Solutions Manual for Calculus 10th Edition by Anton Bivens Davis ISBN 0470647701 9780470647707 Full link download

Test Bank:

https://testbankpack.com/p/test-bank-forcalculus-10th-edition-by-anton-bivens-davisisbn-0470647701-9780470647707/

Solutions Manual:

https://testbankpack.com/p/solution-manual-for-calculus-10th-edition-by-antonbivens-davis-isbn-0470647701-9780470647707/

5 10 15 20

t (yr)

27. (a) 19,200 ft (b) 480 ft/s (c) 66.94 ft/s (d) 1440 ft/s

/ t / / 29. (a) 720 ft min (b) 1920 ft min

 Exercise Set 2.2 (Page 000)

 1. 2, 0, -2, -1
 5.

 3. (b) 3 (c) 3
 1

 59 7. y = 5x - 169. 4x, y = 4x - 2

60Exercise Set Chapter602

(b)
$$m_{\tan} = \lim_{x_1 \to 1} \frac{f(x_1) - f}{x_1 - 1} = \lim_{x_1 \to 1} \frac{x^3 - 1}{x_1 - 1} = \lim_{x_1 \to 1} \frac{(x_1 - 1)(x^2 + x_1 + 1)}{x_1 - 1} = \lim_{x_1 \to 1} \frac{(x_1 - 1)(x_1 + 1)}{x_1 - 1} = \lim_{x_1 \to 1} \frac{(x_1 - 1)(x_1 +$$

1

(c)
$$m_{nm} = \lim_{\substack{x_1 \to x_0 \\ x_1 \to x_1 \to x_1 \\ x_1 \to x_1$$

_

_

$$\frac{1}{x_{1} - x_{0}} = \lim_{x_{1} \to x_{0}} \frac{1}{(x_{1} - x_{0})} = \lim_{x_{1} \to x_{0}} \frac{1}{(x_{1} - x_{0})} = \lim_{x_{1} \to x_{0}} \frac{1}{x_{1} - x_{0}} = \lim_{x_{1} \to x_{0}} (x_{1} + x_{0}) = 2x_{0}$$

(b) $m_{tan} = 2(-1) = -2$

)

- 20. False. A secant line meets the curve in at least two places, but a tangent line might meet it only once.
- 21. False. Velocity represents the rate at which position changes.
- 22. True. The units of the rate of change are obtained by dividing the units of f(x) (inches) by the units of x (tons).
- 23. (a) 72° F at about 4:30 P.M. (b) About $(67 43)/6 = 4^{\circ}$ F/h.
 - (c) Decreasing most rapidly at about 9 P.M.; rate of change of temperature is about -7° F/h (slope of estimated tangent line to curve at 9 P.M.).
- 24. For V = 10 the slope of the tangent line is about (0 5)/(20 0) = -0.25 atm/L, for V = 25 the slope is about (1 2)/(25 0) = -0.04 atm/L.
- 25. (a) During the first year after birth.
 - (b) About 6 cm/year (slope of estimated tangent line at age 5).
 - (c) The growth rate is greatest at about age 14; about 10 cm/year.
 - 40 Growth rate (cm/year) 30

10 t (yrs) (d) 5 10 15 20

26. (a) The object falls until s = 0. This happens when $1250 - 16t^2 = 0$, so t = $p_{1250/16} = \sqrt{78.125} \sqrt{25 = 5}$; hence the object is still falling at t = 5 sec.

(b)
$$\underline{f(6)} - \underline{f(5)}$$
 $6 - 5 = \underline{674} - \underline{850}$

1

= -176.The average velocity is -176 ft/s.

ft/s

(c) vinst =
$$\lim_{h \to 0} \frac{f(5+h) - f}{h} = \lim_{h \to 0} \frac{[1250 - 16(5+h)^2]}{h \to 0} = \lim_{h \to 0} \frac{-160h - 16h^2}{h} = \lim_{h \to 0} (-160 - 16h) = \lim_{h \to 0} \frac{(5)}{h} = \lim_{h \to 0} \frac{850}{h} = \lim_{h \to 0} \frac{-160h - 16h^2}{h} = \lim_{h \to 0} (-160 - 16h) = \lim_{h \to 0} (-160 - 16h) = \lim_{h \to 0} \frac{-160h - 16h^2}{h} = \lim_{h \to 0} (-160 - 16h) = \lim_{h \to 0} \frac{-160h - 16h^2}{h} = \lim_{h \to 0} (-160 - 16h) = \lim_{h \to 0} \frac{-160h - 16h^2}{h} = \lim_{h \to 0} (-160 - 16h) = \lim_{h \to 0} \frac{-160h - 16h^2}{h} = \lim_{h \to 0} (-160 - 16h) = \lim_{h \to 0} \frac{-160h - 16h^2}{h} = \lim_{h \to 0} \frac{-16$$

27. (a)
$$0.3 \cdot 40^3 = 19,200 \text{ ft}$$
 (b) $v_{ave} = 19,200/40 = 480 \text{ ft/s}$
(c) Solve $s = 0.3t^3 = 1000$; $t \approx 14.938$ so $v_{ave} \approx 1000/14.938 \approx 66.943 \text{ ft/s}$.
(d) $v_{inst} = \lim_{h \to 0} \frac{0.3(40 + h)^3 - 0.3 \cdot 40^3}{h} = \lim_{h \to 0} \frac{0.3(4800h + 120h^2 + h^3)}{h} = \lim_{h \to 0} 0.3(4800 + 120h + h^2) = 1440$

28. (a)
$$v_{ave} = \frac{4.5(12)^2 - 4.5(0)^2}{12 - 0} = 54 \text{ ft/s}$$

(b)
$$v_{inst} = \lim_{t_1 \to 6} \frac{4.5t^2 - 4.5(6)^2}{t_1 - 6} = \lim_{t_1 \to 6} \frac{4.5(t_1 - 6)}{t_1 - 6} = \lim_{t_1 \to 6} \frac{4.5(t_1 + 6)(t_1 - 6)}{t_1 - 6} = \lim_{t_1 \to 6} 4.5(t_1 + 6) = 54 \text{ ft/s}$$

29. (a) vave
$$=\frac{6(4)}{4-2} = \frac{6(2)^4}{4-2} = 720$$
 ft/min

(b)
$$v_{inst} = \lim_{t_1 \to 2t_1 = 2} \frac{\underline{6t}_{-4} - \underline{6(2)}}{t_1 \to 2t_1 = 2} = \lim_{t_1 \to 2t_1 = 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})}{t_1 \to 2} = \lim_{t_1 \to 2} \frac{\underline{6(t}_{-1} - \underline{16})$$

- 30. See the discussion before Definition 2.1.1.
- 31. The instantaneous velocity at t = 1 equals the limit as $h \rightarrow 0$ of the average velocity during the interval between t = 1 and t = 1 + h.

Exercise Set 2.2

1.
$$f^{0}(1) = 2.5$$
, $f^{0}(3) = 0$, $f^{0}(5) = -2.5$, $f^{0}(6) = -1$.

2.
$$f^{0}(4) < f^{0}(0) < f^{0}(2) < 0 < f^{0}(-3)$$
.

3. (a)
$$f^{0}(a)$$
 is the slope of the tangent line. (b) $f^{0}(2) = m = 3$ (c) The same, $f^{0}(2) = 3$.
4. $f^{0}(1) = \frac{2 - (-1)}{1 - (-1)} = \frac{3}{2}$

.

$$17. f^{0}(\mathbf{x}) = \lim_{\Delta \mathbf{x} \to 0} \frac{(\mathbf{x} + \Delta \mathbf{x})^{2} - (\mathbf{x} + \Delta \mathbf{x}) - (\mathbf{x} - 2)}{\Delta \mathbf{x} - \Delta \mathbf{x} - 0} = \lim_{\Delta \mathbf{x} \to 0} \frac{2\mathbf{x}\Delta \mathbf{x} + (\Delta \mathbf{x})}{\Delta \mathbf{x} - 2} \frac{2\Delta \mathbf{x}}{\Delta \mathbf{x} - 0} = \lim_{\Delta \mathbf{x} \to 0} (2\mathbf{x} - 1 + \Delta \mathbf{x}) = 2\mathbf{x} - 1.$$

$$18. f^{0}(x) = \lim_{x \to 0} \frac{(x + 2x)^{4}}{\Delta x} - \frac{x}{x \to 0} = \lim_{x \to 0} \frac{4x^{2}}{\Delta x} + 4x(\Delta x)^{2} + \lim_{x \to 0} \frac{4x^{2}}{\Delta x} + 4x(\Delta x)^{2} + (\Delta x)^{3} = \frac{1}{\Delta x} = \frac{1}$$

Ļγ

x

(b)

▲у

1 2

26. (a)

- 27. False. If the tangent line is horizontal then $f^{0}(a) = 0$.
- 28. True. f 0 (-2) equals the slope of the tangent line.
- 29. False. E.g. |x| is continuous but not differentiable at x = 0.
- 30. True. See Theorem 2.2.3.
- 31. (a) $f(x) = \sqrt[4]{x}$ and a = 1 (b) $f(x) = x^2$ and a = 3

37. (b)	w	1.5	1.1	1.01	1.001	1.0001	1.00001
	$\frac{f(w) - f(1)}{w - 1}$	1.6569	1.4355	1.3911	1.3868	1.3863	1.3863
	W	0.5	0.9	0.99	0 999	0 9999	0 99999
	**	0.5	0.7	0.77	0.777	0.7777	0.77777
	$\frac{f(w) - f(1)}{w - 1}$	1.1716	1.3393	1.3815	1.3858	1.3863	1.3863

38. (b)

(b)	w	$\frac{\pi}{4} + 0.5$	$\frac{\pi}{4} + 0.1$	$\frac{\pi}{4}$ + 0.01	$\frac{\pi}{4}$ + 0.001	$\frac{\pi}{4} + 0.0001$	$\frac{\pi}{4}$ + 0.00001
	$f(w) - f(\pi/4)$	<u> </u>	<u>, 4</u>	4	<u> </u>	<u> </u>	+
	-//	0.50489	0.67060	0.70356	0.70675	0.70707	0.70710

W	$\frac{\pi}{4}$ - 0.5	$\frac{\pi}{4}$ - 0.1	$\frac{\pi}{4}$ - 0.01	$\frac{\pi}{4} - 0.001$	$\frac{\pi}{4} = 0.0001$	$\frac{\pi}{4} = 0.00001$
$f(w) -f(\pi/4) w - \pi/4$	0.85114	0.74126	0.71063	0.70746	0.70714	0.70711

39. (a)
$$\frac{f(3)-f(1)}{3-1} = \frac{2.2-2.12}{2} = 0.04; \frac{f(2)-f(1)}{2-1} = \frac{2.34-2.12}{1} = 0.22; \frac{f(2)-f(0)}{2-0} = \frac{2.34-0.58}{2} = 0.88.$$

(b) The tangent line at x = 1 appears to have slope about 0.8, so $\frac{f(2)-f(0)}{2-0}$ gives the best approximation and $\frac{f(3)-f(1)}{3-1}$ gives the worst.

40. (a)
$$f^{0}(0.5) \approx \frac{f(1) - f(0)}{1 - 0} = \frac{2.12 - 0.58}{1} = 1.54.$$

(b) $f^{0}(2.5) \approx \frac{f(3) - f(2)}{3 - 21} = \frac{2.2 - 2.34}{1 - 0} = -0.14.$

41. (a) dollars/ft

- (b) $f^{0}(x)$ is roughly the price per additional foot.
- (c) If each additional foot costs extra money (this is to be expected) then $f^{0}(x)$ remains positive.

(d) From the approximation $1000 = f^0(300) \approx \frac{f(301) - f(300)}{301 - 300}$ we see that f(301)f(300) + 1000, so the extra foot will cost around \$1000.

gallons

- 42. (a) $\overline{\text{dollars/gallon}}$ = gallons²/dollar
 - (b) The increase in the amount of paint that would be sold for one extra dollar per gallon.
 - (c) It should be negative since an increase in the price of paint would decrease the amount of paint sold.

(d) From
$$-100 = f^0(10) \approx \frac{f(11) - f(10)}{11 - 10}$$
 we see that $f(11) \approx f(10) - 100$, so an increase of one dollar per gallon

would decrease the amount of sold by around 100 gallons.

C (11) C (1

43. (a) F ≈ 200 lb, dF/d $\theta \approx 50$ (b) $\mu = (dF/d\theta)/F \approx 50/200 = 0.25$

44. The derivative at time t = 100 of the velocity with respect to time is equal to the slope of the tangent line, which $\frac{12500 - 0}{12500 - 0} = 125 \text{ ft/s}^2$ Thus the mass is approximately M (100) $\approx \frac{125 \text{ ft/s}^2}{125 \text{ ft/s}^2} \approx \frac{140 - 40}{125 \text{ ft/s}^2} = 125 \text{ ft/s}^2$

45. (a)
$$T \approx 115^{\circ} F$$
, $dT/dt \approx -3.35^{\circ} F/min$ (b) $k = (dT/dt)/(T - T_0) \approx (-3.35)/(115 - 75) = -0.084$

46. (a) $\lim_{x \to 0} f(x) = \lim_{x \to 0^{-3}} x = 0 = f(0)$, so f is continuous at x = 0. $\lim_{h \to 0} \frac{f(0 + h)}{h} = \frac{1}{2} \frac{(0)}{h} = \lim_{h \to 0^{-3}} \frac{h}{h} \frac{-0}{h} = \lim_{h \to 0^{-3}} \frac{1}{h} \frac{1}{h} \frac{-0}{h} = \frac{1}{2} \frac{1}{1} \frac{$

49. Since $-|x| \le x \sin(1/x) \le |x|$ it follows by the Squeezing Theorem (Theorem 1.6.4) that $\lim_{x \to 0} x \sin(1/x) = 0$. The derivative cannot exist: consider $\frac{f(x) - f(0)}{x} = \sin(1/x)$. This function oscillates between -1 and +1 and does not tend to any number as x tends to zero.

50. For continuity, compare with $\pm x^2$ to establish that the limit is zero. The difference quotient is $x \sin(1/x)$ and (see Exercise 49) this has a limit of zero at the origin.

h

 $(x) - f_{(x_0)}$ $-)_{-f^{0}(x_{0})} < .$ Since 51. Let $= f \begin{vmatrix} 0 & (x_0)/2 \end{vmatrix}$. Then there exists $\delta > 0$ such that if $0 < |x - x_0| < \delta$, then $\frac{f}{2}$ $x - x_0$ 0 0 f(x) - f(x) $f(x_0) > 0$ and $= f (x_0)/2$ it follows that > >0. If $x = x_1 < x_0$ then $f(x_1) < f(x_0)$ 0 and if $x - x_0$ $x = x_2 > x_0$ then $f(x_2) > f(x_0)$. 52. $g^0(x_1) = \lim_{x \to \infty} \frac{g(x_1 + h) - g(x_1)}{g(x_1 + h)}$ $\frac{f(m(x_1 + h) + b) - f(mx_1 + b)}{m} = m \lim_{h \to \infty} \frac{f(m(x_1 + h) + b)}{m}$ lim) h→0 $h \rightarrow 0$ $h \rightarrow 0$

53. (a) Let $= |\mathbf{m}|/2$. Since $\mathbf{m} = 0$, > 0. Since $f(0) = f^0(0) = 0$ we know there exists $\delta > 0$ such that $\frac{f(0+h)-f(0)}{2} < h$ whenever $0 < |\mathbf{h}| < \delta$. It follows that $|f(\mathbf{h})| < \frac{1}{2} |\mathbf{hm}|$ for $0 < |\mathbf{h}| < \delta$. Replace h with x to get the result.

 $(b) \text{ For } 0 < |x| < \delta, |f(x)| < \frac{1}{2} |mx| \text{-} Moreover |mx| = |mx - f(x) + f(x)| \le |f(x) - mx| + |f(x)|, \text{ which yields } |f(x) - mx| \ge |mx| - |f(x)| > \frac{1}{2} |mx| > |f(x)|, \text{ i.e. } |f(x) - mx| > |f(x)|.$

(c) If any straight line y = mx + b is to approximate the curve y = f(x) for small values of x, then b = 0 since f(0) = 0. The inequality |f(x) - mx| > |f(x)| can also be interpreted as |f(x) - mx| > |f(x) - 0|, i.e. the line y = 0 is a better approximation than is y = mx.

54. Let $g(x) = f(x) - [f(x_0) + f^0(x_0)(x - x_0)]$ and $h(x) = f(x) - [f(x_0) + m(x - x_0)]$; note that $h(x) - g(x) = (f^0(x_0) - m)(x - x_0)$. If $m = f^0(x_0)$ there exists $\delta > 0$ such that if $0 < |x - x_0| < \delta$ then $\frac{f(x) - f(x_0)}{2} - f^0(x_0) < \delta$

- 55. See discussion around Definition 2.2.2.
- 56. See Theorem 2.2.3.

Exercise Set 2.3

1. $28x^6$, by Theorems 2.3.2 and 2.3.4.

mh

- 2. $-36x^{11}$, by Theorems 2.3.2 and 2.3.4.
- 3. $24x^7 + 2$, by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5.
- 4. 2x³, by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5.

- 5. 0, by Theorem 2.3.1. 6. $\sqrt{2}$, by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5. 7. $-\frac{1}{2}$ (7x⁶ + 2), by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5. 8. ²/₂x, by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5. 9. $-3x^{-4} - 7x^{-8}$, by Theorems 2.3.3 and 2.3.5. 10. $\overline{2\sqrt{x}}$ - $\overline{x2}$, by Theorems 2.3.3 and 2.3.5. 11. $24x^{-9} + 1/\sqrt[7]{x, by}$ Theorems 2.3.3, 2.3.4, and 2.3.5. 12. $-42x^{-7} - \frac{5}{\sqrt{2}}$, by Theorems 2.3.3, 2.3.4, and 2.3.5. 13. $f^{0}(x) = \pi x^{\pi - 1} - \sqrt[\gamma]{10 x^{-1}} \sqrt{10}$, by Theorems 2.3.3 and 2.3.5. 14. $f_0(x) = -3^2 x^{-4/3}$, by Theorems 2.3.3 and 2.3.4.^{2x} 15. $(3x^2 + 1)^2 = 9x^4 + 6x^2 + 1$, so f⁰(x) = $36x^3 + 12x$, by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5. 16. $3ax^2 + 2bx + c$, by Theorems 2.3.1, 2.3.2, 2.3.4, and 2.3.5. 17. $y^0 = 10x - 3$, $y^0(1) = 7$. 19. 2t - 1, by Theorems 2.3.2 and 2.3.5. 20. 1 - 1, by Theorems 2.3.3, 2.3.4, and 2.3.5. 21. $dy/dx = 1 + 2x + 3x^2 + 4x^3 + 5x^4$, $dy/dx|_{x=1} = 15$. 22. $\frac{dy}{dx} = \frac{-3}{4} - \frac{2}{3} - \frac{1}{2} + 1 + 2x + 3x^2$, $\frac{dy}{dx} = 0$. 23. $y = (1 - x^2)(1 + x^2)(1 + x^4) = (1 - x^4)(1 + x^4) = 1 - x^8$, $\frac{dy}{dx} = 8x^7$, $\frac{dy}{dx} = -8$. $24. \ \ dy/dx = 24x^{23} \ + 24x^{11} \ + 24x^7 \ + 24x^5 \ , \ dy/dx|_{x=1} \ = 96.$ 25. $f_0(1) \approx \frac{f(1.01) - f(1)}{1} = \frac{-0.999699 - (-1)}{1} = 0.0301$, and by differentiation, $f_0(1) = 3(1)^2 - 3 = 0$. 0.010.01 26. $f^{0}(1) \approx \frac{f(1.01) - f(1)}{0.01} \approx \frac{0.980296 - 1}{0.01} \approx -1.9704$, and by differentiation, $f^{0}(1) = -2/1^{3} = -2$.
 - 27. The estimate will depend on your graphing utility and on how far you zoom in. Since f $\begin{pmatrix} 0 \\ x \end{pmatrix} = 1 \frac{1}{x}$, the exact value is f $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$.

- 28. The estimate will depend on your graphing utility and on how far you zoom in. Since $f^{0}(x) = \frac{1}{2 \frac{v}{x}}$, the exact value is $f^{0}(1) = 5/2$.
- 29. 32t, by Theorems 2.3.2 and 2.3.4.
- 30. 2π , by Theorems 2.3.2 and 2.3.4.
- 31. $3\pi r^2$, by Theorems 2.3.2 and 2.3.4.
- 32. $-2\alpha^{-2} + 1$, by Theorems 2.3.2, 2.3.4, and 2.3.5.

33. True. By Theorems 2.3.4 and 2.3.5, $d\frac{d}{dx} [f(x) - 8g(x)] = f^0(x) - 8g^0(x)$; substitute x = 2 to get the result.

34. True. $\frac{d}{dx}[ax^3 + bx^2 + cx + d] = 3ax^2 + 2bx + c.$

- 35. False. $\underline{d}_{dx} [4f(x) + x^3]_{x=2} = (4f^0(x) + 3x^2)_{x=2} = 4f^0(2) + 3 \cdot 2^2 = 32$
- 36. False. $f(x) = x^6 x^3$ so $f^0(x) = 6x^5 3x^2$ and $f^{00}(x) = 30x^4 6x$, which is not equal to $2x(4x^3 1) = 8x^4 2x$. 37. (a) $\frac{dV}{dr} = 4\pi r^2$ (b) $\frac{dV}{dr}_{r=5} = 4\pi (5)^2 = 100\pi$
- 38. $\frac{d}{d\lambda_{2}} + \frac{\lambda_{6}}{2} = \frac{1}{2-\lambda_{0}} \frac{d}{d\lambda_{0}} + \frac{\lambda_{6}}{2} = \frac{1}{2-\lambda_{0}} \frac{d}{d\lambda_{0}} + \frac{\lambda_{6}}{2} = \frac{\lambda_{6}}{2-\lambda_{0}} \frac{\lambda_{6}}{2-\lambda_{0}} = \frac{\lambda_{6}}{2-\lambda_{0}} \frac{\lambda_{6}}{2-\lambda_{0}} \frac{\lambda_{6}}{2-\lambda_{0}} = \frac{\lambda_{6}}{2-\lambda_{0}} \frac{\lambda_{6}}{2-\lambda_$

39.
$$y-2 = 5(x + 3), y = 5x + 17.$$

40.
$$y + 2 = -(x - 2), y = -x$$

41. (a)
$$dy/dx = 21x^2 - 10x + 1$$
, $d^2 y/dx^2 = 42x - 10$ (b) $dy/dx = 24x - 2$, $d^2 y/dx^2 = 24$
(c) $dy/dx = -1/x^2$, $d^2 y/dx^2 = 2/x^3$ (d) $dy/dx = 175x^4 - 48x^2 - 3$, $d^2 y/dx^2 = 700x^3 - 96x^2$
42. (a) $y^0 = 28x^6 - 15x^2 + 2$, $y^{00} = 168x^5 - 30x$ (b) $y^0 = 3$, $y^{00} = 0$
(c) $y^0 = \overline{5x^2}$, $y^{00} = -\overline{5x^3}$ (d) $y^0 = 8x^3 + 9x^2 - 10$, $y^{00} = 24x^2 + 18x^3$

43. (a)
$$y^0 = -5x^{-6} + 5x^4$$
, $y^{00} = 30x^{-7} + 20x^3$, $y^{000} = -210x^{-8} + 60x^2$
(b) $y = x^{-1}$, $y^0 = -x^{-2}$, $y^{00} = 2x^{-3}$, $y^{000} = -6x^{-4}$
(c) $y^0 = 3ax^2 + b$, $y^{00} = 6ax$, $y^{000} = 6a$

44. (a)
$$dy/dx = 10x - 4$$
, $d^2 y/dx^2 = 10$, $d^3 y/dx^3 = 0$
(b) $dy/dx = -6x^{-3} - 4x^{-2} + 1$, $d^2 y/dx^2 = 18x^{-4} + 8x^{-3}$, $d^3 y/dx^3 = -72x^{-5} - 24x^{-4}$
(c) $dy/dx = 4ax^3 + 2bx$, $d^2 y/dx^2 = 12ax^2 + 2b$, $d^3 y/dx^3 = 24ax$
45. (a) $f^0(x) = 6x$, $f^{00}(x) = 6$, $f^{000}(x) = 0$, $f^{000}(2) = 0$

(b)
$$\frac{dy}{dx} = 30x^4$$
 8x, $\frac{d^2y}{dx^2} = 120x^3 - 8$, $\frac{d^2y}{dx^2}|_{x=1} = 112$
(c) $\frac{d}{dx}|_{x=3} = 3x^{-4}$, $\frac{d^2}{dx^2}|_{x=3} = 12x^{-5}$, $\frac{d^3}{dx^3}|_{x=3} = -60x^{-6}$, $\frac{d^4}{dx}|_{x=3} = 360x^{-7}$, $\frac{d^4}{dx}|_{x=3} = 360$
46. (a) $y^0 = 16x^3 + 6x^2$, $y^{00} = 48x^2 + 12x$, $y^{000} = 96x + 12$, $y^{000}(0) = 12$
(b) $y = 6x^{-4}$, $\frac{dy}{dx} = -24x^{-5}$, $\frac{2}{dx^2} = 120x^{-6}$, $\frac{3}{dx^3} = -720x^{-7}$, $\frac{4}{dx^4} = 5040x^{-8}$, $\frac{4}{dx^4} = 5040$
47. $y^0 = 3x^2 + 3$, $y^{00} = 6x$, and $y^{000} = 6$ so $y^{000} + xy^{00} - 2y^0 = 6 + x(6x) - 2(3x^2 + 3) = 6 + 6x^2 - 6x^2 - 6 = 0$.
48. $y = x^{-1}$, $y^0 = -x^{-2}$, $y^{00} = 2x^{-3}$ so $x^3 y^{00} + x^2 y^0 - xy = x^3 (2x^{-3}) + x^2 (-x^{-2}) - x(x^{-1}) = 2 - 1 - 1 = 0$.
49. The graph has a horizontal tangent at points where $dx = 0$, but $dx = x^{2-3}x + 2 = (x - 1)(x - 2) = 0$ if $x = 1, 2$.

- 51. The y-intercept is -2 so the point (0, -2) is on the graph; $-2 = a(0)^2 + b(0) + c$, c = -2. The x-intercept is 1 so the point (1,0) is on the graph; 0 = a + b 2. The slope is dy/dx = 2ax + b; at x = 0 the slope is b so b = -1, thus a = 3. The function is $y = 3x^2 x 2$.
- 52. Let P (x₀, y₀) be the point where $y = x^2 + k$ is tangent to y = 2x. The slope of the curve is $\frac{dy}{dx} = 2x$ and the slope of the line is 2 thus at P, $2x_0 = 2 \text{ so } x_0 = 1$. But P is on the line, so $y_0 = 2x_0 = 2$. Because P is also on the curve is also on the curve is also on the curve is $-x^2 = 2 (1)^2 = 1$.
- 53. The points (-1, 1) and (2, 4) are on the secant line so its slope is (4-1)/(2+1) = 1. The slope of the tangent line to $y = x^2$ is $y^0 = 2x$ so 2x = 1, x = 1/2.
- 54. The points (1, 1) and (4, 2) are on the secant line so its slope is 1/3. The slope of the tangent line to $y = \frac{\sqrt{x}}{x}$ is $y^0 = 1/(2\sqrt{x})$ so 1/(2x) = 1/3, 2x = 3, x = 9/4. 55. $y^0 = -2x$, so at any point (x , y) on $y = 1 - x^2$ the tangent line is y - y = -2x or $(x - x_0)$, or y = -2x or $x + x_0^2 + 1$.

5. y = -2x, so at any point (x , y) on y = 1 - x the tangent line is y - y = -2x , $(x - x_0)$, or y = -2x , $x + x_0 + 1$. The point (2.0) is to be on the line, so 0 = -4x + x^2 + 1, $x^2 - 4x$ + 1 = 0. Use the quadratic formula to get

$$x_0 = \frac{4 \pm \sqrt{16 - 4}}{2} = 2\pm 3$$
. The points are $(2 \pm \sqrt{3}, -6 \pm 4, 3)$ and $(2 \pm \sqrt{3}, -6 \pm 4, 3)$.

0

56. Let $P_1(x, ax^2)$ and $P_2(x, ax^2)$ be the points of tangency. $y^0 = 2ax$ so the tangent lines at P_1 and P_2 are $y - ax^2_1 = 2ax_1(x - x_1)^2$ and $y - ax^2_2 = 2ax_2(x - x_2)$. Solve for x to get $x = -\frac{1}{2}(x_1 + x_2)$ which is the x-coordinate of a point on the vertical line halfway between P_1 and P_2 .

57. $y^0 = 3ax^2 + b$; the tangent line at $x = x_0$ is $y - y_0 = (3ax^2 + b)(x - x_0)$ where $y_0 = ax^3 + bx_0$. Solve with $y = ax^3 + bx$ to get ax $3^3 + bx - ax^3 - bx_0 = 3ax - 2x - 3ax^3 + bx - bx_0$

$$x^{3} - 3x^{2}_{0}x + 2x^{3}_{0} = 0$$

(x - x)(x² + xx - 2x²) = 0

$$(x - x_0)^2 (x + 2x_0) = 0$$
, so $x = -2x_0$.

58. Let (x_0, y_0) be the point of tangency. Note that $y_0 = 1/x_0$. Since $y^0 = -1/x^2$, the tangent line has the equation $y - y = (-1/x^2)(x - x)$, or y - 1 = -1 x + 1 or y = -1 x + 2, with intercepts at $0, 2 = (0, 2y_0)$ and $0 \qquad 0 \qquad x_0 x^2 \qquad x_0 x^2 \qquad 0$

 $(2x_0, 0)$. The distance from the y-intercept to the point of tangency is p $\frac{0}{(x_0 - 2x_0)^2 + (y_0 - 0)^2}$ so that they $\frac{(x_0 - 0)^2 + (y_0 - 2y_0)^2}{are equal}$, and the distance from the x-intercept to the point of tangency is p $\frac{1}{(x_0 - 2x_0)^2 + (y_0 - 0)^2}$ so that they are equal (and equal the

$$+y^2$$
 from the point of tangency to the origin)

59. $y^0 = -\underbrace{1}_x$; the tangent line at $x = x_0$ is $y - y_0 = -\underbrace{1}_x (x - x_0)$, or $y = -\underbrace{x}_0 + \underbrace{2}_x$. The tangent line crosses the x

x-axis at 2x₀, the y-axis at $2/x_0$, so that the area of the triangle is $\frac{1}{2}(2/x_0)(2x_0) = 2$.

- 60. $f^0(x) = 3ax^2 + 2bx + c$; there is a horizontal tangent where $f^0(x) = 0$. Use the quadratic formula on $3ax^2 + 2bx + c = 0$ to get $x = (-b \pm \sqrt{b^2 - 3ac})/(3a)$ which gives two real solutions, one real solution, or none if
- (a) $b^2 3ac > 0$ (b) $b^2 3ac = 0$ (c) $b^2 3ac < 0$ 61. F = GmM r⁻², $\frac{dF}{dr r^3} = -2GmM r^{-3} = -\frac{2GmM}{dr r^3}$
- 62. $dR/dT = 0.04124 3.558 \times 10^{-5} T$ which decreases as T increases from 0 to 700. When T = 0, dR/dT = The 0.04124 $\Omega/^{\circ}$ C; when T = 700, $dR/dT = 0.01633 \Omega/^{\circ}$ C. T resistance is most sensitive to temperature changes at = 0° C, least sensitive at T = 700° C.

63. $f^0(x) = 1 + 1/x^2 > 0$ for all x = 0

2.3

					,	¢
	-2	-1		1	2	
64. $f^{0}(x) = 3x^{2} - 3 = 0$ when $x = \pm 1$; $f^{0}(x) > 0$ for $-\infty < x < -1$ and $1 < x < +\infty$			-2	((1, -2)	

65. f is continuous at 1 because $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$; also $\lim_{x \to 1^{-}} f^{0}(x) = \lim_{x \to 1^{-}} (2x+1) = 3$ and $\lim_{x \to 1^{+}} f^{0}(x) = \lim_{x \to 1^{+}} (2x+1) = 3$ and $\lim_{x \to 1^{+}} f^{0}(x) = 1$. $x \rightarrow 1^+$ y

lim f(x) = -63 and lim f(x) = 3. f cannot be differentiable at x = 9, 66. $f = 10^{-10} \text{ s}^{-10} \text{ s}^{-10}$

for if it were, then f would also be continuous, which it is not.

 $\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1}$ equals the derivative of x² at 67. f is continuous at 1 because $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = f(1)$. Also, $x \rightarrow 1^{-}$ lim x->1 + x = 1, namely 2xx=1 $\mathbf{X} = 1$

Since these are not equal, f is not differentiable at x = 1.

- 68. f is continuous at 1/2 because $\lim_{x \to 1/2^{-}} f(x) = \lim_{x \to 1/2^{+}} f(x) = f(1/2)$; also $\lim_{x \to 1/2^{-}} f^{0}(x) = \lim_{x \to 1/2^{-}} 3x^{2}$ lim $f^{0}(x) = \lim_{x \to 1/2^{-}} 1/2$. = 3/4 and $x \rightarrow 1/2^+$ 3x/2 = 3/4 so f⁰ (1/2) = 3/4, $x \rightarrow 1/2^+$ at x = and
- 69. (a) f(x) = 3x 2 if $x \ge 2/3$, f(x) = -3x + 2 if x < 2/3 so f is differentiable everywhere except perhaps at 2/3. f is continuous at 2/3, also $\lim_{x \to 2/3^{-}} f^{0}(x) = \lim_{x \to 2/3^{-}} (-3) = -3$ and $\lim_{x \to 2/3^{+}} f^{0}(x) = \lim_{x \to 2/3^{+}} (-3) = 3$ so f is not (3) = 3 so f is not (3) = 3 so f is not (3) = 3 so f is not (3) = 3. differentiable at x = 2/3.

(b) $f(x) = x^2 - 4$ if $|x| \ge 2$, $f(x) = -x^2 + 4$ if |x| < 2 so f is differentiable everywhere except perhaps at ± 2 . f is continuous at -2 and 2, also $\lim_{x\to 2^-} f^0(x) = \lim_{x\to 2^-} (-2x) = -4$ and $\lim_{x\to 2^+} f^0(x) = \lim_{x\to 2^+} (2x) = 4$ so f is not differentiable at x = 2. Similarly, f is not differentiable at x = -2

70. (a)
$$f^{0}(x) = -(1)x^{-2}$$
, $f^{00}(x) = (2 \cdot 1)x^{-3}$, $f^{000}(x) = -(3 \cdot 2 \cdot 1)x^{-4}$; $f^{(n)}(x) = (-1)^{n} \frac{n(n-1)(n-2)\cdots 1}{n(n-1)(n-2)\cdots 1}$

$$X^{n+1}$$

(b)
$$f^{0}(x) = -2x^{-3}, f^{00}(x) = (3 \cdot 2)x^{-4}, f^{000}(x) = -(4 \cdot 3 \cdot 2)x^{-5}; f^{(n)}(x) = (-1)^{n} \frac{(n+1)(n)(n-1) \cdot \cdot \cdot 2}{x^{n+2}}$$

71. (a)

$$\frac{d^2}{dx^2} \begin{bmatrix} cf(x) \end{bmatrix} = \frac{d}{dx} \frac{d}{dx} \begin{bmatrix} cf(x) \end{bmatrix} = \frac{d}{dx} \frac{d}{c} \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} = c \frac{d}{dx} \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} = c \frac{d^2}{dx^2} \begin{bmatrix} f(x) \end{bmatrix}$$

$$\frac{d^2}{dx} \begin{bmatrix} d & d & d & d & d^2 & d^2 \end{bmatrix}$$

$$\frac{d^2}{dx} \begin{bmatrix} f(x) + g(x) \end{bmatrix} = \frac{d}{dx} \frac{d}{dx} \begin{bmatrix} f(x) + g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx} \begin{bmatrix} f(x) \end{bmatrix} + \frac{d}{dx} \begin{bmatrix} g(x) \end{bmatrix} = \frac{d}{dx$$

(b) Yes, by repeated application of the procedure illustrated in part (a).

72.
$$\lim_{w \to 2} \frac{f^{\underline{0}}(w) - f^{\underline{0}}(2)}{w - 2} = f^{00}(2); f^{0}(x) = 8x^{7} - 2, f^{00}(x) = 56x^{6}, \text{ so } f^{00}(2) = 56(2^{6}) = 3584.$$

- 73. (a) $f^{0}(x) = nx^{n-1}$, $f^{00}(x) = n(n-1)x^{n-2}$, $f^{000}(x) = n(n-1)(n-2)x^{n-3}$, ..., $f^{(n)}(x) = n(n-1)(n-2) \cdots 1$ (b) From part (a), $f^{(k)}(x) = k(k-1)(k-2) \cdots 1$ so $f^{(k+1)}(x) = 0$ thus $f^{(n)}(x) = 0$ if n > k.
 - (c) From parts (a) and (b), $f^{(n)}(x) = a_n n(n-1)(n-2) \cdots 1$.

- 74. (a) If a function is differentiable at a point then it is continuous at that point, thus f^{0} is continuous on (a, b) and consequently so is f.
 - (b) f and all its derivatives up to $f^{(n-1)}(x)$ are continuous on (a, b).

			,				
75. Let $g(x) = x^n$, $f(x) = (mx + b)^n$. Use Exercise	52 in S	Section	2.2, but w	with f and $\int_{0}^{0} dx$	g permuted.	If $x_0 = mx_1 + $	- b
ulen Exercise 32 says that I is unterentiable at x	and I	(X)	= mg(x).	since g (x	$) = \Pi X$, the result ton	iows.
•	1	1	0		0 0		

76.
$$f(x) = 4x^2 + 12x + 9$$
 so $f^0(x) = 8x + 12 = 2 \cdot 2(2x + 3)$, as predicted by Exercise 75.
77. $f(x) = 27x^3 - 27x^2 + 9x - 1$ so $f^0(x) = 81x^2 - 54x + 9 = 3 \cdot 3(3x - 1)^2$, as predicted by Exercise 75.
78. $f(x) = (x - 1)^{-1}$ so $f^0(x) = (-1) \cdot 1(x - 1)^{-2} = -1/(x - 1)^2$.
79. $f(x) = 3(2x + 1)^{-2}$ so $f^0(x) = 3(-2)2(2x + 1)^{-3} = -12/(2x + 1)^3$.
80. $f(x) = \frac{x + 1 - 1}{x + 1} = 1 - (x + 1)^{-1}$, and $f^0(x) = -(-1)(x + 1)^{-2} = 1/(x + 1)^2$.
81. $f(x) = \frac{2x_2 + 4x + 2 + 1}{1)^2} = 2 + (x + 1)^{-2}$, so $f_0(x) = -2(x + 1) - 3 = -2/(x + 1)^3$. (x + 1)^2

82. (a) If n = 0 then $f(x) = x^0 = 1$ so $f^0(x) = 0$ by Theorem 2.3.1. This equals $0x^{0-1}$, so the Extended Power Rule holds in this case.

(b)
$$f^{0}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \frac{1/(x+h)^{m} - 1/x^{m}}{h} \frac{x^{m} - (x+h)^{m}}{h} =$$

 $\lim_{h \to 0} h \frac{1}{h} \frac{1/(x+h)^{m} - 1/x^{m}}{h} = \lim_{h \to 0} hx^{m}(x+h)^{m}$
 $=\lim_{h \to 0} \frac{(x+h)^{m} - x^{m}}{h} + \lim_{h \to 0} -\frac{1}{h} \frac{1}{h} \frac{d}{h} = m(x) - \frac{1}{h} = mx^{m-1} + \frac{1}{h} = -mx^{-m-1} = nx^{n-1}$

Exercise Set 2.4

1. (a)
$$f(x) = 2x^2 + x - 1$$
, $f^0(x) = 4x + 1$ (b) $f^0(x) = (x + 1) \cdot (2) + (2x - 1) \cdot (1) = 4x + 1$
2. (a) $f(x) = 3x^4 + 5x^2 - 2$, $f^0(x) = 12x^3 + 10x$ (b) $f^0(x) = (3x^2 - 1) \cdot (2x) + (x^2 + 2) \cdot (6x) = 12x^3 + 10x$
3. (a) $f(x) = x^4 - 1$, $f^0(x) = 4x^3$ (b) $f^0(x) = (x^2 + 1) \cdot (2x) + (x^2 - 1) \cdot (2x) = 4x^3$
4. (a) $f(x) = x^3 + 1$, $f^0(x) = 3x^2$ (b) $f^0(x) = (x + 1)(2x - 1) + (x^2 - x + 1) \cdot (1) = 3x^2$
 $\underline{d} = 1$ $\underline{1} = \underline{d} = \underline{1} = \underline{3}$

5. $f^{0}(x) = (3x^{2} + 6) dx$ 2x - 4 $+ 2x - 4 dx (3x^{2} + 6) = (3x^{2} + 6)(2) + 2x - 4 (6x) = 18x^{2} - 2x + 12$

$$6. f^{0}(x) = (2 - x - 3x^{3}) dx$$

$$(7 + x^{5}) + (7 + x^{5}) dx (2 - x - 3x^{3}) = (2 - x - 3x^{3})(5x^{4}) + (7 + x^{5})(-1 - 9x^{2}) = (2 - x - 3x^{3})(5x^{4}) + (7 + x^{5})(-1 - 9x^{2}) = (2 - x - 3x^{3})(5x^{4}) + (7 + x^{5})(-1 - 9x^{2}) = (7 + x^{5})(-1 - 9x^{5}) = (7 + x^{5})(-$$

$$+(2x^{-3} + x^{-4})(3x^{2} + 14x) = -15x^{-2} - 14x^{-3} + 48x^{-4} + 32x^{-5}$$
8. $f_{0}(x) = (x^{-1} + x^{-2}) dx \qquad d \qquad (3x^{3} + 27) + (3x^{3} + 27) dx(x^{-1} + x^{-2}) = (x^{-1} + x^{-2})(9x^{2}) + (3x^{3} + 27)(-x^{-2} - 2x^{-3}) = 3x^{-6}$
9. $f_{0}(x) = 1 \cdot (x^{2} + 2x + 4) + (x - 2) \cdot (2x + 2) = 3x^{2}$

$$10. f^{0}(x) = (2x + 1)(x^{2} - x) + (x^{2} + x)(2x - 1) = 4x^{3} - 2x$$

$$11. f^{0}(x) = \frac{(x^{2} + 1) - 4}{1} - 4 - (3x + 4) - (3x + 4) - (3x + 4) - (3x + 4) + 2x - 3x - 3x - 8x + 3$$

$$= (x^{2} + 1)^{2} - (x^{2} + 1)^{2} - (x^{2} + 1)^{2} - (x^{2} + 1)^{2} - (x^{2} + 1)^{2}$$

$$12. f^{0}(x) = \frac{(x + x + 1) - 4}{1} - (x^{2} - 2) - (x - 2) - (x - 2) - 4 - (x + x + 1) - (x - 2) - (4x - 2 + 1) - 3x - 4 + 8x - 2 + 3$$

$$12. f^{0}(x) = \frac{(x^{4} + x + 1)^{2}}{1} - (x^{4} + x + 1)^{2} = (x^{4} + x + 1) - (x - 2) - (4x - 2 + 1) - 3x - 4 + 8x - 2 + 3$$

$$13. (x) = (x^{4} + x + 1)^{2} - (x^{4} + x + 1)^$$

15.
$$f(x) = \frac{2x^{3/2}}{x+3} + \frac{x}{3} = \frac{2x^{1/2}}{x+3} = \frac{1}{3}$$
, so
 $f^{0}(x) = \frac{(x+3)}{dx} + \frac{4}{dx} + \frac{(2x-3/2+x-2x-1/2-1)}{(x+3)^{2}} + \frac{(2x-3/2+x-2x-1/2-1)}{(x+3)^{2}} + \frac{(x+3)}{dx} = \frac{x^{3/2}+10x^{1/2}+4-3}{(x+3)^{2}} = \frac{x^{3/2}+10x^{1/2}+4-3}{(x+3)^{2}}$

16. f (x) =
$$\frac{-2x^{3/2} - x + 4x^{-1/2} + 2}{x^2 + 3x}$$
, so
for (x) = $\frac{(x + 3x)}{dx} = \frac{4(-2x - 32 - x + 4x - 1/2 + 2) - (-2x - 3/2 - x + 4x - 1/2 - 2) - 4(x + 2 - 3x)}{(x^2 + 3x)^2} = \frac{(x + 3x) - (-3x - 1/2 - 1 + 2x - 1/2) - (-2x - 3/2 - x + 4x - 1/2 - 4x - 3/2)}{(x^2 + 3x)^2} = \frac{x^{5/2} + x^2 - 9x^{3/2} - 4x - 6x^{1/2} - 6}{(x^2 + 3x)^2}$

- 17. This could be computed by two applications of the product rule, but it's simpler to expand f(x): $f(x) = 14x + 21 + 7x^{-1} + 2x^{-2} + 3x^{-3} + x^{-4}$, so $f^{0}(x) = 14 7x^{-2} 4x^{-3} 9x^{-4} 4x^{-5}$.
- 18. This could be computed by two applications of the product rule, but it's simpler to expand f (x): $f(x) = -6x^7 4x^6 + 16x^5 3x^{-2} 2x^{-3} + 8x^{-4}$, so $f^0(x) = -42x^6 24x^5 + 80x^4 + 6x^{-3} + 6x^{-4} 32x^{-5}$. 19. In general, $\frac{d}{dx}g(x)^2 = 2g(x)g^0(x)$ and $\frac{d}{dx}g(x)^3 = \frac{d}{dx}g(x)^2g(x) = g(x)^2g^0(x) + g(x)\frac{d}{dx}g(x)^2 = g(x)^2g^0(x) + g(x)\frac{d}{dx}g(x)^2 = g(x)^2g^0(x) + g(x)g^0(x) + g(x)g^0(x)$
- 19. In general, $\frac{d}{dx} g(x)^2 = 2g(x)g^0(x)$ and $\frac{d}{dx} g(x)^3 = \frac{d}{dx} g(x)^2 g(x) = g(x)^2 g^0(x) + g(x)^2 g^0(x$

Letting
$$g(x) = x^2 + 1$$
, we have $f^0(x) = 4(x^2 + 1)^3 \cdot 2x = 8x(x^2 + 1)^3$.
21. $\frac{dy}{dx} = \underline{(x+3) \cdot 2 - (2x-1) \cdot 1} = \underline{-7} \rightarrow \text{so} \ \frac{dy}{dx} = \underline{-7} \cdot \frac{1}{dx}$
 $dx \qquad (x+3)^2 \qquad (x+3)^2 \qquad \frac{dx}{x=1} \qquad 16$
22. $\frac{dy}{dx} = \underline{(x^2-5) \cdot 4 - (4x+1) \cdot (2x)} = \underline{-4x^2-2x-20}$, so $\frac{dy}{dx} = \underline{-26} = \underline{-3}$.

dx $(x^2 - 5)^2$ $(x^2 - 5)^2$ dx 16 8
23.
$$\frac{dy}{dx x} = \frac{3x+2}{dx} \frac{d}{dx} x^{-5} + 1 + x^{-5} + 1 \qquad \frac{d}{dx} \frac{3x+2}{x} = \frac{3x+2}{x} -5x^{-6} + x^{-5} + 1 \qquad \frac{x(3) - (3x+2)(1)}{x^2} = \frac{3x+2}{x^2}$$

$$\frac{3x+2}{x} - 5x^{-6} + x^{-5} + 1 \qquad -\frac{2}{x^2}; \text{ so } \frac{dy}{dx}_{x=1} = 5(-5) + 2(-2) = -29.$$

$$\frac{dy}{dx} = (2x^7 - x^2) \frac{d}{dx} x + 1 \qquad + \qquad x + 1 \qquad \frac{d}{dx} (2x^7 \qquad (x+1)^2 \qquad + \frac{2}{x^2}) = (2x^7 - x^2) (x+1)(1) - (x-1)(1)$$

$$24. \quad dx = (2x^7 - x^2) \frac{d}{dx} x + 1 \qquad + \qquad x + 1 \qquad \frac{d}{dx} (2x^7 \qquad (x+1)^2 \qquad + \frac{2}{x^2}) = (2x^7 - x^2) (x+1)(1) - (x-1)(1) \qquad + \frac{2}{x^2} + \frac{2}{x^2$$

25.
$$f^{0}(x) = \frac{(x^{2} + 1) \cdot 1 - x \cdot 2x}{(x^{2} + 1) (x + 1)} = \frac{1 - x^{2}}{(x^{2} + 1) (x + 1)}$$

26.
$$f^{0}(x) = 2 \frac{(x^{\frac{2}{2}} + 1) \cdot 2x}{2} \frac{-(x^{\frac{2}{2}} - 1) \cdot 2x}{2} = \frac{4x}{2} \frac{2}{2}$$
, so $f_{0}(1) = 1$.
(x + 1) (x + 1)
 $\sqrt{\frac{1}{2}}$ 1

27. (a)
$$g^{0}(x) = xf^{0}(x) + 2\sqrt{x} f(x), g^{0}(4) = (2)(-5) + 4 (3) = -37/4.$$

$$xf^{0}(x) - f(x) (4)(-5) - 3$$

(b)
$$g^{0}(x) = x^{2}$$
, $g^{0}(4) = 16$ = -23/16.

28. (a)
$$g^{0}(x) = 6x - 5f^{0}(x), g^{0}(3) = 6(3) - 5(4) = -2.$$

(b) $g^{0}(x) = \frac{2f(x) - (2x + 1)f^{0}(x)}{f^{2}(x)}, g^{0}(3) = \frac{-2(-2) - 7(4)}{(-2)^{2}} = -8.$

29. (a)
$$F^{0}(x) = 5f^{0}(x) + 2g^{0}(x), F^{0}(2) = 5(4) + 2(-5) = 10.$$

(b) $F^{0}(x) = f^{0}(x) - 3g^{0}(x), F^{0}(2) = 4 - 3(-5) = 19.$
(c) $F^{0}(x) = f(x)g^{0}(x) + g(x)f^{0}(x), F^{0}(2) = (-1)(-5) + (1)(4) = 9.$
(d) $F^{0}(x) = [g(x)f^{0}(x) - f(x)g^{0}(x)]/g^{2}(x), F^{0}(2) = [(1)(4) - (-1)(-5)]/(1)^{2} = -1.$
30. (a) $F^{0}(x) = 6f^{0}(x) - 5g^{0}(x), F^{0}(\pi) = 6(-1) - 5(2) = -16.$

(b)
$$F^{0}(x) = f(x) + g(x) + x(f^{0}(x) + g^{0}(x)), F^{0}(\pi) = 10 - 3 + \pi(-1+2) = 7 + \pi.$$

(c) $F^{0}(x) = 2f(x)g^{0}(x) + 2f^{0}(x)g(x) = 2(20) + 2(3) = 46.$
(d) $F^{0}(x) = \frac{(4 + g(x))f}{(x)} = \frac{g(x) - f(x)g^{0}}{(x)} = \frac{(4 - 3)(-1) - 10(2)}{(4 - 3)^{2}} = -21.$

 $\frac{dy}{31. dx} = \frac{2x(x + 2) - (x^2 - 1)}{(x + 2)^2} \frac{dy}{dx} = 0 \text{ if } x^2 + 4x + 1 = 0. \text{ By the quadratic formula, } x = 1 + 4x + 1 = 0. \text{ By the quad$

The tangent line is horizontal at $x = -2 \pm 3$. 32. $\frac{dy}{dx} = \frac{2x(x-1) - (x^2 + 1)}{(x-1)^2} = \frac{x^2 - 2x - 1}{(x-1)^2}$. The tangent line is horizontal when it has slope 0, i.e. $x^2 - 2x - 1 = 0$ which, by the quadratic formula, has solutions $x = \frac{2 \pm 4 + 4}{1 + 4} = 1 \pm 2$, the tangent line is horizontal when

 $\mathbf{x} = 1 \pm \frac{\sqrt{-2}}{2}.$

33. The tangent line is parallel to the line
$$y = x$$
 when it has slope 1 , $\frac{dx}{dx} = \frac{2x(x+1)-x(x-1+x)}{4x+1} = \frac{x^2+2x-1}{4x+1} = 1$
is $x^2 + 2x - 1 = (x+1)^2$, which reduces to $-1 = +1$, impossible. Thus the tangent line is never parallel to the line $y = x$.
34. The tangent line is perpendicular to the line $y = x$ when the tangent line has slope -1 , $y = \frac{x+2+1}{x+2} = 1 + \frac{1}{x+2}$.
hence $\frac{dy}{dx} = -\frac{1}{(x+2)^2} = -1$ when $(x+2)^2 = 1, x^2 + 4x = 3 = 0, (x+1)(x+3) = 0, x = -1, -3$. Thus the tangent line is perpendicular to the line $y = x$ at the points $(-1, 2), (-3, 0)$.
35. Fix x_0 . The slope of the tangent line to the curve $y = \frac{1}{x+4}$ at the point $(x_0, 1/(x_0 + 4))$ is given by $\frac{dy}{dx} = \frac{-1}{(x+4)^2} = -\frac{-1}{(x+4)^2}$. The tangent line to the curve $x = (y - x)(x + 4)^2$ is zero. Then $\frac{-x+4}{x+4} = \frac{-2x}{x+4} + \frac{-2x}{x+2}$.
 $x = 0$ $\frac{1}{x+4}$ at the point $(x_0, 1/(x_0 + 4))$ is given by $\frac{dy}{dx} = \frac{-1}{(x+4)^2}$. The tangent line to the curve $x = (y - x)(x + 4)^2$ is zero. Then $\frac{-x}{x+4} + \frac{-2x}{x+4} + \frac{-2x}{x+2} + \frac{-2x}{x+4} + \frac{-2x}{x+2} + \frac{-2x}{x+4} + \frac{$

42. $R^0(p) = p \cdot f^0(p) + f(p) \cdot 1 = f(p) + pf^0(p)$, so $R^0(120) = 9000 + 120 \cdot (-80) = -600$. Increasing the price by a small amount Δp dollars would decrease the revenue by about $600\Delta p$ dollars.

43.
$$f(x) = \frac{1}{x^n} \operatorname{so} f^0(x) = \frac{x^n \cdot (0) - 1 \cdot (nx^{n-1})}{x^n} = -\frac{n}{x^n} = -nx^{-n-1}.$$

Exercise Set 2.5

1.
$$f^{0}(x) = -4 \sin x + 2 \cos x$$

2. $f^{0}(x) = \frac{-10}{x^{3}} + \cos x$
3. $f^{0}(x) = 4x^{2} \sin x - 8x \cos x$
4. $f^{0}(x) = 4 \sin x \cos x$
5. $f^{0}(x) = \frac{x}{x^{3}} = \frac{1 + 5(\sin x - \cos x)}{(5 + \sin x)^{2}} = \frac{1 + 5(\sin x - \cos x)}{-x}$

$$6. t^{0}(x) = \frac{(x^{2} - + \sin x) \cos x - \sin x(2x + \cos x)}{(x^{2} + \sin x)^{2}} = \frac{x^{-2} \cos x - 2x\sin x}{(x^{2} + \sin x)^{2}}$$

$$7. t^{0}(x) = \sec x \tan x - \sqrt[4]{-2\sec^{2} x}$$

$$8. t^{0}(x) = (x^{2} + 1) \sec x \tan x + (\sec x)(2x) = (x^{2} + 1) \sec x \tan x + 2x \sec x$$

$$9. f^{0}(x) = -4 \csc x \cot x + \csc^{2} x$$

$$10. f^{0}(x) = -4 \csc x \cot x + \csc^{2} x$$

$$11. f^{0}(x) = -\sin x - \csc x + x \csc x \cot x$$

$$11. f^{0}(x) = \sec x(\sec^{2} x) + (\tan x)(\sec x \tan x) = \sec^{3} x + \sec x \tan^{2} x$$

$$12. f^{0}(x) = (\csc x)(-\csc^{2} x) + (\cot x)(-\csc x \cot x) = -\csc^{3} x - \csc x \cot^{2} x$$

$$13. f^{0}(x) = \frac{-(1 + \csc x)(\csc^{2} x) - \cot x(0) - \csc x \cot x}{(1 + \csc x)^{2}} = \frac{\sec x(\sec x)(-\csc^{2} x)}{(1 + \csc x)^{2}}, \text{ but } 1 + \cot^{2} x = \csc^{2} x$$

$$(\text{identity}), \text{ thus } \cot^{2} x - \csc^{2} x = -1, \text{ so } f^{0}(x) = \frac{\csc x(-\csc x - 1)}{(1 + \csc x)^{2}} = \frac{\sec x(\tan x - 1)}{(1 + \tan x)^{2}}$$

$$= \frac{\sec x(\tan x + \tan - x - \sec - x)}{(1 + \tan x)^{2}} = \frac{\sec x(\tan x - 1)}{(1 + \tan x)^{2}}$$

$$= \frac{\sec x(\tan x + \tan - x - \sec - x)}{(1 + \tan x)^{2}} = \frac{\sec x(\tan x - 1)}{(1 + \tan x)^{2}}$$

$$= \frac{1 + \csc x}{\cos^{3} x} - 2\frac{\sin x}{\cos^{3} x} = 0; \text{ also, } f(x) = \sec^{2} x - \tan^{2} x = 1 \text{ (identity), so } f^{0}(x) = 0.$$

17. $f(x) = \overline{1 + x \tan x}$ (because $\sin x \sec x = (\sin x)(1/\cos x) = \tan x$), so

$$\frac{(1 + x \tan x)(\sec^2 x) - \tan x[x(\sec^2 x) + (\tan x)^2]}{(1 + x \tan x)^2} = \frac{\sec^2 x - \tan^2 x}{(1 + x \tan x)^2} = (1 + x \tan x)^2 \text{ (because } \sec^2 x - \tan^2 x)$$

$$18. f(x) = (x^{2} + 1) \cot x \text{ (because } \cos x \csc x = (\cos x)(1/\sin x) = \cot x\text{), so}$$

$$3 - \cot x$$

$$f^{0}(x) = (3 - \cot x)[2x\cot x - (x^{2} + 1) \csc x] - (x^{2} + 1) \cot x\csc^{2} \qquad (3 - \cot x)^{2} \qquad (3 - \cot x)^{$$

.

•

19. $dy/dx = -x \sin x + \cos x$, $d^2 y/dx^2 = -x \cos x - \sin x - \sin x = -x \cos x - 2 \sin x$

20.
$$dy/dx = -\csc x \cot x$$
, $d^2 y/dx^2 = -[(\csc x)(-\csc^2 x) + (\cot x)(-\csc x \cot x)] = \csc^3 x + \csc x \cot^2 x$

- 21. $dy/dx = x(\cos x) + (\sin x)(1) 3(-\sin x) = x \cos x + 4 \sin x$, $d^2 y/dx^2 = x(-\sin x) + (\cos x)(1) + 4 \cos x = -x \sin x + 5 \cos x$
- 22. $dy/dx = x^2 (-\sin x) + (\cos x)(2x) + 4\cos x = -x^2\sin x + 2x\cos x + 4\cos x,$ $d^2 y/dx^2 = -[x^2 (\cos x) + (\sin x)(2x)] + 2[x(-\sin x) + \cos x] - 4\sin x = (2 - x^2)\cos x - 4(x + 1)\sin x$
- 23. $dy/dx = (\sin x)(-\sin x) + (\cos x)(\cos x) = \cos^2 x \sin^2 x,$ $d^2 y/dx^2 = (\cos x)(-\sin x) + (\cos x)(-\sin x) - [(\sin x)(\cos x) + (\sin x)(\cos x)] = -4 \sin x \cos x$
- 24. $dy/dx = \sec^2 x$, $d^2 y/dx^2 = 2 \sec^2 x \tan x$
- 25. Let $f(x) = \tan x$, then $f^{0}(x) = \sec^{2} x$.

(a)
$$f(0) = 0$$
 and $f^{0}(0) = 1$, so $y - 0 = (1)(x - 0)$, $y = x$.
(b) $f = \frac{\pi}{4} = 1$ and $f^{0} = \frac{\pi}{4} = 2$, so $y - 1 = 2$ $x - \frac{\pi}{4}$, $y = 2x - \frac{\pi}{2} + 1$.
(c) $f = -\frac{\pi}{4} = -1$ and $f^{0} = -\frac{\pi}{4} = 2$, so $y + 1 = 2$ $x + \frac{\pi}{4}$, $y = 2x + \frac{\pi}{2} - 1$.

- 26. Let $f(x) = \sin x$, then $f^{0}(x) = \cos x$.
 - (a) f(0) = 0 and $f^{0}(0) = 1$, so y 0 = (1)(x 0), y = x.

(b)
$$f(\pi) = 0$$
 and $f^{0}(\pi) = -1$, so $y - 0 = (-1)(x - \pi)$, $y = -x + \pi$.
(c) $f \frac{\pi}{4} \frac{1}{2} \frac{1}{2} \frac{\pi}{4} \frac{\pi}{2} \frac{\pi}{2} \frac{1}{2} \frac{1}{2} \frac{\pi}{2} \frac{1}{2} \frac{\pi}{2} \frac{\pi}{4} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{4} \frac{\pi}{2} \frac$

27. (a) If $y = x \sin x$ then $y^0 = \sin x + x \cos x$ and $y^{00} = 2 \cos x - x \sin x \sin y^{00} + y = 2 \cos x$.

- (b) Differentiate the result of part (a) twice more to get $y^{(4)} + y^{00} = -2 \cos x$.
- 28. (a) If $y = \cos x$ then $y^0 = -\sin x$ and $y^{00} = -\cos x$, so $y^{00} + y = (-\cos x) + (\cos x) = 0$; if $y = \sin x$ then $y^0 = \cos x$ and $y^{00} = -\sin x$ so $y^{00} + y = (-\sin x) + (\sin x) = 0$.
 - (b) $y^0 = A \cos x B \sin x$, $y^{00} = -A \sin x B \cos x$, so $y^{00} + y = (-A \sin x B \cos x) + (A \sin x + B \cos x) = 0$.

29. (a)
$$f^0(x) = \cos x = 0$$
 at $x = \pm \pi/2, \pm 3\pi/2$.

(b) $f^{0}(x) = 1 - \sin x = 0$ at $x = -3\pi/2, \pi/2$.

- (c) $f^{0}(x) = \sec^{2} x \ge 1$ always, so no horizontal tangent line.
- (d) $f^{0}(x) = \sec x \tan x = 0$ when $\sin x = 0, x = \pm 2\pi, \pm \pi, 0$.

- (b) $y = \sin x \cos x = (1/2) \sin 2x$ and $y^0 = \cos 2x$. So $y^0 = 0$ when $2x = (2n + 1)\pi/2$ for n = 0, 1, 2, 3 or $x = \pi/4, 3\pi/4, 5\pi/4, 7\pi/4$.
- 31. $x = 10 \sin \theta$, $dx/d\theta = 10 \cos \theta$; if $\theta = 60^{\circ}$, then $dx/d\theta = 10(1/2) = 5$ ft/rad = $\pi/36$ ft/deg ≈ 0.087 ft/deg. 32. $s = 3800 \csc \theta$, $ds/d\theta = -3800 \csc \theta$ cot θ ; if $\theta = 30^{\circ}$, then $ds/d\theta = -3800(2)(-3)$ $= -7600 \quad 3^{-}$ ft/rad = $-380 \quad 3\pi/9$ ft/deg ≈ -230 ft/deg.

33. D = 50 tan θ , dD/d θ = 50 sec² θ ; if θ = 45°, then dD/d θ = 50(2)² = 100 m/rad = 5 $\pi/9$ m/deg \approx 1.75 m/deg. 34. (a) From the right triangle shown, sin θ = r/(r + h) so r + h = r csc θ , h = r(csc θ - 1).

(b) $dh/d\theta = -r \csc \theta \cot \theta$; if $\theta = 30^\circ$, then $dh/d\theta = -6378(2)(\sqrt{3}) \approx -22$, 094 km/rad ≈ -386 km/deg.

35. False.
$$g^{0}(x) = f(x) \cos x + f^{0}(x) \sin x$$

- 36. True, if f (x) is continuous at x = 0, then $g^{0}(0) = \lim_{h \to 0} \frac{g(h) g(0)}{h} = \lim_{h \to 0} \frac{f(h) \sin}{h} = \lim_{h \to 0} f(h) \cdot \lim_{h \to 0} \frac{\sin h}{h} = f(0)$.
- 37. True. $f(x) = \frac{\sin x}{\cos x} = \tan x$, so $f^{0}(x) = \sec^{2} x$.

38. False. $g^{0}(x) = f(x) \cdot \underline{d}(\sec x) + f^{0}(x) \sec x = f(x) \sec x \tan x + f^{0}(x) \sec x$, so $g^{0}(0) = f(0) \sec 0 \tan 0 + f^{0}(0) \sec 0 = \frac{dx}{dx}$ $8 \cdot 1 \cdot 0 + (-2) \cdot 1 = -2$. The second equality given in the problem is wrong: $\lim_{h \to 0} \frac{f(h) \sec h - f(0)}{h} = -2$ but $\lim_{h \to 0} \frac{8(\sec h - 1)}{h} = 0$.

$$_{h \rightarrow 0} \qquad h$$

39.
$$\frac{d^4}{dx^4} \sin x = \sin x, \text{ so } \frac{d^{4k}}{dx^4} \sin x = \sin x; \quad \frac{d^{87}}{dx^{87}} \sin x = \frac{d^3}{dx^4} \frac{d^{4\cdot 21}}{dx^{87}} \sin x = \frac{d^3}{dx^3} \frac{d^{4\cdot 21}}{dx^{87}} \sin x = -\cos x.$$

- 40. $\overline{dx^{100}} \cos x = \overline{dx^{4k}} \cos x = \cos x$.
- 41. $f^0(x) = -\sin x$, $f^{00}(x) = -\cos x$, $f^{000}(x) = \sin x$, and $f^{(4)}(x) = \cos x$ with higher order derivatives repeating this pattern, so $f^{(n)}(x) = \sin x$ for n = 3, 7, 11, ...
- 42. $f(x) = \sin x$, $f^0(x) = \cos x$, $f^{00}(x) = -\sin x$, $f^{000}(x) = -\cos x$, $f^{(4)}(x) = \sin x$, and the right-hand sides continue with a period of 4, so that $f^{(n)}(x) = \sin x$ when n = 4k for some k.
- 43. (a) all x (b) all x (c) $x = \pi/2 + n\pi$, $n = 0, \pm 1, \pm 2, ...$

(d)	$x = n\pi$,	$n = 0, \pm 1, \pm 2, \ldots$	(e) $x = \pi/2 + n\pi$,	$n = 0, \pm 1, \pm 2, \ldots$	(f) $x = n\pi$, $n = 0, \pm 1, \pm 2,$

(g) $x = (2n + 1)\pi$, $n = 0, \pm 1, \pm 2, ...$ (h) $x = n\pi/2$, $n = 0, \pm 1, \pm 2, ...$ (i) all x

44. (a)
$$d_{1}(\cos x) = \lim_{b \to 0} \frac{\cos x}{h} = \lim_{b \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h} = \lim_{b \to 0} \cos x - \sin \frac{h}{h} = -\sin x - \frac{\sin h}{h} = (\cos x)(0) - (\sin x)(1) = -\sin x.$$

(b) $d_{1}(\cot x) = d_{1} h \cos x i - \frac{\sin x - \sin x}{h} - \frac{\sin h}{h} = (\cos x)(0) - (\sin x)(1) = -\sin x.$
 $dx - dx \sin x - \frac{1}{\sin^{2} x} = \frac{1}{2} = -\frac{2}{2}$
(c) $d_{1}(\cot x) = d_{1} h \cos x - (1) - \sin x - \frac{1}{\sin^{2} x} = -\frac{1}{3} - \frac{2}{3} = -\frac{2}{3} = -\frac{2}{3}$
(c) $d_{1}(\sec x) = \frac{1}{dx} - \frac{1}{\sin x} = \frac{(\sin x)(0) - (1)(\cos x)}{\sin^{2} x} = -\frac{\sin x}{x} - \sec x + \frac{1}{3}$
(d) $\frac{d}{dx} [\sec x] = \frac{1}{dx} - \frac{1}{\sin x} = \frac{(\sin x)(0) - (1)(\cos x)}{\sin^{2} x} = -\frac{\cos x}{x} \cot x.$
 $\sin^{2} x = -\sec x \cot x.$
 $dx = -\frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = -\frac{1}{3} = \frac{1}{3} = \frac{1}$

49. By Exercises 49 and 50 of Section 1.6, we have $\lim \frac{\sin h}{h} = \frac{\pi}{180} \operatorname{and}_{h \to 0} \lim \frac{\cos h}{h} = 0$. Therefore:

(a)
$$\underline{d} [\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \lim_{h \to 0} \frac{\sin x}{h} = (\sin x)(0) + (\cos x)(\pi/180) = \frac{\pi}{180} \frac{\pi}{180} \cos x.$$

(b) $\underline{d} [\cos x] = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h} = \cos x \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \lim_{h \to 0} \frac{\sin h}{h} = \frac{1}{180} \frac{\sin h}{180}$

50. If f is periodic, then so is f^0 . Proof: Suppose f(x+p) = f(x) for all x. Then $f^0(x+p) = \lim_{h \to 0} \frac{f(x+p+h) - f(x+p)}{h} = \int_{a}^{b} \frac{f(x+p)}{h} = \int_{a}^{b} \frac{f(x+p) - f(x+p)}{h} = \int_{a}^{b} \frac{f(x+p) -$

Exercise Set 2.6

1. $(f \circ g)^0(x) = f^0(g(x))g^0(x)$, so $(f \circ g)^0(0) = f^0(g(0))g^0(0) = f^0(0)(3) = (2)(3) = 6$.

2.
$$(f \circ g)^{0}(2) = f^{0}(g(2))g^{0}(2) = 5(-3) = -15.$$

3. (a) $(f \circ g)(x) = f(g(x)) = (2x - 3)^{5}$ and $(f \circ g)^{0}(x) = f^{0}(g(x))g^{0}(x) = 5(2x - 3)^{4}(2) = 10(2x - 3)^{4}.$
(b) $(g \circ f)(x) = g(f(x)) = 2x^{5} - 3$ and $(g \circ f)^{0}(x) = g^{0}(f(x))f^{0}(x) = 2(5x^{4}) = 10x^{4}.$
(a) $(f \circ g)(x) = 4 + \cos(5^{-1}x)$ and $(g \circ f)^{0}(x) = g^{0}(f(x))f^{0}(x) = -\sin(5^{-1}x).$
(b) $(g \circ f)(x) = 4 + \cos(5^{-1}x)$ and $(g \circ f)^{0}(x) = g^{0}(f(x))f^{0}(x) = -\sin(5^{-1}x).$
5. (a) $F^{0}(x) = f^{0}(g(x))g^{0}(x), F^{0}(3) = f^{0}(g(3))g^{0}(3) = -1(7) = -7.$
(b) $G^{0}(x) = g^{0}(f(x))f^{0}(x), G^{0}(3) = g^{0}(f(3))f^{0}(3) = 4(-2) = -8.$

6. (a)
$$F^{0}(x) = f^{0}(g(x))g^{0}(x)$$
, $F^{0}(-1) = f^{0}(g(-1))g^{0}(-1) = f^{0}(2)(-3) = (4)(-3) = -12$.
(b) $G^{0}(x) = g^{0}(f(x))f^{0}(x)$, $G^{0}(-1) = g^{0}(f(-1))f^{0}(-1) = -5(3) = -15$.

$$\begin{array}{c} (6) & = & (6) & g & (1) & (1) & (1) & g & (1 & (2)) & g & (1 & (2)) & (1) \\ 3 & 36 & \underline{d}_3 & 3 & 36 & 2 \\ 7. \ f & (x) = 37(x + 2x) & dx & (x + 2x) = 37(x + 2x) & (3x + 2). \end{array}$$

$$\frac{d^{2}}{dx} = \frac{5}{d^{2}} \frac{d^{2}}{dx} = \frac{2}{3} \frac{5}{d^{2}} \frac{d^{2}}{dx} = \frac{2}{3} \frac{5}{3} \frac{2}{dx} = \frac{5}{dx} = \frac{2}{dx} = \frac{12}{3} \frac{2}{dx} = \frac{5}{dx} = \frac{2}{3} \frac{2}{dx} = \frac{2}{3} \frac{$$

$$\begin{array}{c} 2 \\ 11. f(x) = 4(3x \\ 24(1 \\ \underline{-3x}) \end{array} = 4(3x \\ -2x + 1) \end{array} \begin{array}{c} -3 \\ , f(x) = -12(3x \\ 2 \\ -2x + 1) \end{array} \begin{array}{c} 2 \\ -4 \\ \underline{d}_2 \\ dx(3x \\ -2x + 1) = -12(3x \\ -2x + 1) \end{array} \begin{array}{c} -4 \\ -4 \\ \underline{d}_2 \\ -2x + 1) \end{array}$$

14.
$$f^{0}(x) = \frac{1}{3} 12 + \sqrt[\sqrt{x}-2/3]{} \cdot 2^{\frac{1}{\sqrt{x}}} x = \frac{6(12 + \sqrt{1}x)}{2} x^{3} \sqrt{x}$$

15.
$$f^{0}(x) = \cos(1/x^{2}) dx^{\frac{d}{2}}(1/x^{2}) = -\frac{2}{x^{3}} \cos(1/x^{2}).$$

16. $f^{0}(x) = \sec^{2} \frac{\sqrt{x}}{x} \frac{d\sqrt{x}}{dx} = \sec^{2} \sqrt{x} \frac{1}{2} \sqrt{x}.$

17. $f^{0}(x) = 20 \cos^{4} x \, dx^{\frac{d}{2}}(\cos x) = 20 \cos^{4} x(-\sin x) = -20 \cos^{4} x \sin x.$ 18. $f^{0}(x) = 4 + 20(\sin^{3} x) \, dx^{\frac{d}{2}}(\sin x) = 4 + 20 \sin^{3} x \cos x.$

$$\frac{1}{12} \cdot \frac{1}{10} \cdot \frac{1}{10}$$

31. \underline{dy} (cos x) = - sin(cos x)(- sin x) = sin(cos x) sin x.

- $dx = -\sin(\cos x) dx$ 32. $\frac{dy}{dx} = \cos(\tan 3x) \quad \underline{d}(\tan 3x) = 3 \sec^2 3x \cos(\tan 3x).$
- $33.\frac{dy}{dx} = 3\cos^2(\sin 2x)\frac{d}{dx}[\cos(\sin 2x)] = 3\cos^2(\sin 2x)[-\sin(\sin 2x)]\frac{d}{dx}(\sin 2x) = -6\cos^2(\sin 2x)\sin(\sin 2x)\cos 2x.$

$$\begin{aligned} y & (1 - \cot x^{2}) (-2 \csc x^{2} \cot x^{2}) - (1 + \csc x^{2}) (2x) \\ \frac{dx}{dx} = \frac{1}{1 + \cot x^{2}}, \\ 34. \frac{cx^{2}}{cx^{2}} \frac{2}{2}, \\ \frac{dx}{1 + \cot x^{2}} \frac{x^{2}}{x^{2}}, \\ 35. \frac{dx}{dx} = (5x + 8)^{7} \frac{d}{dx} (1 - \sqrt{x})^{6} + (1 - \sqrt{x})^{6} \frac{d}{dx} (5x + 8)^{7} = 6(5x + 8)^{7} (1 - \sqrt{x})^{6}, \\ \frac{dx}{dx} = \frac{1}{7}, \\ \frac{dx}{\sqrt{x}} \frac{1}{7}, \\ \frac{dx}{\sqrt{x}} \frac{1}{7}, \\ \frac{dx}{\sqrt{x}} \frac{1}{7}, \\ \frac{dx}{\sqrt{x}} \frac{dx}{\sqrt{x}}, \\ \frac{dx}{\sqrt{$$

44. $\frac{dy}{dx} = 3x^2 \cos(1 + x^3)$; if x = -3 then $y = -\sin 26$, $\frac{dy}{dx} = 27 \cos 26$, so the equation of the tangent line is $y + \sin 26 = 27(\cos 26)(x + 3)$, or $y = 27(\cos 26)x + 81 \cos 26 - \sin 26$.

y + 1 = 0, or y = -1

$$\begin{array}{c} dy & 1 & \frac{1}{2} & \frac{1}{1+x^2} & \frac{1}{1+x^2} & (\text{if } x = 2, \text{her } y = \frac{27}{3} & \frac{1}{38} & \frac{1}{48} = 3135 \\ 46. \frac{4x}{48} & = 3 & x + \overline{x} & 1 + x^2 & (\text{if } x = 2, \frac{1}{1+x^2}) & \frac{1}{38} & \frac{2}{48} & = 3137 \\ \frac{1}{38} & \frac{1}{48} & \frac{1}{2} & \frac{1}{1+x^2} & \frac{1}{1+x^2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac$$

58. $2 \csc^2 (\pi/3 - y) \cot(\pi/3 - y)$.

-2 2

59. (a)

64. True. Let
$$u = 3x^3$$
 and $v = \sin u$, so $y = v^3$. Then $\frac{dy}{dx} = \frac{dy}{du}\frac{dv}{du}\frac{du}{dx} = 3v^2 \cdot (\cos u) \cdot 9x^2 = 3\sin^2(3x^3) \cdot \cos(3x^3) \cdot 9x^2 = 27x^2\sin^2(3x^3)\cos(3x^3)$.

65. (a)
$$dy/dt = -A\omega \sin \omega t$$
, $d^2 y/dt^2 = -A\omega^2 \cos \omega t = -\omega^2 y$

(b) One complete oscillation occurs when ωt increases over an interval of length 2π , or if t increases over an interval of length $2\pi/\omega$.

- (c) f = 1/T
- (d) Amplitude = 0.6 cm, T = $2\pi/15$ s/oscillation, f = $15/(2\pi)$ oscillations/s.

(b) If $f^{0}(0)$ were to exist, then the limit (as x approaches 0) $\underline{x-0} = \sin(1/x)$ would have to exist, but it doesn't.

(c) For
$$x = 0$$
, $f^{0}(x) = x$ $\cos \frac{1}{x}$ $-\frac{1}{x^{2}}$ $+ \sin \frac{1}{x} = -\frac{1}{x} \cos \frac{1}{x} + \sin \frac{1}{x}$.
1

(d) If $x = \frac{1}{2\pi n}$ for an integer n = 0, then $f^{0}(x) = -2\pi n \cos(2\pi n) + \sin(2\pi n) = -2\pi n$. This approaches $+\infty$ as

 $n \to -\infty$, so there are points x arbitrarily close to 0 where $f^0(x)$ becomes arbitrarily large. Hence $\lim_{x\to 0} f^0(x)$ does not exist.

74. (a) $-x^2 \le x^2 \sin(1/x) \le x^2$, so by the Squeezing Theorem $\lim_{x \to 0} f(x) = 0.$ (b) $f^{0}(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} x \sin(1/x) = 0$ by Exercise 73, part (a). (c) For x = 0, $f^0(x) = 2x \sin(1/x) + x^2 \cos(1/x)(-1/x^2) = 2x \sin(1/x) - \cos(1/x)$. (d) If $f^{0}(x)$ were continuous at x = 0 then so would $\cos(1/x) = 2x \sin(1/x) - f^{0}(x)$ be. since $2x \sin(1/x)$ is continuous there. But $\cos(1/x)$ oscillates at x = 0. 75 (a) $g^{0}(x) = 3[f(x)]^{2} f^{0}(x), g^{0}(2) = 3[f(2)]^{2} f^{0}(2) = 3(1)^{2} (7) = 21.$ (b) $h^0(x) = f^0(x^3)(3x^2), h^0(2) = f^0(8)(12) = (-3)(12) = -36.$ 76. $F^{0}(x) = f^{0}(g(x))g^{0}(x) = \frac{\sqrt{1-x^{2}}}{3(x^{2}-1)+4} \cdot 2x = 2x - \frac{\sqrt{1-x^{2}}}{3x^{2}+1}$ 77. $F^{0}(x) = f^{0}(g(x))g^{0}(x) = f^{0}(\sqrt[\gamma]{3x-1}) \frac{\sqrt{3}}{2} = \frac{\sqrt{-3x-1}}{3x-1} = \frac{\sqrt{-3}}{3x-1} = \frac$ 78 $\frac{d}{dx}[f(x^2)] = f^0(x^2)(2x)$, thus $f^0(x^2)(2x) = x^2$ so $f^0(x^2) = x/2$ if x = 0. $\begin{array}{c} \begin{array}{c} 2 \\ 0 \\ u \\ 0 \end{array} = \begin{array}{c} \frac{2}{u}; \\ 3 \\ \frac{2}{dx} \end{array} \begin{array}{c} \frac{2}{(x)} \begin{bmatrix} f \\ x \\ 0 \end{array} \end{array}$ $(3x) = 3f^{0}(3x) = 6x$, so $f^{0}(3x) = 2x$. Let u = 3x to get f $\frac{d}{dx} [f(3x)] = f^{0}(3x) \qquad \frac{d}{dx}$

80. (a) If f(-x) = f(x), then $\frac{d}{dx}[f(-x)] = \frac{d}{dx}[f(x)], f^{0}(-x)(-1) = f^{0}(x), f^{0}(-x) = -f^{0}(x)$ so f^{0} is odd.

(b) If
$$f(-x) = -f(x)$$
, then $\underline{d}[f(-x)] = -\underline{d}[f(x)]$, $f^{0}(-x)(-1) = -f^{0}(x)$, $f^{0}(-x) = f^{0}(x)$ so f^{0} is even.
 $dx \qquad dx$

81. For an even function, the graph is symmetric about the y-axis; the slope of the tangent line at (a, f (a)) is the negative of the slope of the tangent line at (-a, f (-a)). For an odd function, the graph is symmetric about the origin; the slope of the tangent line at (a, f (a)) is the same as the slope of the tangent line at (-a, f (-a)).

84. $g^0(x) = f^0 = \frac{\pi}{2} - x$, $\frac{d}{dx} = \frac{\pi}{2} - x = -f^0 = \frac{\pi}{2} - x$, so g^0 is the negative of the co-function of f^0 .

The derivatives of sin x, tan x, and sec x are cos x, sec² x, and sec x tan x, respectively. The negatives of the co-functions of these are $-\sin x$, $-\csc^2 x$, and $-\csc x$ cot x, which are the derivatives of cos x, cot x, and csc x, respectively.

Exercise Set 2.7 1. (a) $1 + y + x \frac{dy}{dx} = 6x^2 = 0, \frac{dy}{dx} = \frac{6x^2 - y - 1}{x}.$ (b) $y = \frac{2 \pm 2x^3}{x} = 2$ $x = \frac{1}{x} + 2x^2$ $\frac{dy}{dx} = \frac{2}{x} + 4x.$ (c) From part (a), $\frac{dy}{dx} = 6x - \frac{1}{x} - \frac{1}{x} = 6x - \frac{1}{x} - \frac{1}{x} = 6x - \frac{1}{x} - \frac{1}{x} = \frac{1}{x} = \frac{1}{x} - \frac{1}{x} = \frac{1}{x} = \frac{1}{x} - \frac{1}{x} = \frac{1}{x}$ 2. (a) $\frac{1}{2}y^{-1/2} \frac{dy}{dx} - \cos x = 0 \text{ or } \frac{dy}{dx} = 2^{\sqrt{y}} y \cos x.$ (b) $y = (2 + \sin x)^2 = 4 + 4 \sin x + \sin^2 x$ so $\frac{dy}{dx} = 4 \cos x + 2 \sin x \cos x$. (c) From part (a), $\frac{dy}{dx} = 2\sqrt[n]{y}\cos x = 2\cos x(2 + \sin x) = 4\cos x + 2\sin x\cos x$. 3. $2x + 2y \frac{dv}{dx} = 0$ so $\frac{dv}{dx}$ $x = -\frac{x}{2}$ $\frac{2 \, \mathrm{dy}}{2} \frac{2 \, \mathrm{dy}}{2} \frac{\mathrm{dy}}{2} \frac{\mathrm{dy}}{2} \frac{\mathrm{dy}^2 - 3x}{2} \frac{\mathrm{dy}^2 - x^2}{2}$ 4. 3x + 3y dx = 3y + 6xy dx, $dx = 3y^2 - 6xy = y^2 - 2xy$ 2 dy 3 2 2 \underline{dy} 3 \underline{dy} 1 - 2xy - 3y 3 $2 \, \mathrm{dy}$ 5. x dx + 2xy + 3x(3y) dx + 3y - 1 = 0, (x + 9xy) dx = 1 - 2xy - 3y, so $dx = x^2 + 9xy^2$. 6. $x^{2}(2y) + 3x^{2}y^{2} - 5x^{2} + 3x^{2}y^{2} - 5x^{2} + 3x^{2}y^{2} - 5x^{2} + 3x^{2}y^{2} - 10xy + 1 = 0, (2x^{2}y - 5x^{2}y^{2} - 10xy - 3x^{2}y^{2} - 1, so - \frac{dy^{2}}{2} - \frac{dy^{2}}{3} - \frac{2}{3} - \frac{2}{3}$ dx 2xy - 5xdx dx dx 7. $-\underline{1} = -\frac{dx}{dx} = 0$, so $\underline{dy} = -\underline{V^{3/2}}$. $2x^{3/2} \quad 2y^{3/2} \quad - \quad dx \quad x^{3/2}$ 8. $2x = \frac{(x-y)(1 + dy/dx) - (x+y)(1 - dy/dx)}{(x+y)(1 - dy/dx)}, 2x(x-y)^2 = 2y + 2x \frac{dy}{dy}, \text{ so } \frac{dy}{dy} = \frac{x(x-y)^2 - y}{(x+y)^2 - y}$ $(x-y)^2 dx$ dx х $\begin{array}{cccccccc} dy & & \underline{dy}^{2} & & \underline{dy}^{2}$ 10. $-\sin(xy^2)$ $y^2 + 2xy$ $\frac{dy^2}{dy^2} = \frac{dx}{dy^2}$, so $\frac{dx}{dx} = \frac{-y \sin(xy)}{2}$.

dx dx dx
$$2xy\sin(xy^2) + 1$$

²11.
$$3 \tan^{2} (xy^{2} + y) \sec^{2} (xy^{2} + y) 2xy \xrightarrow{a} + y^{2} + \xrightarrow{a} = 1$$
, so $\xrightarrow{a} = -\frac{1}{1-2} - \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2}$
dx dx $3(2xy + 1) \tan^{2} (xy^{2} + y) \sec^{2} (xy^{2} + y)$
(1 + sec y)[3xy² $(\frac{dy/dx}{2}) + \frac{y^{3}}{2} - \frac{xy^{3}}{2} (\sec y \tan x) = 4y^{3} \frac{dy}{dx}$, multiply through by $(1 + \sec y)^{2}$ and solve for
 $\frac{dy}{dx} + \frac{dy}{dx} + \frac{y(1 + \sec y)}{(1 + \sec y)^{2} - 3x(1 + \sec y) + xy \sec y \tan y} = 4y^{3} \frac{dy}{dx}$, multiply through by $(1 + \sec y)^{2}$ and solve for
 $\frac{dy}{dx} + \frac{dy}{dx} + \frac{2x}{4y(1 + \sec y)^{2} - 3x(1 + \sec y) + xy \sec y \tan y} = \frac{3}{2} \frac{-\frac{dy^{2}}{dx} - 2}{2} 2(3y)^{2} \frac{-2x^{2}}{2x^{2}}$, 8
13. $4x - 6y = 0$, $= -4^{-6} - 6y^{\frac{y}{2}} = 0$, so $\frac{y}{2} = = -3^{-3} = -3^{-3}$
 $dx + dx + 3y + dx + dx + dx + 3y + 9y + 9y$

$$\begin{aligned} dy &= \frac{x^2}{4}, \ \frac{d^2}{4} &= -\frac{x}{4} + \frac{(2x) - x}{4}, \ \frac{(2x) \sqrt{2x}}{4} &= -\frac{2xx^2 + -2y}{4}, \ \frac{(x - x)^2 x^2}{4} &= -\frac{2}{4}, \ \frac{2x(x^2 + x^2)}{4}, \ \frac{2x(x^2 + x^2)}{4}, \ \frac{2x(x^2 + x^2)}{4}, \ \frac{2x(x^2 + x^2)}{4}, \ \frac{2x(x^2 + x^2)}{4} &= -\frac{2}{4}, \ \frac{x^2}{4} &= -\frac{2}{4}, \ \frac{x^2}{4}, \ \frac{x^2}{4}, \ \frac{x^2}{4} &= -\frac{2}{4}, \ \frac{x^2}{4}, \ \frac{$$

- 22. True.
- 23. False; the equation is equivalent to $x^2 = y^2$ which is satisfied by y = |x|.

24. True.

25. $x^{m} x^{-m} = 1, x^{-m} dx^{\frac{d}{d}} (x^{m}) - mx^{-m-1} x^{m} = 0, dx^{\frac{d}{d}} (x^{m}) = x^{m} (mx^{-m-1}) x^{m} = mx^{m-1}$. 26. $x^{m} = (x^{r})^{n}, mx^{m-1} = n(x^{r})^{n-1} dx^{\frac{d}{d}} (x^{r}), dx^{\frac{d}{d}} (x^{r}) = \frac{m}{n} x^{m-1} (x^{r})^{1-n} = rx^{r-1}$. 3. $3\frac{dy}{dx} = x^{3} - 1$ 27. 4x + 4y dx = 0, so $dx^{\frac{dy}{dx}} = -\frac{x^{3}}{y^{3} = -15^{3/4}} \approx -0.1312$. $2\frac{dy}{dx} = 2\frac{dy}{dx} = 0$, so $dx^{\frac{dy}{dx}} = -2x^{\frac{y+1}{3}} = -2x^{\frac{y+1}{3}} = 0$ at x = 0. 2 2

dy	dy	dy	x[25 -4(x + y)]	dy
29. $4(x^2 + y^2) 2x + 2y dx$	= 25 2x - 2y dx	, dx	$=y[25+4(x^{2}+y^{2})];$	at $(3, 1)$ $\overline{dx} = -9/13$.
39. The point (1,1) is on the graph, so 1 + a = b. The slope of the tangent line at (1,1) is -4/3; use implicit differentiation to get $\frac{dy}{dx} = -\frac{2xy}{dx}$ so at (1,1), $-\frac{2}{1+2a} = -4$, 1 + 2a = 3/2, a = 1/4 and hence b = 1 + 1/4 = 5/4.

40. The slope of the line x + 2y - 2 = 0 is $m_1 = -1/2$, so the line perpendicular has slope m = 2 (negative reciprocal). The slope of the curve $y^3 = 2x^2$ can be obtained by implicit differentiation: $3y^2 \frac{dy}{dy} = 4x$, $\frac{dy}{dy} = \frac{4x}{2}$. Set

$$\frac{dy}{dx} = 2; \frac{4x}{3y^2} = 2, x = (3/2)y^2.$$
 Use this in the equation of the curve: $y^3 = 2x^2 = 2((3/2)y^2)^2 = (9/2)y^4, y = 2/9, x = \frac{3}{2} = \frac{2}{2}$.

- 41. Solve the simultaneous equations y = x, $x^2 xy + y^2 = 4$ to get $x^2 x^2 + x^2 = 4$, $x = \pm 2$, $y = x = \pm 2$, so the points of intersection are (2, 2) and (-2, -2). By implicit differentiation, $\frac{dy}{dx} = \frac{y-2x}{2y-x}$. When x = y = 2, $\frac{dy}{dx} = -1$; when $\frac{dy}{dx} = -1$; wh
 - x = y = -2, $\overline{dx} = -1$; the slopes are equal.
- 42. Suppose $a^2 2ab + b^2 = 4$. Then $(-a)^2 2(-a)(-b) + (-b)^2 = a^2 2ab + b^2 = 4$ so if P (a, b) lies on C then so does Q(-a, -b). By implicit differentiation (see Exercise 41), dx $\frac{y - 2x}{2y - x}$. When x = a, y = b then $dx = \frac{b - 2a}{2b - a}$, and

when
$$x = -a$$
, $y = -b$, then $\frac{dy}{dx} = \frac{b-2a}{2b-a}$, so the slopes at P and Q are equal.
dx $2b-a$

- 43. We shall find when the curves intersect and check that the slopes are negative reciprocals. For the intersection solve the simultaneous equations $x^2 + (y c)^2 = c^2$ and $(x k)^2 + y^2 = k^2$ to obtain $cy = kx = \begin{bmatrix} 1 \\ 2 (x^2 + y^2) \end{bmatrix}$. Thus $x^2 + y^2 = cy + kx$, or $y^2 cy = -x^2 + kx$, and $\frac{y c}{x} = \frac{x k}{y}$. Differentiating the two families yields (black) $\frac{dy}{dx} = -\frac{x}{y c}$, and (gray) $\frac{dy}{dx} = -\frac{x k}{y}$. But it was proven that these quantities are negative reciprocals of each other.
- 44. Differentiating, we get the equations (black) $x \frac{dy}{dx} + y = 0$ and $(gray) 2x 2y \frac{dy}{dx} = 0$. The first says the (black) slope is $-\frac{y}{2}$ and the second says the (gray) slope is $\frac{x}{2}$, and these are negative reciprocals of each other.

у

45. (a)

- (b) $x \approx 0.84$
- (c) Use implicit differentiation to get dy/dx = $(2y 3x^2)/(3y^2 2x)$, so dy/dx = 0 if y = $(3/2)x^2$. Substitute this into $x^3 2xy + y^3 = 0$ to obtain $27x^6 16x^3 = 0$, $x^3 = 16/27$, $x = 2^{4/3}/3$ and hence $y = 2^{5/3}/3$.

46. (a)

(b) Evidently (by symmetry) the tangent line at the point x = 1, y = 1 has slope -1.

(c) Use implicit differentiation to get $dy/dx = (2y - 3x_2)/(3y_2 - 2x)$, so dy/dx = -1 if $2y - 3x_2 = -3y_2 + 2x$, 2(y - x) + 3(y - x)(y + x) = 0. One solution is y = x; this together with $x_3 + y_3 = 2xy$ yields x = y = 1. For these values dy/dx = -1, so that (1, 1) is a solution. To prove that there is no other solution, suppose y = x.

From dy/dx = -1 it follows that 2(y - x) + 3(y - x)(y + x) = 0. But y = x, so x + y = -2/3, which is not true for any point in the first quadrant.

47. By the chain rule, $\frac{dy}{dx} = \frac{dy}{dt_3} \frac{dt}{dx}_2$. Using implicit differentiation for $2y^3 t + t^3 y = 1$ we get $\frac{dy}{dt} = -\frac{2y^3 + 3t^2y}{6ty^2 + t^3}$, but

$$\frac{dt}{dt} = \frac{1}{\cos t}, \text{ so } dx = -(6ty^2 + t^3)\cos t$$

48. Let P (x₀, y₀) be a point where a line through the origin is tangent to the curve $2x^2 - 4x + y^2 + 1 = 0$. Implicit differentiation applied to the equation of the curve gives dy/dx = (2-2x)/y. At P the slope of the curve must equal the slope of the line so $(2 - 2x_0)/y_0 = y_0/x_0$, or $y^2 = 2x_0(1 - x_0)$. But $2x^2 - 4x_0 + y^2 + 1 = 0$ because (x₀, y₀) is on the curve, and elimination of y^2 in the latter two equations gives $\begin{bmatrix} -4x - 1 & x \\ 0 & 0 \end{bmatrix} = \frac{1}{2} (x_0 - x_0) = \frac{1}$

Exercise Set 2.8

$$1. \frac{dv}{dt} = 3 \frac{dx}{dt}$$
(a) $\frac{dy}{dt} = 3(2) = 6.$ (b) $-1=3 \frac{dx}{dt}, \frac{dx}{dt} = -\frac{1}{3}.$

$$2. \frac{dx}{dt} + 4 \frac{dy}{dt} = 0$$
(d) $\frac{dx}{dt} + 4 \frac{dy}{dt} = 0$
(e) $\frac{dx}{dt} + 4 \frac{dy}{dt} = 0$
(f) $\frac{dx}{dt} + 4(4) = 0$ so $\frac{dx}{dt} = -16$ when $x = 3.$
(f) $\frac{dx}{dt} + 18y \frac{dy}{dt}$
(g) $\frac{1}{dt} + 18y \frac{dy}{dt}$
(g) $\frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{dy}{2} \frac{dy}{dt} = -2.$
(h) $\frac{1}{8} \frac{dx}{dt} - \frac{\sqrt{5}}{18} \frac{dx}{dt} = -16$ when $x = 3.$
(h) $\frac{1}{8} \frac{dx}{dt} - \frac{\sqrt{5}}{18} \frac{dx}{dt} = -16$ when $x = 3.$

5. (b) $A = x^2$. <u>dA</u> _dx (c) dt = 2x dt. dA (d) Find $dt_{x=3}$ given that $dt_{x=3} = 2$. From part (c), $dA = \frac{dA}{dt_{x=3}} = 2(3)(2) = 12 \text{ ft}^2/\text{min.}$ 6. (b) $A = \pi r^2$. _dr dA (c) $dt = 2\pi r dt$. (d) Find $dt_{r=5}$ given that $\frac{dr}{dt}_{r=5} = 2$. From part (c), $\frac{dA}{dt}_{r=5} = 2\pi(5)(2) = 20\pi \text{ cm}^2/\text{s}.$ 7. (a) $V = \pi r^2 h$, so $\frac{dV}{dt} = \pi r^2 \frac{dh}{dt} + 2rh \frac{r}{dt}$. (b) Find $\frac{dV}{dt_{h=6,}}$ given that $\frac{dh}{dt} = 1$ and $\frac{dr}{dt_{h=6,}} = -1$. From part (a), $\frac{dV}{dt_{h=6,}} = \pi [10^2(1) + 2(10)(6)(-1)] = \pi [10^2(1) + 2(10)(6)(-1)] = -10$ $-20\pi \text{ in}^3/\text{s}$; the volume is decreasing. 8. (a) $x^2 = x^2 + y^2$, so $\frac{dx}{dt} = \frac{1}{2}$, $x \frac{dx}{dt} + y \frac{v}{dt}$ (b) Find $\frac{d}{dt}_{x=3}$, given that $\frac{dx}{dt} = \frac{1}{2}$ and $\frac{dy}{dt} = -\frac{1}{4}$. From part (a) and the fact that $\hat{z} = 5$ when x = 3 and y = 4, y=4 $\frac{1}{dt} = \frac{-1}{3} + \frac{1}{2} + \frac{1}{4} = \frac{1}{10} \frac{1}{t/s}, \text{ the diagonal is increasing.}$ ď y=4 9. (a) $\tan \theta = \underline{v}$, so $\sec^2 \theta_{d\theta} = \frac{x \frac{dv}{dt} - y dx}{x^2}$, $\frac{dv}{dt} = \frac{\cos^2 \frac{2}{t}}{x^2}$, $\frac{x^{-\frac{dv}{dt}} - y^{-\frac{dt}{dt}}}{x^2}$. х (b) Find $\frac{d\theta}{d\theta}$ given that $\frac{dx}{dt} = 1$ and $\frac{dy}{dt} = -\frac{1}{4}$. When x = 2 and y = 2, $\tan \theta = 2/2 = 1$ so $\theta = \frac{\pi}{4}$ and $\cos \theta = \cos \frac{\pi}{42} = \sqrt{2}$. Thus from part (a), $\frac{d\theta}{dt} = \frac{-1}{4} = -\frac{1}{4}$. When x = 2 and y = 2, $\tan \theta = 2/2 = 1$ so $\theta = \frac{\pi}{4}$. $(1/2)^2 = 2 - 1 = -5$ rad/s; θ is decreasing. $(1/2)^2 = -\frac{1}{4} = -2(1)$ $(1/2)^2 = -1$ (1/2)dt y=2 y=2 $\frac{dx}{10. \text{ Find } \overline{dt}} = \frac{dx}{x_{z=1}}, \text{ given that } \frac{dx}{x_{z=1}} = -2 \text{ and } \frac{dy}{dt} = 3. \quad \frac{dz}{z_{z=1}} = \frac{dy}{y} \frac{dy}{dt} + 3x \frac{dy}{dt} = \frac{2}{3} \frac{dx}{dt} = \frac{dy}{dt} + \frac{dy}{dt} = \frac{dy}{dt} = \frac{dy}{dt} + \frac{dy}{dt} = \frac{dy$ dz y=2 y=2 y=2 -12 units/s; z is decreasing.

11. Let A be the area swept out, and θ the angle through which the minute hand has rotated. Find <u>dA</u> given that dt

 $d\theta = \pi$ $1r_2\theta = 8\theta$, so $dA = d\theta = 4\pi_2$

 $\overline{dt} = \overline{30}$ rad/min; $A = \overline{2}$ $\overline{dt} = 8 \overline{dt} = \overline{15}$ in /min.

dr

dA

12. Let r be the radius and A the area enclosed by the ripple. We want $\overline{dt}_{t=10}$ given that $\overline{dt} = 3$. We know that $A = \pi r^2$, so $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$. Because r is increasing at the constant rate of 3 ft/s, it follows that r = 30 ft after 10 dt dA 2

seconds so $dt = 2\pi(30)(3) = 180\pi$ ft /s. t=10

given that $\underline{dA} = 6$. From $A = \pi r^2$ we get $\underline{dA} = 2\pi r \underline{dr}$ so $\underline{dr} = \frac{1}{2\pi r} \underline{dA}$. If A = 9 then $\pi r^2 = 9$, 13. Find dr dt A=9 1 r = 3/ π so $A=9 = 2\pi(3/\pi)(6) = 1/\pi$ mi/h. 14. The volume V of a sphere of radius r is given by $V = \begin{cases} 4 \\ \pi r^3 \end{cases}$ or, because $r = \begin{bmatrix} D \\ 0 \end{bmatrix}$ where D is the diameter, 3 1 2 dV 1 $V = \frac{4}{\pi} \pi^{D} = \pi D^{3}$. We want $-\frac{dt}{dV}$ given that $\frac{dV}{dV} = 3$. From $V = \pi D^{3}$ we get $-\frac{\pi}{2} = \pi D^{2} \frac{dD}{dD}$ $3 \quad \overline{2}_{6} \quad$ dt 6 r=1 dt 2 dt $= \frac{2}{\pi D^2} \frac{dV}{dt}, \text{ so } \frac{dD}{dt} = \frac{2}{\pi (2)^2} (3) = \frac{3}{2\pi} \text{ ft/min.}$ dD dt 15. Find $\frac{dV}{dt}$ given that $\frac{dr}{dt} = -15$. From $V = \frac{4}{3}\pi r^3$ we get $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$ so $\frac{dV}{dt} = 4\pi (9)^2 (-15) = -4860\pi$. dt Air must be removed at the rate of 4860π cm³/min. dy 16. Let x and y be the distances shown in the diagram. We want to find $\overline{dt}_{y=8}$ given that $\frac{dx}{dt} = 5$. From $x^2 + y^2 = 17^2$ we get $2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$, so $dt = \frac{x dx}{y dt}$. When y = 8, $x^2 + 8^2 = 17^2$, $x^2 = 289 - 64 = 225$, x = 15 so dy 15 75 dt y=8 = -8 (5) = -8 ft/s; the top of the ladder is moving down the wall at a rate of 75/8 ft/s. y dy dx dx $\frac{y}{dy}$ 17. Find dt y=5 given that dt = -2. From $x^2 + y^2 = 13^2$ we get 2x dt + 2y dt = 0 so dt = x dt. Use $x^2 + y^2 = 169$ to find that x = 12 when y = 5 so $\frac{dx}{dt}_{y=5} = \frac{-5}{12}(-2) = \frac{5}{6}$ ft/s. y

18. Let θ be the acute angle, and x the distance of the bottom of the plank from the wall. Find $\frac{d\theta}{dt}$ given that $\frac{dx}{dt} = \frac{1}{2}$ ft/s. The variables θ and x are related by the equation $\cos \theta = \frac{x}{10}$ so $-\sin \theta \frac{d\theta}{dt} = \frac{1}{10} \frac{dx}{dt}$, $\frac{d\theta}{dt} = -$

19. Let x denote the distance from first base and y the distance from home plate. Then $x^2 + 60^2 = y^2$ and $2x = \frac{dx}{dt} = 2y \frac{dy}{dt}$.

23. (a) If x denotes the altitude, then r - x = 3960, the radius of the Earth. $\theta = 0$ at perigee, so $r = 4995/1.12 \approx 4460$; the altitude is x = 4460 - 3960 = 500 miles. $\theta = \pi$ at apogee, so $r = 4995/0.88 \approx 5676$; the altitude is x = 5676 - 3960 = 1716 miles.

(b) If $\theta = 120^{\circ}$, then $r = 4995/0.94 \approx 5314$; the altitude is 5314 - 3960 = 1354 miles. The rate of change of the altitude is given by $dx = dr = dr d\theta = 4995(0.12 \sin \theta) d\theta$. Use $\theta = 120^{\circ}$ and $d\theta/dt = 2.7^{\circ} / min = (2.7)(\pi/180)$

24. (a) Let x be the horizontal distance shown in the figure. Then $x = 4000 \cot \theta$ and $\frac{dx}{dt} = 4000 \csc^2 \theta \frac{d\theta}{dt}$, so $\frac{d\theta}{dt} = -\frac{\sin^2 \theta}{dt} \frac{dx}{dt}$. Use $\theta = 30^\circ$ and $\frac{dx}{dt} = 300 \operatorname{mi/h} = 300(5280/3600) \operatorname{ft/s} = 440 \operatorname{ft/s}$ to get $d\theta/dt = dt$ 4000 dt

dV

 $-0.0275 \text{ rad/s} \approx -1.6^{\circ} \text{/s}; \ \theta \text{ is decreasing}$ at the rate of $1.6^{\circ} \text{/s}.$

(b) Let y be the distance between the observation point and the aircraft. Then $y = 4000 \csc \theta \operatorname{so} dy/dt$ $-4000(\csc \theta \cot \theta)(d\theta/dt)$. Use $\theta = 30^{\circ}$ and $d\theta/dt = -0.0275$ rad/s to get dy/dt ≈ 381 ft/s.

 $\int_{h=10}^{V} \frac{dh}{dt} = 5. V = 3$ $\int_{-\pi r^{2} h, but r} = \frac{1}{2 h so V} = \frac{1}{3} \pi + \frac{1}{2} h = \frac{1}{12} \pi h^{3}, dt = \frac{1}{4 \pi h^{2}} \frac{dV}{dt}, dt = \frac{1}{4 h} + \frac{1}{2} h = \frac{1}{10} h = \frac{1}{2} h + \frac{1}{2} h = \frac{1}{2} h + \frac{1$ dV 27. Find -

$$4 \pi (10) \quad (5) = 125\pi \text{ ft} \quad /\text{min.}$$

$$h$$

$$h$$

$$h$$

$$28. \text{ Let r and } h \text{ be as shown in the figure. If C is the circumference of the base, then we want to find $\frac{dC}{dL}$ given$$

 $\frac{1}{=3\pi r^{2} h} = \frac{1}{12\pi h^{3}} \text{ to get}$ Use V It is given that $r = \overline{2}h$, thus $C = 2\pi r = \pi h$ so = 10. that

1

dC

dh

dV	1	₂ dh d	h 4 dV		dh	dC	dC	4 dV	dC	4	5
—			2			—		2	dt		-
dt	$=4\pi h$	dt, so d	$t = \pi h^2 dt$.Substitution of	dt into	dt gives	dt	$=h^2 dt$	so h=8	=64 (1	10) = 8

ft/min.

dt

29. With \overline{s} and \overline{h} as shown in the figure, we want to find

so $\frac{dh}{dh} = \frac{1}{ds} = \frac{1}{$

2

2dt

S

$$\frac{dx}{dt} = -20$$
 From $x^2 + 10^2 = y^2$ we get $2x$ $dt = 2y$ dt so $dt = x$ dt . Use $x^2 + 100 = y^2$

. Find dt y=125 given that dt 20. .at) at

$$\sqrt{\frac{1}{125}} = \frac{1}{15},525 = 15$$
 69 when y = 125 so dt $(-20) = -\sqrt{10}$. The boat is approaching

$$\frac{500}{\sqrt{-}} \qquad \qquad y=125 = \frac{15}{15} \sqrt{69} (369)$$

the dock at the rate of 3 69 ft/min. Pulley

$$31. \text{ Find } \frac{dy}{dt} \text{ given that } \frac{dx}{dt} = 12. \text{ From } x^2 + 10^2 = y^2 \text{ we get } 2x = 2y = \frac{dy}{dt} = 2y = \frac{dy}{dt} = \frac{dy}{dt} = \frac{dx}{y} = \frac{dx}{dx} = \frac{d$$

25

у

Pulley

32. (a) Let x and y be as shown in the figure. It is required to find $\frac{dx}{dt}$, given that $\frac{dy}{dt} = -3$. By similar triangles, $\frac{x}{dt} = \frac{x+y}{dt}$, 18x = 6x + 6y, 12x = 6y, $x = \frac{1}{2}y$, so $\frac{dx}{dt} = \frac{1}{2}\frac{dy}{dt} = \frac{1}{2}(-3) = -\frac{3}{2}$ ft/s.

6 18 2 dt 2 dt 2 2

(b) The tip of the shadow is z = x + y feet from the street light, thus the rate at which it is moving is given by $\frac{dz}{dt} = \frac{dx}{dt} + \frac{dy}{dt}$. In part (a) we found that $\frac{dx}{dt} = -\frac{3}{2}$ when $\frac{dy}{dt} = -3$ so $\frac{dz}{dt} = (-3/2) + (-3) = -9/2$ ft/s; the tip of the shadow is moving at the rate of 9/2 ft/s toward the street light.

34. If x, y, and z are as shown in the figure, then we want $\frac{dz}{dt_{x=2,}}$ given that $\frac{dx}{dt} = -600$ and $\frac{dy}{dt_{x=2,}} = -1200$. y=4 v=4dz 1 dx dy But $z^2 = x^2 + y^2$ so $2z \frac{dz}{dz} = 2x \frac{dx}{dz} + 2y$ dy x + y. When x = 2 and y = 4, z^2 $=2^{2}+4^{2}=$ 2 0 dt dt dt dt dt Ζ dt <u>300</u>0 $\sqrt{}$ = -600 5 mi/h; the distance $\begin{array}{c} 1 \\ \sqrt{12(-600)+4(-1200)]}=-\\ 2 & 5 \end{array}$ $\sqrt[4]{20} = 25 \text{ so}$ dz z = between missile $dt = \frac{x=2}{y=4}$ 5 and aircraft is decreasing at the rate of 600 5 mi/h. Р _____Aircraft х у Z,

Missile

35. We wish to find $d\underline{z}$ given that $d\underline{z}$ gives $dt_{x=2}$.	ven $\frac{dx}{dt} = -600$ and $\frac{dt}{dt}$	dy dt _{x=2,}	= -1200 (see figure).	From	the lay	w of cosin	es,	z ²	=
y=4		y=4	dz	dx	dy	dy	dx	dz	

x ²	$+y^2 - 2xy \cos 120^\circ = x^2$	$+y^2 - 2xy(-1/2) = x^2 + y^2$	+ xy, so $2z$	$\overline{dt} = 2x \ dt + 2y \ dt +$	x dt + y dt,	dt =
1	$(2x + y) \frac{dx}{dx} + (2y + x) \frac{dy}{dx}$. When $x = 2$ and $y = 4$, z^2	$=2^{2}+4$	$4^2 + (2)(4) = 28$, so z =	$\sqrt[n]{28} = 2^{\sqrt[n]{28}}$	7, thus
2z dz dt	dt dt $\frac{1}{\sqrt[7]{(2(2)+4)(-600)+}}$	(2(4) + 2)(-1200)] = -	<u>4</u> 200	= -600° Z.mi/h; the distance	between	missile

y=4

7)

36. (a) Let P be the point on the helicopter's path that lies directly above the car's path. Let x, y, and z be the distances shown in the first figure. Find $\frac{dz}{dt}_{x=2, y=0}^{x=2, y=0}$ given that $\frac{dx}{dt} = -75$ and $\frac{dv}{dt} = 100$. In order to find an equation the figure. Because triangle OP C is a right triangle, it follows that P C has length $p_{x^2 + y}(1/2)^2$; but triangle H P C is

right triangle so
$$z^2 = x^2 + (1/2)^2 + y^2 = x^2 + y^2 + 1/4$$
 and $2z = 2x + 2y + 0$, $z = x + y$

Now, when x = 2 and y = 0,
$$z^2 = (2)^2 + (0)^2 + 1/4 = 17/4$$
, $z = \sqrt{\frac{dt}{17/2} so \frac{dz}{dt}} = \frac{\sqrt{1 - \frac{1}{17/2}} [2(-75) + 0(100)]}{(1 - \frac{1}{17/2})^2} = -300/\sqrt{17}$ mi/h.

North

also a

(b) Decreasing, because $\frac{dz}{dt} < 0$.

37. (a) We want $\frac{dy}{dt} \sup_{x=1, \frac{y-2}{y-2}}$ given that $\frac{dx}{dt} = 6$. For convenience, first rewrite the equation as $xy^3 = 5^8 + 85y^2$ then $3xy^2\frac{dy}{dt} + y^3\frac{dx}{dt} = \frac{16}{y}\frac{dy}{y}, \frac{dy}{dt} = \frac{y^3}{16}\frac{dx}{y}, so \frac{dy}{x=1} = \frac{2}{16}^3$ (6) = -60/7 units/s. dt dt 5 dt dt $5y - 3xy^2 dt$ $dt_{y=2}^2 5(2) 3(1)2^2$ (b) Falling, because $\frac{dy}{dt} < 0$. $\frac{dx}{dt} = \frac{dy}{dt} < 0$. $3x^2 + \frac{dy}{dt} = \frac{2y}{dt}\frac{dy}{dt}, \frac{dy}{dt} = \frac{2y}{y}\frac{dy}{dt}$, so $\frac{dy}{dt} = 2y \frac{dy}{dt}, \frac{dy}{dt} = 2y \frac{dy}{dt}$.

dt
$$_{(2,5)} = 6$$
 (2) = 3 units/s.

39. The coordinates of P are (x, 2x), so the distance between P and the point (3, 0) is D =

 $\frac{p}{(x-3)^2 + (2x-0)^2} =$

40. (a) Let D be the distance between P and (2, 0). Find р

given that
$$\frac{dx}{dt} = 4$$
. $D = (x-2)^2 + y^2 =$
 $x=3 \qquad \sqrt{} \qquad dt \qquad x=3$

$$\begin{array}{rcl} & x=3 & & x=3\\ dt & 2 & x^2 & -3x + 4 & dt & dt \end{array}$$

Find $\frac{d\theta}{d\theta}$ given that $\frac{dx}{dx} = 4$. $\tan \theta = \frac{v}{d\theta} = \frac{v}{d\theta}$, so (b) Let θ be the angle of inclination. dt _{x=3} dt _{x=3} x – 2 $\frac{d\theta}{\sec^2 \theta} = -\frac{\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}, \quad \frac{dx}{\theta} = -\frac{\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}, \quad \frac{dx}{\theta} = -\frac{\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}, \quad \frac{dx}{\theta} = -\frac{1}{2}$ When x = 3, D = 2 so $\cos \theta =$ and dtdt $2 \dot{x(x-2)}$ dt dt $2 \qquad x(x-2) \quad dt \qquad$ 2 x=3 $-\frac{1}{\sqrt{5}}$ $\sqrt{4} = -\frac{5}{\sqrt{5}}$ rad/s 42 3 41. Solve $\frac{dx}{dx} = 3\frac{dy}{dx}$ given $y = x/(x^2 + 1)$. Then $y(x^2 + 1) = x$. Differentiating with respect to x, $(x^2 + 1) = \frac{dy}{dx} + y(2x) = 1$. But $\frac{dy}{dt} = \frac{dy/dt}{dt} = \frac{1}{3} \sin(x^2 + 1) + 2xy = 1$, $x^2 + 1 + 6xy = 3$, $x^2 + 1 + 6x^2/(x^2 + 1) = 3$, $(x^2 + 1)^2 + 6x^2 - 3x^2 - 3 = 1$ 0, $x^4 + 5x^2 - 2 = 0$. By the quadratic formula applied to x^2 we obtain $x^2 = (-5 \pm \frac{\sqrt{25 + 8}}{25 \pm 8})/2$. The minus sign is spurious since x² cannot be negative, so x² = $(-5 + \sqrt[4]{33})/2$, and x = \pm q $(-5 + \sqrt[4]{33})/2$. $\frac{dx}{42.32x} \frac{dy}{dt} + 18y \frac{dy}{dt} = 0; \text{ if } \frac{dy}{dt} = \frac{dx}{dt} = 0, \text{ then } (32x + 18y) \frac{dx}{dt} = 0, 32x + 18y = 0, y =$ dx 4 0 $\frac{81}{9} x^2 = 144, x^2 = \frac{81}{25}, x = \pm \frac{9}{5}$. If $x = \frac{9}{5}$, then $y = -\frac{9}{9} 5 = -\frac{16}{5}$. Similarly, if $x = -\frac{5}{5}$, then $y = \frac{-5}{5}$. The 0 points are $9, -\frac{16}{5}$ and $-\frac{9}{5}, \frac{16}{5}$. 43. Find dS_____ given that $\frac{ds}{dt}$ = -2. From $\frac{1}{2} + \frac{1}{2} = 1$ we get $-\frac{1}{2} \frac{ds}{dt} = \frac{1}{2} \frac{ds}{dt}$ $\frac{dS}{dS} = -\frac{S}{2} \frac{ds}{ds}.$ If s = 10, then $\frac{1}{10} + \frac{1}{5} = \frac{1}{6}$ which gives S = 15. So $\frac{dS}{dt} = -\frac{225}{100}(-2) = 4.5$ cm/s. dt dt The image is moving away from the lens. 44. Suppose that the reservoir has height H and that the radius at the top is R. At any instant of time let h and r be the corresponding dimensions of the cone of water (see figure). We want to show that $\frac{dh}{dt}$ is constant and dt dV = -kA where V is the volume of water, independent of H and R, given that A is the area of a circle of radius dt r, and k is a positive constant. The volume of a cone of radius r and height h is $V = -\frac{1}{2}\pi r^2 h$. By similar triangles **R** 2

 $R^{2} = \pi r^{2} = \pi H h^{2}, \text{ dVR} = -k\pi H h^{2}, \text{ which when substituted into the previous equation for dt gives}$ $-k\pi \frac{R}{H} h^{2} h^{2} = \pi \frac{R^{2}}{H} h^{2} \frac{dH}{dt}, \text{ and } \frac{dh}{dt} = k.$

45. Let r be the radius, V the volume, and A the surface area of a sphere. Show that $\frac{dr}{dt}$ is a constant given that $\frac{dV}{dt} = -kA$, where k is a positive constant. Because V $= \frac{4}{2}\pi r^3$, $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$. But it is given that $\frac{dV}{dt}$ dV dt dV 3 dt dt dV

 \overline{dt} = kA or, because A = $4\pi r^2$, \overline{dt} = $4\pi r^2$ k which when substituted into the previous equation for \overline{dt} gives

$$-4\pi r^2 k = 4\pi r^2 \frac{dr}{dt}$$
, and $\frac{dr}{dt} = -k$.

46. Let x be the distance between the tips of the minute and hour hands, and α and β the angles shown in the figure. Because the minute hand makes one revolution in 60 minutes, $\frac{d\alpha}{dt} = \frac{2\pi}{60} = \pi/30 \text{ rad/min}$; the hour hand makes one revolution in 12 hours (720 minutes), thus $\frac{d\beta}{dt} = \frac{2\pi}{720} = \pi/360 \text{ rad/min}$. We want to find $\frac{dx}{dt}_{\alpha=2\pi}$ given that $\frac{d\alpha}{dt} = \pi/30$ and $\frac{d\beta}{dt} = \pi/360$. Using the law of cosines on the triangle shown in the

figure, $x^2 = 3^2 + 4^2 - 2(3)(4)\cos(\alpha - \beta) = 25 - 24\cos(\alpha - \beta)$, so $2x\frac{dx}{dt} = 0 + 24\sin(\alpha - \beta) \frac{d\alpha}{dt} - \frac{d\beta}{dt}$, $\frac{dx}{dt} = \frac{12}{x} \frac{d\alpha}{dt} - \frac{d\beta}{dt} \sin(\alpha - \beta)$. When $\alpha = 2\pi$ and $\beta = 3\pi/2$, $x^2 = 25 - 24\cos(2\pi - 3\pi/2) = 25$, x = 5; so 11π

dt
$$_{\frac{\alpha=2\pi}{\beta=3\pi/2}}$$
 = 5 ($\pi/30 - \pi/360$) sin($2\pi - 3\pi/2$) = 150 in/min.

47. Extend sides of cup to complete the cone and let V₀be the volume of the portion added, then (see figure) =

Exercise Set 2.9

- 1. (a) $f(x) \approx f(1) + f^0(1)(x-1) = 1 + 3(x-1)$.
 - (b) $f(1 + \Delta x) \approx f(1) + f^{0}(1)\Delta x = 1 + 3\Delta x.$

- (c) From part (a), $(1.02)^3 \approx 1 + 3(0.02) = 1.06$. From part (b), $(1.02)^3 \approx 1 + 3(0.02) = 1.06$.
- 2. (a) $f(x) \approx f(2) + f^0(2)(x-2) = 1/2 + (-1/2^2)(x-2) = (1/2) (1/4)(x-2).$
 - (b) $f(2 + \Delta x) \approx f(2) + f^0(2)\Delta x = 1/2 (1/4)\Delta x.$
 - (c) From part (a), $1/2.05 \approx 0.5 0.25(0.05) = 0.4875$, and from part (b), $1/2.05 \approx 0.5 0.25(0.05) = 0.4875$.

3. (a)
$$f(x) \approx f(x_0) + f^0(x_0)(x - x_0) = 1 + (1/2^{\sqrt{1}})(x - 0) = 1 + (1/2)x$$
, so with $x_0 = 0$ and $x = -0.1$, we have
 $0.9 = f(-0.1) \approx 1 + (1/2)(-0.1) = 1 - 0.05 = 0.95$. With $x = 0.1$ we have
(b) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.
(c) $1.1 = 1.05$.
(c) 1

$$2 + x = 2 + 1 \quad (2 + 1) \qquad 3 + \Delta x = 39$$
12. $(4 + x)^3 \approx (4 + 1)^3 + 3(4 + 1)^2 (x - 1)$ so, with $4 + x = 5 + \Delta x$ we get $(5 + \Delta x)^3 \approx 125 + 75\Delta x$.
13. $f(x) = \sqrt[7]{\frac{\sqrt{x+3} \text{ and } x_0}{x+3}} = 0$, so $x + 3 \approx \frac{\sqrt{x}}{3} = \frac{1}{3 + \sqrt{x}} (x - 0) = \sqrt[7]{\frac{3}{3} + \frac{1}{\sqrt{x}}} x$, and $f(x) = \sqrt[7]{\frac{3}{3} + \sqrt{x}} < 0.1$ if

so	≈√+ (x	-0) = + x, and	+ x	
14. $f(x) = \sqrt{9-x}$	$9-x$ 9 $2(9-0)^{3/2}$	3 54	f(x) - 3 = 54	< 0.1 if $ x < 5.5114$.

15. $\tan 2x \approx \tan 0 + (\sec^2 0)(2x - 0) = 2x$, and $|\tan 2x - 2x| < 0.1$ if |x| < 0.3158.

17. (a) The local linear approximation sin $x \approx x$ gives sin $1^{\circ} = \sin(\pi/180) \approx \pi/180 = 0.0174533$ and a calculator gives sin $1^{\circ} = 0.0174524$. The relative error $|\sin(\pi/180) - (\pi/180)|/(\sin \pi/180) = 0.000051$ is very small, so for such a small value of x the approximation is very good.

(b) Use
$$x_0 = 45^\circ$$
 (this assumes you know, or can approximate, $\sqrt{\frac{2}{2}}$.
(c) $44^\circ = \frac{44\pi}{180}$ radians, and $45^\circ = \frac{45\pi}{180} = \frac{\pi}{4}$ radians. With $x = -\frac{44\pi}{180}$ and $x_0 = \frac{\pi}{4}$ we obtain $\sin 44^\circ = \sin \frac{44\pi}{180} \approx \frac{44\pi}{180} = 0.694765$. With a calculator, $\sin 44^\circ = 0.694658$.
 $\frac{\pi}{4}$ $\frac{44\pi}{4}$ $\frac{\pi}{180}$ $\frac{2}{4}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{-\pi}{180}$
18. (a) $\tan x \approx \tan 0 + \sec^2 0(x - 0) = x$, so $\tan 2^\circ = \tan(2\pi/180) \approx 2\pi/180 = 0.034907$, and with a calculator $\tan 2^\circ = 0.034921$.
(b) Use $x_0 = \pi/3$ because we know $\tan 60^\circ = \tan(\pi/3) = \frac{\sqrt{-\pi}}{3}$

we have $\tan 61^{\circ} = \tan 180 \approx \tan 3 + \sec 3 = 180 - 3 = 3 + 4180 =$

(c) With $x_0 = 3 = 180$ and x = 180

19. $f(x) = x^4$, $f^0(x) = 4x^3$, $x_0 = 3$, $\Delta x = 0.02$; $(3.02)^4 \approx 3^4 + (108)(0.02) = 81 + 2.16 = 83.16$.

20. $f(x) = x^3$, $f^0(x) = 3x^2$, $x_0 = 2$, $\Delta x = -0.03$; $(1.97)^3 \approx 2^3 + (12)(-0.03) = 8 - 0.36 = 7.64$. 21. $f(x) = \sqrt[7]{x}$, $f^0(x) = \frac{1}{\sqrt{x}}$, = 64, $\Delta x = 1$; $\frac{65}{65} \approx \frac{64}{64} + \frac{1}{\sqrt{x}}$ (1) = $8 + \frac{1}{\sqrt{x}} = 8.0625$. х x 2^{-} x 16^{-} 16 22. f(x) = x, $f^{0}(x) = \frac{1}{2}$, x = 25, $\Delta x = -1$; $24 \approx 25 + \frac{16}{25}$ (-1) = 5 - 0.1 = 4.9. 23. f(x) = x, $\sqrt[\gamma]{}$ $f^{0}(x) = -\frac{1}{2}$, $x_{0} = 81$, $\Delta x = -0.1$; $\sqrt[\gamma]{}$ $\overline{80.9} \approx \sqrt[\gamma]{}$ $\overline{81} + \frac{1}{2}$ $(-0.1) \approx 8.9944$. 24. f(x) = x, $f^{0}(x) = \frac{1}{1} - \frac{1}{1} = \frac{1}{1} - \frac{1}{1} = \frac{1}{1}$ 2 x 12 25. $f(x) = \sin x$, $f^{0}(x) = \cos x$, $x_{0} = 0$, $\Delta x = 0.1$; $\sin 0.1 \approx \sin 0 + (\cos 0)(0.1) = 0.1$. 26. $f(x) = \tan x$, $f^{0}(x) = \sec^{2} x$, $x_{0} = 0$, $\Delta x = 0.2$; $\tan 0.2 \approx \tan 0 + (\sec^{2} 0)(0.2) = 0.2$. 27. $f(x) = \cos x$, $f'(x) = -\sin x$, $x_0 = \pi/6$, $\Delta x = \pi/180$; $\cos 31 \approx \cos 30 +$ π $\approx 0.8573.$ 180 2 2 960 28. (a) Let $f(x) = (1 + x)^k$ and $x_0 = 0$. Then $(1 + x)^k \approx 1^k + k(1)^{k-1}$ (x - 0) = 1 + kx. Set k = 37 and x = 0.001 to obtain $(1.001)^{37} \approx 1.037.$

- (b) With a calculator $(1.001)^{37} = 1.03767$.
- (c) It is the linear term of the expansion.

0.5

(b)

32. (a) dy = (1/2)-0.172

29. $\sqrt[3]{8.24} = 8^{1/3} \sqrt[3]{1.03} \approx 2(1 + \frac{1}{3} \cdot 0.03) \approx 2.02$, and $4.08^{3/2} = 4^{3/2} \cdot 1.02^{3/2} = 8(1 + 0.02(3/2)) = 8.24$.

30. $6^{\circ} = \pi/30$ radians; $h = 500 \tan(\pi/30) \approx 500 [\tan 0 + (\sec^2 \pi/30)]$ 0) $\frac{1}{30}$ = 500 $\pi/30 \approx$ 52.36 ft.

-0.167

(b)

31. (a) d

ly =
$$(-1/x^2)$$
dx = $(-1)(-0.5) = 0.5$ and $\Delta y = 1/(x)$

$$\sqrt[N]{\frac{\sqrt{p}}{x)dx} = (1/(2)} \qquad \frac{\sqrt{\sqrt{y}}{x + \Delta x - x} = 9 + (-1) - \frac{\sqrt{y}}{9} = \frac{\sqrt{y}}{2}$$

$$\frac{\sqrt{y}}{x + \Delta x - x} = 9 + (-1) - \frac{\sqrt{y}}{9} = \frac{\sqrt{y}}{2}$$

$$\frac{\sqrt{y}}{2} = \frac{\sqrt{y}}{2}$$

 $+\Delta x$) - 1/x = 1/(1 - 0.5) - 1/1 = 2 - 1 = 1.

 $8 - 3 \approx$

33.
$$dy = 3x^2 dx; \Delta y = (x + \Delta x)^3 - x^3 = x^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 + 3x^2 \Delta x + 3x(\Delta x)^2 +$$

34.
$$dy = 8dx; \Delta y = [8(x + \Delta x) - 4] - [8x - 4] = 8\Delta x$$

- 35. $dy = (2x 2)dx; \Delta y = [(x + \Delta x)^2 2(x + \Delta x) + 1] [x^2 2x + 1] = x^2 + 2x \Delta x + (\Delta x)^2 2x 2\Delta x + 1 x^2 + 2x 1 = 2x \Delta x + (\Delta x)^2 2\Delta x.$
- 36. $dy = \cos x \, dx$; $\Delta y = \sin(x + \Delta x) \sin x$.
- 37. (a) $dy = (12x^2 14x)dx$.
 - (b) $dy = x d(\cos x) + \cos x dx = x(-\sin x)dx + \cos xdx = (-x \sin x + \cos x)dx.$
- 38. (a) $dy = (-1/x^2) dx$.

(b)
$$dy = 5 \sec^2 x \, dx.$$

 $\sqrt[n]{---} \frac{x}{\sqrt{---}}$

39. (a)
$$dy = 1 - x - 2 - 1 - x \quad dx = 2\sqrt{1 - x} dx$$
.

(b)
$$dy = -17(1 + x)^{-18} dx.$$

40. (a) $dy = \frac{3}{(x^3 - 1)^2} = \frac{3}{(x^3 - 1)^2} = -(x^3 - 1)^2 dx.$
(b) $dy = \frac{(2 - x)(-3x^2)dx - (1 - x^3)}{(2 - x)^2} = \frac{(-1)dx}{(2 - x)^2} = \frac{2x^3 - 6x^2 + 1}{(2 - x)^2} dx.$

41. False; dy = (dy/dx)dx.

- 42. True.
- 43. False; they are equal whenever the function is linear.

44. False; if f $^{0}(x_{0}) = 0$ then the approximation is constant.

45. $dy = 2\sqrt{3x^2 - 2} dx$, x = 2, dx = 0.03; $\Delta y \approx dy = \frac{3}{4} (0.03) = 0.0225$.

46. dy =
$$\frac{\sqrt{x}}{x^2 + 8}$$
 dx, x = 1, dx = -0.03; $\Delta y \approx dy = (1/3)(-0.03) = -0.01$.
47. dy = $\frac{1 - x}{2}$ dx, x = 2, dx = -0.04; $\Delta y \approx dy = -\frac{3}{2}$ (-0.04) = 0.0048
(x + 1) 25

48. dy =
$$4\frac{4x}{8x+1}$$
 + 8x + 1 dx, x = 3, dx = 0.05; $\Delta y \approx dy = (37/5)(0.05) = 0.37$.

49. (a) $A = x^2$ where x is the length of a side; $dA = 2x dx = 2(10)(\pm 0.1) = \pm 2 \text{ ft}^2$.

(b) Relative error in x is within $\frac{dx}{x} = \frac{\pm 0.1}{10} = \pm 0.01$ so percentage error in x is $\pm 1\%$; relative error in A is within $\frac{dA}{dx} 2x \frac{dx}{dx} = \frac{dx}{dx}$

= $2 = 2 = 2 = 2(\pm 0.01) = \pm 0.02$ so percentage error in A is $\pm 2\%$.
50. (a) $V = x^3$ where x is the length of a side; $dV = 3x^2 dx = 3(25)^2 (\pm 1) = \pm 1875 \text{ cm}^3$. (b) Relative error in x is within $\frac{dx}{x} = \frac{\pm 1}{25} = \pm 0.04$ so percentage error in x is $\pm 4\%$; relative error in V is within

$$V = x^3 = 3 x = 3(\pm 0.04) = \pm 0.12$$
 so percentage error in V is $\pm 12\%$.

51. (a) $x = 10 \sin \theta$, $y = 10 \cos \theta$ (see figure), $dx = 10 \cos \theta d\theta = 10 \cos \pi \pm \pi = 10^{-3} \pm \pi \approx 6^{-180} = 10^{-3} \pm \pi \approx 6$

$$\pm 0.151 \text{ in}, \quad dy = -10(\sin \theta)d\theta = -10 \qquad \sin \frac{\pi}{6} \qquad \pm \frac{\pi}{180} = -10 \qquad \frac{1}{2} \qquad \pm \frac{\pi}{180} \approx \pm 0.087 \text{ in}.$$

52. (a)
$$x = 25 \cot \theta$$
, $y = 25 \csc \theta$ (see figure); $dx = -25 \csc^2 \theta d\theta = -25$ $\csc^2 \frac{\pi}{3}$ $\pm \frac{\pi}{360} = -25$ $\frac{4}{3}$ $\frac{\pi}{2}_{360} \approx \pm 0.291 \text{ cm}$, $dy = -25 \csc \theta \cot \theta d\theta = -25 \csc 3$ $\cot 3$ ± 360 $= -25 \sqrt{3}$ $\frac{\sqrt{1}}{3}$ $\pm \frac{\pi}{360} \approx \pm 0.145 \text{ cm}$.

(b) Relative error in x is within $\frac{dx}{x} = \frac{\csc 2\theta}{\cot \theta} d\theta = \frac{4/3}{1/3} \pm \frac{\pi}{360} \approx \pm 0.020$, so percentage error in x is

 $\approx \pm 2.0\%; \text{ relative error in y is within } y = -\cot\theta d\theta = - \sqrt[7]{3} \frac{\pi}{\pm 360} \approx \pm 0.005, \text{ so percentage error in y is}$ $\approx \pm 0.5\%.$

53.
$$\frac{dR}{R} = \frac{(-2k/r^{-3})dr}{r} = -2 \frac{dr}{r}$$
, but $\frac{dr}{r} = \pm 0.05$ so $\frac{dR}{R} = -2(\pm 0.05) = \pm 0.10$; percentage error in R is $\pm 10\%$.
R (k/r^2) r r R

54. $h = 12 \sin \theta$ thus $dh = 12 \cos \theta d\theta$ so, with $\theta = 60^{\circ} = \pi/3$ radians and $d\theta = -1^{\circ} = -\pi/180$ radians, $dh = 12 \cos(\pi/3)(-\pi/180) = -\pi/30 \approx -0.105$ ft.

55. $A = \frac{1}{4}(4)^2 \sin 2\theta = 4 \sin 2\theta$ thus $dA = 8 \cos 2\theta d\theta$ so, with $\theta = 30^\circ = \pi/6$ radians and $d\theta = \pm 15^0 = \pm 1/4^\circ = \pm \pi/720$

radians, $dA = 8 \cos(\pi/3)(\pm \pi/720) = \pm \pi/180 \approx \pm 0.017 \text{ cm}^2$. 56. $A = x^2$ where x is the length of a side; $\frac{dA}{A} = \frac{2x \, dx}{x^2} = 2 \frac{dx}{x}$, but $\frac{dx}{x} = \pm 0.01$, so $\frac{dA}{A} = 2(\pm 0.01) = \pm 0.02$;

percentage error in A is $\pm 2\%$

- 57. $V = x^3$ where x is the length of a side; $V = x^3 = 3x$, but $x = \pm 0.02$, so $V = 3(\pm 0.02) = \pm 0.06$; percentage error in V is $\pm 6\%$.
- 58. $\frac{dV}{V} = \frac{4\pi r}{4\pi r^3/3} = 3 \frac{dr}{r}$, but $\frac{dV}{V} = \pm 0.03$ so $3 \frac{dr}{r} = \pm 0.03$, $\frac{dr}{r} = \pm 0.01$; maximum permissible percentage error in r
- 59. $A = \frac{1}{4}\pi D^2$ where D is the diameter of the circle; $\frac{dA}{A} = \frac{(\pi D/2)dD}{\pi D^2/4} = 2\frac{dD}{D}$, but $dA = \pm 0.01$ so $2\frac{dD}{dD} = \pm 0.01$,

 $\frac{dD}{D}$ = ±0.005; maximum permissible percentage error in D is ±0.5%.

- 60. $V = x^3$ where x is the length of a side; approximate ΔV by dV if x = 1 and dx = $\Delta x = 0.02$, dV = $3x^2 dx = 0.02$ $3(1)^2 (0.02) = 0.06 \text{ in}^3$.
- 61. V = volume of cylindrical rod = $\pi r^2 h = \pi r^2 (15) = 15\pi r^2$; approximate ΔV by dV if r = 2.5 and dr = $\Delta r = 0.1$. 61. V = volume of cylindrical for $-\pi = \pi = \pi = \pi = \pi$ $dV = 30\pi r dr = 30\pi (2.5)(0.1) \approx 23.5619 \text{ cm}^3$. $2\pi = \sqrt{2\pi} = \sqrt{2\pi} \frac{1}{\sqrt{1-2}} = \pi = dP = 1 \text{ dL}$ 62. P = \sqrt{g} L, dP g 2 L dL = $g\sqrt{L}$ dL, P = 2 L so the relative error in P ≈ 2 the relative error in L.

Thus the percentage error in P is $\approx \frac{1}{2} \frac{\text{the}}{2}$ percentage error in L.

63. (a)
$$\alpha = \Delta L/(L\Delta T) = 0.006/(40 \times 10) = 1.5 \times 10^{-5/\circ} \text{ C}.$$

(b) $\Delta L = 2.3 \times 10^{-5} (180)(25) \approx 0.1 \text{ cm}$, so the pole is about 180.1 cm long.

64. $\Delta V = 7.5 \times 10^{-4} (4000)(-20) = -60$ gallons; the truck delivers 4000 - 60 = 3940 gallons.

Chapter 2 Review Exercises f(4) -f(3) -

(b)
$$m_{tan} = \lim_{w \to 3} \frac{f(w) - f(3)}{w - 3} = \lim_{w \to 3} \frac{w^2 / 2 - 9 / 2}{w - 3} = \lim_{w \to 3} \frac{w^2 - 9 / 2}{w - 3} = \lim_{w \to 3} \frac{w - 3}{w - 3} = \lim_{w \to 3} \frac{w - 3}{2(w - 3)} = \lim_{w$$

(c)
$$m_{tan} = \lim \frac{f(w) - f(x)}{w - x} = \lim \frac{w^2/2}{w - x} = \lim \frac{w^2 - x^2}{w - x} = \lim \frac{w + x}{w - x} = x.$$

(d) $u = \lim_{x \to 0^+} \int_{10^+ y}^{10^+ y} \int_{10^+ y}^{10$

4. To average 60 mi/h one would have to complete the trip in two hours. At 50 mi/h, 100 miles are completed after two hours. Thus time is up, and the speed for the remaining 20 miles would have to be infinite.

$$\begin{aligned} & \text{nodes: finds due is up, and us spect for the remaining 20 mins would have to be minine.} \\ & \text{5. } v_{\text{inst}} = \lim_{k \to 0} \frac{3(k+1)^{2k} + 580k-3}{10k} = 58 \cdot \frac{1}{4} = \frac{4}{3x^{2.5}} = -58 \cdot \frac{1}{4} = (2.5)(3)(1)^{1.5} = 58.75 \text{ ft/s.} \\ & \text{i.e.} & 10h & 10 \text{ dx} & \text{s.-1} & 10 \end{aligned}$$

$$& \text{6. } 164 \text{ ft/s} & \frac{2500}{10k} = \frac{210}{3k-1} = \frac{1}{13} \text{ mirh.} \\ & \text{(b) } v_{\text{inst}} = \lim_{k \to -0} \frac{(2k^2)^2 + 24k}{10k} = \frac{1}{10k} = \frac{(2k^2)^2 + 44k}{10k} = \frac{1}{2} = 13 \text{ mirh.} \\ & \text{(b) } v_{\text{inst}} = \lim_{k \to -0} \frac{(2k^2)^2 + 4k}{10k} = \frac{1}{2} = \frac{1}$$

13. (a) The slope of the tangent line $\approx 2050 - 1950 = 0.078$ billion, so in 2000 the world population was increasing at the rate of about 78 million per year.

(b) $\frac{dN/dt}{N_6} \approx \frac{0.078 = 0.013 = 1.3 \text{ %/year}}{----}$

14. When
$$x^4 - x - 1 > 0$$
, $f(x) = x^4 - 2x - 1$; when $x^4 - x - 1 < 0$, $f(x) = -x^4 + 1$, and f is differentiable in both cases.
and $x^4 - x - 1 < 0$ on $(x - x)$. Then $\lim_{x \to -\infty} f^0(x) = \lim_{x \to -\infty} (4x^3 - 2x) = 4x^3$ -2 and $\lim_{x \to -\infty} f^0(x) = \lim_{x \to -\infty} (4x^3 - 2x) = 4x^3$ -2 and $\lim_{x \to -\infty} f^0(x) = \lim_{x \to -\infty} (4x^3 - 2x) = 4x^3$ -2 and $\lim_{x \to -\infty} f^0(x) = \lim_{x \to -\infty} (4x^3 - 2x) = 4x^3$ -2 and $\lim_{x \to -\infty} f^0(x) = \lim_{x \to -\infty} (4x^3 - 2x) = 4x^3$ -2 and $\lim_{x \to -\infty} f^0(x) = \lim_{x \to -\infty} (4x^3 - 2x) = 4x^3$ -2 and $\lim_{x \to -\infty} f^0(x) = \lim_{x \to -\infty} (4x^3 - 2x) = 4x^3$ -2 and $\lim_{x \to -\infty} f^0(x) = 1x^3$ -2 and $\lim_{x \to -\infty} f^0(x) = 1x^3$

24. Multiply the given equation by $\lim_{x\to 2} (x-2) = 0$ to get $0 = \lim_{x\to 2} (x^3 f(x) - 24)$. Since f is continuous at x = 2, this

equals $2^{3} f(2) = 24$, so f(2) = 3. Now let $g(x) = x^{3} f(x)$. Then g = 0 (2) = $\lim_{x \to 2} \frac{g(x) - g(2)}{1 - g(2)} = \lim_{x \to 2} \frac{x - 2}{1 - g(2)} = \lim_{x \to 2} \frac{x - 2}{1 - g(2)} = \lim_{x \to 2} \frac{x - 2}{1 - g(2)} = 2^{3} \frac{x - 2}{1$

25. The equation of such a line has the form y = mx. The points (x_0, y_0) which lie on both the line and the parabola and for which the slopes of both curves are equal satisfy $y_0 = mx_0 = x^3 - 9x^2 - 16x_0$, so that $m = x^2 - 9x_0 - 16$. By

	differentiating, the slope is also given by $m = 3x^2$ 16,	- 18x	-16 . Equating, we have x^2		$-9x - 16 = 3x^2 - 18x -$			
0		0	0	0	0	0		

or $2x^2 - 9x = 0$. The root x = 0 corresponds to m = -16, y = 0 and the root x = 9/2 corresponds to m = -145/4, $y_0 = -1305/8$. So the line y = -16x is tangent to the curve at the point (0, 0), and the line y = -145x/4 is tangent to the curve at the point (9/2, -1305/8). 26. The slope of the line x + 4y = 10 is $m_1 = -1/4$, so we set the negative reciprocal $4 = m_2 = \frac{d}{dx} (2x^3 - x^2) = 6x^2 - 2x$ and obtain $6x^2 - 2x - 4 = 0$ with roots $x = \frac{1 \pm \sqrt{1 + 24}}{6} = 1, -2/3.$ = a + b. The slope of the secant is $-a^2 \psi^2$ 27. The slope of the tangent line is the derivative $y^0 = 2x$ a + b, (a+b) so they are equal. $f^{0}(1)g(1) + f(1)g^{0}(1) = 3(-2) + 1(-1) = -7 \qquad (b) \qquad \frac{g(1)f^{0}(1) - f(1)g^{0}(1)}{g(1)^{2}} = \frac{-2(3) - 1(-1)g^{0}(1)}{(-2)^{2}}$ 28. (a) (c) $\frac{1}{p} f^{0}_{(1)=} \frac{1}{\sqrt{3}=} \frac{3}{2}$ (d) 0 (because $f(1)g^{0}(1)$ is constant) $-\frac{f(1)2}{2} - \frac{1}{2} 2$ 2 29. (a) $8x^7 - \frac{3}{3} = 15x^{-4}$ (b) $2 \cdot 101(2x+1)^{100}(5x^2-7) + 10x(2x+1)^{101} = (2x+1)^{100}(1030x^2+10x-1414)$ 30. (a) $\cos x - 6 \cos^2 x \sin x$ (b) $(1 + \sec x)(2x - \sec^2 x) + (x^2 - \tan x) \sec x \tan x$ 31. (a) 2(x-1) $3x + 1 + \sqrt{2}$ $(x-1)^2 = \sqrt{2}$ 2 - 3x + 1 $3x + 1 \xrightarrow{2} x^{2} (3) - (3x + 2) = -3(3x + 1) \xrightarrow{2} (3x + 2)$ (b) $3 \xrightarrow{1}{1}(2x)$ $x^{2} \xrightarrow{x^{4}} x^{4} \xrightarrow{x^{7}}$ (b) $-\frac{2 + 3 \sin^{2}}{2x} \xrightarrow{x \cos x}$ $32. (a) - \underbrace{2x}_{x^{3} + 5} \xrightarrow{-2(x^{3} + 5) \csc 2x \cot 2x}_{x^{3} + 5} \xrightarrow{-3x^{2} \csc 2x}_{x^{3} + 5} (x^{3} + 5)^{2} (b) - \underbrace{2 + 3 \sin^{2}}_{(2x + \sin^{3} x)^{2}}$ 33. Set $f^{0}(x) = 0$: $f^{0}(x) = 6(2)(2x+7)^{5}(x-2)^{5} + 5(2x+7)^{6}(x-2)^{4} = 0$, so 2x + 7 = 0 or x - 2 = 0 or, factoring out $(2x+7)^{5}(x-2)^{4}$, 12(x-2) + 5(2x+7) = 0. This reduces to x = -7/2, x = 2, or 22x + 11 = 0, so the tangent line is horizontal at x = -7/2, 2, -1/2. 34. Set $f^{0}(x) = 0$: $f^{0}(x) = \frac{4(x^{2} - \pm 2x)(x - 3)^{3}}{(x - 3)^{3}} - \frac{(2x + 2)(x - 3)^{4}}{(x - 3)^{4}}$, and a fraction can equal zero only if its numerator

 $(x^{2} + 2x)^{2}$ equals zero. So either x - 3 = 0 or, after factoring out $(x - 3)^{3}$, $4(x^{2} + 2x) - (2x + 2)(x - 3) = 0$, $2x^{2} + 12x + 6 = 0$, whose roots are (by the quadratic formula) $x = \frac{-6 \pm 36 - 4 \cdot 3}{2} = -3 \pm 6$. So the tangent line is horizontal at

$$x = 3, -3 \pm \frac{\sqrt{-6}}{6}$$

35. Suppose the line is tangent to $y = x^2 + 1$ at (x_0, y_0) and tangent to $y = -x^2 - 1$ at (x_1, y_1) . Since it's tangent to $y = x^2 + 1$, its slope is $2x_0$; since it's tangent to $y = -x^2 - 1$, its slope is $-2x_1$. Hence $x_1 = -x_0$ and $y_1 = -y_0$.

$$\sum_{k=2}^{\infty} \frac{1}{2} 2y_{k} \quad y_{k} = k \pm 1 \qquad x^{2} 0 \pm 1$$
Since the line passes through both points, its slope is $x \upharpoonright 1^{-1} u^{-1} = 2a_{k} = a_{k} = a_{k} = b_{k} = a_{k} = a_{k$

44.
$$dx = x^4$$
.
45. (a) $3x^2 + x \frac{dy}{dx} + y - 2 = 0$, $dx = \frac{2 - y - 3x}{x}^2$.

(b)
$$y = (1 + 2x - x^3)/x = \frac{1}{x} + 2 - x^2$$
, $dy/dx = -1/x^2 - 2x$.
(c) $\frac{dy}{3x^2}_{dx} = \frac{2 - (1/x + 2 - x^2)}{x} = -1/x^2 - 2x$.

46. (a) xy = x - y, x $\frac{dy}{dx} + y = 1 - \frac{dy}{dx}, \frac{dy}{dx + 1} = \frac{1 - y}{dx}$. dx (b) $y(x+1) = x, y = \frac{x}{x+1}, y^0 = \frac{1}{(x+1)^2}.$ $\underline{dv} \quad \underline{1} - \underline{v} \underline{1} - \underline{x}$ $= = x+1 = \frac{1}{(x+1)^2}.$ (c) 47. $-\frac{1}{2} \frac{dy}{dy} - \frac{1}{2} = 0$ so $dy - = -\frac{y^2}{2}$. y dx x dx x <u>dy</u> 2 2 <u>dy</u> <u>dy</u> 2 2 48. $3x - 3y dx = 6(x_{dx + y), -(3y + 6x)} dx = 6y - 3x$ so $dx = y^2 + 2x^2$ 49. $x \frac{dy}{dx} + y \sec(xy) \tan(xy) = \frac{dy}{dx}, \frac{dy}{dx} = \frac{y \sec(xy) \tan(xy)}{dx dx}$ $\frac{dy}{dx} = \frac{y \sec(xy) \tan(xy)}{1 - x \sec(xy) \tan(xy)}$ dx 50. $2x = \frac{(1 + \csc y)(-\csc^2 y)(dy/dx) - (\cot y)(-\csc y \cot y)}{y)(dy/dx) (1 + \csc y)^2}$, $2x(1 + \csc y)^2 = -\csc y(\csc y + \csc^2 y - \cot^2 y)\frac{dy}{dx}$ but $\csc^2 y - \cot^2 y = 1$, so $dy = -2x(1 + \csc y)$. dx csc y $\frac{dy}{dx} = \frac{3x}{dy} \frac{d^2}{dx^2} = \frac{(4y)(3) - (3x)(4dy/dx)}{16y^2} = \frac{12y - 12x(3x/(4y))}{16y^2}$ 51. $dx = 4y, y = 16y^2 = 16y^2$ $\frac{12y^{2} - 9x^{2}}{3} - \frac{-3(3x^{2} - 4y^{2})}{3}$ $\frac{16y}{16y} = 16y$, but $3x^{2} - 4y^{2} = 16y$ = 16y2 d^2 -3(7)<u>1</u> $y = 16y^3 = -16y^3$ 7 so dx² (y - x) $\frac{y}{y-x}, \quad \frac{d^2}{y} = (y-x)(dy/dx) - y(dy/dx - 1)$ 52. $\frac{dx^{2}}{d^{2}y}_{2} = -\frac{3}{3}.$ (y-x)² $(x)^2$ $(y - x)^3$ 2xy = -3, so dx dy 2 dy $\frac{dy}{\sec^2(\pi y/2)},$ dy $= \tan(\pi y/2) + x(\pi/2)$ $= 1 + (\pi/4)$ ____ (2), __ = 53. dx y=1/2 $2 - \pi$ dx dx $dx_{y=1/2}$ y=1/2

54. Let P (x₀, y₀) be the required point. The y² = 2x³ at P must be -3/4. By implicit But y² 2x³ because P is on the curve The curve Slope of the line 4x - 3y + 1 = 0 is 4/3 so the slope of the tangent to differentiation $dy/dx = 3x^2/y$, so at P, $3x^2 / y_0 = -3/4$, or $y = -4x^2$. y² = 2x³. Elimination of y gives $16x^4 = 2x^3$, $x^3(8x - 1) = 0$, so

2

=

 $x_0 = 0$ or 1/8. From $y_0 = -4x_0$ it follows that $y_0 = 0$ when $x_0 = 0$, and $y_0 = -1/16$ when $x_0 = 1/8$. It does not follow, however, that (0, 0) is a solution because dy/dx = $3x^2$ /y (the slope of the curve as determined by implicit differentiation) is valid only if y = 0. Further analysis shows that the curve is tangent to the x-axis at (0, 0), so point (1/8, -1/16) is the only solution.

the

55. Substitute y = mx into $x^2 + xy + y^2 = 4$ to get $x^2 + mx^2 + m^2 x^2 = 4$, which has distinct solutions $x = \pm 2/$ $m^2 + m + 1$. They are distinct because m^2 $m^2 + m + 1 = (m + 1/2)^2 + 3/4 \ge 3/4$, so $m^2 + m + 1$ is never zero.

Note that the points of intersection occur in pairs (x_0, y_0) and $(-x_0, -y_0)$. By implicit differentiation, the slope of the tangent line to the ellipse is given by dy/dx = -(2x + y)/(x + 2y). Since the slope is unchanged if we replace (x, y) with (-x, -y), it follows that the slopes are equal at the two point of intersection. Finally we must examine the special case x = 0 which cannot be written in the form y = mx. If x = 0 then $y = \pm 2$, and the formula for dy/dx gives dy/dx = -1/2, so the slopes are equal.

56. By implicit differentiation,
$$3x^2 - y - xy^0 + 3y^2 y^0 = 0$$
, so $y^0 = (3x^2 - y)/(x - 3y^2)$. This derivative is zero when

$y = 3x^2$	² . Substit	uting this into t	the of	riginal	equatio	n	x ³ - y	xy +	$y^3 = 0$), one ha	as x ³	$-3x^3$	+27x	$6^{6} = 0, x^{3}$	$^{3}(27x^{3})$	-2) = 0.
The	unique	solution	in	the	first	quadrant	is	x	=	21/3	/3,	у	=	$3x^2$	=	22/3 /3.

- 57. By implicit differentiation, $3x^2 y xy^0 + 3y^2 y^0 = 0$, so $y^0 = (3x^2 y)/(x 3y^2)$. This derivative exists except when $x = 3y^2$. Substituting this into the original equation $x^3 xy + y^3 = 0$, one has $27y^6 3y^3 + y^3 = 0$, $y^3 (27y^3 2) = 0$. The unique solution in the first quadrant is $y = 2^{1/3}/3$, $x = 3y^2 = 2^{2/3}/3$
- 58. By implicit differentiation, dy/dx = k/(2y) so the slope of the tangent to $y^2 = kx$ at (x_0, y_0) is $k/(2y_0)$ if $y_0 = 0$. The tangent line in this case is $y - y_0 = \frac{k}{2y_0}$ $(x - x_0)$, or $2y_0 y - 2y_0 = kx - kx_0$. But $2y_{y_0} = kx_0$ because (x_0, y_0) is on the curve $y^2 = kx$, so the equation gives $y_0 y = k(x + x_0)/2$. If $y_0 = 0$, then $x_0 = 0$; the graph of $y^2 = kx$ has a vertical tangent at (0, 0) so its
 - x = 0, but $y_0 y = k(x + x_0)/2$ gives the same result when $x_0 = y_0 = 0$.
- 59. The boom is pulled in at the rate of 5 m/min, so the circumference $C = 2r\pi$ is changing at this rate, dr dC 1 dA dA dr which means

that
$$\overline{dt} = \overline{dt} \cdot 2\pi$$
 = $-5/(2\pi)$. A = πr^2 and $dt = -5/(2\pi)$, so $dt = dr dt$ = $2\pi r(-5/2\pi) = -250$, so the area

is shrinking at a rate of 250 m^2 /min. = -b. From the figure sin $\theta = y/z$; when x = y = 1, z = $\frac{\sqrt{2}}{2}$. So $\theta = \sin^{-1}(y/z)$ 60. Find $\underline{d\theta}$ given \underline{dz} = a and \underline{dy} dt dt dt x=1 y=1 and $\frac{d\theta}{dt} = \frac{1}{p}$ $\frac{1}{2} \frac{dy}{dt} = \frac{y}{2} \frac{dz}{dt} = -b - \frac{a}{\sqrt{when } x = y = 1.}$ $1 - y^2/z^2$ z dt z^2 dt dt v θ х 61. (a) $\Delta x = 1.5 - 2 = -0.5$; dy = $\frac{-1}{(x-1)^2} = -\frac{-1}{(2-1)^2}$ (-0.5) = 0.5; and $\Delta y = -\frac{1}{(1.5-1)} = -\frac{1}{(2-1)}$ =2-1=1. (b) $\Delta x = 0 - (-\pi/4) = \pi/4$; dy = sec² (- $\pi/4$) $(\pi/4) = \pi/2$; and $\Delta y = \tan 0 - \tan(-\pi/4) = 1$. $\sqrt{\frac{1}{25-3^2}}$ $\sqrt{\frac{1}{-25-0^2}}$ =4-5=-1. $\frac{-x}{25 - x^2} = \frac{-0}{p} (3) = 0; \text{ and } \Delta y = \frac{-25 - x^2}{25 - (0)^2}$ $\Delta x = 3 - 0 = 3; \, dy =$ 46π 62. $\cot 46^{\circ} = \cot 180$; let x0 = 4 and x = 180. Then $\cot 46^{\circ} = \cot x \approx \cot \quad \frac{\pi}{4} - \csc^2 \frac{\pi}{4} \quad x - \frac{\pi}{4} = 1 - 2 \quad \frac{46\pi}{180} = \frac{\pi}{4} = 0.9651$; with a calculator, $\cot 46^{\circ} = 0.9657$. 63. (a) $h = 115 \tan \varphi$, $dh = 115 \sec^2 \varphi \, d\varphi$; with $\varphi = 51^\circ$ $= \frac{51}{180} \pi$ radians and $d\varphi = \pm 0.5^\circ = \pm 0.5$ $\frac{\pi}{180}$ radians, $h \pm dh = 115(1.2349) \pm 2.5340 = 142.0135 \pm 2.5340$, so the height lies between 139.48 m and 144.55 m. (b) If $|dh| \le 5$ then $|d\phi| \le 115^{\frac{5}{2}} \cos^{\frac{2}{180}51} \pi \approx 0.017$ radian, or $|d\phi| \le 0.98^{\circ}$.

Chapter 2 Making Connections

- 1. (a) By property (ii), f(0) = f(0 + 0) = f(0)f(0), so f(0) = 0 or 1. By property (iii), f(0) = 0, so f(0) = 1.
 - (b) By property (ii), f(x) = f $\frac{x}{2} + \frac{x}{2} = f$ $\frac{x}{2} \ge 0$. If f(x) = 0, then 1 = f(0) = f(x + (-x)) = f(x)f(-x) = 0
 - $0 \cdot f(-x) = 0$, a contradiction. Hence f(x) > 0.

(c)
$$f^{0}(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} \frac{f(x)}{h} \frac{f(x)}{h} = \int_{h \to 0}^{h} \frac{f(x)}{h} = \int$$

$$g \cdot (f \cdot h^0 + h \cdot f^0) = f \cdot g^0 \cdot h$$
$$=$$
$$=$$
$$\frac{h^0 g^2}{h^0 g^2}$$

<u>_____</u> <u>g</u>² ____

5. (a) By the chain rule, $\frac{d}{dx} [g(x)]^{-1} = [g(x)]^{-2} g^{0}(x) = \frac{g^{0}(x)}{(x)}$. By the product rule, $\frac{d}{dx} \frac{\overline{g(x)}^{2}}{dx} \frac{1}{g(x)} \frac{g(x)}{g(x)} \frac{d}{dx} \frac{g(x)}{g(x)} \frac{d}{dx} \frac{g(x)}{g(x)} \frac{g(x)}{g(x)$