# Full link download Calculus 10th Edition by Larson Edwards

**Test bank:** <a href="https://testbankpack.com/p/test-bank-for-calculus-10th-edition-by-larson-edwards-isbn-1285057090-9781285057095/">https://testbankpack.com/p/test-bank-for-calculus-10th-edition-by-larson-edwards-isbn-1285057090-9781285057095/</a>

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

© 2014 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.

For product information and technology assistance, contact us at

ISBN-13: 978 1 285 09059 7 - - - ISBN-10: 1-285-09059-4

#### Brooks/Cole

20 Channel Center Street Boston, MA 02210 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:

www.cengage.com/global

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.

#### **READ IMPORTANT LICENSE INFORMATION**

Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions Further permissions questions can be emailed to

permissionrequest@cengage.com

To learn more about Brooks/Cole, visit www.cengage.com/brookscole

Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com

Dear Professor or Other Supplement Recipient:

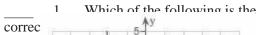
Cengage Learning has provided you with this product (the "Supplement") for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the "Course"), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.

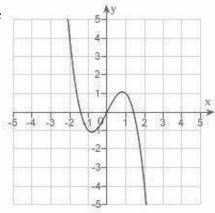
Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they may not copy or distribute

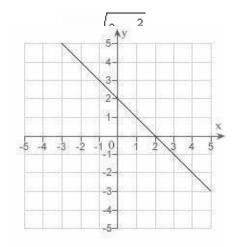
#### Printed in the United States of America 1 2 3 4 5 6 7 17 16 15 14 13

any portion of the Supplement to any third party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.

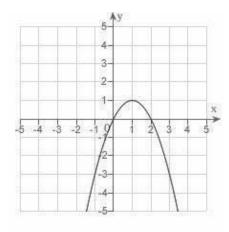
All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an "as is" basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State's conflict of law rules.

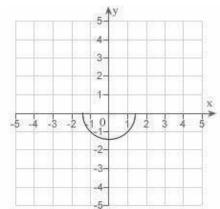

#### Contents


| Chapter P: Preparation for Calculus        | 1   |
|--------------------------------------------|-----|
| Chapter 1: Limits and Their Properties     | 43  |
| Chapter 2: Differentiation                 | 82  |
| Chapter 3: Applications of Differentiation | 141 |


| Chapter 4: Integration                                                               | 230 |
|--------------------------------------------------------------------------------------|-----|
| Chapter 5: Logarithmic, Exponential, and Other Transcendental Functions              | 280 |
| Chapter 6: Differential Equations                                                    | 354 |
| Chapter 7: Applications of Integration                                               | 390 |
| Chapter 8: Integration Techniques, L'Hôpital's Rule, and Improper Integrals          | 448 |
| Chapter 9: Infinite Series                                                           | 506 |
| Chapter 10: Conics, Parametric Equations, and Polar Coordinates                      | 581 |
| Chapter 11: Vectors and the Geometry of Space                                        | 646 |
| Chapter 12: Vector-Valued Functions                                                  | 703 |
| Chapter 13: Functions of Several Variables                                           | 740 |
| Chapter 14: Multiple Integration                                                     | 819 |
| Chapter 15: Vector Analysis                                                          | 901 |
| Chapter 16: Additional Topics in Differential Equations <b>P.1 Graphs and Models</b> | 970 |

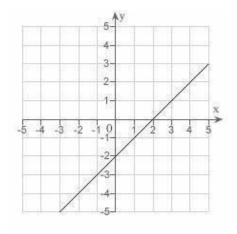
## **Multiple Choice**


Identify the choice that best completes the statement or answers the question.



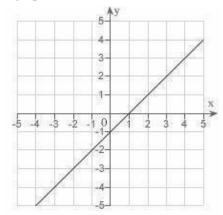




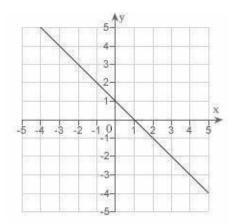


d.

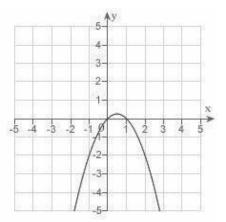





b.

e.

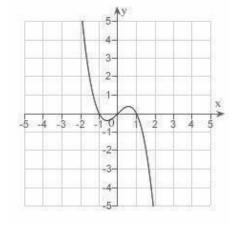




c.

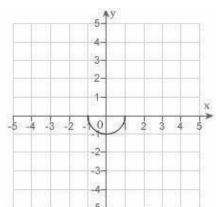
Which of the following is the 2. correct graph of



$$y = x - x^3$$
?







d.

a.

e.



b.



c.

#### Find all intercepts: 3.

$$y = x^2 - x - 12$$

- a. *x*-intercepts: (4,0), (¬,0); *y*-intercepts: (0, ), (0, 3) b. *x*-intercept: (12, 0); *y*-intercepts: (0, 1, (0, 3) c. *x*-intercepts: (4, 0), (-3,0); *y*-intercept: (0, -12) d. *x*-intercepts: (1, 0), (1,0); *y*-intercepts: (0, -12), (0, 12) e. *x*-intercept: (1, 0); *y*-intercept: (0, -12)

Find all intercepts: 4.

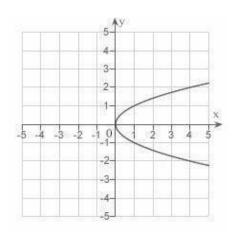
$$y = (x+5)\sqrt{4-x^2}$$

- a. x-intercepts: (-5, 0), (-2, 0), (2, 0); y-intercepts: (0, 0), (0, 10)
- b. x-intercepts: (-5, 0), (2, 0); y-intercept: (0, 10)
- c. *x*-intercepts: (-5, 0), (2, 0); *y*-intercept: (0, -10)
- d. *x*-intercepts: (–5, 0), (–2, 0), (2, 0); *y*-intercept: (0, 10)
- e. x-intercepts: (-5, 0), (-2, 0), (2, 0); y-intercept: (0, -10)

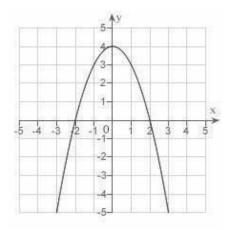
Test for symmetry with respect to each axis and to the origin. 5.

$$x^2y^2=8$$

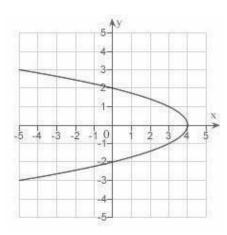
- a. symmetric with respect to the origin
- b. symmetric with respect to the *x*-axis
- c. symmetric with respect to the y-axis
- d. no symmetry
- e. A, B, and C


6. Test for symmetry with respect to each axis and to the origin.

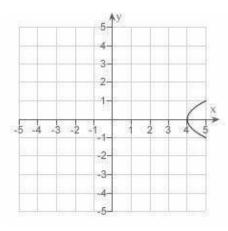
$$y = \frac{x^2 + 2}{x}$$


- a. symmetric with respect to the origin
- b. symmetric with respect to the y-axis
- c. symmetric with respect to the *x*-axis
- d. both B and C
- e. no symmetry

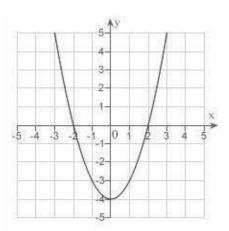
7. Sketch the graph of the equation:


a.




d.

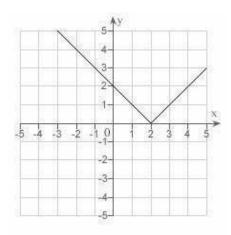



b.

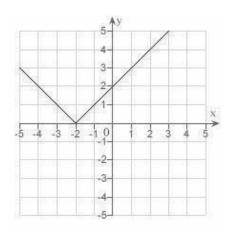


e.




c.



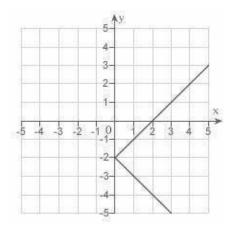

Sketch the graph of the equation: 8.

y = |x + 2|

a.



d.




4--1.0 -2--3-

b.

e. none of the above

c.

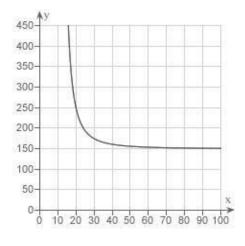


9. Find the points of intersection of the graphs of the equations:

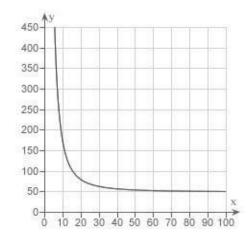
$$x = y^2 - 3$$

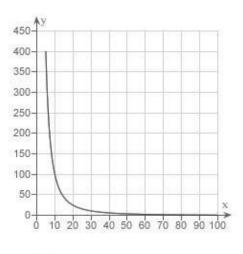
$$y = x + 1$$

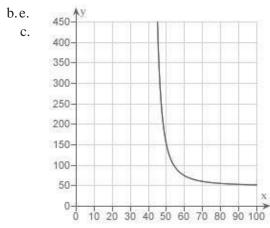
a. 
$$(-2, 1), (-1, 2)$$
  
b.  $(-2, 0), (1, 2)$ 

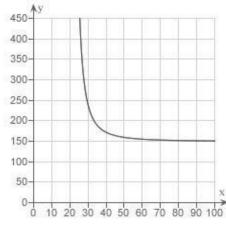

e. 
$$(-2, -3), (-1, 2)$$

$$y = \frac{10,000}{x^2} - 0.57, 5 \le x \le 100,$$
 metal


approximated by the model


$$y = \frac{10,000}{x^2} - 0.57, 5 \le x \le 100.$$
 the


diameter of the wire in mils (0.001 in). Use a graphing utility to graph the model














\_\_\_\_11. The resistance y in ohms of 1000 feet of solid metal wire at 77°F can be approximated by the model

$$y = \frac{12,000}{x^2} - 0.46$$
,  $5 \le x \le 100$ , where x is the

diameter of the wire in

mils (0.001 in). If the diameter of the wire is doubled, the resistance is changed by approximately what factor? In determining your answer, you can ignore the constant -0.46.

 $\frac{1}{2}$   $\frac{1}{5}$  **4 5**  $\frac{1}{4}$ 

a.

b.

c.

d.

e.

1

2

T

e

f

r

S

y

m

m

t

r

y

W

h

r

p

c

t

0

c

h

a

X

i

 $\mathbf{S}$ 

a

n

d

t O t h 0 r g i n

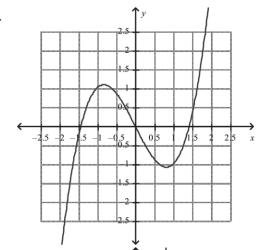
$$y = x^2 - 8$$

- symmetric with respect to the origin
- b. symmetric with respect to the y-axis
- c. symmetric with respect to the *x*-axis
- d. both B and C
- e. no symmetry

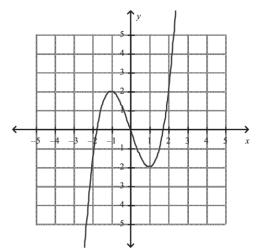
Test for symmetry with respect to each axis and to the origin. 13.

$$|y| - x = 6$$

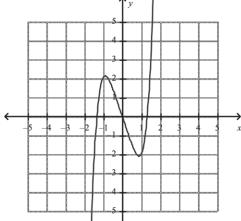
- a. symmetric with respect to the origin
- b. symmetric with respect to the *x*-axis
- c. symmetric with respect to the y-axis
- d. no symmetry
- e. A, B, and C


Find all intercepts: 14.

$$y^2 = x^3 - 25x$$

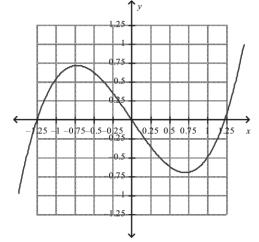

- a. *x*-intercepts: (0,0), (5,0), (-5,0); *y*-intercept: (0, -25)
- b. *x*-intercepts: (0,0), (5,0); *y*-intercept: (0, 0)
- c. *x*-intercepts: (0,0), (5,0), (-5,0); *y*-intercept: (0, 0)
- d. *x*-intercepts: (0,0), (5,0); *y*-intercept: (0, 5)
- e. x-intercepts: (0,0), (5,0), (25,0); y-intercept: (0,0)

Sketch the graph of the equation: 15.


$$y = x^3 - 3x$$



d.




b.



e. none of the above

c.



P.1 Graphs and Models Answer Section

## MULTIPLE CHOICE


| 1.<br>OBJ: 1  | ANS: Identify the gra     | B<br>ph of a   | PTS: semicircle          | 1              | DIF:                    | Easy        | REF: Section 0.<br>MSC: Skill    | 1 |
|---------------|---------------------------|----------------|--------------------------|----------------|-------------------------|-------------|----------------------------------|---|
| 2.<br>OBJ: 1  | ANS: Identify the gra     | B<br>ph of a   | PTS: cubic equation      | 1              | DIF:                    | Easy        | REF: Section 0. MSC: Skill       | 1 |
| 3.<br>OBJ:    | ANS: Calculate the in     | C              | PTS:<br>s of an equation | 1              | DIF:                    | Easy        | REF: Section 0. MSC: Skill       | 1 |
| 4.<br>OBJ:    | ANS:<br>Calculate the in  | D<br>atercepts | PTS:<br>s of an equation | 1              | DIF:                    | Easy        | REF: Section 0. MSC: Skill       | 1 |
| 5.<br>OBJ: 1  | ANS: Identify the typ     | E<br>e of syr  | PTS:                     | 1<br>raph of   | DIF: an equation        | Easy        | REF: Section 0. MSC: Skill       | 1 |
| 6.<br>OBJ: 1  | ANS: Identify the typ     | A<br>e of syr  | PTS:<br>nmetry of the g  | 1<br>raph of   | DIF: an equation        | Easy        | REF: Section 0. MSC: Skill       | 1 |
| 7.<br>OBJ:    | ANS:<br>Graph a quadra    | B<br>tic equa  | PTS:<br>ation in y       | 1              | DIF:                    | Easy        | REF: Section 0. MSC: Skill       | 1 |
| 8.<br>OBJ:    | ANS:<br>Graph an absol    | D<br>ute valu  | PTS:<br>ne equation      | 1              | DIF:                    | Med         | REF: Section 0. MSC: Skill       | 1 |
| 9.<br>OBJ:    | ANS:<br>Calculate the po  | C<br>oints of  | PTS: intersection of     | 1<br>the gra   | DIF:<br>phs of equation | Med<br>as   | REF: Section 0. MSC: Skill       | 1 |
| 10.<br>OBJ: 1 | ANS:<br>Plot a rational r | B<br>nodel u   | PTS:<br>sing the capabil | 1<br>lities of | DIF:<br>a graphing util | Med<br>lity | REF: Section 0. MSC: Application | 1 |
| 11.<br>OBJ: 1 | ANS:<br>Interpret a ratio | E<br>nal mod   | PTS:<br>del              | 1              | DIF:                    | Med         | REF: Section 0. MSC: Application | 1 |
| 12.<br>OBJ: 1 | ANS:                      | B<br>e of syr  | PTS: mmetry of the g     | 1<br>raph of   | DIF: an equation        | Easy        | REF: Section 0. MSC: Skill       | 1 |
| 13.<br>OBJ: 1 | ANS:                      | B<br>e of syr  | PTS:<br>nmetry of the g  | 1<br>raph of   | DIF:<br>an equation     | Easy        | REF: Section 0.<br>MSC: Skill    | 1 |
| 14.<br>OBJ:   | ANS:<br>Calculate the in  | C              | PTS:<br>s of an equation | 1              | DIF:                    | Easy        | REF: Section 0. MSC: Skill       | 1 |
| 15.<br>OBJ:   | ANS:<br>Graph an equat    | D<br>ion in y  | PTS:                     | 1              | DIF:                    | Easy        | REF: Section 0. MSC: Skill       | 1 |

# P.2 Linear Models and Rates of Change

### **Multiple Choice**

Identify the choice that best completes the statement or answers the question.

Estimate the slope of the line from the graph.

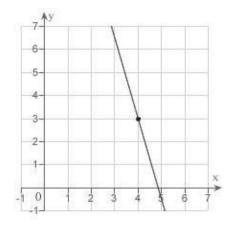


a. 3
$$-\frac{1}{3}$$

$$-\frac{1}{6}$$

$$\frac{1}{6}$$

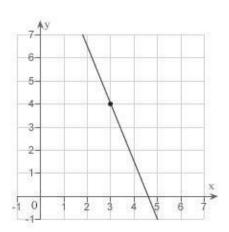
b.


c.

d.

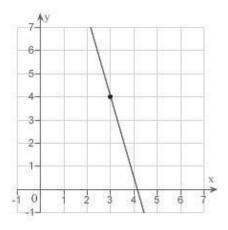
e. 6

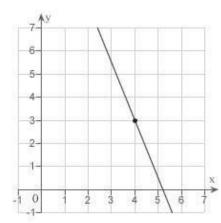
the


2. Sketch the line passing through  $\overline{\text{point}}$  (3, 4) with the slope



$$-\frac{3}{2}$$
.





a.



d.

b. e. c.





3. Find the slope of the line passing through the pair of points.

- Find the slope of the line passing through the points  $\left(-\frac{1}{8}, \frac{8}{3}\right)$  and  $\left(-\frac{3}{16}, \frac{1}{24}\right)$
- 63 a.
- b. -21
- 42
- 21
- <sup>-</sup>42
- If a line has slope m = -4 and passes through the point (4, 8), through which of the following points does the line also pass?
  - (1, 20)
  - (1, 12)
  - (1, 0)
  - (8, -16)
  - (8, -24)
- a.
- b.
- c.
- d.
- e.

- A moving conveyor is built to rise 5 meters for every 7 meters of horizontal change. Find the slope of the conveyor.
  - a. 0

- b.
- c.
- d.
- e.
- A moving conveyor is built to rise 1 meter for every 5 meters of horizontal change. Suppose the conveyor runs between two floors in a factory. Find the length of the conveyor if the vertical distance between floors is 10 meters. Round your answer to the nearest meter.
- 61 meters a.
- 39 meters b.
- 51 meters
- 50 meters
- e. 41 meters

Find the slope of the line x + 3y = 15. 8.

 $\frac{1}{3}$   $\frac{1}{5}$   $\frac{1}{5}$ 

b.

c.

d.

e.

Find the *y*-intercept of the line x + 4y = 8. 9.

(0, 2)

(0, 4)

(0, 8)

(4, 0)

(2, 0)

a.

b.

c.

d. e.

Find an equation of the line that passes through the point (7, 2) and has the slope m10. that is undefined.

$$y = 7$$

$$X = I$$

b.

$$\begin{aligned}
 x &= 2 \\
 y &= 7x
 \end{aligned}$$

e.

Find an equation of the line that passes through the point (-11, -9) and has the slope 11.

a. 
$$y = \frac{9}{2}x - \frac{81}{2}$$
  
b.  $y = \frac{9}{2}x + \frac{81}{2}$ 

b. 
$$y = \frac{9}{2}x + \frac{81}{2}$$

c. 
$$y = \frac{9}{2}x + 162$$
  
d.  $y = \frac{9}{2}x$ 

d. 
$$y = \frac{9}{2}x$$

e. 
$$y = -\frac{9}{2}x$$

Find an equation of the line that passes through the points (18, -7) and (-18, 23). 12.

$$y = -\frac{5}{6}x - 8$$

b. 
$$y = \frac{5}{6}x - 8$$

b. 
$$y = \frac{5}{6}x - 8$$
  
c. d.  $y = -\frac{5}{6}x + 8$ 

e. 
$$y = -\frac{5}{6}x$$

$$\frac{13.}{\left(\frac{3}{2}, -\frac{21}{4}\right)}$$

Find an equation of the line that passes through the points

a. 
$$y = \frac{1}{2}x$$

a. 
$$y = \frac{1}{2}x$$

a. 
$$y = \frac{1}{2}x$$
  
b.  $y = \frac{1}{2}x + 6$ 

c. 
$$y = \frac{1}{2}x + 12$$

c. 
$$y = \frac{1}{2}x + 12$$
  
d. e.  $y = \frac{1}{2}x - 6$ 

$$(a,0)$$
 and  $(0,b)$  
$$\frac{x}{a} + \frac{y}{b} = 1$$

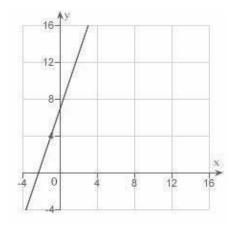
 $a \neq 0$ ,  $b \neq 0$ ", to write an equation of the line with x-intercept: (8,0) and y-intercept: (0,7).

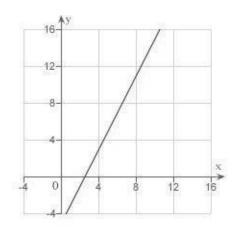
a. 
$$8x - 7y - 8 = 0$$

b. 
$$7x - 8y + 7 = 0$$

c. 
$$8x + 7y + 8 = 0$$

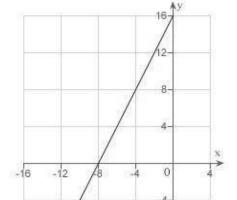
d. 
$$7x + 8y + 56 = 0$$

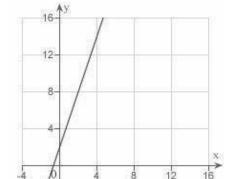

e. 
$$7x + 8y - 56 = 0$$


Use the result, "the line with intercepts 14.

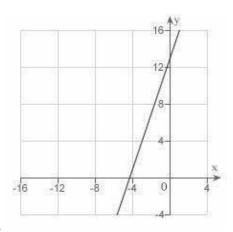
has the equation

15. Sketch a graph of the equation


$$y - 8 = 2(x + 4)$$
.







d.

e.





b.



c.

16. Write an equation of the line that passes through the given point and is perpendicular to the given line.

Point Line

$$\left(-1,-7\right)$$
  $x=6$ 

- a. y = 7
- b. y = -7
- c. y = -1
- d. x = -1
- e. x = 1

17. Write an equation of the line that passes through the given point and is parallel to the given line.

Point Line -2x - 5y = 9(3, -4)

- -2x 5y = 14
- b. -2x 5y = 23
- c. 2x 5y = 14
- d. -2x + 5y = -26
- e. 2x 5y = 23

Write an equation of the line that passes through the point  $\left(-6,4\right)$  and is 18. perpendicular to the line x + y = 5.

- a. x-y+10=0
- b. x-y+2=0
- c. x+y-2=0
- d. x+y+10=0
- e. x+y-5=0

Write an equation of the line that passes through the point  $\left(\frac{5}{4}, \frac{5}{8}\right)$  and is parallel to 19.



\$800 per month, all 50 occupied units drops to 47

a.  $x = \frac{1}{15} (1595 - p)$ 

b. 
$$x = \frac{1}{15} (1505 + p)$$

c. 
$$x = \frac{1}{45} \left( 1550 + p \right)$$

d. 
$$x = \frac{1}{15} (1550 - p)$$

20. A real estate office handles an apartment complex with units. When the rent is units are occupied. However, when the rent is the average number of

. Assume that the relationship between the monthly rent and the

is linear. Write a linear equation giving the demand x in terms of the rent

21. A real estate office handles an apartment complex with units. When the rent is per month, \$600 all units are occupied. However, when the rent is \$, the average number of occupied units drops to  $\frac{47}{8000}$ . Assume that the relationship between the monthly rent  $\frac{p}{8000}$  and the demand is linear. Predict the number of units occupied if the rent is raised to  $\frac{8000}{1000}$ .

- 43 units
- 54 units
- 57 units
- 49 units
- 46 units

22. Find the distance between the point 
$$(-4,7)$$
 and line  $x-y-2=0$  using the formula.

Distance = 
$$\frac{\left|Ax_1 + By_1 + C\right|}{\sqrt{A^2 + B^2}}$$
 (x<sub>1</sub>,y<sub>1</sub>) and the line

$$Ax + By + C = 0$$

- a.  $\frac{11\sqrt{2}}{2}$
- b.  $\frac{4\sqrt{3}}{3}$
- c.  $\frac{13\sqrt{2}}{2}$

for the distance between the point

- Suppose that the dollar value of a product in 2008 is \$174 and the rate at which the value of the product is expected to increase per year during the next \$ ears is \$ 7.5 Write a linear equation that gives the dollar value V of the product in terms of the year  $t = t^2$  (Let  $t = t^2$ ) Round the numerical values in your answer to one decimal place, where applicable.
- V = 7.5t 159
- b. V = -7.5t 114
- c. V = -7.5t + 174
- V = 7.5t + 114
- e. V = 7.5t 144

A company reimburses its sales representatives \$ 175 day for lodging and meals plus 24.  $45\phi$  per mile driven. Write a linear equation giving the daily cost to the company in terms of x, the number of miles driven. Round the numerical values in your answer to two decimal places, where applicable.

a. 
$$C = -1.75x + 45$$

b. 
$$C = 0.45x + 175$$

c. 
$$C = -0.45x - 175$$

d. 
$$C = 0.45x - 175$$

e. C = 1.75x - 45

- A company reimburses its sales representatives \$160 per day for lodging and meals plus 42¢ per mile driven. How much does it cost the company if a sales representative drives 135 miles on a given day? Round your answer to the nearest cent.
- a. 227.20
- b. 216.70
- c. 136.35
- d. 161.35
- e. 191.70

# P.2 Linear Models and Rates of Change Answer Section

### MULTIPLE CHOICE

| 1.<br>OBJ:  | ANS:<br>Estimate the slo |               | PTS: line from its gr     |                | DIF:                      | Easy F | REF:<br>MSC:   |                            |
|-------------|--------------------------|---------------|---------------------------|----------------|---------------------------|--------|----------------|----------------------------|
| 2.<br>OBJ:  | ANS:<br>Sketch the line  | D<br>passing  | PTS:<br>through a poin    | 1<br>t with s  |                           | •      | REF:<br>MSC: S | Section 0.2<br>Skill       |
| 3.<br>OBJ:  | ANS:<br>Calculate the sl |               |                           | 1<br>nrough    |                           | Easy F | REF:<br>MSC:   | Section 0.2<br>Skill       |
| 4.<br>OBJ:  | ANS:<br>Calculate the sl |               | PTS:<br>a line passing th | 1<br>nrough    | DIF:<br>two points        | Med    | REF:<br>MSC:   | Section 0.2<br>Skill       |
| 5.<br>OBJ:  | ANS:<br>Identify a point | A<br>on a lin | PTS: ne with specifie     | 1<br>ed prope  | DIF:<br>erties            | Med    | REF:<br>MSC:   |                            |
|             | ANS: Application         | В             | PTS:                      | 1              | DIF:                      | Easy F | REF:           | Section 0.2                |
| 7.<br>OBJ:  | ANS:<br>Calculate slope  |               | PTS:                      | 1              | DIF:                      | Med    | REF:<br>MSC:   | Section 0.2<br>Application |
|             | ANS:<br>Manipulate a li  | E<br>near equ |                           | 1 nine its     | DIF:<br>slope             | Med    | REF:<br>MSC:   | Section 0.2<br>Skill       |
| 9.<br>OBJ:  | ANS:<br>Manipulate a li  | A<br>near equ | PTS:<br>uation to determ  | 1 nine its     | DIF:<br>y-intercept       | Med    | REF:<br>MSC:   | Section 0.2<br>Skill       |
| 10.<br>OBJ: | ANS:<br>Write an equati  | B<br>on of a  | PTS:<br>line given a poi  |                |                           | •      |                | Section 0.2                |
| 11.<br>OBJ: | ANS:<br>Write an equati  | B<br>on of a  | PTS:<br>line given a poi  | 1<br>int on tl | DIF:<br>ne line and its s | 2      |                | Section 0.2                |
| 12.<br>OBJ: | ANS:<br>Write an equati  | D<br>on of a  | PTS:<br>line given two    | 1<br>points o  | DIF: on the line          | Easy F | REF:<br>MSC:   | Section 0.2<br>Skill       |
| 13.<br>OBJ: | ANS:<br>Write an equati  | E<br>on of a  | PTS:<br>line given two    | 1<br>points o  | DIF: on the line          | Med    | REF:<br>MSC:   | Section 0.2<br>Skill       |
| 14.<br>OBJ: | ANS:<br>Write an equati  | E<br>on of a  | PTS: line given its x     | 1<br>- and y-  | DIF:                      | Easy F | REF:<br>MSC:   |                            |

|                      | ANS:<br>Sketch the            | B<br>e graph o |                  |                    | on 1          | DIF:            | Med                 | REF:<br>MSC: S               | Section 0.2<br>Skill       |
|----------------------|-------------------------------|----------------|------------------|--------------------|---------------|-----------------|---------------------|------------------------------|----------------------------|
|                      | ANS:<br>Write an e            | _              |                  | ΓS:<br>e given a   | 1<br>point on | DIF:            |                     | REF:<br>nich it is<br>MSC: S | Section 0.2                |
|                      | ANS:<br>Write an e            | _              | PTS:<br>of a lin | 1<br>e given a     |               | Med<br>the line | Section<br>ne to wh |                              | Skill                      |
|                      | ANS:<br>Write an 6<br>: Skill | A<br>equation  | PTS:<br>of a lin |                    |               | Med<br>the line | Section<br>ne to wh |                              | perpendicular              |
| 19.<br>OBJ:<br>Skill | ANS:<br>Write an 6            | A<br>equation  | PTS:<br>of a lin | 1<br>e given a     |               | Easy R          | Section<br>ne to wh |                              | parallel MSC:              |
| 20.<br>OBJ:          | ANS:<br>Write line            | E<br>ear equat |                  | TS:<br>application | 1<br>ons      | DIF:            | Med                 | REF:<br>MSC:                 | Section 0.2<br>Application |
| 21.<br>OBJ:          | ANS:<br>Evaluate              | E<br>linear eq |                  | ΓS:<br>in applic   | 1<br>ations   | DIF:            | Easy F              |                              | Section 0.2<br>Application |
| 22.<br>OBJ:          | ANS:<br>Calculate             | the dista      |                  | ΓS:<br>ween a p    | 1<br>oint and | DIF:<br>a line  | Med                 | REF:<br>MSC: S               | Section 0.2                |
| 23.<br>OBJ:          | ANS:<br>Write line            | E<br>ear equat |                  | ΓS:<br>applicatio  | 1<br>ons      | DIF:            | Easy F              |                              | Section 0.2<br>Application |
| 24.<br>OBJ:          | ANS:<br>Write line            | B<br>ear equat |                  | ΓS:<br>applicatio  | 1<br>ons      | DIF:            | Easy F              |                              | Section 0.2<br>Application |
| 25.<br>OBJ:          | ANS:<br>Evaluate              | B<br>linear eq |                  | ΓS:<br>in applic   | 1<br>ations   | DIF:            | Easy F              |                              | Section 0.2<br>Application |

## P.3 Functions and Their Graphs

#### **Multiple Choice**

Identify the choice that best completes the statement or answers the question.

Evaluate (if possible) the function f(x) = -6x - 5 at x = -2. Simplify the result. 1.

- **-7**
- b. 17
- 7
- e. undefined

Evaluate (if possible) the function  $f(x) = \sqrt{x-5}$  at x = 9. Simplify the result. 2.

3 2 undefined

a.

b.

c. d.

e.

Evaluate (if possible) the function  $g(x) = x^2(x+2)$  at x = t - 6. Simplify the result. 3.

 $t^3 - 4t^2 + 12t - 144$  $t^3 - 4t^2 + 84t - 144$ 

- a.
- b.
- c.
- d.

e. none of the above

Let 
$$f(x) = 14x + 8$$
. Then simplify the expression  $\frac{f(x) - f(9)}{x - 9}$ .

15

14

19

11

b.

c. d.

e. undefined

Let 
$$g(x) = \frac{1}{\sqrt{x+15}}$$
. Evaluate the expression  $\frac{g(x) - g(-11)}{x+11}$  and then simplify the

result.

a. 
$$2\sqrt{x+15} - x-15$$
  
 $2(x+11)(x+15)$ 

b. 
$$\frac{2\sqrt{x+15}+x-15}{2(x-11)(x+15)}$$

c. 
$$\frac{2\sqrt{x+15}+x-15}{2(x+11)(x+15)}$$

d. 
$$\frac{2\sqrt{x+15}-x-15}{2(x-11)(x+15)}$$

e. undefined

Find the domain and range of the function  $f(x) = x^2 - 6$ . 6.

- a. domain:
  - range:
- b. domain:
  - range:
- c. domain: range:
- domain: range:
- domain: range:
  - Find the domain and range of the function  $g(t) = \sqrt{t-10}$ . 7.

- a. domain: range:
- b. domain: range:
- c. domain: range:
- d. domain: range:
- e. none of the above

8. Find the domain and range of the function 
$$h(x) = \frac{11}{x+6}$$
.

- a. domain:  $(-\infty, -6) \cup (-6, \infty)$ range: (-∞, ∞)
- b. domain:  $(-\infty, -6) \cup (-6, \infty)$ 
  - range:  $(-\infty, 0) \cup (0, \infty)$
- c. domain: (-∞, -6] ∪ [-6, ∞) range:  $(-\infty, 0) \cup (0, \infty)$
- d. domain: (-∞, -6)
  - range: (0, ∞)
- e. domain: (-6, ∞) range: (0, ∞)

9. Evaluate the function 
$$f(x) = \begin{cases} 2x + 1, & x < 0 \\ 2x + 2, & x \ge 0 \end{cases}$$
 at  $f(5)$ 

$$f(5) = 6$$

$$f(5) = 5$$

$$f(5) = 13$$

$$f(5) = 11$$

$$f(5) = 12$$

- a.
- b.
- c.

d.

e.

10. Determine the domain and range of the function 
$$f(x) = \begin{cases} 3x + 2, & x < 0 \\ 3x + 6, & x \ge 0 \end{cases}$$

a. domain: (-∞, 2) range: (-∞, 2) ∩ [6, ∞]

b. domain: (**-∞**, ∞)

range: (-∞, 2) ∪ [6, ∞)

c. domain: (-∞, ∞) range: (-∞, 2) ∪ (∞, 6]

d. domain: (-∞, ∞) range:  $(\infty, 2) \cup (6, -\infty)$ 

e. domain: (-∞, 3) range:  $(-\infty, 2) \cap [6, \infty)$ 

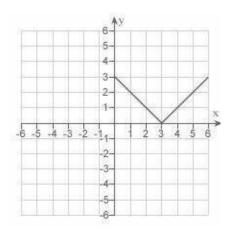
\_\_\_\_ 11. Determine whether y is a function of x.

$$y - 5x^2 = 6$$

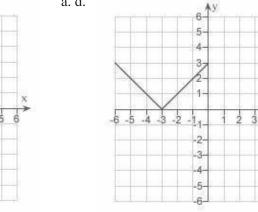
a. no

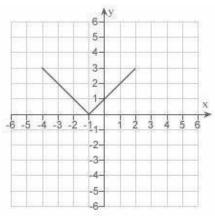
b. yes

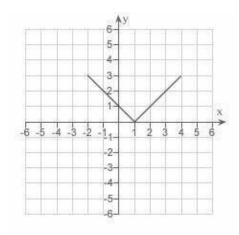
Determine whether y is a function of x. 12.


$$xy - x^2 = 3y + x$$

a. no

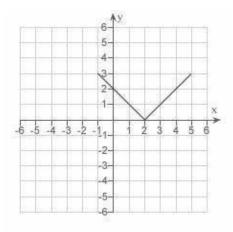

b. yes


Use the graph of y = f(x)13.

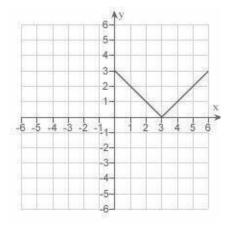

given below to find the graph of the function y = f(x+5)

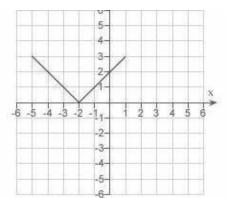


a. d.

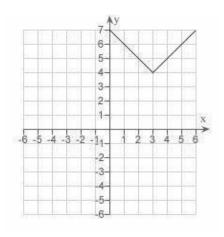




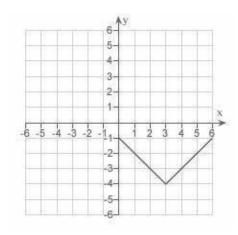


b.

e.

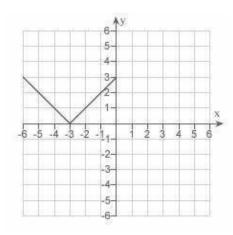



Use the graph of y = f(x)14.

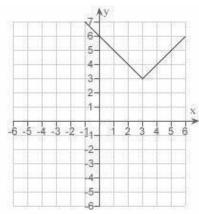


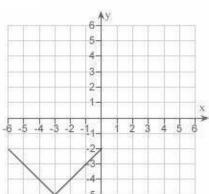



given below to find the graph of the function y = f(x) + 4.




a. d.


e.




b.









\_ 15. Given 
$$f(x) = \cos x$$
 and  $g(x) = \frac{\pi}{2}x$ , evaluate  $f(g(2))$ .

0  $\frac{1}{2}$   $\frac{\pi}{2}\sin(2)$  -1  $\frac{\pi}{2}\cos(2)$ 

a.

b.

c.

d.

e.

Determine whether the function is even, odd, or neither. 16.

$$f(x) = x^2(3-x)^2$$

- a. odd
- even
- c. neither

17. Determine whether the function is even, odd, or neither.

$$f(x) = x \sin 2x$$

- even
- odd b.
- neither

Find the coordinates of a second point on the graph of a function f if the given point  $\left[-\frac{6}{5}, 8\right]$  is on the graph and the function is even.

- a.  $\left(8, -\frac{6}{5}\right)$
- b.  $\left(-8, -\frac{6}{5}\right)$ c.  $\left(-\frac{6}{5}, -8\right)$ d.  $\left(\frac{6}{5}, -8\right)$ e.  $\left(\frac{6}{5}, 8\right)$

- - Find the coordinates of a second point on the graph of a function f if the given point 19.

 $\left(-\frac{9}{8}, 5\right)$  is on the graph and the function is odd.

a. 
$$\left(-5, -\frac{9}{8}\right)$$

b. 
$$\left(\frac{9}{8}, -5\right)$$

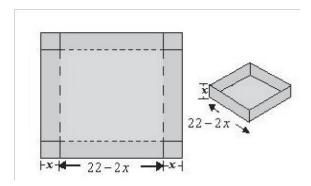
c. 
$$\left(-5, \frac{9}{8}\right)$$

d. 
$$\left(-\frac{9}{8}, -5\right)$$

e. 
$$\left(\frac{9}{8}, 5\right)$$

20. The horsepower H required to every energy wind drag on a certain automobile is approximated by where x is the speed of the car in miles per hour. Find  $H\left(\frac{x}{1.1}\right)$ . Round the numerical values in your answer to five decimal places.

a. 
$$H\left(\frac{x}{1.1}\right) = 0.00150x^2 + 0.00455x - 0.02700$$


b. 
$$H\left(\frac{x}{1.1}\right) = 0.00150x^2 + 0.00165x - 0.00455$$

c. 
$$H\left(\frac{x}{1.1}\right) = 0.00165x^2 + 0.00150x - 0.02700$$

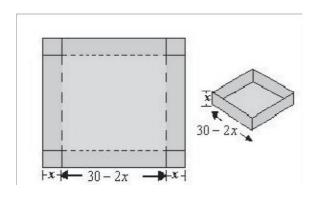
d. 
$$H\left(\frac{x}{1.1}\right) = 0.00165x^2 + 0.00455x - 0.02700$$

e. 
$$H\left(\frac{x}{1.1}\right) = 0.00455x^2 + 0.00165x - 0.02700$$

21. An open box of maximum volume is to be made from a square piece of material 22 centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure). Write the volume V as a function of x, the length of the corner squares.



a. 
$$V = x(22 - 2x)^2$$


b. 
$$V = x + (22 - x)^2$$

c. 
$$V = x^2 + (22 - 2x)$$

d. 
$$V = x^2(22 - 2x)$$

e. 
$$V = x(22 - 2x)$$

An open box of maximum volume is to be made from a square piece of material 30 22. centimeters on a side by cutting equal squares from the corners and turning up the sides(see figure). What is the domain of the function  $V = x(30 - 2x)^2$ .



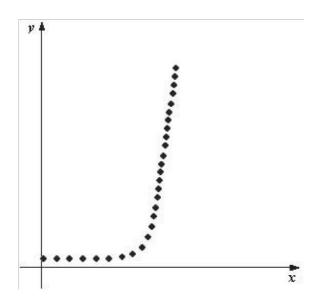
a. domain: **0 < x < ∞** 

b. domain: 30

c. domain: 0 < x < 15d. domain: 0 < x < 30

e. domain: 15

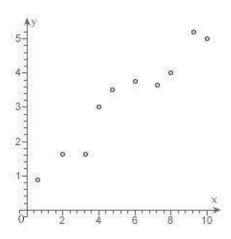
P.3 Functions and Their Graphs Answer Section


| 1. ANS:<br>OBJ: Evaluate a fun   | D<br>ction an | PTS:<br>ad simplify       | 1           | DIF: | Easy | REF: Section 0.3<br>MSC: Skill |
|----------------------------------|---------------|---------------------------|-------------|------|------|--------------------------------|
| 2. ANS:<br>OBJ: Evaluate a fun   | B<br>ction an | PTS:                      | 1           | DIF: | Easy | REF: Section 0.3<br>MSC: Skill |
| 3. ANS:<br>OBJ: Evaluate a fun   | C<br>ction an | PTS: ad simplify          | 1           | DIF: | Easy | REF: Section 0.3<br>MSC: Skill |
| 4. ANS:<br>OBJ: Simplify a diff  | B             | PTS:<br>quotient          | 1           | DIF: | Med  | REF: Section 0.3<br>MSC: Skill |
| 5. ANS:<br>OBJ: Simplify a diff  | A<br>Terence  | PTS:<br>quotient          | 1           | DIF: | Med  | REF: Section 0.3<br>MSC: Skill |
| 6. ANS: OBJ: Identify the do     | E<br>main ar  | PTS:<br>nd range of a fu  | 1<br>nction | DIF: | Easy | REF: Section 0.3<br>MSC: Skill |
| 7. ANS: OBJ: Identify the do     | E<br>main ar  | PTS:<br>nd range of a fu  | 1<br>nction | DIF: | Easy | REF: Section 0.3<br>MSC: Skill |
| 8. ANS: OBJ: Identify the do     | B<br>main ar  | PTS:<br>nd range of a fu  | 1<br>nction | DIF: | Easy | REF: Section 0.3<br>MSC: Skill |
| 9. ANS:<br>OBJ: Evaluate a piec  | E<br>cewise f | PTS:<br>Function          | 1           | DIF: | Easy | REF: Section 0.3<br>MSC: Skill |
| 10. ANS:<br>OBJ: Identify the do | B<br>main ar  | PTS:<br>and range of a fu | 1<br>nction | DIF: | Easy | REF: Section 0.3<br>MSC: Skill |
| 11. ANS:<br>OBJ: Identify equati | B<br>ons that | PTS: are functions        | 1           | DIF: | Easy | REF: Section 0.3<br>MSC: Skill |
| 12. ANS:<br>OBJ: Identify equati | B<br>ons that | PTS: are functions        | 1           | DIF: | Easy | REF: Section 0.3<br>MSC: Skill |
| 13. ANS:<br>OBJ: Graph transfor  | E<br>mations  | PTS:                      | 1           | DIF: | Easy | REF: Section 0.3<br>MSC: Skill |
| 14. ANS:<br>OBJ: Graph transfor  | A<br>mations  | PTS: s of functions       | 1           | DIF: | Med  | REF: Section 0.3<br>MSC: Skill |
| 15. ANS:<br>OBJ: Evaluate comp   | D<br>osite fu | PTS:                      | 1           | DIF: | Easy | REF: Section 0.3<br>MSC: Skill |
| 16. ANS:                         | C             | PTS:                      | 1           | DIF: | Easy | REF: Section 0.3               |

| OBJ:        | Identify the type                | pe of sy      | mmetry of the      | graph c      | of a function      |      | MSC: Skill                           |
|-------------|----------------------------------|---------------|--------------------|--------------|--------------------|------|--------------------------------------|
| 17.<br>OBJ: | ANS: Identify the type           | A<br>pe of sy | PTS:               | 1<br>graph c | DIF: of a function | Easy | REF: Section 0.3<br>MSC: Skill       |
| 18.<br>OBJ: | ANS:<br>Identify points          | E<br>on a gr  | PTS:               | 1<br>metry   | DIF:               | Easy | REF: Section 0.3<br>MSC: Skill       |
| 19.<br>OBJ: | ANS:<br>Identify points          | B<br>on a gr  | PTS:               | 1<br>metry   | DIF:               | Easy | REF: Section 0.3<br>MSC: Skill       |
| 20.<br>OBJ: | ANS:<br>Apply compos             | D<br>ite func | PTS:               | 1            | DIF:               | Med  | REF: Section 0.3<br>MSC: Application |
| 21.<br>OBJ: | ANS:<br>Create function          | A<br>ns in ap | PTS:<br>plications | 1            | DIF:               | Med  | REF: Section 0.3<br>MSC: Application |
|             | ANS: Identify domai Fitting Mode | •             |                    | 1            | DIF:               | Med  | REF: Section 0.3<br>MSC: Application |

## **Multiple Choice**

Identify the choice that best completes the statement or answers the question.


Determine which type of function would be most appropriate to fit the given data.



- exponential
- b. linear
- c. quadratic

- d. no relationship
- e. trigonometric

2. Which function below would be most appropriate model for the given data?



- no apparent relationship between x and y
- b. trigonometric
- quadratic
- d. linear

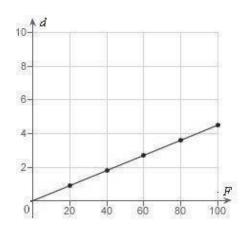
Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, F = kd where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of Fnewtons is applied. Use the regression capabilities of a graphing utility to find a linear model for the data. Round the numerical values in your answer to three decimal places.

| F | 20  | 40  | 60  | 80  | 100 |
|---|-----|-----|-----|-----|-----|
| d | 1.9 | 3.8 | 5.7 | 7.6 | 9.5 |

d = 0.675F

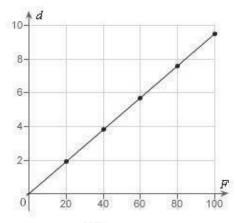
d. 
$$d = 0.095F$$

e. 
$$d = 0.905F$$

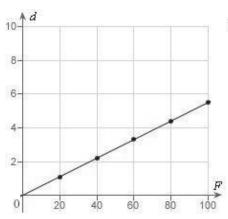

d = 0.118F

d = 0.112F

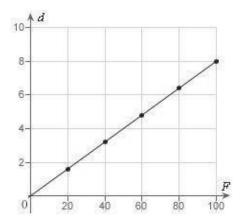
Hooke's Law states that the force F required to compress or stretch a spring (within 4. its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, F = kd where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of Fnewtons is applied. Use a graphing utility to plot the data and graph the linear model.


| F | 20  | 40  | 60  | 80  | 100 |
|---|-----|-----|-----|-----|-----|
| d | 1.3 | 2.6 | 3.9 | 5.2 | 6.5 |

a.




d.


b.



e.



10 Å d 8-6-4-2-0

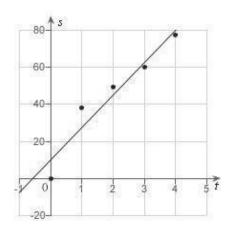


5. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is,  $\sqrt[p]{w}$  where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use the model to estimate the elongation of the spring when a force of 55 newtons is applied. Round your answer to two decimal places.

| F | 20  | 40  | 60  | 80  | 100 |
|---|-----|-----|-----|-----|-----|
| d | 1.7 | 3.4 | 5.1 | 6.8 | 8.5 |

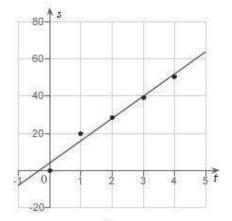
- 8.08 cm a.
- b. 6.38 cm
- c. 4.68 cm
- d. 2.98 cm
- e. 9.78 cm

In an experiment, students measured the speed s (in meters per second) of a falling 6. object t seconds after it was released. The results are shown in the table below. Use the regression capabilities of a graphing utility to find a linear model for the data. Round all numerical values in your answer to one decimal place.

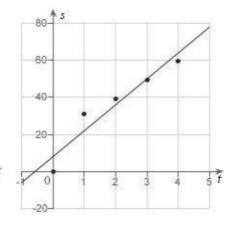

| t | 0 | 1    | 2    | 3    | 4    |
|---|---|------|------|------|------|
| 2 | 0 | 13.0 | 21.4 | 31.2 | 41.4 |

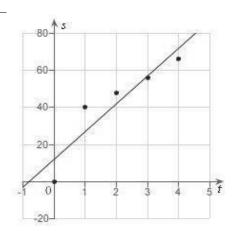
- a. s = 10.1t + 1.2
- b. s = 3.0t 1.2
- c. s = 1.2t + 10.1
- d. s = 10.1t + 3.0
- e. s = 1.2t 3.0
- In an experiment, students measured the speed s (in meters per second) of a falling 7. object t seconds after it was released. The results are shown in the table below. Use the regression capabilities of a graphing utility to find a linear model for the data. Round all numerical values in your answer to one decimal place.

| t | 0 | 1  | 2    | 3    | 4    |
|---|---|----|------|------|------|
| 2 | 0 | 40 | 48.4 | 58.2 | 68.4 |


a.

d.





b.

e.



60-40-20-5 t





8. In an experiment, students measured the speed s (in meters per second) of a falling s = 11.9t + 4.8 to estimate the speed of the object after decimal places.

0 1 2 3 4 22.0 30.4 40.2 50.4

object t seconds after it was released. The results are shown in the table below. Use the model 1.5 seconds. Round your answer to two

- 21.05 meters/second
- 20.95 meters/second
- c. 24.25 meters/second
- d. 23.55 meters/second
- e. 22.65 meters/second

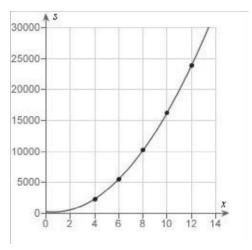
Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use the regression capabilities of a graphing utility to fit a quadratic model to the data. Round the numerical values in your answer to two decimal places, where applicable.

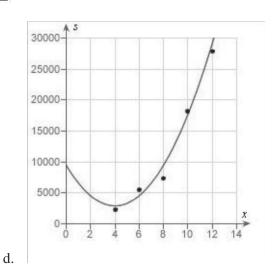
| х | 4    | б    | 8       | 10     | 12      |
|---|------|------|---------|--------|---------|
| S | 2422 | 5512 | 10, 362 | 16,302 | 23, 912 |

| $S = 170.89x^2 - 209.79x + 324$ |
|---------------------------------|
| $S = 180.89x^2 - 205.79x + 324$ |
| $S = 190.89x^2 + 201.79x + 331$ |
| $S = 170.89x^2 - 209.79x + 327$ |
| $S = 180.89x^2 + 203.79x - 331$ |

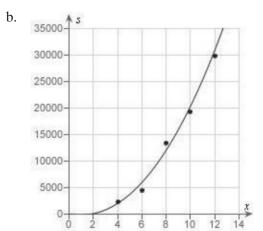
a.

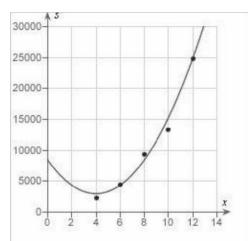
b.


c.

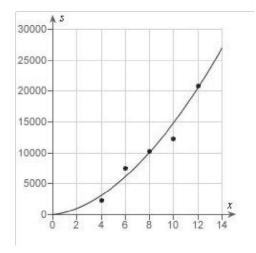

d.

e.


10. Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use a graphing utility to plot the data and graph the quadratic model.


| х | 4    | б    | 8      | 10      | 12     |
|---|------|------|--------|---------|--------|
| ន | 2370 | 4460 | 13,310 | 19, 250 | 29,860 |






a.





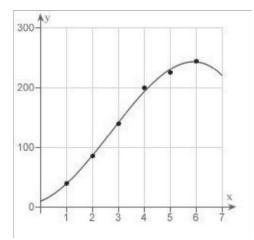
e.



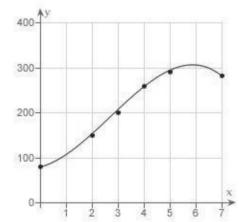
Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use the model  $S = 180.89x^2 - 205.79x + 284$  to approximate the breaking strength when x = 2. Round your answer to two decimal places.

| х | 4    | 6    | 8       | 10      | 12      |
|---|------|------|---------|---------|---------|
| ಭ | 2382 | 5472 | 10, 322 | 16, 262 | 23, 872 |

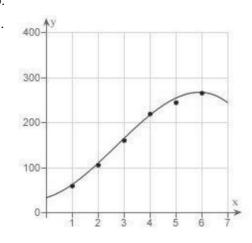
- 595.98 pounds
- 390.19 pounds
- 957.76 pounds
- d. 801.77 pounds
- e. 751.97 pounds

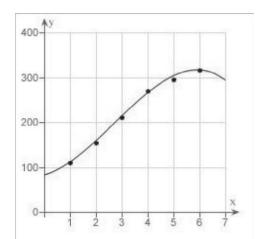

A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use the regression capabilities of a graphing utility to find a cubic model for the data. Round the numerical values in your answer to three decimal places, where applicable.

| х | 1  | 2   | 3   | 4   | 5   | 6   |
|---|----|-----|-----|-----|-----|-----|
| У | 64 | 109 | 164 | 224 | 249 | 269 |

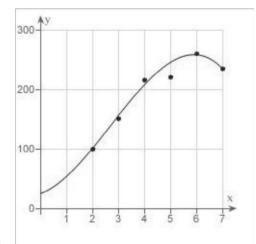

- a.  $y = -1.608x^3 14.583x^2 + 13.389x 37$
- b.  $y = -1.706x^3 14.583x^2 16.389x + 34$
- c.  $y = 1.806x^3 + 11.583x^2 + 16.389x 41$
- d.  $y = -1.806x^3 + 14.583x^2 + 16.389x + 34$
- e.  $y = 1.608x^3 + 11.583x^2 19.389x + 41$

13. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use a graphing utility to plot the data and graph the cubic model.


| х | 1   | 2 3 |     | 4   | 5   | б   |  |
|---|-----|-----|-----|-----|-----|-----|--|
| у | 110 | 155 | 210 | 270 | 295 | 315 |  |




a.




b.

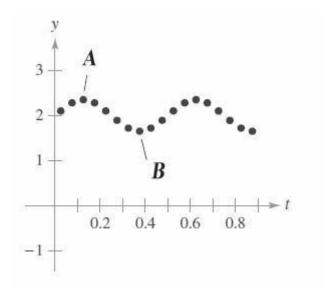




d.



e.


14. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table  $y = -1.806x^2 + 14.58x^2 + 16.4x + 30$ 

below. Use the model to approximate the horsepower when the engine is running at 5500 revolutions per minute. Round your answer to two decimal places.

| x | 1  | 2   | 3   | 4   | 5   | 6   |  |
|---|----|-----|-----|-----|-----|-----|--|
| У | 60 | 105 | 160 | 220 | 245 | 265 |  |

- 260.77 hp
- 262.73 hp
- c. 262.36 hp
- 261.38 hp
- e. 261.91 hp

The motion of an oscillating weight suspended by a spring was measured by a motion 15. detector. The data collected and the approximate maximum (positive and negative) displacements from equilibrium are shown in the figure. The displacement is measured in centimeters, and the time is measured in seconds. Take A(0.133,2.49) and B(0.343,1.78). Approximate the amplitude and period of the oscillations.



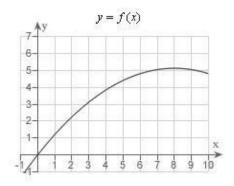
- Amplitude = 0.335. Period = 4.3.
- b. Amplitude = 0.71. Period = 2.1.

- c. Amplitude = 0.355. Period = 4.2.
- d. Amplitude = 4.2. Period = 0.355.
- e. Amplitude = 2.1. Period = 0.71.

## P.4 Fitting Models to Data Answer Section

## **MULTIPLE CHOICE**

| 1.  | ANS:                      | A           | PTS:           | 1            | DIF:          | Easy                | REF: Section 0.4     |
|-----|---------------------------|-------------|----------------|--------------|---------------|---------------------|----------------------|
| OBJ | : Identify the            | most app    | propriate fur  | ection for a | scatter plot  |                     | MSC: Skill           |
| 2.  | ANS:                      | D           | PTS:           | 1            | DIF:          | Easy                | REF: Section 0.4     |
| OBJ | : Identify the            | most app    | propriate fur  | ection for a | scatter plot  |                     | MSC: Skill           |
| 3.  | ANS:                      | D           | PTS:           | 1            | DIF:          | Easy                | REF: Section 0.4     |
|     | : Write a line lication   | ar model    | for data usin  | ng the regr  | ession capal  | bilities of a graph | ning utility MSC:    |
| 4.  | ANS:                      | D           | PTS:           | 1            | DIF:          | Easy                | REF: Section 0.4     |
| OBJ | : Plot data po            | oints and t | the graph of   | a linear m   | odel          |                     | MSC: Application     |
| 5.  | ANS:                      | C           | PTS:           | 1            | DIF:          | Easy                | REF: Section 0.4     |
| OBJ | : Evaluate lir            | near mode   | els in applica | ations       |               |                     | MSC: Application     |
| 6.  | ANS:                      | A           | PTS:           | 1            | DIF:          | Easy                | REF: Section 0.4     |
|     | : Write a line lication   | ar model    | for data usin  | ng the regr  | ression capal | bilities of a graph | ning utility MSC:    |
| 7.  | ANS:                      | C           | PTS:           | 1            | DIF:          | Easy                | REF: Section 0.4     |
| OBJ | : Plot data po            | oints and t | the graph of   | a linear m   | odel          |                     | MSC: Application     |
| 8.  | ANS:                      | E           | PTS:           | 1            | DIF:          | Easy                | REF: Section 0.4     |
| OBJ | : Evaluate lin            | near mode   | els in applica | ations       |               |                     | MSC: Application     |
| 9.  | ANS:                      | В           | PTS:           | 1            | DIF:          | Med                 | REF: Section 0.4     |
|     | : Write a qua<br>lication | dratic mo   | del for data   | using the    | regression c  | apabilities of a gr | raphing utility MSC: |
| 10. | ANS:                      | В           | PTS:           | 1            | DIF:          | Med                 | REF: Section 0.4     |
| OBJ | : Plot data po            | oints and t | the graph of   | a quadrati   | c model       |                     | MSC: Application     |
| 11. | ANS:                      | A           | PTS:           | 1            | DIF:          | Med                 | REF: Section 0.4     |
| OBJ | : Evaluate qu             | adratic m   | nodels in app  | plications   |               |                     | MSC: Application     |
| 12. | ANS:                      | D           | PTS:           | 1            | DIF:          | Med                 | REF: Section 0.4     |
| OBJ | : Evaluate cu             | bic mode    | ls in applica  | ntions       |               |                     | MSC: Application     |


| 13.<br>OBJ:                                                                                                                                                                                                                                                                   | ANS:<br>Plot data points                                                                                              | D<br>and the  | PTS:<br>e graph of a cul   | 1<br>pic mod  | DIF:<br>lel              | Med                    | REF:<br>MSC: A     | Section 0.4 application                |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------|----------------------------|---------------|--------------------------|------------------------|--------------------|----------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                               | ANS:<br>Write a cubic m<br>cation                                                                                     | A<br>nodel fo | PTS:<br>r data using the   | 1<br>e regres | DIF:<br>sion capabilitie | Med<br>s of a graphing | REF:<br>gutility M | Section 0.4                            |  |  |  |
| 15.<br>OBJ:                                                                                                                                                                                                                                                                   | ANS:<br>Fit a trigonome                                                                                               | C<br>tric mod | PTS:<br>del to a real-life | 1<br>e data s | DIF:<br>et.              | Easy 1.1 A             |                    | Section 0.4 application of Calculus 43 |  |  |  |
| <b>1.1</b> A                                                                                                                                                                                                                                                                  | Preview of                                                                                                            | Calcu         | lus                        |               |                          |                        |                    |                                        |  |  |  |
|                                                                                                                                                                                                                                                                               | Multiple Choice Identify the choice that best completes the statement or answers the question.                        |               |                            |               |                          |                        |                    |                                        |  |  |  |
| 1. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. |                                                                                                                       |               |                            |               |                          |                        |                    |                                        |  |  |  |
| Find t                                                                                                                                                                                                                                                                        | he distance trav                                                                                                      | eled in       | 16 seconds by              | an obje       | ct traveling at a        | a constant velo        | city of 20         | feet per second.                       |  |  |  |
| <ul> <li>a. calculus, 320 ft</li> <li>b. calculus, 340 ft</li> <li>c. precalculus, 320 ft</li> <li>d. calculus, 640 ft</li> <li>e. precalculus, 640 ft</li> </ul>                                                                                                             |                                                                                                                       |               |                            |               |                          |                        |                    |                                        |  |  |  |
|                                                                                                                                                                                                                                                                               |                                                                                                                       |               |                            |               |                          |                        |                    |                                        |  |  |  |
|                                                                                                                                                                                                                                                                               |                                                                                                                       |               |                            |               |                          |                        |                    |                                        |  |  |  |
| 2. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. |                                                                                                                       |               |                            |               |                          |                        |                    |                                        |  |  |  |
|                                                                                                                                                                                                                                                                               | Find the distance traveled in 20 seconds by an object moving with a velocity of $v(t) = 8 + 6\cos t$ feet per second. |               |                            |               |                          |                        |                    |                                        |  |  |  |
| a. c                                                                                                                                                                                                                                                                          | alculus, 162.448                                                                                                      | 35 ft         |                            |               |                          |                        |                    |                                        |  |  |  |

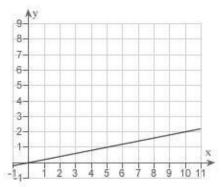
- 62 Chapter P: Preparation for Calculus
- b. precalculus, 163.7985 ft
- c. calculus, 165.4777 ft
- d. precalculus, 165.4777 ft
- e. precalculus, 162.4485 ft

\_\_\_\_\_ 3. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

A cyclist is riding on a path whose elevation is modeled by the function  $f(x) = 0.08 \left(16x - x^2\right)$  where x and f(x) are measured in miles. Find the rate of change of elevation when x = 4.

44 Chapter 1: Limits and Their Properties



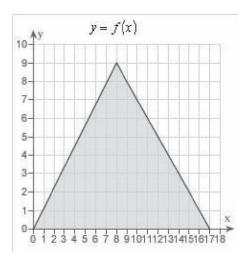

- a. precalculus, 0.08
- b. calculus, 0.2
- c. calculus, 0.64
- d. calculus, 0.08
- e. precalculus, 0.2

4. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

$$f(x) = 0.2x$$

f(x) are measured in miles. Find the rate of change of elevation when x = 5.

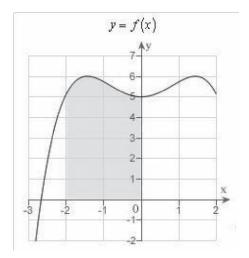
$$y = f(x)$$




- b. precalculus, 0.2
- c. calculus, 0.2
- d. precalculus, 2
- e. precalculus, 0.45

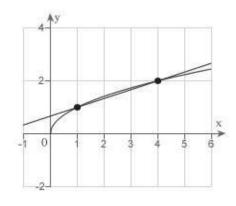
1.1 A Preview of Calculus 45

5. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

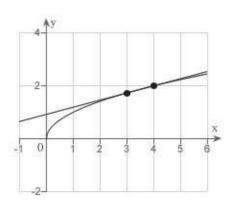

Find the area of the shaded region bounded by the triangle with vertices (0,0), (8,9), (17,0).



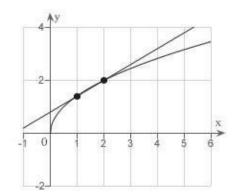
- a. precalculus, 153
- b. calculus, 229.5
- c. precalculus, 76.5
- d. precalculus, 229.5
- e. calculus, 153

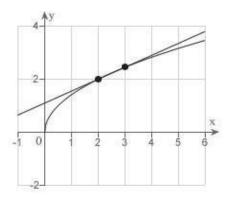

\_\_\_\_\_ 6. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the area of the shaded region.

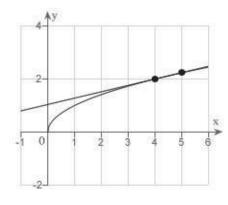



- a. calculus, 11
- b. precalculus, 11
- c. precalculus, 13
- 46 Chapter 1: Limits and Their Properties
- d. calculus, 16
- e. precalculus, 16
- 7. Consider the function  $f(x) = \sqrt{x}$  and the point P(4,2) on the graph of f. Graph f and the secant line passing through P(4,2) and Q(x,f(x)) for x=3.


a.




d.




b. e.







