Test Bank for Calculus of a Single Variable Early Transcendental Functions 6th Edition by Larson and HEdwards ISBN 12857747959781285774794

Full Link Dowload
Solution Manual
https://testbankpack.com/p/solution-manual-for-calculus-of-a-single-variable-early-transcendental-
functions-6th-edition-by-larson-and-hedwards-isbn-1285774795-9781285774794/

Test Bank

https://testbankpack.com/p/test-bank-for-calculus-of-a-single-variable-early-transcendental-functions-6th-edition-by-larson-and-hedwards-isbn-1285774795-9781285774794/

1.1 Graphs and Models

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Which of the following is the correct graph of $y=2-x$?
a.

d.

b.

e.

c.

- 2. Which of the following is the correct graph of $y=-\sqrt{3-x^{2}}$?
a.

d.

b.

e.

c.

\qquad 3. Which of the following is the correct graph of $y=3 x-x^{2}$?
a.

d.

b.

e.

c.

- 4. Which of the following is the correct graph of $y=x-x^{3}$?
a.

d.

b.

e.

c.

5. Find all intercepts:

$y=x^{2}-x-12$
a. $\quad x$-intercepts: $(4,0),(-3,0) ; y$-intercepts: $(0,) \nmid(0,3)$
b. x-intercept: $(12,0) ; y$-intercepts: $(0) ,4(0,3)$
c. x-intercepts: $(4,0),(-3,0) ; y$-intercept: $(0,-12)$
d. x-intercepts: $(4,0),(-3,0) ; y$-intercepts: $(0,-12),(0,12)$
e. x-intercept: $(-3,0)$; y-intercept: $(0,-12)$
\qquad 6. Find all intercepts:
$y=64 x-x^{3}$
a. x-intercepts: $(-8,0),(8,0)$; no y-intercept
b. x-intercept: $(0,0) ; y$-intercepts: $(0,0),(0,-8),(0,8)$
c. x-intercepts: $(0,0),(-8,0),(8,0) ; y$-intercept: $(0,0)$
d. x-intercepts: $(0,0),(-8,0),(8,0)$; no y-intercept
e. x-intercepts: $(-8,0), 8 ; y$-intercept: $(0,0)$
\qquad 7. Find all intercepts:
$y=(x+5) \sqrt{4-x^{2}}$
a. $\quad x$-intercepts: $(-5,0),(-2,0),(2,0) ; y$-intercepts: $(0,0),(0,10)$
b. x-intercepts: $(-5,0),(2,0)$; y-intercept: $(0,10)$
c. x-intercepts: $(-5,0),(2,0) ; y$-intercept: $(0,-10)$
d. x-intercepts: $(-5,0),(-2,0),(2,0) ; y$-intercept: $(0,10)$
e. x-intercepts: $(-5,0),(-2,0),(2,0) ; y$-intercept: $(0,-10)$
\qquad 8. Test for symmetry with respect to each axis and to the origin.
$x^{2} y^{2}=8$
a. symmetric with respect to the origin
b. symmetric with respect to the x-axis
c. symmetric with respect to the y-axis
d. no symmetry
e. A, B, and C
\qquad 9. Test for symmetry with respect to each axis and to the origin.
$y=\frac{x^{2}+2}{x}$
a. symmetric with respect to the origin
b. symmetric with respect to the y-axis
c. symmetric with respect to the x-axis
d. both B and C
e. no symmetry
\qquad 10. Sketch the graph of the equation:
$x=y^{3}-9 y$
a.

b.

d.

e. none of the above
c.

\qquad 11. Sketch the graph of the equation:
$x=4-y^{2}$
a.

d.

b.

e.

c.

\qquad 12. Sketch the graph of the equation:
$y=|x+2|$
a.

d.

b.

e. none of the above
c.

\qquad 13. Find the points of intersection of the graphs of the equations:
$x=y^{2}-3$
$y=x+1$
a. $(-2,1),(-1,2)$
b. $(-2,0),(1,2)$
c. $(-2,-1),(1,2)$
d. $(2,-1),(-1,2)$
e. $(-2,-3),(-1,2)$
_ 14. The table given below shows the Consumer Price Index (CPI) for selected years. Use the regression capabilities of a graphing utility to find a mathematical model of the form $y=a t^{2}+b t+c$ for the data. In the model, y represents the CPI and t represents the year, with $t=5$ corresponding to 1975 . Round all numerical values in your answer to three decimal places.

ear	975	980	985	990	995	000	005
PI	7.8	0.6	03.6	30.7	52.4	70.5	92.5

a. $\quad y=-0.019 t^{2}+5.268 t+30.871$
b. $y=-0.019 t^{2}-5.957 t+30.871$
c. $y=-0.016 t^{2}-5.957 t-30.871$
d. $y=-0.019 t^{2}+5.957 t+40.871$
e. $y=-0.016 t^{2}+5.268 t+40.871$
\qquad 15. The table given below shows the Consumer Price Index (CPI) for selected years. Use a graphing utility to plot the data and graph the model $\mathcal{Y}=-0.1476 t^{2}+9.6462 t+3.8286$.

ear	975	980	985	990	995	000	005
PI	5.5	0.6	05.5	35.5	60.5	72.5	50.5

d.

b.

e.

c.

16. The table given below shows the Consumer Price Index (CPI) for selected years. The mathematical model for the data given below is $y=-0.031 t^{2}+5.887 t+24.429$, where y represents the CPI and t represents the year, with $t=5$ corresponding to 1975 . Use the model to predict the CPI for the year 2010. Round your answer to the nearest integer.

ear	975	980	985	990	995	000	005
PI	2.8	0	06.6	30.7	52.4	71.2	94.3

a. $y=211$
b. $y=209$
c. $y=192$
d. $y=173$
e. $y=210$
17. Find the sales necessary to break even $(R=C)$ if the cost C of producing x units is $\bar{C}=5.3 \sqrt{x}+40,000$ and the revenue R for selling x units is $R=3.3 x$. Round your answer to the nearest integer.
a. $x \approx 6,244$ units
b. $x \approx 12,334$ units
c. $x \approx 12,305$ units
d. $x \approx 12,299$ units
e. $x \approx 6,239$ units
\qquad 18. The resistance y in ohms of 1000 feet of solid metal wire at $77^{\circ} F$ can be approximated by the $y=\frac{10,000}{x^{2}}-0.57,5 \leq x \leq 100$, where x is the diameter of the wire in mils (0.001 in). Use a graphing model utility to graph the model $y=\frac{10,000}{x^{2}}-0.57,5 \leq x \leq 100$.
a.

d.

b.

e.

c.

\qquad 19. The resistance y in ohms of 1000 feet of solid metal wire at $77^{\circ} F$ can be approximated by the $y=\frac{12,750}{x^{2}}-0.37,5 \leq x \leq 100$, where x is the diameter of the wire in mils (0.001 in). If the diameter model of the wire is doubled, the resistance is changed by approximately what factor? In determining your answer, you can ignore the constant -0.37 .
a. 3
b. $\frac{1}{2}$
c. 3
d. $\frac{1}{4}$
e. $\frac{1}{3}$

1.1 Graphs and Models

Answer Section

1. ANS: C PTS: 1 DIF: Easy

OBJ: Identify the graph of a linear equation
2. ANS: E PTS: 1 DIF: Easy

OBJ: Identify the graph of a semicircle
3. ANS: B PTS: 1 DIF: Easy

OBJ: Identify the graph of a quadratic equation
4. ANS: B PTS: 1 DIF: Easy

OBJ: Identify the graph of a cubic equation
5. ANS: C PTS: 1 DIF: Easy

OBJ: Calculate the intercepts of an equation
6. ANS: C PTS: 1 DIF: Easy

OBJ: Calculate the intercepts of an equation
7. ANS: D PTS: 1

OBJ: Calculate the intercepts of an equation
8. ANS: E PTS: 1 DIF: Easy

OBJ: Identify the type of symmetry of the graph of an equation
9. ANS: A PTS: 1 DIF: Easy

OBJ: Identify the type of symmetry of the graph of an equation
10. ANS: C PTS: 1 DIF: Med

OBJ: Graph a cubic equation in y
11. ANS: B PTS: 1 DIF: Easy

OBJ: Graph a quadratic equation in y
12. ANS: D PTS: 1 DIF: Med

OBJ: Graph an absolute value equation
13. ANS: C PTS: 1 DIF: Med OBJ: Calculate the points of intersection of the graphs of equations
14. ANS: A PTS: 1 DIF: Easy

OBJ: Write a quadratic model for data using the regression capabilities of a graphing utility
MSC: Application
15. ANS: B PTS: 1 DIF: Easy REF: Section 1.1

OBJ: Plot a quadratic model for data using the regression capabilities of a graphing utility
MSC: Application
16. ANS: E PTS: 1 DIF: Easy REF: Section 1.1

OBJ: Evaluate a quadratic model in applications
17. ANS: D PTS: 1 DIF: Med

OBJ: Solve for the break-even point in applications
18. ANS: B PTS: 1 DIF: Med OBJ: Plot a rational model using the capabilities of a graphing utility
19. ANS: D PTS: 1 DIF: Med

OBJ: Interpret a rational model

MSC: Application
REF: Section 1.1
MSC: Application
REF: Section 1.1
MSC: Application
REF: Section 1.1
MSC: Application

1.2 Linear Models and Rates of Change

Multiple Choice
Identify the choice that best completes the statement or answers the question.
\qquad 1. Estimate the slope of the line from the graph.

a. $-\frac{1}{5}$
b. 5
c. 2
d. $-\frac{1}{2}$
e. $\frac{1}{5}$
2. Sketch the line passing through the point $(3,4)$ with the slope $-\frac{3}{2}$.
a.

d.

b.

e.

c.

\qquad 3. Find the slope of the line passing through the pair of points.
$(-3,-6),(0,-11)$
a. $\frac{3}{5}$
b. $-\frac{5}{3}$
c. $\frac{5}{3}$
d. 0
e. $-\frac{3}{5}$

- 4. Find the slope of the line passing through the points $\left(-\frac{1}{8}, \frac{8}{3}\right)$ and $\left(-\frac{3}{16}, \frac{1}{24}\right)$.
a. 63
b. -21
c. 42
d. 21
e. -42

5. If a line has slope $m=-4$ and passes through the point $(4,8)$, through which of the following points does the line also pass?
a. $(1,20)$
b. $(1,12)$
c. $(1,0)$
d. $(8,-16)$
e. $(8,-24)$
6. A moving conveyor is built to rise 5 meters for every 7 meters of horizontal change. Find the slope of the conveyor.
a. 0
b. $\frac{5}{7}$
c. $\frac{7}{5}$
d. $-\frac{7}{5}$
e. $-\frac{5}{7}$
7. A moving conveyor is built to rise 1 meter for every 5 meters of horizontal change. Suppose the conveyor runs between two floors in a factory. Find the length of the conveyor if the vertical distance between floors is 10 meters. Round your answer to the nearest meter.
a. 61 meters
b. 39 meters
c. 51 meters
d. 50 meters
e. 41 meters

- 8. Find the slope of the line $x+3 y=15$.
a. $\frac{1}{3}$
b. $-\frac{1}{5}$
c. $\frac{1}{5}$
d. $-\frac{1}{15}$
e. $-\frac{1}{3}$

9. Find the y-intercept of the line $x+4 y=8$.
a. $(0,2)$
b. $(0,4)$
c. $(0,8)$
d. $(4,0)$
e. $(2,0)$
10. Find an equation of the line that passes through the point $(7,2)$ and has the slope m that is undefined.
a. $y=7$
b. $x=7$
c. $y=2$
d. $x=2$
e. $y=7 x$
11. Find an equation of the line that passes through the point $(-11,-9)$ and has the slope $m=\frac{9}{2}$.
a. $y=\frac{9}{2} x \frac{81}{2}$
b. $y=\frac{9}{2} x \quad \frac{81}{2}$
c. $y=\frac{9}{2} x+{ }^{+}+162$
d. $y=\frac{9}{2} x$
e. $y=-\frac{9}{2} x$

- 12. Find an equation of the line that passes through the points $(18,-7)$ and $(-18,23)$.
a. $\quad y=-\frac{5}{6} x-8$
b. $y=\frac{5}{6} x-8$
c. $y=\frac{5}{6} x+8$
d. $y=-\frac{5}{6} x+8$
e. $y=-\frac{5}{6} x$

13. Find an equation of the line that passes through the points $\left(-\frac{8}{11},-\frac{70}{11}\right)$ and $\left(\frac{3}{2},-\frac{21}{4}\right)$.
a. $y=\frac{1}{2} x$
b. $y=\frac{1}{2} x+6$
c. $y=\frac{1}{2} x+12$
d. $y=\frac{1}{2} x-12$
e. $y=\frac{1}{2} x-6$
-14. Use the result, "the line with intercepts $(a, 0)$ and $(0, b)$ has theequation $\frac{x}{a}+\frac{y}{b}=1, a \neq 0, b \neq 0$, , to write an equation of the line with x-intercept: $(8,0)$ and y intercept: (0,7).
a. $8 x-7 y-8=0$
b. $7 x-8 y+7=0$
c. $8 x+7 y+8=0$
d. $7 x+8 y+56=0$
e. $7 x+8 y-56=0$
\qquad 15. Sketch a graph of the equation $y-8=2(x+4)$.
a.

d.

b.

e.

c.

14. Write an equation of the line that passes through the given point and is perpendicular to the given line.

$$
\begin{array}{cc}
\text { Point } & \text { Line } \\
(-1,-7) & x=6
\end{array}
$$

a. $\quad y=7$
b. $y=-7$
c. $y=-1$
d. $x=-1$
e. $x=1$
17. Write an equation of the line that passes through the given point and is parallel to the given line.

Point Line
$(3,-4) \quad-2 x-5 y=9$
a. $-2 x-5 y=14$
b. $-2 x-5 y=23$
c. $2 x-5 y=14$
d. $-2 x+5 y=-26$
e. $2 x-5 y=23$
18. Write an equation of the line that passes through the point $(-6,4)$ and is perpendicular to the line $x+y=5$.
a. $x-y+10=0$
b. $x-y+2=0$
c. $x+y-2=0$
d. $x+y+10=0$
e. $x+y-5=0$

- 19. Write an equation of the line that passes through the point $\left(\frac{5}{4}, \frac{5}{8}\right)$ and is parallel to the line $7 x-3 y=0$.
a. $56 x-24 y-55=0$
b. $56 x+12 y-55=0$
c. $56 x-8 y+55=0$
d. $56 x+6 y+55=0$
e. $56 x+4 y-55=0$

20. Suppose that the dollar value of a product in 2008 is $\$ 174$ and the rate at which the value of the product is expected to increase per year during the next 3 years is $\$ 7.50$. Write a linear equation that gives the dollar value V of the product in terms of the year t. (Let $t=0$ represent 2000.) Round the numerical values in your answer to one decimal place, where applicable.
a. $\quad V=7.5 t-159$
b. $V=-7.5 t-114$
c. $V=-7.5 t+174$
d. $V=7.5 t+114$
e. $V=7.5 t-144$
21. Find an equation of the line through the points of intersection of $y=x^{2}$ and
$y=6 x-x^{2}$.
a. $y=x-6$
b. $y=6 x$
c. $y=-6 x$
d. $y=3 x$
e. $y=x+3$
22. A company reimburses its sales representatives $\$ 175$ per day for lodging and meals plus $45 \notin$ per mile driven. Write a linear equation giving the daily cost C to the company in terms of x the number of miles driven. Round the numerical values in your answer to two decimal places, where applicable.
a. $\quad C=-1.75 x+45$
b. $C=0.45 x+175$
c. $C=-0.45 x-175$
d. $C=0.45 x-175$
e. $C=1.75 x-45$
23. A company reimburses its sales representatives $\$ 160$ per day for lodging and meals plus $45 ¢$ per mile driven. How much does it cost the company if a sales representative drives 135 miles on a given day? Round your answer to the nearest cent.
a. $\quad 227.20$
b. 216.70
c. 136.35
d. 161.35
e. 191.70
24. A real estate office handles an apartment complex with 50 units. When the rent is $\$ 800$ per month, all 50 units are occupied. However, when the rent is $\$ 845$, the average number of occupied units drops to 47 . Assume that the relationship between the monthly rent p and the demand x is linear. Write a linear equation giving the demand x in terms of the rent p.
a. $x=\frac{1}{15}(1595-p)$
b. $x=\frac{1}{15}(1505+p)$
c. $x=\frac{1}{45}(1550+p)$
d. $x=\frac{1}{15}(1550-p)$
e. $x=\frac{1}{45}(1595-p)$
25. A real estate office handles an apartment complex with 50 units. When the rent is $\$ 600$ per month, all 50 units are occupied. However, when the rent is $\$ 645$, the average number of occupied units drops to 47 . Assume that the relationship between the monthly rent p and the demand x is linear. Predict the number of units occupied if the rent is raised to $\$ 660$.
a. 43 units
b. 54 units
c. 57 units
d. 49 units
e. 46 units
-_ 26. Find the distance between the point $(-4,7)$ and $\operatorname{line}^{x-y-2=0}$ using the formula, Distance $=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$ for the distance between the point $\left(x_{1}, y_{1}\right)$ and the line $A x+B y+C=0$.
a. $\frac{11 \sqrt{2}}{2}$
b. $\frac{4 \sqrt{3}}{3}$
c. $\frac{13 \sqrt{2}}{2}$
d. $\frac{9 \sqrt{2}}{2}$
e.
$\frac{6 \sqrt{3}}{3}$

1.2 Linear Models and Rates of Change
 Answer Section

1. ANS: B PTS: 1 DIF: Easy

OBJ: Estimate the slope of a line from its graph
2. ANS: D PTS: 1 DIF: Easy

OBJ: Sketch the line passing through a point with specified slope
3. ANS: B PTS: 1 DIF: Easy

OBJ: Calculate the slope of a line passing through two points
4. ANS: C PTS: 1 DIF: Med

OBJ: Calculate the slope of a line passing through two points
5. ANS: A PTS: 1 DIF: Med

OBJ: Identify a point on a line with specified properties
6. ANS: B PTS: 1 DIF: Easy

OBJ: Calculate slopes in applications
7. ANS: C PTS: 1 DIF: Med

OBJ: Calculate slopes in applications
8. ANS: E PTS: 1 DIF: Med

OBJ: Manipulate a linear equation to determine its slope
9. ANS: A PTS: 1 DIF: Med

OBJ: Manipulate a linear equation to determine its y-intercept
10. ANS: B PTS: 1 DIF: Easy

OBJ: Write an equation of a line given a point on the line and its slope
11. ANS: B PTS: 1 DIF: Easy

OBJ: Write an equation of a line given a point on the line and its slope
12. ANS: D PTS: 1 DIF: Easy

OBJ: Write an equation of a line given two points on the line
13. ANS: E PTS: 1 DIF: Med

OBJ: Write an equation of a line given two points on the line
14. ANS: E PTS: 1 DIF: Easy

OBJ: Write an equation of a line given its x - and y -intercepts
15. ANS: B PTS: 1 DIF: Med

OBJ: Sketch the graph of a linear equation
16. ANS: C PTS: 1 DIF: Med

OBJ: Write an equation of a line given a point on the line and a line to which it is parallel/perpendicular
17. ANS: A PTS: 1 DIF: Med REF: Section 1.2

OBJ: Write an equation of a line given a point on the line and a line to which it is parallel/perpendicular
18. ANS: A PTS: 1 DIF: Med REF: Section
1.2 OBJ:Write an equation of a line given a point on the line and a line to which it is perpendicular

MSC: Skill
19. ANS: A PTS: 1 DIF: Easy REF: Section 1.2

OBJ: Write an equation of a line given a point on the line and a line to which it is parallel
MSC: Skill
20. ANS:
D PTS: 1 DIF:
Easy
OBJ: Write linear equations in applications
REF: Section 1.2
MSC: Application
21. ANS: D

PTS: 1
DIF: Med
REF: Section 1.2
OBJ: Write an equation of a line through the points of intersection of quadratic equations MSC: Skill
22. ANS: B PTS: 1 DIF

OBJ: Write linear equations in applications
23. ANS: B PTS: 1 DIF:

OBJ: Evaluate linear equations in applications
24. ANS: D PTS: 1 DIF:

OBJ: Write linear equations in applications
25. ANS: E PTS: 1 DIF:

OBJ: Evaluate linear equations in applications
26. ANS: C PTS: 1 DIF:

OBJ: Calculate the distance between a point and a line

MSC: Application
REF: Section 1.2
MSC: Skill

1.3 Functions and Their Graphs

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Evaluate (if possible) the function $f(x)=-6 x-5$ at $x=-2$ Simplify the result.
a. -7
b. 17
c. 3
d. 7
e. undefined
\qquad 2. Evaluate (if possible) the function $f(x)=\sqrt{x-5}$ at $x=2$. Simplify the result.
a. 3
b. 3
c. -3
d. 3
e. undefined
\qquad 3. Evaluate (if possible) the function $g(x)=x^{2}(x+2)$ at $x=t-6!$ Simplify the result.
a. $t^{3}-4 t^{2}+12 t-144$
b. $t^{3}-4 t^{2}+84 t-144$
c. $t^{3}-16 t^{2}+84 t-144$
d. $t^{3}-16 t^{2}+12 t-144$
e. none of the above
\qquad 4. Let $f(x)=14 x+8$. Then simplify the expression $\frac{f(x)-f(9)}{x-9}$.
a. 15
b. 14
c. 15
d. 15
e. undefined
5. Let $g(x)=\frac{1}{\sqrt{x+15}}$. Evaluate the expression $\frac{g(x)-g(-11)}{x+11}$ and then simplify the result.
$g(x)=\frac{1}{\sqrt{x+15}}, \frac{g(x)-g(-11)}{x+11}$
a. $\frac{2 \sqrt{x+15}-x-15}{2(x+11)(x+15)}$
b. $\frac{2 \sqrt{x+15}+x-15}{2(x-11)(x+15)}$
c. $\frac{2 \sqrt{x+15}+x-15}{2(x+11)(x+15)}$
d. $\frac{2 \sqrt{x+15}-x-15}{2(x-11)(x+15)}$
e. undefined
6. Find the domain and range of the function $f(x)=x^{2}-6$.
a. domain: $[-6, \infty)$
range: $[-6, \infty)$
b. domain: $[-6, \infty)$
range: $(-6, \infty)$
c. domain: $(-\infty, \infty)$
range: $(-6, \infty)$
d. domain: $(-\infty, \infty)$
range: $[6, \infty)$
e. domain: $(-\infty, \infty)$
range: $[-6, \infty)$
7. Find the domain and range of the function $g(t)=\sqrt{t-10}$.
a. domain: $[10, \infty)$ range: $(0, \infty)$
b. domain: $(10, \infty)$
range: $[0, \infty)$
c. domain: $[10, \infty)$ range: $(-\infty, \infty)$
d. domain: $[0, \infty)$ range: $[10, \infty)$
e. none of the above

8. Find the domain and range of the function $h(x)=\frac{11}{x+6}$.

a. domain: $(-\infty,-6) \cup(-6, \infty)$ range: $(-\infty, \infty)$
b. domain: $(-\infty,-6) \cup(-6, \infty)$
range: $(-\infty, 0) \cup(0, \infty)$
c. domain: $(-\infty,-6] \cup[-6, \infty)$ range: $(-\infty, 0) \cup(0, \infty)$
d. domain: $(-\infty,-6)$ range: $(0, \infty)$
e. domain: $(-6, \infty)$
range: $(0, \infty)$
9. Evaluate the function $f(x)=\left\{\begin{array}{l}2 x+1, x<0 \\ 2 x+2, x \geq 0\end{array}\right.$ at
a. $\quad f(5)=6$
b. $f(5)=5$
c. $f(5)=13$
d. $f(5)=13$
e. $f(5)=13$
\qquad 10. Determine the domain and range of the function $f(x)=\left\{\begin{array}{l}3 x+2, x<0 \\ 3 x+6, x \geq 0\end{array}\right.$.
a. domain: $(-\infty, 2)$
range: $(-\infty, 2) \cap[6, \infty]$
b. domain: $(-\infty, \infty)$
range: $(-\infty, 2) \cup[6, \infty)$
c. domain: $(-\infty, \infty)$
range: $(-\infty, 2) \cup(\infty, 6]$
d. domain: $(-\infty, \infty)$
range: $(\infty, 2) \cup(6,-\infty)$
e. domain: $(-\infty, 3)$
range: $(-\infty, 2) \cap[6, \infty)$
_11. Determine whether y is a function of x.
$y-5 x^{2}=6$
a. no
b. yes
12. Determine whether y is a function of x.
$x y-x^{2}=3 y+x$
a. no
b. Yes
\qquad 13. Use the graph of $y=f(x)$ given below to find the graph of the function $y=f(x+5)$.

a.

d.

b.

e.

c.

14. Use the graph of $y=f(x)$ given below to find the graph of the function $y=f(x)+4$.

a.

d.

b.

e.

c.

- 15. Specify a sequence of transformations for the function $h(x)=\sin \left(x+\frac{\pi}{3}\right)+7$ that will yield the graph of h from the graph of the function $f(x)=\sin x$.
a. The function $h(x)=\sin \left(x+\frac{\pi}{3}\right)+7$ is a horizontal shift $\frac{\pi}{3}$ unitsto the right, followed by a vertical shift 7 units downwards.
b. The function $h(x)=\sin \left(x+\frac{\pi}{3}\right)+7$ is a horizontal shift $\frac{\pi}{3}$ unitsto the left, followed by a vertical shift 7 units upwards.
c. The function $h(x)=\sin \left(x+\frac{\pi}{3}\right)+7$ is a horizontal shift $\frac{\pi}{3}$ unitsto the left, followed by a horizontal shift 7 units to the right.
d. The function $h(x)=\sin \left(x+\frac{\pi}{3}\right)+7$ is a vertical shift $\frac{\pi}{3}$ unitsdownwards, followed by a horizontal shift 7 units to the right.
e. The function $h(x)=\sin \left(x+\frac{\pi}{3}\right)+7$ is a vertical shift $\frac{\pi}{3}$ unitsupwards, followed by a horizontal shift 7 units to the left.
-16. Given $f(x)=\cos x$ and $g(x)=\frac{\pi}{2} x$ evaluate $f(g(2))$.
a. 7
b. $\frac{1}{2}$
c. $\frac{\pi}{2} \sin (2)$
d. -1
e. $\frac{\pi}{2} \cos (2)$
_ 17. Determine whether the function is even, odd, or neither.
$f(x)=x^{2}(3-x)^{2}$
a. odd
b. even
c. neither
\qquad 18. Determine whether the function is even, odd, or neither.
$f(x)=x \sin 2 x$
a. even
b. odd
c. neither

19. Find the coordinates of a second point on the graph of a function f if the given point $\left(-\frac{6}{5}, 8\right)$ is on the graph and the function is even.
a. $\left(8,-\frac{6}{5}\right)$
b. $\left(-8,-\frac{6}{5}\right)$ c.
$\left(-\frac{6}{5},-8\right)$
d.
$\left(\frac{6}{5},-8\right)$
e. $\left(\frac{6}{5}, 8\right)$
20. Find the coordinates of a second point on the graph of a function f if the given point $\overline{\left(-\frac{9}{8}, 5\right)}$ is on the graph and the function is odd.
a. $\left(-5,-\frac{9}{8}\right)$
b. $\left(\frac{9}{8},-5\right)_{c}$.
$\left(-5, \frac{9}{8}\right)$
d. $\left(-\frac{9}{8},-5\right)$
e. $\left(\frac{9}{8}, 5\right)$
21. The horsepower H required to overcome wind drag on a certain automobile is approximated by $H(x)=0.002 x^{2}+0.005 x-0.027,10 \leq \mathrm{x} \leq 100$ where x is the speed of the car in miles per hour. Find $H\left(\frac{x}{1.1}\right)$. Round the numerical values in your answer to five decimal places.
a. $H\left(\frac{x}{1.1}\right)=0.00150 x^{2}+0.00455 x-0.02700$
b. $H\left(\frac{x}{1.1}\right)=0.00150 x^{2}+0.00165 x-0.00455$
c. $H\left(\frac{x}{1.1}\right)=0.00165 x^{2}+0.00150 x-0.02700$
d.

$$
H\left(\frac{x}{1.1}\right)=0.00165 x^{2}+0.00455 x-0.02700
$$

e. $H\left(\frac{x}{1.1}\right)=0.00455 x^{2}+0.00165 x-0.02700$
22. An open box of maximum volume is to be made from a square piece of material 22 centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure). Write the volume V as a function of x, the length of the corner squares.

a. $\quad V=x(22-2 x)^{2}$
b. $V=x+(22-x)^{2}$
c. $V=x^{2}+(22-2 x)$
d. $V=x^{2}(22-2 x)$
e. $\quad V=x(22-2 x)$
\qquad 23. An open box of maximum volume is to be made from a square piece of material 30 centimeters on a side by cutting equal squares from the corners and turning up the sides(see figure). What is the domain of the function $V=x(30-2 x)^{2}$.

a. domain: $0<x<\infty$
b. domain: 30
c. domain: $0<x<15$
d. domain: $0<x<30$
e. domain: 15

1.3 Functions and Their Graphs
 Answer Section

1. ANS: D PTS:

OBJ: Evaluate a function and simplify
2. ANS: \quad B PTS:
OBJ: Evaluate a function and simplify
3. ANS: C PTS:

OBJ: Evaluate a function and simplify
4. ANS: B PTS:

OBJ: Simplify a difference quotient
5. ANS: A PTS:

OBJ: Simplify a difference quotient
6. ANS: E PTS: 1 DIF:

OBJ: Identify the domain and range of a function
7. ANS: E PTS: 1 DIF: OBJ: Identify the domain and range of a function
8. ANS: B PTS: 1 DIF:

OBJ: Identify the domain and range of a function
9. ANS: E PTS: 1 DIF:

OBJ: Evaluate a piecewise function
10. ANS: B PTS: 1 DIF:

OBJ: Identify the domain and range of a function
11. ANS: B PTS: 1 DIF:

OBJ: Identify equations that are functions
12. ANS: B PTS: 1 DIF:

OBJ: Identify equations that are functions
13. ANS: E PTS: 1 DIF:

OBJ: Graph transformations of functions
14. ANS: A PTS: 1 DIF:

OBJ: Graph transformations of functions
15. ANS: B PTS: 1 DIF

OBJ: Describe a transformation of an equation
16. ANS: D PTS: 1 DIF

OBJ: Evaluate composite functions
17. ANS: C PTS: 1 DIF:

OBJ: Identify the type of symmetry of the graph of a function
18. ANS: A PTS: 1 DIF:

OBJ: Identify the type of symmetry of the graph of a function
19. ANS: E PTS: 1 DIF:

OBJ: Identify points on a graph using symmetry
20. ANS: B PTS: 1 DIF:

OBJ: Identify points on a graph using symmetry
21. ANS: D PTS: 1 DIF:

OBJ: Apply composite functions
22. ANS: A PTS:

1 DIF:
OBJ: Create functions in applications

Easy

Easy

Easy

Med

Med

Easy

Easy

Easy

Easy

Easy

Easy

Easy
Easy

Med

Med

Med

Easy
Easy

Easy

Easy
Easy

Med

REF: Section 1.3
MSC: Skill

REF: Section 1.3

MSC: Skill

REF: Section 1.3
MSC: Skill
REF: Section 1.3
MSC: Skill

REF: Section 1.3
MSC: Skill
REF: Section 1.3
MSC: Skill
REF: Section 1.3
MSC: Skill
REF: Section 1.3
MSC: Skill
REF: Section 1.3
MSC: Skill
REF: Section 1.3
MSC: Skill

REF: Section 1.3

MSC: Skill
REF: Section 1.3
MSC: Skill
REF: Section 1.3
MSC: Skill
REF: Section 1.3
MSC: Skill
REF: Section 1.3
MSC: Skill
REF: Section 1.3
MSC: Skill
REF: Section 1.3
MSC: Application
REF: Section 1.3
MSC: Application
23. ANS: C

PTS: 1
OBJ: Identify domains in applications

DIF: Med
REF: Section 1.3
MSC: Application

1.4 Fitting Models to Data

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Determine which type of function would be most appropriate to fit the given data.

a. exponential
b. linear
c. quadratic
d. no relationship
e. trigonometric
2. Which function below would be most appropriate model for the given data?

a. no apparent relationship between x and y
b. trigonometric
c. quadratic
d. linear
3. The following ordered pairs represent temperatures in degrees Fahrenheit taken each hour from 1:00 pm until 5:00 pm . Let T be temperature, and let t be time, where $t=1$ corresponds to $1: 00 \mathrm{pm}, t=2$ corresponds to $2: 00 \mathrm{pm}$, and so on. Plot the data. Visually find a linear model for the data and find its equation. From the visual linear model that you created, determine which of the models that follow appears to best approximate the data.
$\left(1: 00 \mathrm{pm}, 67.4^{\circ}\right),\left(2: 00 \mathrm{pm}, 71.6^{\circ}\right),\left(3: 00 \mathrm{pm}, 73.4^{\circ}\right),\left(4: 00 \mathrm{pm}, 77.6^{\circ}\right),\left(5: 00 \mathrm{pm}, 79.4^{\circ}\right)$
a. $T=2 t+60$
b. $T=-2 t+70$
c. $T=-4 t+60$
d. $T=4 t+70$
e. $T=3 t+65$
4. Each ordered pair gives the exposure index x of a carcinogenic substance and the
 approximate y if. Reufind your answer to one decimal place.
$(3.50,150.1),(3.58,133.1),(4.42,132.9),(2.26,116.7),(2.36,140.7),(4.85,165.5)$,
$(12.65,210.7),(7.42,181.0),(9.35,213.4)$
a. $\quad 168.2$
b. 163.6
c. $\quad 182.0$
d. 172.8
e. 177.4
5. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, $F=k d$ where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use the regression capabilities of a graphing utility to find a linear model for the data. Round the numerical values in your answer to three decimal places.

F	20	40	60	80	100
d	1.9	3.8	5.7	7.6	9.5

a. $d=0.675 F$
b. $d=0.118 F$
c. $d=0.112 F$
d. $d=0.095 F$
e. $d=0.905 F$
6. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, $F=k d$ where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use a graphing utility to plot the data and graph the linear model.

F	20	40	60	80	100
d	1.3	2.6	3.9	5.2	6.5

a.

d.

b.

e.

c.

7. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, $F=k d$ where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use the model $d=0.085 F$ to estimate the elongation of the spring when a force of 55 newtons is applied. Round your answer to two decimal places.

F	20	40	60	80	100
d	1.7	3.4	5.1	6.8	8.5

a. $\quad 8.08 \mathrm{~cm}$
b. $\quad 6.38 \mathrm{~cm}$
c. $\quad 4.68 \mathrm{~cm}$
d. 2.98 cm
e. $\quad 9.78 \mathrm{~cm}$
8. In an experiment, students measured the speed s (in meters per second) of a falling object t seconds after it was released. The results are shown in the table below. Use the regression capabilities of a graphing utility to find a linear model for the data. Round all numerical values in your answer to one decimal place.

t	0	1	2	3	4
s	0	13.0	21.4	31.2	41.4

a. $s=10.1 t+1.2$
b. $s=3.0 t-1.2$
c. $s=1.2 t+10.1$
d. $s=10.1 t+3.0$
e. $s=1.2 t-3.0$
9. In an experiment, students measured the speed s (in meters per second) of a falling object t seconds after it was released. The results are shown in the table below. Use the regression capabilities of a graphing utility to find a linear model for the data. Round all numerical values in your answer to one decimal place.

t	0	1	2	3	4
s	0	40	48.4	58.2	68.4

a.

d.

b.

e.

c.

10. In an experiment, students measured the speed s (in meters per second) of a falling object t seconds after it was released. The results are shown in the table below. Use the model $s=11.9 t+4.8$ to estimate the speed of the object after 1.5 seconds. Round your answer to two decimal places.

t	0	1	2	3	4
s	0	22.0	30.4	40.2	50.4

a. 21.05 meters/second
b. 20.95 meters/second
c. 24.25 meters/second
d. 23.55 meters/second
e. 22.65 meters/second
11. Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use the regression capabilities of a graphing utility to fit a quadratic model to the data. Round the numerical values in your answer to two decimal places, where applicable.

x	4	6	8	10	12
S	2422	5512	10,362	16,302	23,912

a. $\quad S=170.89 x^{2}-209.79 x+324$
b. $S=180.89 x^{2}-205.79 x+324$
c. $S=190.89 x^{2}+201.79 x+331$
d. $S=170.89 x^{2}-209.79 x+327$
e. $S=180.89 x^{2}+203.79 x-331$
12. Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use a graphing utility to plot the data and graph the quadratic model.

x	4	6	8	10	12
S	2370	4460	13,310	19,250	29,860

d.

b.

e.

c.

13. Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use the model $S=180.89 x^{2}-205.79 x+284$ to approximate the breaking strength when $x=2$. Round your answer to two decimal places.

x	4	6	8	10	12
S	2382	5472	10,322	16,262	23,872

a. $\quad 595.98$ pounds
b. $\quad 390.19$ pounds
c. $\quad 957.76$ pounds
d. 801.77 pounds
e. 751.97 pounds
14. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use the regression capabilities of a graphing utility to find a cubic model for the data. Round the numerical values in your answer to three decimal places, where applicable.

x	1	2	3	4	5	6
y	64	109	164	224	249	269

a. $y=-1.608 x^{3}-14.583 x^{2}+13.389 x-37$
b. $y=-1.706 x^{3}-14.583 x^{2}-16.389 x+34$
c. $y=1.806 x^{3}+11.583 x^{2}+16.389 x-41$
d. $y=-1.806 x^{3}+14.583 x^{2}+16.389 x+34$
e. $y=1.608 x^{3}+11.583 x^{2}-19.389 x+41$
15. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use a graphing utility to plot the data and graph the cubic model.

x	1	2	3	4	5	6
y	110	155	210	270	295	315

d.

b.

e.

c.

16. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use the model $y=-1.806 x^{3}+14.58 x^{2}+16.4 x+30$ to approximate the horsepower when the engine is running at 5500 revolutions per minute. Round your answer to two decimal places.

x	1	2	3	4	5	6
y	60	105	160	220	245	265

a. $\quad 260.77 \mathrm{hp}$
b. 262.73 hp
c. 262.36 hp
d. 261.38 hp
e. 261.91 hp

1.4 Fitting Models to Data
 Answer Section

1. ANS: A PTS: 1 DIF: Easy REF: Section 1.4

OBJ: Identify the most appropriate function for a scatter plot
2. ANS: D PTS: 1 DIF:

OBJ: Identify the most appropriate function for a scatter plot
3. ANS: E PTS: 1 DIF: Eas

OBJ: Identify the best linear model for given data
4. ANS: D PTS: 1 DIF:

OBJ: Evaluate linear models in applications
5. ANS: D PTS: 1 DIF: Easy REF: Section 1.4

OBJ: Write a linear model for data using the regression capabilities of a graphing utility
MSC: Application
6. ANS: D PTS: 1 DIF: Easy REF: Section 1.4

OBJ: Plot data points and the graph of a linear model MSC: Application
7. ANS: C PTS: 1 DIF: Easy REF: Section 1.4

OBJ: Evaluate linear models in applications MSC: Application
8. ANS: A PTS: 1 DIF: Easy REF: Section 1.4

OBJ: Write a linear model for data using the regression capabilities of a graphing utility
MSC: Application
9. ANS: C PTS: 1 DIF: Easy REF: Section 1.4

OBJ: Plot data points and the graph of a linear model MSC: Application
10. ANS: E PTS: 1 DIF: Easy REF: Section 1.4

OBJ: Evaluate linear models in applications MSC: Application
11. ANS: B PTS: 1 DIF: Med REF: Section 1.4

OBJ: Write a quadratic model for data using the regression capabilities of a graphing utility
MSC: Application
12. ANS: B PTS: 1 DIF: Med REF: Section 1.4

OBJ: Plot data points and the graph of a quadratic model MSC: Application
13. ANS: A PTS: 1 DIF: Med REF: Section 1.4

OBJ: Evaluate quadratic models in applications MSC: Application
14. ANS: D PTS: 1 DIF: Med REF: Section 1.4

OBJ: Evaluate cubic models in applications MSC: Application
15. ANS: D PTS: 1 DIF: Med

OBJ: Plot data points and the graph of a cubic model
16. ANS: A PTS: 1 DIF:

Med REF: Section 1.4
OBJ: Write a cubic model for data using the regression capabilities of a graphing utility
MSC: Application

1.5 Inverse Functions

Multiple Choice

Identify the choice that best completes the statement or answers the question.
_ 1. Match the graph of the function given below with the graph of its inverse function.

a.

d.

b.

e.

c.

\qquad 2. Match the graph of the function given below with the graph of its inverse function.

a.

d.

b.

e.

c.

3. Use the Horizontal Line Test to determine whether the following statement is true or false.

The function $f(x)=\frac{3}{19} x+3$ is one-to-one on its entire domain and therefore has an inverse function.
a. false
b. true
4. Use the Horizontal Line Test to determine whether the following statement is true or false.

The function $f(x)=14(x-15)+15$ is one-to-one on its entire domain and therefore has an inverse function.
a. true
b. false
5. True or False: The function $f(x)=\frac{1}{s-38}-2$ is one-to-one on its entire domain.
a. false
b. true

- 6. True or False: The function $f(x)=|x+10|-|x-10|$ is one-to-one on the domain $\overline{-10} \leq x \leq 10$.
a. false
b. true
- 7. Find $f^{-1}(x)$ if $f(x)=12 x-10$.
a. $\quad f^{-1}(x)=\ln (12 x+10)$
b. $f^{-1}(x)=\frac{1}{12 x-10}$
c. $f^{-1}(x)=\frac{1}{12} x+\frac{1}{10}$
d. $f^{-1}(x)=10 x-12$
e. $f^{-1}(x)=\frac{1}{12} x+\frac{5}{6}$
- 8. Find $f^{-1}(x)$ if
$f(x)=x^{7}$ a. $\quad f^{-1}(x)=\frac{1}{7} x^{-7}$
b. $f^{-1}(x)=x^{\frac{1}{7}}$
c. $f^{-1}(x)=\frac{1}{8} x^{8}$
d. $f^{-1}(x)=x^{-7}$
e. $f^{-1}(x)=7 x^{6}$
- 9. Find $f^{-1}(x)$ if $f(x)=x^{3}-4 \mathrm{a} \cdot \frac{1}{3}$

$$
f^{-1}(x)=x^{3}+\frac{1}{4}
$$

b. $f^{-1}(x)=\frac{1}{3}(x+4)^{-\frac{2}{3}}$
c. $f^{-1}(x)=x^{\frac{1}{3}}+4^{\frac{1}{3}}$
d. $f^{-1}(x)=(x+4)^{\frac{1}{3}}$
e. $f^{-1}(x)=\frac{1}{x^{3}-4}$
10. Find $f^{-1}(x)$ if
$f(x)=\frac{6 x^{2},}{}, x \geq \sqrt{f^{0} .}$.
$f^{-1}(x)=\sqrt{6 x}$
b. $f^{-1}(x)=\frac{1}{6 x^{2}}$
c. $f^{-1}(x)=\sqrt{\frac{6}{x}}$
d. $f^{-1}(x)=\frac{1}{6 \sqrt{x}}$
e. $f^{-1}(x)=\sqrt{\frac{x}{6}}$
-11. Find $f^{-1}(x)$ if $f(x)=\sqrt{13-x^{2}}, 0 \leq x \leq \sqrt{13}$.
a. $f^{-1}(x)=x+\sqrt{13}, 0 \leq x \leq \sqrt{13}$
b. $f^{-1}(x)=\left(13-x^{2}\right)^{2}, 0 \leq x \leq \sqrt{13}$
c. $f^{-1}(x)=\sqrt{13-x^{2}}, 0 \leq x \leq \sqrt{13}$
d. $f^{-1}(x)=\sqrt{x^{2}-13}, 0 \leq x \leq \sqrt{13}$
e. $f^{-1}(x)=\frac{1}{\sqrt{13-x^{2}}}, 0 \leq x \leq \sqrt{13}$

- 12. Find $f^{-1}(x)$ if
$f(x)=1=\frac{5}{8 x+9}(x)=\frac{2}{3}(8 x-9)^{5}$
b. $f^{-1}(x)=\frac{1}{3}\left(\left(\frac{x}{3}\right)^{5}+9\right)$
c. $f^{-1}(x)=\frac{1}{8}\left(\left(\frac{x}{3}\right)^{5}-9\right)$
d. $f^{-1}(x)=\frac{1}{8}\left(\left(\frac{x}{3}\right)^{5}+9\right)$
e. $f^{-1}(x)$ does not exist

13. Find $f^{-1}(x)$ if $f(x)=x^{\frac{7}{17}}$.
a. $f^{-1}(x)=\frac{17}{7}^{\frac{7}{17}}$
b. $f^{-1}(x)=x^{-\frac{7}{17}}$
c. $f^{-1}(x)=x^{119}$
d. $f^{-1}(x)=x^{-\frac{17}{7}}$
e. $f^{-1}(x)=x^{\frac{17}{7}}$
14. You need 50 pounds of two commodities costing $\$ 1.80$ and $\$ 2.40$ per pound. Find the inverse function of the cost function $y=1.80 x+2.40(50-x)$.
a. $\quad y=\frac{5}{3}(240-x)$ b.
$y=\frac{10}{3}(-120+x)$ c.
$y=\frac{5}{3}(-240-x)$
d.
$y=\frac{5}{3}(120-x)$
e. $y=\frac{10}{3}(120+x)$
15. You need 50 pounds of two commodities costing $\$ 1.60$ and $\$ 1.95$ per pound. Determine the number of pounds of the less expensive commodity purchased if the total cost $y=1.60 x+1.95(50-x)$ is $\$ 94$.
a. $\quad 10$ pounds
b. 17 pounds
c. 7 pounds
d. 5 pounds
e. 13 pounds
16. Use the functions $f(x)=x+2$ and $g(x)=4 x-7$ to find the function $\left(g^{-1} \circ f^{-1}\right)(x)$.
a. $\frac{x-5}{7}$
b. $4 x+5$
c. $4 x-1$
d. $\frac{x+5}{4}$
e. $\frac{x-1}{4}$
-17. Use the functions $f(x)=x+2$ and $g(x)=4 x-3$ to find the function $(f \circ g)^{-1}(x)$
a. $4 x-5$
b. $\frac{x-5}{4}$
c. $\frac{x+1}{4}$
d. $\frac{x-1}{3}$
e. $4 x+1$

- 18. Evaluate the expression $\arcsin \left(\frac{1}{2}\right)$ without using a calculator.
a. 0
b. $\frac{3 \pi}{2}$
c. $\frac{7 \pi}{2}$
d. $\frac{\pi}{6}$
e. $\frac{4 \pi}{5}$
_ 19. Evaluate the expression $\arccos \left(\frac{\sqrt{2}}{2}\right)$ without using a calculator.
a. $\frac{5 \pi}{4}$
b. $\frac{\pi}{6}$
c. $\frac{3 \pi}{2}$
d. $\frac{\pi}{4}$
e. $\frac{2 \pi}{3}$

20. Evaluate the expression $\cos \left(\arcsin \frac{3}{5}\right)$ without using a calculator.
a. $\frac{3}{5}$
b. $\frac{4}{5}$
c. 3
d. 5
e. 4
\qquad 21. Write the following expression in algebraic form.
$\sin (\arccos (2 x))$
a. $\sqrt{1-4 x^{2}}$
b. $1-2 x^{2}$
c. $1+2 x^{2}$
d. $1+4 x^{2}$
e. $\sqrt{1-2 x^{2}}$

_ 22. Write the following expression in algebraic form.

$\cos \left(\arcsin \left(2 x^{2}\right)\right)$
a. $\sqrt{1-4 x^{4}}$
b. $1+4 x^{4}$
c. $\sqrt{1-2 x^{2}}$
d. $1+2 x^{2}$
e. $1+2 x^{4}$
\qquad 23. Write the following expression in algebraic form.
$\tan \left(\operatorname{arcsec}\left(\frac{x}{8}\right)\right)$
a. $x^{2}-64$
b. $\frac{\sqrt{x^{2}-64}}{8}$
c. $1+64 x^{2}$
d. $\sqrt{x^{2}-8}$
e. $1+8 x^{2}$
24. Solve the following equation for x.

$$
\arcsin (7 x-\pi)=\frac{1}{10}
$$

a. $x=\frac{\pi+\sin \left(\frac{1}{10}\right)}{7}$
b.

$$
x=\frac{\cos \left(\pi+\frac{1}{10}\right)}{7}
$$

c. $\quad \underline{\csc \left(\pi+\frac{1}{10}\right)}$
d.

$$
x=\frac{\pi+\csc \left(\frac{1}{10}\right)}{7}
$$

e.

$$
x=\frac{\sin \left(\pi+\frac{1}{10}\right)}{7}
$$

\qquad 25. Solve the following equation for x.
$\arccos (10 x-\pi)=\frac{1}{2}$
a. $x=\frac{\sin \left(\pi+\frac{1}{2}\right)}{10}$
b. $\left(\frac{1}{2}\right.$

$$
x=\frac{\pi+\sec \left(\frac{1}{2}\right)}{10}
$$

c.

$$
x=\frac{\sec \left(\pi+\frac{1}{2}\right)}{10}
$$

d.

$$
x=\frac{\cos \left(\pi+\frac{1}{2}\right)}{10}
$$

e.

$$
x=\frac{\pi+\cos \left(\frac{1}{2}\right)}{10}
$$

1.5 Inverse Functions

Answer Section

1. ANS: A PTS: 1 DIF: OBJ: Identify the graph of the inverse of a function
2. ANS: C PTS: 1 DIF OBJ: Identify the graph of the inverse of a function
3. ANS: B PTS: 1 DIF

OBJ: Recognize invertible functions
4. ANS: A PTS: 1 DIF:

OBJ: Recognize invertible functions
5. ANS: B PTS: 1 DIF:

OBJ: Recognize invertible functions
6. ANS: B PTS:

OBJ: Recognize invertible functions
7. ANS: E PTS: 1 DIF:

OBJ: Construct the inverse of a function
8. ANS: B PTS: 1 DIF: Easy

OBJ: Construct the inverse of a function
9. ANS: D PTS: 1 DIF:

OBJ: Construct the inverse of a function
10. ANS: E PTS: 1 DIF:

OBJ: Construct the inverse of a function
11. ANS: C PTS: 1 DIF:

OBJ: Construct the inverse of a function
12. ANS: D PTS: 1 DIF:

OBJ: Construct the inverse of a function
13. ANS: E PTS: 1 DIF:

OBJ: Construct the inverse of a function
14. ANS: D PTS: 1 DIF:

OBJ: Construct the inverse of a function i 1 applications
15. ANS: A PTS: 1 DIF:

OBJ: Solve a linear equation in applicatio is
16. ANS: D PTS: 1 DIF:

OBJ: Construct the inverse of a composition of functions
17. ANS: C PTS: 1 DIF:

OBJ: Construct the inverse of a composition of functions
18. ANS: D PTS: 1 DIF:

OBJ: Evaluate an inverse trigonometric expression
19. ANS: D PTS: 1 DIF:

OBJ: Evaluate an inverse trigonometric expression
20. ANS: B PTS: 1 DIF: Med

OBJ: Evaluate an expression involving an inverse trigonometric expression
21. ANS: A PTS: 1 DIF: Med

OBJ: Convert an inverse trigonometric expression to an algebraic expression
22. ANS: A PTS: 1 DIF: Med

OBJ: Convert an inverse trigonometric expression to an algebraic expression

Easy REF: Section 1.5
MSC: Skill
Easy REF: Section 1.5
MSC: Skill
REF: Section 1.5
MSC: Application
REF: Section 1.5
MSC: Skill
REF: Section 1.5
MSC: Application
Easy REF: Section 1.5
MSC: Application
REF: Section 1.5
MSC: Skill
23. ANS: B PTS: 1 DIF: Med REF: Section 1.5

OBJ: Convert an inverse trigonometric expression to an algebraic expression
24. ANS: A PTS: 1 DIF: Med

OBJ: Solve an inverse trigonometric equation
25. ANS: E PTS: 1 DIF: Med

OBJ: Solve an inverse trigonometric equation

MSC: Skill
REF: Section 1.5
MSC: Skill
REF: Section 1.5
MSC: Skill

1.6 Exponential and Logarithmic Functions

Multiple Choice

Identify the choice that best completes the statement or answers the question.
_1. What is the domain of the function $f(x)=6 \ln (4 x)$?
a. $(0, \infty)$
b. $\left(\frac{1}{4} \infty\right)$
c. $(0,1)$
d. $(1, e)$
e. (e, ∞)
\qquad 2. What is the domain of the function $f(x)=4+\ln (x-6)$?
a. $(1, \infty)$
b. $(6, \infty)$
c. $(0, \infty)$
d. $(0,6)$
e. $(1,6)$
\qquad 3. Write the following expression as a logarithm of a single quantity.
$\ln x-4 \ln \left(x^{2}+1\right)$
a. $\ln \left(\frac{x}{\left(x^{2}+1\right)^{-4}}\right)$
b. $\ln \left(x-4\left(x^{2}+1\right)\right)$
c. $\ln \left(\frac{x}{4\left(x^{2}+1\right)}\right)$
d. $\ln \left(\frac{-4 x}{x^{2}+1}\right)$
e. $\ln \left(\frac{x}{\left(x^{2}+1\right)^{4}}\right)$
\qquad 4. Write the following expression as a logarithm of a single quantity.
$13 \ln x-12 \ln \left(x^{2}+16\right)$
a. $\ln \left(13 x-12\left(x^{2}+16\right)\right)$
b. $\ln \left(\frac{x^{13}}{\left(x^{2}+16\right)^{12}}\right)$
c. $\ln \left(x^{13}\left(x^{2}+16\right)^{12}\right)$
d.
$\ln \left(x^{13}-\left(x^{2}+16\right)^{12}\right)$
$\ln \left(\frac{x^{13}}{12\left(x^{2}+16\right)}\right)$
\qquad 5. Solve the following equation for x
$e^{\ln (13 x)}=3$
a. $x=\frac{\ln (3)}{\ln (13)}$
b. $x=\frac{3}{13}$
$\begin{array}{ll}\text { c. } & x=39 \\ \text { d. } & x=\frac{3}{\ln (13)}\end{array}$
e. $x=\frac{3}{e \ln (13)}$
\qquad 6. Solve the following equation for \bar{x}
$\ln (x-5)^{5}=3$
a. $x=8$
b. $x=e^{\sqrt[5]{3}}+5$
c. $x=\frac{3^{+5}}{\ln (5)^{5}}$
d. $x=e^{\frac{3}{5}}+5$
e. no solution
_ 7. Solve the following equation for π
$\ln x^{-10}=6$
a. $x=\sqrt[10]{\ln (6)}$
b. $x=\frac{6}{\ln (10)}$
c. $x=\sqrt[10]{e^{-6}}$
d. $x=\sqrt[10]{e^{6}}$
e. $x=\ln (10) \ln (6)$
\qquad 8. Solve the following equation for x
$-5+7 e^{3 x}=10$
a. $x=\frac{1}{3} \ln \frac{15}{7}$
b. $x=-\frac{1}{3} \ln \frac{15}{7}$
c. $x=\frac{15}{7 e^{3}}$
c.
d. $x=-\frac{1}{3} \ln \frac{50}{7}$.
e. $x=\frac{1}{3} \ln \frac{50}{7}$

1.6 Exponential and Logarithmic Functions Answer Section

1. ANS: A PTS: 1 DI

OBJ: Identify the domain of a logarithmic function
2. ANS: B PTS: 1 DIF:

OBJ: Identify the domain of a logarithmic function
3. ANS: E PTS: 1 DIF:

OBJ: Write a logarithmic expression as a single quantity
4. ANS: B PTS: 1 DIF:

OBJ: Write a logarithmic expression as a single quantity
5. ANS: B PTS: 1 DIF:

OBJ: Solve an exponential equation
6. ANS: D PTS: 1 DIF

OBJ: Solve a logarithmic equation
7. ANS: C PTS:

OBJ: Solve a logarithmic equation
8. ANS: A PTS:

OBJ: Solve an exponential equation

Med
Easy

Easy

Med

Easy

Med
Med

Med
1 DIF: -

REF: Section 1.6
MSC: Skill
REF: Section 1.6 MSC: Skill
REF: Section 1.6 MSC: Skill

2.1 A Preview of Calculus

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the distance traveled in 16 seconds by an object traveling at a constant velocity of 20 feet per second.
a. calculus, 320 ft
b. calculus, 340 ft
c. precalculus, 320 ft
d. calculus, 640 ft
e. precalculus, 640 ft
2. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the distance traveled in 20 seconds by an object moving with a velocity of $v(t)=8+6 \cos t$ feet per second.
a. calculus, 162.4485 ft
b. precalculus, 163.7985 ft
c. calculus, 165.4777 ft
d. precalculus, 165.4777 ft
e. precalculus, 162.4485 ft
3. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

A cyclist is riding on a path whose elevation is modeled by the function $f(x)=0.08\left(16 x-x^{2}\right)$ where x and $f(x)$ are measured in miles. Find the rate of change of elevation when $x=4$.

a. precalculus, 0.08
b. calculus, 0.2
c. calculus, 0.64
d. calculus, 0.08
e. precalculus, 0.2
4. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

A cyclist is riding on a path whose elevation is modeled by the function $f(x)=0.2 x$ where x and $f(x)$ are measured in miles. Find the rate of change of elevation when $x=5$.

$$
y=f(x)
$$

a. calculus, 2
b. precalculus, 0.2
c. calculus, 0.2
d. precalculus, 2
e. precalculus, 0.45
5. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the area of the shaded region bounded by the triangle with vertices $(0,0),(8,9),(17,0)$.

a. precalculus, 153
b. calculus , 229.5
c. precalculus , 76.5
d. precalculus, 229.5
e. calculus , 153
6. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the area of the shaded region.

a. calculus, 11
b. precalculus, 11
c. precalculus , 13
d. calculus , 16
e. precalculus , 16
7. Consider the function $f(x)=\sqrt{x}$ and the point $p(4,2)$ on the graph of f.

Graph f and the secant line passing through $P(4,2)$ and $Q(x, f(x))$ for $x=3$
a.

d.

b.

e.

c.

8. Consider the function $f(x)=\sqrt{x}$ and the point $P(81,9)$ on the graph of f. Find the slope of the secant line passing through $P(81,9)$ and $Q(x, f(x))$ for $x=1$. Round your answer to four decimal places.
a. $m=0.1000$
b. $\mathrm{m}=0.0122$
c. $\mathrm{m}=0.0122$
d. $\mathrm{m}=0.3133$
e. $\mathrm{m}=0.1000$
9. Consider the function $f(x)=\sqrt{x}$ and the point $P(9,3)$ on the graph of f. Estimate the slope m of the tangent line of f at $P(9,3)$. Round your answer to four decimal places.
a. $\mathrm{m}=0.1667$
b. $\mathrm{m}=0.0832$
c. $m=0.3800$
d. $m=0.0556$
e. $\mathrm{m}=0.0833$
\qquad 10. Consider the function $f(x)=6 x-x^{2}$ and the point $P(2,8)$ on the graph of f. Graph f and the secant line passing through $P(2,8)$ and $Q(x, f(x))$ for $x=3$.
a.

d.

b.

e.

c.

11. Consider the function $f(x)=11 x-x^{2}$ and the point $P(4,28)$ on the graph of f. Find the slope of the secant line passing through $P(4,28)$ and $Q(x, f(x))$ for $x=3$ Round your answer to one decimal place.
a. 3.5
b. 2.0
c. 3.0
d. 4.5
e. 9.0
12. Consider the function $f(x)=8 x-x^{2}$ and the point $P(3,15)$ on the graph of f. Estimate the slope of the tangent line of f at $P(3,15)$.
a. 10
b. 3
c. 8
d. 2
e. 9
\qquad 13. Use the rectangles in the following graph to approximate the area of the region bounded by $y=\cos x, y=0, x=-\frac{\pi}{2}$, and $x=\frac{\pi}{2}$.

a. 3.9082
b. 2.6055
c. 1.9541
d. 1.4656
e. 0.9770
14. Use the rectangles in the following graph to approximate the area of the region bounded by $y=\sin x, y=0, x=0$, and $x=\pi$.

a. 0.7850
b. 1.5700
c. 3.1400
d. 1.1775
e. 1.0519
15. Use the rectangles in the graph given below to approximate the area of the region bounded by $y=4 / x, y=0, x=1$, and $x=4$ Round your answer to three decimal places.

a. 2.481 units 2
b. $\quad 6.371$ units 2
c. $\quad 3.585$ units 2
d. $\quad 6.872$ units 2
e. $\quad 6.903$ units 2
16. Consider the length of the graph of $f(x)=5 / x$ from $(1,5)$ to $(5,1)$

Approximate the length of the curve by finding the sum of the lengths of four line segments, as shown in following figure. Round your answer to two decimal places.

a. $\quad 6.11$
b. 8.12
c. 5.66
d. 8.49
e. 7.11

2.1 A Preview of Calculus
 Answer Section

1. ANS: C PTS: 1 DIF: Easy OBJ: Recognize problems requiring precalculus and find the solution 2. ANS: C PTS: 1 DIF: Med OBJ: Recognize problems requiring calculus and estimate solutions 3. ANS: C PTS: 1 DIF: Med OBJ: Recognize problems requiring calculus and estimate solutions 4. ANS: B PTS: 1 DIF: Easy OBJ: Recognize problems requiring precalculus and find the solution 5. ANS: C PTS: 1 DIF: Easy OBJ: Recognize problems requiring precalculus and find the solution 6. ANS: A PTS: 1 DIF: Med OBJ: Recognize problems requiring calculus and estimate solution
2. ANS: D PTS: 1 DIF: Easy OBJ: Graph a function and the secant line passing through given points 8. ANS: A PTS: 1 DIF: Easy OBJ: Calculate the slope of a secant line passing through given points 9. ANS: A PTS: 1 DIF: Med OBJ: Estimate the slope of a tangent line
3. ANS: D PTS: 1 DIF: Easy OBJ: Graph a function and the secant line passing through given points 11. ANS: B PTS: 1 DIF: Easy OBJ: Calculate the slope of a secant line passing through given points
4. ANS: D PTS: 1 DIF: Med OBJ: Calculate the slope of secant line passing through the given points 13. ANS: C PTS: 1 DIF: Med OBJ: Estimate the area of a region using rectangles
5. ANS: B PTS: 1 DIF: Med OBJ: Estimate the area of a region using rectangles
6. ANS: B PTS: 1 DIF: Med OBJ: Estimate the area of a region using rectangles
7. ANS:
A PTS:
1 DIF:
Med OBJ: Estimate the length of the curve using a piecewise linear function

REF: Section 2.1
MSC: Skill
REF: Section 2.1
MSC: : kill
REF: Section 2.1
MSC: : kill
REF: Section 2.1
MSC: ; kill
REF: Section 2.1
MSC: Skill
REF: Section 2.1
MSC: Skill
REF: Section 2.1
MSC: Skill

2.2 Finding Limits Graphically and Numerically

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Complete the table and use the result to estimate the limit.
$\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-16 x+39}$

x	2.9	2.99	2.999	3.001	3.01	3.1
$f(x)$						

a. 0.525000
b. 0.275000
c. -0.100000
d. 0.400000
e. -0.475000
2. Complete the table and use the result to estimate the limit.
$\lim _{x \rightarrow 7} \frac{\frac{1}{x-3}-\frac{1}{4}}{x-7}$

x	6.9	6.99	6.999	7.001	7.01	7.1
$f(x)$						

a. -0.062500
b. 0.067500
c. -0.192500
d. 0.047500
e. -0.172500
\qquad 3. Complete the table and use the result to estimate the limit.
$\lim _{x \rightarrow-10} \frac{\sqrt{-6 x-54}-\sqrt{6}}{x+10}$

x	-10.1	-10.01	-10.001	-9.999	-9.99	-9.9
$f(x)$						

a. 0.974745
b. -1.099745
c. -1.224745
d. 1.058078
e. 1.224745
\qquad 4. Complete the table and use the result to estimate the limit.
$\lim _{x \rightarrow 0} \frac{\sin ^{3} x}{x^{3}}$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$						

a. -0.5
b. 0
c. 1
d. 0.5
e. -1
\qquad 5. Complete the table and use the result to estimate the limit.
$\lim _{x \rightarrow 0} \frac{\cos (3 x)-1}{3 x}$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$						

a. -1
b. -0.5
c. 0
d. 0.5
e. 1
\qquad 6. Determine the following limit. (Hint: Use the graph to calculate the limit.)

$$
\lim _{x \rightarrow 1}(5-x)
$$

a. 6
b. 1
c. 5
d. 4
e. does not exist
7. Determine the following limit. (Hint: Use the graph to calculate the limit.)
$\lim _{x \rightarrow 1}\left(x^{2}+4\right)$

a. 5
b. 1
c. 0
d. 4
e. does not exist

- 8. Let $f(x)= \begin{cases}4-x, & x \neq 1 \\ 0, & x=1\end{cases}$

Determine the following limit. (Hint: Use the graph to calculate the limit.)

$$
\lim _{x \rightarrow 1} f(x)
$$

a. 5
b. 4
c. 3
d. 0
e. does not exist

- 9. Let $f(x)=\left\{\begin{array}{ll}x^{2}+5, & x \neq 1 \\ 1, & x=1\end{array}\right.$.

Determine the following limit. (Hint: Use the graph to calculate the limit.)
$\lim f(x)$
$x \rightarrow 1$

a. 6
b. 25
c. 1
d. 5
e. does not exist.
\qquad 10. Determine the following limit. (Hint: Use the graph to calculate the limit.)

$$
\lim _{x \rightarrow 2} \frac{1}{x-2}
$$

a. -2
b. 0
c. -4
d. 2
e. does not exist
11. A ring has a inner circumference of 10 centimeters. What is the radius of the ring? Round your answer to four decimal places.
a. 0.7958 centimeter
b. 3.1831 centimeters
c. 1.5915 centimeters
d. 1.7841 centimeters
e. 10.1321 centimeters
12. A ring has a inner circumference of 9 centimeters. If the ring's inner circumference can vary between 8 centimeters and 10 centimeters how can the radius vary? Round your answer to five decimal places.
a. Radius can vary between 6.48456 centimeters and 10.13212 centimeters.
b. Radius can vary between 1.59577 centimeters and 1.78412 centimeters.
c. Radius can vary between 1.27324 centimeters and 1.59155 centimeters.
d. Radius can vary between 2.54648 centimeters and 3.18310 centimeters.
e. Radius can vary between 0.43239 centimeter and 2.43239 centimeters.
13. A sphere has a volume of 4.76 cubic inches. What is the radius of the sphere? Round your answer to four decimal places.
a. $\quad 1.0435$ inches
b. 1.6565 inches
c. $\quad 1.0660$ inches
d. 2.1320 inches
e. 1.9335 inches
14. A sphere has a volume of 5.2 cubic inches. If the sphere's volume can vary between 4.4 cubic inches and 6.1 cubic inches, how can the radius vary? Round your answer to five decimal places.
a. Radius can vary between 1.01653 inches and 1.13348 inches.
b. Radius can vary between 1.61365 inches and 1.79929 inches.
c. Radius can vary between 0.27474 inch and 1.97474 inches.
d. Radius can vary between 1.85897 inches and 2.18882 inches.
e. Radius can vary between 1.02490 inches and 1.20676 inches.

2.2 Finding Limits Graphically and Numerically Answer Section

1. ANS: C PTS: 1 DIF: Med

OBJ: Estimate a limit from a table of values
2. ANS: A PTS: 1 DIF: Med

OBJ: Estimate a limit from a table of values
3. ANS: C PTS: 1 DIF: Med

OBJ: Estimate a limit from a table of values
4. ANS: C PTS: 1 DIF: Med

OBJ: Estimate a limit from a table of values
5. ANS: C PTS: 1 DIF: Med

OBJ: Estimate a limit from a table of values
6. ANS: D PTS: 1 DIF: Easy OBJ: Estimate the limit of a function from its graph
7. ANS: A PTS: 1 DIF: OBJ: Estimate the limit of a function from its graph
8. ANS: C PTS: 1 DIF: OBJ: Estimate the limit of a function from its graph
9. ANS: A PTS: 1 DIF:

OBJ: Estimate the limit of a function from its graph
10. ANS: E PTS: 1 DIF:

OBJ: Estimate the limit of a function from its graph
11. ANS: C PTS: 1 DIF:

OBJ: Solve a linear equation in applications
12. ANS: C PTS: 1 DIF:

OBJ: Solve a linear equation in applications
13. ANS: A PTS: 1 DIF:

OBJ: Solve a cubic equation in applications
14. ANS: A PTS: 1 DIF:

OBJ: Solve a linear equation in applications

Med
Med

Med

Med

Med

Easy

Med

Easy

REF: Section 2.1
MSC: Skill
REF: Section 2.1
MSC: Application

2.3 Evaluating Limits Analytically

Multiple Choice

Identify the choice that best completes the statement or answers the question.
_ 1. Find the limit.

$$
\lim _{x \rightarrow-4} 9 x^{2}+36 x
$$

a. 108
b. -108
c. 288
d. -288
e. 3
\qquad 2. Find the limit.
$\lim _{x \rightarrow 6} \frac{x}{x^{2}+8}$
a. $\frac{1}{14}$
b. $\frac{1}{10}$
c. $\frac{3}{22}$
d. $\frac{3}{7}$
e. $\underline{3}$

10
\qquad 3. Find the limit.

$$
\lim _{x \rightarrow 4} \frac{\sqrt{x+5}}{x-1}
$$

a. 3
b. -1
c. -3
d. 3
e. 3
\qquad 4. Find the limit.
$\lim \sin x$
$x \rightarrow \frac{3 \pi}{4}$
a. $\frac{\sqrt{3}}{2}$
b. $-\frac{\sqrt{2}}{2}$
c. $-\frac{1}{2}$
d. $\frac{\sqrt{2}}{2}$
e. does not exist
\qquad 5. Find the limit.
$\lim _{x \rightarrow 2} \cos \frac{\pi x}{3}$
a. $\frac{1}{2}$
b. $-\frac{1}{2}$
c. $-\frac{\sqrt{3}}{2}$
d. $\frac{\sqrt{3}}{2}$
e. 0
\qquad 6. Find the limit.
$\lim _{x \rightarrow 5} \cos \left(\frac{\pi x}{6}\right)$
a. $-\frac{1}{2}$
b.
c. $\frac{1}{2}$
d. $-\frac{\sqrt{3}}{2}$
e. $\frac{\sqrt{3}}{2}$
\qquad 7. Find the lmit.
$\lim _{x \rightarrow \pi} \tan \left(\frac{x}{3}\right)$
a. $\frac{-1}{\sqrt{3}}$
b. $\sqrt{3}$
c. $-\sqrt{3}$
d. $\frac{1}{\sqrt{3}}$
e. does not exixt

- 8. Let $f(x)=-x^{2}-5$ and $g(x)=2 x$. Find the limit.
$\lim _{x \rightarrow-2} g(f(x))$
a. -18
b. 25
c. 21
d. 8
e. 9
- 9. Let $f(x)=4 x-2$ and $g(x)=x^{3}$. Find the limit.
$\lim _{x \rightarrow 1} g(f(x))$
a. 2
b. 1
c. 8
d. -8
e. -3
- 10. Let $f(x)=3+2 x^{2}$ and $g(x)=\sqrt{x+3}$. Find the limit.
$\lim _{x \rightarrow 2} g(f(x))$
a. $\sqrt{6}$
b. $\sqrt{14}$
c. $\sqrt{11}$
d. $\sqrt{10}$
e. $\sqrt{2}$

11. Let $f(x)=x^{2}-x-5$ and $g(x)=\sqrt[3]{x+14}$. Find the limits.
$\lim _{x \rightarrow 3} g(f(x))$
a. $-\sqrt[3]{1}$
b. $\sqrt[3]{29}$
c. $-\sqrt[3]{15}$
d. $\sqrt[3]{15}$
e. $\sqrt[3]{1}$
12. Suppose that $\lim _{x \rightarrow c} f(x)=-13 \lim _{\text {and } x \rightarrow c} g(x)=-10$. Find the following limit.
$\lim _{x \rightarrow c}[f(x)+g(x)]$
a. 3
b. -10
c. -3
d. -23
e. 130
\qquad 13. Suppose that $\lim _{x \rightarrow c} f(x)=-13$ and $\lim _{x \rightarrow c} g(x)=-10$. Find the following limit. $\lim _{x \rightarrow c}[f(x) g(x)]$
a. 10
b. -5
c. -25
d. -15
e. 150
13. Suppose that $\lim _{x \rightarrow c} f(x)=7 \lim _{x \rightarrow c} g(x)=3$. Find the following limit.
$\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$
a. 21
b. $\frac{3}{7}$
c. -21
d. $\frac{7}{3}$
e. does not exist
14. Suppose that $\lim _{x \rightarrow c} f(x)=-11$ and $\lim _{x \rightarrow c} g(x)=-3$. Find the following limit.
$\lim _{x \rightarrow c}[f(x)-g(x)]$
a. -11
b. -8
c. 33
d. -14
e. 3
15. Suppose that $\lim _{x \rightarrow c} f(x)=5$. Find the following limit.
$\lim _{x \rightarrow c}\left[f(x)^{3}\right]$
a. 2
b. 125
c. 8
d. 0
e. 15
-17. Suppose that $\lim _{x \rightarrow c} f(x)=-5$. Find the following limit.
$\lim _{x \rightarrow c} 3 f(x)$
a. -5
b. 15
c. -15
d. $3 c$
e. 3
16. Find the following limit (if it exists). Write a simpler function that agrees with the given function at all but one point.
$\lim _{x \rightarrow-4} \frac{8 x^{2}+40 x+32}{x+4}$
a. 40
b. -24
c. 24
d. -40
e. does not exist
17. Find the limit (if it exists).
$\lim _{x \rightarrow-8} \frac{x+8}{x^{2}-64}$
a. $-\frac{1}{16}$
b. $-\frac{1}{32}$
c. -32
d. -8
e. $\frac{1}{16}$
_ 20. Find the limit (if it exists).
$\lim _{x \rightarrow 5} \frac{\sqrt{x+4}-3}{x-5}$
a. 6
b. 1
c. 1
d. $\frac{1}{6}$
e. Limit does not exist.

\qquad
 21. Find the limit (if it exists).

$\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-9(x+\Delta x)+2-\left(x^{2}-9 x+2\right)}{\Delta x}$
a. $\frac{1}{3} x^{3}-\frac{9}{2} x^{2}+2 x$
b. $2 x-9$
c. $x^{3}-9 x^{2}+2 x$
d. $x^{2}-9 x+2$
e. does not exist
\qquad 22. Determine the limit (if it exists).
$\lim _{x \rightarrow 0} \frac{12(1-\cos x)}{x^{2}}$
a. 6
b. 48
c. 10
d. 24
e. does not exist
_ 23. Determine the limit (if it exists).
$\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{2 x^{8}}$
a. 8
b. 1
c. 1
d. 2
e. does not exist
\qquad 24. Determine the limit (if it exists).
$\lim _{x \rightarrow 0} \frac{\sin ^{4} x}{x^{3}}$
a. 1
b. 0
c. 1
d. ∞
e. does not exist

- 25. Find $\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ where $f(x)=4 x-2$.
a. 1
b. 4
c. -3
d. 0
e. Limit does not exist.

2.3 Evaluating Limits Analytically Answer Section

1. ANS: E PTS:

OBJ: Evaluate a limit using properties of limits
2. ANS: C PTS: 1

OBJ: Evaluate a limit using properties of limits
3. ANS: D PTS: 1

OBJ: Evaluate a limit using properties of limits
4. ANS: D PTS: 1

DIF: \quad Med
OBJ: Evaluate a limit using properties of limits
5. ANS: B PTS: 1

DIF: Easy OBJ: Evaluate a limit using properties of limits 6. ANS: D PTS: 1

DIF:
Med OBJ: Evaluate a limit using properties of limits
7. ANS: B PTS: 1 DIF: Med

OBJ: Evaluate the limit of the function
8. ANS: A PTS: 1 DIF: Med

OBJ: Evaluate the limit of composite functions
9. ANS: C PTS: 1 OBJ: Evaluate the limit of composite functions 10. ANS: B PTS: 1

DIF
DIF:
OBJ: Evaluate the limit of composite functions
11. ANS: D PTS: 1

DIF:
Med
OBJ: Evaluate the limit of composite functions
12. ANS: D PTS: 1 DIF: Med

OBJ: Evaluate the limit of a function using properties of limits
13. ANS: E PTS: 1 DIF: Med

OBJ: Evaluate the limit of a function using properties of limits
14. ANS: D PTS: 1 DIF:

OBJ: Evaluate the limit of a function using properties of limits
15. ANS: B PTS: 1 DIF:

OBJ: Evaluate the limit of a function using properties of limits
16. ANS: B PTS: 1 DIF: OBJ: Evaluate the limit of a function using properties of limits 17. ANS: C PTS: 1 DIF: OBJ: Evaluate the limit of a function using properties of limits
18. ANS:

B PTS:
1 DIF:
Med
REF: Section 2.3
MSC: Skill

REF: Section 2.3
MSC: Skill
REF: Section 2.3
MSC: Skill
REF: Section 2.3
MSC: Skill
REF: Section 2.3
MSC: Skill
Med REF: Section 2.3
MSC: Skill
Med

OBJ: Evaluate the limit of the function and simplify it to an identical function except at the discontinuity point

MSC: Skill
19. ANS: A PTS: 1 OBJ: Evaluate the limit of a DIF: OBJ: Evaluate the limit of a function analytically function analytically
20. ANS: D PTS: 1

OBJ: Evaluate the limit of a function analytically
21. ANS: B PTS: 1

OBJ: Evaluate the limit of a function analytically
22. ANS: A PTS: 1

		EF: MSC:	Section 2.3
DIF:	Med	REF: MSC:	Skill
DIF:	Med	REF: MSC:	Section 2.3
DIF:	Med	REF: MSC:	Skill
			Section 2.3
			Skill
			Section 2.3
			Skill

23. ANS: E PTS: 1 DIF: Med REF: Section 2.3

OBJ: Evaluate the limit of a function analytically
24. ANS: B PTS: 1 DIF:

OBJ: Evaluate the limit of a function analytically
25. ANS: B PTS: 1 DIF:

OBJ: Evaluate the limit of a difference quotient

Med

Med
Med

MSC: Skill
REF: Section 2.3
MSC: Skill
REF: Section 2.3
MSC: Skill

2.4 Continuity and One-Sided Limits

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Use the graph as shown to determine the following limits, and discuss the continuity of the function at $x=3$.
(i) $\lim _{x \rightarrow 3^{+}} f(x) \quad$ (ii) $\lim _{x \rightarrow 3^{-}} f(x)$ (iii) $\lim _{x \rightarrow 3} f(x)$

a. $1,1,1$, not continuous
b. $2,2,2$, continuous
c. $4,4,4$, not continuous
d. $2,2,2$, not continuous
e. $1,1,1$, continuous
2. Use the graph as shown to determine the following limits, and discuss the continuity of the function at $x=-4$.
(i) $\lim _{x \rightarrow-4^{+}} f(x) \quad \lim _{\text {(ii) }} f(x) \lim _{x \rightarrow-4^{-}} f($ (iii) $x \rightarrow-4$

a. 3,3,3, continuous
b. 2,2,2, not continuous
c. $3,3,3$, not continuous
d. $-4,-4,-4$, continuous
e. 2,2,2, continuous
\qquad 3. Use the graph to determine the following limits, and discuss the continuity of the function at $x=-2$.
(i) $\lim _{x \rightarrow-3^{+}} f(x) \quad \lim _{\text {(ii) }} f(x) \quad \lim _{x \rightarrow-3^{-}} f\left(\right.$ (iii) $x \rightarrow-3^{-}$

a. 1, -1 , does not exist, not continuous
b. 1, 0, does not exist, not continuous
c. 0,1 , does not exist, not continuous
d. $-3,0$, does not exist, not continuous
e. $0,1,0$, continuous
3. Find the limit (if it exists).
$\lim _{x \rightarrow 11^{+}} \frac{11-x}{x^{2}-121}$
a. $\frac{1}{22}$
b. 3
c. Limit does not exist.
d. $-\frac{1}{22}$
e. $\frac{1}{242}$
\qquad 5. Find the limit (if it exists).
$\lim _{x \rightarrow 36^{-}} \frac{\sqrt{x}-6}{x-36}$
a. 3
b. $-\frac{1}{12}$
c. $\frac{1}{72}$
d. $\frac{1}{12}$
e. Limit does not exist.
\qquad 6. Find the limit (if it exists).
$\lim _{x \rightarrow 1^{-}} f(x)$, where $f(x)= \begin{cases}x^{3}+10, & x<1 \\ x+10, & x \geq 1\end{cases}$
a. Limit does not exist.
b. 3
c. 10
d. 10
e. 30

- 7. Find the limit (if it exists). Note that $f(x)=[|x|]$ represents the greatest integer function.
$\lim _{x \rightarrow-6^{+}}(-3[|x|]-8)$
a. 10
b. -12
c. 10
d. -12
e. does not exist
\qquad 8. Find the limit (if it exists). Note that $f(x)=[|x|]$ represents the greatest integer function.

$$
\lim _{x \rightarrow 5^{+}}(2 x-[|x|])
$$

a. 3
b. Limit does not exist.
c. 3
d. 3
e. 3

- 9. Discuss the continuity of the function $f(x)=\frac{x^{2}-4}{x-2}$.

a. $f(x)$ is discontinuous at $x=-2$.
b. $f(x)$ is discontinuous at $x=-2,2$.
c. $f(x)$ is discontinuous at $x=2$.
d. $f(x)$ is continuous for all real x.
e. $f(x)$ is continuous at $x=4$.

10. Find the x-values (if any) at which the function $f(x)=13 x^{2}-15 x-15$ is not continuous. Which of the discontinuities are removable?
a. $x=4$, removable
b. $x=0$, removable
c. $x=\frac{15}{26}$, not removable.
d. continuous everywhere
e. $x=\frac{15}{26}$, removable.
11. Find the x-values (if any) at which

$$
f(x)=\frac{x}{x^{2}-2 x} \text { is notcontinuous. }
$$

a.
b. $f(x)$ is not continuous at $x=0$ and $f(x)$ has a removable discontinuity at $x=0$.
c. $f(x)$ is not continuous at $x=0,2$ and both the discontinuities are nonremovable.
e. $f(x)$ is not continuous at $x=2$ and $f(x)$ has a removable discontinuity at $x=2$.
$f(x)$ is not continuous at $x=0,2$ and $f(x)$ has a removable discontinuity at $x=0$.
$f(x)$ is continuous for all real x.
12. Find the x-values (if any) at which the function $f(x)=\frac{x}{x^{2}-100}$ is not continuous.

Which of the discontinuities are removable?
a. 10 and -10 , removable
b. discontinuous everywhere
c. continuous everywhere
d. 10 and -10 , not removable
e. 0 , removable

- 13. Find the x-values (if any) at which the function $f(x)=\frac{x+2}{x^{2}+6 x+8}$ is not continuous. Which of the discontinuities are removable?
a. no points of discontinuity
b. $x=-2$ (not removable), $x=-4$ (removable)
c. $x=-2$ (removable), $x=-4$ (not removable)
d. no points of continuity
e. $x=-2$ (not removable), $x=-4$ (not removable)
- 14. Find the x-values (if any) at which $f(x)=\frac{|x-3|}{x-3}$ is notcontinuous.
a. $f(x)$ is not continuous at $x=3$ and the discontinuity is nonremovable.
b. $f(x)$ is not continuous at $x=0$ and the discontinuity is removable.
c. $f(x)$ is continuous for all real x.
d. $f(x)$ is not continuous at $x=3$ and the discontinuity is removable.
e. $f(x)$ is not continuous at $x=0,-3$ and $x=0$ is a removable discontinuity.
\qquad 15. Find the constant a such that the function
$f(x)=\left\{\begin{array}{cc}-4 \cdot \frac{\sin x}{x}, & x<0 \\ a+7 x, & x \geq 0\end{array}\right.$
is continuous on the entire real line.
a. 1
b. -7
c. 7
d. 7
e. -7
\qquad 16. Find the constant a such that the function
$f(x)= \begin{cases}6, & x \leq-5 \\ a x+b, & -5<x<1 \\ -6, & x \geq 1\end{cases}$
is continuous on the entire real line.
a. $\quad a=2, b=0$
b. $a=2, b=-4$
c. $a=-2, b=-4$
d. $a=-2, b=4$
e. $a=2, b=0$
\qquad 17. Find the value of c guaranteed by the Intermediate Value Theorem.
$f(x)=x^{2}-2 x+8,[2,6], f(c)=11$
a. 7
b. 7
c. 7
d. 7
e. 7
_ 18. Find the value of c guaranteed by the Intermediate Value Theorem.
$f(x)=\frac{x^{2}-5 x}{x-3},\left[\frac{9}{2}, 18\right], f(c)=6$
a. 11
b. 3
c. 3
d. 3
e. 11

19. A long distance phone service charges $\$ 0.35$ for the first 11 minutes and $\$ 0.1$ for each additional minute or fraction thereof. Use the greatest integer function to write the cost C of a call in terms of time t (in minutes).
a.
$C=\left\{\begin{array}{cc}0.35 & 0<t \leq 10 \\ 0.35+0.1[|t-10|] & t>10, t \text { is not an integer } \\ 0.35+0.1(t-9) & t>10, t \text { is an integer }\end{array}\right.$
b. $C=\left\{\begin{array}{cc}0.35 & 0<t \leq 10 \\ 0.35+0.1(t-10) & t>10\end{array}\right.$
$C=\left\{\begin{array}{cc}0.35 & 0<t \leq 10 \\ 0.35+0.1[|t-9|] & t>10\end{array}\right.$
d.

$$
C=\left\{\begin{array}{cc}
0.35 & 0<t \leq 10 \\
0.35+0.1[|t-10|] & t>10
\end{array}\right.
$$

$$
\begin{array}{lc}
\text { e. } \\
\hline
\end{array}=\left\{\begin{array}{cc}
0.35 & 0<t \leq 10 \\
0.35+0.1[|t-9|] & t>10, t \text { is not an integer } \\
0.35+0.1(t-10) & t>10, t \text { is an integer }
\end{array}\right.
$$

- 20. Find all values of c such that f is continuous on $(-\infty, \infty)$.
$f(x)= \begin{cases}4-x^{2}, & x \leq c \\ x, & x>c\end{cases}$
a. $c=3$
b. $c=3$
$\frac{-1+\sqrt{17}}{2}$
d. $\frac{1+\sqrt{17}}{2}, \frac{1-\sqrt{17}}{2}$
e. $\frac{-1+\sqrt{17}}{2}, \frac{-1-\sqrt{17}}{2}$

2.4 Continuity and One-Sided Limits

Answer Section

1. ANS: A PTS: 1 DIF: Med REF: Section 2.4

OBJ: Estimate a limit and points of discontinuity from a graph
Med OBJ: Estimate a limit and points of discontinuity from a graph 3. ANS: C PTS: 1 DIF: Med OBJ: Estimate a limit and points of discontinuity from a graph 4. ANS: D PTS: 1 DIF: Easy

OBJ: Evaluate one-sided limits
5. ANS: D PTS: 1 DIF: Med

OBJ: Evaluate one-sided limits
6. ANS: D PTS: 1 DIF: Med

OBJ: Evaluate one-sided limits
7. ANS: A PTS: 1 DIF: Med

OBJ: Evaluate one-sided limits
8. ANS: C PTS: 1 DIF: Med OBJ: Evaluate one-sided limits
9. ANS: C PTS: 1 DIF:

OBJ: Identify the discontinuities of a function if any exist
10. ANS: D PTS: 1 DIF:

OBJ: Identify the removable discontinuities of a function
11. ANS: D PTS: 1 DIF:

OBJ: Identify the removable discontinuities of a function
12. ANS: D PTS: 1 DIF:

OBJ: Identify the removable discontinuities of a function
13. ANS: C PTS: 1 DIF:

OBJ: Identify the removable discontinuities of a function
14. ANS: A PTS: 1 DIF:

OBJ: Identify the removable discontinuities of a function
15. ANS: E PTS: 1 DIF:

OBJ: Identify the value of a parameter to ensure a function is continuous
16. ANS: C PTS: 1 DIF: Med OBJ: Identify the value of a parameter to ensure a function is continuous
17. ANS: B PTS: 1 DIF: Easy REF: Section 2.4

OBJ: Identify the value of c guaranteed by the Intermediate Value Theorem MSC: Skill
18. ANS: D PTS: 1 DIF: Med REF: Section 2.4

OBJ: Identify the value of c guaranteed by the Intermediate Value Theorem MSC: Skill
19. ANS: E PTS: 1 DIF: Med REF: Section 2.4

OBJ: Create functions in applications
20. ANS: E PTS: 1 DIF: Med REF: Section 2.4

OBJ: Identify the value of a parameter to ensure a function is continuous MSC: Skill

2.5 Infinite Limits

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Determine whether $f(x)=\frac{x^{10}}{x^{2}-9}$ approaches or $^{-\infty}$ as x approaches ${ }^{-3}$ from the left and from the right by completing the tables below.

	-3.5	-3.1	-3.01	-3.001
$f^{x}(x)$				

x	-2.999	-2.99	-2.9	-2.5
$f(x)$				

a. $\quad \lim f(x)=-\infty, \quad \lim f(x)=\infty$
$x \rightarrow-3^{-} \quad x \rightarrow-3^{+}$
b. $\quad \lim f(x)=\infty, \quad \lim f(x)=-\infty$

$$
x \rightarrow-3^{-} \quad x \rightarrow-3^{+}
$$

c. $\quad \lim f(x)=\infty, \quad \lim f(x)=\infty$
$x \rightarrow-3^{-} \quad x \rightarrow-3^{+}$
$\lim f(x)=-\infty, \quad \lim f(x)=-\infty$
d. $x \rightarrow-3^{-} \quad x \rightarrow-3^{+}$
_ 2. Find all the vertical asymptotes (if any) of the graph of the function $f(x)=\frac{5}{(x-3)^{2}}$.
a. $x=-2$
b. $x=2$
c. $x=3,-3$
d. $x=2$
e. no vertical asymptotes
3. Find the vertical asymptotes (if any) of the function $f(x)=\frac{x^{2}-4}{x^{2}+3 x+2}$.
a. $x=2$
b. $x=-2$
c. $x=2$
d. $x=-2$
e. $x=-2$
_ 4. Find all the vertical asymptotes (if any) of the graph of the function $f(x)=\frac{1+x}{x^{2}(1-x)}$.
a. $\quad x=-1$
b. $x=1$
c. $x=1$
d. $x=1, x=0$
e. no vertical asymptotes
5. Find all the vertical asymptotes (if any) of the graph of the function $f(x)=\frac{x^{3}+8}{x+2}$.
a. $x=-1$
b. $x=1$
c. $x=1$
d. $x=2,-2$
e. no vertical asymptotes

- 6. Find all vertical asymptotes (if any) of the function $f(x)=\frac{x^{2}+4 x+3}{x^{3}-4 x^{2}-x+4}$.
a. $x=4,1$
b. $x=4,1,-1$
c. $x=-4,-1$
d. $x=1$
e. $x=-1$
- 7. Find the vertical asymptotes (if any) of the function $f(x)=\tan (15 x)$.
a. $\quad x=\frac{k}{15} \pi(k=0, \pm 1, \pm 2, \ldots)$
b. $x=\frac{2 k+1}{30} \pi(k=0, \pm 1, \pm 2, \ldots)$
c. $x=\frac{2 k}{15} \pi(k=0, \pm 1, \pm 2, \ldots)$
d. $x=\frac{2 k+1}{15} \pi(k=0, \pm 1, \pm 2, \ldots)$
e. no vertical asymptotes
\qquad 8. Find the limit.
$\lim _{x \rightarrow 14^{+}} \frac{x-3}{x-14}$
a. 1
b. $-\infty$
c. 1
d. ∞
e. -1
\qquad 9. Find the limit.
$\lim _{x \rightarrow-10} \frac{x^{2}+10 x}{\left(x^{2}+100\right)(x+10)}$
a. $\frac{1}{22}$
b. $-\frac{1}{20}$
c. 20
d. -12
e. -20
\qquad 10. Find the limit.
$\lim _{x \rightarrow 0^{-}}\left(x^{2}-\frac{1}{x}\right)$
a. 1
b. 1
c. -1
d. $-\infty$
e. ∞
_11. Find the following limit if it exists: $x \rightarrow 3^{+} \quad \lim ^{\ln (x-3)}$. Use ${ }^{ \pm \infty}$ when appropriate.
a. ∞
b. 1
c. 1
d. $-\infty$
e. does not exist.
\qquad 12. Find the limit (if it exists).
$\lim x \tan \pi x$
$x \rightarrow \frac{1}{2}$
a. $-\infty$
b. $\frac{1}{2}$
c. 3
d. ∞
e. Limit does not exist
\qquad 13. Use a graphing utility to graph the function $f(x)=\frac{x^{2}-2 x+4}{x^{3}+8}$ and determine the $\lim f(x)$
one-sided limit $x \rightarrow-2^{+}$
a. $-\infty$
b. ∞
c. 0
d. 12
e. 8
\qquad 14. Use a graphing utility to graph the function $f(x)=\csc \frac{\pi x}{2}$ and determine the following one-sided limit.

$$
\lim _{x \rightarrow 2^{-}} f(x)
$$

a. $-\infty$
b. 3
c. -3
d. ∞
e. 3
_ 15. A petrol car is parked 35 feet from a long warehouse (see figure). The revolving light on top of the car turns at a rate of $\frac{1}{2}$ revolution per second. The rate at which the light beam moves along the wall is $r=35 \pi \sec ^{2} \theta \mathrm{ft} / \mathrm{sec}$. Find the rate $r_{\text {when }} \theta_{\text {is }} \frac{\pi}{6}$.

a. $r=\frac{140}{3} \mathrm{ft} / \mathrm{sec}$
b. $r=\frac{70 \sqrt{3} \pi}{3} \mathrm{ft} / \mathrm{sec}$
c. $r=\frac{70 \sqrt{3}}{3} \mathrm{ft} / \mathrm{sec}$
d. $r=\frac{140 \pi}{3} \mathrm{ft} / \mathrm{sec}$
e. $r=\frac{70 \pi}{3} \mathrm{ft} / \mathrm{sec}$
\qquad 16. A petrol car is parked 65 feet from a long warehouse (see figure). The revolving light on top of the car turns at a rate of $\frac{1}{2}$ revolution per second. The rate at which the light beam moves along the wall is $r=65 \pi \sec ^{2} \theta \mathrm{ft} / \sec$. Find the limit of r as $\theta \rightarrow(\pi / 2)^{-}$.

∞
a. 65π
b. 3
c.
d. 65
e. $-\infty$
\qquad 17. A 30 -foot ladder is leaning against a house (see figure). If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate of $r=\frac{2 x}{\sqrt{900-x^{2}}} \mathrm{ft} / \mathrm{sec}$, where x is the distance between the base of the ladder and the house. Find the rate r when x is 18 feet.

a. $\underline{3}^{r}={ }_{2} \mathrm{ft} / \mathrm{sec}$
b. $\underline{4}_{r=}{ }_{3} \mathrm{ft} / \mathrm{sec}$
c. $r=\frac{48}{5} \mathrm{ft} / \mathrm{sec}$
d. $r=\frac{2}{3} \mathrm{ft} / \mathrm{sec}$
e. $r=\frac{3}{4} \mathrm{ft} / \mathrm{sec}$
18. A 25 -foot ladder is leaning against a house (see figure). If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate of $r=\frac{2 x}{\sqrt{625-x^{2}}} \mathrm{ft} / \mathrm{sec}$ where x is the distance between the base of the ladder and the house. Find the limit of r as $x \rightarrow 25^{-}$.

a. $-\infty$
b. 50
c. 3
d. ∞
e. 25

2.5 Infinite Limits

Answer Section

1. ANS: B PTS: 1 DIF: Med

OBJ: Evaluate an infinite limit from a table of values
2. ANS: D PTS: 1 DIF: Easy

OBJ: Identify the vertical asymptotes (if any) of the graph of a function
3. ANS: B PTS: 1 DIF: Med

OBJ: Identify the vertical asymptotes (if any) of the graph of a function
4. ANS: D PTS: 1 DIF: Med

OBJ: Identify the vertical asymptotes (if any) of the graph of a function
5. ANS: E PTS: 1 DIF: Med

OBJ: Identify the vertical asymptotes (if any) of the graph of a function 6. ANS: A PTS: 1 DIF: Med OBJ: Identify the vertical asymptotes (if any) of the graph of a function 7. ANS: B PTS: 1 DIF: Med OBJ: Identify the vertical asymptotes (if any) of the graph of a function 8. ANS: D PTS: 1 DIF: Med OBJ: Evaluate one-sided limits
9. ANS: B PTS: 1 DIF: Med OBJ: Evaluate the limit of a function
10. ANS:
E PTS:
1 DIF:
Med

OBJ: Evaluate one-sided limits
11. ANS: D PTS: 1 DIF: Med

OBJ: Evaluate limits involving logarithmic functions
12. ANS: E PTS: 1 DIF:

OBJ: Identify a limit that does not exist
13. ANS: B PTS: 1 DIF 2.OBJ: Estimate one-sided limits from a graph
14. ANS: D PTS: 1 DIF: Med OBJ: Estimate one-sided limits from a graph
15. ANS: D PTS: 1 DIF: Easy

OBJ: Evaluate functions in applications
16. ANS: A PTS: 1 DIF: Med

OBJ: Evaluate limits in applications
17. ANS: A PTS: 1 DIF: Easy

OBJ: Evaluate functions in applications
18. ANS: D PTS: 1 DIF: Med

OBJ: Evaluate limits in applications

REF: Section 2.5
MSC: Skill

REF: Section 2.5
MSC: Skill
REF: Section 2.5
MSC: Skill
REF: Section
MSC: Skill
REF: Section 2.5
MSC: Skill
REF: Section 2.5
MSC: Application

3.1 The Derivative and the Tangent Line Problem

Multiple Choice

Identify the choice that best completes the statement or answers the question.
_1. Find the slope m of the line tangent to the graph of the function $f(x)=2-7 x$ at the point $(-1,9)$.
a. $m=-7$
b. $m=-2$
c. $m=2$
d. $m=7$
e. $m=-9$
2. Find the slope m of the line tangent to the graph of the function $g(x)=9-x^{2}$ at the point $(4,-7)$.
a. $m=4$
b. $m=9$
c. $m=-8$
d. $m=-7$
e. $m=-18$
3. Find the derivative of the function $g(x)=-2$ by the limit process.
a. $\quad g^{\prime}(x)=2$
b. $g^{\prime}(x)=2 x$
c. $g^{\prime}(x)=-2 x$
d. $g^{\prime}(x)=0$
e. $g^{\prime}(x)=-2$
4. Find the derivative of the function $h(s)=7+\frac{6}{7} s$ by the limit process.
a. $\quad h^{\prime}(s)=7$
b. $h^{\prime}(s)=7 s+\frac{6}{7} s^{2}$
c. $h^{\prime}(s)=\frac{6}{7}$
d. $h^{\prime}(s)=\frac{55}{7}$
e. $h^{\prime}(s)=7 s+\frac{6}{7}$

