Solutions Manual for Biocalculus Calculus Probability and Statistics for the Life Sciences 1st Edition by Stewart Day ISBN 13051140359781305114036

Full download at:

https://testbankpack.com/p/solutions-manual-for-biocalculus-calculus-probability-and-statistics-for-the-life-sciences-1st-edition-by-stewart-day-isbn-1305114035-9781305114036/

$2 \square$ LIMITS

2.1 Limits of Sequences

1. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers.
(b) The terms approach 8 as becomes large. In fact, we can make as close to 8 as we like taking large.
(c) The terms become large as becomes large. In fact, we can make large as we like by taking suriently large. 2. (a) From Definition 1, a convergent sequence is a sequence for which $\lim _{\square \rightarrow \infty}$ exists. Examples: $\{1 \square\{1\}$ \qquad
(b) A divergent sequence is a sequence for which $\lim _{\square \rightarrow \infty}$ does not exist. Examples: $\left\{\begin{array}{l}\text { \} }\{\text { sin } \\ \underline{4}\end{array}\right.$
2. The graph shows a decline in the world record for the men's $100-$ meter sprint as \square increases. It is tempting to say that this sequence will approach zero, however, it is important to remember that the sequence represents data from a physical competition. Thus, the sequence likely has a nonzero limit as $\exists \rightarrow \infty$ since human physiology will ultimately limit how fast a human can sprint 100meters. This means that there is a certain world record time which athletes can never surpass.
3. (a) If the sequence does not have a limit as $\exists \rightarrow \infty$, then the world record distances for the women's hammer throw may increase indefinitely as $\square \rightarrow \infty$. That is, the sequence is divergent.
(b) It seems unlikely that the world record hammer throw distance will increase indefinitely. Human physiology will ultimately limit the maximum distance a woman can throw. Therefore, barring evolutionary changes to human physiology, it seems likely that the sequence will converge.
4.

1	0.2000	6	0.3000
2	0.2500	7	0.3043
3	0.2727	8	0.3077
4	0.2857	9	0.3103
5	0.2941	10	0.3125

The sequence appears to converge to a number between $0[30$ and $0[35$. Calculating the limit gives

from the data.

6.	4		
1	5.0000	6	3.7500
2	3.7500	7	3.7755
3	3.6667	8	3.7969
4	3.6875	9	3.8148
5	3.7200	10	3.8300

The sequence appears to converge to a number between $\cong[9$ and 410 . Calculating the limit gives $\lim _{\square \rightarrow \infty}=\lim _{\square \rightarrow \infty} 4-\frac{2}{\square}+\frac{3}{\square 2}=$
$4-0+0=4$ So we expect the sequence to converge to 4 as we plot more terms.

72 CHAPTER 2

7. | ■ |
| :--- |

؛ 2.8683
t 3.0878
02
72.9415
83.0390
$9 \quad 2.9740$
$10 \quad 3.0173$
8.
$|\square| \square \mid$

1	0.5000
2	0.8284
3	1.0981
4	1.3333
5	1.5451

0

The sequence appears to converge to approximately $3{ }^{\|}$Calculating the limit gives $\lim _{\square+\infty}=\lim _{\square \rightarrow \infty} 3+\square_{3}=3+0=3$ This agrees with the value predicted from the data.

The sequence does not appear to converge since the values of do not approach a fixed number. We can verify this by trying to calculate the limit:

The denominator approaches 0 while the numerator remains constant so the limit does not exist, as expected.
11. $=\underline{2} \frac{2}{2}+\frac{-11}{2}-=2+1-\ldots 1$ so $\lim _{2}=\lim _{\rightarrow \infty} 2+\lim _{\rightarrow \infty} 1-\lim _{-\infty}-\frac{1}{2} \quad=2+0 \quad-0=2$ Converges

the sequence diverges.

denominator approaches 0 while the numerator remains constant. Diverges

Converges
23. $=\ln \left(2 \quad \frac{2}{2}+1\right)-\ln \left(\frac{-2}{\square}+1\right)=\ln \quad \frac{2}{\square}+1^{\frac{\square}{\square}}=\ln \quad 2+1 \quad \begin{aligned} & 2 \\ & 2\end{aligned} \rightarrow \ln 2$ as $\rightarrow \infty$. Converges

$$
2+1 \quad 1+1
$$

25. $=\frac{+{ }_{-}^{-}}{2-1}=\frac{1+{ }_{-}^{-2}}{-L_{-}} \rightarrow 0$ as $\rightarrow \infty$ because $1+{ }^{-2} \rightarrow 1$ and $--\quad \rightarrow \infty$. Converges

1	1.0000	5	1.9375	$\rightarrow \infty$	$\rightarrow \infty$
2	1.5000	6	1.9688	$\lim _{\rightarrow \infty} \quad+1=$	
3	1.7500	7	1.9844	$\lim _{\rightarrow \infty}$	

$\begin{array}{llll}4 & 1.8750 & 8 & 1.9922\end{array}$

$$
\text { Therefore, } \lim _{\square+\infty}=2 \text {. }
$$

74 a CHAPTER 2 LIMITS
28.

\llcorner	\square	L_{1}	\square
1	2.0000	5	0.7654
2	0.3333	6	0.7449
3	0.8889	7	0.7517
4	0.7037	8	0.7494
\square	\square	\square	\square

The sequence appears to converge to $0\lceil 75$ Assume the limit exists so that
$\lim _{\square \rightarrow \infty} \square_{+1}=\lim _{\square \rightarrow \infty} \square$ then $\square_{+1}=1-\frac{1}{3} \Rightarrow$
$\lim _{\square \rightarrow \infty} \square_{+1}=\lim _{\square \rightarrow \infty} 1-\frac{1}{-} \square^{-} \Rightarrow \square=1-\frac{1}{\square} \square \Rightarrow=34$

Therefore, $\lim _{\square \rightarrow \infty}=\frac{3}{4}$.
The sequence is divergent.

30. | 2 | 3.0000 | |
| ---: | ---: | ---: |
| 3 | 5.0000 | |
| 4 | 9.0000 | |
| \square | \square | |
| | | |
| | 1 | 1.0000 |
| 2 | 2.2361 | |
| 3 | 3.3437 | |
| 4 | 4.0888 | |
| 5 | 4.5215 | |
| 6 | 4.7547 | |

23.0000
$3 \quad 1.5000$
$4 \quad 2.4000$
$5 \quad 1.7647$
$6 \quad 2.1702$
71.8926

32. | 8 | 2.0742 |
| :---: | :---: |
| $\square \square$ | \square |

13.0000
25.0000
33.0000
$4 \quad 5.0000$
53.0000
65.0000
73.0000
$8 \quad 5.0000$

The sequence appears to converge to 2 Assume the limit exists so that
The sequence appears to converge to 5 Assume the limit exists so that

$\square=\overline{5} \Rightarrow \square^{2}=5 \square \square(-5)=0 \quad \Rightarrow \quad \square 0$ or $\square 5$
Therefore, if the limit exists it will be either 0 or 5 . Since the first 8 terms of the sequence appear
t_{0} approach 5 , we surmise that $\lim _{\square \rightarrow \infty} \quad-\quad=5$.

F
$\lim _{\square \rightarrow \infty} \square_{\square}+1=\lim _{\square \rightarrow \infty} \square \square \quad$ then $\square_{\square}+\frac{6}{1+\square} \quad \Rightarrow \lim _{\square \rightarrow \infty} \square_{\square}=\lim _{\square} \frac{6}{\rightarrow \infty 1+\square} \quad \Rightarrow$ $\square=\frac{6}{1+\square} \quad \square+-6=0 \quad \Rightarrow(\square \quad \square 2)(+3)=0 \quad \Rightarrow \quad \square=-3$ or $\quad \square=2$

Therefore, if the limit exists it will be either -3 or 2 , but since all terms of the sequence are positive, we see that $\lim _{\square \rightarrow \infty}=2$.

The sequence cycles between 3 and 5 thence it is divergent.

ப ப

The sequence appears to converge to $2[$ Assume the limit exists so that
33.
$1 \quad 1.0000$
1.7321
31.9319
$4 \quad 1.9829$
$5 \quad 1.9957$
$6 \quad 1.9989$

7	19997
8	1.9999

34.

1	100.0000
2	50.1250
3	25.3119
4	13.1498
5	7.5255
6	5.4238
7	5.0166
8	5.0000

 $\square=\sqrt{2+} \Rightarrow \square_{2}-\square_{2}=0 \quad \Rightarrow(\square)(+1)=0 \quad \Rightarrow \quad \square-1$ or $\square=2$

Therefore, if the limit exists it will be either -1 or 2 , but since all terms of the sequence are positive, we see that $\lim _{\square \rightarrow \infty}=2$.

The sequence appears to converge to 5AAssume the limit exists so that

35. (a) The quantity of the drug in the body after the first tablet is 100 mg . After the second tablet, there is 100 mg plus 20% of the first $100-\mathrm{mg}$ tablet, that is, $[100+100(020)]=120 \mathrm{mg}$. After the third tablet, the quantity is $[100+120(020)]=124 \mathrm{mg}$.
(b) After the $\stackrel{\text { th }}{ }_{+}+1$ tablet, there is 100 mg plus 20% of the $\stackrel{\text { th }}{ }$ tablet, so that $\bar{\sim}+1=100 \quad+(\overline{0} 20)$ -
(c) From Formula (6), the solution to $\square_{+1}^{+1}=100+(020) \square 0=0 \mathrm{mg}$ is

$$
\square \square=(020)(0)+100 \frac{\square 1020 \square}{1-020}=080 \quad \square \quad(1-020)=125\left(1 \rrbracket_{020}\right)
$$

(d) In the long run, we have $\square \lim _{\rightarrow \infty}=\lim _{\rightarrow \infty} 125(1-020 \quad)=125 \quad \square \lim _{\rightarrow \infty} 1-\lim _{\rightarrow \infty} 020 \quad=125(1-0)=125 \mathrm{mg}$
36. (a) The concentration of the drug in the body after the first injection is 1.5 mg mL . After the second injection, there is 1.5 mg mL plus 10% (90% reduction) of the concentration from the first injection, that is, $[15+15(010)]=165 \mathrm{mg} \mathrm{mL}$. After the third injection, the concentration is $[154165(010)]=1665 \mathrm{mg} \mathrm{mL}$.
(b) The drug concentration is $01^{\square}\left(90 \%\right.$ reduction) just before the ${ }^{t h}+1$ injection, after which the concentration increases by 1.5 mg mL . Hence $\mathbb{m}_{+1}=01$ [-4.15
(c) From Formula (6), the solution to $\square \quad+1=01 \square+15 \square_{0}=0 \mathrm{mg} \mathrm{mL}$ is

$$
\left.\begin{array}{cccc}
1 & 01 & 15 & \underline{5} \\
=(01)(0)+15 & 1-01 & =09 & (1
\end{array}\right)=3(1-01)
$$

(d) The limiting value of the concentration is

$$
\lim _{\square \rightarrow \infty}=\lim _{\square \rightarrow \infty} \frac{5}{}\left(1-01_{\square}^{\square}\right)=\frac{5}{3} \lim _{\square \rightarrow \infty} 1-\lim _{\square \infty} 01 \square \square \underline{\square}^{\square}(1-0)=\quad \frac{5}{3} \approx 1667 \mathrm{mg} \mathrm{~mL} .
$$

37. (a) The quantity of the drug in the body after the first tablet is 150 mg . After the second tablet, there is 150 mg plus 5% of the first $150-\mathrm{mg}$ tablet, that is, $[150+150(005)] \mathrm{mg}$. After the third tablet, the quantity is
$\left[150+150(005)+150(005)^{2}\right]=157875 \mathrm{mg}$. After tablets, the quantity (in mg) is
$150+150(005)+\cdots+150(005)^{-\Gamma}$. We can use Formula 5 to write this as $\frac{150(1-0.05)}{1-005}=\frac{3000}{19} \quad(1 \quad 005)$.
(b) The number of milligrams remaining in the body in the long run is $\lim _{\rightarrow \infty} \frac{3000}{19}(1-005 \quad)=\frac{3000}{19}(1-0) \approx 157895$, only 002 mg more than the amount after 3 tablets.
38. (a) The residual concentration just before the second injection is \quad - before the third, $\cdot+\quad-2$; before the

(b) The limiting pre-injection concentration is $\lim -\frac{-}{-}=-\quad=-\quad=-\quad$.

$$
\begin{array}{llll}
\rightarrow \infty & 1-- & 1- & -1
\end{array}
$$

(c) $-1 \geq \quad \Rightarrow \quad-1$, so the minimal dosage is $=\quad-1$.

(b) $=099999=10+100+1000+10,000+\ldots==1 \quad 10$, which is a geometric series with $1=09$ and

$$
=0 \text { 1. Its sum is } 1-01=09=1 \text {, that is, }=1
$$

(c) The number 1 has two decimal representations, 100000 and 099999
(d) Except for 0 , all rational numbers that have a terminating decimal representation can be written in more than one way. For example, $0\left[5\right.$ can be written as 0449999 as well as ${ }^{[15} 50000$ D.
 $\sigma=(5-6)(0)=0$ and so on. Observe that the fifth term and higher will all be zero. So the sum of all the terms in the sequence is found by adding the first four terms:$1 \square$$2+3+4=1+3+616=16$ - $8 \quad 8+\cdots$ is a geometric series with $=8$
 $42.046=\begin{aligned} & 46 \\ & \overline{1}_{100}+100^{2}\end{aligned} 46 \quad 46$ $1 \quad 46100 \quad 46$ $--+\cdots$ is a geometric series with $=\overline{100}$ and $=100 \cdot$ It convergesto $\quad 1-\quad=\overline{{ }_{1-1100}}={ }_{99}$. 43.2 गб $5 \underline{16} 516 \overline{+\cdots}$. Now $516+516 \overline{+\cdots}$ is a geometric series with $=516$ amd $=1$. It converges to


```
a
```

$$
\begin{array}{lc}
\\
42 \\
\text { It converges to } \frac{\square}{1-\square}=\frac{\square}{4-110^{2}} & 10^{4} \\
\square & \begin{array}{c}
42 \quad 10^{4} \\
9910^{2}
\end{array}=\frac{42}{9900} .
\end{array}
$$

$$
\text { Thus, } 15342=153+9900=\overline{100}+\overline{9900}=\overline{9900}+\overline{9900}=\overline{9900} \begin{gathered}
153,147 \\
\text { or } \overline{3300}
\end{gathered}
$$

$$
\left[\begin{array}{l}
\overline{12,345} \quad \underline{699,993}+12,345 \quad \overline{712,338} \quad \overline{237,446}]
\end{array}\right.
$$

Thus, $712345=7+99,999=99,999 \quad 99,999=99,999$ or $33,333$.
47.

48.

49. 1

50. 1

Computer software was used to plot the first 10 points of the recursion equation $\square+1=2 \quad 0=01$ The sequence appears to converge to a value of 05 Assume the limitexists so that $\lim _{\rightarrow+\infty}=\lim _{\square \rightarrow \infty}=\perp$ then

$\square=2(1-\quad \square) \Rightarrow \quad \square(1-2)=0 \quad \Rightarrow \quad \square=0$ or $\square=1 \sqsubset 2$. Therefore, if the limit exists it will be either 0 or ${ }_{-}^{1}$. Since the graph of the sequence appears to approach $\frac{1}{2}$, we see that $\lim _{\rightarrow \infty}=\frac{1}{2}$.

Computer software was used to plot the first 10 points of the recursion equation $\square+1=26(1-\square)]=08$ The sequence appears to converge to a value of $0_{\square} 6_{\square}$ Assume the limit exists so that $\lim _{\square \rightarrow \infty}+1=\lim _{\square \rightarrow \infty} \square={ }_{\square}$ then

$$
\begin{aligned}
& \square+26 \square \square(1-\square) \Rightarrow \lim _{\square \rightarrow \infty}+1=\lim _{\square \rightarrow \infty} 2 \mid 6 \square(1-\downarrow) \Rightarrow \\
& \square=26\left(1-1-\square \Rightarrow(16-26)=0 \quad \Rightarrow \quad \square=0 \text { or } \square=\frac{8}{13} \approx 0615\right.
\end{aligned}
$$

Therefore, if the limit exists it will be either 0 or $\underline{8}$. Since the graph of the

$$
\text { sequence appears to approach } \frac{8}{43} \text {, we see that } \quad \lim _{\square \rightarrow \infty}^{-1^{2}}=\underline{8}
$$

Computer software was used to plot the first 10 points of the recursion equation $\square_{+1}=32 \mid(1-)^{[} 0=02^{11}$ The sequence does not appear to converge to a fixed value. Instead, the terms oscillate between values near $(\boxed{5}$ and $\curvearrowleft[8 \square$

Computer software was used to plot the first 20 points of the recursion equation $\square_{+1}=35\left((1-)_{0}^{[}=04^{-1}\right.$ The sequence does not appear to converge to a fixed value. Instead, the terms oscillate between values near 045 and ${ }^{[1} 85^{\square}$

78 a CHAPTER 2 LIMITS
51.

52. 1

53. Computer software was used to plot the first 20 points of the recursion equatior $+1=4$ $\square=02001^{[}$The plots indicate that the solutions are nearly identical, converging to zero as \square increases.

54. Computer software was used to plot the first 20 points of the recursion equation $\quad+1=4 \quad(1-\quad$ with $0=02$ and $0=0$ 2001. The recursion with $0=02$ behaves chaotically whereas the recursion with $0=02001$ converges to zero. The plots indicate that a small change in initial conditions can significantly impact the behaviour of a recursive sequence.

Computer software was used to plot the first 50 points of the recursion equation $\square_{+1}=39\left(1-E_{0}=06\right.$ The sequence does not appear to converge to a
fixed value. The terms fluctuate substantially in value exhibiting chaotic behavior ${ }^{[}$
Computer software was used to plot the first 30 points of the recursion equation $\square+1=38(1-)_{0}=01^{1}$ The sequence does not appear to converge to a fixed value. The terms fluctuate substantially in value exhibiting chaotic behavior ${ }^{[}$

1

Computer software was used to plot the first 10 points of the recursion equation $+1=2 \quad-\quad 0=02$ The sequence appears to converge to a value near 07
Assume the limitexists so that $\lim _{\rightarrow \infty}+1=\lim _{\rightarrow \infty}=$ then

$$
\begin{aligned}
& \Rightarrow \lim _{\rightarrow \infty}+1=\lim _{\rightarrow \infty} 2 \\
& \Rightarrow \quad=0 \text { or }=\ln 2 \approx 0693 . \text { Therefore, if the limit }
\end{aligned}
$$

exists it will be either 0 or $\ln 2$. Since the graph of the sequence appears to approach $\ln 2$, we see that $\lim =\ln 2$.
$\rightarrow \infty$
$\rightarrow \infty$
56.

${ }^{-1} \quad 0.2$

Computer software was used to plot the first 10 points of the recursion equation $[+1=3$ 地 $0=04$ The sequence appears to converge to a value of 1 II $]$ Assume the limit exists so that $\lim _{\square \rightarrow \infty} \pm^{1}=\lim _{\square \rightarrow \infty} \square=$ then

$$
\begin{aligned}
& \square \lim _{\square \rightarrow \infty}+1=3_{\square \rightarrow \infty} 3^{-} \Rightarrow \square \\
& \square_{1-3}=0 \quad \square=0 \text { or }=\ln 3 \approx 1099 \text {. Therefore, if the limit }
\end{aligned}
$$ exists it will be either 0 or $\ln 3$ ．Since the graph of the sequence appears to approach $\ln 3$ ，we surmise that $\lim _{\square \rightarrow \infty}=\ln 3$ ．

57.

Computer software was used to plot the first 10 points of the recursion equation位 $+1=10{ }^{\text {地 }}=08$ The sequence does not appear to converge to a fixed value of Instead，the terms oscillate between values near $0[9$ and 3［7］
58.

Computer software was used to plot the first 10 points of the recursion equation Th $+1=20$ 位 $0=09$ The sequence does not appear to converge to a fixed value of The terms fluctuate substantially in value exhibiting chaotic behaviour

59．Let \beth_{\Perp} represent the removed area of the Sierpinski carpet after the th step of construction．In the first step，one square of
 $\square^{2}=\square^{1}+\underline{8}=\underset{9}{\underline{1}}+\underset{9^{2}}{\underline{8}}=\underset{9}{\underline{1}} 1+\underline{8} \quad$ In the third step， 8 squares are removed for each of the 8 squares removed in the previous step．So there are a total of $8 \quad 8=8^{2}$ squares removed each having an area of $\stackrel{1}{=}_{\underline{1}}^{\underline{\square}}=\underline{1}$ ．This gives 9 $9^{2} \quad 93$ Observing the pattern in the first few terms of the sequence，
we deduce the general formula for the $\bar{t}_{\mathrm{h} \text { term to be }{ }^{\square}=\frac{1}{9}}^{1+\frac{8}{9}+\frac{8}{9}}+\frac{\square_{2}}{9} \quad$ The terms in parentheses represent the sum of a geometric sequence with $\quad=1$ and $=8 \square 9$ Using Equation（5），we can write

$$
\begin{aligned}
& \square_{\square}=1 \frac{1(1-(\underline{8} \underline{9})}{--}=1-\underbrace{\square} \text { As increases, } \lim _{\square \square}=\lim 1 \quad \underline{8} \quad{ }_{\square}^{\square} 1_{\square} \text { Hence the area of the } \\
& \begin{array}{lllll}
9 & 1-89 & \rightarrow \infty & \rightarrow \infty & 9
\end{array}
\end{aligned}
$$

80 a CHAPTER 2 LIMITS
60.
 $|\square|+|\square|+|\square|+|\square \quad|+\cdots=\prod_{=1}^{\infty} \sin \square \overline{\sin } \frac{\sin \square}{1-\sin \square}$ since this is a geometric series with $\square=$ and $\mid \sin \prod^{\square} 1 \quad$ because $0 \quad \square \square=$

PROJECT Modeling the Dynamics of Viral Infections

1. Viral replication is an example of exponential growth. The exponential growth recursion formula is $](\square+1)=\square \square$ (l) where \square is the growth rate and $\sqsupset(\square$ is the number of viral particles at time \square. In Section 1.6 , we saw the general solution of this recursion is $\square=\square \square$ Wih $\square=3$ and $\square 0=1$, the recursion equation is $\square+1=3 \quad$ and the general solution is - $=$ 3
2. Let ${ }_{1}$ be the amount of time spent in phase 1 of the infection. Solving for $7_{1 \text { in }}$ the equation $\left.{ }_{1}\right]_{0} \square_{1}$ using logarithms: $\ln \quad 1=\ln \left(\begin{array}{ll}0 & 1\end{array}\right) \Rightarrow \quad 1=\ln \left(\begin{array}{l}0\end{array}\right)$. The immune response initiates when $\quad 1=2 \cdot 10$. Therefore the time it

$$
6 \quad \square
$$

takes for the immune response to kick in is $\overline{7}=\frac{\ln \left(2 \cdot \frac{6}{6}\right)-\ln \left(\square^{-}\right)}{\text {initial } \ln (3)} \approx 132-091 \ln (\square 0)$. Hence, the larger the
viral size the sooner the immune system responds.
3. Let -2 be the amount of time since the immune response initiated, immune be the replication rate during the immune response, and immune be the number of viruses killed by the immune system at each timestep. The second phase of the infection is
modeled by a two-step recursion. First, the virus replicates producing $\exists *=\square_{\text {immune }} \square_{2}$ viruses. Then, the immune system kills viruses leaving $\square 2^{+1}=\square_{\text {immune }}$ leftover. Combining the two steps gives the recursion formula $\square_{2}{ }^{2}+1=\Gamma_{\text {immune }} \square_{2}-$ immune .
4. The viral population will decrease over time if Δ
\square 0 at each timestep. Solving this inequality for ${ }_{2}$: $\square_{2+1}-\square_{2} \square 0 \Rightarrow\left(\square_{2}-\square \frac{\square}{\left(\square_{\text {immune }}-1\right)}\right.$ immune $\quad \square 0 \Rightarrow \quad$ where we assumed immune $\square 1$ Substituting the constants $\beth_{\text {immune }}=\frac{1}{2} \cdot 3=15$ and $\square_{\text {immune }}$

$$
\text { e }=500000 \text { give } s \square \square_{2} \square 1000000 \text {. Therefore, the immune }
$$

response will cause the infection to subside over time if the viral count is less than one million. This is not possible since the immune response initiates only once the virus reaches two million copies.
5. The recursion for the third phase can be obtained from the second phase recursion formula by replacing the replication and death rates with the new values. This gives $\square \overline{-3}=\mathrm{drug} \square \square \square$ drug where 3 is the amount of time since the start of drug treatment.
6. Similar to Problem 4, we solve for $\overline{-3}$ in the inequality $\Delta \square=\square \square_{3+1}-\quad \square_{3} \square 0$ and find that $\frac{\square}{3} \frac{\square \text { drug }}{(\square \text { drug }-1)}$. Substituting the constants $\exists_{\text {drug }}=125$ and $\Sigma_{\text {drug }}=2500000$ gives 100000000 . Therefore, the drug and immune system will cause the infection to subside over time if the viral count is less than 100 million. This is possible provided drug treatment begins before the viral count reaches 100 million.
7. From Formula (6), the general solution to the recursion equation $-\underline{-2}+\square=\square$ immune $\square \square$ immune is given $\underset{\text { immune }}{\text { by } \square_{2}}=\frac{\square-2}{\text { immune }} \exists_{0}-\quad \frac{1-\beth_{\text {immune }}^{\text {i2 }}}{1-\beth_{\text {immune }}}$ ISolving for \beth_{2} in this expression gives
 $\nabla_{2}=\ln \frac{\square}{\square} \frac{\square+\operatorname{immune}\left(1-\square_{\text {immune }}\right)^{-1}}{\square+\operatorname{immune}(1-\text { immune })^{-1}} \quad \ln \square_{\text {immune }}$. Note that the number of viral particles at the start of phase two is $\beth_{0}=2 \cdot 10^{6}{ }^{\text {S }}$ Substituting $\beth_{\text {immune }}=15, \square_{\text {immune }}=500000$ and the critical viral load $\square=100 \cdot 10^{6}$ into the equation gives $-2=\frac{\ln (99)}{\ln (15)} \approx 11 \beta 3 \mathrm{~h}$. This is the amount of time spent in phase two after which the infection cannot be controlled.
 Hence, drug treatment must be started within approximately one day (24 hours) of the initial infection in order to control the viral count.
8. A general expression for the time it takes to reach the critical viral load is obtained by combining the expressions for \beth_{1} and \beth_{2}

Substituting immune $=05 \square$, ${ }_{\text {immune }}=5 \cdot 10^{5} \quad=\square 0$ and $\quad 2=100 \cdot 10^{6}$ gives

$$
=\frac{\frac{\ln \left(2 \cdot 10^{6}\right)}{\ln (\square)}-\frac{\ln (0)}{\ln }+\frac{\left.\ln -\frac{100 \cdot 10^{6}+\left(5 \cdot 10^{5}\right)(1-05}{2 \cdot 106+(5 \cdot 105)\left(1^{\circ}-10\right.}\right)}{\ln (05)}+\frac{-1}{-} \cdot}{\square}
$$

Note: We have inherently assumed that $02 \cdot 10{ }^{6}$,
so that some time is spent in phase 1.
9. After 24 hours, the infection has been in the immune response phase for $2=24-1321=1079 \mathrm{~h}$.

Using the general expression for 12 from Problem 7 the number of viruses after 24 hours is $\square 1079=\left(15 \quad \|^{1079}\right)\left(2 \cdot 10^{6}\right)-\left(5 \cdot 10^{5}\right) \quad \frac{1-15 \text { 1079 }}{1-15} \approx 80[555008$. Since this is less than the critical viral load (100 million), drug intervention will be effective in controlling the virus. Rewriting the equation for \exists_{2} for the drug phase gives

values $3 \mp 0,0=80 \square 555 \square 008$, drug $=125$ and drug $=25 \square 000 \square 000$ yields $3=734 \mathrm{~h}$. Thereföre, it takes approximately 7 hours after starting the drug treatment to completely eliminate the virus.

2.2 Limits of Functions at Infinity

1. (a) As becomes targe, the values of \square () approach 5 .
(b) As becomes large negative, the values of $\mathbb{(})$ approach 3 .

82 ~ CHAPTER 2 LIMITS
2. (a) The graph of a function can intersect a horizontal asymptote. It can even intersect its horizontal asymptote an infinite number of times.

(b) The graph of a function can have 0,1 , or 2 horizontal asymptotes. Representative examples are shown.

No horizontal asymptote

One horizontal asymptote

Two horizontal asymptotes
3. If $(\square)={ }^{2} 2 \square^{\square}$, then a calculator gives $(0)=0$, $\square(1)=\overline{0} 5, \square(2)=1, \square \quad(3)=\square 125$, (4) $=1$, \square (5) $=\square 78125$,
$\square(6)=05625, \quad(7)=03828125$,
(8) $=C^{[l} 25$, $\square(9)={ }^{[\square} 158203125$,
(10) $=009765625, \square(20) \approx C \square$ 00038147,
$\square(50) \approx 22204 \times 10^{-12}, \frac{\square}{\square}(100) \approx 7^{7} 8886 \times 10^{-27}$.
It appears that $\lim _{\square_{\infty}} \quad$
4. (a) From a graph of $\left(\underset{\square}{)}=(1 \quad 2 \square \square)\right.$ in a window of $[010,000]$ by $[\underline{\theta} \theta 2]$, we estimate that $\lim _{\square \rightarrow \infty} \square \square()=914$ (to two decimal places.)
(b)

$\bar{\square}$	$\square \square(\square)$
10,000	0135308
100,000	0135333

6. $\lim 3+5=\lim \underline{+5)}=\lim \underline{3+5} \stackrel{\lim _{\rightarrow \infty} 3+5}{=} \lim _{=}^{\underline{1}} \xrightarrow[-\infty]{ } \underline{3+5(0)}=3$
7. $\lim ^{3}-2=\lim -\underline{-2)}=\lim \underline{3-2}-=\underline{\lim _{-\infty} 3-2 \lim _{\rightarrow \infty} 1}-\underline{3-2(0)}=\underline{\underline{3}}$.

$$
=\prod_{\square \rightarrow \infty} 1-\lim _{\square \rightarrow \infty} 1 \square{ }^{3}-\lim _{\square \rightarrow \infty} 1 \square \square=0
$$

10. $\left.\lim \frac{4^{3}+6^{2}-2}{\square}=\lim \frac{\left(4^{3}+6^{2}\right.}{\square}-2\right) \frac{3}{\square}=\lim \cdot-\frac{\square+6+2}{\square} \frac{4+0-0}{2-0+0}=2$

$\underset{\rightarrow \infty}{\text { 12. }} \lim ^{5} \frac{5}{10}=0$ since $10 \rightarrow \infty$ as $\rightarrow \infty$
13. $\lim \sqrt{ }^{-}+{ }^{2}=\lim \left(\sqrt{ }-{ }^{2}\right) \quad 2=\lim \quad 1 \quad{ }^{32+1}=0+1=-1$
$\underset{\rightarrow \infty}{2-^{2}} \quad \overline{-\infty} \overline{\left(2-^{2}\right)}{ }^{2} \quad{\sqrt{ }{ }^{\rightarrow \infty} \overline{2-1} \quad 0-1}$

$$
=\lim \frac{1}{=4(1-2} \frac{-}{\left.+^{2} 1^{2}\right)(1+1 \quad-2)^{-}-(1-0+0)(1+0)}
$$

16. $\lim \vee^{2}=\lim \vee^{2} \quad{ }^{2} \quad=\lim \quad\left[\right.$ since ${ }^{2}={ }^{\sqrt{2}}$ - for 0]

84 ~ CHAPTER 2 LIMITS

since the numerator increases without bound and the denominator approaches 1 as $\rightarrow \infty$.
22. $\lim _{\rightarrow \infty}\left(\square^{-}+2 \cos 3 \quad\right)$ does not exist. $\lim _{\rightarrow \infty}-\quad=0$, but $\lim _{\rightarrow \infty}(2 \cos 3)$ does not exist because the values of $2 \cos 3$ oscillate between the values of -2 and 2 infinitely often, so the given limit does not exist.
23. $\left.\square \lim _{\rightarrow-\infty}\left(4^{4}+5\right)=\square \lim _{\rightarrow-\infty}{ }^{5}+1\right) \quad[$ factor out the largest power of $]=-\infty \quad$ because $\quad 5 \rightarrow-\infty$ and $1+1 \rightarrow 1$ $\rightarrow-\infty$
as $\quad \begin{aligned} & \square \rightarrow-\infty \\ & \text { Or: } \\ & \lim _{\rightarrow-\infty} \\ & \square^{\prime}\end{aligned} \square_{5}^{\square}=\lim _{\rightarrow-\infty} 4(1+\square)=-\infty$.

since the numerator increases without bound and the denominator approaches 1 as $\square-\infty$.
25. As increases, 1 approaches zero, so $\lim _{\square \rightarrow \infty} \square^{1} I^{2}=-(0)=1$
26. Divide numerator and denominator by $\square^{3}: \lim _{\square} \frac{\square-3}{\square}=\lim \frac{1-\frac{\square}{-6}}{\square} \frac{1-0}{1+0}=1$
$=$

$$
\rightarrow \infty \quad 3+-3 \quad \rightarrow \infty 1+-6
$$

27. $\lim _{\square \rightarrow \infty} \frac{1-\square}{1+2}=\lim _{\square \rightarrow \infty} \frac{(1+2)}{=\lim _{\square \rightarrow \infty} \frac{1}{1+1}+2}=\frac{0-1}{0+2}=-1$

28. $\square(\square)=\square \square \square \square \square \square \square(\square)=\square(\square+)=2 \square \square$ Hence, is the nutrient concentration at which the growth rate is half of the maximum possible value. This is often referred to as the half-saturation constant.
29. (a) $\lim _{[\mathrm{S}] \rightarrow \infty}=\lim _{[\mathrm{S}] \rightarrow \infty} \frac{0.14[\mathrm{~S}]}{0}=\lim _{[\mathrm{S}] \rightarrow \infty} \overline{015+[\mathrm{S}]} \overline{015} \underline{0.14}-\quad \underset{\substack{\text { divide numerator and } \\ \text { denominator by }[\mathrm{S}]}}{ }=\underline{0.14}-1=014$. So the line $=014$ is a
horizontal asymptote. Therefore, as the concentration increases, the enzymatic reaction rate will approach $0[14$. Note, we did not need to consider the limit as $[\mathrm{S}] \rightarrow-\infty$ because concentrations must be positive in value.
(b)

$$
=\lim _{-\infty 1}-\frac{8}{2}-\frac{1}{+2}+1 \quad=\frac{0}{0+0+1}=0
$$

