Solutions Manual for Basic Principles and Calculations in Chemical Engineering, 8th Edition by Himmelblau ISBN 0132346605 9780132346603

Full Link Download:

https://testbankpack.com/p/solutions-
manual-for-basic-principles-and-
calculations-in-chemical-engineering-
8th-edition-by-himmelblau-isbn-
0132346605-9780132346603/
ExamNo. 6 (Open
Book, 2 hours)
PROBLEM 1 (20\%)
A high pressure line canies natural gas (all methane) at $1.0,000 \mathrm{kPa}$ and $40^{\circ} \mathrm{C}$. How would you calculate the volume of the gas under these conditions that is equivalent to $0.03 \mathrm{~m}^{3}$ of $\mathbf{C H}$ at standard conditions using an equation of state? Select one equation other than van der Waal's equation, and list it on your solution page. Give a list of steps to complete the calculations. Include all the proper equations, and include a list of data involved, but you do not have to obtain a solution for the volume.

PROBLEM 2 (20\%)
From the following data estimate the vapor pressure of sulfur dioxide at $100^{\circ} \mathrm{C}$.

| Temperature $\left({ }^{\circ} \mathrm{C}\right)$ | -10 | 6.3 | 32.1 | 55.5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Vapor pressure (atm) | 1 | 2 | 5 | 10 |

PROBLEM 3 ($\mathbf{2 0 \%}$)
dry air
conditions of $90^{\circ} \mathrm{F}$ and $29.42 \mathrm{in} . \mathrm{Hg}$ absolute passes through a small blower and is bubbled up through water so that

Dry atmospheric air at
the ambient
the air leaving the water is saturated. The temperature of the water is constant at $80^{\circ} \mathrm{F}$, and because of the back pressure in the system, the pressure in the vapor space in the top of the bottle is 2.7 in .

HO greater than atmospheric pressure. The bottle is weighted after the air is blown for 2 hours, 13 minutes, 47 seconds, and the decrease in weight was found to be 8.73 lb . What was the hourly rate of flow of air at ambient conditions in [\mathbb{t} ?

PROBLEM 4 (20\%)
A vessel with a volume of $283 \mathrm{~m}^{\circ}$ contains a mixture of nitrogen and acetone at $44.0^{\circ} \mathrm{C}$ and 100.0 kPa . The dew point of the mixture is $20.0^{\circ} \mathrm{C}$ and the relative saturation of the acetone in the mixture is 58.39%. The vapor pressure of acetone at $44.0^{\circ} \mathrm{C}$ is 65.35 kPa and it is 24.62 kPa at $\mathbf{0 .} 0^{\circ} \mathrm{C}$.
a. What is the partial pressure of acetone vapor in the original mixture, in kPa ?

Solutions Chapter 2

\begin{tabular}{|c|c|c|}
\hline 2.1.1 \& \begin{tabular}{l}
(a) \\
(b) \\
(c) \\
(d) \\
(e) \\
() \\
(g) \\
(h)
\end{tabular} \& \begin{tabular}{|l|}
\hline \(\mathrm{N} / \mathrm{mm}\) or nm (nanometer) \\
\({ }^{\circ} \mathrm{C} / \mathrm{M} / \mathrm{s}\) \\
100 kPa \\
273.15 K \\
\(1.50 \mathrm{~m}, 45 \mathrm{~kg}\) \\
\(25 \mathrm{O} €\) \\
\(\mathrm{~J} / \mathrm{s}\) \\
250 N
\end{tabular} \\
\hline 2.2.1 \& a.

b. \&

\hline 2.2.2 \& a.
b.
b.
c. \&

\hline
\end{tabular}

Solutions Chapter 2

2.2.3 a Basis: 60.0 mile/hr

b. Basis: 50.0 lb ,/(in)

c. Basis: $6.20 \mathrm{~cm} /(\mathrm{hr})$

2.2.4
$20 \mathrm{hp} \left\lvert\, \frac{0.7457 \mathrm{~kW}}{1 \mathrm{hp}}-14.91 \mathrm{WW}\right.$
$\overline{\mathrm{No}}$, not enough power even at 100% efficiency; $68 \mathrm{~kW}=91.2 \mathrm{hp}$.
2.2 .5

None: 20 gal more are needed
2.2.6 Let t, be the time for A to paint one house; $t p$ for B

A does a house in 5 hours, or 1 house $/ 5 \mathrm{hr}$. B does one house in 3 hours, or 1 house $/ 3 \mathrm{hr}$.

1 house $\left\lvert\, t \underline{A_{-}} \underline{h r}+\begin{array}{l}\text { house lt } \underline{B} \underline{h r}-1 \text { ouse } \\ 5 \mathrm{hr}\end{array}\right.$

Also $\mathrm{t},=\mathbf{t} \%$ so that $\frac{3}{15}{ }^{1},+\frac{5}{15} t$, $=1$ or $\frac{8}{15},=1$
$,-{ }_{8} \mathrm{nr}=I,=1875 \mathrm{hr}$ or $[1125 \mathrm{mi}]$

Solutions Chapter 2

2.2.7	(a) mass, because masses arc balanced (b) weight, because the force exerted on the mass pushes a spring
2.2.8	$\begin{aligned} & \left.\frac{20.0 \mathrm{~g}}{(\mathrm{~m})(\mathrm{s})}\left\|\frac{11 \mathrm{~b},}{453.6 \mathrm{~g})}\right\| \frac{0.3048 \mathrm{~m} /}{\mathbf{I f}}\left\|\frac{3600 \mathrm{~s} \mathrm{~s}}{1 \mathrm{hr}}\right\| \frac{1(\mathrm{lb}, \mathbf{6 s})}{32.174(\mathrm{lb}, \mathbf{(f b})} \right\rvert\, \frac{1(\mathrm{hr})}{(3600)^{\prime} \mathrm{s}} \\ & =\mathrm{h} 1.16 \times \mathbf{\alpha + \frac { (\mathbf { b } , (\mathrm { hp } } { \mathbf { f } ! }} \end{aligned}$
$2.2 .9$	
$2.2 .10$	Basis: 1 lb HO b. Let $\mathrm{A}=$ area of the pipe and $\mathrm{v}=$ water velocity. The flow rate is $\mathrm{q}=\mathrm{Av}=1\left(\mathrm{H}+\mathrm{D}_{>}^{2} ل_{\mathrm{I} v}\right)$
2.2.11	Rate of energy input for heating $=\mathrm{PW}-\mathrm{PE}=5090-4818=272 \mathrm{Btu} / \mathrm{hr}$

2.2.12	The object has a mass of 21.3 kg (within a precision of $\pm .1 \mathrm{~kg}$). The weight is the force used to support the mass.	
2.2 .13	In American Engineering System $\begin{aligned} \text { Power } & =\mathrm{FV} \\ & =\frac{800 \mathrm{lbr} 1300 \mathrm{ft}}{1}-\min =24 \mathrm{O}(\mathrm{bu} / \mathrm{mm}-727 \%, \end{aligned}$ In SI $\text { Power }=\frac{4000 \mathrm{~N} 11.5 \mathrm{~m}}{1}-\frac{1}{\mathrm{~s}} \left\lvert\, \begin{aligned} & 1(\mathrm{watt})(\mathrm{s}) \\ & 1(\mathrm{~N})(\mathrm{m}) \end{aligned}\right.$ =- @oo@watts	
$2.2 .14$ 2.2.15	$\begin{aligned} \mathrm{KE} & \\ & \frac{1}{2} \mathrm{mv}^{2} \\ & = \\ & \\ & \\ & \\ & \\ & -\left[\begin{array}{ll} \mathrm{g} \mathbf{i} 11 \mathbf{B} \end{array}\right. \end{aligned}$ Basis: 10 tons at $6 \mathrm{ft} / \mathrm{s}$	
	$\begin{aligned} & 1-{ }^{\bullet} \mathrm{me} 1\left[20 \mathrm{OO},[/ 6 \mathbf{f})^{2} \\| \mathrm{S}^{2} \mathrm{Mb},\right)-\left[1,2 \mathrm{co@u} \mathrm{u}_{-}\right] \\ & \square\left\|-\frac{\mathrm{s}}{2}\right\|^{\beta 22 \mathrm{OOb},)}+ \end{aligned}$	
2.2.16		

Solutions Chapter 2

2.3.1	
2.3.2	
2.3.3	No. The net units on the right $\left[\begin{array}{c}\mathrm{m}^{3} \\ \mathrm{~m}^{3} d \\ \mathrm{~s}^{4}\end{array}\right]^{1 / 2}$ side of ${ }_{\mathrm{m}}^{3}$ the equation are

Consequently, the formula will not yield $80.8 \mathrm{~m} / \mathrm{s}$, presumably in the formula the g should be g . for use in the AE system.

Solutions Chapter 2

$$
\begin{aligned}
& \mathrm{S}=\mathrm{\eta}(\underset{(4) \overline{1} \bar{\sim}}{ })^{2}=3.4 \mathbf{1 \times 1 0}{ }^{4} \cdot \mathrm{ft}^{2} \\
& \mathrm{Q}=(3600)(0.61)(3.41 \times 10 \sim) \mathbf{J}(2)(3579) \mathrm{g} \mathbf{J} 43.87=154 \sim \mid
\end{aligned}
$$

Solutions Chapter 2

$$
\begin{aligned}
& \text { 2.3.5 a. } \quad Z \quad=1+\rho B+\rho^{2} C+\rho^{3} D \\
& \text { Units } \\
& \text { B } \quad \mathrm{cm} / \mathrm{g} \mathrm{~mol} \\
& \text { C } \quad(\mathrm{cm} / \mathrm{g} \mathrm{~mol} \\
& \text { D }(\mathrm{cm} / \mathrm{g} \mathrm{~mol}) \\
& \text { b. } \quad \mathrm{Z} \quad=1+\rho^{*} \mathrm{~B}^{*}+\left(\rho^{*}\right)^{2} \mathrm{C}^{*}+\left(\rho^{*}\right)^{3} \mathrm{D}^{*} \\
& \text { Units } \\
& \text { B } \quad \mathrm{F} / \mathrm{lb} \text {, } \\
& \text { C (e/1-2 }
\end{aligned}
$$

If Bis the original coefficient, B* is obtained by multiplying B by conversion factors. Let MW is the molecular weight of the compound.

$$
\begin{aligned}
& \text { 1-i } \\
& \text { D. }\left(\frac{\left.\mathrm{ft}^{3}\right)^{3}}{\mathrm{lb}_{\mathrm{m}}}=\frac{\text { D } \frac{4.096 \times 10^{-6}}{\mathrm{MW}}}{}\right.
\end{aligned}
$$

