Larson Edwards ISBN 13056450309781305645035

Link download:
https://testbankpack.com/p/test-bank-for-calculus-of-a-single-variable-hybrid-10th-edition-by-larson-edwards-isbn-1305645030-9781305645035/

TEST BANK

CALCULUS
TENTH EDITION

Ron Larson

Bruce Edwards

Test Bak

BROOKS/COLE
CENGAGE Learning:

c 2014 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions Further permissions questions can be emailed to permissionrequest@cengage.com

ISBN-13: 978-1-285-09059-7
ISBN-10: 1-285-09059-4

Brooks/Cole

20 Channel Center Street
Boston, MA 02210
USA
Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: www.cengage.com/global

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Brooks/Cole, visit www.cengage.com/brookscole

Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com

NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.

READ IMPORTANT LICENSE INFORMATION

Dear Professor or Other Supplement Recipient:
Cengage Learning has provided you with this product (the "Supplement") for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the "Course"), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.

Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they may not copy or distribute
any portion of the Supplement to any third party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.

All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an "as is" basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State's conflict of law rules.

Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.

Contents

Chapter P: Preparation for Calculus 1
Chapter 1: Limits and Their Properties 43
Chapter 2: Differentiation 82
Chapter 3: Applications of Differentiation 141
Chapter 4: Integration 230
Chapter 5: Logarithmic, Exponential, and Other Transcendental Functions 280
Chapter 6: Differential Equations 354
Chapter 7: Applications of Integration 390
Chapter 8: Integration Techniques, L'Hôpital's Rule, and Improper Integrals 448
Chapter 9: Infinite Series 506
Chapter 10: Conics, Parametric Equations, and Polar Coordinates 581
Chapter 11: Vectors and the Geometry of Space 646
Chapter 12: Vector-Valued Functions 703
Chapter 13: Functions of Several Variables 740
Chapter 14: Multiple Integration 819
Chapter 15: Vector Analysis 901
Chapter 16: Additional Topics in Differential Equations 970

P. 1 Graphs and Models

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Which of the following is the correct graph of $y=-\sqrt{2-x^{2}}$?
a.

d.

b.

e.

c.

2 Chapter P: Preparation for Calculus
\qquad 2. Which of the following is the correct graph of $y=x-x^{3}$?
a.

d.

b.

e.

c.

3. Find all intercepts:
$y=x^{2}-x-12$
a. x-intercepts: $(4,0),(-3,0) ; y$-intercepts: $(0,4),(0,3)$
b. x-intercept: $(12,0) ; y$-intercepts: $(0,4),(0,3)$
c. x-intercepts: $(4,0),(-3,0) ; y$-intercept: $(0,-12)$
d. x-intercepts: $(4,0),(-3,0) ; y$-intercepts: $(0,-12),(0,12)$
e. x-intercept: $(-3,0) ; y$-intercept: $(0,-12)$

4. Find all intercepts:

$y=(x+5) \sqrt{4-x^{2}}$
a. x-intercepts: $(-5,0),(-2,0),(2,0) ; y$-intercepts: $(0,0),(0,10)$
b. x-intercepts: $(-5,0),(2,0)$; y-intercept: $(0,10)$
c. x-intercepts: $(-5,0),(2,0) ; y$-intercept: $(0,-10)$
d. x-intercepts: $(-5,0),(-2,0),(2,0) ; y$-intercept: $(0,10)$
e. x-intercepts: $(-5,0),(-2,0),(2,0) ; y$-intercept: $(0,-10)$
5. Test for symmetry with respect to each axis and to the origin.
$x^{2} y^{2}=8$
a. symmetric with respect to the origin
b. symmetric with respect to the x-axis
c. symmetric with respect to the y-axis
d. no symmetry
e. A, B, and C
6. Test for symmetry with respect to each axis and to the origin.
$y=\frac{x^{2}+2}{x}$
a. symmetric with respect to the origin
b. symmetric with respect to the y-axis
c. symmetric with respect to the x-axis
d. both B and C
e. no symmetry

4 Chapter P: Preparation for Calculus

_ 7. Sketch the graph of the equation:
$x=4-y^{2}$
a.

d.

b.

e.

c.

\qquad 8. Sketch the graph of the equation:
$y=|x+2|$
a.

d.

b.

c.

\qquad 9. Find the points of intersection of the graphs of the equations:
$x=y^{2}-3$
$y=x+1$
a. $(-2,1),(-1,2)$
b. $(-2,0),(1,2)$
c. $(-2,-1),(1,2)$
d. $(2,-1),(-1,2)$
e. $(-2,-3),(-1,2)$
\qquad 10. The resistance y in ohms of 1000 feet of solid metal wire at $77^{\circ} F$ can be approximated by the model $y=\frac{10,000}{x^{2}}-0.57,5 \leq x \leq 100$, where x is the diameter of the wire in mils (0.001 in). Use a graphing utility to graph the model $y=\frac{10,000}{x^{2}}-0.57,5 \leq x \leq 100$.
a.

d.

b.
c.

11. The resistance y in ohms of 1000 feet of solid metal wire at $77^{\circ} F$ can be approximated by the model $y=\frac{12,000}{x^{2}}-0.46,5 \leq x \leq 100$, where x is the diameter of the wire in mils (0.001 in). If the diameter of the wire is doubled, the resistance is changed by approximately what factor? In determining your answer, you can ignore the constant -0.46 .
a. $\frac{1}{2}$
b. $\frac{1}{5}$
c. 4
d. 5
e. $\frac{1}{4}$
\qquad 12. Test for symmetry with respect to each axis and to the origin.
$y=x^{2}-8$
a. symmetric with respect to the origin
b. symmetric with respect to the y-axis
c. symmetric with respect to the x-axis
d. both B and C
e. no symmetry
\qquad 13. Test for symmetry with respect to each axis and to the origin.
$|y|-x=6$
a. symmetric with respect to the origin
b. symmetric with respect to the x-axis
c. symmetric with respect to the y-axis
d. no symmetry
e. A, B, and C
14. Find all intercepts:
$y^{2}=x^{3}-25 x$
a. x-intercepts: $(0,0),(5,0),(-5,0) ; y$-intercept: $(0,-25)$
b. x-intercepts: $(0,0),(5,0) ; y$-intercept: $(0,0)$
c. x-intercepts: $(0,0),(5,0),(-5,0) ; y$-intercept: $(0,0)$
d. x-intercepts: $(0,0),(5,0) ; y$-intercept: $(0,5)$
e. x-intercepts: $(0,0),(5,0),(25,0) ; y$-intercept: $(0,0)$
_ 15. Sketch the graph of the equation:
$y=x^{3}-3 x$
a.

b.
d.

e. none of the above

c.

P. 1 Graphs and Models
 Answer Section

MULTIPLE CHOICE

1. ANS: B PTS: 1 DIF: Easy

OBJ: Identify the graph of a semicircle
2. ANS: B PTS: 1 DIF: Easy

OBJ: Identify the graph of a cubic equation
3. ANS: C PTS: 1 DIF: Easy

OBJ: Calculate the intercepts of an equation
4. ANS: D PTS: 1 DIF: Easy OBJ: Calculate the intercepts of an equation
5. ANS: E PTS: 1 DIF: Easy

OBJ: Identify the type of symmetry of the graph of an equation
6. ANS: A PTS: 1 DIF: Easy

OBJ: Identify the type of symmetry of the graph of an equation
7. ANS: B PTS: 1 DIF: Easy

OBJ: Graph a quadratic equation in y
8. ANS: D PTS: 1 DIF: Med

OBJ: Graph an absolute value equation
9. ANS: C PTS: 1 DIF: Med

OBJ: Calculate the points of intersection of the graphs of equations
10. ANS: B PTS: 1 DIF: Med OBJ: Plot a rational model using the capabilities of a graphing utility
11. ANS: E PTS: 1 DIF: Med

OBJ: Interpret a rational model
12. ANS: B PTS: 1 DIF: Easy

OBJ: Identify the type of symmetry of the graph of an equation
13. ANS: B PTS: 1 DIF: Easy

OBJ: Identify the type of symmetry of the graph of an equation
14. ANS: C PTS: 1 DIF: Easy

OBJ: Calculate the intercepts of an equation
15. ANS: D PTS: 1 DIF: Easy

OBJ: Graph an equation in y

REF: Section 0.1
MSC: Skill
REF: Section 0.1
MSC: Application
REF: Section 0.1
MSC: Application
REF: Section 0.1
MSC: Skill

P. 2 Linear Models and Rates of Change

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Estimate the slope of the line from the graph.

a. 3
b. $-\frac{1}{3}$
c. $-\frac{1}{6}$
d. $\frac{1}{6}$
e. 6
\qquad 2. Sketch the line passing through the point $(3,4)$ with the slope $-\frac{3}{2}$
a.

d.

b.

e.

c.

3. Find the slope of the line passing through the pair of points.
$(-3,-6),(0,-11)$
a. $\frac{3}{5}$
b. $-\frac{5}{3}$
c. $\frac{5}{3}$
d. 0
e. $-\frac{3}{5}$

- 4. Find the slope of the line passing through the points $\left(-\frac{1}{8}, \frac{8}{3}\right)$ and $\left(-\frac{3}{16}, \frac{1}{24}\right)$.
a. 63
b. -21
c. 42
d. 21
e. -42
__ 5. If a line has slope $m=-4$ and passes through the point $(4,8)$ through which of the following points does the line also pass?
a. $(1,20)$
b. $(1,12)$
c. $(1,0)$
d. $(8,-16)$
e. $(8,-24)$

6. A moving conveyor is built to rise 5 meters for every 7 meters of horizontal change. Find the slope of the conveyor.
a. 0
b. $\frac{5}{7}$
c. $\frac{7}{5}$
d. $-\frac{7}{5}$
e. $-\frac{5}{7}$
7. A moving conveyor is built to rise 1 meter for every 5 meters of horizontal change. Suppose the conveyor runs between two floors in a factory. Find the length of the conveyor if the vertical distance between floors is 10 meters. Round your answer to the nearest meter.
a. 61 meters
b. 39 meters
c. 51 meters
d. 50 meters
e. 41 meters
\qquad 8. Find the slope of the line $x+3 y=15$.
a. $\frac{1}{3}$
b. $-\frac{1}{5}$
c. $\frac{1}{5}$
d. $-\frac{1}{15}$
e. $-\frac{1}{3}$
8. Find the y-intercept of the line $x+4 y=8$.
a. $(0,2)$
b. $(0,4)$
c. $(0,8)$
d. $(4,0)$
e. $(2,0)$
9. Find an equation of the line that passes through the point (7,2) and has the slope m that is undefined.
a. $y=7$
b. $x=7$
c. $y=2$
d. $x=2$
e. $y=7 x$
10. Find an equation of the line that passes through the point $(-11,-9)$ and has the slope $m=\frac{9}{2}$.
a. $y=\frac{9}{2} x-\frac{81}{2}$
b. $y=\frac{9}{2} x+\frac{81}{2}$
c. $y=\frac{9}{2} x+162$
d. $y=\frac{9}{2} x$
e. $y=-\frac{9}{2} x$

\qquad
 12. Find an equation of the line that passes through the points (18, -7$)$ and $(-18,23)$

a. $y=-\frac{5}{6} x-8$
b. $y=\frac{5}{6} x-8$
c. $y=\frac{5}{6} x+8$
d. $y=-\frac{5}{6} x+8$
e. $y=-\frac{5}{6} x$
13. Find an equation of the line that passes through the points $\left(-\frac{8}{11},-\frac{70}{11}\right)$ and $\left(\frac{3}{2},-\frac{21}{4}\right)$.
a. $y=\frac{1}{2} x$
b. $y=\frac{1}{2} x+6$
c. $y=\frac{1}{2} x+12$
d. $y=\frac{1}{2} x-12$
e. $y=\frac{1}{2} x-6$
\qquad 14. Use the result, "the line with intercepts $(a, 0)$ and $(0, b)$ has the equation $\frac{x}{a}+\frac{y}{b}=1$ $a \neq 0, b \neq 0 \prime$, to write an equation of the line with x-intercept: (8,0) and y-intercept: $(0,7)$
a. $8 x-7 y-8=0$
b. $7 x-8 y+7=0$
c. $8 x+7 y+8=0$
d. $7 x+8 y+56=0$
e. $7 x+8 y-56=0$
\qquad 15. Sketch a graph of the equation $y-8=2(x+4)$.
a.

d.

b.

e.

c.

16. Write an equation of the line that passes through the given point and is perpendicular to the given line.

Point Line

$(-1,-7) \quad x=6$
a. $\quad y=7$
b. $y=-7$
c. $y=-1$
d. $x=-1$
e. $x=1$
17. Write an equation of the line that passes through the given point and is parallel to the given line.

Point Line

$(3,-4) \quad-2 x-5 y=9$
a. $-2 x-5 y=14$
b. $-2 x-5 y=23$
c. $2 x-5 y=14$
d. $-2 x+5 y=-26$
e. $2 x-5 y=23$
18. Write an equation of the line that passes through the point $(-6,4)$ and is perpendicular to the line $x+y=5$.
a. $x-y+10=0$
b. $x-y+2=0$
c. $x+y-2=0$
d. $x+y+10=0$
e. $x+y-5=0$
19. Write an equation of the line that passes through the point $\left(\frac{5}{4}, \frac{5}{8}\right)$ and is parallel to the line $7 x-3 y=0$.
a. $56 x-24 y-55=0$
b. $56 x+12 y-55=0$
c. $56 x-8 y+55=0$
d. $56 x+6 y+55=0$
e. $56 x+4 y-55=0$
20. A real estate office handles an apartment complex with 50 units. When the rent is $\$ 800$ per month, all 50 units are occupied. However, when the rent is $\$ 845$, the average number of occupied units drops to 47 . Assume that the relationship between the monthly rent p and the demand x is linear. Write a linear equation giving the demand x in terms of the rent p.
a. $x=\frac{1}{15}(1595-p)$
b. $x=\frac{1}{15}(1505+p)$
c. $x=\frac{1}{45}(1550+p)$
d. $x=\frac{1}{15}(1550-p)$
e. $x=\frac{1}{45}(1595-p)$
21. A real estate office handles an apartment complex with 50 units. When the rent is $\$ 600$ per month, all 50 units are occupied. However, when the rent is $\$ 645$ the average number of occupied units drops to 47 . Assume that the relationship between the monthly rent p and the demand x is linear. Predict the number of units occupied if the rent is raised to $\$ 660$
a. 43 units
b. 54 units
c. 57 units
d. 49 units
e. 46 units
-_ 22. Find the distance between the point (-4,7) and line $x-y-2=0$ using the formula,
Distance $=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$ for the distance between the point $\left(x_{1}, y_{1}\right)$ and the line
$A x+B y+C=0$.
a. $\frac{11 \sqrt{2}}{2}$
b. $\frac{4 \sqrt{3}}{3}$
c. $\frac{13 \sqrt{2}}{2}$
d. $\frac{9 \sqrt{2}}{2}$
e. $\frac{6 \sqrt{3}}{3}$
23. Suppose that the dollar value of a product in 2008is $\$ 174$ and the rate at which the value of the product is expected to increase per year during the next 5years is $\$ 7.50$ Write a linear equation that gives the dollar value V of the product in terms of the year t (Let $t=$ Orepresent 2000) Round the numerical values in your answer to one decimal place, where applicable.
a. $\quad V=7.5 t-159$
b. $V=-7.5 t-114$
c. $\quad V=-7.5 t+174$
d. $V=7.5 t+114$
e. $V=7.5 t-144$
_ 24. A company reimburses its sales representatives $\$ 175$ per day for lodging and meals plus $45 \notin$ per mile driven. Write a linear equation giving the daily cost C to the company in terms of x the number of miles driven. Round the numerical values in your answer to two decimal places, where applicable.
a. $\quad C=-1.75 x+45$
b. $C=0.45 x+175$
c. $C=-0.45 x-175$
d. $C=0.45 x-175$
e. $C=1.75 x-45$
_ 25. A company reimburses its sales representatives $\$ 160$ per day for lodging and meals plus $42 \not \subset$ per mile driven. How much does it cost the company if a sales representative drives 135 miles on a given day? Round your answer to the nearest cent.
a. $\quad 227.20$
b. 216.70
c. 136.35
d. 161.35
e. 191.70

P. 2 Linear Models and Rates of Change Answer Section

MULTIPLE CHOICE

1. ANS: E PTS: 1 DIF: Easy REF: Section 0.2

OBJ: Estimate the slope of a line from its graph MSC: Skill
2. ANS: D PTS: 1 DIF: Easy REF: Section 0.2

OBJ: Sketch the line passing through a point with specified slope MSC: Skill
3. ANS: B PTS: 1 DIF: Easy REF: Section 0.2

OBJ: Calculate the slope of a line passing through two points
MSC: Skill
4. ANS: C PTS: 1 DIF: Med REF: Section 0.2

OBJ: Calculate the slope of a line passing through two points
MSC: Skill
5. ANS: A PTS: 1 DIF:

OBJ: Identify a point on a line with specified properties
6. ANS: B PTS: 1 DIF:

MSC: Application
7. ANS: C PTS: 1 DIF:

OBJ: Calculate slopes in applications
8. ANS: E PTS: 1 DIF:

OBJ: Manipulate a linear equation to determine its slope
9. ANS: A PTS: 1 DIF:

OBJ: Manipulate a linear equation to determine its y-intercept
10. ANS: B PTS: 1 DIF: Easy REF: Section 0.2

OBJ: Write an equation of a line given a point on the line and its slope MSC: Skill
11. ANS: B PTS: 1 DIF: Easy REF: Section 0.2

OBJ: Write an equation of a line given a point on the line and its slope MSC: Skill
12. ANS: D PTS: 1 DIF: Easy REF: Section 0.2

OBJ: Write an equation of a line given two points on the line
13. ANS: E PTS: 1 DIF:

OBJ: Write an equation of a line given two points on the line
14. ANS: E PTS: 1 DIF:

OBJ: Write an equation of a line given its x - and y -intercepts
15. ANS: B PTS: 1 DIF: Med REF: Section 0.2

OBJ: Sketch the graph of a linear equation MSC: Skill
16. ANS: C PTS: 1 DIF: Med REF: Section 0.2

OBJ: Write an equation of a line given a point on the line and a line to which it is parallel/perpendicular

MSC: Skill
17. ANS: A PTS: 1 DIF: Med REF: Section 0.2

OBJ: Write an equation of a line given a point on the line and a line to which it is parallel/perpendicular MSC: Skill
18. ANS: A PTS: 1 DIF: Med REF: Section 0.2 OBJ: Write an equation of a line given a point on the line and a line to which it is perpendicular MSC: Skill
19. ANS: A PTS: 1 DIF: Easy REF: Section 0.2 OBJ: Write an equation of a line given a point on the line and a line to which it is parallel MSC: Skill
20. ANS: D PTS: 1 DIF:

OBJ: Write linear equations in applications
21. ANS: E PTS: 1 DIF:

OBJ: Evaluate linear equations in applications
22. ANS: C PTS: 1 DIF:

OBJ: Calculate the distance between a point and a line
23. ANS: D PTS: 1 DIF:

OBJ: Write linear equations in applications
24. ANS: B PTS: 1 DIF:

OBJ: Write linear equations in applications
25. ANS: B PTS: 1 DIF:

OBJ: Evaluate linear equations in applications

Med REF: Section 0.2
MSC: Application
Easy REF: Section 0.2
MSC: Application
Med REF: Section 0.2
MSC: Skill
Easy REF: Section 0.2
MSC: Application
Easy REF: Section 0.2
MSC: Application
Easy REF: Section 0.2
MSC: Application

P. 3 Functions and Their Graphs

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Evaluate (if possible) the function $f(x)=-6 x-5$ at $x=-2$. Simplify the result.
a. -7
b. 17
c. 3
d. 7
e. undefined
2. Evaluate (if possible) the function $f(x)=\sqrt{x-5}$ at $x=9$. Simplify the result.
a. 3
b. 2
c. -2
d. 4
e. undefined
3. Evaluate (if possible) the function $g(x)=x^{2}(x+2)$ at $x=t-6$. Simplify the result.
a. $t^{3}-4 t^{2}+12 t-144$
b. $t^{3}-4 t^{2}+84 t-144$
c. $t^{3}-16 t^{2}+84 t-144$
d. $t^{3}-16 t^{2}+12 t-144$
e. none of the above
4. Let $f(x)=14 x+8$. Then simplify the expression $\frac{f(x)-f(9)}{x-9}$.
a. 15
b. 14
c. 19
d. 11
e. undefined
5. Let $g(x)=\frac{1}{\sqrt{x+15}}$. Evaluate the expression $\frac{g(x)-g(-11)}{x+11}$ and then simplify the result.
a. $\frac{2 \sqrt{x+15}-x-15}{2(x+11)(x+15)}$
$2(x+11)(x+15)$
b. $\frac{2 \sqrt{x+15}+x-15}{2(x-11)(x+15)}$
c. $2 \sqrt{x+15}+x-15$
$2(x+11)(x+15)$
d. $\frac{2 \sqrt{x+15}-x-15}{2(x-11)(x+15)}$
$2(x-11)(x+15)$
e. undefined

- 6. Find the domain and range of the function $f(x)=x^{2}-6$.
a. domain: $[-6, \infty)$ range: $[-6, \infty)$
b. domain: $[-6, \infty)$
range: $(-6, \infty)$
c. domain: $(-\infty, \infty)$ range: $(-6, \infty)$
d. domain: $(-\infty, \infty)$ range: $[6, \infty)$
e. domain: $(-\infty, \infty)$ range: $[-6, \infty)$

7. Find the domain and range of the function $g(t)=\sqrt{t-10}$.
a. domain: $[10, \infty)$
range: $(0, \infty)$
b. domain: $(10, \infty)$
range: $[0, \infty)$
c. domain: $[10, \infty)$
range: $(-\infty, \infty)$
d. domain: $[0, \infty)$
range: $[10, \infty)$
e. none of the above
8. Find the domain and range of the function $h(x)=\frac{11}{x+6}$.
a. domain: $(-\infty,-6) \cup(-6, \infty)$ range: $(-\infty, \infty)$
b. domain: $(-\infty,-6) \cup(-6, \infty)$
range: $(-\infty, 0) \cup(0, \infty)$
c. domain: $(-\infty,-6] \cup[-6, \infty)$ range: $(-\infty, 0) \cup(0, \infty)$
d. domain: $(-\infty,-6)$
range: $(0, \infty)$
e. domain: $(-6, \infty)$
range: $(0, \infty)$
9. Evaluate the function $f(x)=\left\{\begin{array}{l}2 x+1, x<0 \\ 2 x+2, x \geq 0\end{array}\right.$ at $f(5)$.
a. $\quad f(5)=6$
b. $f(5)=5$
c. $f(5)=13$
d. $f(5)=11$
e. $f(5)=12$

10. Determine the domain and range of the function $f(x)=\left\{\begin{array}{l}3 x+2, x<0 \\ 3 x+6, x \geq 0\end{array}\right.$

a. domain: $(-\infty, 2)$
range: $(-\infty, 2) \cap[6, \infty]$
b. domain: $(-\infty, \infty)$
range: $(-\infty, 2) \cup[6, \infty)$
c. domain: $(-\infty, \infty)$
range: $(-\infty, 2) \cup(\infty, 6]$
d. domain: $(-\infty, \infty)$
range: $(\infty, 2) \cup(6,-\infty)$
e. domain: $(-\infty, 3)$
range: $(-\infty, 2) \cap[6, \infty)$

- 11. Determine whether y is a function of x.

$y-5 x^{2}=6$

a. no
b. yes
\qquad 12. Determine whether y is a function of x.
$x y-x^{2}=3 y+x$
a. no
b. yes
13. Use the graph of $y=f(x)$ given below to find the graph of the function $y=f(x+5)$

a.

d.

26 Chapter P: Preparation for Calculus
b.

e.

c.

\qquad 14. Use the graph of $y=f(x)$ given below to find the graph of the function $y=f(x)+4$.

a.

b.

c.

d.

e.

\qquad 15. Given $f(x)=\cos x$ and $g(x)=\frac{\pi}{2} x$, evaluate $f(g(2))$.
a. 0
b. $\frac{1}{2}$
c. $\frac{\pi}{2} \sin (2)$
d. -1
e. $\frac{\pi}{2} \cos (2)$
16. Determine whether the function is even, odd, or neither.
$f(x)=x^{2}(3-x)^{2}$
a. odd
b. even
c. neither

- 17. Determine whether the function is even, odd, or neither.
$f(x)=x \sin 2 x$
a. even
b. odd
c. neither

18. Find the coordinates of a second point on the graph of a function f if the given point $\left(-\frac{6}{5}, 8\right)$ is on the graph and the function is even.
a. $\left(8,-\frac{6}{5}\right)$
b. $\left(-8,-\frac{6}{5}\right)$
c. $\left(-\frac{6}{5},-8\right)$
d. $\left(\frac{6}{5},-8\right)$
e. $\left(\frac{6}{5}, 8\right)$
19. Find the coordinates of a second point on the graph of a function f if the given point $\left(-\frac{9}{8}, 5\right)$ is on the graph and the function is odd.
a. $\left(-5,-\frac{9}{8}\right)$
b. $\left(\frac{9}{8},-5\right)$
c. $\left(-5, \frac{9}{8}\right)$
d. $\left(-\frac{9}{8},-5\right)$
e. $\left(\frac{9}{8}, 5\right)$
20. The horsepower H required to overcome wind drag on a certain automobile is approximated by $H(x)=0.002 x^{2}+0.005 x-0.027,10 \leq \mathrm{x} \leq 100$ where x is the speed of the car in miles per hour. Find $H\left(\frac{x}{1.1}\right)$. Round the numerical values in your answer to five decimal places.
a. $H\left(\frac{x}{1.1}\right)=0.00150 x^{2}+0.00455 x-0.02700$
b. $H\left(\frac{x}{1.1}\right)=0.00150 x^{2}+0.00165 x-0.00455$
c. $H\left(\frac{x}{1.1}\right)=0.00165 x^{2}+0.00150 x-0.02700$
d. $H\left(\frac{x}{1.1}\right)=0.00165 x^{2}+0.00455 x-0.02700$
e. $H\left(\frac{x}{1.1}\right)=0.00455 x^{2}+0.00165 x-0.02700$
21. An open box of maximum volume is to be made from a square piece of material 22 centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure). Write the volume V as a function of x, the length of the corner squares.

a. $\quad V=x(22-2 x)^{2}$
b. $V=x+(22-x)^{2}$
c. $V=x^{2}+(22-2 x)$
d. $V=x^{2}(22-2 x)$
e. $\quad V=x(22-2 x)$
22. An open box of maximum volume is to be made from a square piece of material 30 centimeters on a side by cutting equal squares from the corners and turning up the sides(see figure). What is the domain of the function $V=x(30-2 x)^{2}$.

a. domain: $0<x<\infty$
b. domain: 30
c. domain: $0<x<15$
d. domain: $0<x<30$
e. domain: 15

P. 3 Functions and Their Graphs

Answer Section

P. 4 Fitting Models to Data

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Determine which type of function would be most appropriate to fit the given data.

a. exponential
b. linear
c. quadratic
d. no relationship
e. trigonometric
2. Which function below would be most appropriate model for the given data?

a. no apparent relationship between x and y
b. trigonometric
c. quadratic
d. linear
3. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, $F=k d$ where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use the regression capabilities of a graphing utility to find a linear model for the data. Round the numerical values in your answer to three decimal places.

F	20	40	60	80	100
d	1.9	3.8	5.7	7.6	9.5

a. $d=0.675 F$
b. $d=0.118 F$
c. $d=0.112 F$
d. $d=0.095 F$
e. $d=0.905 F$
4. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, $F=k d$ where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use a graphing utility to plot the data and graph the linear model.

F	20	40	60	80	100
d	1.3	2.6	3.9	5.2	6.5

a.

b.

d.

e.

c.

5. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, $F=k d$ where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use the model $d=0.085 F$ to estimate the elongation of the spring when a force of 55 newtons is applied. Round your answer to two decimal places.

F	20	40	60	80	100
d	1.7	3.4	5.1	6.8	8.5

a. $\quad 8.08 \mathrm{~cm}$
b. 6.38 cm
c. $\quad 4.68 \mathrm{~cm}$
d. 2.98 cm
e. $\quad 9.78 \mathrm{~cm}$
_ 6. In an experiment, students measured the speed s (in meters per second) of a falling object t seconds after it was released. The results are shown in the table below. Use the regression capabilities of a graphing utility to find a linear model for the data. Round all numerical values in your answer to one decimal place.

t	0	1	2	3	4
s	0	13.0	21.4	31.2	41.4

a. $s=10.1 t+1.2$
b. $s=3.0 t-1.2$
c. $s=1.2 t+10.1$
d. $s=10.1 t+3.0$
e. $s=1.2 t-3.0$
7. In an experiment, students measured the speed s (in meters per second) of a falling object t seconds after it was released. The results are shown in the table below. Use the regression capabilities of a graphing utility to find a linear model for the data. Round all numerical values in your answer to one decimal place.

t	0	1	2	3	4
s	0	40	48.4	58.2	68.4

a.

d.

b.

e.

c.

8. In an experiment, students measured the speed s (in meters per second) of a falling object t seconds after it was released. The results are shown in the table below. Use the model $s=11.9 t+4.8$ to estimate the speed of the object after 1.5 seconds. Round your answer to two decimal places.

t	0	1	2	3	4
s	0	22.0	30.4	40.2	50.4

a. 21.05 meters/second
b. 20.95 meters/second
c. 24.25 meters/second
d. 23.55 meters/second
e. 22.65 meters/second
9. Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use the regression capabilities of a graphing utility to fit a quadratic model to the data. Round the numerical values in your answer to two decimal places, where applicable.

x	4	6	8	10	12
S	2422	5512	10,362	16,302	23,912

a. $\quad S=170.89 x^{2}-209.79 x+324$
b. $S=180.89 x^{2}-205.79 x+324$
c. $S=190.89 x^{2}+201.79 x+331$
d. $S=170.89 x^{2}-209.79 x+327$
e. $S=180.89 x^{2}+203.79 x-331$
10. Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use a graphing utility to plot the data and graph the quadratic model.

x	4	6	8	10	12
S	2370	4460	13,310	19,250	29,860

a.
b.

d.
e.

c.

11. Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use the model $S=180.89 x^{2}-205.79 x+284$ to approximate the breaking strength when $x=2$. Round your answer to two decimal places.

x	4	6	8	10	12
S	2382	5472	10,322	16,262	23,872

a. $\quad 595.98$ pounds
b. $\quad 390.19$ pounds
c. $\quad 957.76$ pounds
d. 801.77 pounds
e. 751.97 pounds
12. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use the regression capabilities of a graphing utility to find a cubic model for the data. Round the numerical values in your answer to three decimal places, where applicable.

x	1	2	3	4	5	6
y	64	109	164	224	249	269

a. $y=-1.608 x^{3}-14.583 x^{2}+13.389 x-37$
b. $y=-1.706 x^{3}-14.583 x^{2}-16.389 x+34$
c. $y=1.806 x^{3}+11.583 x^{2}+16.389 x-41$
d. $y=-1.806 x^{3}+14.583 x^{2}+16.389 x+34$
e. $y=1.608 x^{3}+11.583 x^{2}-19.389 x+41$
13. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use a graphing utility to plot the data and graph the cubic model.

x	1	2	3	4	5	6
y	110	155	210	270	295	315

a.

d.

b.
e.
c.

14. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use the model $y=-1.806 x^{3}+14.58 x^{2}+16.4 x+30$ to approximate the horsepower when the engine is running at 5500 revolutions per minute. Round your answer to two decimal places.

x	1	2	3	4	5	6
y	60	105	160	220	245	265

a. $\quad 260.77 \mathrm{hp}$
b. $\quad 262.73 \mathrm{hp}$
c. $\quad 262.36 \mathrm{hp}$
d. 261.38 hp
e. 261.91 hp
\qquad 15. The motion of an oscillating weight suspended by a spring was measured by a motion detector. The data collected and the approximate maximum (positive and negative) displacements from equilibrium are shown in the figure. The displacement is measured in centimeters, and the time is measured in seconds. Take $A(0.133,2.49)$ and $B(0.343,1.78)$. Approximate the amplitude and period of the oscillations.

a. \quad Amplitude $=0.335$. Period $=4.3$.
b. Amplitude $=0.71$. Period $=2.1$.
c. Amplitude $=0.355$. Period $=4.2$.
d. Amplitude $=4.2$. Period $=0.355$.
e. Amplitude $=2.1$. Period $=0.71$.

P. 4 Fitting Models to Data Answer Section

MULTIPLE CHOICE

1. ANS: A PTS: 1 DIF: Easy REF: Section 0.4

OBJ: Identify the most appropriate function for a scatter plot
2. ANS: D PTS: 1 DIF: Easy REF: Section 0.4

OBJ: Identify the most appropriate function for a scatter plot MSC: Skill
3. ANS: D PTS: 1 DIF: Easy REF: Section 0.4

OBJ: Write a linear model for data using the regression capabilities of a graphing utility
MSC: Application
4. ANS: D PTS: 1 DIF: Easy REF: Section 0.4

OBJ: Plot data points and the graph of a linear model
5. ANS: C PTS: 1 DIF: Easy OBJ: Evaluate linear models in applications MSC: Application
6. ANS:
A PTS: 1 DIF:
Easy
REF: Section 0.4

OBJ: Write a linear model for data using the regression capabilities of a graphing utility
MSC: Application
7. ANS: C PTS: 1 DIF: Easy REF: Section 0.4

OBJ: Plot data points and the graph of a linear model MSC: Application
8. ANS: E PTS: 1 DIF: Easy REF: Section 0.4

OBJ: Evaluate linear models in applications MSC: Application
9. ANS: B PTS: 1 DIF: Med REF: Section 0.4

OBJ: Write a quadratic model for data using the regression capabilities of a graphing utility
MSC: Application
10. ANS: B PTS: 1 DIF: Med REF: Section 0.4

OBJ: Plot data points and the graph of a quadratic model
11. ANS: A PTS: 1 DIF: Med

OBJ: Evaluate quadratic models in applications
12. ANS: D PTS: 1 DIF: Med

OBJ: Evaluate cubic models in applications
13. ANS: D PTS: 1 DIF: Med

OBJ: Plot data points and the graph of a cubic model
14. ANS: A PTS: 1 DIF: Med

MSC: Application
REF: Section 0.4
OBJ: Write a cubic model for data using the regression capabilities of a graphing utility
MSC: Application
15. ANS: C PTS: 1 DIF: Easy REF: Section 0.4

OBJ: Fit a trigonometric model to a real-life data set.

MSC: Application

1.1 A Preview of Calculus

Multiple Choice
 Identify the choice that best completes the statement or answers the question.

_ 1. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the distance traveled in 16 seconds by an object traveling at a constant velocity of 20 feet per second.
a. calculus, 320 ft
b. calculus, 340 ft
c. precalculus, 320 ft
d. calculus, 640 ft
e. precalculus, 640 ft
2. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the distance traveled in 20 seconds by an object moving with a velocity of $v(t)=8+6 \cos t$ feet per second.
a. calculus, 162.4485 ft
b. precalculus, 163.7985 ft
c. calculus, 165.4777 ft
d. precalculus, 165.4777 ft
e. precalculus, 162.4485 ft
3. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

A cyclist is riding on a path whose elevation is modeled by the function $f(x)=0.08\left(16 x-x^{2}\right)$ where x and $f(x)$ are measured in miles. Find the rate of change of elevation when $x=4$.

a. precalculus, 0.08
b. calculus, 0.2
c. calculus, 0.64
d. calculus, 0.08
e. precalculus, 0.2
4. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

A cyclist is riding on a path whose elevation is modeled by the function $f(x)=0.2 x$ where x and $f(x)$ are measured in miles. Find the rate of change of elevation when $x=5$.

$$
y=f(x)
$$

a. calculus, 2
b. precalculus, 0.2
c. calculus, 0.2
d. precalculus, 2
e. precalculus, 0.45
5. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the area of the shaded region bounded by the triangle with vertices $(0,0),(8,9),(17,0)$.

a. precalculus, 153
b. calculus, 229.5
c. precalculus , 76.5
d. precalculus, 229.5
e. calculus, 153
6. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the area of the shaded region.

a. calculus, 11
b. precalculus, 11
c. precalculus, 13
d. calculus, 16
e. precalculus, 16
\qquad 7. Consider the function $f(x)=\sqrt{x}$ and the point $P(4,2)$ on the graph of f. Graph f and the secant line passing through $P(4,2)$ and $Q(x, f(x))$ for $x=3$.
a.

d.

b.

e.

c.

