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Chapter 2 
 

 
2.1   Classify  each  of the following signals  as  finite  or  infinite.   For  the finite  signals,  find  the 

smallest integer N such that x(k) = 0 for |k| > N . 

 
(a)  x(k) = µ(k + 5) − µ(k − 5) 

(b)  x(k) = sin(.2πk)µ(k) 

(c)  x(k) = min(k2 − 9, 0)µ(k) 

(d)  x(k) = µ(k)µ(−k)/(1 + k2) 

(e)  x(k) = tan(
√

2πk)[µ(k) − µ(k − 100)] 

(f )  x(k) = δ(k) + cos(πk) − (−1)k
 

(g)  x(k) = k−k sin(.5πk) 
 

 
 

Solution 
 

 
 

(a)  finite, N = 5 

(b)  infinite 

(c)  finite, N = 2 

(d)  finite, N = 1 

(e)  finite, N = 99 

(f )  finite, N = 0 

(g)  infinite 

 

2.2   Classify each of the following signals as causal or noncausal. 
 

(a)  x(k) = max{k, 0} 

(b)  x(k) = sin(.2πk)µ(−k) 

(c)  x(k) = 1 − exp(−k) 

(d)  x(k) = mod(k, 10) 

(e)  x(k) = tan(
√

2πk)[µ(k) + µ(k − 100)] 

(f )  x(k) = cos(πk) + (−1)k
 

(g)  x(k) = sin(.5πk)/(1 + k2) 
 

 
 

Solution 
 

 
 

(a)  causal 
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(b) noncausal 

(c) noncausal 

(d) noncausal 

(e)  causal 

(e)  causal 

(f )  noncausal 

 
2.3   Classify each of the following signals as periodic  or aperiodic.   For the periodic  signals, find 

the period, M . 

 
(a)  x(k) = cos(.02πk) 

(b)  x(k) = sin(.1k) cos(.2k) 

(c)  x(k) = cos(
√   

k) 

(d)  x(k) = exp(jπ/8) 

(e)  x(k) = mod(k, 10) 

(f )  x(k) = sin2(.1πk)µ(k) 

(g)  x(k) = j2k
 

 

 
 

Solution 
 

 
 

(a)  periodic, M = 100 

(b)  nonperiodic,  (τ = 20π) 

(c)  nonperiodic,  (τ = 2π/
√  

) 

(d)  periodic, M = 16 

(e)  periodic, M = 10 

(f )  nonperodic,  (causal) 

(g)  periodic, M = 2 

 

2.4   Classify each of the following signals as bounded  or unbounded. 
 

(a)  x(k) = k cos(.1πk)/(1 + k2) 

(b)  x(k) = sin(.1k) cos(.2k)δ(k − 3) 

(c)  x(k) = cos(πk2) 

(d)  x(k) = tan(.1πk)[µ(k) − µ(k − 10] 

(e)  x(k) = k2/(1 + k2) 

(f )  x(k) = k exp(−k)µ(k)
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Solution 
 

 
 

(a) bounded 

(b) bounded 

(c)  bounded 

(d)  unbounded 

(e)  bounded 

(f )  bounded 
 
2.5   For each of the following signals, determine whether  or not it is bounded.   For the bounded 

signals, find a bound,  Bx. 

(a)  x(k) = [1 + sin(5πk)]µ(k) 

(b)  x(k) = k(.5)kµ(k) 

(c)  x(k) = 

 
(1 + k) sin(10k)

 
 

1 + (.5)k 

 
 
 
 

µ(k)

(d)  x(k) = [1 + (−1)k] cos(10k)µ(k) 
 

 
 

Solution 
 

 
 

(a)  bounded,  Bx  = 1 

(b)  The following are the first few values of x(k). 
 

 
 
 
 
 
 
 
 
 
 

Thus  x(k) is bounded  with Bx  = .5. 

(c)  unbounded 

(d)  bounded,  Bx  = 2. 

k    x(k) 

0    0 

1    1/2 

2    1/2 

3    3/8 

4    4/16 

5    5/25

 

2.6   Consider the following sum of causal exponentials. 
 

 
 

x(k)    =  [c1pk + c2pk ]µ(k)
 

1           2
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(a)  Using the inequalities in Appendix  2, show that 
 

 
 

|x(k)|    ≤  |c1| · |p1|k + |c2| · |p2|k
 

 
 

 
(b)  Show that x(k)  is absolutely summable  if |p1| < 1 and  |p2| < 1.  Find  an upper  bound 

on kxk1 

(c)  Suppose |p1| < 1 and |p2| < 1. Find  an upper  bound  on the energy Ex. 
 

 
 

Solution 
 

 
 

(a)  Using Appendix  2 
 

 
 

|x(k)|    =  |[c1(p1)k + c2(p2)k]µ(k)| 

=  |c1(p1)k + c2(p2)k| · |µ(k)| 

=  |c1(p1)k + c2(p2)k| 

≤  |c1(p1)k| + |c2(p2)k| 

=  |c1| · |pk| + |c2| · |pk]|1 

=  |c1| · |p1|k
 

2 

+ |c2| · |p2|k

 
 

 
(b)  Suppose |p1| < 1 and |p2| < 1. Then  using (a) and the geometric series in (2.2.14) 

 

 
kxk1    = 

∞ X 
 
k=−∞ 
∞ 

 
|x(k)|

≤  
X 

|c1| · |p1|k + |c2| · |p2|k
 

k=0 
∞                                   ∞ 

=  |c1| 
X 

|p1|k + |c2| 
X 

|p2|k

k=0 

=     
|c1| 

1 − |p1| 

 

+   
|c2| 

1 − |p2| 

k=0

 

 
 

(c)  Using (b) and (2.2.7) through (2.2.9)
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Ex     =  kxk2
 

≤  kxk1 

|c1| 

 

 
 
 

|c2|
≤               + 

1 − |p1|      1 − |p2| 
 
 

 
2.7   Find  the average power of the following signals. 

 
(a)  x(k) = 10 

(b)  x(k) = 20µ(k) 

(c)  x(k) = mod(k, 5) 

(d)  x(k) = a cos(πk/8) + b sin(πk/8) 

(e)  x(k) = 100[µ(k + 10) − µ(k − 10)] 

(f )  x(k) = jk
 

 
 

Solution 
 

Using (2.2.10)-(2.2.12)  and Appendix  2 

(a)  Px  = 100 

(b)  Px  = 400 

(c)  Px  = (1 + 4 + 9 + 16)/5 = 6 

(d) 
 

[a cos(πk/8) + b sin(πk/8)]2    =  a2 cos2(πk/8)) + 2ab cos(πk/8) sin(πk/i) + b2 sin2(πk/8) 

=    a2 

 
1 + cos(πk/4)

  

+ ab sin(πk/4) + b2 

 
1 − cos(πk/4)

 
 

2                                                             2 
 

 
 

Thus 
 
 

Px     = 
a2 + b2

 

2

 

 

(e)  Px  = 104
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j 

(f )  
 
 

Px     =  lim      
1
 

2N + 1 
 

1
 

 

 
N X 

|  k|2 

k=−N 

N

=  lim 
 

 
 

=  lim 

 
=  1 

 

2N + 1 
 

1 

2N + 1 

X 
(|j|k)2

 

k=−N 

N X 
1 

k=−N

 
 
 

 
2.8   Classify each of the following systems as linear or nonlinear. 

 
(a)  y(k) = 4[y(k − 1) + 1]x(k) 

(b)  y(k) = 6kx(k) 

(c)  y(k) = −y(k − 2) + 10x(k + 3) 

(d)  y(k) = .5y(k) − 2y(k − 1) 

(e)  y(k) = .2y(k − 1) + x2(k) 

(f )  y(k) = −y(k − 1)x(k − 1)/10 
 

 
 

Solution 
 

 
 

(a)  nonlinear  (product term) 

(b)  linear 

(c)  linear 

(d)  linear 

(e)  nonlinear  (input term) 

(f )  nonlinear  (product term) 

2.9   Classify each of the following systems as time-invariant or time-varying. 

(a)  y(k) = [x(k) − 2y(k − 1)]2 

(b)  y(k) = sin[πy(k − 1)] + 3x(k − 2) 

(c)  y(k) = (k + 1)y(k − 1) + cos[.1πx(k)] 

(d)  y(k) = .5y(k − 1) + exp(−k/5)µ(k) 

(e) y(k) = log[1 + x2(k − 2)]
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(f )  y(k) = kx(k − 1) 
 

 
 

Solution 
 

 
 

(a)  time-invariant 

(b)  time-invariant 

(c)  time-varying 

(d)  time-varying 

(e)  time-invariant 

(f )  time-varying 

 

2.10   Classify each of the following systems as causal or noncausal. 
 

(a)  y(k) = [3x(k) − y(k − 1)]3 

(b)  y(k) = sin[πy(k − 1)] + 3x(k + 1) 

(c)  y(k) = (k + 1)y(k − 1) + cos[.1πx(k2)] 

(d)  y(k) = .5y(k − 1) + exp(−k/5)µ(k) 

(e)  y(k) = log[1 + y2(k − 1)x2(k + 2)] 

(f )  h(k) = µ(k + 3) − µ(k − 3) 
 

 
 

Solution 
 

 
 

(a)  causal 

(b)  noncausal 

(c)  causal 

(d)  causal 

(e)  noncausal 

(f )  noncausal 

 
2.11   Consider the following system that consists of a gain of A and a delay of d samples. 

 

 
 

y(k)   =  Ax(k − d) 
 

 
 
 

(a)  Find  the impulse response h(k) of this system. 

(b)  Classify this system as FIR or IIR.
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(c)  Is this system BIBO stable?  If so, find khk1. 

(d)  For what values of A and d is this a passive system? 

(e)  For what values of A and d is this an active system? 

(f )  For what values of A and d is this a lossless system? 

 
 

Solution 
 

 
 

(a)  h(k) = Aδ(k − d) 

(b)  FIR 

(c)  Yes, it is BIBO stable with khk1 = |A|. 

(d)
 
 

Ey     = 
 

 
= 

 
∞ X 

 
k=−∞ 

∞ X 
 
k=−∞ 

 

 

y2(k) 
 

 
[Ax(k − d)]

 

=  A2
 

 

 

=  A2
 

∞ X 
 
k=−∞ 

∞ X 
 
i=−∞ 

 

x2(k − d) 
 

 

x2(i)       ,      i = k − d

=  A2Ex 

 
 

 
This is a passive system for |A| < 1. 

(e)  This is an active system for |A| > 1 

(f )  This is a lossless system for |A| = 1 

 

2.12   Consider the following linear time-invariant discrete-time system S. 
 
 
 

y(k) − y(k − 2)   =  2x(k) 
 
 
 
 

(a)  Find  the characteristic polynomial  of S and express it in factored form. 

(b)  Write down the general form of the zero-input response, yzi(k). 

(c)  Find  the zero-input response when y(−1) = 4 and y(−2) = −1.
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Solution 
 

 

(a)  

 

a(z)    =  z2 − 1 

=  (z − 1)(z + 1)
 
 

(b)  

 

yzi(k)    =  c1(p1)k + c2(p2)k
 

=  c1 + c2(−1)k

 
 

 
(c)  Evaluating part (b) at the two initial conditions yields 

 

 
 

c1 − c2    =  4 

c1 + c2    =  −1 
 
 
 

Adding the equations yields 2c1 = 3 or c1 = 1.5. Subtracting the first equation from the 

second yields 2c2 = −5 or c2 = −2.5..  Thus  the zero-input response is 
 

 
yzi(k)    = 1.5 − 2.5(−1)k

 

 
 

 
√   

2.13   Consider the following linear time-invariant discrete-time system S. 
 
 
 

y(k)    =  1.8y(k − 1) − .81y(k − 2) − 3x(k − 1) 
 

 
 
 

(a)  Find  the characteristic polynomial  a(z)  and express it in factored form. 

(b)  Write down the general form of the zero-input response, yzi(k). 

(c)  Find  the zero-input response when y(−1) = 2 and y(−2) = 2. 
 

 
 

Solution
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−1 

−2 

(a)  

 

a(z)    =  z2 − 1.8z + .81 
2=  (z − .9) 

 
 

(b)  

 

yzi(k)    =  (c1 + c2k)pk
 

=  (c1 + c2k).9k

 
 

 
(c)  Evaluating part (b) at the two initial conditions yields 

 
 

(c1 − c2).9       =  2 

(c1 − 2c2).9       =  2 
 

 
 

or 
 

 
 

c1 − c2    =  1.8 

c1 − 2c2   =  1.62 
 
 
 

Subtracting the second equation from the first yields c2 = .18.  Subtracting the second 

equation from two times the first yields c1 = 1.98. Thus  the zero-input response is 
 

 
yzi(k)    = (1.98 + .18k).9k

 

 
 
 
 

2.14   Consider the following linear time-invariant discrete-time system S. 
 

 
 

y(k)    =  −.64y(k − 2) + x(k) − x(k − 2) 
 

 
 
 

(a)  Find  the characteristic polynomial  a(z)  and express it in factored form. 

(b)  Write down the general  form of the zero-input  response,  yzi(k),  expressing  it as a real 

signal.
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(c)  Find  the zero-input response when y(−1) = 3 and y(−2) = 1. 
 

 
 

Solution 
 

 

(a)  

 

a(z)    =  z2 + .64 

=  (z − .8j)(z + .8j)
 
 

 
(b)  In polar form the roots are z = .8 exp(±jπ/2).  Thus 

 

 
yzi(k)    =  rk[c1 cos(kθ) + c2 sin(kθ)] 

=  .8k[c1 cos(kπ/2) + c2 sin(πk/2)] 
 
 
 
 
 

(c)  Evaluating part (b) at the two initial conditions yields 
 

 
.8−1c2(−1) = 3 

.8−2c1(−1) = 1 
 
 
 

Thus  c2 = −3(.8) and c1 = −1(.64).  Hence the zero-input response is 
 

 
yzi (k)    = −(.8)k[.64 cos(πk/2) + 2.4 sin(πk/2)] 

 
 
 
 

2.15   Consider the following linear time-invariant discrete-time system S. 
 
 
 

y(k) − 2y(k − 1) + 1.48y(k − 2) − .416y(k − 3)   =  5x(k) 
 

 
 
 

(a)  Find  the characteristic polynomial  a(z).  Using the MATLAB  function roots,  express it 

in factored form. 

(b)  Write down the general form of the zero-input response, yzi(k).
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−2 −2 

 

(c)  Write  the equations  for  the unknown  coefficient  vector  c  ∈  R3  as  Ac  = y0,  where 

y0 = [y(−1), y(−2), y(−3)]T  is the initial condition vector. 
 

 
 

Solution 
 

 

(a)  

 

a(z)    =  z3 − 2z2 + 1.48z − .416
 
 
 
 

a = [1 -2 1.48 -.416] 
r = roots(a) 

 

a(z)    =  (z − .8)(z − .6 − .4j)(z − .6 + .4j) 

(b)  The complex roots in polar form are p2,3 = r exp(±jθ) where 

 

r  =  
p

.62 + .42 

=  .7211 

θ   =  arctan(±.4/.6) 

=  ±.588 
 
 

 
Thus  the form of the zero-input response is 

 

 
 

yzi (k)    =  c1(p1)k + rk[c2 cos(kθ) + c3 sin(kθ)] 

=  c1(.8)k + .7211k[c2 cos(.588k) + c3 sin(.588k)] 
 
 

 

(c)  Let  c ∈ R3  be the unknown  coefficient  vector,  and  y0 = [y(−1), y(−2), y(−3)]T .  Then 

Ac = y0 or 
 
 

 
.8−1      .7211−1 cos(−.588)        .7211−1 sin(−.588)    
 .8 .7211−2 cos[−2(.588)]   .7211 sin[−2(.588)]   c   =  y0

.8−3    .7211−3 cos[−3(.588)]   .7211−3 sin[−3(.588)]
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a(z) 
  

  
 
z=p1 

 

2.16   Consider the following linear time-invariant discrete-time system S. 
 
 
 

y(k) − .9y(k − 1)   =  2x(k) + x(k − 1) 
 
 
 
 

(a)  Find  the characteristic polynomial  a(z)  and the input polynomial  b(z). 

(b)  Write down the general form of the zero-state response, yzs (k), when the input is x(k) = 

3(.4)kµ(k). 

(c)  Find  the zero-state response. 
 

 
 

Solution 
 

 

(a)  

 
a(z)    =  z − .9 

b(z)   =  2z + 1
 
 

 
(b) 

 
 

yzs (k) 
 

= [d0(p0)k + d1(p1)k]µ(k) 

 = [d0(.4)k + d1(.9)k]µ(k) 

 

 

(c)  

 

d0    =     
Ab(z)

 
 
 
z=p0 

3[2(.4) + 1]
= 

.4 − .9 
5.4 

= 
−.5 

=  −10.8 

d1    =     
A(z − p1)b(z)

 
 

(z − p0)a(z)  
 
 

3[2(.9) + 1] 
= 

.5 

=  
8.4 
.5 

=  16.8
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Thus  the zero-state response is 

 

 
 

yzs (k)    =  [−10.8(.4)k + 16.8(.9)k]µ(k) 
 
 
 

 
2.17   Consider the following linear time-invariant discrete-time system S. 

 
 
 

y(k)    =  y(k − 1) − .24y(k − 2) + 3x(k) − 2x(k − 1) 
 
 
 
 

(a)  Find  the characteristic polynomial  a(z)  and the input polynomial  b(z). 

(b)  Suppose  the input is the unit step,  x(k)  = µ(k).   Write  down the general  form of the 

zero-state response, yzs (k). 

(c)  Find  the zero-state response to the unit step input. 
 

 
 

Solution 
 

 

(a)  

 

a(z)    =  z2 − z + .24 

b(z)   =  3z − 2
 
 

 
(b)  The factored form of a(z)  is 

 

 
 

a(z)    =  (z − .6)(z − .4) 
 
 

 
Thus  the form of the zero-state response to a unit step input is 

 

 
 

yzs(k)    =  [d0 + d1(.6)k + d2(.4)k]µ(k)



65 

 c  2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible 

website, in whole or in part. 

 

a(z) 

  
 
z=p1 

 
z=p2 

 

(c) 
 

d0    = 
 

 

= 
 

 

= 

Ab(z)
 
 
  
   
z=p0 

3 − 2 

(1 − .6)(1 − .4) 

1 

.24
=  4.167 

d1    =     
A(z − p1)b(z)

 
 

(z − p0)a(z)  
 
 

=       
3(.6) − 2 

(.6 − 1)(.6 − .4) 

=   
−.2 
−.08 

=  2.5 
A(z − p2)b(z)

 

d2    = 
  

(z − p0)a(z)  
 

=       
3(.4) − 2 

(.4 − 1)(.4 − .6) 

=   
−.8 
−.12 

=  6.667 
 
 

 
Thus  the zero-state response is 

 

 
 

yzs (k)    =  [4.167 + 2.5(.6)k + 6.667(.4)k]µ(k) 
 
 
 

 
2.18   Consider the following linear time-invariant discrete-time system S. 

 
 
 

y(k)    =  y(k − 1) − .21y(k − 2) + 3x(k) + 2x(k − 2) 
 
 
 
 

(a)  Find  the characteristic polynomial  a(z)  and the input polynomial b(z). Express  a(z)  in 

factored form. 

(b)  Write down the general form of the zero-input response, yzi(k). 

(c)  Find  the zero-input response when the initial condition is y(−1) = 1 and y(−2) = −1.
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(d)  Write  down  the general  form  of the zero-state  response  when  the input is x(k)   = 

2(.5)k−1µ(k). 

(e)  Find  the zero-state response using the input in (d). 

(f )  Find  the complete response using the initial condition in (c) and the input in (d). 
 

 
Solution 

 

(a)  
 

a(z)    =  z2 − z + .21 

=  (z − .3)(z − .7) 

b(z)   =  3z2 + 2
 

 
 

(b)  The general form of the zero-input response is 
 
 

yzi(k)    =  c1(p1)k + c2(p2)k
 

=  c1(.3)k + c2(.7)k
 

 
 
 

 
(c)  Using (b) and applying  the initial conditions yields 

 
 

c1(.3)−1 + c2(.7)−1    =  1 

c1(.3)−2 + c2(.7)−2    =  −1 
 

 
 

Clearing the denominators, 
 

 
.7c1 + .3c2    =  .21 

.49c1 + .09c2    =  −.0441 
 

 
 

Subtracting the second equation from seven times the first equation yields 2.01c2 = 1.51. 

Subtracting .3 times the first equation from the second yields .28c1 = −.127.  Thus  the 

zero-input response is 
 
 

yzi(k)    =  −.454(.3)k + .751(.7)k
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a(z) 

  
 
z=p1 

 
z=p2 

2 

 

(d)  First note that 
 
 

x(k)    =  2(.5)k−1µ(k) 

=  4(.5)kµ(k) 

The general form of the zero-state response is 

yzs(k)    =  [d0(.5)k + d1(.3)k + d2(.7)k]µ(k) 
 
 

(e)  
 
 

d0    = 
 
 

= 
 

 

= 

 

 
Ab(z)

 
 
  
   
z=p0 

4[3(.5)2 + 2] (.5 

− .3)(.5 − .7) 

4(2.75) 

−.04
=  −275 

d1    =     
A(z − p1)b(z)

 
 

(z − p0)a(z)  
 

=     
4[3(.3) + 2]

(.3 − .5)(.3 − .7) 

=  
4(2.27) 

.08 
=  113.5 

A(z − p2)b(z)
 

d2    = 
 
 

= 
 

 

= 

  

(z − p0)a(z)  
 
 

4[3(.7)2 + 2] (.7 

− .5)(.7 − .3) 

4(2.63) 

.08
=  131.5 

 
 
 

Thus  the zero-state response is 
 

 

yzs(k)    =  [−275(.5)k + 113.5(.3)k + 131.5(.7)k]µ(k)
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❡ • • 

 

(f )  By superposition, the complete response is 
 

 
y(k)    =  yzi(k) + yzs(k) 

=  −.454(.3)k + .751(.7)k + [−275(.5)k + 113.5(.3)k + 131.5(.7)k]µ(k) 
 

 
 
 

2.19   Consider  the following linear time-invariant discrete-time system S.  Sketch a block diagram 

of this IIR system. 
 

 
 

y(k)    =  3y(k − 1) − 2y(k − 2) + 4x(k) + 5x(k − 1) 
 
 
 

 
Solution 

 

 
 
 

a = [1, −3, 2] 

b = [4, 5, 0] 

 

 
 

x(k)  
❄                                 ❄                                  ❄ 

 

0                                       5                                       4
 

✎❄☞ ✎❄☞ ✎❄☞

+         ✲ z−1          ✲ + ✲ z−1 ✲ +    • ❡ y(k)

✍✌                ✍✌                ✍✌ 
− ✻                             − ✻ 

 

2                                     −3 
 

✻                                 ✻ 
• 

 
Problem 2.19 

 

 
 

2.20   Consider  the following linear time-invariant discrete-time system S.  Sketch a block diagram 

of this FIR  system. 
 

 
 

y(k)    =  x(k) − 2x(k − 1) + 3x(k − 2) − 4x(k − 4)
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❡ • • 

• 
• 

✲ ✲ ✲ ✲ 

 

 
 
 
 

Solution 
 
 
 

 
a   =  [1, 0, 0] 

b   =  [1, −2, 3, 0, −4] 
 

 
 
 
 

x(k)         ✲ z−1 ✲ 
z−1 ✲ 

z−1 ✲ 
z−1

 

❄ ❄ ❄ ❄ ❄ 

1 −2 3 0 −4 

✎❄☞ 
+ 
✍✌ 

✎❄☞ 
+ 
✍✌ 

✎❄☞ 
+ 
✍✌ 

✎❄☞ 
+          ❡y(k) ✍✌

 

Problem 2.20 
 
 
 

2.21   Consider  the following linear time-invariant discrete-time system S called an auto-regressive 

system.  Sketch a block diagram  of this system. 
 
 
 

y(k)    =  x(k) − .8y(k − 1) + .6y(k − 2) − .4y(k − 3) 
 

 
 
 
 

Solution 
 
 
 

 
a   =  [1, .8, −.6, .4] 

b   =  [1, 0, 0, 0]
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❞ • • • 

♠ ♠ ♠ ♠ 

❡ • • 

 

 

x(k)  
 

❄                          ❄                          ❄                          ❄ 

0                              0                              0                              1 
 
 

❄                          ❄                          ❄                          ❄
+      ✲ z−1      ✲ + 

− ✻                      − ✻ 

✲ z−1      ✲ + 
− ✻ 

✲ z−1 
✲ +    • ❞y(k)

 

 

.4 −.6 .8 

✻ ✻ 

• 

✻ 

• 

Problem 2.21 
 

 
 

2.22   Consider the block diagram  shown in Figure  2.32. 
 

x(k)  
❄                                 ❄                                  ❄ 

 

1.8                                     .9                                    −.4
 

✎❄☞u2(k) ✎❄☞u1(k) ✎❄☞

+         ✲ z−1          ✲ + ✲ z−1 ✲ +    • ❡ y(k)

✍✌                ✍✌                ✍✌ 
− ✻                             − ✻ 

 

2.1                                  −1.5 
 

✻                                 ✻ 
• 

 
Figure 2.32 A  Block Diagram of the System  in Problem 2.22 

 

 
 

(a)  Write a single difference equation description of this system. 

(b)  Write a system of difference equations for this system for ui(k)  for 1 ≤ i ≤ 2 and y(k). 
 

 

Solution 
 

 
(a)  By inspection of Figure 2.32 

 

 
y(k)   =   −.4x(k) + .9x(k − 1) + 1.8x(k − 2) + 1.5y(k − 1) − 2.1y(k − 2)
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a(z) 

 
 
 

(b)  The equivalent system of equations is 
 

 

u2(k) = 1.8x(k) − 2.1y(k) 

u1(k) = .9x(k) + 1.5y(k) + u2(k − 1) 

y(k) = −.4x(k) + u1(k − 1) 

 

 
2.23   Consider the following linear time-invariant discrete-time system S. 

 

 
y(k)    =  .6y(k − 1) + x(k) − .7x(k − 1) 

 
 
 

(a)  Find  the characteristic polynomial  and the input polynomial. 

(b)  Write down the form of the impulse response, h(k). 

(c)  Find  the impulse response. 
 

 
Solution 

 

(a)  
 

a(z)    =  z − .6 

b(z)   =  z − .7
 

 

(b)  

 

h(k)    =  d0δ(k) + d1(.6)
k
µ(k)

 

 

(c) 
 

 
 

d0    = 

 

 

b(z) 
 
 
  
   
z=0

=  
−.7) 
−.6) 

=  1.167 

(z − p1)b(z)
 

d1    = 
 

 

= 

 

za(z) 

.6 − .7) 

.6) 

    
 
z=p1

=  −.167
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Thus  the impulse response is 

 

 
 

h(k)    =  1.167δ(k) − .167(.6)kµ(k) 
 
 
 

 
2.24   Consider the following linear time-invariant discrete-time system S. 

 
 
 

y(k)    =  −.25y(k − 2) + x(k − 1) 
 
 
 
 

(a)  Find  the characteristic polynomial  and the input polynomial. 

(b)  Write down the form of the impulse response, h(k). 

(c)  Find the impulse response.  Use the identities in Appendix  2 to express h(k) in real form. 
 

 
 

Solution 
 

 

(a)  

 

a(z)    =  z2 + .25 

b(z)   =   z
 
 

 
(b)  First note that 

 

 
 

a(z)    =  (z − .5j)(z + .5j) 
 
 

 
Thus  the form of the impulse response is 

 

 
 

h(k)    =  d0δ(k) + [d1(.5j)k + d2(−.5j)k]µ(k)
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a(z) 
  

(c)  
 

d0    =     
b(z) 

 
 
 
z=0

=  0 
(z − p1)b(z)

 

d1    =  

za(z) 

     
z=p1

=    
.5j) 

.5j(j) 

=  −j 

(z − p2)b(z)
 

d2    =  

za(z) 

    
 
z=p2

=     
−.5j) 

−.5j(−j) 

=  j 
 
 
 

Thus  from Appendix  2 the impulse response is 
 

 

h(k)    =  [−j(.5j)k + j(−.5j)k]µ(k) 

=  2Re[−j(.5j)k]µ(k) 

=  −2Re[(.5)k(j)k+1]µ(k) 

=  −2(.5)kRe{[exp(jπ/2)]k+1}µ(k) 

=  −2(.5)kRe[exp[j(k + 1)π/2]µ(k) 

=  −2(.5)k cos[(k + 1)π/2]µ(k) 
 

 
 
 

2.25   Consider the following linear time-invariant discrete-time system S. Suppose 0 < m ≤ n and 

the characteristic polynomial  a(z)  has simple nonzero roots. 
 

 
m                               n

y(k)    = 
X 

bix(k − i) − 
X 

aiy(k − i)

i=0 i=1

 

 
(a)  Find  the characteristic polynomial  a(z)  and the input polynomial  b(z). 

(b)  Find  a constraint on b(z) that ensures that the impulse response h(k)  does not contain 

an impulse term. 
 

 
Solution
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a(z) 

(a)  

 

a(z)    =  zn + a1zn−1 + · · · + an 

b(z)   =  b0zn + b1zn−1 + · · · + bmzn−m

 
 

 
(b)  The coefficient of the impulse term is 

 
 

d0    = 
b(z) 

 
 
  
  
 
z=0

=   
b(0) 
a(0) 

 

 
Thus 

 

 
 

d0 = 0   ⇔   b(0) = 0 

⇔   m = n 
 
 
 

 
2.26   Consider the following linear time-invariant discrete-time system S. Compute and sketch the 

impulse response of this FIR system. 
 

 
 

y(k)    =  u(k − 1) + 2u(k − 2) + 3u(k − 3) + 2u(k − 4) + u(k − 5) 
 

 
 
 
 

Solution 
 
 

By inspection, the impulse response is 
 
 
 

h(k)    =  [0, 1, 2, 3, 2, 1, 0, 0, . . .]
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h
(
k
)
 

 

 

Impulse Response 

3 
 

 
 

2.5 
 

 
 

2 
 

 
 

1.5 
 

 
 

1 
 

 
 

0.5 
 

 
 

0 
0              1              2              3              4              5              6              7 

k 

 

Problem 2.26 
 
 
 

2.27   Using the definition of linear convolution, show that for any signal h(k) 
 
 
 

h(k) ? δ(k)   =  h(k) 
 

 
 
 
 

Solution 
 
 

From Definition 2.3 we have 
 

 
h(k) ? δ(k)   = 

 

 
= 

∞ X 
 
i=−∞ 

∞ X 
 
i=−∞ 

 
h(i)x(k − i) 
 

 
h(i)δ(k − i)

=  h(k)
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2.28   Use Definition 2.3 and the commutative property to show that the linear convolution operator 

is associative. 
 

 
 

f (k) ? [g(k) ? h(k)]    =  [f(k) ? g(k)] ? h(k) 
 

 
 
 
 

Solution 
 

 

From Definition 2.3 we have 
 

 
 

d1(k)    =   f (k) ? [g(k) ? h(k)]
∞ 

=    
X

 
m=−∞ 

∞ 

 
f(m) 

 
∞ 

" 
∞ X 

 
i=−∞ 

# 
 

g(i)h(k − m − i)

=    
X X

 f(m)g(i)h(k − m − i)

m=−∞ i=−∞ 
 

 
Next, using the commutative property 

 

 
 

d2(k)    =  [f(k) ? g(k)] ? h(k)] 

=  h(k) ? [f(k) ? g(k)]
∞ 

=   
X

 

i=−∞ 
∞ 

 
h(i) 

 
∞ 

"  
∞ X 

 
m=−∞ 

# 
 

f(m)g(k − i − m)

=   
X X

 h(i)f(m)g(k − i − m)

i=−∞ m=−∞

∞             ∞ 

=    
X  X

 
 
h(k − n − m)f(m)g(n)      ,      n = k − i − m

n=−∞ m=−∞

∞            ∞ 

=    
X X

 
 
f(m)g(i)h(k − m − i)      ,      i = n

m=−∞ i=−∞ 
 

 
Thus  d2(k) = d1(k). 

 

2.29   Use Definition 2.3 to show that the linear convolution operator is distributive. 



77 

 c  2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible 

website, in whole or in part. 
 

 

 
 

f (k) ? [g(k) + h(k)]    =   f (k) ? g(k) + f (k) ? h(k)
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= 

 

 
 
 
 

Solution 
 

 
 
 

d(k)    =   f (k) ? [g(k) + h(k)] 
∞

=   
X

 

i=−∞ 

∞ 

=   
X

 

i=−∞ 

∞ 

f(i)[g(k − i) + h(k − i)] 
 

 
f(i)g(k − i) + f (i)h(k − i)] 

 
∞

=   
X

 

i=−∞ 

f(i)g(k − i) + 
X 

 
i=−∞ 

f (i)h(k − i)]

=   f (k) ? g(k) + f (k) ? h(k) 
 
 

 
2.30   Suppose h(k)  and x(k)  are defined as follows. 

 

 

h   =  [2, −1, 0, 4]T 

x   =  [5, 3, −7, 6]T 
 

 
 
 

(a)  Let yc(k) = h(k)◦ x(k).  Find the circular convolution matrix C(x) such that yc = C(x)h. 

(b)  Use C(x)  to find yc(k). 

 
 

Solution 
 

 
(a)  Using (2.7.9) and Example  2.14 as a guide, the 4 × 4 circular  convolution matrix is 

 

 
 

C(x)    = 

 
x(0)    x(3)    x(2)    x(1)   

 x(1)    x(0)    x(3)    x(2)    
x(2)    x(1)    x(0)    x(3)  

                                   

x(3)    x(2)    x(1)    x(0) 
  

5      6     −7     3    
  3      5      6     −7                              
 −7     3      5      6    

6     −7     3     5)
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= 

 

(b)  Using (2.7.10) and the results from part (a) 
 

 
 

yc    =  C(x)h 
  

5      6     −7     3   
   

2    
  3      5      6     −7    −1                                     
 −7     3      5      6      0    

6     −7     3     5)            4 
  

16    

=  
 −27      

7     
         

39 
 

 
This can be verified using the DSP Companion  function f conv. 

 
2.31   Suppose h(k)  and x(k)  are the following signals of length L and M , respectively. 

 

 
 

h   =  [3, 6, −1]T
 

x   =  [2, 0, −4, 5]T 

 
 
 
 

(a)  Let  hz  and  xz  be  zero-padded  versions  of h(k)  and  x(k)  of length  N  = L + M − 1. 

Construct hz  and xz . 

(b)  Let  yc(k) = hz (k) ◦  xz (k).  Find  the circular  convolution matrix C(xz ) such that yc  = 

C(xz )hz . 

(c)  Use C(xz ) to find yc(k). 

(d)  Use yc(k) to find the linear convolution y(k) = h(k) ? x(k) for 0 ≤ k < N . 
 

 
Solution 

 

 
 

(a)  Here 
 

 
 

N    =  L + M − 1 

=  3 + 4 − 1 

=  6 
 
 

 
Thus  the zero-padded  versions of h(k)  and x(k) are
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2 0 0 5 −4 0 

0 2 0 0 5 −4 

−4 0 2 0 0 5 

5 −4 0 2 0 0 

0 5 −4 0 2 0 

0 0 5 −4 0 2 

 

= 

 

 

  
  

0 

0 

 

 

 
 

 
 

 
 
 

hz     =  [3, 6, −1, 0, 0, 0]T 

xz     =  [2, 0, −4, 5, 0, 0]T 
 

 
 

(b)  Using (2.7.9) and the results from part (a), the N × N circular  convolution matrix is 
 
  

xz (0)   xz(5)    xz (4)   xz (3)   xz (2)   xz (1)   
 xz (1)   xz(0)    xz (5)   xz (4)   xz (3)   xz (2)    
xz (2)   xz(1)    xz (0)   xz (5)   xz (4)   xz (3)   

C(xz )   =  
                                                             
xz (3)   xz(2)    xz (1)   xz (0)   xz (5)   xz (4)                                                                
xz (4)   xz(3)    xz (2)   xz (1)   xz (0)   xz (5)  

                                                             

xz (5)   xz(4)    xz (3)   xz (2)   xz (1)   xz (0) 
                                         

 

                                         
                                                                                                                                                                                                                                                      

 

 
 
 

(c)  Using (2.7.9), the circular  convolution of hz (k) with xz (k) is 
 

 
yz (k)    =  C(xz )hz 

  
2      0      0      5     −4     0   

   
3    

  0      2      0      0      5     −4     6                                                   

=  
 −4     0      2      0      0      5   −1  

  
5     −4     0      2      0      0   

        
   

0      5     −4     0      2      0   
        

 

0      0      5     −4     0      2            0 
   

6     
  12             

=  
 −14    
−9      
34    

−5 
 
 

(d)  Using (2.7.14) and the results of part (c), the linear convolution y(k) = h(k) ? x(k)  is 
 

 
y(k)    =  hz (k) ◦  xz (k) 

=  C(xz )hz 

=  [6, 12, −14, −9, 34, −5]T
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This can be verified using the DSP Companion  function f conv. 

 
2.32   Consider a linear discrete-time system S with input x and output y. Suppose S is driven by 

an input x(k)  for 0 ≤ k < L to produce  a zero-state output y(k).  Use deconvolution to find 

the impulse response h(k) for 0 ≤ k < L if x(k) and y(k) are as follows. 
 

 
 

x   =  [2, 0, −1, 4]T 

y   =  [6, 1, −4, 3]T 
 

 
 
 
 

Solution 
 
 

Using (2.7.15) and Example  2.16 as a guide 
 
 

h(0)    = 
y(0) 

x(0)

=  
6 
2 

=  3 
 
 

 
Applying  (2.7.18) with k = 1 yields 

 
 

h(1)    = 
 

 

= 

y(1) − h(0)x(1) 

x(0) 

1 − 3(0) 

2

=  .5 
 
 

 
Applying  (2.7.18) with k = 2 yields 

 

 
 

h(2)    =  
y(2) − h(0)x(2) − h(1)x(1) 

x(0) 

=  
−4 − 3(−1) − .5(0) 

2 
=  −.5
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Finally,  applying  (2.7.18) with k = 3 yields 
 

 

h(3)    =  
y(3) − h(0)x(3) − h(1)x(2) − h(2)x(1) 

x(0) 

=  
3 − 3(4) − .5(−1) + .5(0) 

2 
=  −4.25 

 

 
 
 

Thus  the impulse response of the discrete-time system is 
 

 
 

h(k)    =  [3, .5, −.5, −4.25]T        ,      0 ≤ k < 4 
 

 
 
 

This can be verified using the DSP Companion  function f conv. 
 

2.33   Suppose x(k) and y(k) are the following finite signals. 
 

 
 

x   =  [5, 0, −4]T
 

y   =  [10, −5, 7, 4, −12]T 

 
 
 

 
(a)  Write the polynomials  x(z) and y(z) whose coefficient vectors are x and y, respectively. 

The leading coefficient corresponds  to the highest power of z. 

(b)  Using long division, compute the quotient polynomial q(z) = y(z)/x(z). 

(c)  Deconvolve y(k) = h(k) ? x(k)  to find h(k),  using (2.7.15) and  (2.7.18).  Compare  the 

result with q(z) from part (b). 
 

 
Solution 

 

 

(a)  

 

x(z)    =  5z2 − 4 

y(z)    =  10z4 − 5z3 + 7z2 + 4z − 12
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3 

(b)  
 

2z2 − z + 3 

5z2 − 4       | 10z4 − 5z3 + 7z2 + 4z − 12 

10z4 − 0z3 − 8z2

−5z + 15z2
 + 4z

−5z3 − 0z2 + 4z 

15z2 + 0z − 12 

15z2 + 0z − 12 

0 
 

 
 

Thus  the quotient polynomial  is 
 
 

q(z)   =  2z2 − z + 3 
 
 
 

(c)  Using (2.7.15) and Example  2.16 as a guide 
 
 

q(0)   = 
y(0) 

x(0)

=  
−12 
−4 

=  3 
 

 
 

Applying  (2.7.18) with k = 1 yields 
 
 

q(1)   = 
 

 

= 

y(1) − q(0)x(1) 

x(0) 

4 − 3(0) 

−4

=  −1 
 

 
 

Applying  (2.7.18) with k = 2 yields 
 
 

q(2)   = 
 

 

= 

y(2) − q(0)x(2) − q(1)x(1) 

x(0) 

7 − 3(5) − (−1)0 

−4

=  2
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L 

 
 

 
Thus  q = [2, −1, 3] and the quotient polynomial is 

 

 
 

q(z)   =  2z2 − z + 3 
 
 

 
This can be verified using the MATLAB  function deconv. 

 
2.34   Some books use the following alternative way to define the linear  cross-correlation of an L 

point signal y(k) with an M -point signal x(k).  Using a change of variable,  show that this is 

equivalent to Definition 2.5 
 

 

1 
L−1−k

ryx(k)   = 
X 

L   
n=0 

y(n + k)x(n)

 

 
 
 

Solution 
 
 

Consider the change of variable  i = n + k. Then  n = i − k and 
 

 

1 
L−1−k

ryx(k)   = 
X 

L   
n=0 

y(n + k)x(n)
     
i=n+k

1 
L−1 

=  
L 

X 
y(i)x(i − k) 

i=k 

 

 
Since x(n)  = 0 for n < 0, the lower limit of the sum can be changed  to zero without affecting 

the result.  Thus, 
 

 
ryx(k)   = 

1 
L−1 X 

y(i)x(i − k)      ,      0 ≤ k < L 

i=0

 

 
This is identical to Definition 2.5.
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0 0 0 5 0 

0 0 0 0 5 

 

0 0 0 1 0 

0 0 0 0 1 

 

 

5 
  

 

 

5 
 

 

 

 

 

2.35   Suppose x(k) and y(k) are defined as follows. 
 

 
 

x   =  [5, 0, −10]T
 

y   =  [1, 0, −2, 4, 3]T
 

 
 
 

 
(a)  Find  the linear cross-correlation matrix D(x)  such that ryx = D(x)y. 

(b)  Use D(x)  to find the linear cross-correlation ryx(k). 

(c)  Find  the normalized  linear cross-correlation ρyx(k). 
 

 
 

Solution 
 

 
 

(a)  Using (2.8.2) and Example  2.18 as a guide, the linear cross-correlation matrix is 
 

 
 
x(0)    x(1)    x(2)      0        0     

0      x(0)    x(1)    x(2)      0

D(x)    =  
1 

 
 
 

 

0        0      x(0)    x(1)    x(2)   

0        0        0      x(0)    x(1)   

0        0        0        0      x(0)
 
5   0   −10     0        0     

0   5      0      −10     0

=  
1 

 

0   0      5        0 
 
 

 
−10  

 

 
  

1   0   −2     0      0    
 0   1     0     −2     0    

=  
 
0   0     1      0     −2                                                             

 
 
 

 
(b)  Using (2.8.3) and the results from part (a)
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0 0 1 0 −2 

0 0 0 1 0 

 

−2 

 

= 
4 

 

4 

1 

 

 
 
 

ryx    =   D(x)y 
 
1   0   −2     0      0   

   
1    

 0   1     0     −2     0      0                                                                                                                                                      

0   0     0      0      1            3 
  

5    
 −8   

=   −8                   

3 
 

 
This can be verified using the DSP Companion  function f corr. 

(c)  Using (2.8.5) we have L = 5 and M = 3. Also from Definition 2.5 
 

 
ryy(0)    = 

1 
L−1 X 

y2 
L 

i=0 

 
(i)

1 + 0 + 4 + 16 + 9 
= 

5 
=  6 

M −1 
2rxx(0)   = 

X 
x (i) 

M  
i=0

25 + 0 + 100 
= 

3 
=  41.67 

 
 

 
Finally,  from (4.49) the normalized  cross-correlation of x(k) with y(k) is 

 
 

ρyx(k)    = 
 

 

= 

ryx(k) 
p

(M/L)rxx(0)ryy(0) 

ryx(k) 
p

.6(6)41.67

=  [.408, −.653, −.653, .327, .245]T
 

 
 

 
This can be verified using the DSP Companion  function f corr.
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√   
2.36    Suppose y(k) is as follows. 

 
 

y   =  [5, 7, −2, 4, 8, 6, 1]T
 

 

 
 
 

(a)  Construct a 3-point signal x(k) such that ryx(k) reaches its peak positive value at k = 3 

and |x(0)| = 1. 

(b)  Construct a 4-point signal x(k) such that ryx(k) reaches its peak negative value at k = 2 

and |x(0)| = 1. 
 

 
Solution 

 

 
(a)  Recall that the cross-correlation ryx(k) measures  the degree which x(k)  is similar to a 

subsignal  of y(k).   In  order  for ryx(k) to reach  its  maximum  positive  value  at k = 3, 

one must have maximum  positive correlation starting at k = 3.  Thus  for some positive 

constant α it is necessary that 
 
 

x   =  α[y(3), y(4), y(5)]T
 

=  α[4, 8, 6]T
 

 

 
 

The constraint, |x(0)| = 1, implies that the positive scale factor must be α = 1/4.  Thus 
 
 

x   =  [1, 2, 1.5]T
 

 

 
 

(b)  In  order  for ryx(k) to reach  its maximum  negative value  at k  = 2,  one  must have 

maximum  negative correlation starting at k = 2. Thus  for some positive constant α we 

need 
 
 

x   =  −α[y(2), y(3), y(4), y(5)]T 

=  α[2, −4, −8, −6]T
 

 

 
 

The constraint, |x(0)| = 1, implies that the positive scale factor must be α = 1/2.  Thus 
 
 

x   =  [1, −2, −4, −3]T
 

 

 
 

The answers to (a) and (b) can be verified using the DSP Companion  function f corr.
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4   

= 

= 

= 
1 

 

2.37   Suppose x(k) and y(k) are defined as follows. 
 

 
x   =  [4, 0, −12, 8]T

 

y   =  [2, 3, 1, −1]T
 

 

 
 
 

(a)  Find  the circular cross-correlation matrix E(x)  such that cyx = E(x)y. 

(b)  Use E(x)  to find the circular  cross-correlation cyx(k). 

(c)  Find  the normalized  circular  cross-correlation σyx(k). 
 

 
Solution 

 

 
(a)  Using Definition 2.6, cyx(k) is just 1/N  times the dot product of y with x rotated right 

by k samples.  Thus  the kth row of E(x)  is the vector x rotated right by k samples. 
 
  

x(0)    x(1)    x(2)    x(3)   

E(x)    =  
1  x(3)    x(0)    x(1)    x(2)   
4 

 
x(2)    x(3)    x(0)    x(1)   

 
 

 

=  
1  

 

x(1)    x(2)    x(3)    x(0) 

4        0      −12     8     

8        4        0      −12 
 −12     8        4        0     

0      −12     8        4 
  

1      0     −3     2    
  2      1      0     −3                              
 −3     2      1      0    

0     −3     2      1 
 
 

(b)  Using Definition 2.6 and the results from part (a) 
 

 
cyx    =  E(x)y 

  
1      0     −3     2   

   
2    

  2      1      0     −3     3                                     
 −3     2      1      0 

0     −3     2      1 

   1    
−1

 
−3   

 10                   

−8
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1 

 
 

 
This can be verified using the DSP Companion  function f corr. 

(c)  Using (2.8.7), N = 4. Also from Definition 2.6 
 
 

N −1 
2cyy (0)   = 

X 
y (i) 

N  
i=0

4 + 9 + 1 + 1 
= 

4 
=  3.75 

N −1 
1           2cxx(0)    = 
X 

x (i) 
N  

i=0

16 + 0 + 144 + 64 
= 

4 
=  56 

 
 

 
Finally,  from (2.8.7) the normalized  circular  cross-correlation of y(k) with x(k) is 

 
 

σyx(k)    = 
cyx(k) 

p
c    (0)c

 

 

 

(0)

xx         yy 

=     
cyx(k) p
3.75(56) 

=  [−.207, .690, .069, −.552]T
 

 
 

 
This can be verified using the DSP Companion  function f corr. 

 
2.38   Suppose y(k) is as follows. 

 

 
 

y   =  [8, 2, −3, 4, 5, 7]T 

 
 
 

 
(a)  Construct a 6-point signal x(k) such that σyx(2) = 1 and |x(0)| = 6. 

(b)  Construct a 6-point signal x(k) such that σyx(3) = −1 and |x(0)| = 12. 
 

 
 

Solution
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(a)  Recall that normalized  circular cross-correlation, −1 ≤ σyx(k) ≤ 1, measures  the degree 

which a rotated version of a signal x(k) is similar to the signal y(k).  In order for σyx(k) to 

reach its maximum  positive value at k = 2, one must have maximum  positive correlation 

starting at k = 2. Thus  for some positive constant α it is necessary that 
 

 
 

x   =  α[y(2), y(3), y(4), y(5), y(0), y(1)]T
 

=  α[−3, 4, 5, 7, 8, 2]T
 

 
 

 
The constraint, |x(0)| = 6, implies that the positive scale factor must be α = 2. Thus 

 

 
 

x   =  [−6, 8, 10, 14, 16, 4]T 

 
 

 
Because  y and  x  are  of the same  length,  this  will result  is σyx(2)  = 1 which  can  be 

verified by using the DSP Companion  function f corr. 

(b)  In  order  for σyx(k)  to reach  its maximum  negative value  at k  = 3,  one  must have 

maximum  negative correlation starting at k = 3. Thus  for some positive constant α 
 

 
 

x   =  −α[y(3), y(4), y(5), y(0), y(1), y(2)]T
 

=  α[4, 5, 7, 8, 2, −3]T
 

 
 

 
The constraint, |x(0)| = 12, implies that the positive scale factor must be α = 3. Thus 

 

 
 

x   =  [12, 15, 21, 24, 6, −9]T
 

 
 

 
Because  y and  x are of the same length,  this  will result  is σyx(3)  = −1  which can be 

verified by using the DSP Companion  function f corr. 

2.39   Let x(k)  be an N-point signal with average power Px. 

(a)  Show that rxx(0) = cxx(0) = Px 

(b)  Show that ρxx(0) = σxx(0) = 1 
 

 
 

Solution
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1 

 

(a)  The average power of x(k) is 
 
 

N −1 
2Px     = 

X 
x  (k) 

N  
k=0

 

 

From Definition 2.5, the auto-correlation of an N -point signal is 
 

 
rxx(0)   = 

 

 
= 

N −1 
1  X 

x(i)x(i − 0) 
N  

i=0 

N −1 
1  X 

x2(i) 
N  

i=0

=  Px 

 
 

 
From  Definition  2.6,  the circular  auto-correlation  of an  N -point  signal  with  periodic 

extension xp(k) is 
 

 
cxx(0)    = 

 

 
= 

 

 
 

= 

N −1 
1  X 

x(i)xp(i − 0) 
N  

i=0 

1 
N −1 X 

x(i)xp(i) 
N  

i=0 

N −1 
1  X 

x2(i) 
N  

i=0

=  Px 

 
 

 
(b)  From (2.8.5), the normalized  auto-correlation of an N -point signal is 

 
 

ρxx(0)    = 
rxx(0) 

p
(N/N )rxx(0)rxx(0)

=  1 
 
 

 
From (2.8.7), the normalized  circular  auto-correlation of an N -point signal is
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c2
 

 
 
 

σxx(0)    = 
cxx(0) 

p
c    (0)c

 

 

 

(0)
xx         xx 

=  1 
 
 
 

 
2.40   This  problem  establishes  the normalized  circular  cross-correlation inequality,  |σyx(k)|  ≤ 1. 

Let x(k)  and y(k) be sequences of length N  where xp(k) is the periodic extension of x(k). 

 

(a)  Consider the signal u(i, k) = ay(i) + xp(i − k) where a is arbitrary. Show that 
 
 

1 
N −1 X 

[ay(i) + xp(i − k)]2    =  a2cyy (0) + 2acyx(k) + cxx(0) ≥ 0 
N  

i=0 

 

 
(b)  Show that the inequality in part (a) can be written in matrix form as 

 

   
cyy (0)    cyx(k) 

     
a

[a, 1] 
cyx(k)    cxx(0) 1     

≥ 0

 

 
 

(c)  Since the inequality  in part (b)  holds  for any  a,  the 2 × 2 coefficient  matrix  C(k)  is 

positive semi-definite, which means that det[C(k)] ≥ 0. Use this fact to show that 
 

 

yx(k) ≤ cxx(0)cyy(0)      ,      0 ≤ k < N 

 
 

 
(d)  Use the results from part (c) and the definition of normalized  cross-correlation to show 

that 
 

 
 

−1 ≤ σyx(k) ≤ 1      ,       0 ≤ k < N 
 

 
 
 
 
 

Solution
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p 

c2
 

p 

(a)  

 
N −1 

1  X 
u2(i, k)   =   

1
 

N                                N 
i=0 

 

1 
= 

N 

 

 
N −1 X 

[ay(i) + xp(i − k)]2 

i=0 

N −1 X 
a
2
y

2
(i) + 2ay(i)xp(i − k) + x

2
(i − k) 

i=0

a2 N −1 N −1 N −1

=     
X 

y2(i) + 
2a X 

y(i)x  (i − k) + 
1 X 

x2(i − k)

N  
i=0 

N  
i=0 

p 

 

1 
N −1 

N  
i=0

=  a
2
cyy (0) + 2acyx(k) + 

N 

X 
x2(i) 

i=0

=  a2cyy (0) + 2acyx(k) + cxx(0) 

≥  0 
 
 

(b) 
 

 
   

cyy (0)    cyx(k) 
     

a 

 

 
                   

acyy (0) + cyx(k) 
=  [a, 1]

[a, 1] 
cyx(k)    cxx(0) 1                          acyx(k) + cxx(0) 

=  a2cyy (0) + acyx(k) + acyx(k) + cxx(0) 

=  a2cyy (0) + 2acyx(k) + cxx(0)
 
 
 
 
 

(c)  The coefficient matrix C(k) from part (b) is positive semi-definite and therefore det[C(k)] ≥ 
0. But 

 
 

det[C(k)]    =  det 

    
cyy (0)    cyx(k)  

  
 

cyx(k)    cxx(0) 
2=  cyy (0)cxx(0) − cyx(k) 

≥  0 
 
 

 
Thus 

 

 

yx(k)    ≤  cxx(0)cyy(0)      ,      0 ≤ k < N
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(d)  Using (2.8.7) and the results from part (c) 
 

 
 

|σyx(k)|    = cyx(k)

  p
cxx(0)cyy(0)

    
 s  

c2
 

=           
yx(k)     

cxx(0)cyy(0)
 
 

                       
 

≤  1 
 
 

 
Thus 

 

 
 

−1 ≤ σyx(k) ≤ 1      ,       0 ≤ k < N 
 
 
 

 
2.41   Consider the following FIR system. 

 

 
y(k)    = 

5 X
(1 + i)2x(k − i) 

i=0
 

 
Let x(k)  be a bounded  input with bound  Bx.  Show that y(k) is bounded  with bound  By  = 

cBx.  Find  the minimum  scale factor, c. 
 

 

Solution 
 

 
 
 

5

|y(k)|    =
 

 X
(1 + i)2x(k − i)

 
      
i=0 

5 

≤  
X 

|(1 + i)2x(k − i)| 
i=0 

5 

=  
X 

|(1 + i)2| · |x(k − i)| 
i=0 

5 

≤  Bx 

X 
|(1 + i)2| 

i=0 

=  khk1Bx
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Here 

 

 
khk1    = 

5 X
(1 + i)2

 

i=0

=  1 + 4 + 9 + 16 + 25 + 36 

=  93 
 
 

 
Thus 

 

 
 

By     =  93Bx 
 

 
 
 

2.42   Consider a linear time-invariant discrete-time system S with the following impulse response. 

Find  conditions on A and p that guarantee that S is BIBO stable. 
 

 
 

h(k)    =  Apk µ(k) 
 

 
 
 
 

Solution 
 

 

The system S is BIBO stable if an only if khk1 < ∞.  Here 
 

 
khk1    = 

∞ X 
 
k=−∞ 

∞ 

 
|h(k)|

=  
X 

Apk
 

k=0 
∞

=  A 
X 

pk
 

k=0 

A 
= 

1 − p 

 

 
 
 

,      |p| < 1

 

 
 

Thus  S is BIBO stable if and only if |p| < 1. There  is no constraint on A.
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∗ 

 

 

2.43   From  Proposition 2.1, a linear  time-invariant discrete-time system  S is BIBO  stable if and 

only if the impulse  response  h(k)  is absolutely  summable,  that is, khk1  < ∞.   Show that 

khk1 < ∞ is necessary for stability. That is, suppose that S is stable but h(k) is not absolutely 

summable.  Consider the following input, where h∗(k)  denotes the complex conjugate of h(k) 

(Proakis  and Manolakis,1992). 
 
 
 

x(k)    = 

  
h∗(k) 

,   h(k) = 0 
|h(k)| 

     
0       ,   h(k) = 0

 
 

 
(a)  Show that x(k)  is bounded  by finding a bound  Bx. 

(b)  Show that S is not is BIBO stable by showing that y(k) is unbounded at k = 0. 
 

 
 

Solution 
 

 
 

(a)  Since x(0) = 0 when h(k) = 0, consider the case when h(k) = 0. 
 
 

  
h∗(k) 

 
 

|x(k)|    = 
  |h(k)|   

=  
|h (k)| 
|h(k)| 

=  
|h(k)| 
|h(k)| 

=  1 
 
 

 
Thus  x(k) is bounded  with Bx  = 1.
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X 
  h(i)x(−i) 

X 
  

    
  

  = 

(b) 
 

 
 

|y(0)|   =  |h(k) ? x(k)|k=0

∞ 

=    
                      

 
 

 
i=−∞                           

 
 

∞                     ∗
 

h(i)h  (−i) 
  

                         
  

i=−∞ 
∞ 

|h(−i)| 
 

∗

=   
X

 

i=−∞ 

∞ 

=   
X

 

i=−∞ 

|h(i)| · |h (−i)| 

|h(−i)| 
 

 

|h(i)|

=  khk1 

=   ∞ 
 
 
 

 
2.44   Consider  the following discrete-time system.   Use GUI  module  g systime  to simulate this 

system.  Hint:  You can enter the b vector in the edit box by using two statements on one line: 

i=0:8; b=cos(pi*i/4) 
 

 
y(k)   = 

8 X 
cos(πi/4)x(k − i) 

i=0
 
 
 

(a)  Plot the polynomial  roots 

(b)  Plot and the impulse response using N = 40. 
 

 
 

Solution
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x
(
k
)
 

y
(
k
)
 

I
m
(
 
z
)
 

|
b
(
z
)
/
a
(
z
)
|
 
(
d
B
)
 

g_systime 
1 

Select type           Select view

 

0.5 x(k)        S        y(k)

 

 
0 

0             0.2            0.4            0.6            0.8             1 

Edit parameters 

 
Slider bar 

 

 
 

Polynomial roots: ’x’=a(z), ’o’=b(z) 

2 
Magnitude of b(z)/a(z)

 
1                     

O      
O 

 

O                         O 
0                             X 

O                         O 
 

−1                     
O      

O 

 

 
−2 

20 
 

10 
 

0 
 
−10 
 
−20 

2 

 
 
 
 
 
 
 

2 
0                                                                1 

Im( z)                −1

−2          −1            0            1            2 
Re( z) 

−2    −2 
Re( z)

Problem 2.44 (a) Polynomial Roots 
 

 
g_systime 

1 
Select type           Select view

 

0.5 x(k)       S        y(k)

 

 
0 

0             0.2            0.4            0.6            0.8             1 

Edit parameters 

 
Slider bar 

 

 
 
 

Time signals, unit impulse input 

1 

 
0.5 

 
0 

0                     5                    10                   15                   20                   25                   30                   35 
1 

 
0 

 
−1 

0                     5                    10                   15                   20                   25                   30                   35 
k 

Problem 2.44 (b) Impulse Response
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x
(
k
)
 

y
(
k
)
 

 

2.45   Consider a discrete-time system with the following characteristic and input polynomials.  Use 

GUI module  g systime to plot the step response  using N  = 100 points.  The  MATLAB  poly 

function can be used to specify coefficient vectors a and b in terms of their roots, as discussed 

in Section 2.9. 
 
 
 

a(z)    =  (z + .5 ± j.6)(z − .9)(z + .75) 

b(z)   =  3z2(z − .5)2
 

 

 
 
 
 

Solution 
 

g_systime 
1 

Select type           Select view

 

0.5 x(k)       S        y(k)

 

 
0 

0             0.2            0.4            0.6            0.8             1 

Edit parameters 

 
Slider bar 

 

 
 
 

Time signals, unit step input 

1 

 
0.5 

 
0 

0               10              20              30              40              50              60              70              80              90 
5 

 
0 

 
−5 

0               10              20              30              40              50              60              70              80              90 
k 

Problem 2.45 Step  Response
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√   
2.46   Consider the following linear discrete-time system. 

 
 
 

y(k)    =  1.7y(k − 2) − .72y(k − 4) + 5x(k − 2) + 4.5x(k − 4) 
 

 
 
 

Use GUI  module  g systime  to plot the following damped  cosine input and  the zero-state 

response to it using N = 30. To determine F0, set 2πF0kT  = .3πk and solve for F0/fs  where 

T = 1/fs. 
 

 
 

x(k)    =  .97k cos(.3πk) 
 
 
 
 
 

Solution 
 
 
 

 
2πF0kT    =  .3πk 

 

 
 
 

Thus  2F0T = .3 or F0 = .15fs.  If fs = 2000, then F0 = 300.
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y
(
k
)
 

x
(
k
)
 

g_systime 
1 

Select type           Select view

 

0.5 x(k)       S        y(k)

 

 
0 

0             0.2            0.4            0.6            0.8             1 

Edit parameters 

 
Slider bar 

 

 
 
 

Time signals, damped cosine input: c=0.97, F0=300 

1 

 
0 

 
−1 

0                           50                         100                        150                        200                        250 
20 

 
10 

 
0

 
−10  

0                           50                         100                        150                        200                        250 
k 

Problem 2.46 Input and Output
 

 
 

2.47   Consider the following linear discrete-time system. 

y(k)    =  −.4y(k − 1) + .19y(k − 2) − .104y(k − 3) + 6x(k) − 7.7x(k − 1) + 2.5x(k − 2) 

Create a MAT-file called prob2 47 that contains f s = 100, the appropriate coefficient vectors 

a and b, and the following input samples, where v(k) is white noise uniformly distributed over 
[−.2, .2]. Uniform white noise can be generated with the MATLAB  function rand. 

 
 
 

x(k)    =  k exp(−k/50) + v(k)      ,      0 ≤ k < 500 
 
 
 

 
(a)  Print the MATLAB  program  used to create prob2 47.mat. 

(b)  Use GUI module g systime and the Import option to plot the roots of the characteristic 

polynomial and the input polynomial. 

(c)  Plot the zero-state response on the input x(k).
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I
m
(
 
z
)
 

|
b
(
z
)
/
a
(
z
)
|
 
(
d
B
)
 

O 

 

Solution 
 

 
(a)  % Problem 2.47 

 

f_header(’Problem 2.47: Create MAT file’) 

fs = 100; 

a = [1 .4 -.19 .104] 

b = [6 -7.7 2.5]; 
N = 500; 
v = -.2 + .4*rand(1,N); 

k = 0:N-1; 

x = k .* exp(-k/50) + v; 
save prob2_47 fs a b x 
what 

 

g_systime 
1 

Select type           Select view

 

0.5 x(k)        S        y(k)

 

 
0 

0             0.2            0.4            0.6            0.8             1 

 

 
Slider bar 

 

 
 

Polynomial roots: ’x’=a(z), ’o’=b(z) 

2 
Magnitude of b(z)/a(z)

 
50 

1 

X 

0                 X         O      O 
X 

 
−50

−1 

 

 
−2 
−2          −1            0            1            2 

Re( z) 

 

2 
 

0 

Im( z) 

 
 

 
−2    −2 

 
2 

1 

−1 

Re( z)

Problem 2.47 (b) Polynomial Roots
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y
(
k
)
 

x
(
k
)
 

g_systime 
1 

Select type           Select view

 

0.5 x(k)       S        y(k)

 

 
0 

0             0.2            0.4            0.6            0.8             1 

 
 

Slider bar 

 

 
 
 

Time signals, user−defined input from file prob2_47 

20 
 

10 
 

0
 

−10 

20 

 
0               50             100            150            200            250            300            350            400            450

 
10 

 
0

 
−10  

0               50             100            150            200            250            300            350            400            450 
k 

Problem 2.47 (c) Input and Output
 
 
 

2.48   Consider  the following discrete-time  system,  which  is a narrow  band  resonator filter  with 

sampling frequency of fs = 800 Hz. 
 

 
 

y(k)    =  .704y(k − 1) − .723y(k − 2) + .141x(k) − .141x(k − 2) 
 

 
 
 

Use GUI module g systime to find the zero-input response for the following initial conditions. 

In each chase plot N = 50 points. 
 

(a)  y0 = [10, −3]T
 

(b)  y0 = [−5, −8]T
 

 

 
 

Solution
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Problem 2.48 (a) Zero-input Response
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Problem 2.48 (b) Zero-input  Response
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2.49   Consider  the following discrete-time  system,  which is a notch  filter  with  sampling  interval 

T = 1/360 sec. 
 
 
 

y(k)    =  .956y(k − 1) − .914y(k − 2) + x(k) − x(k − 1) + x(k − 2) 
 

 
 
 

Use GUI module  g systime to find the output corresponding  to the sinusoidal  input x(k)  = 

cos(2πF0kT )µ(k).  Do the following cases. Use the caliper option to estimate the steady state 

amplitude in each case. 

 
(a)  Plot the output when F0 = 10 Hz. 

(b)  Plot the output when F0 = 60 Hz. 

 
 

Solution 
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Problem 2.49 (a) F0 = 10 Hz
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Time signals, damped cosine input: c=1, F0=60 
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Problem 2.49 (b) F0 = 60 Hz 
 
 
 

2.50   Consider  the following two  polynomials.   Use g systime  to compute,  plot,  and  Export  to a 

data file the coefficients of the product  polynomial  c(z) = a(z)b(z).   Then  Import  the saved 

file and display the coefficients of the product polynomial. 
 

 
 

a(z)    =  z2 − 2z + 3 

b(z)   =  4z3 + 5z2 − 6z + 7 
 

 
 
 
 

Solution
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Problem 2.50 Polynomial Multiplication 
 
 
 

product = 

4    -3    -4    34   -32    21 
 

 

2.51   Consider  the following two  polynomials.   Use g systime  to compute,  plot,  and  Export  to a 

data file the coefficients of the quotient polynomial  q(z) and the remainder  polynomial  r(z) 

where b(z) = q(z)a(z) + r(z). Then  Import  the saved file and  display the coefficients of the 

quotient and remainder  polynomials. 
 

 
a(z)    =  z2 + 3z − 4 

b(z)   =  4z4 − z2 − 8 
 

 
 
 
 

Solution 
 

 
quotient = 

 

4   -1 2 51  

remainder =    

0 0 0  -201 196 
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Problem 2.51 Polynomial Division 
 

 
√   

2.52    Use the GUI module g correlate  to record the sequence of vowels “A”,“E”,“I”, 

“O”,“U”  in y. Play y to make sure you have a good recording of all five vowels. Then  record 

the vowel “O” in x.  Play x back to make sure you have a good recording of “O” that sounds 

similar to the “O” in y. Export the results to a MAT-file named  my vowels. 

 
(a)  Plot the inputs x and y showing the vowels. 

(b)  Plot the normalized  cross-correlation of y with x using the Caliper  option to mark  the 

peak which should show the location of x in y. 

(c)  Based  on the plots in (a),  estimate the lag d1 that would be required  to get  the “O” 

in x to align with the “O”  in y.  Compare  this with the peak location d2 in (b).  Find 

the percent error  relative to the estimated lag d1.  There  will be some error  due to the 

overlap of x with adjacent vowels and co-articulation effects in creating y. 
 

 
 

Solution
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(c)  From  part (a),  the start of O in x is approximately ox = 9000, and  the start of O in y 

is approximately oy = 1800. Thus  the translation of y required  to get a match with x is 
 

 
 

d1    =  ox − oy 

≈  9000 − 1800 

=  7200 
 
 

 
The peak in part (b) is at d2 = 6807. Thus  the percent  error in finding the location of 

O in x is 
 

 

E    =  
100(d2 − d1) 

d1 

=  
100(6807 − 7200) 

7200 
=  −5.46 % 

 
 
 

 
2.53   The  file prob2 53.mat  contains two signals, x and  y, and  their  sampling  frequency,  f s. Use 

the GUI module g correlate  to Import x, y, and fs. 

 
(a)  Plot x(k) and y(k). 

(b)  Plot the normalized  linear  cross-correlation ρyx(k).   Does y(k) contain any  scaled and 

shifted versions of x(k)?  Determine how many,  and  use the Caliper  option to estimate 

the locations of x(k) within y(k). 
 

 
 

Solution 
 

 

From the plot of ρxy(k), there are three scaled and shifted versions of y(k) within x(k).  They 

are located at 
 
 
 

k   =  [388, 1718, 2851]
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2.54   Consider the following discrete-time system. 
 
 
 

y(k)    =  .95y(k − 1) + .035y(k − 2) − .462y(k − 3) + .351y(k − 4) + 

.5x(k) − .75x(k − 1) − 1.2x(k − 2) + .4x(k − 3) − 1.2x(k − 4) 
 

 
 
 

Write a  MATLAB  program  that uses  filter  and  plot  to compute and  plot the zero-state 

response  of this system to the following input.  Plot both the input and  the output on the 

same graph. 
 

 
 

x(k)    =  (k + 1)2(.8)kµ(k)       ,      0 ≤ k ≤ 100 
 

 
 
 
 

Solution 
 

 
 

% Problem 2.54 

% Initialize 

f_header(’Problem 2.54’) 

a = [1 -.95 -.035 .462 -.351] 

b = [.5 -.75 -1.2 .4 -1.2] 
N =101; 
k = 0 : N-1; 

x = (k+1).^2 .* (.8).^k; 
 

% Find zero-state response 

y = filter (b,a,x); 

% Plot input and output 
 

figure 

h = plot (k,x,k,y); 

set (h(2),’LineWidth’,1.0) 

f_labels (’’,’k’,’x(k) and y(k)’) 

legend (’x’,’y’) 

f_wait
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Problem 2.54 Input and Zero-State  Response 
 
 

 
2.55   Consider the following discrete-time system. 

 

 
 

a(z)    =  z4 − .3z3 − .57z2 + .115z + .0168 

b(z)   =  10(z + .5)3
 

 

 
 
 

This  system has four simple nonzero  roots.  Therefore  the zero-input  response  consists of a 

sum of the following four natural mode terms. 
 

 
 

yzi(k)    =  c1pk + c2pk + c3pk + c4pk 
1           2           3           4 

 
 

 
The coefficients can be determined from the initial condition 

 

 
 

y0    =  [y(−1), y(−2), y(−3), y(−4)]T
 

 
 

 
Setting  yzi(−k) = y(−k) for 1 ≤ k ≤ 4 yields the following linear  algebraic  system  in the 

coefficient vector c = [c1, c2, c3, c4]T .



113 

 c  2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible 

website, in whole or in part. 

 

1 

 
 

 
p−1

 
−1      −1

 − 

  
c1  

1      p2      p3      p4 
−2      −2      −2      −2

 p1      p2      p3      p4   c2  
= y

 
p−3

 
−3      −3

 
−3  

  
c3  

     
0

  
1      p2      p3      p4    

      

p−4
 

−4      −4      −4           c4
1      p2      p3      p4 

 

 
Write a MATLAB  program  that uses roots to find the roots of the characteristic polynomial 

and  then solves this linear algebraic  system for the coefficient  vector c using the MATLAB 

left division or \ operator when the initial condition is y0. Print the roots and the coefficient 

vector c. Use stem to plot the zero-input response yzi(k) for 0 ≤ k ≤ 40. 
 

 

Solution 
 

 
 

% Problem 2.55 

% Initialize 

f_header(’Problem 2.55’) 

a = [1 -.3 -.57 .115 .0168] 

y = [2 -1 0 3]’ 

n = 4; 

% Construct coefficient matrix 

p = roots(a) 

A = zeros(n,n); 

for i = 1 : n 

for k = 1 : n 

A(i,k) = p(k)^(-i); 

end 
end 

 

% Find coefficient vector c 

c = A \ y 

% Compute zero-input response 
 

N =41; 

k = 0 : N-1; 

y_0 = zeros(1,N); 

for i = 1 : n
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end 
y_0 = y_0 + c(i) .^ k;

 
% Plot it 

 

figure 

stem (k,y_0,’filled’,’.’) 

f_labels (’’,’k’,’y_0(k)’) 

f_wait 
 

 

Program Output: 
 

 

p = 

-.7000 

.8000 

.3000 
-.1000 

c = 
-.8195 
.8720 

-.0742 

.0013 
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Problem 2.55 Zero-Input Response to Initial Condition
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√   
2.56    Consider the discrete-time system in Problem  2.55. Write a MATLAB  program  that uses the 

DSP Companion  function f filter0 to compute the zero-input response to the following initial 

condition.  Use stem to plot the zero-input response yzi (k) for −4 ≤ k ≤ 40. 
 

 
 

y0    =  [y(−1), y(−2), y(−3), y(−4)]T
 

 

 
 
 
 

Solution 
 

 
 

% Problem 2.56 

% Initialize 

f_header(’Problem 2.56’) 

a = [1 -.3 -.57 .115 .0168] 

b = 10*poly([-.5,-.5,-.5]) 

y0 = [2 -1 0 3]’ 

n = 4; 
 

% Solve system 
 

N = 41; 

x = zeros(1,N); 

y_zi = f_filter0(b,a,x,y0); 

% Plot it 

figure 

k = [-n : N-1]; 

stem (k,y_zi,’filled’,’.’) 

f_labels (’Zero-input Response’,’k’,’y_{zi}(k)’) 

f_wait
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Problem 2.56 Zero-input Response 
 
 

 
2.57    Consider the following running  average filter. 

 

 
y(k) = 

9 
1  X 

x(k − i)      ,      0 ≤ k ≤ 100 
10 

i=0

 
Write a MATLAB  program  that performs the following tasks. 

 
(a)  Use filter and  plot to compute and  plot the zero-state response  to the following input, 

where v(k) is a random  white noise uniformly  distributed over [−.1, .1].  Plot x(k)  and 

y(k)  below one another.   Uniform  white noise can  be  generated using  the MATLAB 

function rand. 
 

 
 

x(k)    =  exp(−k/20) cos(πk/10)µ(k) + v(k) 
 

 
 
 

(b)  Add  a third curve  to the graph  in part (a)  by computing and  plotting the zero-state 

response using conv to perform convolution. 
 

 
 

Solution 
 
 

The transfer function of this FIR  filter is
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9 

H(z)    =  .1 
X 

z−i
 

i=0 
 

 
 
 

% Problem 2.57 

% Initialize 

f_header(’Problem 2.57’) 

m = 9; 

b = .1*ones(1,m+1); 

a = 1; 

N =101; 

k = 0 : N-1; 

c = .1; 

x = exp(-k/20) .* cos(pi*k/10) + f_randu(1,N,-c,c); 
 

% Find zero-state response 

y = filter (b,a,x); 

% Plot input and output 
 

figure 

h = plot (k,x,k,y); 

set (h(2),’LineWidth’,1.0) 

f_labels (’Input and Output’,’k’,’x(k) and y(k)’) 

legend (’x’,’y’) 

f_wait
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Problem 2.57 Running Average Filter of Order m = 9 
 
 

 
2.58   Consider  the following FIR  filter.   Write  a MATLAB  program  that performs  the following 

tasks. 
 

 
20           i 

y(k)    = 
X (−1) x(k − i) 

2
 

i=0 
10 + i

 
 
 

(a)  Use the function filter to compute  and  plot  the impulse  response  h(k)  for 0 ≤ k < N 

where N = 50. 

(b)  Compute and plot the following periodic input. 
 

 
 

x(k)    =  sin(.1πk) − 2 cos(.2πk) + 3 sin(.3πk)       ,      0 ≤ k < N 
 

 
 
 

(c)  Use conv to compute the zero-state response to the input x(k)  using convolution. Also 

compute the zero-state response  to x(k)  using filter.  Plot both responses  on the same 

graph  using a legend. 
 

 
 

Solution
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% Problem 2.58 

% Construct filter 

f_header(’Problem 2.58’) 

i = 0 : 20; 

b = (-1).^2 ./ (10 + i.^2); 

a = 1; 
 

% Construct input 
 

N = 50; 

k = 0 : N-1; 

x = sin(.1*pi*k) - 2*cos(.2*pi*k) + 3*sin(.3*pi*k); 

% Compute and plot impulse response 

delta = [1,zeros(1,N-1)]; 

h = filter (b,a,delta); 

figure 

plot (k,h) 

f_labels (’Impulse Response’,’k’,’h(k)’) 

f_wait 

% Compute and plot zero-state response using convolution 

figure 

plot (k,x) 

f_labels (’Input’,’k’,’x(k)’) 

f_wait 
circ = 0; 
y1 = f_conv (h,x,circ); 
k1 = 0 : length(y1)-1; 

y2 = filter (b,a,x); 

k2 = 0 : N-1; 

hp = plot (k1,y1,k2,y2); 

set (hp(2),’LineWidth’,1.5) 

f_labels (’Zero State Response’,’k’,’y(k)’) 

legend (’Using f\_conv’,’Using filter’) 

f_wait
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Problem 2.58 (a) Impulse Response 
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Problem 2.58 (b) Periodic Input



121 

 c  2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible 

website, in whole or in part. 

 

  Using 
f_conv 

Using filter 

 

 

 

y
(
k
)
 

 
0.8 

Zero State  Response

 
0.6 

 
0.4 

 
0.2 

 
0 

 
−0.2 

 
−0.4 

 
−0.6 

−0.8  
0                       20                      40                      60                      80                    

100 
k

 

Problem 2.58 (c) Zero-State  Response 
 
 

 
2.59   Consider the following pair of signals. 

 

 
 

h   =  [1, 2, 3, 4, 5, 4, 3, 2, 1]T
 

x   =  [2, −1, 3, 4, −5, 0, 7, 9, −6]T
 

 

 
 
 

Verify that linear  convolution and  circular  convolution produce  different  results  by writing 

a MATLAB  program  that uses the DSP  Companion  function f conv to compute the linear 

convolution y(k) = h(k) ? x(k)  and  the circular  convolution yc(k) = h(k) ◦  x(k).   Plot y(k) 

and yc(k) below one another on the same screen. 
 

 

Solution 
 

 
 

% Problem 2.59 

% Initialize 

f_header(’Problem 2.59’) 

h = [1 2 3 4 5 4 3 2 1] 

x = [2 -1 3 4 -5 0 7 9 -6] 
 

% Compute convolutions
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c
 

 

 
y = f_conv (h,x,0); 
y_c = f_conv (h,x,1); 

% Plot them 

figure 

subplot (2,1,1) 

k = 0 : length(y)-1; 

plot (k,y) 

f_labels (’Linear Convolution: y(k) = h(k) * x(k)’,’k’,’y(k)’) 

subplot (2,1,2) 

k = 0 : length(y_c)-1; 

plot (k,y_c) 

f_labels (’Circular Convolution: y_c(k) = h(k) \circ x(k)’,’k’,’y_c(k)’) 

f_wait 
 
 

 
Linear Convolution: y(k) = h(k) * x(k) 
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2.60   Consider the following pair of signals. 
 

 
 

h   =  [1, 2, 4, 8, 16, 8, 4, 2, 1]T 

x   =  [2, −1, −4, −4, −1, 2]T 
 

 
 
 

Verify that linear  convolution can be achieved  by zero padding  and  circular  convolution by 

writing a MATLAB program  that pads these signals with an appropriate number  of zeros and 

uses the DSP Companion  function f conv to compare the linear convolution y(k) = h(k)?x(k) 

with the circular  convolution yzc(k) = hz (k) ◦  xz(k).  Plot the following. 

 

(a)  The zero-padded  signals hz (k) and xz (k) on the same graph  using a legend. 

(b)  The linear convolution y(k) = h(k) ? x(k). 

(c)  The zero-padded  circular  convolution yzc (k) = hz (k) ◦  xz (k). 
 

 
Solution 

 

 
 

% Problem 2.60 

% Initialize 

f_header(’Problem 2.60’) 

h = [1 2 4 8 16 8 4 2 1]; 

x = [2 -1 -4 -4 -1 2]; 
 

% Construct and plot zero-padded signals 

 
L = length(h); 
M = length(x); 
h_z = [h, zeros(1,M-1)] 
x_z = [x, zeros(1,L-1)] 

figure 

k = 0 : length(h_z)-1; 

hp = plot (k,h_z,k,x_z); 

set (hp(1),’LineWidth’,1.5) 

f_labels (’Zero-Padded Signals’,’k’,’Inputs’) 

legend (’h_z(k)’,’x_z(k)’) 

f_wait 
 

% Compute and plot convolutions
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               h (k) 
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y = f_conv (h,x,0); 
y_zc = f_conv (h_z,x_z,1); 

figure 

plot (k,y) 

f_labels (’Linear Convolution: y(k) = h(k) * x(k)’,’k’,’y(k)’) 
f_wait 
figure 
plot (k,y_zc) 
f_labels (’Circular Convolution: y_{zc}(k) = h_z(k) \circ x_z(k)’,’k’,’y_{zc}(k)’) 

f_wait 
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Problem 2.60 (b) Linear Convolution 
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2.61   Consider the following polynomials 
 

 
 

a(z)    =  z4 + 4z3 + 2z2 − z + 3 

b(z)   =  z3 − 3z2 + 4z − 1 

c(z)   =  a(z)b(z) 
 

 

Let a ∈ R5, b ∈ R4  and c ∈ R8  be the coefficient vectors of a(z),  b(z) and c(z), respectively. 

(a)  Find  the coefficient vector of c(z) by direct multiplication by hand. 

(b)  Write a MATLAB  program  that uses conv to find the coefficient vector of c(z) by com- 

puting c as the linear convolution of a with b. 

(c)  In  the program,  show that a  can  be  recovered  from  b and  c by  using  the MATLAB 

function deconv to perform deconvolution. 
 

 
 

Solution 
 

 
 

% Problem 2.61 

% Initialize 

f_header(’Problem 2.61’) 

a = [1 4 2 -1 3] 

b = [1 -3 4 -1] 
 

% Construct coefficient vector of product polynomial 

c = conv (a,b) 

% Recover coefficients of a from b and c 
 

[a,r] = deconv (c,a) 

 
(a)  Using direct multiplication, C(z) = A(z)B(z), we have
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6 

5 

4 

2 

4 3 2 

 
 

 

A(z)B(z) =   z4 + 4z3 + 2z2 − z + 3 

z3 − 3z2 + 4z − 1 

z7 + 4z6 + 2z5 − z4 + 3z3

−3z − 12z − 6z + 3z3
 − 9z

4z5 + 16z4 + 8z3 − 4z2 + 12z

−z  − 4z − 2z + z − 3

z7 + z6 − 6z5 + 8z4 + 10z3 − 15z2 + 13z − 3 
 
 

 
Thus  the coefficient vector of the product polynomial  is 

 

 
 

c   =  [1, 1, −6, 8, 10, −15, 13, −3]T 
 

 
 
 

(b)  The program  output for c using conv is 
 

c = 
1     1    -6     8    10   -15    13    -3 

 

(c)  The program  output for a using deconv is 
 

a = 
1    -3     4    -1 

 
2.62   Consider the following pair of signals. 

 

 
 

x   =  [2, −4, 3, 7, 6, 1, 9, 4, −3, 2, 7, 8]T
 

y   =  [3, 2, 1, 0, −1, −2, −3, −2, −1, 0, 1, 2]T
 

 

 
 
 

Verify that linear cross-correlation and circular cross-correlation produce  different results by 

writing a MATLAB  program  that uses the DSP Companion  function f corr  to compute the 

linear  cross-correlation, ryx(k), and  the circular  cross-correlation, cyx(k).   Plot ryx(k) and 

cyx(k) below one another on the same screen. 
 

 

Solution



128 

 c  2017 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible 

website, in whole or in part. 

 

 

% Problem 2.62 

% Initialize 

f_header(’Problem 2.62’) 

x = [3 2 1 0 -1 -2 -3 -2 -1 0 1 2] 

y = [2 -4 3 7 6 1 9 4 -3 2 7 8] 

% Compute cross-correlations 

r_xy = f_corr (x,y,0,0); 

c_xy = f_corr (x,y,1,0); 

% Plot them 

figure 

subplot (2,1,1) 

k = 0 : length(r_xy)-1; 

plot (k,r_xy) 

f_labels (’Linear Cross-Correlation’,’k’,’r_{xy}(k)’) 

subplot (2,1,2) 

k = 0 : length(c_xy)-1; 

plot (k,c_xy) 

f_labels (’Circular Cross-Correlation)’,’k’,’c_{xy}(k)’) 

f_wait
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Problem 2.62 Linear and Circular Cross-Correlation 
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2.63    Consider the following pair of signals. 
 

 
 

y   =  [1, 8, −3, 2, 7, −5, −1, 4]T
 

x   =  [2, −3, 4, 0, 5]T
 

 
 

 
Verify that linear cross-correlation can be achieved by zero-padding and circular cross-correlation 

by writing a MATLAB  program  that pads these signals with an appropriate number  of zeros 

and uses the DSP Companion  function f corr  to compute the linear cross-correlation ryx(k) 

and the circular  cross-correlation cyz xz (k).  Plot the following. 
 

(a)  The zero-padded  signals xz (k) and yz (k) on the same graph  using a legend. 

(b)  The linear cross-correlation ryx(k) and the scaled zero-padded  circular cross-correlation 

(N/L)cyzxz (k) on the same graph  using a legend. 
 

 

Solution 
 

 
 

% Problem 2.63
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% Initialize 

 
f_header(’Problem 2.63’) 
y = [1 8 -3 2 7 -5 -1 4] 
x = [2 -3 4 0 5] 

 

% Construct and plot zero-padded signals 

 
L = length(y); 
M = length(x); 
x_z = [x, zeros(1,L-1)]; 

y_z = [y, zeros(1,M-1)]; 

figure 

N = length(y_z); 

k = 0 : N-1; 

hp = plot (k,x_z,k,y_z); 

set (hp(1),’LineWidth’,1.5) 

f_labels (’Zero-Padded Signals’,’k’,’Inputs’) 

legend (’x_z(k)’,’y_z(k)’) 

f_wait 

% Compute and plot cross-correlations 

r_yx = f_corr (y,x,0,0); 

R_yx = (N/L)*f_corr (y_z,x_z,1,0); 

kr = 0 : length(r_yx)-1; 

kR = 0 : length(R_yx)-1; 

figure 

h = plot (kR,R_yx,kr,r_yx); 

set (h(2),’LineWidth’,1.5) 

legend (’(N/L)c_{y_zx_z}(k)’, ’r_{yx}(k)’,’Location’,’North’) 

f_wait
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2.64   Consider the following pair of signals of length N = 8. 
 

 
 

x   =  [2, −4, 7, 3, 8, −6, 5, 1]T
 

y   =  [3, 1, −5, 2, 4, 9, 7, 0]T 
 

 
 
 

Write a MATLAB  program  that performs the following tasks. 

 
(a)  Use the DSP Companion function f corr to compute the circular cross-correlation, cyx(k). 

(b)  Compute and print u(k) = x(−k) using the periodic extension, xp(k). 

(c)  Verify that cyx(k) = [y(k) ◦  x(−k)]/N  by using the DSP Companion  function f conv to 

compute and  plot the scaled circular  convolution, w(k) = [u(k) ◦  x(k)]/N .  Plot cyx(k) 

and w(k) below one another on the same screen. 
 

 
 

Solution 
 

 
 

% Problem 2.64 

% Initialize 

f_header(’Problem 2.64’) 
y = [3 1 -5 2 4 9 7 0] 
x = [2 -4 7 3 8 -6 5 1] 

 

% Compute and plot circular cross-correlation 

c_yx = f_corr (y,x,1,0); 

% Construct u(k) = x(-k) using periodic extension x_p(k) 
 

N = length(x); 

u = [x(1), x(N:-1:2)] 

% Compute and plot scaled circular convolution 

w = f_conv (y,u,1)/N; 

figure 
subplot(2,1,1) 
kc = 0 : length(c_yx)-1; 
plot (kc,c_yx) 

f_labels (’Circular Cross-correlation of y(k) with x(k)’,’k’,’c_{yx}(k)’)
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subplot(2,1,2) 
kw = 0 : length(w)-1; 

plot (kw,w) 

f_labels (’Scaled Circular Convolution of y(k) with x(-k)’,’k’,’[y(k) \circ x(-k)]/N’) 

f_wait 
 

(b)  The signal u(k) = x(−k) using the periodic extension xp(k) is 

u = 

2     1     5    -6     8     3     7    -4 
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