Test Bank for Calculus 10th Edition by Anton Bivens Davis ISBN 0470647701 9780470647707

Full link download

Test Bank: https://testbankpack.com/p/test-bank-for-calculus-10th-edition-by-antonbivens-davis-isbn-0470647701-9780470647707/

Solutions Manual

https://testbankpack.com/p/solution-manual-for-calculus-10th-edition-byanton-bivens-davis-isbn-0470647701-9780470647707/

3 1. Find the average rate of change of y with respect to x for y = f(x)over the interval χ^4 [1, 7]. B) -0.500 C) -0.500 D) -17.993 E) 2.999 A) 0.375 Ans: B Difficulty: Easy Section: 2.1 2. Find the average rate of change of y with respect to x over the interval [1, 5]. y = f(x) = $3x^3$ B) 95 C) 93 D) 74 A) 62 E) 372 Ans: C Difficulty: Easy Section: 2.1 3. Find the instantaneous rate of change of $y = 4x^2$ with respect to x at xo = 7. A) 8 B) 56 C) 14 D) 28 E) 22 Ans: B Difficulty: Easy Section: 2.1 4. Find the instantaneous rate of change of $y = \frac{9}{x}$ with respect to x at $x\theta = 5$. A) -225 B) -8.9600 C) 0.3600 D) -0.3600 E) -0.0617 Ans: D Difficulty: Medium Section: 2.1 5. Find the instantaneous rate of change of $y = -4x^7$ with respect to x at a general point x0. A) $-28x_0^7$ B) $-4x_0$ C) $-4x_0^7$ D) $-4x_0^6$ E) $-28x_0^6$ Ans: E Difficulty: Easy Section: 2.1

6. Find the instantaneous rate of change of $y = \frac{2}{x^3}$ with respect to x at a general point xo.

A) $\frac{-6}{x^3}$ B) $\frac{2}{x^4}$ C) $\frac{-6}{x^4}$ D) $\frac{6}{x^3}$ E) $\frac{6}{x^3}$

Difficulty: Medium Section: 2.1

7. Find the slope of the tangent line to the graph of $f(x) = 7x^4 - 9$ at a general point x_0 .

A) $28x_0^3 - 9$ B) $7x_0^3$ C) $28x_0^3$ D) $7x_0^3 - 1$ E) $7x_0^3 - 9$ Ans: C

Difficulty: Easy Section: 2.1

8. Answer true or false. The slope of the tangent line to the graph of $f(x) = -2x^2 - 1$ at $x_0 = 3$ is -13.

3 is -13. Ans: False Difficulty: Easy Section: 2.1

9. Answer true or false. Use a graphing utility to graph $y = 3t^2$ on [0, 4]. If this graph represents a position versus time curve for a particle, the instantaneous velocity of the particle is increasing over the graphed domain.

Ans: True
Difficulty: Easy
Section: 2.1

10. Use a graphing utility to graph $y = t^2 - 7t + 10$ on [0, 10]. If this graph represents a position versus time curve for a particle, the instantaneous velocity of the particle is zero at what time? Assume time is in seconds.

A) 6s B) 3s C) 3.5s D) 1.5s E) 7s

Ans: C

Difficulty: Medium

Section: 2.1

11. A rock is dropped from a height of 2,704 feet and falls toward earth in a straight line. In t seconds the rock drops a distance of $16t^2$ feet. What is the instantaneous velocity downward when it hits the ground?

A) 116,985,856 feet/s

D) 32 feet/s

B) 416 feet/s

E) 26 feet/s

C) 208 feet/s

Ans: B

Difficulty: Easy Section: 2.1

12. Answer true or false. The magnitude of the instantaneous velocity is always less than the magnitude of the average velocity.

Ans: False

Difficulty: Easy Section: 2.1

13. Answer true or false. If a rock is thrown straight upward to a height of 26 feet from the ground, when it returns to earth its average velocity will be its initial velocity.

Ans: False Difficulty: Easy Section: 2.1

14. Answer true or false. If an object is thrown straight upward with an instantaneous velocity of 35 m/s, its instantaneous velocity at the point where it stops rising is

0. Ans: True Difficulty: Easy Section: 2.1

15. An object moves in a straight line so that after t s its distance in mm from its original position is given by $s = 7t^3 + 4t$. Its instantaneous velocity at t = 4s is A) 336 mm B) 1,348 mm C) 5,380 mm D) 340 mm E) 116 mm Ans: D

Difficulty: Medium Section: 2.1

16. Find the instantaneous rate of change of y with respect to x at $x_0 = 4$. $y = 6x^2 - 2$

A) 48 B) 46 C) 24 D) 50 E) 96

Ans: A

Difficulty: Easy Section: 2.1

17. Find the instantaneous rate of change of y with respect to x at $x_0 = 81$. $y \sqrt{x}$ 2

A) $\frac{1}{18}$ B) $\frac{1}{9}$ C) $\frac{11}{9}$ D) $\frac{18}{17}$ E) $\frac{1}{81}$

Ans: A

Difficulty: Hard Section: 2.1

18. Let $f(x) = \frac{1}{x^2}$. Find the average rate of change of y with respect to x over the interval

[5, 6].

Ans: 900

Difficulty: Easy Section: 2.1

19. Let $f(x) = \frac{1}{x^2}$. Find the instantaneous rate of change of y with respect to x at the point

x = 2. Ans: $^{1}_{4}$

Difficulty: Easy

Section: 2.1

20. Let $y = x^2 + 2$. Find the average rate of change of y with respect to x over the interval [-5, -1].

Ans: -6

Difficulty: Easy

Section: 2.1

21. Let $y = x^2 + 6$. Find the instantaneous rate of change of y with respect to x at the point x = -5.

Ans: −10

Difficulty: Easy

Section: 2.1

22. Let $y = \frac{1}{x-1}$. Find the average rate of change of y with respect to x over the interval [2,4].

[2,4]. ****ne:

Ans: ¹₃

Difficulty: Medium Section: 2.1

23. Let $y = \frac{1}{x-3}$. Find the instantaneous rate of change of y with respect to x at the point x

= 5.

Ans:14

Difficulty: Medium

Section: 2.1

24. Let $y = \frac{2}{x-2}$. Find the average rate of change of y with respect to x over the given interval [3,6].

Ans:

Difficulty: Medium

25. Let $y \chi = \frac{1}{4}$. Find the instantaneous rate of change of y with respect to x at the point x = 1.

Ans: 25¹

Difficulty: Medium

Section: 2.1

26. Let $f(x) = \frac{1}{5} x$. Find the slope of the tangent to the graph of f at a general point x_0 using limits and find the slope of the tangent line at $x_0 = 4$

Ans: $\lim_{x_1 \to x_0} \frac{1}{5 x_1 5 x_0} = \frac{1}{5 x_0^2}$

The slope of the tangent line at $x_0 = 4$ is $\frac{1}{1}$.

Difficulty: Medium

Section: 2.1

27. Let $f(x) = \frac{1}{x} \cdot 4$. Find the slope of the tangent to the graph of f at a general point x_0 using limits and find the slope of the tangent at $x_0 = 5$.

Ans: $\lim_{x_1 \to x_0} \frac{1}{x_1 + x_0} = \frac{1}{x_0 + x_0} = \frac{1}{x_0 + x_0}$

The slope of the tangent line at $x_0 = 5$ is x_0^{-1} .

_

Difficulty: Medium

Section: 2.1

28. Let $f(x) = \frac{4}{x^4}$. Find the slope of the tangent to the graph of f at a general point x_0 using

limits and find the slope of the tangent at $x_0 = -5$.

Ans:
$$\lim_{x \to 1} \frac{4}{x^4} = \frac{4}{-5^4}$$

$$\frac{4}{x^5} = \frac{4}{100} =$$

$$x_{1-5}$$
 x_{1} 5 x_{1} 625 x_{1} 4 x_{1} 5 x_{0} 5

The slope of the tangent line at $x_0 = -5$ is $\frac{10}{3,125}$.

Difficulty: Medium

29. Let $f(x) = 4x^3$. Find the slope of the tangent to the graph of f at a general point x_0 using limits and find the slope of the tangent at $x_0 = 2$.

Ans:
$$\lim_{x_1 \to x_0} 4 x_1^2 x_0^2 12x_0^2$$

Slope of tangent at $x_0 = 2$ is 48

Difficulty: Easy Section: 2.1

30. A rock is dropped from a height of 144 feet and falls toward the earth in a straight line. In t seconds, the rock drops a distance of $s = 16t^2$ feet. What is the average velocity of the rock while it is falling? Use limits to find the instantaneous velocity of the rock when it hits the ground.

Ans: Average velocity: 48 feet per second

Instantaneous velocity at ground = 96 feet per second

Difficulty: Medium

Section: 2.1

31. A particle moves in a straight line from its initial position so that after t seconds, its distance is given by $s = t^2 + t$ feet from its initial position. Find the average velocity of the particle over the interval [3,6] seconds. Use limits to find the instantaneous velocity of the particle at t = 1 second.

Ans: \hat{A} verage velocity = 10 feet per second

The instantaneous velocity at t = 1 second is 3 feet per second.

Difficulty: Medium

Section: 2.1

32. A particle moves in a straight line from its initial position so that after t seconds, its distance is given by s t t feet from its initial position. Find the average velocity of the particle over the interval [4,8] seconds. Use limits to find the instantaneous velocity of the particle at t = 4 seconds.

Ans: Average velocity = $\overline{45}$ feet per second.

1

The instantaneous velocity at t = 4 seconds is $\overline{25}$ feet per second.

Difficulty: Medium

33. Let $f(x) = ax^2 + b$, where a and b are constant. Use the method of Section 3.1 to show that the slope of the tangent to the graph of f at x = xo is 2axo.

Ans: $m_{\text{tan}} \lim_{x_1 \to x_0} \frac{2}{ax_1} \underbrace{bax_0^2 b}_{\text{lim}} \lim_{x_1 \to x_0} \frac{a x_1^2 - x_0^2}{x_1 + x_0} \cdot \lim_{x_1 \to x_0} a x_1 = x_0 2ax_0$

Difficulty: Hard Section: 2.1

34. Let $f(x) = ax^3 + b$, where a and b are constants. Use the method of Section 3.1 to show that the slope of the tangent to the graph of f at x = xo is $3ax0^2$. Ans:

Difficulty: Medium

Section: 2.1

35. The graph shows the position versus time curve for a particle moving on a straight line. Is the instantaneous velocity increasing or decreasing with time?

Ans: decreasing Difficulty: Easy

36. The figure shows the position versus time curve for a certain particle moving along a straight line. Estimate, from the graph, the average velocity over the interval 3 to 9.

- Ans: -4/3
 Difficulty: Easy
 Section: 2.1
- 37. Given $f(x)x^3 = 1$, find the slope of the graph of f at the x-value $x_0 = 4$. Ans: 48
 - Difficulty: Medium Section: 2.1
- 38. Given f(x) 13 $\sqrt[4]{x}$, find the slope of the graph of f at $x_0 = 1$.

- Difficulty: Medium Section: 2.1
- 39. Find the instantaneous rate of change of $f(x) = \frac{2}{x^3}$ at xo = 5.
 - Ans: $\frac{6}{625}$
 - Difficulty: Medium
 - Section: 2.1
- 40. Find the instantaneous rate of change of $f(x) = 5x^2 12$ at $x_0 = 5$. Ans: 50
 - Difficulty: Medium
 - Section: 2.1

41. Find the instantaneous rate of change of $f(x) = 5x^2 - 6x + 9$ at $x_0 = 3$. Ans: 24 Difficulty: Medium Section: 2.1