\square \sqrt{5} \quad \quad \quad 2 \sqrt{5}
\end{aligned}
$$

60. $\lim \stackrel{\sqrt{2}+x-2}{2+\sqrt{2}}=\lim \xrightarrow{2+x-\quad 2} \cdot \sqrt{2+x}+\sqrt{2}$
$x \rightarrow 0 \quad x$

$$
\begin{array}{rl}
& x \rightarrow 0 \\
x \rightarrow 2 & 2+x \sqrt{ } \sqrt{2} \\
\sqrt{ } & \lim \frac{2+x-2}{\sqrt{\sqrt{~}}}=\lim \frac{1}{\sqrt{1}}=\frac{1}{1}
\end{array}
$$

$2+x^{x \rightarrow 0}$	$2+2+$	2	
+	x	22	4
$2) x$	+		
	2		

61. $\lim _{x \rightarrow 0} \frac{3+x \quad 3}{x}=\lim _{x \rightarrow 0} \frac{}{(3+x) 3(x)}=\lim _{x \rightarrow 0} \frac{(3+x)(3)(x)}{}=\lim _{x \rightarrow 0} \frac{1}{(3+x) 3}=\frac{1}{(3) 3}=--$

$$
1-1 \quad \underline{4-(x+4)}
$$

62. $\lim \underline{x+4 \quad 4}=\lim (\underline{4}(\underline{x+4})$

$$
\begin{array}{llll}
x \rightarrow 0 & x & x \rightarrow 0 \quad x & \\
& =\lim _{x \rightarrow 0}-1 & -1 & 1 \\
& & \overline{\overline{-1}(x+4)} & \overline{\overline{4(4)}} \\
\hline 16
\end{array}
$$

$\underline{2 \Delta x}$
63. $\lim ^{\overline{2(x+\Delta x)-2 x}}=\lim ^{\overline{2 x+2 \Delta x-2 x}}=\lim \quad=\lim 2=2$
$\Delta x \rightarrow 0 \quad \Delta x \quad \Delta x \rightarrow 0 \quad \Delta x \quad \Delta x \rightarrow 0 \Delta x \quad \Delta x \rightarrow 0$
64. $\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-x^{2}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{x^{2}+2 x \Delta x+(\Delta x)^{2}-x^{2}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x(2 x+\Delta x)}{\Delta x}=\lim _{\Delta x \rightarrow 0}(2 x+\Delta x)=2 x$
65. $\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-2(x+\Delta x)+1-\left(x^{2}-2 x+1\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{x^{2}+2 x \Delta x+(\Delta x)^{2}-2 x-2 \Delta x+1-x^{2}+2 x-1}{\Delta x}$

$$
=\lim _{\Delta x \rightarrow 0}(2 x+\Delta x-2)=2 x-2
$$

66. $\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{3}-x}{\Delta x} \stackrel{3}{=} \lim _{\Delta x \rightarrow 0} \frac{x^{3}+3 x \Delta x^{2}+3 x(\Delta x)+(\lambda x)-x}{\Delta x}{ }^{3}$

$$
=\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x}=\lim _{\Delta x \rightarrow 0}\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right)=3 x^{2}
$$

67. $\lim \frac{\sin x}{}=\lim _{1}^{\square \square \sin x \square \underline{1} \square /}=(1)^{\square 1 \square 1}$

68. $\lim \frac{3(1-\cos x)}{r}=\lim { }^{\prime} 3 \square(1-\cos x) \square \square \square(\xi)=0$

$$
x \rightarrow 0 \quad x \quad x \rightarrow 0 \leq \square \quad x \quad \text { of }
$$

$x \lim 4 \sin x-\cos x \quad{ }_{x} \lim 4 \sin x \cos x-\cos x$

$$
=\lim _{x \rightarrow \pi / 4} \frac{-(\sin x-\cos x)}{\cos x(\sin x-\cos x)}
$$

$$
=\lim ^{-1}
$$

69. $\lim \underline{\sin x(1-\cos x)}=\lim \underline{\Upsilon} \underline{\sin x} . \underline{1-\cos x}$

$$
=\lim ^{x \rightarrow \pi / 4}(-\cos x)
$$ $x_{x \rightarrow 0} \quad x^{2} \quad x \rightarrow 0 \leq x \quad$ p

$$
x \rightarrow \pi / 4
$$

$$
=(1)(0)=0
$$

76. $\frac{1-\tan x}{\cos x-\sin x}$

$$
=-\sqrt{2}
$$

77. $\lim _{x \rightarrow 0} \frac{1-e^{-x}}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{1-e^{-x}}{e^{x}-1} \frac{-x}{e^{-x}} \quad \lim _{e^{-x}}\left(\frac{\left.1-e^{-x}\right)^{-x}}{1-e^{-x}}\right.$

$$
=\lim e^{-x}=1
$$

$$
x \rightarrow 0
$$

$$
4\left(e^{\underline{2 x}}-1\right) \quad \underline{4}\left(e^{\underline{x}}-1\right)\left(e^{\underline{x}}+1\right)
$$

$$
=(1)(0)=0
$$

78. $\lim _{x \rightarrow 0} e^{x}-1=\lim _{x \rightarrow 0} e_{x}-1$

$$
\left.=\lim _{x \rightarrow 0} 4 e+1\right)=4(2)=8
$$

79. $\lim \frac{\sin 3 t}{2 t}=\lim _{0} \frac{\sin 3 t}{3 t} \frac{3 \square}{\square}=(1)^{\square}{ }^{\square}{ }_{2}$

$$
\mathrm{Y}_{\square \underline{\sin 2 x} \square \underline{1} \square \underline{3 x} \square}
$$

80. $\lim \underline{\sin 2 x}=\lim ^{2} \square \quad \square \square \square \square$
81. $\lim \phi \sec \phi=\pi(-1)=-\pi$ $x \rightarrow 0 \sin 3 x \quad x \rightarrow 0 \leq \square 2 x \square \square 3 \square \square \sin 3 x \square f$ $\phi \rightarrow \pi$ $=2(1) \stackrel{1}{\square} \square(1)=\frac{2}{3}$
82. $\lim _{x \rightarrow \pi / 2} \underline{\cos x}=\lim _{x \rightarrow \pi / 2} \sin x=1$
83. $f(x)=\frac{\sqrt{x+2}-\sqrt{2}}{x}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	0.358	0.354	0.354	$?$	0.354	0.353	0.349

It appears that the limit is 0.354 .

The graph has a hole at $x=0$.

Analytically, $\lim \frac{\sqrt{x+2}-\sqrt{2}}{}=\lim \frac{\sqrt{x+2}-\sqrt{2}}{\sqrt{x+2}+2}$

$$
\begin{aligned}
& x \rightarrow 0 \quad x \quad x \rightarrow 0 \quad x \quad \sqrt{x+2}+\sqrt{2}^{2} \\
& =\lim \frac{x+2-2}{\sqrt{ }}=\lim \frac{\sqrt{1}}{\sqrt{\sqrt{x}}}=\frac{1}{\sqrt{2}} \approx 0.354 \text {. } \\
& { }_{x \rightarrow 0} x(\sqrt{x+2}+\quad 2) \quad x_{x \rightarrow 0} \sqrt{x+2}+\sqrt{2} \quad 22 \quad 4
\end{aligned}
$$

82. $f(x)=\frac{4-x}{x-16}$

x	15.9	15.99	15.999	16	16.001	16.01	16.1
$f(x)$	-0.1252	-0.125	-0.125	$?$	-0.125	-0.125	-0.1248

It appears that the limit is -0.125 .

The graph has a hole at $x=16$.

Analytically, $\lim \frac{4-\sqrt{\underline{x}}}{\sqrt{x}}=\lim \left(4-\underline{x} \sqrt{\lim }-1 \quad=-\frac{1}{=}\right.$.

$$
{ }_{x \rightarrow 16} x-16 \quad{ }_{x \rightarrow 16}(\sqrt{x}+4)(\sqrt{x}-4) \quad x \rightarrow 16 \sqrt{x}+4
$$

83. $f(x)=\frac{\frac{1}{2+x}-\frac{1}{2}}{x}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	-0.263	-0.251	-0.250	$?$	-0.250	-0.249	-0.238

It appears that the limit is -0.250 .

The graph has a hole at $x=0$.

$$
2-(2+x)
$$

Analytically, $\lim \frac{2+x \quad 2}{x}=\lim$ \qquad . $\frac{1}{x}=\lim \frac{x}{x} \cdot \underline{1}=\lim \frac{1}{x}=-\frac{1}{\dot{4}}$ $x \rightarrow 0 \quad x \quad x \rightarrow 0 \quad 2(2+x) \quad x \quad x \rightarrow 02(2+x) \quad x \quad x \rightarrow 02(2+x) \quad 4$
84. $f(x)=\frac{x^{5}-32}{x-2}$

x	1.9	1.99	1.999	1.9999	2.0	2.0001	2.001	2.01	2.1
$f(x)$	72.39	79.20	79.92	79.99	$?$	80.01	80.08	80.80	88.41

It appears that the limit is 80 .

The graph has a hole at $x=2$.
-25

(Hint: Use long division to factor $x^{5}-32$.)
85. $f(t)=\frac{\sin 3 t}{t}$

t	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(t)$	2.96	2.9996	3	$?$	3	2.9996	2.96

It appears that the limit is 3 .

The graph has a hole at $t=0$.

Analytically, $\lim _{t \rightarrow 0}^{\sin 3 t}=\underset{t \rightarrow 0 \square 3 t \square}{\lim _{\square \rightarrow} 3 \square \sin 3 t \square}=()^{1}=3$.
86. $f(x)=\frac{\cos x-1}{2 x^{2}}$

x	-1	-0.1	-0.01	0.01	0.1	1
$f(x)$	-0.2298	-0.2498	-0.25	-0.25	-0.2498	-0.2298

It appears that the limit is -0.25 .

$\begin{array}{llll}\mathrm{r}_{\sin ^{2} x} & -1 & \square-1 \square \quad 1\end{array}$
$\lim _{x \rightarrow 0^{\prime} \leq}^{\prime} \frac{x^{2}}{x^{2}} \cdot \frac{2(\cos x+1) \not)_{p}}{\infty}=1 \square 4 \square=-{ }_{4}=-0.25$
87. $f(x)=\frac{\sin x^{2}}{x}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	-0.099998	-0.01	-0.001	$?$	0.001	0.01	0.099998

It appears that the limit is 0 .

The graph has a hole at $x=0$.

Analytically, $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}=\lim _{x \rightarrow 0} x \square \frac{\sin x^{2}}{x} \square=0(1)=0$.
88. $f(x)=\frac{\sin x}{\sqrt[3]{x}}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	0.215	0.0464	0.01	$?$	0.01	0.0464	0.215

It appears that the limit is 0 .

Analytically, $\lim ^{\sin x}=\lim ^{3} x^{2} \square \sin x \square=(0)(1)=0$.

$$
x \rightarrow 0 \overline{\sqrt[3]{x}}
$$

The graph has a hole at $x=0$.
89. $f(x)=\frac{\ln x}{x-1}$

x	0.5	0.9	0.99	1.01	1.1	1.5
$f(x)$	1.3863	1.0536	1.0050	0.9950	0.9531	0.8109

It appears that the limit is 1 .
Analytically, $\lim \frac{\ln x}{}=1$.
90. $f(x)=\frac{e^{3 x}-8}{e^{2 x}-4}$

x	0.5	0.6	0.69	0.70	0.8	0.9
$f(x)$	2.7450	2.8687	2.9953	3.0103	3.1722	3.3565

Analytically, $\lim \underline{e-8}=\lim (e-2)(e+2 e+4)=\lim \underline{e+2 e+4}=\underline{4+4+4}=3$.

$$
x \rightarrow \ln 2 e^{2 x}-4 \quad x \rightarrow \ln 2 \quad\left(e^{x}-2\right)\left(e^{x}+2\right)
$$

$$
x_{x \rightarrow \ln 2} \quad e^{x}+2 \quad 2+2
$$

91. $\lim _{\Delta x \rightarrow 0} f(x+\Delta x)-f(x)=\lim _{\Delta x \rightarrow 0}^{3(x+\Delta x)-2-(3 x-2)}=\lim _{\Delta x \rightarrow 0}^{3 x+3 \Delta x-2-3 x+2}=\quad \begin{aligned} & \lim \frac{3 \Delta x}{2}=3 \\ & \Delta x \rightarrow 0 \Delta x\end{aligned}$
92. $\lim \left(\underline{x}(\underline{x+\Delta x})-f(\underline{x})-\lim (x+\Delta x)^{2}-4(x+\Delta x)-\left(x^{2}-4 x\right)=\lim ^{x^{2}+2 x \Delta x+\Delta x^{2}-4 x-4 \Delta x-x^{2}+4 x}\right.$ $\Delta x \rightarrow 0 \quad \Delta x \rightarrow 0 \quad \Delta x \quad \Delta x(\underline{2 x+\Delta x-4)} \quad \Delta x \rightarrow 0 \quad \Delta x$

$$
\begin{aligned}
=\lim _{\Delta x \rightarrow 0} & =\lim (2 x+\Delta x-4)=2 x-4 \\
\Delta x & \Delta x \rightarrow 0
\end{aligned}
$$

93. $\lim \frac{f(x+\Delta x)-f(x)}{\lim x+\Delta x+3 x+3}$

$$
\begin{aligned}
\Delta x \rightarrow 0 & \Delta x \rightarrow 0 \\
= & \lim _{\Delta x \rightarrow 0} \frac{\Delta x+3-(x+\Delta x+3) 1}{(x+\Delta x+3)(x+3)} \cdot \Delta x \\
= & \lim _{\Delta x \rightarrow 0} \frac{-\Delta x}{(x+\Delta x+3)(x+3) \Delta x} \\
= & \lim _{\Delta x \rightarrow 0} \frac{-1}{(x+\Delta x+3)(x+3)}=\frac{-1}{(x+3)^{2}}
\end{aligned}
$$

94. $\lim _{\Delta x \rightarrow 0} \frac{f(\underline{x+\Delta x})-f(\underline{x})}{\Delta x}=\lim _{\Delta x \rightarrow 0} \underline{x+\Delta x}-\sqrt{\Delta x} \sqrt{\square}=\lim _{\Delta x \rightarrow 0} \frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x} \begin{array}{r}x+\Delta x \\ \sqrt{x+\Delta x}+\sqrt{x}\end{array}$

$$
\begin{array}{ll}
=\lim _{\Delta x \rightarrow 0} \frac{x+\Delta x-x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} & =\lim \\
\Delta x \rightarrow 0 \sqrt{x+\Delta x}+\sqrt{x} & = \\
\frac{2 \sqrt{x}}{}
\end{array}
$$

95. $\lim _{x \rightarrow 0}\left(4-x^{2}\right) \leq \lim _{x \rightarrow 0} f(x) \leq \lim _{x \rightarrow 0}\left(4+x^{2}\right)$

$$
4 \leq \lim _{x \rightarrow 0} f(x) \leq 4
$$

Therefore, $\lim _{x \rightarrow 0} f(x)=4$.
96. $\left.\lim \Upsilon_{\leq} b-\mid x-a / f \nmid \lim f(x) \leq \lim \right) \quad \mid x-a / f$

$$
b \leq \lim _{x \rightarrow a}^{x \rightarrow a} f(x) \leq b^{x \rightarrow a}
$$

Therefore, $\lim _{x \rightarrow a} f(x)=b$.
97. $f(x)=|x| \sin x$

$\lim _{x \rightarrow 0} x \sin x=0$
98. $f(x)=|x| \cos x$
99. $f(x)=x \sin \frac{1}{x}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0}^{\square} x \sin \underline{1} \square \\
& x \square
\end{aligned}
$$

1
100. $h(x)=x \cos$

101. (a) Two functions f and g agree at all but one point (on an open interval) if $f(x)=g(x)$ for all x in the interval except for $x=c$, where c is in the interval.
(b) $f(x)=\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}$ and

$g(x)=x+1$ agree at all points except $x=1$.
$\lim _{x \rightarrow 0} x \cos x=0$
(Other answers possible.)
102. An indeterminant form is obtained when evaluating a limit using direct substitution produces a meaningless fractional expression such as 0ρ. That is,

for which $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0$
104. (a) Use the dividing out technique because the numerator and denominator have a common factor.

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{x^{2}+x-2}{x+2} & =\lim _{x \rightarrow-2} \frac{(x+2)(x-1)}{x+2} \\
& =\lim _{x \rightarrow-2}(x-1)=-2-1=-3
\end{aligned}
$$

(b) Use the rationalizing technique because the numerator involves a radical expression.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+4-2}}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{x+4-2}}{x}-\frac{x \sqrt{+4+2}}{\sqrt{x+4}}+2 \\
& =\lim _{x \rightarrow 0} \frac{(x+4)-4}{(\sqrt{x+4}+2)} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+4}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{4}
\end{aligned}
$$

105. $f(x)=x, g(x)=\sin x, h(x)=\frac{\sin x}{x}$
106. $s(t)=-16 t^{2}+500$

$$
\underline{s}(\underline{2}) \underline{-} \underline{(} \underline{t}) \quad-16(2)^{2}+500-\left(-16 t^{2}+500\right)
$$

$$
\lim _{t \rightarrow 2} 2-t \quad=\lim _{t \rightarrow 2}
$$

$$
=\lim \xrightarrow{436+16 t-500}
$$

$$
t \rightarrow 2 \quad 2-t
$$

$$
=\lim \underline{16\left(t^{2}-4\right)}
$$

$$
t \rightarrow 2 \quad 2-t
$$

$$
=\lim \underline{16(t-2)(t+2)}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
t \rightarrow 2 \\
= \\
= \\
\lim _{t \rightarrow 2}-16(t+2)
\end{array}\right)=-64 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

The paint can is falling at about 64 feet/second.
106. $f(x)=x, g(x)=\sin ^{2} x, h(x)=$

$$
\frac{\sin ^{2} x}{x}
$$

When the x-values are "close to" 0 the magnitude of g is "smaller" than the magnitude of f and the magnitude of g is approaching zero "faster" than the magnitude of f.
So, $\&|/| f \neq 0$ when x is "close to" 0 .
108. $s(t)=-16 t^{2}+500=0$ when $t=\sqrt{\frac{500}{16}}={ }^{55}$ sec. The velocity at time $a={ }^{5}$ is $\frac{5}{2}$

The velocity of the paint can when it hits the ground is about $178.9 \mathrm{ft} / \mathrm{sec}$.
109. $s(t)=-4.9 t^{2}+200$

$$
\begin{aligned}
& \lim _{t \rightarrow 3} \frac{s(3)-s(t)}{3}-\frac{\left.\lim _{t \rightarrow 3} \frac{-4.9(3)^{2}+200-\left(-4.9 t^{2}+200\right)}{3-t}\right)}{} \\
&= \lim ^{\frac{4.9\left(t^{2}-9\right)}{-t}} \\
& t \rightarrow 3 \\
&= \lim _{t \rightarrow 3} \frac{4.9(t-3)(t+3)}{3-t} \\
&= \lim _{t \rightarrow 3^{-}-4.9(t+3)} \\
&=-29.4 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

The object is falling about $29.4 \mathrm{~m} / \mathrm{sec}$.
110. $-4.9 t^{2}+200=0$ when $t=\sqrt{\frac{200}{4.9}}=\frac{2055}{7}$ sec. The velocity at time $a=\frac{20 \sqrt{5}}{7}$ is

$$
\begin{aligned}
& \lim ^{s(a)-s(t)}=\lim \xrightarrow{0-\underline{Y}} \underline{=} 4.9 t^{2}+ \\
& t \rightarrow a \quad a-t \quad{ }_{t \rightarrow a} a-t \\
& =\lim _{t \rightarrow a} \frac{4.9(t+a)(t-a)}{a-t} \\
& =\lim _{t \rightarrow 205}{ }^{\prime}{ }^{\Upsilon} .4{ }_{\square} \cdot{ }_{\square}^{\square}+\frac{205 \sqrt{\square}}{7} \underset{\square}{\square}=-28 \underbrace{\mathrm{~m} / \mathrm{sec}}_{\sqrt{ }} \\
& \sqrt{2} \leq \\
& \approx-62.6 \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

The velocity of the object when it hits the ground is about $62.6 \mathrm{~m} / \mathrm{sec}$.
111. Let $f(x)=1 / x$ and $g(x)=-1 / x$. $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 0} g(x)$ do not exist. However,

$$
\begin{aligned}
& \lim \Delta f f(x)+g(x) f=\lim ^{\Upsilon 1},+{ }^{\square}{ }_{-} \stackrel{x}{x \rightarrow 0}=\lim [0]=0 \\
& x \rightarrow 0 \quad x \rightarrow 0 x_{x} \quad \underline{x}^{\square \infty} \quad{ }_{x \rightarrow 0} \\
& \leq \quad \square \quad \square f
\end{aligned}
$$

and therefore does not exist.
112. Suppose, on the contrary, that $\lim g(x)$ exists. Then,
because $\lim _{x \rightarrow c} f(x)$ exists, so would $\lim _{x \rightarrow c} \notin f(x)+g(x)_{f}$, which is a contradiction. So, $\lim g(x)$ does not exist.
113. Given $f(x)=b$, show that for every $\varepsilon>0$ there exists a $\delta>0$ such that $f(x)-b \quad \mid<\varepsilon$ whenever $\mid x-c \nless \delta$. Because $f(x)-b=b|-b=0<| \varepsilon$ for every $\varepsilon>0$, any value of $\delta>0$ will work.
114. Given $f(x)=x^{n}, n$ is a positive integer, then

$$
\begin{aligned}
& \lim _{x \rightarrow c} x^{n}=\lim _{x \rightarrow c}\left(x x^{n-1}\right) \\
& =\Upsilon_{\lim x}^{\substack{x \rightarrow c}} \Upsilon_{\lim x^{n-1 /}}=c^{\Upsilon_{\lim }\left(x x^{n-2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{s}_{x \rightarrow c} \varphi^{\prime} \underline{S}_{x \rightarrow c} \quad \varnothing \quad x \rightarrow c \\
& =\ldots=c^{n} \text {. }
\end{aligned}
$$

115. If $b=0$, the property is true because both sides are equal to 0 . If $b \neq 0$, let $\varepsilon>0$ be given. Because
$\lim _{x \rightarrow c} f(x)=L$, there exists $\delta>0$ such that
$\mid f(x)-L k \varepsilon b /$ /whenever $0<x-c|\quad|<\delta$. So,
whenever $0<x \mid-c<\phi$, we have
$|b| \mid f(x)-L<\varepsilon$ or $|b f(x)-b L|<\varepsilon$
which implies that $\lim _{x \rightarrow c^{-}} \mathfrak{q} b(x)=b L$.
116. Given $\lim _{x \rightarrow c} f(x)=0$:

For every $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-0|<\varepsilon$ whenever $0<|x-c|<\delta$.

Now $|f(x)-0|=|f(x)|=||f(x)|-0|<\varepsilon$ for $|x-c|<\delta$. Therefore, $\lim _{x \rightarrow c}|f(x)|=0$.
117. $-M|f(x) \leqslant f(x) g(x) \leq M f(\mid x) \quad|$

$$
\begin{aligned}
\lim _{x \rightarrow c}(-M f(x) \mid) & \leq \lim _{x \rightarrow c} f(x) g(x) \leq \lim _{x \rightarrow c}(M f(x)) \\
-M(0) & \leq \lim _{x \rightarrow c} f(x) g(x) \leq M(0) \\
0 & \leq \lim _{x \rightarrow c} f(x) g(x) \leq 0
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow c} f(x) g(x)=0$.
118. (a) If $\lim _{x \rightarrow c}|f(x)|=0$, then $\lim \underset{\leq}{r_{-}}|f(x)|_{f}=0$.

$$
\begin{gathered}
-f(x) \leq f(x) \leq{ }_{\mid f(x)}^{x \rightarrow c} \mid \\
\lim _{x \rightarrow c} \frac{f_{c}}{-}|f(x)| / \leq \lim _{x \rightarrow c} f(x) \leq \lim _{x \rightarrow c}|f(x)| \\
f \\
0 \leq \lim _{x \rightarrow c} f(x) \leq 0
\end{gathered}
$$

Therefore, $\lim _{x \rightarrow c} f(x)=0$.
(b) Given $\lim _{x \rightarrow} f_{c}(x)=L$:

For every $\varepsilon>0$, there exists $\delta>0$ such that
$|f(x)-L|<\varepsilon$ whenever $0<|x-c|<\delta$. Since
$||f(x)|-L \| \leq f(x)-L \quad|<\varepsilon$ for
$|x-c|<\delta$, then $\lim _{x \rightarrow c}|f(x)|=4 . \mid$
119. Let
$\left.f(x)=\begin{array}{r}*, ~ i f ~ \\ x\end{array}\right)=0$
-4, if $x<0$
$\lim _{x \rightarrow 0}|f(x)|=\lim _{x \rightarrow 0} 4=4$.
$\lim _{x \rightarrow 0} f(x)$ does not exist because for

| $\substack{x \rightarrow 0 \\ x<0}$ |
| :--- |$f(x)=-4$ and for $x \geq 0, f(x)=4$.

120. The graphing utility was set in degree mode, instead of radian mode.
121. The limit does not exist because the function approaches 1 from the right side of 0 and approaches -1 from the left side of 0 .

122. False. $\lim _{x \rightarrow \pi} \frac{\sin x}{x}=\stackrel{0}{=}=0$
123. True.
124. False. Let

Then $\lim _{x \rightarrow 1} f(x)=1$ but $f(1) \neq 1$.
125. False. The limit does not exist because $f(x)$ approaches 3 from the left side of 2 and approaches 0 from the right side of 2 .

126. False. Let $f(x)=\frac{1}{-} x^{2}$ and $g(x)=x^{2}$.

Then $f(x)<g(x)$ for all $x \neq 0$. But
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=0$.
127. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=\lim _{x \rightarrow 0} \frac{1-\cos x}{x} \frac{1+\cos x}{1+\cos x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x(1+\cos x)}=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{\sin x}{} \\
& x_{x \rightarrow 0} \quad 1+\cos x
\end{aligned}
$$

$$
=\Upsilon \quad \underline{\sin x} 6 \quad \underline{\sin x} \infty
$$

$$
\leq \lim x f^{\prime} x \lim +\cos x
$$

$$
=(1)(0)=0
$$

$\Leftrightarrow 0$, if x is rational
128. $f(x)=$
$\bullet 1$, if x is irrational

40 , if x is rational
$g(x)=$
x, if x is irrational
$\lim _{x \rightarrow 0} f(x)$ does not exist.
No matter how "close to" $0 x$ is, there are still an infinite number of rational and irrational numbers so that $\lim _{x \rightarrow 0} f(x)$ does not exist.
$\lim g(x)=0$
$x \rightarrow 0$
when x is "close to" 0 , both parts of the function are "close to" 0 .
129. $f(x)=\frac{\sec x-1}{x^{2}}$
(a) The domain of f is all $x \neq 0, \pi / 2+n \pi$.
(b) 2

The domain is not obvious. The hole at $x=0$ is not apparent.
(c) $\lim _{x \rightarrow 0} f(x)=\frac{1}{2}$
(d) $\frac{\sec x-1}{x^{2}}=\frac{\sec x-1}{x^{2}} \cdot \frac{\sec x+1}{\sec x+1}=\frac{\sec ^{2} x-1}{x^{2}(\sec x+1)}$

$$
=x^{2}(\sec x+1)=\frac{1}{\tan ^{2} x}=\frac{\sin ^{2} x}{\cos ^{2} x} \sec x+1
$$

$\sec x-1 \quad 1 \square \sin ^{2} x \square \quad 1$

$$
\text { So, } \begin{gathered}
\lim _{x \rightarrow 0} \frac{2^{2}}{x^{2}} \\
=\lim _{x \rightarrow 0} \frac{2}{\cos x} \square \frac{2}{\square} \square \\
\square \sec x+1 \\
\\
=1(1)_{\square} \square=1
\end{gathered}
$$

$$
\lim _{1} \frac{-\cos x}{1-\cos x} \cdot \overline{1+\cos x}
$$

130. (a)

$$
\begin{aligned}
{ }_{x \rightarrow 0}^{2} & x_{x \rightarrow 0}^{2} 1+\cos x \\
& =\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x^{2}(1+\cos x)} \\
= & \lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}} \cdot \frac{\square \square 1}{\cos x} 1+ \\
= & (1)^{\square \equiv 1 \square}=\frac{1}{2}
\end{aligned}
$$

(b) From part (a),

$$
\begin{aligned}
& \frac{1-\cos x}{x^{2}} \approx \frac{1}{=} \Rightarrow 1-\cos x \\
& \approx \frac{1}{2} x^{2} \Rightarrow \cos x \\
& 1 \\
& \approx 1-x_{2} x^{2} \text { for } x \\
& \approx 0
\end{aligned}
$$

(c) $\cos (0.1) \approx 1-\frac{1}{2}(0.1)^{2}=0.995$
(d) $\cos (0.1) \approx 0.9950$, which agrees with part (c).

Section 2.4 Continuity and One-Sided Limits

1. (a) $\lim _{x \rightarrow 4^{+}} f(x)=3$
(b) $\lim _{x \rightarrow 4^{-}} f(x)=3$
(c) $\lim _{x \rightarrow 4} f(x)=3$

The function is continuous at $x=4$ and is continuous on $(-\infty, \infty)$.
2. (a) $\lim _{x \rightarrow-2^{+}} f(x)=-2$
(b) $\lim _{x \rightarrow-2^{-}} f(x)=-2$
(c) $\lim _{x \rightarrow-2} f(x)=-2$

The function is continuous at $x=-2$.
3. (a) $\lim f(x)=0$
$x \rightarrow 3^{+}$
(b) $\lim _{x \rightarrow 3^{-}} f(x)=0$
(c) $\lim _{x \rightarrow 3} f(x)=0$
7. $\lim _{x \rightarrow 8^{+}} \frac{1}{x+8}=\frac{1}{8+8}=\frac{1}{16}$
$2 \quad 2 \quad 1$
8. $\lim =-=$
$x \rightarrow 2^{-} x+2 \quad 2+2 \quad 2$

The function is NOT continuous at $x=3$.
4. (a) $\lim _{x \rightarrow-3^{+}} f(x)=3$
(b) $\lim _{x \rightarrow-3^{-}} f(x)=3$
(c) $\lim f(x)=3$
$x \rightarrow-3$
The function is NOT continuous at $x=-3$ because $f(-3)=4 \neq \lim _{x \rightarrow-3} f(x)$.
9. $\lim _{x \rightarrow 5^{+}} \frac{x-5}{x^{2}-25}=\lim _{x \rightarrow 5^{+}} \frac{x-5}{(x+5)(x-5)}$

$$
=\lim _{x \rightarrow 5^{+}} \frac{1}{x+5}=\frac{1}{10}
$$

10. $\lim \frac{4-x}{}=\lim \quad-(x-4) \quad=\lim \frac{-1}{}$

$$
\underline{-1}=--^{x \rightarrow 4^{+} x^{2}-16} \quad \begin{array}{ll}
x \rightarrow 4^{+}(x+4)(x-4) & x \rightarrow 4^{+} x+4 \\
& 4+4 \quad 8
\end{array}
$$

5. (a) $\lim f(x)=-3$
$x \rightarrow 2^{+}$
(b) $\lim _{x \rightarrow 2^{-}} f(x)=3$
(c) $\lim _{x \rightarrow 2} f(x)$ does not exist
6. $\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x}-2}{x-4}=\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x}-2}{x-4} \cdot \frac{\sqrt{x}+2}{\sqrt{x}}$

The function is NOT continuous at $x=2$.
6. (a) $\lim _{x \rightarrow-1^{+}} f(x)=0$
11. $\lim \frac{x}{\sqrt{x}}$ does not exist because $\frac{x}{\sqrt{x}}$ $x \rightarrow-3^{-} \quad x^{2}-9 \quad x^{2}-9$
decreases without bound as $x \rightarrow-3^{-}$.

$$
=\lim _{x \rightarrow 4^{-}} \frac{x-4}{(x-4)(\sqrt{x}+2)}
$$

(b) $\quad \lim f(x)=2$

$$
x \rightarrow-1^{-}
$$

(c) $\lim f(x)$ does not exist.

The function is NOT continuous at $x=-1$.

$$
=\lim _{x \rightarrow 4^{-}} \frac{\sqrt{ }}{} \frac{1}{x+2}=\frac{1}{\square \sqrt{ } 4+2} \quad=
$$

$$
x \rightarrow-1
$$

13. $\lim \not \equiv \left\lvert\, \quad \lim \frac{-x}{x \rightarrow-1}=-1\right.$
$x \rightarrow 0^{-} x \quad x \rightarrow 0^{-} x$
14. $\lim _{x \rightarrow 10^{+}}\left|\frac{x-10}{x-10}\right| \quad \lim _{x \rightarrow 10^{+}} \frac{x-10}{x-10}=1$

$$
\begin{array}{lllll}
1 & x-(x+\Delta x) & 1 & -\Delta & 1
\end{array}
$$

15. $\lim \underline{x+\Delta x \quad x}=\lim$ \qquad $\cdot-=\lim$ \qquad -

$$
\begin{aligned}
& \Delta x \rightarrow 0^{-} \quad \Delta x \quad \Delta x \rightarrow 0^{-} \quad x(x+\Delta x) \quad \Delta x \quad \Delta x \rightarrow 0^{-} x(x+\Delta x) \quad \Delta x \\
& =\lim _{\Delta x \rightarrow 0^{-}} \frac{-1}{x(x+\Delta x)} \\
& =\frac{-1}{x(x+0)}=-\frac{1}{x^{2}}
\end{aligned}
$$

16. $\left.\lim (x+\Delta x)^{2}+(x+\Delta x)-x^{x^{2}}+x\right)=\lim \frac{x^{2}+2 x(\Delta x)+(\Delta x)^{2}+x+\Delta x-x^{2}-x}{}$
$\Delta x \rightarrow 0^{+}$
Δx

$$
\begin{aligned}
& \Delta x \rightarrow 0^{+} \\
= & \left.\lim _{\Delta x \rightarrow 0^{+}} \underline{2 x} \underline{\Delta x}\right) \pm(\underline{\Delta x})^{\underline{2}} \underline{+\Delta x} \\
= & \lim _{\Delta x \rightarrow 0^{+}}(2 x+\Delta x+1) \\
= & 2 x+0+1=2 x+1
\end{aligned}
$$

17. $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{x+2}{2}=\frac{5}{2}$
18. $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 5^{-}}\left(x^{2}-4 x+6\right)=9-12+6=3$
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(-x^{2}+4 x-2\right)=-9+12-2=1$

Since these one-sided limits disagree, $\lim _{x \rightarrow 3} f(x)$
does not exist.
19. $\lim \cot x$ does not exist because
${ }^{x \rightarrow \pi} \lim \cot x$ and $\lim \cot x$ do not exist.
$x \rightarrow \pi^{+} \quad x \rightarrow \pi^{-}$
20. $\lim _{x \rightarrow \pi / 2} \sec x$ does not exist because
$\underset{x \rightarrow(\pi / 2)^{+}}{\lim \sec } x$ and $\underset{x \rightarrow(\pi / 2)^{-}}{\lim \sec } x$ do not exist.
30. $f(x)=\frac{x^{2}-1}{x+1}$
has a discontinuity at $x=-1$ because $\quad f(-1)$ is not defined.
31. $f(x)=\frac{\# x \#}{\underline{\#}}+x$

2
has discontinuities at each integer k because

$$
\begin{array}{r}
\lim _{x \rightarrow k^{-}} f(x) \neq \quad \lim _{x \rightarrow k^{+}} f(x) . \\
\dot{\boldsymbol{\phi}}^{x}, \quad x<1
\end{array}
$$

32. $f(x)=$ 2 $_{2}^{2}, \quad \begin{aligned} & x=1 \\ & 2 x-1\end{aligned}$ has a discontinuity at
$x=1$ because $f(1)=2 \neq \lim f(x)=1$.
$x \rightarrow 1$
33. $g(x)=\sqrt{49-x^{2}}$ is continuous on $[-7,7]$.
34. $\lim _{x \rightarrow 4^{-}}(5 \sharp x \sharp-7)=5(3)-7=8$
$(\# x \sharp=3$ for $3 \leq x<4)$
35. $\lim _{x \rightarrow 2^{+}}\left(2 x-\sharp x_{\sharp}^{\sharp}\right)=2(2)-2=2$
36. $\lim _{x \rightarrow 3}\left(2-\sharp-x^{\sharp} \sharp\right)$ does not exist because
$\lim _{x \rightarrow 3^{-}}(2-\sharp-x \sharp)=2-(-3)=5$
and
$\lim (2-\sharp-x \sharp)=2-(-4)=6$.
$x \rightarrow 3^{+}$

37. $\lim _{x \rightarrow 3^{+}} \ln (x-3)=\ln 0$
does not exist.
38. $\lim \ln (6-x)=\ln 0$
$x \rightarrow 6^{-}$
does not exist.
39. $\lim _{x \rightarrow 2^{-}} \ln _{\leq}^{\Upsilon x^{2}(3-x)}, \underset{\leq}{\ln \Upsilon 4(1)}=\ln 4$
$x \quad 5$
40. $f(t)=3-\sqrt{9-t^{2}}$ is continuous on $[-3,3]$.
41. $\lim _{x \rightarrow 0^{-}} f(x)=3=\quad \lim _{x \rightarrow 0^{+}} f(x) . f$ is continuous on $[-1,4]$.
42. $g(2)$ is not defined. g is continuous on $[-1,2)$.
$\underline{6}_{\text {has a nonremovable discontinuity at } x=0}$
43. $f(x)=x$
because $\lim _{x \rightarrow 0} f(x)$ does not exist.

4
38. $f(x)=x-6$ has a nonremovable discontinuity at $x=6$ because $\lim _{x \rightarrow 6} f(x)$ does not exist.
39. $f(x)=3 x-\cos x$ is continuous for all real x.
40. $f(x)=x^{2}-4 x+4$ is continuous for all real x.

$1 \quad 1$

41. $f(x)=\frac{}{4-x^{2}}=\frac{(2)(+x)}{(2-x)}$ has nonremovable discontinuities at $x= \pm 2$ because $\lim _{x \rightarrow 2} f(x)$ and $\lim f(x)$ do not exist.
$x \rightarrow-2$
πx
42. $f(x)=\cos \frac{}{2}$ is continuous for all real x.
43. $\lim _{x \rightarrow 5^{+}} \ln \frac{}{\sqrt{x-4}}=\ln \overline{1}^{=}=\ln 5$
44. $f(x)=\frac{1}{x^{2}-4}$
has discontinuities at $x=-2$ and $x=2$
because $f(-2)$ and $f(2)$ are not defined.
45. $f(x)=x^{2}-x$ is not continuous at $x=0,1$. Because $\frac{x}{x^{2}-x}=\frac{1}{x-1}$ for $x \neq 0, x=0$ is a removable discontinuity, whereas $x=1$ is a nonremovable discontinuity.
46. $f(x)=\frac{x}{x^{2}-4}$ has nonremovable discontinuities at $x=2$ and $x=-2$ because $\lim f(x)$ and $\lim f(x)$ do not exist.
47. $f(x)=\frac{x}{x^{2}+1}$ is continuous for all real x.
48. $f(x)=$

\qquad -5

$$
x^{2}-25 \quad(x+5)(x-5)
$$

has a nonremovable discontinuity at $x=-5$ because
$\lim _{x \rightarrow-5} f(x)$ does not exist, and has a removable
discontinuity at $x=5$ because

$$
\begin{array}{rlr}
\lim _{x \rightarrow 5} f(x)= & \lim _{x \rightarrow 5} \frac{1}{x+5}=\frac{1}{\dot{10}} & \\
& x+2 & x+2
\end{array}
$$

47. $f(x)=\frac{}{x^{2} \quad 3 x-10}=\overline{(x+2)(x-5)}$
has a nonremovable discontinuity at $x=5$ because
$\lim _{x \rightarrow 5} f(x)$ does not exist, and has a removable
discontinuity at $x=-2$ because

$$
\lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} \frac{1}{x-5}=-\frac{1}{7}
$$

48. $f(x)=\frac{x+2}{x^{2}-x-6}=\frac{\square x+2}{(x-3)(x+2)}$
has a nonremovable discontinuity at $x=3$ because $\lim _{x \rightarrow 3} f(x)$ does not exist, and has a removable
discontinuity at $x=-2$ because

$$
\lim f(x)=\lim \frac{1}{-}=-\stackrel{1}{-}
$$

$x \rightarrow-2 \quad x \rightarrow-2 x-3 \quad 5$
49. $\left.f(x)=\frac{\mid x+7}{x+7} \right\rvert\,$
has a nonremovable discontinuity at $x=-7$ because $\lim _{x \rightarrow-7} f(x)$ does not exist.
50. $f(x)=\frac{|x-5|}{x-5}$
has a nonremovable discontinuity at $x=5$ because
$\lim _{x \rightarrow 5} f(x)$ does not exist.
51. $f(x)=\begin{array}{ll}x \leq 1 \\ x^{2} & x>1\end{array}$
has a possible discontinuity at $x=1$.

1. $f(1)=1$
2. $\lim f(x)=\lim x=1 \leftrightarrow$

$$
\lim _{x \rightarrow 1^{-}} f(x)=\stackrel{x \rightarrow 1^{-}}{\lim } x^{2}=
$$

3. $f(-1)=\lim _{x \rightarrow 1} f(x)$
f is continuous at $x=1$, therefore, f is continuous for all real x.
4. $f(x)=\begin{array}{ll}x-2 x+3 & x<1 \\ x^{2}, & x \geq 1\end{array}$
has a possible discontinuity at $x=1$.
5. $f(1)=1^{2}=1$
6. $\lim f(x)=\lim (-2 x+3)=1 \leftrightarrow$
$\lim _{x \rightarrow 1^{-}}^{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}}^{x \rightarrow 1^{-}} x^{2}=1 \quad \stackrel{\uparrow}{\leftarrow} \lim f(x)=1$
7. $f(1)=\lim _{x \rightarrow 1} f(x)$
f is continuous at $x=1$, therefore, f is continuous for all real x.
8. $f(x)=\begin{array}{ll}\dot{2} \underline{x}+1 & x \leq 2 \\ 2-x & x>2\end{array}$
has a possible discontinuity at $x=2$.
9. $f(2)=\frac{2}{2}+1=2$

Therefore, f has a nonremovable discontinuity at $x=2$.
54. $(f)=\begin{array}{ll}-2 x, & x \leq 2 \\ { }^{2}-4 x+1, & x>2\end{array}$
has a possible discontinuity at $x=2$.

1. $f(2)=-2(2)=-4$
2. $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(-2 x)=-4 \quad \lim f(x)$ does not exist.

Therefore, f has a nonremovable discontinuity at $x=2$.

has possible discontinuities at $x=-1, x=1$.
3. $f(-1)=-1$
$f(1)=1$
4. $\lim f(x)=-1$
$\lim f(x)=1$
5. $f(-1)=\lim _{x \rightarrow-1} f(x)$

$$
f(1)=\lim _{x \rightarrow 1} f(x)
$$

f is continuous at $x= \pm 1$, therefore, f is continuous for all real x.

* πx

$$
\begin{aligned}
= & \stackrel{\pi}{\csc } \frac{\pi x}{}, 1 \leq x \leq 5 \\
\boldsymbol{v}^{2}, & x<1 \text { or } x>5
\end{aligned}
$$

has possible discontinuities at $x=1, x=5$.

1. $f(1)=\csc ^{\frac{\pi}{-}}=2$
$f(5)=\csc \frac{5 \pi}{}=2$

6	
2.	$\lim f(x)=2$
	$\lim f(x)=2$
3.	$f(1)=\lim _{x \rightarrow 1} f(x)$

\end{array}\)
f is continuous at $x=1$ and $x=5$, therefore, f is continuous for all real x.
57. $f(x)=\begin{array}{ll}\ln (x+1) & x \geq 0 \\ 1-x^{2}, & x<0\end{array}$
has a possible discontinuity at $x=0$.

1. $f(0)=\ln (0+1)=\ln 1=0$
2. $\lim _{x \rightarrow 0^{-}} f(x)=1-0=1 \leftrightarrow 4 \lim f(x)$ does not exist.
$\lim _{x \rightarrow 0^{+}} f(x)=0$

So, f has a nonremovable discontinuity at $x=0$.

has a possible discontinuity at $x=5$.

1. $f(5)=7$
2. $\begin{gathered}\lim _{x \rightarrow 5^{+}} f(x)=10-3 e \quad=7 \overleftrightarrow{\leftrightarrows} \\ \lim f(x)=10-(5)=7 x \rightarrow 5 \\ \lim f(x)=7\end{gathered}$
$x \rightarrow 5^{-}$
3. $f(5)=\lim _{x \rightarrow 5} f(x)$
f is continuous at $x=5$, so, f is continuous for all real x.
4. $f(x)=\csc 2 x$ has nonremovable discontinuities at integer multiples of $\pi 2$.
5. $f(x)=\tan \frac{\pi x}{2}$ has nonremovable discontinuities at each $2 k+1, k$ is an integer.
6. $f(x)=\sharp x-8 \sharp$ has nonremovable discontinuities at each integer k.
7. $f(x)=5-\sharp x \sharp$ has nonremovable discontinuities at each integer k.
8. $f(1)=3$

Find a so that $\lim (a x-4)=3$

$$
\begin{array}{r}
x \rightarrow 1^{-} \\
a(1)-4=3 \\
a=7 .
\end{array}
$$

64. $\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}} \frac{4 \sin x}{x}=4$
$\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}}(a-2 x)=a$
Let $a=4$.
65. Find a and b such that $\quad \lim _{x \rightarrow-1^{+}}(a x+b)=-a+b=2$ and $\quad \lim _{x \rightarrow 3^{-}}(a x+b)=3 a+b=-2$.

\[

\]

66. $\lim g(x)=\lim x^{2}-a^{2}$

$$
\begin{aligned}
& x \rightarrow a \overline{x \rightarrow a} \\
= & \lim _{x \rightarrow a}(x+a)=2 a
\end{aligned}
$$

Find a such $2 a=8 \Rightarrow a=4$.
67. $f(1)=\arctan (1-1)+2=2$

Find a such that $\lim _{x \rightarrow 1^{-}}\left(a e^{x-1}+3\right)=2$
$a e^{1-1}+3=2$

$$
\begin{array}{r}
a+3=2 \\
a=-1 .
\end{array}
$$

68. $f(4)=2 e^{4 a}-2$

Find a such that $\lim _{x \rightarrow 4^{+}} \ln (x-3)+x^{2} \quad=2 e^{4 a}-2$

$$
\ln (4-3)+4^{2}=2 e^{4 a}-2
$$

$$
\begin{aligned}
16 & =2 e^{4 a}-2 \\
9 & =e^{4 a} \\
\ln 9 & =4 a
\end{aligned}
$$

$\ln 3$
\qquad
\qquad $=$ \qquad $=$.
71. $f(g(x))=\frac{1}{1}=\frac{1}{2}$

$$
\left(x^{2}+5\right)-6 \quad x^{2}-1
$$

Nonremovable discontinuities at $x= \pm 1$
72. $f(g(x))=\sin x^{2}$

Continuous for all real x
73. $y=\sharp x \sharp-x$

Nonremovable discontinuity at each integer

-1.5
74. $h(x)=\frac{1}{x^{2}+2 x-15}=\frac{1}{(x+5)(x-3)}$

Nonremovable discontinuities at $x=-5$ and $x=3$

69. $f(g(x))=(x-1)^{2}$

Continuous for all real x
70. $f(g(x))=\frac{1}{\sqrt{x-1}}$
75. $g(x)=x^{2}-3 x, \quad x>4$

Nonremovable discontinuity at $x=1$; continuous for all $x>1$

Nonremovable discontinuity at $x=4$

10
-2 8

76. $f(x)=\frac{\cos x-1}{x}, \quad x<0$
$f(0)=5(0)=0$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-} x}^{(\cos x-1)}=0$
$\lim f(x)=\lim (5 x)=0$
$x \rightarrow 0^{+} \quad x \rightarrow 0^{+}$

-3

Therefore, $\lim _{x \rightarrow 0} f(x)=0=f(0)$ and f is continuous on the entire real line.
($x=0$ was the only possible discontinuity.)
77. $f(x)=\frac{\square x}{x^{2}+x+2}$

Continuous on $(-\infty, \infty)$
78. $f(x)=\frac{x+1}{\sqrt{x}}$

Continuous on $(0, \infty)$
79. $f(x)=3-\sqrt{x}$

Continuous on $[0, \infty)$
80. $f(x)=x \sqrt{x+3}$

Continuous on $[-3, \infty)$
81. $f(x)=\sec \frac{\pi x}{4}$

Continuous on:
$\ldots,(-6,-2),(-2,2),(2,6),(6,10), \ldots$
82. $f(x)=\cos \frac{1}{x}$

Continuous on $(-\infty, 0)$ and $(0, \infty)$

$$
\text { Since } \lim f(x)=\lim \quad \frac{x^{2}-1}{}=\lim \underline{(x-1)(x+1)}
$$

$$
\begin{aligned}
x \rightarrow 1 \quad & x^{x \rightarrow 1} x-1 \quad x \rightarrow 1 \quad x-1 \\
= & \lim _{x \rightarrow 1}(x+1)=2,
\end{aligned}
$$

84. $f(x)=\begin{array}{ll}\bullet 2 x-4 & x \neq 3 \\ v 1, & x=3\end{array}$

Since $\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3}(2 x-4)=2 \neq 1$,
f is continuous on $(-\infty, 3)$ and $(3, \infty)$.
$\sin x$
85. $f(x)=\frac{}{x}$

The graph appears to be continuous on the interval $[-4,4]$.Because $f(0)$ is not defined, you know that f has a discontinuity at $x=0$. This discontinuity is removable so it does not show up on the graph.
86. $f(x)=\frac{x-8}{x-2}$

14

The graph appears to be continuous on the interval $[-4,4]$. Because $f(2)$ is not defined, you know that f has a discontinuity at $x=2$. This discontinuity is removable so it does not show up on the graph.
f is continuous on $(-\infty, \infty)$.
87. $f(x)=\frac{\ln \left(x^{2}+1\right)}{x}$

88. $f(x)=\frac{-e^{-x}+1}{e^{x}-1}$

The graph appears to be continuous on the interval
$[-4,4]$. Because $f(0)$ is not defined, you know that f
has a discontinuity at $x=0$. This discontinuity is removable so it does not show up on the graph.

$$
1 x^{4}
$$

The graph appears to be continuous on the interval

$$
[-4,4] \text {. Because } f(0) \text { is not defined, you know that } f
$$ has a discontinuity at $x=0$. This discontinuity is removable so it does not show up on the graph.

$\underline{37} \quad 8$
89. $f(x)={ }_{12}-x+4$ is continuous on the interval [1, 2]. $f(1)={ }_{12}$ and $f(2)=-{ }_{3}$ By the Intermediate Value Theorem, there exists a number c in $[1,2]$ such that $f(c)=0$.
90. $f(x)=-\frac{5}{x}+\tan \frac{\pi x}{\square}$ is continuous on the interval $[1,4]$.
$f(1)=-5+\tan \frac{10}{\pi} \approx-4.7$ and $f(4)=-\frac{5}{\square}+\tan \frac{2 \pi}{\square} \approx 1.8$. By the Intermediate Value Theorem, there exists a number c in $[1,4]$ such that $f(c)=0$.
 there exists a number c in $\underset{\leq}{ } 0,{ }_{2}^{\infty}$, such that $h(c)=0$.
92. g is continuous on the interval $[0,1] \cdot g(0) \approx-2.77<0$ and $g(1) \approx 1.61>0$. By the Intermediate Value Theorem, there exists a number c in $[0,1]$ such that $g(c)=0$.
93. $f(x)=x^{3}+x-1$
$f(x)$ is continuous on $[0,1]$.
$f(0)=-1$ and $f(1)=1$
By the Intermediate Value Theorem, $f(c)=0$ for at least one value of c between 0 and 1 . Using a graphing utility to zoom in on the graph of $f(x)$, you find that $x \approx 0.68$. Using the root feature, you find that $x \approx 0.6823$.
94. $f(x)=x^{4}-x^{2}+3 x-1$
$f(x)$ is continuous on $[0,1]$.
$f(0)=-1$ and $\quad f(1)=2$
By the Intermediate Value Theorem, $f(c)=0$ for at least one value of c between 0 and 1 . Using a graphing
95. $g(t)=2 \cos t-3 t$ g is continuous on $[0,1]$.
$g(0)=2>0$ and $g(1) \approx-1.9<0$.
By the Intermediate Value Theorem, $g(c)=0$ forat least one value of c between 0 and 1 . Using a graphing utility to zoom in on the graph of $g(t)$, you find that $t \approx 0.56$. Using the root feature, you find that $t \approx 0.5636$.
96. $h(\theta)=\tan \theta+3 \theta-4$ is continuous on $[0,1]$.
$h(0)=-4$ and $h(1)=\tan (1)-1 \approx 0.557$.

By the Intermediate Value Theorem, $h(c)=0$ for at least one value of c between 0 and 1 . Using a graphing utility to zoom in on the graph of $h(\theta)$, you find that
utility to zoom in on the graph of $f(x)$, you find that $x \approx 0.37$. Using the root feature, you find that $x \approx 0.3733$.
$\theta \approx 0.91$. Using the root feature, you obtain $\theta \approx 0.9071$.
97. $f(x)=x+e^{x}-3$
f is continuous on $[0,1]$.
$f(0)=e^{0}-3=-2<0$ and
$f(1)=1+e-3=e-2>0$.
By the Intermediate Value Theorem, $f(c)=0$ for at least one value of c between 0 and 1 . Using a graphing utility to zoom in on the graph of $f(x)$, you findthat $x \approx 0.79$. Using the root feature, you find that
$x \approx 0.7921$.
98. $g(x)=5 \ln (x+1)-2$
g is continuous on $[0,1]$.

$$
\begin{aligned}
& g(0)=5 \ln (0+1)-2=-2 \text { and } \\
& g(1)=5 \ln (2)-2>0 .
\end{aligned}
$$

By the Intermediate Value Theorem, $g(c)=0$ forat
least one value of c between 0 and 1 . Using a graphing utility to zoom in on the graph of $g(x)$, you find that
$x \approx 0.49$. Using the root feature, you find that $x \approx 0.4918$.
99. $f(x)=x^{2}+x-1$
f is continuous on $[0,5]$.

$$
\begin{aligned}
f(0) & =-1 \text { and } f(5)=29 \\
& -1<11<29
\end{aligned}
$$

The Intermediate Value Theorem applies.

$$
\begin{gathered}
x^{2}+x-1=11 \\
x^{2}+x-12=0 \\
(x+4)(x-3)=0 \\
x=-4 \text { or } x=3 \\
c=3(x=-4 \text { is not in the interval. })
\end{gathered}
$$

So, $f(3)=11$.
100. $f(x)=x^{2}-6 x+8$
f is continuous on $[0,3]$.

$$
\begin{gathered}
f(0)=8 \text { and } f(3)=-1 \\
-1<0<8
\end{gathered}
$$

The Intermediate Value Theorem applies.

$$
\begin{gathered}
x^{2}-6 x+8=0 \\
(x-2)(x-4)=0 \\
x=2 \text { or } x=4 \\
c=2(x=4 \text { is not in the interval. })
\end{gathered}
$$

So, $f(2)=0$.
The function is not continuous at $x=3$ because

$$
\lim _{x \rightarrow 3^{+}} f(x)=1 \neq 0=\lim _{x \rightarrow 3^{-}} f(x)
$$

105. If f and g are continuous for all real x, then so is $f+g$ (Theorem 2.11, part 2). However, $f g /$ might not be continuous if $g(x)=0$. For example, let $f(x)=x$ and $g(x)=x^{2}-1$. Then f and g are continuous for all real x, but $f g /$ is not continuous at $x= \pm 1$.
106. A discontinuity at c is removable if the function f can be made continuous at c by appropriately defining (or redefining) $f(c)$. Otherwise, the discontinuity is nonremovable.
(a) $\left.f(x)=\frac{\mid x-4}{x-4} \right\rvert\,$
(b) $f(x)=\frac{\sin (x+4)}{x+4}$
(c) $f(x)=\begin{array}{cl}\stackrel{21}{2}, & x \geq 4 \\ \hat{a}^{1} & -4<x<4 \\ 0, & x=-4 \\ 0, & x<-4\end{array}$

$$
x=4 \text { is nonremovable, } x=-4 \text { is removable }
$$

107. True

1. $f(c)=L$ is defined.
2. $\lim f(x)=L$ exists.
3. $\left.x^{x} \vec{f}^{c}\right)=\lim f(x)$

All of the conditions for continuity are met.
108. True. If $f(x)=g(x), x \neq c$, then
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)$ (if they exist) and at least one of these limits then does not equal the corresponding function value at $x=c$.
109. False. A rational function can be written as
$P(x) / Q(x)$ where P and Q are polynomials of degree m and n, respectively. It can have, at most, n discontinuities.
111. The functions agree for integer values of x :
$g(x)=3-\sharp-x \sharp=3-(-x)=3+x \leftrightarrows$
$f(x)=3+\# x \sharp=3+x \quad \overleftarrow{\leftarrow}$ for x an integer
However, for non-integer values of x, the functions differ by 1 .
$f(x)=3+\# x \sharp=g(x)-1=2-\sharp-x \#$.
For example,
$f\left(\frac{1}{2}\right)=3+0=3, g\left(\frac{1}{2}\right)=3-(-1)=4$.
112. $\lim f(t) \approx 28$
$t \rightarrow 4^{-}$
$\lim _{t \rightarrow 4^{+}} f(t) \approx 56$
At the end of day 3, the amount of chlorine in the pool has decreased to about 28 oz . At the beginning of day 4 , more chlorine was added, and the amount is now about 56 oz .

$$
\dot{\star}^{0.40}, \quad 0<t \leq 10
$$

113. $C(t)=0.40+0.05 \sharp t-9 \#, \quad t>10, t$ not an integer
$\hat{v} 0.40+0.05(t-10), \quad t>10, t$ an integer

There is a nonremovable discontinuity at each integer greater than or equal to 10 .
Note: You could also express C as

$$
C(t)=\begin{array}{ll}
0.40, & 0<t \leq 10 \\
0.40-0.05 \# 10-\# & t>10
\end{array}
$$

 " 2 "

t	0	1	1.8	2	3	3.8
$N(t)$	50	25	5	50	25	5

Discontinuous at every positive even integer. The company replenishes its inventory every two months.

115. Let $s(t)$ be the position function for the run up to the campsite. $s(0)=0(t=0$ corresponds to 8:00 A.M., $s(20)=k$ (distance to campsite)). Let $r(t)$ be the position function for the run back down the mountain: $r(0)=k, r(10)=0$. Let $f(t)=s(t)-r(t)$.
When $t=0$ (8:00 A.m.),
$f(0)=s(0)-r(0)=0-k<0$.
When $t=10$ (8:00 A.m.), $f(10)=s(10)-r(10)>0$.
Because $f(0)<0$ and $f(10)>0$, then there must be a value t in the interval $[0,10]$ such that $f(t)=0$. If $f(t)=0$, then $s(t)-r(t)=0$, which gives us $s(t)=r(t)$. Therefore, at some time t, where $0 \leq t \leq 10$, the position functions for the run up and the run down are equal.
116. Let $V=\frac{\pi}{3} r^{3}$ be the volume of a sphere with radius r.
V is continuous on $[5,8] . V(5)=\quad \approx 523.6$ and
$V(8)=\frac{}{3} \approx 2144.7$. Because
$523.6<1500<2144.7$, the Intermediate Value Theorem guarantees that there is at least one value r between 5 and 8 such that $V(r)=1500$. (In fact, $r \approx 7.1012$.)
117. Suppose there exists x_{1} in $[a, b]$ such that $f\left(x_{1}\right)>0$ and there exists $x \underset{2}{\text { in }}[a, b]$ such that $f\left(x_{2}\right)<0$. Then by the Intermediate Value Theorem, $f(x)$ must equal zero for some value of x in $\left[x_{1}, x_{2}\right]$ (or $\left[x_{2}, x_{1}\right]$ if $\left.x_{2}<x_{1}\right)$. So, f would have a zero in $[a, b]$, which is a contradiction. Therefore, $f(x)>0$ for all x in $[a, b]$ or $f(x)<0$ for all x in $[a, b]$.
118. Let c be any real number. Then $\lim _{x \rightarrow c} f(x)$ does notexist because there are both rational and irrational numbers arbitrarily close to c. Therefore, f is not continuous at c.
119. If $x=0$, then $\quad f(0)=0$ and $\lim _{x \rightarrow 0} f(x)=0$. So, f is continuous at $x=0$.
If $x \neq 0$, then $\lim f(t)=0$ for x rational, whereas
$\lim _{t \rightarrow x} f(t)=\lim _{t \rightarrow x}^{t \rightarrow x}=k x \neq 0$ for x irrational. So, f is not continuous for all $x \neq 0$.
120. $\quad \operatorname{sg} 1(x)=\begin{array}{ll}*-1, & \text { if } x<0 \\ , ~ & \text { if } x=0 \\ & \text { if } x>0\end{array}$
(a) $\lim _{x \rightarrow 0^{-}} \operatorname{sgn}(x)=-1$
(b) $\lim _{x \rightarrow 0^{+}} \operatorname{sgn}(x)=1$
(c) $\operatorname{limsgn}_{x \rightarrow 0}(x)$ does not exist.

121. (a) s

(b) There appears to be a limiting speed and a possible cause is air resistance.
122. (a)

NOT continuous at $x=b$.
(b)

Continuous on $[0,2 b]$.
123. $f(x)=\begin{gathered}1-x^{2}, \quad x \leq c \\ x, x>c\end{gathered}$
f is continuous for $x<c$ and for $x>c$. At $x=c$, you need $1-c^{2}=c$. Solving $c^{2}+c-1$, you obtain
$c=\frac{-1 \pm \sqrt{1+4}}{2}=\frac{-1 \pm \sqrt{5}}{2}$
124. Let y be a real number. If $y=0$, then $x=0$. If $y>0$, then let $0<x_{0} \quad<\pi \nsim$ such that
$M=\tan x_{0}>y$ (this is possible since the tangent function increases without bound on $[0, \pi / 2)$). By the

Intermediate Value Theorem, $f(x)=\tan x$ is continuous on $\left[0, x_{0}\right]$ and $0<y<M$, which implies
that there exists x between 0 and x_{0} such that $\tan x=y$. The argument is similar if $y<0$.
125. $f(x)=\frac{\sqrt{x+c^{2}-c}}{x}, c>0$

Domain: $x+c^{2} \geq 0 \Rightarrow x \geq-c^{2}$ and $\left.x \neq 0, \underline{\substack{-}} c^{2}, 0\right) \cup(0, \infty)$

Define $f(0)=1(2 c)$ to make f continuous at $x=0$.
126. 1. $f(c)$ is defined.
2. $\lim _{x \rightarrow c} f(x)=\lim _{\Delta x \rightarrow 0} f(c+\Delta x)=f(c)$ exists.
127.

[Let $x=c+\Delta x$. As $x \rightarrow c, \Delta x \rightarrow 0]$
3. $\lim _{x \rightarrow c} f(x)=f(c)$.

Therefore, f is continuous at $x=c$.

```
\(-3 \quad 3\)
```

- -3
h has nonremovable discontinuities at

$$
x= \pm 1, \pm 2, \pm 3, \ldots .
$$

128. (a) Define $f(x)=f_{2}(x)-f_{1}(x)$. Because f_{1} and f_{2} are continuous on $[a, b]$, so is f.
$f(a)=f_{2}(a)-f_{1}(a)>0$ and $f(b)=f_{2}(b)-f_{1}(b)<0$
By the Intermediate Value Theorem, there exists c in $[a, b]$ such that $f(c)=0$.
$f(c)=f_{2}(c)-f_{1}(c)=0 \Rightarrow f_{1}(c)=f_{2}(c)$
(b) Let $f_{1}(x)=x$ and $f_{2}(x)=\cos x$, continuous on [0, $\left.\pi 2\right], f_{1}(0)<f_{2}(0)$ and $\begin{array}{ccc}f_{1}(2)> & f_{2}(2) \\ \pi & \pi\end{array}$

So by part (a), there exists c in $[0, \pi / 2]$ such that $c=\cos (c)$.
Using a graphing utility, $c \approx 0.739$.
129. The statement is true.

If $y \geq 0$ and $y \leq 1$, then $y(y-1) \leq 0 \leq x^{2}$, as desired. So assume $y>1$. There are now two cases.

Case 1: If $x \leq y-\frac{1}{2}$ then $2 x+1 \leq 2 y$ and

$$
\begin{aligned}
y(y-1) & =y(y+1)-2 y \\
& \leq(x+1)^{2}-2 y
\end{aligned}
$$

$$
\begin{array}{ll}
=x^{2}+2 x+1-2 y & >y^{2}-y \\
\leq x^{2}+2 y-2 y & =y(y-1)
\end{array}
$$

In both cases, $y(y-1) \leq x^{2}$.
130. $P(1)=P\left(0^{2}+1\right)=P(0)^{2}+1=1$
$P(2)=P\left(1^{2}+1\right)=P(1)^{2}+1=2$
$P(5)=P\left(2^{2}+1\right)=P(2)^{2}+1=5$
Continuing this pattern, you see that $P(x)=x$ for infinitely many values of x.
So, the finite degree polynomial must be constant: $P(x)=x$ for all x.

Section 2.5 Infinite Limits

1. $\lim _{x \rightarrow-2^{+}}\left|\frac{x}{x^{2}-4}\right|=\infty$
$\lim _{x \rightarrow-2^{-}} 2\left|\frac{x}{x^{2}-4}\right|=\infty$
1
2. \lim
$\lim _{x \rightarrow-2^{+}}=\infty$
$\lim _{x \rightarrow-2^{+}} \frac{1}{-}=-\infty$
$x \rightarrow-2^{-} x+2$
$\underline{\pi x}$
3. $\lim \tan =-\infty$
${ }^{x \rightarrow-2^{+\sqcap 4}} \pi x$
$\lim \tan \ldots=\infty$
$x \rightarrow-2^{-\square} 4$
4. $\lim \sec \frac{\pi x}{}=\infty$
$\stackrel{x \rightarrow-2^{+} \square}{ } \pi x$
$\lim _{x \rightarrow-2^{-}} \sec \frac{}{4}=-\infty$
5. $f(x)=\frac{1}{x-4}$

As x approaches 4 from the left, $x-4$ is a small negative number. So,

$$
\lim _{x \rightarrow 4^{-}} f(x)=-\infty
$$

As x approaches 4 from the right, $x-4$ is a small positive number. So,

$$
\lim _{x \rightarrow 4^{+}} f(x)=\infty
$$

6. $f(x)=\frac{-1}{x-4}$

As x approaches 4 from the left, $x-4$ is a small negative number. So,
$\lim _{x \rightarrow 4^{-}} f(x)=\infty$.

As x approaches 4 from the right, $x-4$ is a small positive number. So,
$\lim _{x \rightarrow 4^{+}} f(x)=-\infty$.
7. $f(x)=\frac{1}{(x-4)^{2}}$

As x approaches 4 from the left or right, $(x-4)^{2}$ is a small positive number. So,
$\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{-}} f(x)=\infty$.
8. $f(x)=\frac{-1}{(x-4)^{2}}$

As x approaches 4 from the left or right, $(x-4)^{2}$ is a small positive number. So,
$\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{+}} f(x)=-\infty$.
9. $f(x)=\frac{1}{x^{2}-9}$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
$f(x)$	0.308	1.639	16.64	166.6	-166.7	-16.69	-1.695	-0.364

$$
\begin{aligned}
\lim _{x \rightarrow-3^{+}} f(x) & =\infty \\
f(x) & =-\infty
\end{aligned}
$$

10. $f(x)=\frac{x}{x^{2}-9}$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
$f(x)$	-1.077	-5.082	-50.08	-500.1	499.9	49.92	4.915	0.9091

$\lim _{x \rightarrow-3^{-}} f(x)=-\infty$
$\lim _{x \rightarrow-3^{+}} f(x)=\infty$

-2
11. $f(x)=\frac{x^{2}}{x^{2}-9}$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
$f(x)$	3.769	15.75	150.8	1501	-1499	-149.3	-14.25	-2.273

$\lim _{x \rightarrow 3^{-}} f(x)=\infty$
$\lim _{x \rightarrow-3^{+}} f(x)=-\infty$

12. $f(x)=\cot \frac{\pi x}{3}$

x	-3.5	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9	-2.5
$f(x)$	-1.7321	-9.514	-95.49	-954.9	954.9	95.49	9.514	1.7321

$\lim _{x \rightarrow-3^{-}} f(x)=-\infty$
$\lim _{x \rightarrow-3^{+}} f(x)=\infty$
13. $f(x)=^{1}$
$\lim _{\overline{+}}^{1} \stackrel{x^{2}}{=} \infty=\lim \overline{{ }^{2}}$
15. $f(x)=\underline{x_{2}}={ }^{x}$

$$
\begin{aligned}
& x^{2}-4(x+2)(x-2) \\
& x^{2} \\
& \lim _{2} \quad=\infty \text { and } \lim \quad x^{2}
\end{aligned}
$$

$$
\lim _{x \rightarrow-2^{-} x-4}^{x \rightarrow-2^{+} x^{2}-4 \quad=-\infty}
$$

Therefore, $x=-2$ is a vertical asymptote.
$\lim \frac{x^{2}}{2}=-\infty$ and $\lim _{2} \frac{x^{2}}{}=\infty$ $x \rightarrow 2^{-} x-4 \quad x \rightarrow 2^{+} x-4$

Therefore, $x=2$ is a vertical asymptote.
$\lim _{x \rightarrow-\infty}=-\infty$
${ }_{x \rightarrow 3^{-}}(x-3)^{3}$
$\lim _{x \rightarrow 3^{+}} \frac{2}{(x-3)^{3}}=\infty$
16. $f(x)=\frac{3 x}{x^{2}+9}$

No vertical asymptotes because the denominator is never zero.
17. $g(t)=\frac{t-1}{t^{2}+1}$

No vertical asymptotes because the denominator is never zero.
18. $h(s)=\frac{3 s+4}{s^{2}-16}=\frac{\square 3 s+4}{(s-4)(s+4)}$
$\lim ^{3 s+4}=-\infty$ and $\lim \underline{3 s+4} \infty$ $s \rightarrow 4^{-} \vec{s}^{2}-16 \quad s \rightarrow 4^{+} s^{2}-16=$

Therefore, $s=4$ is a vertical asymptote.
$\lim \frac{3 s+4}{=-\infty}$ and $\lim 3 s+4=\infty$
$s \rightarrow-4^{-} s^{2}-16 \quad s \rightarrow-4^{+} s^{2}-16$
Therefore, $s=-4$ is a vertical asymptote.
19. $f(x)=\frac{3}{x^{2}+x-2}=\frac{3}{3}=\frac{3}{(x+2)(x-1)}$

$$
\lim \bar{\square}=\infty \text { and } \lim
$$ $=-\infty$

$$
=(x-1)(x+1)(x+3)
$$

$$
=\square x-3
$$

$$
(x+1)(x-1)
$$

$x \rightarrow-2^{-} x^{2}+x-2$

$$
x \rightarrow-2^{+} x^{2}+x-2
$$

Therefore, $x=-2$ is a vertical asymptote.

$$
3
$$

3
$\lim _{x \rightarrow 1^{-}}=-\infty$ and $\lim _{x \rightarrow 1^{+}} \overline{x^{2}+x-2}=\infty$

Therefore, $x=1$ is a vertical asymptote.
20. $g(x)=\underline{x}^{3}-8=(x-2)\left(x^{2}+2 x+4\right)$

$$
\begin{aligned}
& \begin{array}{c}
x-2 \\
\\
= \\
x^{2}+2 x+4, x \neq 2
\end{array} \\
\lim _{x \rightarrow 2} g(x) & =4+4+4=12
\end{aligned}
$$

There are no vertical asymptotes. The graph has a hole at $x=2$.
21. $f(x)=\frac{x^{2}-2 x-15}{x^{3}-5 x^{2}+x-5}$

$$
\begin{array}{r}
\begin{array}{c}
x^{3}-5 x^{2}+x-5 \\
= \\
(x-5)(x+3) \\
(x-5)\left(x^{2}+1\right)
\end{array} \\
=\frac{x+3}{x^{2}+1}, x \neq 5 \\
5+3 \\
\lim _{x \rightarrow 5} f(x)=5^{2}+1=\frac{15}{26}
\end{array}
$$

There are no vertical asymptotes. The graph has a hole at $x=5$.
22. $h(x)=\frac{x^{2}-9}{x^{3}+3 x^{2}-x-3}$

$$
\square(x-3)(x+3)
$$

$\lim h(x)=-\infty$ and $\lim h(x)=\infty$

$$
x \rightarrow-1 \quad x \rightarrow-1
$$

Therefore, $x=-1$ is a vertical asymptote.
$\lim h(x)=\infty$ and $\lim h(x)=-\infty$

Therefore, $x=1$ is a vertical asymptote.
$\lim h(x)=-3-3 \quad=\square^{3}$
$x \rightarrow-3 \quad(-3+1)(-3-1) \quad 4$
Therefore, the graph has a hole at $x=-3$.
23. $f(x)=\frac{e^{-2 x}}{x-1}$
$\lim f(x)=-\infty$ and $\lim =\infty$
$x \rightarrow 1 \quad x \rightarrow 1$
Therefore, $x=1$ is a vertical asymptote.
24. $g(x)=x e^{-2 x}$

The function is continuous for all x. Therefore, there are no vertical asymptotes.
25. $h(t)=\frac{\ln \left(t^{2}+1\right)}{t+2}$
$\lim _{t \rightarrow-2^{-}} h(t)=-\infty$ and $\lim _{t \rightarrow-2^{+}}$

Therefore, $t=-2$ is a vertical asymptote.
26. $f(z)=\ln \left(z^{2}-4\right)=\ln \underset{(z+2)(z-2)_{f}}{ }$

$$
=\ln (z+2)+\ln (z-2)
$$

The function is undefined for $-2<z<2$.
Therefore, the graph has holes at $z= \pm 2$.
27. $f(x)=\frac{1}{e^{x}-1}$
$\lim _{x \rightarrow 0^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow 0^{+}} f(x)=\infty$
28. $f(x)=\ln (x+3)$
$\lim _{x \rightarrow-3} f(x)=-\infty$
Therefore, $x=-3$ is a vertical asymptote.
29. $f(x)=\csc \pi x=-1$
$\sin \pi x$

Let n be any integer.
$\lim f(x)=-\infty$ or ∞
$x \rightarrow n$
Therefore, the graph has vertical asymptotes at $x=n$.
30. $f(x)=\tan \pi x=\underline{\sin \pi x}$
$\cos \pi x$
$\underline{2 n+1}$
$\cos \pi x=0$ for $x=\widetilde{ }$, where n is an integer.
2
$\lim f(x)=\infty$ or $-\infty$
$x \rightarrow \frac{2 n+1}{2} \quad{ }_{-}^{2}-2$
Therefore, the graph has vertical asymptotes at
$x=\frac{2 n+1}{2}$.
31. $s(t)=\frac{t}{\sin t}$
$\sin t=0$ for $t=n \pi$, where n is an integer.
$\lim _{t \rightarrow n \pi} s(t)=\infty$ or $-\infty($ for $n \neq 0)$
Therefore, the graph has vertical asymptotes at
$t=n \pi$, for $n \neq 0$.
$\lim s(t)=1$
Therefore, the graph has a hole at $t=0$.
32. $g(\theta)=\frac{\tan \theta}{}=\underline{\sin \theta}$

$$
\theta \quad \theta \cos \theta
$$

$\cos \theta=0$ for $\theta=\frac{\pi}{2}+n \pi$, where n is an integer.
\lim

$$
\theta_{\theta \rightarrow \mathbb{\pi}_{+n \pi}} g(\theta)=\infty \text { or }-\infty
$$

2
Therefore, the graph has vertical asymptotes at $\theta=\frac{\pi}{2}+n \pi$.
$\lim g(\theta)=1$
34. $\lim \frac{x^{2}-2 x-8}{}=\infty$
${ }_{x \rightarrow-1^{-}}^{2} \quad x+1$
$\lim \frac{x-2 x-8}{}=-\infty$

$x \rightarrow-1^{+} \quad x+1$
Vertical asymptote at $x=-1$
35. $\lim _{x \rightarrow-1^{+}} \frac{x^{2}+1}{x+1}=\infty$
$\lim _{-1} \frac{x^{2}+1}{x+1}=-\infty$

Vertical asymptote at $x=-1$
$\ln x+1$
36. $\lim _{x \rightarrow-1^{+}} x+1=\infty$
$\left.\lim _{x \rightarrow 1^{-}} \frac{\ln \left(x^{2}\right.}{x+1}+1\right)=-\infty$

Vertical asymptote at $x=-1$
37. $\lim \frac{1}{}=\infty$
$x \rightarrow-1^{+} x+1$
-1
38. $\lim =-\infty$
$x \rightarrow 1^{-}(x-1)^{2}$
39. $\lim _{x \rightarrow 2^{+}} \frac{x}{x-2}=\infty$
40. $\lim \frac{x_{2}}{2}=\frac{4}{2}=1$
${ }_{x \rightarrow 2^{-}} x+44+42$
41. $\lim _{x \rightarrow-3} \frac{x+3}{\left(x^{2}+x-6\right)} \quad x+3$
${ }_{x \rightarrow-3} \overline{\left(x^{2}+x-6\right)}$

$$
\begin{aligned}
& x \rightarrow 3^{-}(x+3)(x-2) \\
= & \lim _{x \rightarrow-3^{-}} \frac{1}{x-2}=-\frac{1}{5}
\end{aligned}
$$

42. $\left.\lim _{\substack{ \\x \rightarrow-(12)+}} 4 x^{2}-4 x-3 x^{2}+x-1\right)=\lim _{\substack{x \rightarrow-(12)^{+}}} \frac{(3 x-1)(2 x+3)(2 x+1)}{=}$

Therefore, the graph has a hole at $\theta=0$.

$$
x^{2}-1
$$

33. $\lim _{x \rightarrow-1} x+1=\lim _{x \rightarrow-1}(x-1)=-2$

Removable discontinuity at $x=-1$
2

$$
=\lim _{x \rightarrow-(1 / 2)^{+}} \frac{3 x-1}{x-3}=\frac{5}{8}
$$

43. $\lim _{x \rightarrow 0^{-}} \square^{1+}{ }_{x} \square^{=-\infty}$
44. $\lim _{x \rightarrow 0^{+}} 6-\frac{1}{x^{3} \square}=-\infty$
45. $\quad \lim _{-}^{\square} \square^{2}+\quad 2 \square x+4 \square=-\infty$ $x \rightarrow-4 \square \quad-\square$
46. $\lim _{+\square}^{\square} \frac{x}{\square}+\cot \frac{\pi x \square}{\underset{2}{2} \rightarrow 3}=\infty$
47. $\lim \xrightarrow{2}=\infty$
$x \rightarrow 0^{+} \sin x$
48. $\lim \frac{-2}{=}=\infty$
$x \rightarrow(\pi /)^{+} \cos x$
49. $\lim _{x \rightarrow 8^{-}} \frac{e^{x}}{(x-8)^{3}}=-\infty$
50. $\lim _{x \rightarrow 4^{+}} \ln \left(x^{2}-16\right)=-\infty$
51. $\lim _{x \rightarrow(\pi)^{-}} \ln |\cos x|=\ln \cos 2 \mid=\ln 0=-\infty$
52. $\lim _{x \rightarrow 0^{+}} e^{-0.5 x} \sin x=1(0)=0$
x
53. $\lim _{x \rightarrow(y / 2)^{-}} x \sec \pi x=\lim _{x \rightarrow(1 / 2)^{-}} \frac{\cos \pi x}{}=\infty$
54. $\lim _{x \rightarrow(y / 2)^{+}} x^{2} \tan \pi x=-\infty$
55. $f(x)=x^{2}+x+1 \quad x^{2}+x+1$

$$
\frac{3}{x-1}=\frac{2}{(x-1)(x+x+1)}
$$

$\lim f(x)=\lim ^{\underline{1}}=\infty$
$\int_{x \rightarrow 1^{+}}$

$$
x^{3}-1 \quad(x-1)\left(x^{2}+x+1\right)
$$

56. $f(x)=\frac{}{x^{2}+x+1}=$ $x^{2}+x+1$ $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(x-1)=0$
57. $f(x)=\frac{1}{x^{2}-25}$ $\lim f(x)=-\infty$
$x \rightarrow 5$
58. $f(x)=\sec \frac{\pi x}{8}$
$\lim _{x \rightarrow 4^{+}} f(x)=-\infty$

59. A limit in which $f(x)$ increases or decreases without bound as x approaches c is called an infinite limit. ∞ is not a number. Rather, the symbol
$\lim _{x \rightarrow c} f(x)=\infty$
says how the limit fails to exist.
60. The line $x=c$ is a vertical asymptote if the graph of f approaches $\pm \infty$ as x approaches c.
61. One answer is

$$
f(x)=x-3=x-3
$$

$$
(x-6)(x+2) \quad x^{2}-4 x-12
$$

62. No. For example, $f(x)=\frac{1}{x^{2}+1}$ has no vertical asymptote.
63.

64. $m=\square \frac{m_{0}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}$
$\lim m=\quad \lim \sqrt{m_{0}^{-} /}=\infty$
$v \rightarrow c^{-} \quad v \rightarrow c^{-} \quad 1-\left(v^{2} c^{2}\right)$
65. (a)

(c) 2015 Ce	$\begin{gathered} 1 \\ \text { hgage } \end{gathered}$	ning. All	Righits Res	O.1. ${ }_{\text {erved. }}$	$\text { not } 01$	scanned.	$\begin{array}{\|c} 0.0001 \\ \text { copied or } \\ \hline \end{array}$		duplicated, or posted to a publicly accessible
$f(x)$	0.1585	0.0411	0.0067	0.0017	≈ 0	≈ 0	≈ 0		

$$
\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x}=0
$$

(b)

x	1	0.5	0.2	0.1	0.01	0.001	0.0001
$f(x)$	0.1585	0.0823	0.0333	0.0167	0.0017	≈ 0	≈ 0

(c)

x	1	0.5	0.2	0.1	0.01	0.001	0.0001
$f(x)$	0.1585	0.1646	0.1663	0.1666	0.1667	0.1667	0.1667
$\lim \underline{x-\sin x}=0.1667(16)$							

$x \rightarrow 0^{+} \quad x^{3}$
(d)

66. $\lim P=\infty$

As the volume of the gas decreases, the pressure increases.
67. (a) $r=\frac{\square 2(7)}{\sqrt{625-49} \quad 12 /}=\frac{7}{f t ~ s e c}$
(b) $r=\frac{2(15)}{\sqrt{625-225}}=\frac{3}{2} \mathrm{ft} \mathrm{sec}$
$2 x$
(c) $\lim _{x \rightarrow 25^{-}} \frac{}{\sqrt{625-x^{2}}}=\infty$
68. (a) Average speed $=\frac{\text { Total distance }}{\text { Total time }}$

$$
\begin{aligned}
50 & =\frac{2 d}{(d x)+(d y)} \\
50 & =\frac{2 x y}{y+x} \\
50 y+50 x & =2 x y \\
50 x & =2 x y-50 y \\
50 x & =2 y(x-25) \\
\frac{25 x}{x-25} & =y
\end{aligned}
$$

Domain: $x>25$
(b)

x	30	40	50	60
y	150	66.667	50	42.857

(c) $\lim _{x \rightarrow 25^{+}} \frac{25 x}{\sqrt{x-25}}=\infty$

As x gets close to $25 \mathrm{mi} / \mathrm{h}, y$ becomes larger and larger.
69. (a) $A=\frac{1}{2} b h-{ }_{2}^{1} r^{2} \theta \stackrel{1}{=}-(10)(10 \tan \theta) \frac{1}{2}-\mathcal{L}^{2}(10) \theta=50 \tan \theta-50 \theta$ Domain: $\square 0, \overline{2} \square$
(b)

θ	0.3	0.6	0.9	1.2	1.5
$f(\theta)$	0.47	4.21	18.0	68.6	630.1

(c) $\lim A=\infty$
$\theta \rightarrow \pi R^{-}$
70. (a) Because the circumference of the motor is half that of the saw arbor, the saw makes $17002 /=850$ revolutions per minute.
(b) The direction of rotation is reversed.
(c) $2(20 \cot \phi)+2(10 \cot \phi)$: straight sections. The angle subtended in each circle is $2 \pi-{ }_{\square}^{\square} \square_{2}^{\square} \underline{\pi}-\phi_{\square}^{\square \square}=\pi+2 \phi$.

So, the length of the belt around the pulleys is $20(\pi+2 \phi)+10(\pi+2 \phi)=30(\pi+2 \phi)$.
Total length $=60 \cot \phi+30(\pi+2 \phi)$
Domain: $\square 0, \overline{2} \square$
(d)

ϕ	0.3	0.6	0.9	1.2	1.5
L	306.2	217.9	195.9	189.6	188.5

(e)

(f) $\lim _{\phi \rightarrow(\pi / 2)^{-}} L=60 \pi \approx 188.5$
(All the belts are around pulleys.)
(g) $\lim _{\phi \rightarrow 0^{+}} L=\infty$
71. False. For instance, let
$f(x)=\frac{x^{2}-1}{x-1}$ or
$g(x)=\frac{x}{x^{2}+1}$.
72. True
73. False. The graphs of $y=\tan x, y=\cot x, y=\sec x$ and $y=\csc x$ have vertical asymptotes.
74. False. Let
$f(x)=\begin{array}{cc}\stackrel{1}{*} \\ \boldsymbol{x}^{2} & x \neq 0 \\ 3, & x=0 .\end{array}$

The graph of f has a vertical asymptote at $x=0$, but
$f(0)=3$.
75. Let $f(x)=\frac{1}{x^{2}}$ and $g(x)=\frac{1}{x^{4}}$, and $c=0$.

$x \rightarrow 0 x \quad x \rightarrow 0 x \quad x \rightarrow 0 \square x \quad x \square \quad x \rightarrow 0 \square \quad x$
76. Given $\lim f(x)=\infty$ and $\lim g(x)=L$:
(1) Difference:

Let $h(x)=-g(x)$. Then $\lim _{x \rightarrow c} h(x)=-L$, and $\lim _{x \rightarrow \underset{c}{\underset{~}{f}} f}(x)-g(x)_{f}=\lim _{x \rightarrow c}^{\underset{\sim}{~} f} f(x)+h(x)_{f}=\infty$, by the Sum Property.
(2) Product:

If $L>0$, then for $\varepsilon=L 2>/ 0$ there exists $\delta_{1}>0$ such that $\quad|g(x)-L|<L \mathcal{Z}$ whenever $0<|x-c|<\delta_{1}$.
So, $L \mathcal{R}<g(x)<3 L$ 2. Because $\lim \underset{x \rightarrow c}{f(x)}=\infty$ then for $M>0$, there exists $\delta_{2}>0$ such that
$f(x)>M(2 / L)$ whenever $|x-c|<\delta_{2}$. Let δ be the smaller of δ_{1} and δ_{2}. Then for $0<|x-c|<\delta$, you have $f(x) g(x)>M(2 L)(L \neq)=M$. Therefore $\lim _{x \rightarrow c} f(x) g(x)=\infty$. The proof is similar for $L<0$.
(3) Quotient: Let $\varepsilon>0$ be given.

There exists $\delta_{1}>0$ such that $f(x)>3 L \not q \varepsilon$ whenever $0<|x-c|<\delta_{1}$ and there exists $\delta_{2}>0$ such that
$|g(x)-L|<L \mathcal{2}$ whenever $0<|x-c|<\delta_{2}$. This inequality gives us $L \not \subset<g(x)<3 L 2$. Let δ be the smaller of δ_{1} and δ_{2}. Then for $0<|x-c|<\delta$, you have

$$
\left|\frac{g(x)}{f(x)}\right|<\frac{3 L 2}{3 L / 2 \varepsilon}=\varepsilon
$$

$$
g(\underline{x})
$$

Therefore, $\lim \quad=0$.

$$
x \rightarrow c f(x)
$$

77. Given $\lim _{x \rightarrow c} f(x)=\infty$, let $g(x)=1$. Then

$$
\begin{array}{ll}
\lim _{x \rightarrow c f(x)} \frac{g(x)}{}= & \text { by Theorem 1.15. } \\
& 1=0 . \text { Suppose } \lim f(x) \text { exists and equals } L .
\end{array}
$$

79. $f(x)=\frac{1}{-}$ is defined for all $x>3$.

$$
x-3
$$

Let $M>0$ be given. You need $\delta>0$ such that

$$
f(x)=\begin{gathered}
1 \\
x-3
\end{gathered}>M \text { whenever } 3<x<3+\delta .
$$

Then, $\lim \frac{1}{\varliminf_{\underline{1}} 1}=\underline{1}=0$.

$$
x \rightarrow c f(x) \quad \lim _{x \rightarrow c} f(x) \quad L
$$

This is not possible. So, $\lim _{x \rightarrow c} f(x)$ does not exist.

$$
\begin{aligned}
& \text { Equivalently, } x-3<\frac{1}{M} \text { whenever } \\
& x-3 \mid<\delta, x>3 .
\end{aligned}
$$

So take $\delta=\frac{1}{M}$. Then for $x>3$ and

$$
\begin{gathered}
|x-3|<\delta, \equiv \\
x-38 \\
x-3
\end{gathered}
$$

80. $f(x)=\frac{1}{x-5}$ is defined for all $x<5$. Let $N<0$ be given. You need $\delta>0$ such that $\quad f(x)=\frac{1}{x-5}<N$ whenever $5-\delta<x<5$. Equivalently, $x-5>\quad 1_{\text {whenever }}|x-5|<\delta, x<5$. Equivalently, $=1<-\frac{1}{\underline{\text { whenever }}}$
N
$|x-5|<\delta, x<5$. So take $\delta=-{ }^{1} \cdot \frac{\text { Note that }}{N} \delta>0$ because $N<0$. For $\quad|x-5|<\delta$ and
$x<5, \frac{1}{|x-5|}>\frac{1}{\delta}=-N$, and $\frac{1}{x-5}=-\frac{1}{|x-5|}<N$.

Review Exercises for Chapter 2

1. Calculus required. Using a graphing utility, you can estimate the length to be 8.3. Or, the length is slightly longer than the distance between the two points, approximately 8.25 .

2. Precalculus. $L=\sqrt{(9-1)^{2}+(3-1)^{2}} \approx 8.25$
3. $f(x)=\frac{x-3}{x^{2}-7 x+12}$

x	2.9	2.99	2.999	3	3.001	3.01	3.1
$f(x)$	-0.9091	-0.9901	-0.9990	$?$	-1.0010	-1.0101	-1.1111

$$
\lim _{x \rightarrow 3} f(x) \approx-1.0000 \text { (Actual limit is }-1 \text {.) }
$$

4. $f(x)=\frac{x+4-2}{\sqrt{x}}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	0.2516	0.2502	0.2500	$?$	0.2500	0.2498	0.2485

(Actual limit is $\overline{4}-$.)
$x \rightarrow 0$
$\lim f(x) \approx 0.2500 \quad 1$

$$
4 x-x^{2} \quad x(4-x)
$$

$$
\ln (t+2)
$$

5. $h(x)=$ \qquad
\qquad $=4-x, x \neq$
0

$$
\begin{array}{ll}
x & x
\end{array}
$$

6. $f(t)=$ \qquad
(a) $\lim h(x)=4-0=4$
$x \rightarrow 0$
(b) $\lim _{x \rightarrow-1} h(x)=4-(-1)=5$
(a) $\lim f(t)$ does not exist because $\lim f(t)=-\infty$
$t \rightarrow 0$
$t \rightarrow 0^{-}$
and $\lim _{t \rightarrow 0^{+}} f(t)=\infty$.
(b) $\lim _{t \rightarrow-1} f(t)=\frac{\ln 1}{-1}=0$
7. $\lim _{x \rightarrow 1}(x+4)=1+4=5$

Let $\varepsilon>0$ be given. Choose $\delta=\varepsilon$. Then for $0<\mid x-1 k \delta=\varepsilon$, you have
$|x-1| k \varepsilon$
$|(x+4)-5|<\varepsilon$
$|f(x)-L|<\varepsilon$.
8. $\lim _{x \rightarrow 9} \sqrt{x}=\sqrt{9}=3$

Let $\varepsilon>0$ be given. You need

$$
|\sqrt{x}-3|<\varepsilon \Rightarrow\left|\sqrt{x}^{x+3}\right||\sqrt{x}-3|<\varepsilon|\sqrt{x}+3| \Rightarrow|x-9 \nless \varepsilon| \sqrt{x}+3 \mid
$$

Assuming $4<x<16$, you can choose $\delta=5 \varepsilon$.
So, for $0<\mid x-9 \nless \delta=5 \varepsilon$, you have

$$
|x-9|<5 \varepsilon<\mid \sqrt{x}+3 \varepsilon
$$

$|\sqrt{x}-3|<\varepsilon$
$|f(x)-L|<\varepsilon$.
9. $\lim _{x \rightarrow 2}\left(-x^{2}=\right) 1-2^{2}=-3$

Let $\varepsilon>0$ be given. You need
$\left|1-x^{2}-(-3)\right|<\varepsilon \Rightarrow\left|x^{2}-4 \neq|x-2|\right| x+2|<\varepsilon \Rightarrow| x-2 \left\lvert\,<\frac{1}{\mid x+2} \varepsilon\right.$
Assuming $1<x<3$, you can choose $\delta=\underline{\varepsilon}$.
So, for $0<\left\lvert\, x-2 \nless \delta=\frac{\varepsilon}{5}\right.$, you have

$$
\begin{gathered}
|x-2|<\frac{\varepsilon}{5}<\frac{\varepsilon}{|x+2|} \\
|x-2||x+2|<\varepsilon \\
\left|x^{2}-4\right|<\varepsilon \\
\left|4-x^{2}\right|<\varepsilon \\
\left|\left(1-x^{2}\right)-(-3)\right|<\varepsilon \\
|f(x)-L|<\varepsilon .
\end{gathered}
$$

10. $\lim 9=9$. Let $\varepsilon>0$ be given. δ can be any positive $x \rightarrow 5$ number. So, for $0<|x-5|<\delta$, you have

$$
|9-9|<\varepsilon
$$

$|f(x)-L|<\varepsilon$.
11. $\lim x^{2}=(-6)^{2}=36$ $x \rightarrow-6$
${ }_{x \rightarrow-6}$
© 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible
13. $\lim _{x \rightarrow 6}(x-2)^{2}=(6-2)^{2}=16$
14. $\lim _{x \rightarrow-5} \sqrt{ } x-3=\sqrt{3}(-5)-3=\sqrt{3}-8=-2$
15. $\lim _{x \rightarrow 4} \frac{4}{x-1}=\frac{4}{4-1}=\frac{4}{3}$
12. $\lim _{x \rightarrow 0}(5 x-3)=5(0)-3=-3$
16. $\lim _{x \rightarrow 2} \frac{x}{x^{2}+1}=\frac{2}{2^{2}+1}=\frac{2}{4+1}=\frac{2}{5}$
17. $\lim \underline{t+2}=\lim \underline{-}=-\quad-$

$$
\begin{array}{cc}
t \rightarrow-2 t^{2}-4 & t \rightarrow-2 t-2 \\
t^{2}-16 & \underline{(t-4)(t+4)}
\end{array}
$$

18. $\lim _{t \rightarrow 4}$

$$
\begin{gathered}
t \rightarrow 4 t-4 \\
=\lim _{t \rightarrow 4}(t+4)=4+4=8
\end{gathered}
$$

19. $\lim \sqrt{\sqrt{x-3}-1}=\lim \sqrt{x-3-1} . x \sqrt{-3+1}$

$$
\begin{aligned}
x \rightarrow 4 \quad x-4 & \\
= & \lim _{x \rightarrow 4} \frac{(x-4}{(x-3)-1} \sqrt{x-3}+1 \\
& \sqrt{x \rightarrow 4}(x-4)(x-3+1) \\
= & \lim _{x \rightarrow 4} \frac{1}{\sqrt{x-3}+1}=\frac{1}{2}
\end{aligned}
$$

20. $\lim \frac{\sqrt{4+x}-2}{}=\lim \xrightarrow{\sqrt{4+x}-2} \cdot \underline{\sqrt{4+x}+2}=\lim \underline{\sqrt{1}}={ }^{1}$
$x \rightarrow 0 \quad x \quad x \quad \sqrt{4+x}+2 \quad x_{x \rightarrow 0} \quad 4+x+2 \quad 4$

21. $\lim (\underline{1 / \sqrt{1+s}})-1=\lim ^{\prime \prime}(1 / \sqrt{1+s} \not \underline{1} \cdot(\underline{1} \sqrt{1+s})+1$

$$
\underline{1-\cos x}=\lim ^{\square \underline{x} \square \underline{1-\cos x} \square}=(1)(0)=0
$$

23. $\lim \sin x$
24. $\lim e^{x-1} \sin \frac{\pi x}{}=e^{0} \sin \frac{\pi}{=}=1$
$\begin{array}{ll}x \rightarrow 1 & 2\end{array}$
25. $\lim \frac{\ln (x-1)^{2}}{}=\lim \frac{2 \ln (x-1)}{}$
$x_{x \rightarrow 2} \ln (x-1) \quad{ }_{x \rightarrow 2} \ln (x-1)=\lim _{x \rightarrow 2} 2=2$
26. $\lim \underline{4 x}=\underline{4(\pi 4)}=\pi$
$x \rightarrow(\pi / 4) \tan x \quad 1$

27. $\lim \underline{\sin (\pi 6)+\Delta x}-(12)=\lim \sin (\pi 6) \cos \Delta x+\cos (\pi 6) \sin \Delta x-(12)$

$$
\begin{aligned}
& \Delta x \rightarrow 0 \quad \Delta x \quad \Delta x \rightarrow 0 \\
& \underline{1}(\cos \Delta x-1) \\
& \text {. }+\lim \text {. } \quad=0+(1)= \\
& \begin{array}{lllllll}
\Delta x \rightarrow 0 & \Delta x & \Delta x \rightarrow 0 & 2 & \Delta x & 2 & 2
\end{array}
\end{aligned}
$$

28. $\lim \underline{\underline{\cos (\pi+\Delta x)} \underline{+1}}=\lim \underline{\cos \pi \cos \Delta x-\sin \pi \sin \Delta x+1}$

$$
\begin{aligned}
& \Delta x \rightarrow 0 \quad \Delta x \quad \Delta x \rightarrow 0 \quad \Delta x \\
& =\lim \xlongequal{\Upsilon(\cos \Delta x-1) Y_{-}} \quad \Upsilon \quad \pi \frac{\sin \Delta x}{\infty} \\
& \Delta x \rightarrow 0^{\prime-} \quad \Delta x \quad \infty \quad \lim \sin \quad \Delta x \\
& \leq \quad x_{x \rightarrow c^{\leq}} \quad f \quad \leq_{x \rightarrow c} \quad \varphi^{\prime \prime} \leq x \rightarrow c \quad \phi \\
& \underset{2}{=}-0-(0)(1)=0 \quad=(-6)(1)=-3
\end{aligned}
$$

29. $\lim \Upsilon f(x) g(x)=\Upsilon_{\lim f(x)} \Upsilon_{\lim g(x)}$
© 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible
$\Delta x \rightarrow 0 \leq$
f

$$
f(x) \quad \lim f(x) \quad-6
$$

30. \lim

$$
=\xrightarrow[x \rightarrow c]{ }=\quad=-12
$$

31. $\lim \underset{x}{ } f(x)+2 g(x)_{f}=\lim f(x)+2 \lim g(x)$
$x \rightarrow c \quad x \rightarrow c \quad x \rightarrow c$ $=-6+2\left(\frac{1}{2}\right)=-5$
32. $\lim \Upsilon f(x)^{2}={ }^{\Upsilon} \lim f(x)^{2}$ $x_{x \rightarrow c^{\leq}} \quad f \quad \leq_{x \rightarrow c} \quad \varnothing$
$(-6)^{2}=36$
=
33. $f(x)=\frac{\sqrt{2 x+9-3}}{x}$

The limit appears to be $\frac{1}{3}$

x	-0.01	-0.001	0	0.001	0.01
$f(x)$	0.3335	0.3333	$?$	0.3333	0.331

$\lim _{x \rightarrow 0} f(x) \approx 0.3333$
$\lim _{x \rightarrow 0} \frac{\sqrt{2 x+9-3}}{\sqrt{2 x+9}+3}=\lim _{2 x+9} \frac{\sqrt{2 x}+3 x+9)-9}{\sqrt{x}}=\lim _{x \rightarrow 2 x+9+3} \frac{2}{\sqrt{2 x}}=\frac{2}{\sqrt{2}}=\frac{1}{9+3}$
34. $f(x)=\frac{r_{\leq 1}(x+4)_{f}-(14) /}{x}$

The limit appears to be $-\frac{1}{16}$

x	-0.01	-0.001	0	0.001	0.01
$f(x)$	-0.0627	-0.0625	$?$	-0.0625	-0.0623

$$
\lim _{x \rightarrow 0} f(x) \approx-0.0625=-{ }^{1}-
$$

$$
\begin{array}{llll}
1 \\
-1 & -1 & 1
\end{array}
$$

$\lim \underline{x+4 \quad 4}=\lim 4 \underline{-(x+4)}=\lim \quad=-$

$$
\begin{array}{llll}
x \rightarrow 0 & x & x \rightarrow 0 \\
\hline
\end{array}(x+4) 4(x) \quad x \rightarrow 0(x+4) 4 \quad 16
$$

35. $f(x)=\lim _{x \rightarrow 0} \frac{20\left(e^{x / 2}-1\right)}{x-1}$

The limit appears to be 0 .
-3

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	0.8867	0.0988	0.0100	-0.0100	-0.1013	-1.1394
$\lim _{x \rightarrow 0} f(x) \approx 0.0000$						
$\lim _{x \rightarrow 0} \frac{\left.20\left(e^{x}\right)^{2}-1\right)}{x-1}=\frac{20\left(e^{0}-1\right)}{0-1}=\frac{0}{-1}=0$						

36. $f(x)=\frac{\ln (x+1)}{x+1}$

The limit appears to be 0 .

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	-0.1171	-0.0102	-0.0010	$?$	0.0010	0.0099	0.0866

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x) \approx 0.0000 \\
& \lim _{x \rightarrow 0} \frac{\ln (x+1)}{x+1}=\frac{\ln 1}{1}=0=\frac{0}{1}
\end{aligned}
$$

$$
\underline{s}(4)-\underline{s}(t)
$$

37. $v=\lim _{t \rightarrow 4} \quad 4-t$

$$
\begin{aligned}
& =\lim _{t \rightarrow 4} \frac{\Upsilon \leq-4.9(16)+250}{} f-\Upsilon \leq-4.9 t^{2}+t \\
& =\lim _{t \rightarrow 4} \frac{4.9\left(t^{2}-16\right)}{4-t} \\
& =\lim _{t \rightarrow 4} \frac{4.9(t-4)(t+4)}{4-t} \\
& =\lim _{t \rightarrow 4} \leq-4.9(t+4)=-39.2 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

The object is falling at about $39.2 \mathrm{~m} / \mathrm{sec}$.
38. $-4.9 t^{2}+250=0 \Rightarrow t={ }^{50} \frac{\sec }{7}$

When $a=\frac{50}{7}$, the velocity is

$$
=-70 \mathrm{~m} / \mathrm{sec}
$$

The velocity of the object when it hits the ground is about $70 \mathrm{~m} / \mathrm{sec}$.
39. $\lim _{\underline{1}}^{1}=\frac{1}{-}$
40. $\lim x-6=\lim \quad x-6$

$$
\begin{aligned}
& \lim \frac{s(a)-s(t)}{}=\lim \frac{z-4.9^{2} a+250}{a-t} \frac{-4.9 t^{2}+250}{} t- \\
& t \rightarrow a \quad a-t \quad{ }^{t \rightarrow a} \\
& =\lim 4.9\left(t_{2}-a_{2}\right) \\
& { }_{t \rightarrow a} \quad a-t \\
& =\lim _{t \rightarrow a} \frac{4.9(t-a)(t+a)}{a-t} \\
& =\lim _{t \rightarrow a} \underline{\underline{L}}-4.9(t+a) \\
& =-4.9(2 a) \quad \square a=\frac{50}{\square} \square
\end{aligned}
$$

$x \rightarrow 3^{+} x+3$	$3+36$
	$=\lim _{x \rightarrow 6^{-}} \frac{x^{2}-36}{} \frac{1}{x \rightarrow 6^{-}(x-6)(x+6)}$
	$=\frac{1}{12}$

41. $\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x}-2}{x-4}=\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x}-2}{x-4} \cdot \frac{x+2}{\sqrt{x}+2}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 4^{-}} \frac{x-4}{(x-4)(\sqrt{+} 2)} \\
& =\lim _{(x+2} \frac{1}{\sqrt{ }} \\
& ={ }_{x \rightarrow 4^{-}} \\
& =-
\end{aligned}
$$

42. $\lim \left|\frac{x-3}{}\right|=\lim \underline{-(x-3)}=-1$
$x \rightarrow 3^{-} \quad x-3 \quad x \rightarrow 3^{-} \quad x-3$
43. $\lim _{x \rightarrow 2^{-}}(2 \sharp x \sharp+1)=2(1)+1=3$
44. $\lim \sharp x-1 \sharp$ does not exist. There is a break in the graph $x \rightarrow 4$
at $x=4$.
45. $\lim _{x \rightarrow 2} f(x)=0$
46. $\lim g(x)=1+1=2$
$x \rightarrow 1^{+}$
47. $\lim h(t)$ does not exist because $\lim h(t)=1+1=2$
$t \rightarrow 1 \quad{ }_{t \rightarrow 1^{-}}$
and $\lim h(t)=\underline{1}(1+1)=1$.

$$
t \rightarrow 1^{+} \quad 2
$$

48. $\lim f(s)=2$
$s \rightarrow-2$
49. $f(x)=x^{2}-4$ is continuous for all real x.
50. $f(x)=x^{2}-x+20$ is continuous for all real x.
51. $f(x)=\frac{4}{}$ has a nonremovable discontinuity at $x-5$
$x=5$ because $\lim _{x \rightarrow 5} f(x)$ does not exist.
52. $f(x)=\frac{1}{x^{2}-9}=\frac{1}{(x-3)(x+3)}$
has nonremovable discontinuities at $x= \pm 3$
because $\lim _{x \rightarrow 3} f(x)$ and $\lim _{x \rightarrow-3} f(x)$ do not exist.
53.

$$
\begin{aligned}
& f(x)=\frac{x}{2}=\square x=\square 1 \\
& x-x \neq 0 \\
& x-x-1) \quad(x-1)(x+1)
\end{aligned}
$$

has nonremovable discontinuities at $x= \pm 1$
because $\lim f(x)$ and $\lim f(x)$ do not exist,

$$
x \rightarrow-1 \quad x \rightarrow 1
$$

and has a removable discontinuity at $x=0$ because $\lim f(x)=\lim =-1$.
$x \rightarrow 0 \quad x \rightarrow 0(x-1)(x+1)$
54. $f(x)=\frac{x+3}{2}$

$$
x-3 x-18
$$

$$
\begin{aligned}
& =\frac{x+3}{(x+3)(x-6)} \\
& =\frac{1}{x-6}, x \neq-3
\end{aligned}
$$

has a nonremovable discontinuity at $x=6$ because $\lim _{x \rightarrow 6} f(x)$ does not exist, and has a
removable discontinuity at $x=-3$ because

$$
\lim _{x \rightarrow-3} f(x)=\lim _{x \rightarrow-3} \frac{1}{x-6}=-\frac{1}{9}
$$

55. $f(2)=5$

Find c so that $\lim _{x \rightarrow 2^{+}}(c x+6)=5$.

$$
\begin{aligned}
c(2)+6 & =5 \\
2 c & =-1 \\
c & =-\frac{1}{2}
\end{aligned}
$$

56. $\lim _{x \rightarrow 1^{+}}(x+1)=2$
$\lim _{x \rightarrow 3^{-}}(x+1)=4$
Find b and c so that $\lim _{x \rightarrow 1^{-}}\left(x^{2}+b x+c\right)=2$ and $\quad \lim _{x \rightarrow 3^{+}}\left(x^{2}+b x+c\right)=4$.

Consequently you get $\quad 1+b+c=2$ and $9+3 b+c=4$.
Solving simultaneously, $\quad b \quad=-3$ and $\quad c=4$.
57. $f(x)=-3 x^{2}+7$

Continuous on $(-\infty, \infty)$
58. $f(x)=\frac{4 x^{2}+7 x-2}{x+2}=\frac{(4 x-1)(x+2)}{x+2}$

Continuous on $(-\infty,-2) \cup(-2, \infty)$. There is a removable discontinuity at $x=-2$.
59. $f(x)=\sqrt{x-4}$

Continuous on $[4, \infty)$
60. $f(x)=\sharp x+3 \#$
$\lim _{x \rightarrow k^{+}} \sharp x+3 \sharp=k+3$ where k is an integer.
$\lim _{x \rightarrow k^{-}} \sharp x+3 \sharp=k+2$ where k is an integer.
Nonremovable discontinuity at each integer k
Continuous on $(k, k+1)$ for all integers k
61. $g(x)=2 e^{k \neq 4 /}$ is continuous on all intervals $(n, n+1)$, where n is an integer. g has nonremovable discontinuities at each n.
62. $h(x)=-\left.2 \ln 5\right|^{-x}$

Because $\$-x \mid>0$ except for $x=5, h$ is continuous on $(-\infty, 5) \cup(5, \infty)$.
63. $f(x)=\frac{3 x^{2}-x-2}{x-1}=\frac{(3 x+2)(x-1)}{x-1}$

$$
\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}(3 x+2)=5
$$

Removable discontinuity at $x=1$
Continuous on $(-\infty, 1) \cup(1, \infty)$
64. $f(x)=\begin{array}{ll}* 5-x, & x \leq 2 \\ \bullet 2 x-3, & x>2\end{array}$

$$
\lim (5-x)=3
$$

$x \rightarrow 2^{-}$
$\lim _{x \rightarrow 2^{+}}(2 x-3)=1$
Nonremovable discontinuity at $x=2$

Continuous on $(-\infty, 2) \cup(2, \infty)$
65. f is continuous on $[1,2] \cdot f(1)=-1<0$ and
$f(2)=13>0$. Therefore by the Intermediate Value

Theorem, there is at least one value c in $(1,2)$ such that $2 c^{3}-3=0$.
66. $A=5000(1.06)^{\sharp 2 / \#}$
67. $\left.f(x)=\frac{x^{2}-4}{\mid x-2}=(x+2) \right\rvert\, \stackrel{\Upsilon_{x-2 \mid} \mid \infty}{\mid x-2 \not \supset}$
(a) $\lim _{x \rightarrow 2^{-}} f(x)=-4$
(b) $\lim _{x \rightarrow 2^{+}} f(x)=4$
(c) $\lim _{x \rightarrow 2} f(x)$ does not exist.
68. $f(x)=\sqrt{(x-1) x}$
(a) Domain: $(-\infty, 0] \cup[1, \infty)$
(b) $\lim _{x \rightarrow 0^{-}} f(x)=0$
(c) $\lim _{x \rightarrow 1^{+}} f(x)=0$

3
69. $f(x)=\frac{}{x}$
$\lim _{x \rightarrow 0^{-} x}{ }^{3}=-\infty$
$\lim _{x \rightarrow 0^{+} x} \frac{3}{}=\infty$

Therefore, $x=0$ is a vertical asymptote.
70. $f(x)=\frac{5}{(x-2)^{4}}$
$\lim _{x \rightarrow 2^{-}} \frac{5}{(x-2)^{4}}=\infty=\lim _{x \rightarrow 2^{+}} \frac{5}{(x-2)^{4}}$
Therefore, $x=2$ is a vertical asymptote.
71. $f(x)=\frac{x^{3}}{x^{2}-9}=\frac{x}{(x+3)(x-3)}$
$\lim \frac{x^{3}}{2}=-\infty$ and $\lim \frac{x^{3}}{}=\infty$
$x \rightarrow-3-x-9 \quad x \rightarrow-x^{2}-9$
Therefore, $x=-3$ is a vertical asymptote.

$$
\lim _{x \rightarrow-3-} \frac{x^{3}}{x^{2}-9}=-\infty \text { and } \lim _{x \rightarrow 3^{+}} \frac{x^{3}}{x^{2}-9}=\infty
$$

Therefore, $x=3$ is a vertical asymptote.
72. $\left.f(x)=\frac{6 x}{\frac{36-x^{2}}{6 x}}=-\frac{6 x}{(x+6)(x-6)}-6 x\right)$
$\lim _{-36-x^{2}}=\infty$ and $\lim _{x \rightarrow-6^{+}} \overline{36-x^{2}}=-\infty$ $x \rightarrow-6$

Nonremovable discontinuity every 6 months

Therefore, $x=-6$ is a vertical asymptote.
$\lim _{x \rightarrow 6^{-}} \frac{6 x}{36-\overline{x^{2}}}=\infty$ and $\lim \frac{6 x}{x \rightarrow 6^{+} 36-x^{2}}=-\infty$
Therefore, $x=6$ is a vertical asymptote.

$$
\begin{aligned}
& \longrightarrow \quad 2 x+1 \\
& x^{2}-64 \quad(x+8)(x-8) \\
& \lim \underline{2 x+1}=-\infty \text { and } \lim \xrightarrow{2 x+1} \equiv \infty
\end{aligned}
$$

Therefore, $x=-8$ is a vertical asymptote.
$\lim _{x \rightarrow 8^{-} x}{ }^{2}-64=-\infty$ and $\lim _{x \rightarrow 8^{+} x^{2}-64}^{\underline{2 x+1}}=\infty$

Therefore, $x=8$ is a vertical asymptote.
1
74. $f(x)=\csc \pi x=\overline{\sin \pi x}$
$\sin \pi x=0$ for $x=n$, where n is an integer.
$\lim _{x \rightarrow n} f(x)=\infty$ or $-\infty$
Therefore, the graph has vertical asymptotes at $x=n$.
75. $g(x)=\ln \left(25-x^{2}\right)=\ln \underset{(5+x)}{(5-x)}$
$\lim _{x \rightarrow 5} \ln 25-x^{2}=0$
$x \rightarrow 5$
$\lim _{x \rightarrow-5} \ln \left(5-x^{2}=\right)$
Therefore, the graph has holes at $x= \pm 5$. The graph does not have any vertical asymptotes.
76. $f(x)=7 e^{-3 *}$
$\lim 7 e^{-3 / x}=\infty$
$x \rightarrow 0^{-}$
Therefore, $x=0$ is a vertical asymptote.
77. $\lim \xrightarrow{x^{2}+2 x+1}=-\infty$
$x \rightarrow 1^{-} \quad x-1$
78. $\lim \xrightarrow{x}=\infty$
$x \rightarrow(1 / 2)^{+} 2 x-1$

$$
\begin{aligned}
& \frac{x+1}{x \rightarrow-1^{+} x^{3}+1}=\lim _{x \rightarrow-1^{+} x^{2}-x+1}=\begin{array}{l}
1 \\
- \\
x+1
\end{array} \\
& \lim _{x \rightarrow-1^{-}}=\lim _{x^{4}-1}=-{ }_{x \rightarrow-1^{-}\left(x^{2}+1\right)(x-1)}=-
\end{aligned}
$$

81. $\lim \quad \underline{1}=-\infty$

82. $\lim _{x \rightarrow 2^{ \pm}} \frac{1}{\sqrt[3^{x}]{x^{2}}-x^{4}}=-\infty$
83. $\lim _{x \rightarrow 0^{+}} \frac{\sin 4 x}{}=\lim _{+} r \underline{4}=\sin 4 x_{0} \downarrow \sqrt{4}$ $5 x \quad \begin{array}{llll}x \rightarrow 0 & 5 & 4 x & 5\end{array}$
$\sec x$
84. $\lim _{x \rightarrow 0^{+} x}=\infty$
85. $\lim \frac{\csc 2 x}{}=\lim \frac{1}{}=\infty$
$x \rightarrow 0^{+} \quad x \quad x \rightarrow 0^{+} x \sin 2 x$
86. $\lim _{x \rightarrow 0^{-}} \frac{\cos ^{2} x}{x}=-\infty$
87. $\lim _{x \rightarrow 0^{+}} \ln (\sin x)=-\infty$
88. $\lim 12 e^{-2 / x}=\infty$
89.

$x \rightarrow 0^{-}$
89. $C=\frac{80,000 p}{100-p}, 0 \leq p<100$
(a) $C(15) \approx \$ 14,117.65$
(b) $C(50)=\$ 80.000$
(c) $C(90)=\$ 720,000$
(d) $\lim _{p \rightarrow 100^{-}} \frac{80,000 p}{100-p}=\infty$
90. $f(x)=\frac{\tan 2 x}{x}$
(a)

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	2.0271	2.0003	2.0000	2.0000	2.0003	2.0271

$\lim _{x \rightarrow 0} \frac{\tan 2 x}{x}=2$
(b) Yes, define $f(x)=\begin{array}{ll}\dot{t} \frac{\tan 2 x}{x}, & x \neq 0 \\ \hat{*} 2, & x=0\end{array}$.

Now $f(x)$ is continuous at $x=0$.

Problem Solving for Chapter 2

1. (a) Perimeter $\triangle P A O=\sqrt{x^{2}+(y-1)^{2}}+\sqrt{x^{2}+y^{2}}+1$

$$
=\sqrt{x^{2}+\left(x^{2}-1\right)^{2}}+\sqrt{x^{2}+x^{4}}+1
$$

Perimeter $\triangle P B O=\sqrt{(x-1)^{2}+y^{2}}+\sqrt{x^{2}+y^{2}}+1$

$$
=\sqrt{(x-1)^{2}+x^{4}}+\sqrt{x^{2}+x^{4}}+1
$$

(b) $r(x)=\frac{\sqrt{x^{2}+\left(x^{2}-1\right)^{2}}+\sqrt{x^{2}+x^{4}}+1}{\sqrt{(x-1)+x^{4}}+\sqrt{x^{2}+x^{4}}+1}$

x	4	2	1	0.1	0.01
Perimeter $\triangle P A O$	33.02	9.08	3.41	2.10	2.01
Perimeter $\triangle P B O$	33.77	9.60	3.41	2.00	2.00
$r(x)$	0.98	0.95	1	1.05	1.005

(c) $\lim r(x)=\stackrel{1+0+1}{=} \quad{ }_{-}^{2}=1$
$x \rightarrow 0^{+} \quad 1+0+1 \quad 2$
2. (a) Area $\triangle P A O={ }^{1} \underline{b} h={ }^{1}(\underline{1})(x)=^{x}$ -

$$
\text { Area } \triangle P B O=\stackrel{2}{1}_{\underline{1}^{2}} b h={ }^{1}(1)(y)=\underline{y}=\underline{x}^{2}
$$

$$
\begin{array}{llll}
2 & 2 & 2 & 2
\end{array}
$$

(b) $a(x)=\frac{\text { Area } \triangle P B O}{\text { Area } \triangle P A O}=\frac{x^{2} / 2}{x / 2}=x$

x	4	2	1	0.1	0.01
Area $\triangle P A O$	2	1	12	120	1200
Area $\triangle P B O$	8	2	12	1,200	120,000
$a(x)$	4	2	1	110	1100

(c) $\lim _{x \rightarrow 0^{+}} a(x)=\lim _{x \rightarrow 0^{+}} x=0$
3. (a) There are 6 triangles, each with a central angle of $60^{\circ}=\pi 3$. So,

$$
\text { Areahexagon }=6^{\Upsilon \pm}{ }_{b h}=6^{\Upsilon 1}(1) \sin ^{\frac{\pi}{2}}=33 \sqrt{ } \approx 2.598 \text {. }
$$

Error $=$ Area $($ Circle $)-$ Area $($ Hexagon $)=\pi-\frac{33}{2} \approx 0.5435$
(b) There are n triangles, each with central angle of $\theta=2 \pi n$./So,
(c)

n	6	12	24	48	96
A_{n}	2.598	3	3.106	3.133	3.139

(d) As n gets larger and larger, $2 \pi \eta$ approaches 0 . Letting $x=2 \pi n, A_{n}$

$$
=\frac{\sin (2 \pi \not n)}{2 / n}=\frac{\sin (2 \pi n)}{(2 \pi / n)} \pi=\frac{\underline{\sin x}}{x} \pi
$$ which approaches $(1) \pi=\pi$.

4. (a) $\begin{aligned} \text { Slope }= & \frac{4-0}{3-0}=4 \\ \underline{3} & \underline{3}\end{aligned}$
(b) Slope $=-$ Tangent line: $y-4=-(x-3)$
4

$$
y=-\frac{4}{4} x+\frac{25}{4}
$$

(c) Let $Q=(x, y)=\left(x, \sqrt{25-x^{2}}\right)$

$$
m_{x}=\frac{\sqrt{25-x^{2}-4}}{x-3}
$$

(d) $\lim _{x \rightarrow 3} m_{x}=\lim _{x \rightarrow 3} \frac{\sqrt{25-x^{2}}-4}{\frac{\sqrt{25-x^{2}}+4}{25-x^{2}}+4}$

$$
\begin{aligned}
& x-3 \\
& =\lim \quad 25-x-16 \\
& { }^{x \rightarrow 3} \overline{(x-3)\left(\sqrt{25-x^{2}}+4\right)} \\
& =\lim -(3-x)(3+x) \\
& \lim _{x \rightarrow 3}(x-3)\left(\sqrt{25-x^{2}}+4\right) \\
& -(\underline{3+x}) \quad-6 \quad \underline{3} \\
& =\lim \quad=- \\
& x \rightarrow 3 \sqrt{25-x^{2}}+4 \quad 4+4 \quad 4
\end{aligned}
$$

This is the slope of the tangent line at P.
5. (a) Slope $=-\frac{12}{5}$
(b) Slope of tangent line is

$$
\begin{aligned}
y+12 & =\frac{5}{12}(x-5) \\
y & =\frac{5}{} x-\frac{169}{12} \text { Tangent line } \\
& 12
\end{aligned}
$$

(c) $Q=(x, y)=\left(x,-\sqrt{169-x^{2}}\right)$

$$
\begin{aligned}
m_{x}= & \frac{-\sqrt{69-x^{2}+12}}{x-5} \\
& 12-\sqrt{169-x^{2}} \cdot 12+\sqrt{169-x^{2}}
\end{aligned}
$$

(d) $\lim _{x \rightarrow 3} m_{x}=\lim _{x \rightarrow 3} \frac{x-5}{12+\sqrt{169-x^{2}}}$

$=\lim _{x \rightarrow 5}^{(-5)} \frac{\left(\frac{x-25}{x}\right)}{\sqrt{12})}$

$$
=\lim _{x \rightarrow 5} \frac{(x+5)}{12+\sqrt{169-x^{2}}}=\frac{10}{12+12}=\frac{5}{=} 12
$$

This is the same slope as part (b).

Letting $a=3$ simplifies the numerator.

So, $\lim \underline{\sqrt{3+b x}-\sqrt{3}}=\lim \frac{b x \sqrt{ }}{}=\lim \quad b$

$$
x_{x \rightarrow 0} \quad x \quad \begin{aligned}
& x \rightarrow 0 x(\sqrt{3+b x}+\quad 3)
\end{aligned} x_{x \rightarrow 0} \overline{\sqrt{3+b x}+\sqrt{3}}
$$

Setting $\frac{b}{\sqrt{\Gamma} \sqrt{\Gamma}}=\sqrt{3}$, you obtain $b=6$. So, $a=3$ and $b=6$.
7. (a) $3+x^{13} / \geq 0$

$$
\begin{aligned}
x^{13} & \geq-3 \\
x & \geq-27
\end{aligned}
$$

Domain: $x \geq-27, x \neq 1$ or $[-27,1) \cup(1, \infty)$
(b)

(c) $\lim _{x \rightarrow-27^{+}} f(x)=\frac{\sqrt{3+(-27)^{1 / 3}}-2}{-27-1}=\frac{-2}{-28}=\frac{1}{14}$

$$
\approx 0.0714
$$

8. $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(a^{2}-2\right)=a^{2}-2$
$\lim f(x)=\lim \quad=a_{\square}$ because $\lim \frac{\tan x}{}=1 \square$
$x \rightarrow 0^{+} \quad x \rightarrow 0^{+} \tan x \quad \square \quad x \rightarrow 0 \quad x \quad \square$
Thus, $\quad a^{2}-2=a$

$$
a^{2}-a-2=0
$$

$$
(a-2)(a+1)=0
$$

$$
a=-1,2
$$

9. (a) $\lim _{x \rightarrow 2} f(x)=3: g, g_{1} \quad 4$
(b) f continuous at 2: g_{1}
(c) $\lim _{x \rightarrow 2^{-}} f(x)=3: g_{1}, g_{3}, g_{4}$
10.

(a) $f\left(\frac{1}{4}\right)=\# 4 \#=4$
$f(3)=\left.\right|_{3} ^{-}$iun $_{3}=0 f$
(1) $=\# \# \#=1$
(b) $\lim _{x \rightarrow 1^{-}} f(x)=1$
$\lim _{x \rightarrow 1^{+}} f(x)=0$
$\lim _{x \rightarrow 0^{-}} f(x)=-\infty$
$\lim f(x)=\quad x \rightarrow 0^{+}$
∞
(c) f is continuous for all real numbers except $x=0, \pm 1, \pm{ }_{2} \pm \frac{1}{3} \cdots$

$$
\text { 12. (a) } \begin{aligned}
v^{2} & =\frac{192,000}{r}+v_{0}^{2}-48 \\
\frac{192,000}{r} & =v^{2}-v^{2}+_{0} 48 \\
r & =\frac{192,000}{v^{2}-v_{0}^{2}+48} \\
\lim _{v \rightarrow 0} r & =\frac{192,000}{48-v_{0}^{2}}
\end{aligned}
$$

Let $v_{0}=\sqrt{48}=4 \sqrt{3} \mathrm{mi} / \mathrm{sec}$.

$$
\begin{array}{lll}
2 & 1920 & 2
\end{array}
$$

(b)

$$
\begin{aligned}
v & =\square+v_{0}-2.17 \\
\frac{1920}{r} & =v^{2} \underline{r} v_{0}^{2}+2.17 \\
r & =\frac{1920}{v^{2}-v_{0}^{2}+2.17}
\end{aligned}
$$

$\lim _{v \rightarrow 0} r=\frac{1920}{2.17-v_{0}{ }^{2}}$
Let $v_{0}=\sqrt{2.17} \mathrm{mi} / \mathrm{sec} \quad(\approx 1.47 \mathrm{mi} / \mathrm{sec})$.
(c) $\quad r=\frac{10,600}{v^{2}-v_{0}^{2}}+6.99$
$\lim r=\underline{10,600}$
$v \rightarrow 0 \quad 6.99-v_{0}{ }^{2}$
Let $v_{0}=\sqrt{6.99} \approx 2.64 \mathrm{mi} \mathrm{sec}$.
Because this is smaller than the escape velocity for Earth, the mass is less.
13. (a)

(b) (i) $\lim P_{a, b}(x)=1$ $x \rightarrow a^{+}$
(ii) $\lim P_{a, b}(x)=0$
$x \rightarrow a^{-}$
(iii) $\lim P(x)=0$

$$
x \rightarrow b^{+} a, b
$$

(iv) $\lim _{x \rightarrow b^{-}} P_{a, b}(x)=1$
(c) $P_{a, b}$ is continuous for all positive real numbers except $x=a, b$.
(d) The area under the graph of U, and above the x-axis, is 1 .
14. Let $a \neq 0$ and let $\varepsilon>0$ be given. There exists
$\delta_{1}>0$ such that if $0<\mid x-0 \nless \delta_{1}$ then
$|f(x)-L|<\varepsilon$. Let $\delta=\delta_{1} \not q \mid$. Then for
$0<x \Perp 0<\delta \quad=\delta_{1} \quad a l$, you have
$|x|<\frac{\delta_{1}}{a \mid} \quad / \mid$
$\mid a x<\delta_{1}$
$\mid f(a x)-L<\varepsilon$.
As a counterexample, let

$$
a=0 \text { and } f(x)=\begin{array}{ll}
* \neq 0 \\
\vee 2, & x=0
\end{array}
$$

Then $\lim f(x)=1=L$, but
$\lim _{x \rightarrow 0} f(a x)=\lim _{x \rightarrow 0} f(0)=\lim _{x \rightarrow 0} 2=2$.

