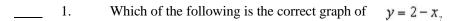
1

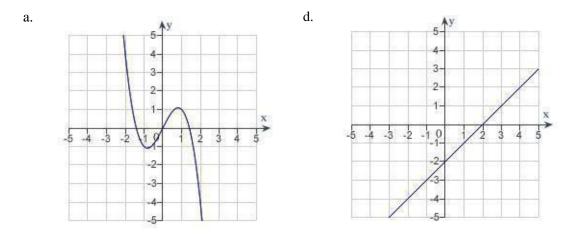
Full link download Calculus Hybrid Early Transcendental

Functions 6th Edition by Larson and Edwards

Test bank:

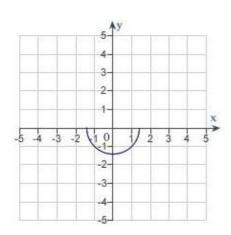
https://testbankpack.com/p/test-bank-for-calculus-hybrid-earlytranscendental-functions-6th-edition-by-larson-and-edwards-isbn-1285777026-9781285777023/

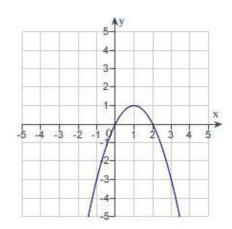

Solution manual:

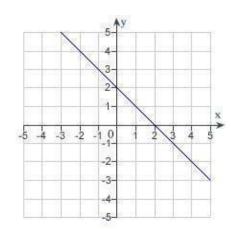

https://testbankpack.com/p/solution-manual-for-calculus-hybrid-earlytranscendental-functions-6th-edition-by-larson-and-edwards-isbn-<u>1285777026-9781285777023/</u>

1.1 Graphs and Models

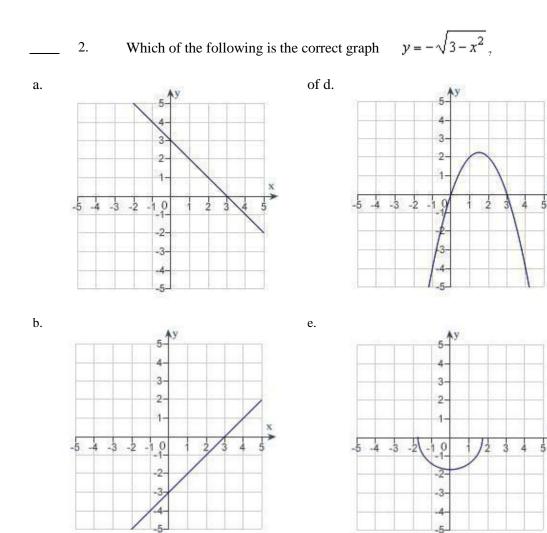
Multiple Choice


Identify the choice that best completes the statement or answers the question.

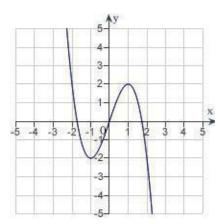




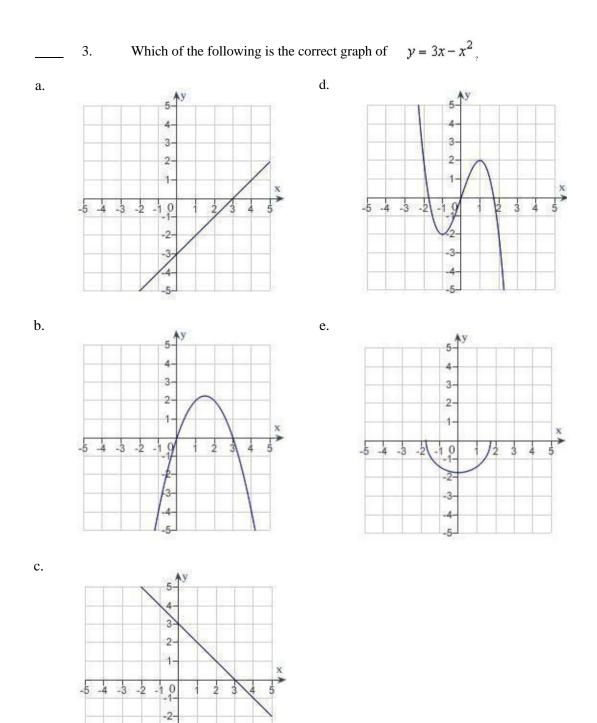
c.

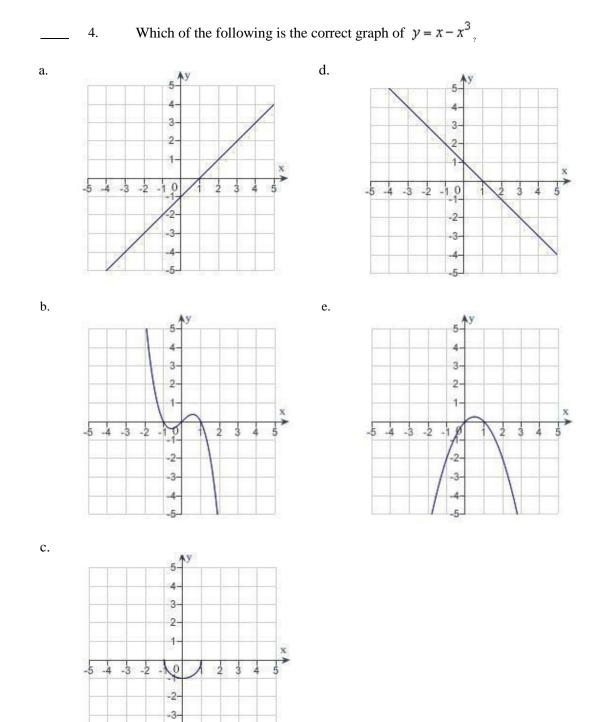


e.



x


х


c.

-3--4--5-

-4--5-

_____ 5. Find all intercepts:

 $y = x^2 - x - 12$

a. x-intercepts: (4,0), (-3,0); y-intercepts: (0, 4), (0, 3)

- b. *x*-intercept: (12, 0); *y*-intercepts: (0, 4), (0, 3)
- c. *x*-intercepts: (4, 0), (-3,0); *y*-intercept: (0, -12)
- d. x-intercepts: (4, 0), (-3, 0); y-intercepts: (0, -12), (0, 12)
- e. *x*-intercept: (=3, 0); *y*-intercept: (0, -12)

6. Find all intercepts:

 $y = 64x - x^3$

- a. *x*-intercepts: (-8, 0), (8, 0); no *y*-intercept
- b. *x*-intercept: (0, 0); *y*-intercepts: (0, 0), (0, -8), (0, 8)
- c. *x*-intercepts: (0, 0), (-8, 0), (8, 0); *y*-intercept: (0, 0)
- d. x-intercepts: (0, 0), (-8, 0), (8, 0); no y-intercept e. x-
- intercepts: (-8, 0), 8; y-intercept: (0, 0)

7. Find all intercepts:

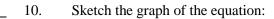
$$y = (x+5)\sqrt{4-x^2}$$

- a. x-intercepts: (-5, 0), (-2, 0), (2, 0); y-intercepts: (0, 0), (0, 10)
- b. x-intercepts: (-5, 0), (2, 0); y-intercept: (0, 10)
- c. *x*-intercepts: (-5, 0), (2, 0); *y*-intercept: (0, -10)
- d. *x*-intercepts: (-5, 0), (-2, 0), (2, 0); *y*-intercept: (0, 10)
- e. x-intercepts: (-5, 0), (-2, 0), (2, 0); y-intercept: (0, -10)

8. Test for symmetry with respect to each axis and to the origin.

$$x^2y^2 = 8$$

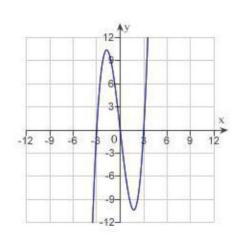
- a. symmetric with respect to the origin
- b. symmetric with respect to the *x*-axis
- c. symmetric with respect to the y-axis
- d. no symmetry

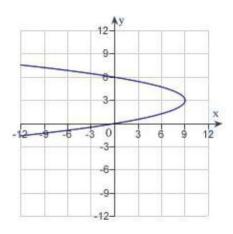

e. A, B, and C

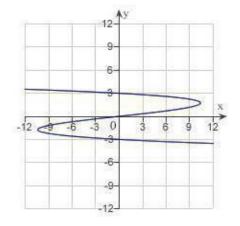
9. Test for symmetry with respect to each axis and to the origin.

$$y = \frac{x^2 + 2}{x}$$

- a. symmetric with respect to the origin
- b. symmetric with respect to the y-axis
- c. symmetric with respect to the *x*-axis
- $d. \quad both \ B \ and \ C$


e. no symmetry

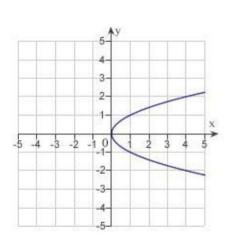


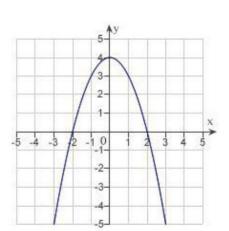

d.

$$x = y^3 - 9y$$

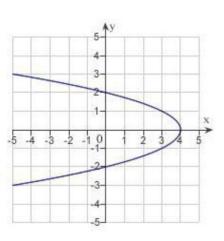
a.

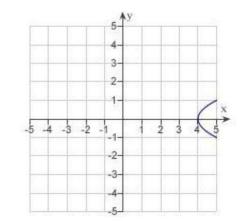
e. none of the above

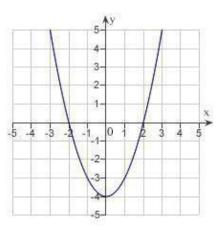

Sketch the graph of the equation:


d.

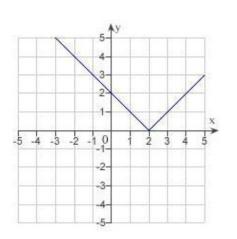
e.

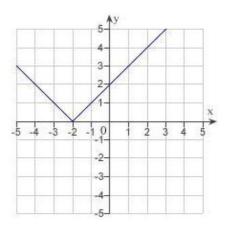

$$x = 4 - y^2$$

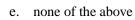

a.



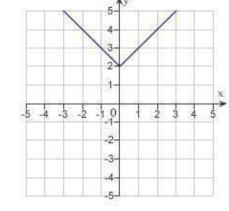
b.

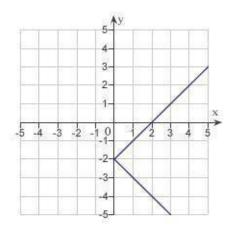





Sketch the graph of the equation:

y = |x + 2|




b.

d.

c.

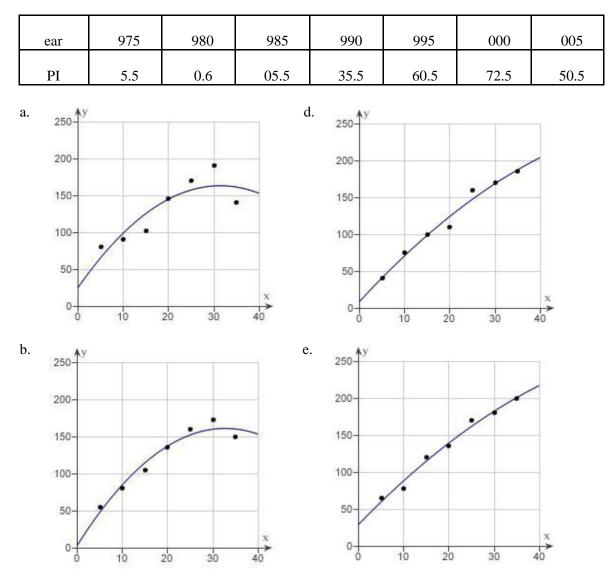
a.

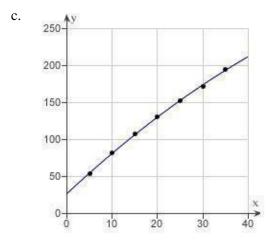
13. Find the points of intersection of the graphs of the equations:

$$x = y^{2} - 3$$

$$y = x + 1$$

a. (-2, 1), (-1, 2)
b. (-2, 0), (1, 2)
c. (-2, -4), (1, 2)
d. (2, -1), (-1, 2)
e. (-2, -3), (-1, 2)


The table given below shows the Consumer Price Index (CPI) for selected years. Use the 14. $y = at^2 + bt + c$ for the regression capabilities of a graphing utility to find a mathematical model of the form data. In the model, y represents the CPI and t represents the year, with t = 5 corresponding to 1975. Round all numerical values in your answer to three decimal places.


ear	975	980	985	990	995	000	005
PI	7.8	0.6	03.6	30.7	52.4	70.5	92.5

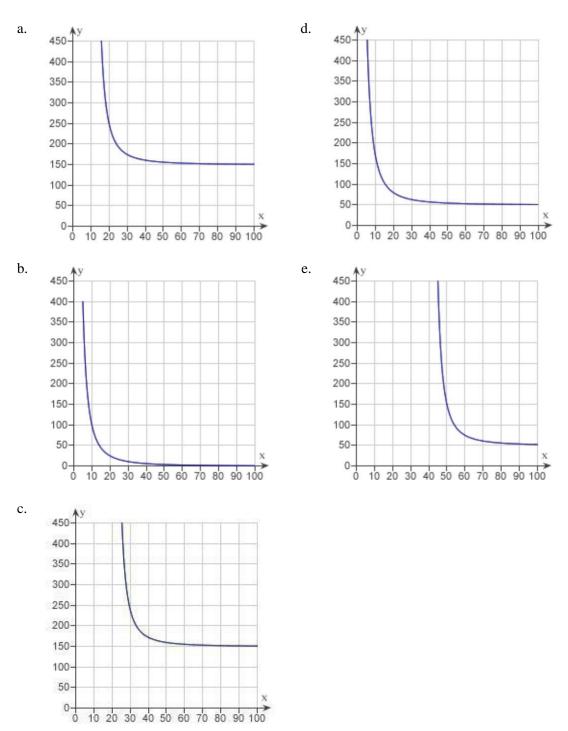
a. $y = -0.019t^{2^{2}} + 5.268t + 30.871$

b. $y = -0.019t^2 + 5.957t + 30.871$ c. $y = -0.019t^2 + 5.957t - 30.871$ d. $y = -0.019t^2 + 5.957t - 40.871$ e. $y = -0.016t^2 + 5.268t + 40.871$

15. The table given below shows the Consumer Price Index (CPI) for selected years. Use a graphing utility to plot the data and graph the model $y = -0.1476t^2 + 9.6462t + 3.8286$.

16. The table given below shows the Consumer Price Index (CPI) for selected years. The mathematical model for the data given below is $v = -0.031t^2 + 5.887t + 24.429$, where y represents the CPI and t represents the year, with t = 5 corresponding to 1975. Use the model to predict the CPI for the year 2010. Round your answer to the nearest integer.

ear	975	980	985	990	995	000	005
PI	2.8	0	06.6	30.7	52.4	71.2	94.3


a. y = 211

- b. y = 209
- c. y = 192
- d. y = 173
- e. y = 210

17. Find the sales necessary to break even (R = C) if the cost C of producing x units is $C = 5.3\sqrt{x} + 40,000$ and the revenue R for selling x units is R = 3.3x. Round your answer to the nearest integer.

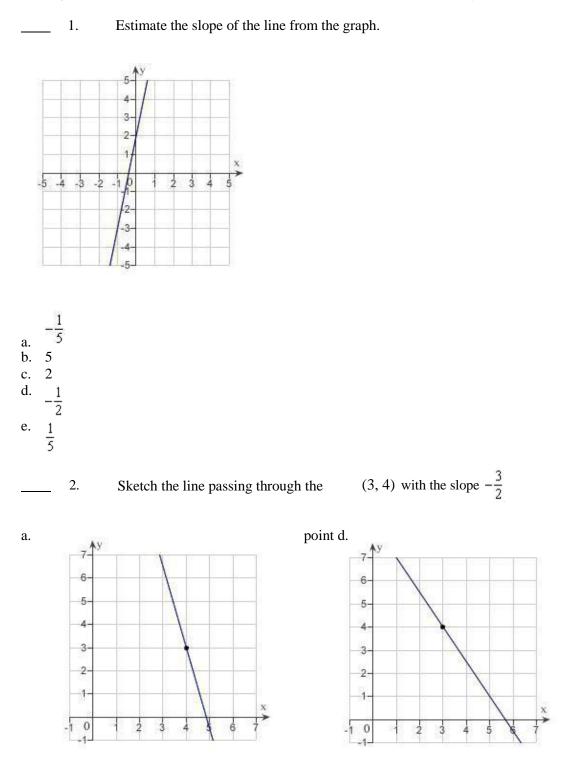
- a. $x \approx 6,244$ units
- b. $x \approx 12,334$ units
- c. $x \approx 12,305$ units
- d. x 🛚 12, 299 units
- e. $x \approx 6,239$ units

18. The resistance y in ohms of 1000 feet of solid metal wire at can be approximated by the model $y = \frac{10,000}{x^2} - 0.57$, $5 \le x \le 100$, where x is the diameter of the wire in mils (0.001 in). Use a graphing utility to graph the model $y = \frac{10,000}{x^2} - 0.57$, $5 \le x \le 100$.

The resistance y in ohms of 1000 feet of solid metal wire at $\mathcal{TP}^{\circ}F$ can be approximated by the 19. $y = \frac{12,750}{x^2} - 0.37, \ 5 \le x \le 100,$

where x is the diameter of the wire in mils (0.001 in). If the diameter model of the wire is doubled, the resistance is changed by approximately what factor? In determining your answer, you can ignore the constant -0.37.

- a. 3
- $\frac{1}{2}$ b.
- 4 c.
- d. 1
- 4
- $\frac{1}{3}$ e.


1.1 Graphs and Models Answer Section

1. OBJ:	ANS: Identify the g	C raph of	PTS: a linear equa	1 tion	DIF:	Easy	REF: MSC:	Section 1.1 Skill
2. OBJ:	ANS: Identify the g	Ē	PTS:	1	DIF:	Easy	REF: MSC:	Section 1.1 Skill
3. OBJ:	ANS: Identify the g	B raph of	PTS: a quadratic e	1 quation	DIF:	Easy	REF: MSC:	Section 1.1 Skill
4. OBJ:	ANS: Identify the g	B raph of	PTS: a cubic equa	1 tion	DIF:	Easy	REF: MSC:	Section 1.1 Skill
5. OBJ:	ANS: Calculate the	C interce	PTS: pts of an equa	1 ation	DIF:	Easy	REF: MSC:	Section 1.1 Skill
6. OBJ:	ANS: Calculate the	C interce	PTS: pts of an equa	1 ation	DIF:	Easy	REF: MSC:	Section 1.1 Skill
7. OBJ:	ANS: Calculate the	D interce	PTS: pts of an equa	1 ation	DIF:	Easy	REF: MSC:	Section 1.1 Skill
8. OBJ:	ANS: Identify the ty	E ype of s	PTS: symmetry of t	1 he graph	DIF: of an equation	Easy	REF: MSC:	Section 1.1 Skill
9. OBJ:	ANS: Identify the ty	A ype of s	PTS: symmetry of t	1 he graph	DIF: of an equation	Easy	REF: MSC:	Section 1.1 Skill
10. OBJ:	ANS: Graph a cubic	C c equati	PTS: on in y	1	DIF:	Med	REF: MSC:	Section 1.1 Skill
11. OBJ:	ANS: Graph a quad	B ratic ec	PTS: uation in y	1	DIF:	Easy	REF: MSC:	Section 1.1 Skill
12. OBJ:	ANS: Graph an abs	D olute va	PTS: alue equation	1	DIF:	Med	REF: MSC:	Section 1.1 Skill
13. OBJ:	ANS: Calculate the	C points	PTS: of intersection	1 n of the g	DIF: graphs of equat	Med ic ns	REF: MSC:	Section 1.1 Skill
14. OBJ:	ANS: Write a quadi	A atic mo	PTS: odel for data u	1 Ising the	DIF: regression cap	Easy abilities of a gra	REF:	Section 1.1 ility
	-			-		-	MSC:	Application
15. OBJ:	ANS: Plot a quadra	B tic mod	PTS: el for data us	1 ing the re	DIF: egression capab	Easy bilities of a grap	REF: hing util	Section 1.1
010.	i iot a quadia	lie mou		ing the r	egression cuput	findes of a grap	MSC:	
16. OBJ:	ANS: Evaluate a qu	E adratic	PTS: model in app	1 lications	DIF:	Easy	REF: MSC:	Section 1.1 Application
17. OBJ:	ANS: Solve for the	D break-e	PTS: even point in a	1 applicatio	DIF: ons	Med	REF: MSC:	Section 1.1 Application
18.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.1
OBJ: 19.	Plot a rationa ANS:	l model D	using the cap PTS:	pabilities	of a graphing DIF:	Med	MSC: REF:	Application Section 1.1
OBJ:	Interpret a rat			I	υп.	Mea	MSC:	Application

1.2 Linear Models and Rates of Change

Multiple Choice

Identify the choice that best completes the statement or answers the question.

_ 3. Find the slope of the line passing through the pair of points.

(-3, -6), (0, -11)a. $\frac{3}{5}$ b. $-\frac{5}{3}$ c. $\frac{5}{3}$ d. 0e. $-\frac{3}{5}$

Find the slope of the line passing through the points $\left(-\frac{1}{8}, \frac{8}{3}\right)$ and $\left(-\frac{3}{16}, \frac{1}{24}\right)$. 4.

- a. 63
- b. -21
- c. 42
- d. 21
- e. _42

m and passes through the point (4, 8), through which of the 5. If a line has slope following points does the line also pass?

- a. (1, 20)
- b. (1, 12)
- c. (1, 0)
- d. (8, -16)
- e. (8, -24)

A moving conveyor is built to rise 5 meters for every 7 meters of horizontal change. 6. Find the slope of the conveyor.

a. 0 $\frac{5}{7}$ b. 7 7 7 3 7 3 5 7 c. d. e.

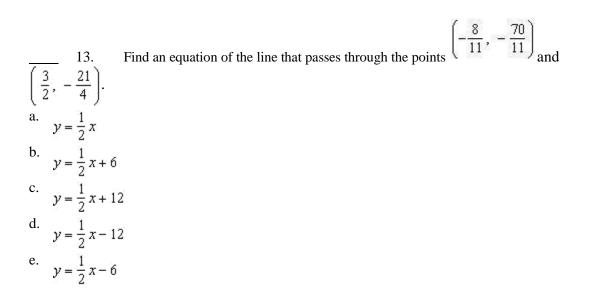
7. A moving conveyor is built to rise 1 meter for every 5 meters of horizontal change. Suppose the conveyor runs between two floors in a factory. Find the length of the conveyor if the vertical distance between floors is 10 meters. Round your answer to the nearest meter.

- 61 meters a.
- b. 39 meters
- c. 51 meters
- d. 50 meters
- e. 41 meters

	8.	Find the slope of the line $x + 3y = 15$.
a.	$\frac{1}{3}$	
b.	$-\frac{1}{5}$	
c.	$\frac{1}{\frac{1}{5}}$	
d.	-11	
e.	$5 - \frac{1}{15} - \frac{1}{3}$	
	9.	Find the <i>y</i> -intercept of the line $x + 4y = 8$.
b. с.	(0, 2) (0, 4) (0, 8) (4, 0) (2, 0)	

10. Find an equation of the line that passes through the point (7, 2) that is and has the slope *m* undefined.

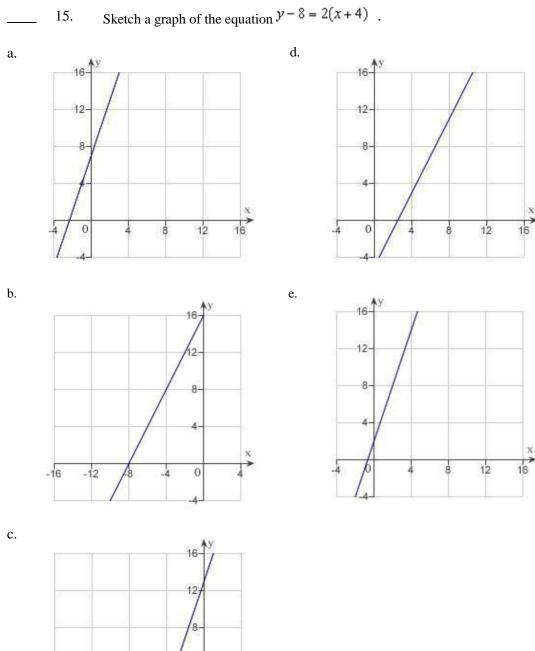
- a. y = 7
- b. $\chi = 7$
- c. y = 2
- d. x = 2
- e. y = 7x


<i>m</i> =	11. 	Find an equation of the
a.	$y = \frac{9}{2}x$	<u>81</u> 2
b.	$y = \frac{9}{2}x + \frac{9}{$	81 2
c.	$y = \frac{9}{2}x + \frac{9}{$	162
d.	$y = \frac{9}{2}x$	
e.	$y = -\frac{9}{2}x$	

1.	Find an equation of the line that passes through the point $(-11, -9)$ and has the slope

Find an equation of the line that passes through the points (18, -7) and (-18, 23).

a. $y = -\frac{5}{6}x - 8$ b. $y = \frac{5}{6}x - 8$ c. $y = \frac{5}{6}x + 8$ d. $y = -\frac{5}{6}x + 8$ e. $y = -\frac{5}{6}x$


12.

 $\frac{x}{a} + \frac{y}{b} = 1$ $a \neq 0, b \neq 0$, to write an equation of the line with *x*-intercept: (8,0) and *y*-intercept: (0,7).

- a. 8x 7y 8 = 0
- b. 7x 8y + 7 = 0
- $c. \quad 8x + 7y + 8 = 0$
- d. 7x + 8y + 56 = 0
- e. 7x + 8y 56 = 0

x

4

0

4

-12

-16

-8

x

15.

_____ 16. Write an equation of the line that passes through the given point and is perpendicular to the given line.

Point Line (-1, -7) x = 6a. y = 7b. y = -7c. y = -1d. x = -1e. x = 1

_____ 17. Write an equation of the line that passes through the given point and is parallel to the given line.

Point Line (3, -4) -2x - 5y = 9a. -2x - 5y = 14b. -2x - 5y = 23c. 2x - 5y = 14d. -2x + 5y = -26e. 2x - 5y = 23

18. Write an equation of the line that passes through the point (-6, 4) and is perpendicular to the line x + y = 5.

- a. x y + 10 = 0
- b. x y + 2 = 0
- c. x + y 2 = 0
- d. x + y + 10 = 0
- $e. \quad x+y-5=0$

19. Write an equation of the line that passes through the point $\left(\frac{5}{4}, \frac{5}{8}\right)$ and is parallel to

the line 7x - 3y = 0.

- a. 56x 24y 55 = 0
- b. 56x + 12y 55 = 0
- c. 56x 8y + 55 = 0
- d. 56x + 6y + 55 = 0
- e. 56x + 4y 55 = 0

20. Suppose that the dollar value of a product in 2008 is \$174 and the rate at which the value of the product is expected to increase per year during the next 5 years is \$7.50. Write a linear equation that gives the dollar value V of the product in terms of the year t. (Let t = 0 represent 2000 .) Round the numerical values in your answer to one decimal place, where applicable.

- a. V = 7.5t 159
- b. V = -7.5t 114
- c. V = -7.5t + 174
- d. V = 7.5t + 114
- e. V = 7.5t 144

_ 21. Find an equation of the line through the points of intersection of $y = x^2$ and

a. y = x - 6

.

- b. y = 6x
- c. y = -6x
- d. y = 3x
- e. y = x + 3

22. A company reimburses its sales representatives \$175 per day for lodging and meals plus 45ϕ per mile driven. Write a linear equation giving the daily cost C to the company in terms of x, the number of miles driven. Round the numerical values in your answer to two decimal places, where applicable.

- a. C = -1.75x + 45
- b. C = 0.45x + 175
- c. C = -0.45x 175
- d. C = 0.45x 175
- e. C = 1.75x 45

23. A company reimburses its sales representatives 160 per day for lodging and meals plus 42ϕ per mile driven. How much does it cost the company if a sales representative drives 135 miles on a given day? Round your answer to the nearest cent.

- a. 227.20
- b. 216.70
- c. 136.35
- d. 161.35
- e. 191.70

24. A real estate office handles an apartment complex with 50 units. When the rent is \$800 per month, all 50 units are occupied. However, when the rent is \$845, the average number of occupied units drops to 47. Assume that the relationship between the monthly rent and the demand x is linear. Write a linear equation giving the demand x in terms of the rent P.

a.
$$x = \frac{1}{15} (1595 - p)$$

b. $x = \frac{1}{15} (1505 + p)$
c. $x = \frac{1}{45} (1550 + p)$
d. $x = \frac{1}{45} (1550 + p)$
e. $x = \frac{1}{45} (1595 + p)$

25. A real estate office handles an apartment complex with units. When the rent is \$600 per month, all 50 units are occupied. However, when the rent is \$645, the average number of occupied units drops to 47. Assume that the relationship between the monthly rent P and the demand x is linear. Predict the number of units occupied if the rent is raised to \$660

- a. 43 units
- b. 54 units
- c. 57 units
- d. 49 units
- e. 46 units

1.2 Linear Models and Rates of Change Answer Section

1.	ANS: B	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Estimate the slope		ts graph			MSC:	Skill
2.	ANS: D	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Sketch the line pa			•	ope	MSC:	Skill
3.	ANS: B	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Calculate the slop	-	ng throug	-		MSC:	Skill
4.	ANS: C	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Calculate the slop	•	ng throug	•		MSC:	Skill
5.	ANS: A	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Identify a point of	-	cified pro	operties		MSC:	Skill
6.	ANS: B	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Calculate slopes i	n applications				MSC:	Application
7.	ANS: C	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Calculate slopes i	n applications				MSC:	Application
8.	ANS: E	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Manipulate a line	ar equation to de	termine i	ts slope		MSC:	Skill
9.	ANS: A	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Manipulate a line	ar equation to de	termine i	ts y-intercept		MSC:	Skill
10.	ANS: B	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Write an equation	of a line given a	point or	the line and i	•	MSC:	Skill
11.	ANS: B	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Write an equation				•	MSC:	Skill
12.	ANS: D	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Write an equation		wo point		2005	MSC:	Skill
13.	ANS: E	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Write an equation		wo point		1.100	MSC:	Skill
14.	ANS: E	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Write an equation				2005	MSC:	Skill
15.	ANS: B	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Sketch the graph				1,104	MSC:	Skill
16.	ANS: C	PTS:	1	DIF:	Med	REF:	Section 1.2
OBJ:	Write an equation						2000000000
	el/perpendicular	B	· r · · · · ·			MSC:	Skill
17.	ANS: A	PTS:	1	DIF:	Med	REF:	Section 1.2
	Write an equation						
	el/perpendicular	0	1			MSC:	Skill
18.	ANS: A	PTS:	1	DIF:	Med	REF:	Section
	BJ:Write an equatio						
	1	U	1			MSC:	Skill
19.	ANS: A	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Write an equation	of a line given a	point or		•		
		C	-			MSC:	Skill
20.	ANS: D	PTS:	1	DIF:	Easy	REF:	Section 1.2
OBJ:	Write linear equat				5	MSC:	Application
		TI					11

21	ANS: OBJ:	2	PTS: uation of	-	DIF: ough the poir	Med ts of int	REF: ersection of quadratic	Sectior equation	
		1			0 1		1	MSC:	
	22.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.2
	OBJ:	Write linear	equatio	ns in appli	cations			MSC:	Application
	23.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.2
	OBJ:	Evaluate lin	ear equa	tions in ap	plications			MSC:	Application
	24.	ANS:	D	PTS:	1	DIF:	Med	REF:	Section 1.2
	OBJ:	Write linear	equatio	ns in appli	cations			MSC:	Application
	25.	ANS:	E	PTS:	1	DIF:	Easy	REF:	Section 1.2
	OBJ:	: Evaluate linear equations in applications MSC: Applic							
	26.	ANS:	С	PTS:	1	DIF:	Med	REF:	Section 1.2
	OBJ:	Calculate th	e distan	e between	a point and	a line		MSC:	Skill

1.3 Functions and Their Graphs

Multiple Choice

Identify the choice that best completes the statement or answers the question.

Evaluate (if possible) the function f(x) = -6x - 5 at x = -2. Simplify the result. 1. a. –7 b. 17 c. 3 d. 7 e. undefined Evaluate (if possible) the function $f(x) = \sqrt{x-5}$ at x = 9. Simplify the result. 2. a. 3 b. 2 c. _2 d. 4 e. undefined Evaluate (if possible) the function $g(x) = x^2(x+2)$ at x = t - 6. Simplify the result. 3.

- a. $t^3 4t^2 + 12t 144$
- b. $t^3 4t^2 + 84t 144$
- c. $t^3 16t^2 + 84t 144$
- d. $t^{3(-16t^2)} + 12t + 144$
- e. none of the above

4. Let f(x) = 14x + 8. Then simplify the expression $\frac{f(x) - f(9)}{x - 9}$.

- a. 15
- b. 14
- c. 19
- d. 11
- e. undefined

____ 5. Let
$$g(x) = \frac{1}{\sqrt{x+15}}$$
. Evaluate the expression $\frac{g(x) - g(-11)}{x+11}$ and then simplify the

result.

$$g(x) = \frac{1}{\sqrt{x+15}}, \frac{g(x) - g(-11)}{x+11}$$

a.
$$\frac{2\sqrt{x+15} - x - 15}{2(x+11)(x+15)}$$

b.
$$2\sqrt{x+15} + x-15$$

 $2(x-11)(x+15)$

c.
$$2\sqrt{x+45} + x-45}$$

 $2(x+11)(x+45)$

d.
$$\frac{2\sqrt{x+15} - x - 15}{2(x-11)(x+15)}$$

e. undefined

Find the domain and range of the function $f(x) = x^2 - 6$. 6.

a. domain: $[-6, \infty)$ range: $[-6, \infty)$ b. domain: $[-6, \infty)$ range: [-6, ∞)

c. domain: range:
$$(-\infty, \infty)$$

- d. domain: $(-6, \infty)$
- e. domain: range: (-∞, ∞) [-6, co)

Find the domain and range of the function $g(t) = \sqrt{t-10}$.

a. domain: [10, co) range: (0, ∞)

7.

- b. domain: (10, co) range: [0, ∞)
- c. domain: [10, ∞) range: (-co, co)
- d. domain: [0, ∞) range: [10, ∞)
- e. none of the above

8. Find the domain and range of the function $h(x) = \frac{11}{x+6}$

- b. domain: (-∞, 6) ∪ (-6, ∞)
 range: (-∞, 0) ∪ (0, ∞)
- c. domain: $(-\infty, -6] \cup [-6, \infty)$ range: $(-\infty, 0) \cup (0, \infty)$

Evaluate

- d. domain: (-∞, 6) range: (0, ∞)
- e. domain: (-6, ∞) range: (0, ∞)

the function
$$f(x) = \begin{cases} 2x + 1, \ x < 0\\ 2x + 2, \ x \ge 0 \end{cases} \text{ at } f(5).$$

a. f(5) = 6

9.

- b. f(5) = 5
- c. f(5) = 13
- d. f(5) = 11
- $\begin{array}{ccc} \alpha & f(0) = 11 \\ \alpha & g(0) = 12 \end{array}$
- e. f(5) = 12

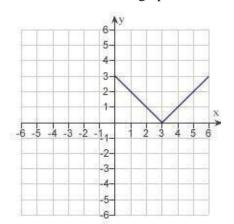
Determine the domain and range of the function $f(x) = \begin{cases} 3x + 2, \ x < 0\\ 3x + 6, \ x \ge 0 \end{cases}$

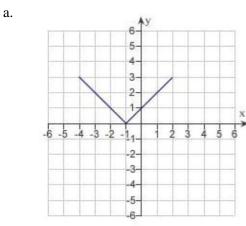
 a. domain: range: (-∞, 2)
 b. domain: (-∞, 2) ∩ [6, ∞]

10.

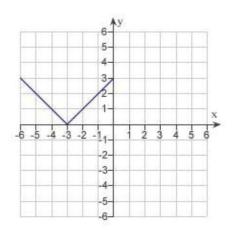
- $(-\infty, \infty)$ range:
- c. domain: $(-\infty, \infty)$ range: $(-\infty, \infty)$
- d. domain: (-∞, ∞) range:
 e. domain: (-∞, ∞)
 - domain: $(-\infty, 3)$ range: $(-\infty, 2) \cap [6, \infty)$

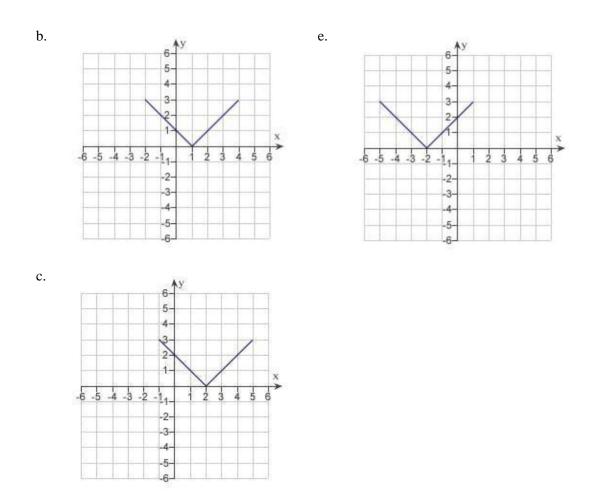
11. Determine whether *y* is a function of *x*.

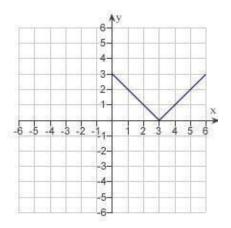

 $y - 5x^2 = 6$


- a. no
- b. yes

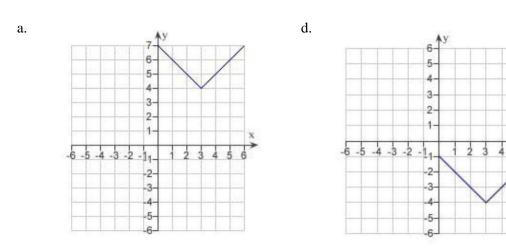
12. Determine whether *y* is a function of *x*. $xy - x^2 = 3y + x$


- a. no b. Yes

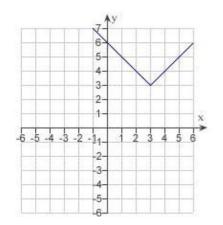

Use the graph of y = f(x) given below to find the graph of the function y = f(x + 5). 13.



d.

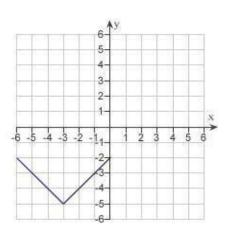


14. Use the graph of y = f(x) given below to find the graph of the function y = f(x) + 4.



x

5



6¹∕ 5-4-37 1x -1₁₋ -2--3--6 -5 -4 -3 -2 2 3 5 4 6 -4--5-

c.

b.

_____ 15. Specify a sequence of transformations for the function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ that will yield the graph of *h* from the graph of the function $f(x) = \sin x$.

The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a horizontal shift $\frac{\pi}{3}$ units to the right, followed a. by a vertical shift 7 units downwards. $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a horizontal shift $\frac{\pi}{3}$ units to the left, followed b. The function by a vertical shiftunits upwards. The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a horizontal shift $\frac{\pi}{3}$ units to the left, followed by c. a horizontal shift 7 units to the right. The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a vertical shift $\frac{\pi}{3}$ units downwards, followed by d. a horizontal shift units to the right. The function $h(x) = \sin\left(x + \frac{\pi}{3}\right) + 7$ is a vertical shift $\frac{\pi}{3}$ units upwards, followed by a e.

horizontal shift 7 units to the left.

16. Given
$$f(x) = \cos x$$
 and $g(x) = \frac{\pi}{2} x$, evaluate $f(g(2))$.

a. 0
b.
$$\frac{1}{2}$$

c. $\frac{\pi}{2}\sin(2)$
d. -1
e. $\frac{\pi}{2}\cos(2)$

_____ 17. Determine whether the function is even, odd, or neither.

 $f(x) = x^2(3-x)^2$

- a. odd
- b. even
- c. neither

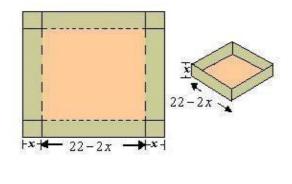
18. Determine whether the function is even, odd, or neither.

 $f(x) = x \sin 2x$

- a. even
- b. odd
- c. neither

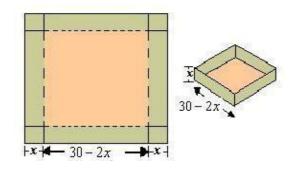
19. Find the coordinates of a second point on the graph of a function *f* if the given point $\left(-\frac{6}{5}, 8\right)$ is on the graph and the function is even.

a. $\left(8, -\frac{6}{5}\right)$ b. $\left(-8, -\frac{6}{5}\right)$ c. $\left(-\frac{6}{5}, -8\right)$ d. $\left(\frac{6}{5}, -8\right)$ e. $\left(\frac{6}{5}, 8\right)$


 $\frac{20.}{\left(-\frac{9}{8}, 5\right)}$ Find the coordinates of a second point on the graph of a function *f* if the given point is odd.

a. $\left(-5, -\frac{9}{8}\right)$ b. $\left(\frac{9}{8}, -5\right)$ c. $\left(-5, \frac{9}{8}\right)$ d. $\left(-\frac{9}{8}, -5\right)$ e. $\left(\frac{9}{8}, 5\right)$ 21. The horsepower *H* required to overcome wind drag on a certain automobile is approximated by $H(x) = 0.002x^2 + 0.005x - 0.027$, $10 \le x \le 100$ where *x* is the speed of the car in

miles per hour. Find . Round the numerical values in your answer to five decimal places.


a. $H\left(\frac{x}{1,1}\right) = 0.00150x^{2} + 0.00455x - 0.02700$ b. $H\left(\frac{x}{1,1}\right) = 0.00150x^{2} + 0.00455x - 0.00455$ c. $H\left(\frac{x}{1,1}\right) = 0.00165x^{2} + 0.00455x - 0.02700$ d. $H\left(\frac{x}{1,1}\right) = 0.00165x^{2} + 0.00455x - 0.02700$ e. $H\left(\frac{x}{1,1}\right) = 0.00455x^{2} + 0.00455x - 0.02700$

22. An open box of maximum volume is to be made from a square piece of material 22 centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure). Write the volume V as a function of x, the length of the corner squares.

- a. $V = x(22 2x)^2$
- b. $V = x + (22 x)^2$
- c. $V = x^2 + (22 2x)$
- d. $V = x^2(22 2x)$
- e. V = x(22 2x)

23. An open box of maximum volume is to be made from a square piece of material 30 centimeters on a side by cutting equal squares from the corners and turning up the sides(see figure). What is the domain of the function $V = x(30 - 2x)^2$.

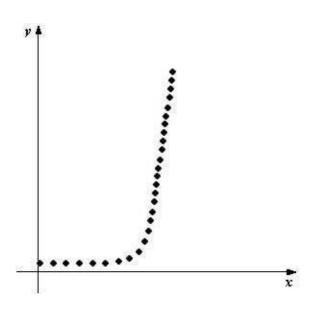
- a. domain: $0 < x < \infty$
- b. domain: 30
- c. domain: 0 < x < 15
- d. domain: 0 < x < 30
- e. domain: 15

1.3 Functions and Their Graphs Answer Section

1.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Evaluate a fur	nction a	and simplify				MSC:	Skill
2.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Evaluate a fur	nction a	and simplify				MSC:	Skill
3.	ANS:	С	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Evaluate a fur	nction a	and simplify				MSC:	Skill
4.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.3
OBJ:	Simplify a dif	ference	e quotient				MSC:	Skill
5.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section 1.3
OBJ:	Simplify a dif	ference	e quotient				MSC:	Skill
6.	ANS:	Е	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Identify the do	omain a	and range of a fu	nction			MSC:	Skill
7.	ANS:	Е	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:		omain a	and range of a fu	iction		2	MSC:	Skill
8.	ANS:	B	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:			and range of a fu	uction		2	MSC:	Skill
9.	ANS:	E	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Evaluate a pie	ecewise				5	MSC:	Skill
10.	ANS:	B	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:		_	and range of a fu	-		Lusy	MSC:	Skill
11.	ANS:	B	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:			at are functions	1	DII.	Lasy	MSC:	Skill
12.	ANS:	B	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:				1	DII [*] .	Lasy	MSC:	Skill
ОБJ. 13.	ANS:	E	at are functions PTS:	1	DIE.	East	REF:	Skill Section 1.3
OBJ:				1	DIF:	Easy		
ОБJ: 14.	ANS:	A	ns of functions PTS:	1	DIE	N (- 1	MSC: REF:	Skill
				1	DIF:	Med		Section 1.3
OBJ:	ANS:	rmanor B	ns of functions PTS:		DIE		MSC:	Skill
15. ODI		_		.1	DIF:	Med	REF:	Section 1.3
OBJ:			ation of an equat			F	MSC:	Skill
16.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Evaluate comp	-		1	DIE	Б	MSC:	Skill
17.	ANS:	C	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:	Identify the ty	pe of s	ymmetry of the		of a function		MSC:	Skill
18.	ANS:	A	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:			ymmetry of the	-		_	MSC:	Skill
19.	ANS:	E	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:			graph using sym	netry			MSC:	Skill
20.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.3
OBJ:			graph using sym	netry			MSC:	Skill
21.	ANS:	D	PTS:	1	DIF:	Med	REF:	Section 1.3
OBJ:	Apply composition						MSC:	Application
22.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section 1.3
OBJ:	Create function	ons in a	pplications				MSC:	Application

37 Chapter 1: Preparation for Calculus

23. ANS: CPTS: 1DIF: MedREOBJ: Identify domains in applicationsMS

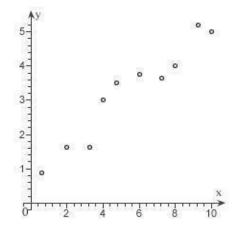

REF: Section 1.3 MSC: Application

1.4 Fitting Models to Data

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Determine which type of function would be most appropriate to fit the given data.



- a. exponential
- b. linear
- c. quadratic
- d. no relationship
- e. trigonometric

2.

Which function below would be most appropriate model for the given data?

- a. no apparent relationship between x and y
- b. trigonometric
- c. quadratic
- d. linear

3. The following ordered pairs represent temperatures in degrees Fahrenheit taken each hour from 1:00 pm until 5:00 pm. Let *T* be temperature, and let *t* be time, where t = 1 corresponds to 1:00 pm, t = 2 corresponds to 2:00 pm, and so on. Plot the data. Visually find a linear model for the data and find its equation. From the visual linear model that you created, determine which of the models that follow appears to best approximate the data.

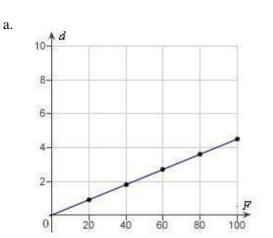
(1:00 pm, 67.4°), (2:00 pm, 71.6°), (3:00 pm, 73.4°), (4:00 pm, 77.6°), (5:00 pm, 79.4°)

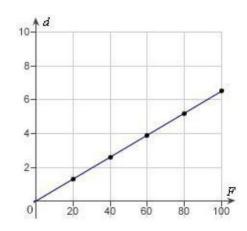
- a. T = 2t + 60
- b. T = -2t + 70
- c. T = -4t + 60
- d. T = 4t + 70
- e. T = 3t + 65

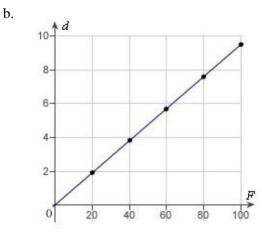
4. Each ordered pair gives the exposure index x of a carcinogenic substance and the cancer mortality y per 100,000 people in the population. Use the model to y = 9.2x + 108.4 approximate y if x = 7. Round your answer to one decimal place.

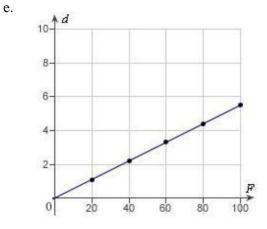
- a. 168.2
- b. 163.6
- c. 182.0
- d. 172.8
- e. 177.4

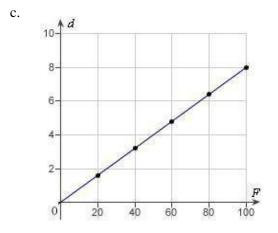
5. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, F = kd where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use the regression capabilities of a graphing utility to find a linear model for the data. Round the numerical values in your answer to three decimal places.


F	20	40	60	80	100
d	1.9	3.8	5.7	7.6	9.5


- a. d = 0.675F
- b. d = 0.118F
- c. d = 0.112F
- d. d = 0.095F
- e. d = 0.905F


6. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, F = kd where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use a graphing utility to plot the data and graph the linear model.


d.


F	20	40	60	80	100
d	1.3	2.6	3.9	5.2	6.5

7. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, F = kd where k is a measure of the stiffness of the spring and is called the spring constant. The table shows the elongation d in centimeters of a spring when a force of F newtons is applied. Use the model d = 0.085 F to estimate the elongation of the spring when a force of 55 newtons is applied. Round your answer to two decimal places.

F	20	40	60	80	100
d	1.7	3.4	5.1	6.8	8.5

a. 8.08 cm

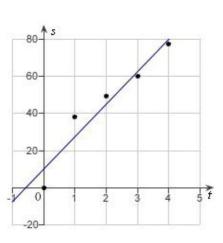
- b. 6.38 cm
- c. 4.68 cm
- d. 2.98 cm

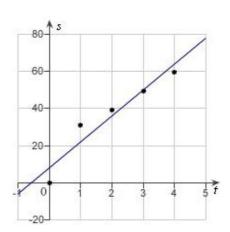
e. 9.78 cm

8. In an experiment, students measured the speed s (in meters per second) of a falling object t seconds after it was released. The results are shown in the table below. Use the regression capabilities of a graphing utility to find a linear model for the data. Round all numerical values in your answer to one decimal place.

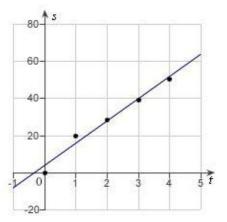
t	Û	1	2	<u></u> 3	4
's.'	0	13.0	21.4	31.2	41.4

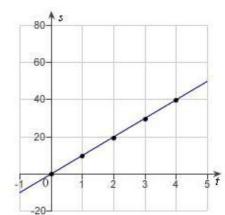
a. s = 10.1t + 1.2b. s = 3.0t - 1.2c. s = 1.2t + 10.1d. s = 10.1t + 3.0e. s = 1.2t - 3.0

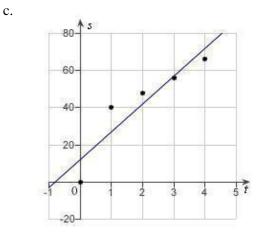

9. In an experiment, students measured the speed s (in meters per second) of a falling object t seconds after it was released. The results are shown in the table below. Use the regression capabilities of a graphing utility to find a linear model for the data. Round all numerical values in your answer to one decimal place.


d.

e.


t	0	1	2	³	⁶ ,4
,S	0	40	48.4	58.2	68.4

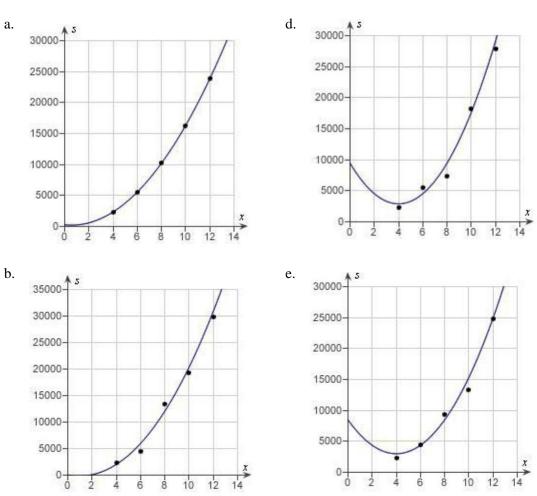

а	

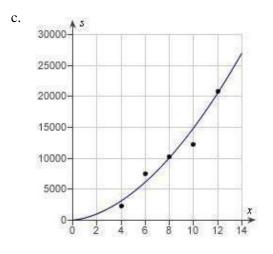


10. In an experiment, students measured the speed *s* (in meters per second) of a falling object *t* seconds after it was released. The results are shown in the table below. Use the model s = 11.9t + 4.8 to estimate the speed of the object after 1.5 seconds. Round your answer to two decimal places.

t	0	1	2	<u></u> 3	4
5	0	22.0	30.4	40.2	50.4

- a. 21.05 meters/second
- b. 20.95 meters/second
- c. 24.25 meters/second
- d. 23.55 meters/second
- e. 22.65 meters/second


11. Students in a lab measured the breaking strength *S* (in pounds) of wood 2 inches thick, *x* inches high, and 12 inches long. The results are shown in the table below. Use the regression capabilities of a graphing utility to fit a quadratic model to the data. Round the numerical values in your answer to two decimal places, where applicable.


X.	4	б	8	10	12
Č,	2422	5512	10, 362	16, 302	23, 912

- a. $S = (170)89x^2 209(79x + 324)$
- b. $S = 180.89x^2 205.79x + 324$
- c. $S = (190)89x^2 \div (201)79x \div 331$
- d. $S = (170)89x^2 209(79x + 327)$
- e. $S = (180)89x^2 \div (203)79x (33)$

12. Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use a graphing utility to plot the data and graph the quadratic model.

X.	: 4	б	8	10	12
ŝ	2370	4460	13, 310	19, 250	29, 860

13. Students in a lab measured the breaking strength S (in pounds) of wood 2 inches thick, x inches high, and 12 inches long. The results are shown in the table below. Use the model

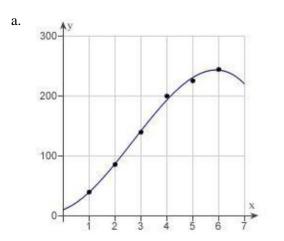
to approximate the breaking strength when x = 2. Round your answer

to two decimal places.

X	: 4	б	8	10	12
3	2382	5472	10, 322	16, 262	23, 872

a. 595.98 pounds

- b. 390.19 pounds
- c. 957.76 pounds
- d. 801.77 pounds
- e. 751.97 pounds


14. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use the regression capabilities of a graphing utility to find a cubic model for the data. Round the numerical values in your answer to three decimal places, where applicable.

X	1	2	3	4	ِ 5	б
y	64	109	164	224	249	269

- a. $y = -1.608x^3 14.583x^2 + 13.389x 37$
- b. $\hat{y} = -1/706x^3 14/583x^2 16/389x + 34$
- c. $y = 1.806x^3 + 11.583x^2 + 16.389x 41$
- d. $y = -1.806x^3 + 14.583x^2 + 16.389x + 34$
- e. $y = 1.608x^3 + 11.583x^2 19.389x + 41$

15. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use a graphing utility to plot the data and graph the cubic model.

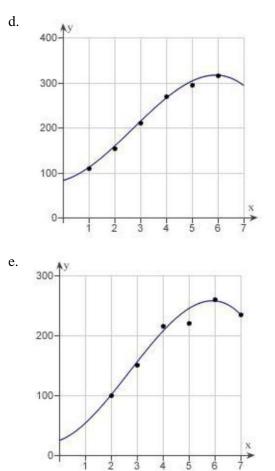
x	1	2	3	² ,4;	5	б
y	110	155	210	270	295	315

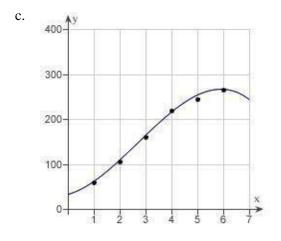
b.

400-

300-

200-


100-


0-

2 3

4 5 6

+

16. A V8 car engine is coupled to a dynamometer and the horsepower y is measured at different engine speeds x (in thousands of revolutions per minute). The results are shown in the table below. Use the model $y = -1.806x^3 + 14.58x^2 + 16.4x + 30$ to approximate the horsepower when the engine is running at 5500 revolutions per minute. Round your answer to two decimal places.

χ.	1	2	3	4	ِ ئ	б
Y	60	105	160	220	245	265

a. 260.77 hp

b. 262.73 hp

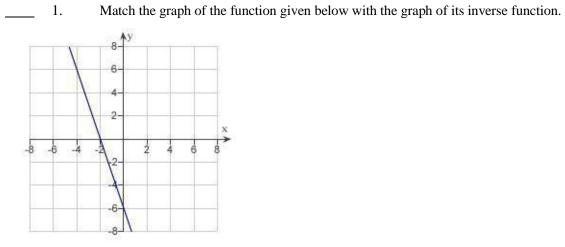
c. 262.36 hp

d. 261.38 hp

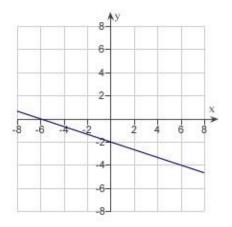
e. 261.91 hp

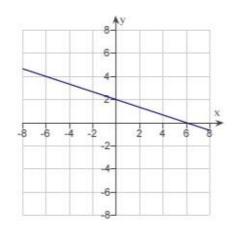
1.4 Fitting Models to Data Answer Section

1.	ANS:	А	PTS:	1	DIF:	Easy	REF:	Section 1.4
OBJ:	Identify the n	nost ap	propriate functio	n for	a scatter plot		MSC:	Skill
2.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.4
OBJ:	Identify the n	nost ap	propriate functio	n for	a scatter plot		MSC:	Skill
3.	ANS:	E	PTS:	1	DIF:	Easy	REF:	Section 1.4
OBJ:	Identify the b	est line	ar model for giv	en dat	a		MSC:	Application
4.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.4
OBJ:	Evaluate line	ar mod	els in application	18			MSC:	Application
5.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.4
OBJ:	Write a linear	model	for data using th	e regi	ession capabili	ties of a graphir	ng utility	
			-	-	-		MSC:	Application
6.	ANS:	D	PTS:	1	DIF:	Easy	REF:	Section 1.4
OBJ:	Plot data poir	nts and	the graph of a lin	near n	nodel	2	MSC:	Application
7.	ANS:	С	PTS:	1	DIF:	Easy	REF:	Section 1.4
OBJ:	Evaluate line	ar mod	els in application	ıs		2	MSC:	Application
8.	ANS:	А	PTS:	1	DIF:	Easy	REF:	Section 1.4
OBJ:	Write a linear	model	for data using th	e regi	ession capabili	ties of a graphir	ng utility	
							MSC:	Application
9.	ANS:	С	PTS:	1	DIF:	Easy	REF:	Section 1.4
OBJ:		nts and	the graph of a lin	near n		5	MSC:	Application
10.	ANS:	Е	PTS:	1	DIF:	Easy	REF:	Section 1.4
OBJ:	Evaluate line	ar mod	els in application	18		5	MSC:	Application
11.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.4
OBJ:	Write a quad	ratic m	odel for data usi	ng the	regression cap	abilities of a gra	aphing ut	ility
	1			U	0 1	C	MSC:	Application
12.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.4
OBJ:			the graph of a qu	uadrat			MSC:	Application
13.	ANS:	A	PTS:	1	DIF:	Med	REF:	Section 1.4
OBJ:	Evaluate qua	dratic r	nodels in applica	tions			MSC:	Application
14.	ANS:	D	PTS:	1	DIF:	Med	REF:	Section 1.4
OBJ:		ic mode	els in application	IS			MSC:	Application
15.	ANS:	D	PTS:	1	DIF:	Med	REF:	Section 1.4
OBJ:			the graph of a cu	ibic m			MSC:	Application
16.	ANS:	A	PTS:	1	DIF:	Med	REF:	Section 1.4
			for data using th	e regr			g utility	
			0	0	1		MSC:	Application
								- rprisedion

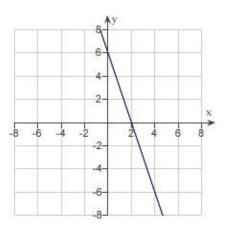

1.5 Inverse Functions

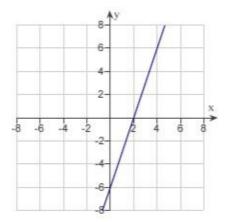
Multiple Choice

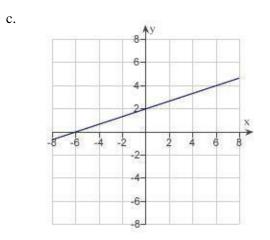

Identify the choice that best completes the statement or answers the question.

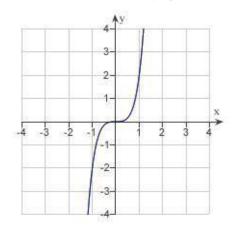

d.

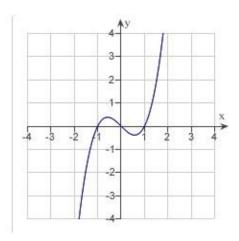
e.

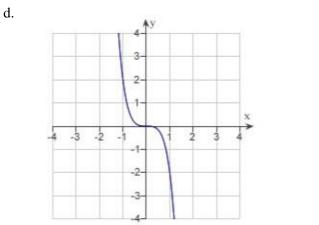


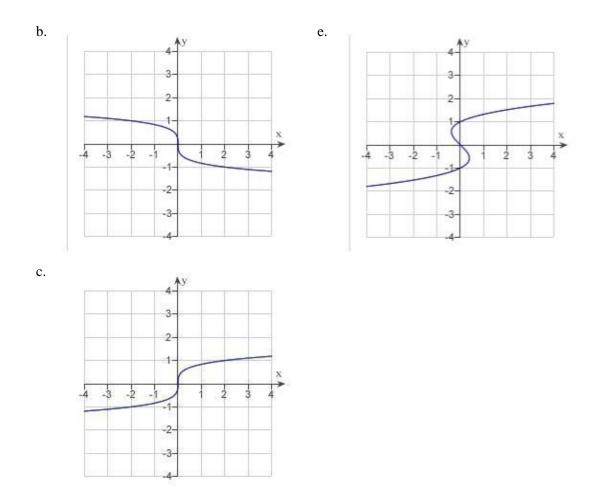

a.




b.






2. Match the graph of the function given below with the graph of its inverse function.

3. Use the Horizontal Line Test to determine whether the following statement is true or false.

The function $f(x) = \frac{3}{19}x + 3$ is one-to-one on its entire domain and therefore has an inverse function.

- a. false
- b. true

4. Use the Horizontal Line Test to determine whether the following statement is true or false.

The function f(x) = 14(x-15) + 15 is one-to-one on its entire domain and therefore has an inverse function.

a. true

b. false

5. True or False: The function
$$f(x) = \frac{1}{s-38} - 2$$
 is one-to-one on its entire domain.
a. false
b. true
6. True or False: The function $f(x) = |x+10| - |x-10|$ is one-to-one on the domain
a. false
b. true
7. Find $f^{-1}(x)$ if $f(x) = 12x - 10$.
a. $f^{-1}(x) = \ln(12x + 10)$
b. $f^{-1}(x) = \ln(12x + 10)$
b. $f^{-1}(x) = \frac{1}{12x - 10}$
c. $f^{-1}(x) = \frac{1}{12}x + \frac{1}{10}$
d. $f^{-1}(x) = 10x - 12$
e. $f^{-1}(x) = \frac{1}{12}x + \frac{5}{6}$
8. Find $f^{-1}(x)$ if $f(x) = x^7$

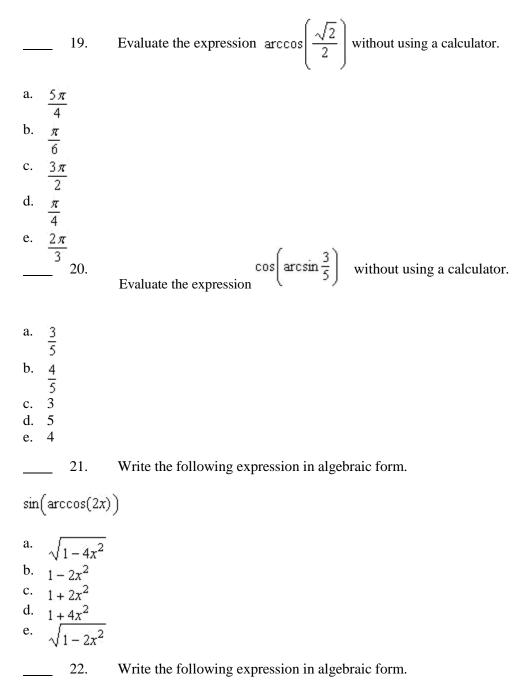
a. $f^{-1}(x) = \frac{1}{7}x^{-7}$ b. $f^{-1}(x) = x^{\frac{1}{7}}$ c. $f^{-1}(x) = \frac{1}{8}x^{8}$ d. $f^{-1}(x) = x^{-7}$ e. $f^{-1}(x) = 7x^{6}$

9. Find
$$f^{-1}(x)_{if} f(x) = x^3 - 4$$

a. $f^{-1}(x) = x^{\frac{1}{3}} + \frac{1}{4}$
b. $f^{-1}(x) = \frac{1}{3}(x+4)^{-\frac{2}{3}}$
c. $f^{-1}(x) = x^{\frac{1}{3}} + 4^{\frac{1}{3}}$
d. $f^{-1}(x) = (x+4)^{\frac{1}{3}}$
e. $f^{-1}(x) = \frac{1}{x^3 - 4}$

 $10. \quad \text{Find } f^{-1}(x)_{\text{if }} f(x) = 6x^2, x \ge 0$ a. $f^{-1}(x) = \sqrt{\frac{1}{6x}}$ b. $f^{-1}(x) = \frac{1}{6x^2}$ c. $f^{-1}(x) = \sqrt{\frac{6}{x}}$ d. $f^{-1}(x) = \frac{1}{6\sqrt{x}}$ e. $f^{-1}(x) = \sqrt{\frac{x}{6}}$

 $\begin{array}{cccc} & 11. & \text{Find } f^{-1}(x)_{\text{ if }} f(x) = \sqrt{13 - x^2}, \ 0 \le x \le \sqrt{13} \\ \text{a. } f^{-1}(x) = x + \sqrt{13}, \ 0 \le x \le \sqrt{13} \\ \text{b. } f^{-1}(x) = \left(13 - x^2\right)^2, \ 0 \le x \le \sqrt{13} \\ \text{c. } f^{-1}(x) = \sqrt{13 - x^2}, \ 0 \le x \le \sqrt{13} \\ \text{d. } f^{-1}(x) = \sqrt{x^2 - 13}, \ 0 \le x \le \sqrt{13} \\ \text{e. } f^{-1}(x) = \frac{1}{\sqrt{13 - x^2}}, \ 0 \le x \le \sqrt{13} \end{array}$

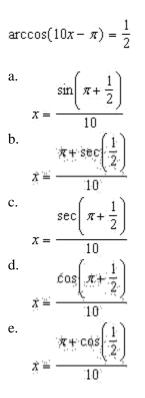

$$\begin{array}{c} 12. \quad \text{Find } f^{-1}(x) \text{ if } f(x) = 3\sqrt[5]{8x-9} \\ \hline \\ a. \\ f^{-1}(x) = \frac{1}{3} (8x-9)^5 \\ \hline \\ b. \\ f^{-1}(x) = \frac{1}{3} \left(\left(\frac{x}{3} \right)^5 + 9 \right) \\ \hline \\ c. \\ f^{-1}(x) = \frac{1}{8} \left(\left(\frac{x}{3} \right)^5 + 9 \right) \\ \hline \\ d. \\ f^{-1}(x) = \frac{1}{8} \left(\left(\frac{x}{3} \right)^5 + 9 \right) \\ \hline \\ e. \\ f^{-1}(x) \text{ does not exist} \\ \hline \\ 13. \quad \text{Find } f^{-1}(x) \text{ if } f(x) = x^{\frac{7}{17}} \\ \hline \\ a. \\ f^{-1}(x) = \frac{17}{7} \frac{7}{17} \\ \hline \\ b. \\ f^{-1}(x) = x^{-\frac{7}{17}} \\ \hline \\ c. \\ f^{-1}(x) = x^{-\frac{17}{17}} \\ \hline \\ c. \\ f^{-1}(x) = x^{\frac{17}{7}} \\ \hline \\ e. \\ f^{-1}(x) = x^{\frac{17}{7}} \\ \hline \\ e. \\ f^{-1}(x) = x^{\frac{17}{7}} \\ \hline \end{array}$$

14. You need 50 pounds of two commodities costing \$1.80 and \$2.40 per pound. Find the inverse function of the cost function y = 1.80x + 2.40(50 - x).

a. $y = \frac{5}{3}(240 - x)$ b. $y = \frac{10}{3}(-120 + x)$ c. $y = \frac{5}{3}(-240 - x)$ d. $y = \frac{5}{3}(120 - x)$ e. $y = \frac{10}{3}(120 + x)$ 15. You need 50 pounds of two commodities costing \$1.60 and \$1.95 per pound. Determine the number of pounds of the less expensive commodity purchased if the total cost y = 1.60x + 1.95(50 - x) is \$94

- a. 10 pounds
- b. 17 pounds
- c. 7 pounds
- d. 5 pounds
- e. 13 pounds

Use the functions f(x) = x + 2 and g(x) = 4x - 7 to find the function 16. $\left(g^{-1}\circ f^{-1}\right)(x)$ a. $\frac{x-5}{7}$ b. 4x + 5c. 4x - 1d. x + 54 e. x - 14 Use the functions f(x) = x + 2 and g(x) = 4x - 3 to find the function $(f \circ g)^{-1}(x)$. _____17. a. 4x - 5b. x - 54 $\frac{x+1}{4}$ c. $\frac{x-1}{3}$ d. e. $\operatorname{arcsin}\left(\frac{1}{2}\right)$ without using a calculator. 18. Evaluate the expression a. 0 b. 3π 2 $\frac{7\pi}{2}$ c. d. $\frac{\pi}{6}$ e. $\frac{4\pi}{5}$



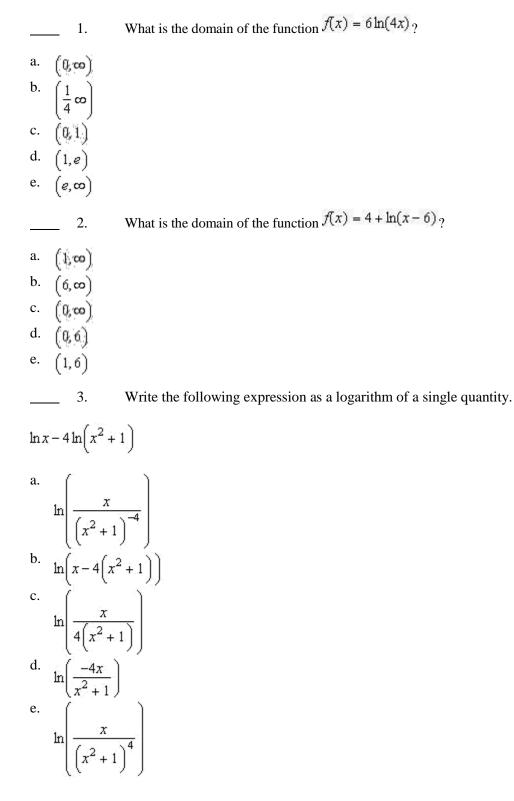
 $\cos\left(\arcsin\left(2x^{2}\right)\right)$ a. $\sqrt{1-4x^{4}}$ b. $1+4x^{4}$ c. $\sqrt{1-2x^{2}}$ d. $1+2x^{2}$ e. $1+2x^{4}$

23. Write the following expression in algebraic form.

$$\tan\left(\arccos\left(\frac{x}{8}\right)\right)$$
a. $x^2 - 64$
b. $\sqrt{x^2 - 64}$
c. $1 + 64x^2$
d. $\sqrt{x^2 - 8}$
e. $1 + 8x^2$

1.5 Inverse Functions

Answer Section


1.	ANS: A PTS: 1 DIF: Easy	REF:	Section 1.5
OBJ:	Identify the graph of the inverse of a function	MSC:	Skill
2.	ANS: C PTS: 1 DIF: Easy	REF:	Section 1.5
OBJ: 3.	Identify the graph of the inverse of a function ANS: B PTS: 1 DIF: Med	MSC: REF:	Skill Section 1.5
o. OBJ:			
ОВJ: 4.	Recognize invertible functionsANS:APTS:1DIF:Med	MSC: REF:	Application Section 1.5
ч. OBJ:	Recognize invertible functions	MSC:	Application
5.	ANS: B PTS: 1 DIF: Med	REF:	Section 1.5
OBJ:	Recognize invertible functions	MSC:	Application
6.	ANS: B PTS: 1 DIF: Med	REF:	Section 1.5
OBJ:	Recognize invertible functions	MSC:	Application
7.	ANS: E PTS: 1 DIF: Easy	REF:	Section 1.5
OBJ:	Construct the inverse of a function	MSC:	Skill
8.	ANS: B PTS: 1 DIF: Easy	REF:	Section 1.5
OBJ:	Construct the inverse of a function	MSC:	Skill
9.	ANS: D PTS: 1 DIF: Med	REF:	Section 1.5
OBJ: 10.	Construct the inverse of a functionANS:EPTS:1DIF:Med	MSC: REF:	Skill Section 1.5
OBJ:	Construct the inverse of a function	MSC:	Skill
11.	ANS: C PTS: 1 DIF: Med	REF:	Section 1.5
OBJ:	Construct the inverse of a function	MSC:	Skill
12.	ANS: D PTS: 1 DIF: Med	REF:	Section 1.5
OBJ:	Construct the inverse of a function	MSC:	Skill
13.	ANS: E PTS: 1 DIF: Med	REF:	Section 1.5
OBJ:	Construct the inverse of a function	MSC:	Skill
14.	ANS: D PTS: 1 DIF: Easy	REF:	Section 1.5
OBJ:	Construct the inverse of a function in applications	MSC:	Application
15. OBJ:	ANS:APTS:1DIF:EasySolve a linear equation in applications	REF: MSC:	Section 1.5 Application
ов <u>л</u> . 16.	ANS: D PTS: 1 DIF: Easy	REF:	Section 1.5
OBJ:	Construct the inverse of a composition of functions	MSC:	Skill
17.	ANS: C PTS: 1 DIF: Easy	REF:	Section 1.5
OBJ:	Construct the inverse of a composition of functions	MSC:	Skill
18.	ANS: D PTS: 1 DIF: Easy	REF:	Section 1.5
OBJ:	Evaluate an inverse trigonometric expression	MSC:	Skill
19.	ANS: D PTS: 1 DIF: Easy	REF:	Section 1.5
OBJ: 20.	Evaluate an inverse trigonometric expressionANS:BPTS:1DIF:Med	MSC: REF:	Skill Section 1.5
OBJ:	Evaluate an expression involving an inverse trigonometric expression	MSC:	Skill
21.	ANS: A PTS: 1 DIF: Med	REF:	Skin Section 1.5
OBJ:	Convert an inverse trigonometric expression to an algebraic expressio		Skill
22.	ANS: A PTS: 1 DIF: Med	REF:	Section 1.5
OBJ:	Convert an inverse trigonometric expression to an algebraic expressio		Skill

23.	ANS:	В	PTS:	1	DIF:	Med	REF:	Section 1.5
OBJ:	Convert an in	verse tr	igonometric ex	pressic	on to an algebra	ic expression	MSC:	Skill
24.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section 1.5
OBJ:	Solve an inve	MSC:	Skill					
25.	ANS:	E	PTS:	1	DIF:	Med	REF:	Section 1.5
OBJ:	Solve an inve	MSC:	Skill					

1.6 Exponential and Logarithmic Functions

Multiple Choice

Identify the choice that best completes the statement or answers the question.

$$13 \ln x - 12 \ln \left(x^{2} + 16\right)$$
a. $\ln \left(13x - 12\left(x^{2} + 16\right)\right)$
b. $\ln \left(\frac{x^{13}}{\left(x^{2} + 16\right)^{12}}\right)$
c. $\ln \left(x^{13}\left(x^{2} + 16\right)^{12}\right)$
d. $\ln \left(x^{13} - \left(x^{2} + 16\right)^{12}\right)$
e. $\ln \left(\frac{x^{13}}{12\left(x^{2} + 16\right)}\right)$

6. Solve the following equation for x. $\ln(x-5)^{5} = 3$ a. x = 8b. $5\sqrt{3}$ c. $x = e^{5\sqrt{3}} + 5$ c. $x = \frac{3}{\ln(5)^{5}}$ d. $\frac{3}{x = e^{5} + 5}$ e. no solution

7. Solve the following equation for x. $\ln x^{-10} = 6$ a. $x = \sqrt[10]{\ln(6)}$ b. $x = \frac{6}{\ln(10)}$ c. $x = \sqrt[10]{e^{-6}}$ d. $x = \sqrt[10]{e^{6}}$ e. $x = \ln(10)\ln(6)$

8. Solve the following equation for x. $-5 + 7e^{3x} = 10$ a. $x = \frac{1}{3} \ln \frac{15}{7}$ b. $x = -\frac{1}{3} \ln \frac{15}{7}$ c. $x = \frac{15}{7e^3}$ d. $x = -\frac{1}{3} \ln \frac{50}{7}$ e. $x = \frac{1}{3} \ln \frac{50}{7}$

1.6 Exponential and Logarithmic Functions Answer Section

1.	ANS:	А	PTS:	1	DIF:	Easy	REF:	Section 1.6
OBJ:	Identify the d		MSC:	Skill				
2.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.6
OBJ:	Identify the d	lomain	of a logarit	thmic functi	on		MSC:	Skill
3.	ANS:	Е	PTS:	1	DIF:	Med	REF:	Section 1.6
OBJ:	Write a logar	ithmic	expression	as a single	quantity		MSC:	Skill
4.	ANS:	В	PTS :	1	DIF:	Med	REF:	Section 1.6
OBJ:	Write a logar		MSC:	Skill				
5.	ANS:	В	PTS:	1	DIF:	Easy	REF:	Section 1.6
OBJ:	Solve an exponential equation MSC: Skill							
6.	ANS:	D	PTS:	1	DIF:	Med	REF:	Section 1.6
OBJ:	Solve a logar	ithmic	equation				MSC:	Skill
7.	ANS:	С	PTS:	1	DIF:	Med	REF:	Section 1.6
OBJ:	Solve a logarithmic equation MSC:							
8.	ANS:	А	PTS:	1	DIF:	Med	REF:	Section 1.6
OBJ:	Solve an exp		MSC:	Skill				

2.1 A Preview of Calculus

Multiple Choice

Identify the choice that best completes the statement or answers the question.

<u>1.</u> Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the distance traveled in 16 seconds by an object traveling at a constant velocity of 20 feet per second.

- a. calculus, 320 ft
- b. calculus, 340 ft
- c. precalculus, 320 ft
- d. calculus, 640 ft
- e. precalculus, 640 ft

<u>2.</u> Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution.

Find the distance traveled in 20 seconds by an object moving with a velocity of $v(t) = 8 + 6\cos t$ feet per second.

- a. calculus, 162.4485 ft
- b. precalculus, 163.7985 ft
- c. calculus, 165.4777 ft
- d. precalculus, 165.4777 ft
- e. precalculus, 162.4485 ft