Solutions Manual for Basic Principles and Calculations in Chemical Engineering, 8th Edition by **Himmelblau ISBN** 0132346605 9780132346603

Full Link Download:

https://testbankpack.com/p/solutionsmanual-for-basic-principles-andcalculations-in-chemical-engineering-8th-edition-by-himmelblau-isbn-0132346605-9780132346603/

> ExamNo.6 (Open Book, 2 hours)

PROBLEM 1 (20%)

A high pressure line canies natural gas (all methane) at 1.0,000 kPa and 40°C. How would you calculate the volume of the gas under these conditions that is equivalent to 0.03 m^3 of CH at standard conditions using an equation of state? Select one equation other than van der Waal's equation, and list it on your solution page. Give a list of steps to complete the calculations. Include all the proper equations, and include a list of data involved, but you do not have to obtain a solution for the volume.

PROBLEM 2 (20%)

From the following data estimate the vapor pressure of sulfur dioxide at 100°C.

Temperature (°C)	-10	1	6.3	32.1	55.5
Vapor pressure (atm)	1		2	5	10

PROBLEM 3 (20%)

0 0

dry air

Dry atmospheric air at

the ambient

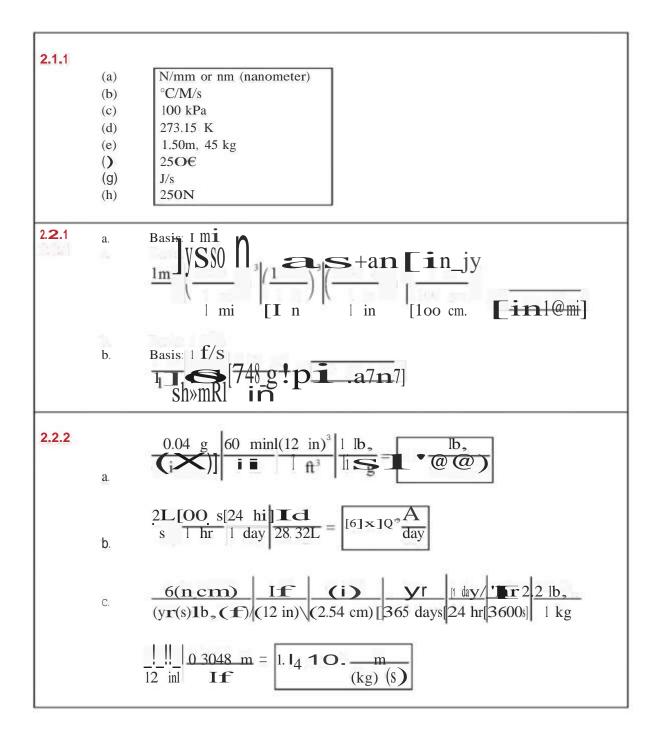
conditions of 90° F and 29.42 in. Hg absolute passes through a small blower and is bubbled up through water so that the air leaving the water is saturated. The temperature of the water is constant at 80° F, and because of the back pressure in the system, the pressure in the vapor space in the top of the bottle is 2.7 in.

HO greater than atmospheric pressure. The bottle is weighted after the air is blown for 2 hours, 13 minutes, 47 seconds, and the decrease in weight was found to be 8.73 lb. What was the hourly rate of flow of air at ambient conditions in [t]?

PROBLEM 4 (20%)

A vessel with a volume of 2.83 m⁺ contains a mixture of nitrogen and acetone at 44.0°C and 100.0 kPa. The dew point of the mixture is 20.0°C and the relative saturation of the acetone in the mixture is 58.39%. The vapor pressure of acetone at 44.0°C is 65.35 kPa and it is 24.62 kPa at $\mathbf{O}.0^{\circ}$ C.

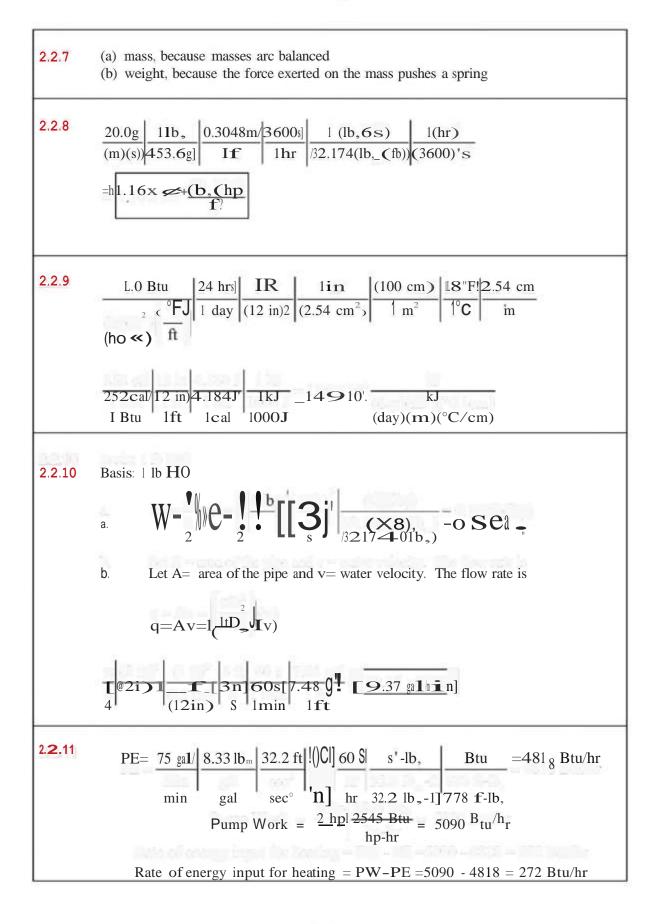
a.	What is the partial pressure of acetone vapor in the original mixture, in kPa?
b.	How many kg moles of acetone does the original mixture contain?
C.	If the nitrogen-acetone mixture is cooled with the volume remaining at 2.83 m [*] constant so that 27.0 percent of the acetone condenses, what is the final temperature of the mixture in °C? H ₂ O
	xxviii

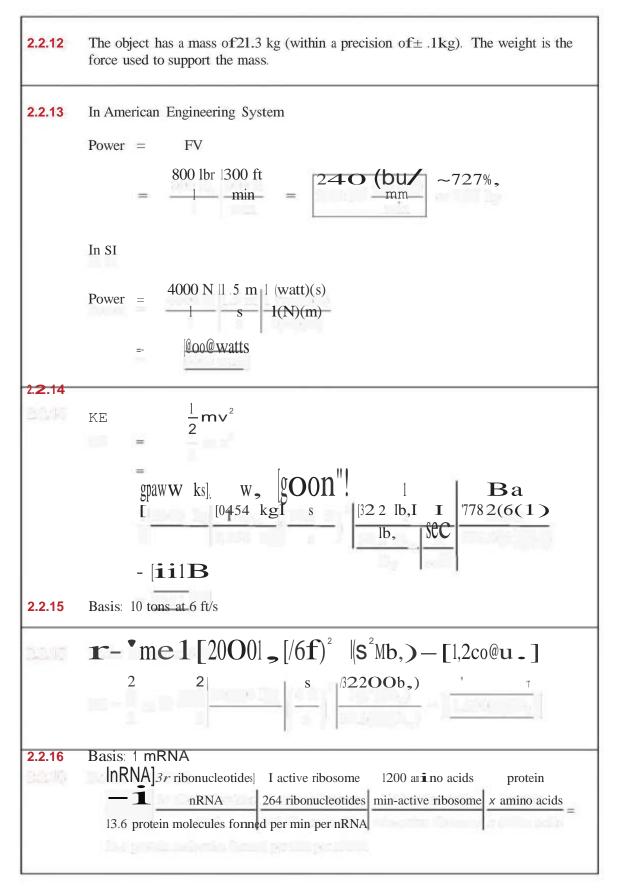

2000 - Q102 I

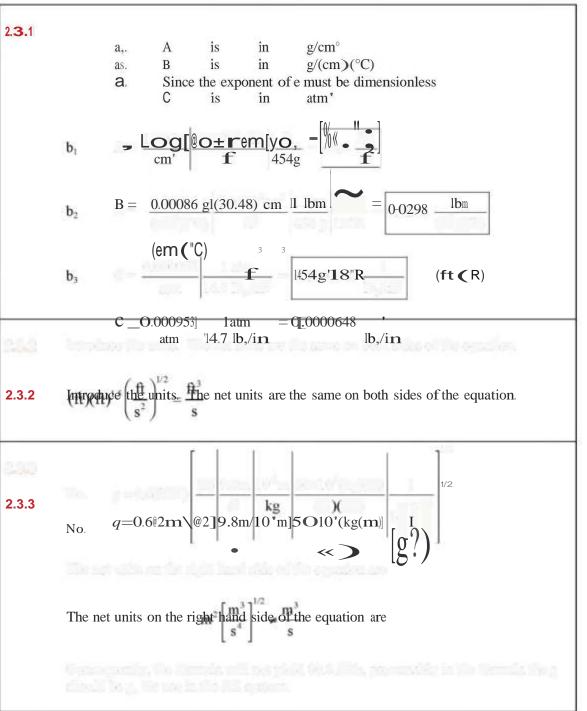
A result which a weighter of 2.5 is not constraint and the object to the section of the first section of the section of the

- a. This is far and a reserve of any less than is for existing a finite state of the State of
- Zentracem Zeneration of another first tile of the interface matched.

If the situaget contents infrance is such that the volume metabolity of 200 m³.
constants of the 200 years of the metabolic contents of the balls of the local terms of the second secon

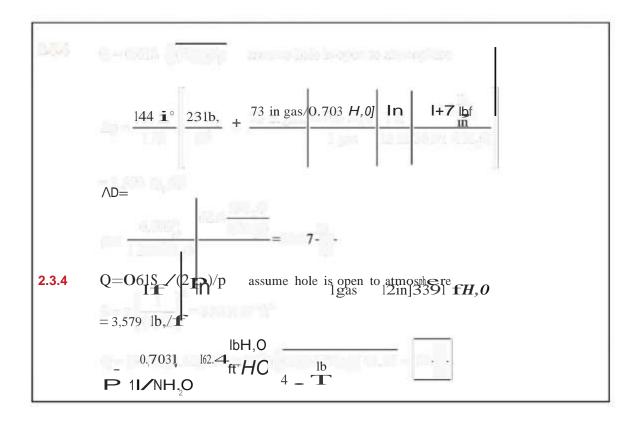

Solutions Chapter 2




Solutions Chapter 2

2.2.3 a Basis: 60.0 mile/hr $\mathbf{6me}[g2son] \mathbf{T}^{\mathsf{r}} - [\[\] \mathbf{s} \mathbf{f} \mathbf{]}$ 1 mile 3600 sec hr sec b. Basis: $50.0 \text{ lb}_{2}/(\text{in})$ $(100 \text{ cm})^2 = -13.52 \text{ x} \cdot 10 \cdot 8_2$ 50.0/lbm 1454 g 1 kg 1(in)2 (in) 11b '1000 g1(2.54 cm) m (1 m) c. Basis: 6.20 cm/(hr)6.20 cm 11 m 10⁹nm $1(hr)^{2}$ 4.79 nm (hr) '100 cm I m (3600 sec) sec 2.2.4 20 hp]O.7457 kW _ 14.91 1w 1 hp [No], not enough power even at 100% efficiency; 68 kW = 91.2 hp. 2.2.5 1hr [220O gal[1000 mile - [4190.s gal]]525 mile 1 hr 2000 gal 1000 mile 1 hr 4210 gal 1 hr 475 mile (20 gal) None: 20 gal more are needed. Let t, be the time for A to paint one house; tp for B 2.2.6 A does a house in 5 hours, or 1 house/5 hr. B does one house in 3 hours, or 1 house/3 hr. 1 house $\left|\frac{\mathbf{L}_{\underline{A}} \mathbf{h}\mathbf{r}_{\underline{+}}}{\mathbf{h}\mathbf{r}_{\underline{+}}}\right|^{1}$ house $\left|\frac{\mathbf{L}_{\underline{B}} \mathbf{h}\mathbf{r}_{\underline{-}}}{\mathbf{h}\mathbf{r}_{\underline{-}}}\right|^{1}$ house 5hr 3hr Also t, =t% so that $\frac{3}{15}$ 1, + $\frac{5}{15}$ t, =1 or $\frac{8}{15}$,=1 nr = 1, = 1875 hr or [1125 mi]

Solutions Chapter 2



Consequently, the formula will not yield 80.8 m/s, presumably in the formula the g should be g. for use in the AE system.

Solutions Chapter 2

$$S = \iint \left(\frac{-1}{(4)12}\right)^2 = 3.41 \times 10^{-4} \text{ft}^2$$

 $Q = (3600)(0.61)(3.41 \times 10^{-})J(2)(3579)gJ(43.87 = 154 - 10^{-})$

```
2.3.5
                                                                                                                                                               Ζ
                                                                                                                                                                                                                      = 1 + \rho B + \rho^2 C + \rho^3 D
                                                                                       a.
                                                                                                                                                                                                                                                                 Units
                                                                                                                                                                  В
                                                                                                                                                                                                                                          cm/g mol
                                                                                                                                                                  С
                                                                                                                                                                                                                                          (cm/g mol
                                                                                                                                                                                                                                            (cm/g mol)
                                                                                                                                                                  D
                                                                                                                                                                                                                                             = 1 + \rho^* B^* + (\rho^*)^2 C^* + (\rho^*)^3 D^*
                                                                                                                                                                  Ζ
                                                                                       b.
                                                                                                                                                                                                                                                                 Units
                                                                                                                                                                  В
                                                                                                                                                                                                                                             f/lb,
                                                                                                                                                                    С
                                                                                                                                                                                                                                            (e/1 -
                                                                                                                                                                                                                                            (ft/1b, "
                                                                                                                                                                  D
                                                                                       If Bis the original coefficient, B* is obtained by multiplying B by conversion factors.
                                                                                       Let MW is the molecular weight of the compound.
                                                                                          \mathbf{B} \stackrel{\text{ft}^3}{=} \underset{\text{B}, \text{gmol}}{\text{asg}} \cdot \underset{\text{gmol}}{\overset{1 \text{ ft}}{=} \underset{\text{MW g}}{\overset{1 \text{ ft}}{=} \underset{\text{I b}, \overset{1 \text{ ft}}{=} \underset{\text{MW g}}{\overset{1 \text{ ft}}{=} \underset{\text{I b}, \overset{1 \text{ ft}}{=} \underset{\text{MW g}}{\overset{1 \text{ ft}}{=} \underset{\text{I b}, \overset{1 \text{ ft}}{=} \underset{\text{MW g}}{\overset{1 \text{ ft}}{=} \underset{\text{I b}, \overset{1 \text{ ft}}{=} \underset{\text{MW g}}{\overset{1 \text{ ft}}{=} \underset{\text{I b}, \overset{1 \text{ ft}}{=} \underset{\text{MW g}}{\overset{1 \text{ ft}}{=} \underset{\text{I b}, \overset{1 \text{ ft}}{=} \underset{\text{MW g}}{\overset{1 \text{ ft}}{=} \underset{\text{I b}, \overset{1 \text{ ft}}{=} \underset{\text{MW g}}{\overset{1 \text{ ft}}{=} \underset{\text{I b}, \overset{1 \text{ ft}}{=} \underset{\text{MW g}}{\overset{1 \text{ ft}}{=} \underset{\text{I b}}{\overset{1 \text{ ft}}{=} \underset{\text{MW g}}{\overset{1 \text{ ft}}{=} \underset{\text{MW g}}{\overset{1 \text{ ft}}{=} \underset{\text{I b}}{\overset{1 \text{ ft}}{=} \underset{\text{ft}}{\overset{1 \text{ ft}}{=} \underset{\text{ft}}{\overset{1 \text{ ft}}{=} \underset{\text{MW g}}{\overset{1 \text{ ft}}{=} \underset{\text{I b}}{\overset{1 \text{ ft}}{=} \underset{\text{ft}}{\overset{1 \text{ ft}}{=} \underset{\text{ft}}{\overset{1 \text{ ft}}{=} \underset{\text{ft}}}{\overset{1 \text{ ft}}{=} \underset{\text{ft}}{\overset{1 \text{ ft}}{=} \underset{\text{ft}}}{\overset{1 \text{ ft}}}{\overset{1 \text{ ft}}{=} \underset{\text{ft}}}{\overset{1 \text{ ft}}{=} \underset{\text{ft}}}{\overset{1 \text{ ft}}{=} \underset{1 \text{ ft}}}{\overset{1 \text{ ft}}{=} \underset{ft}}{\overset{1 \text{ ft}}{=} \underset{1 \text{ ft}}{\overset{1 \text{ ft}}{=} \underset{1 \text{ ft}}{\overset{1 \text{ ft}}}{\overset{1 \text{ ft}}{=} \underset{1 \text{ ft}}{\overset{1 \text{ ft}}{\overset{1 \text{ ft}}}{\overset{1 \text{ ft}}{\overset{1 \text{ ft}}}{\overset{1 \text{ ft}}{\overset{1 \text{ ft}}}{\overset{1 \text{ ft}}{\overset{1 \text{ ft}}}{\overset{1 \text{ ft}}{\overset{1
                                                                                                 D. (ft<sup>3</sup>) = D 4.096x10<sup>-6</sup>
                                                                                                                                 lb<sub>m</sub>
                                                                                                                                                                                                                                                                       MW
```