### Solution Manual Elements of Modern Algebra 8th Edition by Gilbert ISBN 1285463234 9781285463230

Fulllink download Solution Manual:

 $\frac{https://testbankpack.com/p/solution-manual-for-elements-of-modern-algebra-8th-edition-by-gilbert-isbn-1285463234-9781285463230/$ 

# Instructor's Manual

to accompany

Elements of Modern Algebra, Eighth Edition

Linda Gilbert and the late Jimmie Gilbert University of South Carolina Upstate Spartanburg, South Carolina

## Contents

| Preface                                                                               | ix |
|---------------------------------------------------------------------------------------|----|
| Chapter 1 Fundamentals                                                                | 1  |
| Section 1.1: True/False                                                               | 1  |
| Exercises 1.1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 37, 38, 40, 41, 42, 43          | 1  |
| Section 1.2: True/False                                                               | 4  |
| Exercises 1.2: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, | 4  |
| 21, 22, 28                                                                            | 9  |
| Section 1.3: True/False                                                               | 9  |
| Exercises 1.3: 1, 2, 3, 4, 5, 6, 7, 9, 12                                             |    |
| Section 1.4: True/False                                                               | 12 |
| Exercises 1.4: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12                                     | 12 |
| Section 1.5: True/False                                                               | 13 |
| Exercises 1.5: 1, 2, 3, 4, 5                                                          | 13 |
| Section 1.6: True/False                                                               | 15 |
| Exercises 1.6: 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 22(b), 25, 26, 27, 30  | 15 |
| Section 1.7: True/False                                                               | 17 |
| Exercises 1.7: 1, 2, 3, 4(b), 5(b), 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,   |    |
| 19, 20, 21, 22, 23, 25, 26, 28                                                        | 17 |
| Chapter 2 The Integers                                                                | 23 |
| Section 2.1: True/False                                                               | 23 |
| Exercises 2.1: 21, 30, 31, 32, 35                                                     | 23 |
| Exercises 2.2: 33, 37, 39, 40                                                         | 24 |
| Section 2.3: True/False                                                               | 26 |
| Exercises 2.3: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 25, 29, 30      | 26 |
| Section 2.4: True/False                                                               | 27 |
| Exercises 2.4: 1, 2, 3, 4, 6, 21, 30(a), 31                                           | 27 |
| Section 2.5: True/False                                                               | 28 |
| Exercises 2.5: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, |    |
| 21, 22, 23, 24, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56        | 28 |
| Section 2.6: True/False                                                               | 29 |
| Exercises 2.6: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 19, 20(b), 21              | 29 |
| Exercises 2.0. 1, 2, 3, 4, 3, 0, 7, 8, 10, 11, 12, 13, 14, 19, 20(0), 21              | 25 |

vi Contents

| Section 2.7: True/False                                                                 | 33       |
|-----------------------------------------------------------------------------------------|----------|
| Exercises 2.7: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26.   | 33       |
| Section 2.8: True/False                                                                 | 34       |
| Exercises 2.8: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22,   |          |
| 23, 25, 26                                                                              | 34       |
|                                                                                         | 26       |
| Chapter 3 Groups                                                                        | 36       |
| Section 3.1: True/False                                                                 | 36       |
| Exercises 3.1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,   |          |
| 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42(b),          | 26       |
| 43, 44, 45, 46, 47, 48, 49, 50                                                          | 36<br>40 |
| Section 3.2: True/False                                                                 | 40       |
|                                                                                         | 42       |
| Section 3.3: True/False                                                                 | 42       |
| Section 3.4: True/False                                                                 | 46       |
| Exercises 3.4: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15(b,c), 18, 19, 20, 21, 22,  | 40       |
| 23, 24, 25, 26, 27, 35, 36, 37                                                          | 46       |
| Section 3.5: True/False                                                                 | 52       |
| Exercises 3.5: 2(b), 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 18, 25, 26, 27, 32, 36    | 52       |
| Section 3.6: True/False                                                                 | 56       |
| Exercises 3.6: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 22                        | 56       |
|                                                                                         |          |
| Chapter 4 More on Groups                                                                | 57       |
| Section 4.1: True/False                                                                 | 57       |
| Exercises 4.1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,   |          |
| 21, 22, 24, 26, 27, 28, 30(b,c,d)                                                       | 57       |
| Section 4.2: True/False                                                                 | 60       |
| Exercises 4.2: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10(c), 11(c), 12, 13(c)                       | 60       |
| Section 4.3: True/False                                                                 | 65       |
| Exercises 4.3: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,   |          |
| 22, 23, 24, 25, 26, 27, 28, 29                                                          | 65       |
| Section 4.4: True/False                                                                 | 71       |
| Exercises 4.4: 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 19, 20, 21, 22, 23, 24                   | 71       |
| Section 4.5: True/False                                                                 | 73       |
| Exercises 4.5: 1, 9, 10, 11, 12, 13, 14, 15, 25, 26, 29, 30, 32, 37, 40                 | 73       |
| Section 4.6: True/False                                                                 | 74       |
| Exercises 4.6: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 25, 26, 27, 3 |          |
| Section 4.7: True/False                                                                 | 82       |
| Exercises 4.7: 1, 2, 7, 8, 17, 18, 19                                                   | 82       |
| Section 4.8: True/False                                                                 | 84       |
| Exercises 4.8: 1.2.3.4.5.6.9.10.12.14(b).15(b).                                         | 84       |

| Contents | VII |
|----------|-----|
|          |     |

| Chapter 5 Rings, Integral Domains, and Fields                                                                        | 85         |
|----------------------------------------------------------------------------------------------------------------------|------------|
| Section 5.1: True/False                                                                                              | 85         |
| 36, 38, 41, 42(b,c), 43(b), 51(d), 52, 53, 54, 55                                                                    | 85         |
| Section 5.2: True/False                                                                                              | 91         |
| Exercises 5.2: 1, 2, 3, 4, 5, 6(b,c,d,e), 7, 8, 9, 10, 11, 12, 13, 15, 19, 20                                        | 91         |
| Section 5.3: True/False                                                                                              | 93         |
| Exercises 5.3: 9, 10, 11, 15, 18                                                                                     | 93         |
| Section 5.4: True/False                                                                                              | 96         |
| Chapter 6 More on Rings                                                                                              | 96         |
| Section 6.1: True/False                                                                                              | 96         |
| Exercises 6.1: 3, 6, 9, 11, 18, 23, 27, 28(b,c,d), 29(b), 30(b)                                                      | 96         |
| Section 6.2: True/False                                                                                              | 98         |
| Exercises 6.2: 1, 7(b), 8(b), 9(b), 10(b), 12, 13, 17, 18, 25, 26, 27, 30(b)                                         | 98         |
| Section 6.3: True/False                                                                                              | 101        |
| Exercises 6.3: 1, 2, 4, 9(b), 11, 12                                                                                 | 102<br>103 |
| Exercises 6.4: 5, 6, 7, 8, 9, 10, 21, 22, 23                                                                         | 103        |
|                                                                                                                      | 103        |
| Chapter 7 Real and Complex Numbers                                                                                   | 104        |
| Section 7.1: True/False                                                                                              | 104        |
| Exercises 7.1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21(a)                                                      | 104        |
| Section 7.2: True/False                                                                                              | 104        |
| 28, 29, 30, 31, 32, 33, 34                                                                                           | 104        |
| Section 7.3: True/False                                                                                              | 105        |
| Exercises 7.3: 1, 2, 3, 6, 7, 8, 11, 12, 13, 14, 17                                                                  | 105        |
| Chapter 8 Polynomials                                                                                                | 108        |
| Section 8.1: True/False                                                                                              | 108        |
| Exercises 8.1: 1, 2, 3, 4, 5, 6, 8(b), 9(b), 11, 12, 13, 16(b,c), 17, 21, 23, 25(b)                                  | 108        |
| Section 8.2: True/False                                                                                              | 110        |
| Exercises 8.2: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21,                                |            |
| 22, 24, 35                                                                                                           | 110        |
| Section 8.3: True/False                                                                                              | 110        |
| Exercises 8.3: 1, 2, 3, 4, 7, 12, 13, 22, 27                                                                         | 110        |
| Section 8.4: True/False                                                                                              | 112        |
| Exercises 8.4: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21,                                | 110        |
| 22, 25(b), 34                                                                                                        | 112        |
| Section 8.5: True/False                                                                                              | 114        |
| Exercises 8.5: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | 114        |
| Section 8.6: True/False                                                                                              | 115        |
| Exercises 8.6: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18                                             | 116        |
|                                                                                                                      |            |

| viii | Contents |
|------|----------|

| Appendix The Basics of Logic                                                          | 125 |
|---------------------------------------------------------------------------------------|-----|
|                                                                                       | 123 |
| Exercises: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, |     |
| 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,       |     |
| 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,       |     |
| 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74                                    | 125 |

#### Preface

This manual provides answers for the computational exercises and a few of the exercises requiring proofs in Elements of Modern Algebra, Eighth Edition, by Linda Gilbert and the late Jimmie Gilbert. These exercises are listed in the table of contents. In constructing proof of exercises, we have freely utilized prior results, including those results stated in preceding problems.

My sincere thanks go to Danielle Hallock and Lauren Crosby for their careful management of the production of this manual and to Eric Howe for his excellent work on the accuracy checking of all the answers.

Linda Gilbert

#### Section 1.1 1. True 2. True 3. False 4. True 5. True 6. False 7. True 8. True 9. False 10. False Exercises 1.1 a. $\square = \{ \square \mid \square \text{ is a nonnegative even integer less than } 12 \}$ c. $\square = \{ \square \mid \square \text{ is a negative integer} \}$ 2. a. False c. False e. False f. True b. True d. False a. True b. True c. True d. True e. True f. False g. True h. True i. False k. False 1. True j. False a. False b. True c. True d. False e. True f. False h. True j. False k. False 1. False g. False i. False 5. a. $\{0 \square \ 1 \square \ 2 \square \ 3 \square \ 4 \square \ 5 \square \ 6 \square \ 8 \square \ 10\}$ b. {2□ 3□ 5} c. $\{0 \square 2 \square 4 \square 6 \square 7 \square 8 \square 9 \square 10\}$ d. {2} f. 🗆 g. $\{0 \Box \ 2 \Box \ 3 \Box \ 4 \Box \ 5\}$ h. {6□ 8□ 10} i. $\{1 \,\square\, 3 \,\square\, 5\}$ k. $\{1 \Box \ 2 \Box \ 3 \Box \ 5\}$ j. {6□ 8□ 10} 1. m. $\{3 \,\square\, 5\}$ a. 🗆 b. □ c. Ø d. 🗆 e. 🗆 f. Ø g. h. 🗆 i. 🗆 j. 🗆 k. □ 1. Ø m. 🗌 n. Ø b. $\{\emptyset \square \{0\} \square \{1\} \square \square\}$ a. {Ø□ □} d. $\{\emptyset \cup \{1\} \cup \{2\} \cup \{3\} \cup \{4\} \cup \{1\cup 2\} \cup \{1\cup 3\} \cup \{1\cup 4\} \cup \{2\cup 3\} \cup \{2\cup 4\} \cup \{3\cup 4\} \cup \{2\cup 4\} \cup \{3\cup 4\} \cup \{2\cup 4$ $\{1 \square 2 \square 3\} \square$ $\{1 \square 2 \square 4\} \square \{1 \square 3 \square 4\} \square \{2 \square 3 \square 4\} \square \square\}$ e. $\{\emptyset \square \{1\} \square \{\{1\}\} \square \square\}$ f. {Ø□ □} g. {Ø□ □} h. $\{\emptyset \square \{\emptyset\} \square \{\{\emptyset\}\} \square \square\}$ 8. a. Two possible partitions are: $\Box_1 = \{\Box \mid \Box \text{ is a negative integer}\}\ \text{and } \Box_2 = \{\Box \mid \Box \text{ is a nonnegative integer}\}\ \Box$ $\square_1 = \{ \square \mid \square \text{ is a negative integer} \} \square_2 = \{ \square \mid \square \text{ is a positive integer} \} \square_3 = \square_3 = \square_4 = \square_4$ $\{0\}$

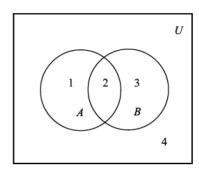
|     | b.  | One possible partition is $\Box_1 = \{\Box \Box \Box\}$ and $\Box_2 = \{\Box \Box \Box\} \Box$ Another possible partition is $\Box_1 = \{\Box\} \Box \Box_2 = \{\Box\Box\Box\} \Box \Box_3 = \{\Box\} \Box$                                                                                     |
|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | c.  | One partition is $\Box_1=\{1\Box 5\Box 9\}$ and $\Box_2=\{11\Box 15\}\Box$ Another partition is $\Box_1=\{1\Box 15\}\Box\Box_2=\{11\}$ and $\Box_3=\{5\Box 9\}\Box$                                                                                                                             |
|     | d.  | One possible partition is $\Box_1 = \{\Box \mid \Box = \Box + \Box \Box \Box \text{ where } \Box \text{ is a positive real number, } \Box \text{ is a real number} \}$ and $\Box_2 = \{\Box \mid \Box = \Box + \Box \Box$ |
| 9.  | a.  | $\Box_1 = \{1\} \Box \Box_2 = \{2\} \Box \Box_3 = \{3\}$                                                                                                                                                                                                                                        |
|     |     | $\Box_1 = \{1\} \Box \Box_2 = \{2\Box 3\}$                                                                                                                                                                                                                                                      |
|     |     | $\Box_1 = \{2\} \Box \Box_2 = \{1 \Box 3\}$                                                                                                                                                                                                                                                     |
|     |     | ; $\square_1 = \{3\} \square \square_2 = \{1\square$                                                                                                                                                                                                                                            |
|     | h   | 2} $\Box_1 = \{1\} \Box \Box_2 = \{2\} \Box \Box_3 = \{3\} \Box \Box_4 = \{4\};$                                                                                                                                                                                                                |
|     | D.  | $\Box_1 = \{1\} \ \Box_2 = \{2\} \ \Box_3 = \{3\Box \ 4\} \ ; \qquad \Box_1 = \{1\} \ \Box_2 = \{3\} \ \Box_3 = \{3\Box \ 4\} \ ;$                                                                                                                                                              |
|     |     | $\{2 \square 4\};$ $\square_1 = \{1\} \square \square_2 = \{4\} \square \square_3 = \{2 \square 3\};$ $\square_1 = \{2\} \square \square_2 = \{3\} \square \square_3 = \{2\}$                                                                                                                   |
|     |     | $\{1 \square 4\};$ $\square_1 = \{2\} \square \square_2 = \{4\} \square \square_3 = \{1 \square 3\}; \qquad \square_1 = \{3\} \square \square_2 = \{4\} \square \square_3 =$                                                                                                                    |
|     |     | $\{1 \square 2\}$ ; $\square_1 = \{1 \square 2\} \square \square_2 = \{3 \square 4\}$ ; $\square_1 = \{1 \square 3\} \square \square_2 =$                                                                                                                                                       |
|     |     | $\{2\square 4\}$ ;                                                                                                                                                                                                                                                                              |
|     |     | $\Box_1 = \{1 \Box 4\} \Box \Box_2 = \{2 \Box 3\}; \qquad \Box_1 = \{1\} \Box \Box_2 = \{2 \Box 3\}; $                                                                                                                                                                                          |
|     |     | $\square_1 = \{2\} \square \square_2 = \{1\square 3\square 4\}; \qquad \square_1 = \{3\} \square \square_2 = \{1\square 2\square 4\};$                                                                                                                                                          |
|     |     | $\square_1 = \{4\} \square \square_2 = \{1\square 2\square $ $3\} \square$                                                                                                                                                                                                                      |
| 10. | a.  | $2^{\square}$ b. $\frac{\square!}{\square!(\square-\square)!}$                                                                                                                                                                                                                                  |
| 11. |     | $\square \subseteq \square \qquad \text{b.}  \square^0 \subseteq \square \text{ or } \square \cup \square = \square \qquad \text{c.}  \square \subseteq \square$                                                                                                                                |
|     |     |                                                                                                                                                                                                                                                                                                 |
| 36  | _   | $\square = \{\square \square \square\} \square \square = \{\square\}  \text{and}  \square = \{\square\} \square \text{ Then } \square \cup \square = \square = \square \cup \square \text{ but } \square = \square$                                                                             |
| 50. | Lül |                                                                                                                                                                                                                                                                                                 |

| 37. Let $\square = \{\square\} \square \square = \{\square\square\square\}$ and $\square = \{\square\square\square\} \square$ Then $\square \cap \square = \{\square\} = \square \cap \square$ but $\square = \square$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38. Let $\Box = \{\Box \Box \Box\}$ and $\Box = \{\Box \Box \Box\} \Box$ Then $\Box \cup \Box = \{\Box \Box \Box\Box\}$ and $\{\Box \Box \Box\Box\} \in F$                                                             |
| but $\{\Box\Box\Box\Box\}\in P(\Box)\cup P(\Box)\Box$                                                                                                                                                                  |

40. Let 
$$\square = \{ \square \square \}$$
 and  $\square = \{ \square \}$  Then  $\square - \square = \{ \square \}$  and  $\emptyset \in P (\square - \square)$  but  $\emptyset \in P (\square) - P (\square) \square$ 

41. 
$$(\Box \cap \Box^0) \cup (\Box^0 \cap \Box) = (\Box \cup \Box) \cap (\Box^0 \cup \Box^0)$$

42. a.



 $\square \cup \square$ : Regions 1,2,3  $\square - \square$ : Region 1

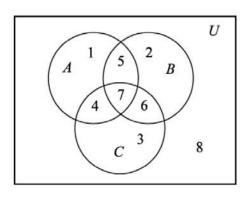
 $\square \cap \square$ : Region 2  $\square - \square$ : Region 3

 $(\Box \cup \Box) - (\Box \cap \Box)$ : Regions 1,3  $(\Box - \Box) \cup (\Box - \Box)$ : Regions 1,3

 $\Box + \Box$ : Regions 1,3

Each of  $\Box + \Box$  and  $(\Box - \Box) \cup (\Box - \Box)$  consists of Regions 1,3.

b.



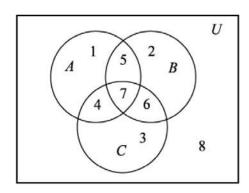
 $\square$ : Regions 1,4,5,7  $\square + \square$ : Regions 1,2,4,6

 $\square + \square$ : Regions 2,3,4,5  $\square$ : Regions 3,4,6,7

 $\square + (\square + \square)$ : Regions 1,2,3,7  $(\square + \square) + \square$ : Regions 1,2,3,7

Each of  $\Box + (\Box + \Box)$  and  $(\Box + \Box) + \Box$  consists of Regions 1,2,3,7.

c.



□: Regions 1,4,5,7 □ □ □: Regions 5,7 □ □ □: Regions 5,7 □ □ □: Regions 4,7 □ □ □ □: Regions 4,5 □ □ □ □: Regions 4,5

Each of  $\Box \cap (\Box + \Box)$  and  $(\Box \cap \Box) + (\Box \cap \Box)$  consists of Regions 4,5.

43. a. 
$$\Box + \Box = (\Box \cup \Box) - (\Box \cap \Box) = \Box - \Box = \Box \cap \Box^0 = \emptyset$$
  
b.  $\Box + \emptyset = (\Box \cup \emptyset) - (\Box \cap \emptyset) = \Box - \emptyset = \Box \cap \emptyset^0 = \Box$ 

#### Section 1.2

- 1. False 2. False 3. False 4. False 5. False 6. True 7. True
- 8. False 9. True

#### Exercises 1.2

- 2. a. Domain  $= E \square$  Codomain  $= Z \square$  Range =
  - Z b. Domain = E $\square$  Codomain = Z $\square$  Range = E c. Domain = E $\square$  Codomain = Z $\square$ Range = { $\square$  |  $\square$  is a nonnegative even integer} = (Z<sup>+</sup>  $\cap$  E)  $\cup$
  - d. Domain  $= E \square$  Codomain  $= Z \square$  Range = Z E
- 3. a.  $\Box(\Box) = \{1\Box 3\Box 5\Box \Box \Box\} = Z^+ E\Box \Box^{-1}(\Box) = \{-4\Box -3\Box -1\Box 1\Box 3\Box 4\}$ 
  - b.  $\Box(\Box) = \{1 \Box 5 \Box 9\} \Box \Box^{-1}(\Box) = Z$  c.  $\Box(\Box) = \{0 \Box 1 \Box 4\} \Box \Box^{-1}(\Box) = \emptyset$

|    | d. | $\square(\square) = \{0 \square 2 \square 14\} \square \square^{-1}(\square) = Z^+ \cup \{0 \square -1 \square -2\}$                                                                                      |
|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. | a. | The mapping $\Box$ is not onto, since there is no $\Box \in Z$ such that $\Box (\Box) = 1 \Box$ It is one-to-one.                                                                                         |
|    | b. | The mapping $\square$ is not onto, since there is no $\square \in Z$ such that $\square (\square) = 1 \square$ It is one-to-one.                                                                          |
|    | c. | The mapping $\Box$ is onto and one-to-one.                                                                                                                                                                |
|    | d. | The mapping $\square$ is one-to-one. It is not onto, since there is no $\square \in Z$ such that $\square (\square) = 2\square$                                                                           |
|    | e. | The mapping $\square$ is not onto, since there is no $\square \in \mathbb{Z}$ such that $\square (\square) = -1$ . It is not one-to-one, since $\square (1) = \square (-1)$ and $1 = -1$ .                |
|    | f. | We have $\Box$ (3) = $\Box$ (2) = 0 $\Box$ so $\Box$ is not one-to-one. Since $\Box$ ( $\Box$ ) is always even, there is no $\Box$ $\in$ Z such that $\Box$ ( $\Box$ ) = 1 $\Box$ and $\Box$ is not onto. |
|    | g. | The mapping $\square$ is not onto, since there is no $\square \in Z$ such that $\square (\square) = 3 \square$ It is one-to-one.                                                                          |
|    | h. | The mapping $\square$ is not onto, since there is no $\square \in Z$ such that $\square (\square) = 1 \square$<br>Neither is $\square$ one-to-one since $\square (0) = \square (1)$ and $0 = 1 \square$   |
|    | i. | The mapping $\square$ is onto. It is not one-to-one, since $\square$ (9) = $\square$ (4) and 9 = 4 $\square$                                                                                              |
|    | j. | The mapping $\Box$ is not onto, since there is no $\Box \in Z$ such that $\Box (\Box) = 4 \Box$ It is one-to-one.                                                                                         |
| 5. | a. | The mapping is onto and one-to-one.                                                                                                                                                                       |
|    | b. | The mapping is onto and one-to-one.                                                                                                                                                                       |
|    | c. | The mapping is onto and one-to-one.                                                                                                                                                                       |
|    | d. | The mapping is onto and one-to-one.                                                                                                                                                                       |
|    | e. | The mapping is not onto, since there is no $\square \in \mathbb{R}$ such that $\square (\square) = -1 \square$ It is not one-to-one, since $\square (1) = \square (-1)$ and $1 = -1 \square$              |
|    | f. | The mapping is not onto, since there is no $\square \in R$ such that $\square (\square) = 1 \square$ It is not one-to-one, since $\square (0) = \square (1) = 0$ and $0 = 1 \square$                      |
| 6. | a. | The mapping $\square$ is onto and one-to-one.                                                                                                                                                             |
|    | b. | The mapping $\square$ is one-to-one. Since there is no $\square \in E$ such that $\square (\square) = 2\square$ the mapping is not onto.                                                                  |
| 7. | a. | The mapping $\ \square$ is onto. The mapping $\ \square$ is not one-to-one, since $\ \square$ (1) = $\ \square$ (-1) and 1 = -1 $\ \square$                                                               |
|    | b. | The mapping $\square$ is not onto, since there is no $\square \in Z^+$ such that $\square (\square) = -1 \square$ The mapping $\square$ is one-to-one.                                                    |
|    | c. | The mapping $\Box$ is onto and one-to-one.                                                                                                                                                                |
|    | d. | The mapping $\square$ is onto. The mapping $\square$ is not one-to-one, since $\square$ (1) = $\square$ (-1) and 1 = -1 $\square$                                                                         |

| 8.  | a. The mapping $\square$ is not onto, since there is no $\square \in \mathbb{Z}$ such that $ \square + 4  = -1\square$<br>The mapping $\square$ is not one-to-one, since $\square (1) = \square (-9) = 5$ but $1 = -9\square$                                                                                                                                                                                                                                                                                                                                                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | b. The mapping $\square$ is not onto, since there is no $\square \in \mathbb{Z}^+$ such that $ \square + 4  = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | The mapping □ is one-to-one.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9.  | a. The mapping $\square$ is not onto, since there is no $\square \in Z^+$ such that $2^\square = 3\square$ The mapping $\square$ is one-to-one.                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | b. The mapping $\square$ is not onto, since there is no $\square \in Z^+ \cap E$ such that $2^\square = 6\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | The mapping $\Box$ is one-to-one.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10. | a. Let $\Box$ : E $\rightarrow$ E where $\Box$ ( $\Box$ ) = $\Box$ b. Let $\Box$ : E $\rightarrow$ E where $\Box$ ( $\Box$ ) = $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | a. Let $\Box: E \to E$ where $\Box(\Box) = \Box \Box$ b. Let $\Box: E \to E$ where $\Box(\Box) = \Box$ c. Let $\Box: E \to E$ where $\Box(\Box) = \Box$ if $\Box$ is a multiple of 4.                                                                                                                                                                                                                                                                                                                                                                                         |
|     | d. Let $\Box$ : E $\rightarrow$ E where $\Box$ ( $\Box$ ) = $\Box$ <sup>2</sup> $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11. | a. For arbitrary $\square \in Z \square 2 \square$ is even and $\square (2 \square)_{\frac{-}{2}}^{2 \square} = \square \square$ Thus $\square$ is onto. But $\square$ is not one-to-one, since $\square (1) = \square (-1) = 0$ .                                                                                                                                                                                                                                                                                                                                            |
|     | b. The mapping $\square$ is not onto, since there is no $\square$ in Z such that $\square$ ( $\square$ ) = $1\square$ The mapping $\square$ is not one-to-one, since $\square$ (0) = $\square$ (2) = $0\square$                                                                                                                                                                                                                                                                                                                                                               |
|     | c. For arbitrary $\square$ in $Z\square 2\square -1$ is odd, and therefore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | $\square (2\square -1) = \frac{(2\square -1)+1}{2} = \square \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | Thus $\square$ is onto. But $\square$ is not one-to-one, since $\square$ (2) = 5 and also $\square$ (9) = 5 $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | d. For arbitrary $\square$ in Z, $2\square$ is even and $\square(2\square) = 2\square = \square\square$ Thus $\square$ is onto. But $\square$ is not one-to-one, since $\square(4) = 2$ and $\square(7) = 2\square$                                                                                                                                                                                                                                                                                                                                                           |
|     | e. The mapping $\Box$ is not onto, because there is no $\Box$ in Z such that $\Box$ ( $\Box$ ) = $4\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Since $\square$ (2) = 6 and $\square$ (3) = 6 $\square$ then $\square$ is not one-to-one.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | f. The mapping $\square$ is not onto, since there is no $\square$ in Z such that $\square(\square) = 1\square$ Suppose that $\square(\square_1) = \square(\square_2)\square$ It can be seen from the definition of $\square$ that the image of an even integer is always an odd integer, and also that the image of an odd integer is always an even integer. Therefore, $\square(\square_1) = \square(\square_2)$ requires that either both $\square_1$ and $\square_2$ are even, or both $\square_1$ and $\square_2$ are odd. If both $\square_1$ and $\square_2$ are even, |
|     | $\Box(\Box_1) = \Box(\Box_2) \Rightarrow 2\Box_1 - 1 = 2\Box_2 - 1 \Rightarrow 2\Box_1 = 2\Box_2 \Rightarrow \Box_1$ $= \Box_2 \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | If both $\square_1$ and $\square_2$ are odd,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

 $\square (\square_1) = \square (\square_2) \Rightarrow 2\square_1 = 2\square_2 \Rightarrow \square_1 = \square_2\square$ 

| Hence, | $\square (\square_1)$ | $= \square$ ( | $\square_2$ | always | implies | $\square_1 =$ | $=$ $\square_2$ and | l | s one-to-one |
|--------|-----------------------|---------------|-------------|--------|---------|---------------|---------------------|---|--------------|
|--------|-----------------------|---------------|-------------|--------|---------|---------------|---------------------|---|--------------|

a. The mapping  $\square$  is not onto, because there is no  $\square \in \mathbb{R} - \{0\}$  such that 12.  $\square$  ( $\square$ ) = 1 $\square$  If  $\square_1 \square \square_2 \in \mathbb{R} - \{0\} \square$ 

Thus  $\square$  is one-to-one.

b. The mapping  $\square$  is not onto, because there is no  $\square \in \mathbb{R} - \{0\}$  such that  $\square (\square) = 2\square \text{ If } \square_1 \square \square_2 \in \mathbb{R} - \{0\} \square$ 

$$\Box (\Box_1) = \Box (\Box_2) \quad \frac{2\Box_1 - 1}{\Box_1} = \frac{2\Box_2 - 1}{\Box_2}$$

$$\Rightarrow 2 - \frac{1}{\Box_1} = 2 - \frac{1}{\Box_2}$$

$$\Rightarrow \qquad -\frac{1}{\square_1} = -\frac{1}{\square_2}$$

$$\Rightarrow \qquad \square_1 = \square_2 \square$$

$$\Rightarrow$$
  $\square_1 = \square_2 \square$ 

Thus  $\square$  is one-to-one.

- c. The mapping  $\square$  is not onto, since there is no  $\square \notin R \{0\}$  such that  $\square (\square) = 0$  It is not one-to-one, since  $\square (2) = \frac{2}{5}$  and  $\square 2 = \frac{2}{5}$   $\square$
- d. The mapping  $\square$  is not onto, since there is no  $\square \in \mathbb{R} \{0\}$  such that  $\square (\square) = 1 \square$ Since  $\Box$  (1) =  $\Box$  (3) =  $\frac{1}{2}\Box$  then  $\Box$  is not one-to-one.
- 13. a. The mapping  $\square$  is onto, since for every  $(\square \square \square) \in \square = Z \times Z$  there exists an  $(\Box\Box\Box) \in \Box = Z \times Z$  such that  $\Box(\Box\Box\Box) = (\Box\Box\Box) \Box$  To show that  $\Box$  is one-to-one, we assume  $(\Box \Box \Box) \in \Box = Z \times Z$  and  $(\Box \Box \Box) \in \Box = Z \times Z$  and

or

This means  $\square = \square$  and  $\square = \square$  and

$$(\Box\Box\Box) = (\Box\Box$$

| b. | For any $\square \in Z \square (\square \square 0) \in \square$ and $\square (\square \square 0) = \square \square$ Thus $\square$ is onto. | Since $\Box$ (2 $\Box$ 3) |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| =  |                                                                                                                                             |                           |
|    | $\Box (4\Box 1) = 5\Box \Box$ is not one-to-one.                                                                                            |                           |

|     |          | $\square$ ( $\square$ $\square$ ) = $\square$ the mapping $\square$ is onto. However, $\square$ is not one-to-one, since $\square$ (1 $\square$ 0) = $\square$ (1 $\square$ 1) and (1 $\square$ 0) = (1 $\square$ 1) $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | d.       | The mapping $\square$ is one-to-one since $\square (\square_1) = \square (\square_2) \Rightarrow (\square_1 \square 1) = (\square_2 \square 1) \Rightarrow \square_1 = \square_2 \square$ Since there is no $\square \in \mathbb{Z}$ such that $\square (\square) = (0 \square 0) \square$ then $\square$ is not onto.                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | e.       | The mapping $\Box$ is not onto, since there is no $(\Box\Box\Box) \in Z \times Z$ such that $\Box$ $(\Box\Box) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |          | 2 □ The mapping □ is not one-to-one, since □ $(2 □ 0) = □ (2 □ 1) = 4$ and $(2 □ 0) = (2 □ 1) □$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | f.       | The mapping $\Box$ is not onto, since there is no $(\Box\Box\Box) \in Z \times Z$ such that $\Box$ $(\Box\Box) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |          | 3 □ The mapping is not one-to-one, since □ $(1$ □ $0)$ = □ $(-1$ □ $0)$ = 1 and $(1$ □ $0)$ = $(-1$ □ $0)$ □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | g.       | The mapping $\square$ is not onto, since there is no ( $\square\square$ ) in $Z^+ \times Z^+$ such that $\square$ ( $\square\square$ ) = $\square$ = 0 $\square$ The mapping $\square$ is not one-to-one, since $\square$ ( $2\square$ 1) = $\square$ ( $4\square$ 2) = $2\square$                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | h.       | The mapping $\square$ is not onto, since there is no ( $\square\square$ ) in $\mathbb{R} \times \mathbb{R}$ such that $\square (\square\square) = 2^{\square+\square} = 0$ . The mapping $\square$ is not one-to-one, since $\square (1\square 0) = \square (0\square 1) = 2^1\square$                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14. | a.       | The mapping $\Box$ is obviously onto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | b.       | The mapping $\square$ is not one-to-one, since $\square$ (0) = $\square$ (2) = 1 $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | c.       | Let both $\square_1$ and $\square_2$ be even. Then $\square_1 + \square_2$ is even and $\square (\square_1 + \square_2) = 1 = 1 \cdot 1 = \square (\square_1) \square (\square_2) \square$ Let both $\square_1$ and $\square_2$ be odd. Then $\square_1 + \square_2$ is even and $\square (\square_1 + \square_2) = 1 = (-1)(-1) = \square (\square_1) \square (\square_2) \square$ Finally, if one of $\square_1 \square \square_2$ is even and the other is odd, then $\square_1 + \square_2$ is odd and $\square (\square_1 + \square_2) = -1 = (1)(-1) = \square (\square_1) \square (\square_2) \square$ Thus it is true that $\square (\square_1 + \square_2) = \square (\square_1) \square (\square_2) \square$ |
|     | d.       | Let both $\Box_1$ and $\Box_2$ be odd. Then $\Box_1\Box_2$ is odd and $\Box(\Box_1\Box_2)=-1$ = $(-1)(-1)=\Box(\Box_1)\Box(\Box_2)\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15. | a.       | The mapping $\square$ is not onto, since there is no $\square \in \square$ such that $\square (\square) = 9 \in \square$ It is not one-to-one, since $\square (-2) = \square (2)$ and $-2 = 2\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | b.       | $\square^{-1}(\square(\square)) = \square^{-1}(\{1\square 4\}) = \{-2\square 1\square 2\} = \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | c.       | With $\square = \{4 \square 9\} \square \square^{-1}(\square) = \{-2 \square 2\} \square$ and $\square^{i} \square^{-1}(\square)^{c} = \square (\{-2 \square 2\}) = \{4\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | =        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16. | a.       | $\square (\square) = \{2\square 4\} \square \square^{-1} (\square (\square)) = \{2\square 3\square 4\square 7\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |          | $\square^{-1}(\square) = \{9\square \ 6\square \ 11\} \square \square^{i} \square^{-1}(\square)^{c} = \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17. | a.<br>b. | $\Box (\Box) = \{-1 \Box 2 \Box 3\} \Box \Box^{-1} (\Box (\Box)) = \Box$ $\Box^{-1} (\Box) = \{0\} \Box \Box^{-1} (\Box)^{c} = \{-1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18. | a.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

c. Since for every  $\square$   $\in$   $\square$  = Z there exists an ( $\square\square$   $\square$  )  $\in$   $\square$  =  $Z\times Z$  such that

therwise

20. 
$$\square$$
 21.  $\square$ ! 22.  $\square(\square-1)(\square-2)\cdots(\square-\square+1)$   $\overline{(\square-\square)!}$ 

28. Let  $\square : \square \to \square \square$  where  $\square$  and  $\square$  are nonempty.

Assume first that 
$$\Box$$
  $\overset{\mathbf{i}}{\Box}$   $\overset{\mathbf{i}}{\Box}$   $\overset{\mathbf{i}}{\Box}$   $\overset{\mathbf{i}}{\Box}$  for every subset  $\Box$  of  $\Box$  For an arbitrary ele-ment  $\Box$  of  $\Box$  let  $\Box$  = { $\Box$ }  $\Box$  The equality  $\Box$   $\overset{\mathbf{i}}{\Box}$   $\overset{\mathbf{i}}{\Box}$   $\overset{\mathbf{i}}{\Box}$   $\overset{\mathbf{i}}{\Box}$  implies that  $\Box$   $\overset{\mathbf{i}}{\Box}$  ({ $\Box$ })  $\Box$  we have  $\Box$  ( $\Box$ ) =  $\Box$ . Thus  $\Box$  is onto. Assume now that  $\Box$  is onto. For an arbitrary  $\Box$   $\in$   $\Box$   $\overset{\mathbf{i}}{\Box}$   $\overset{\mathbf{i}}{\Box$ 

Thus  $\Box$   $\Box$   $\Box$   $\Box$   $\Box$   $\Box$   $\Box$   $\Box$  For an arbitrary  $\Box$   $\in$   $\Box$  there exists  $\Box$   $\in$   $\Box$  such that  $\Box$   $\Box$   $\Box$   $\Box$  since  $\Box$  is onto. Now

| $\Rightarrow$ | $\square \in \square^{i} \square^{-1} (\square$ |
|---------------|-------------------------------------------------|
|               | $\overset{oldsymbol{\phi}}{\Box}$               |

Thus  $\Box \subseteq \Box^{i} \Box^{-1}(\Box)^{c} \Box$  and we have proved that  $\Box^{i} \Box^{-1}(\Box)^{c} = \Box$  for an Answerbittary Selbetted Exercises

Answers to Selected Exercises

#### Section 1.3

1. False 2. True 3. False 4. False 5. False 6. False

#### Exercises 1.3

1. a. The mapping  $\square \circ \square$  is not onto, since there is no  $\square \in Z$  such that  $(\square \circ \square)(\square) = 1\square$  It is not one-to-one, since  $(\square \circ \square)(1) = (\square \circ \square)(-1)$  and  $1 = -1\square$ 

|         | b.  | The mapping $\square \circ \square$ is not onto, since there is no $\square \in \mathbb{Z}$ such that $(\square \circ \square)(\square) = 0$ . The mapping $\square \circ \square$ is one-to-one.                                                                                                                                             |
|---------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | c.  | The mapping $\square \circ \square$ is not onto, since there is no $\square \in \mathbb{Z}$ such that $(\square \circ \square)(\square) = 1 \square$ The mapping $\square \circ \square$ is one-to-one.                                                                                                                                       |
|         | d.  | The mapping $\square \circ \square$ is not onto, since there is no $\square \in \mathbb{Z}$ such that $(\square \circ \square)(\square) = 1 \square$ The mapping $\square \circ \square$ is one-to-one.                                                                                                                                       |
|         | e.  | The mapping $\square \circ \square$ is not onto, since there is no $\square \in \mathbb{Z}$ such that $(\square \circ \square)(\square) = 1\square$ It is not one-to-one, since $(\square \circ \square)(-2) = (\square \circ \square)(0)$ and $-2 = 0\square$                                                                                |
|         | f.  | The mapping $\square \circ \square$ is both onto and one-to-one.                                                                                                                                                                                                                                                                              |
|         | g.  | The mapping $\square \circ \square$ is not onto, since there is no $\square \in Z$ such that $(\square \circ \square)(\square) = -1\square$ It is not one-to-one, since $(\square \circ \square)(1) = (\square \circ \square)(2)$ and $1 = 2\square$                                                                                          |
| 2.      | a.  | The mapping $\square \circ \square$ is not onto, since there is no $\square \in \mathbb{Z}$ such that $(\square \circ \square)(\square) = -1\square$ It is not one-to-one since $(\square \circ \square)(0) = (\square \circ \square)(2)$ and $0 = 2\square$                                                                                  |
|         | b.  | The mapping $\square \circ \square$ is not onto, since there is no $\square \in Z$ such that $(\square \circ \square)(\square) = 1 \square$ The mapping $\square \circ \square$ is one-to-one.                                                                                                                                                |
|         | c.  | The mapping $\square \circ \square$ is not onto, since there is no $\square \in Z$ such that $(\square \circ \square)(\square) = 1\square$ The mapping $\square \circ \square$ is one-to-one.                                                                                                                                                 |
|         | d.  | The mapping $\square \circ \square$ is not onto, since there is no $\square \in Z$ such that $(\square \circ \square)(\square) = 1\square$ The mapping $\square \circ \square$ is one-to-one.                                                                                                                                                 |
|         | e.  | The mapping $\square \circ \square$ is not onto, since there is no $\square \in \mathbb{Z}$ such that $(\square \circ \square)(\square) = -1\square$ It is not one-to-one, since $(\square \circ \square)(-1) = (\square \circ \square)(-2)$ and $-1 = -2$ .                                                                                  |
|         | f.  | The mapping $\square \circ \square$ is not onto, since there is no $\square \in Z$ such that $(\square \circ \square)(\square) = 0$ . The mapping $\square \circ \square$ is not one-to-one, since $(\square \circ \square)(1) = (\square \circ \square)(4)$ and $1 = 4$ .                                                                    |
|         | g.  | The mapping $\square \circ \square$ is not onto, since there is no $\square \in Z$ such that $(\square \circ \square)(\square) = 1 \square$ It is not one-to-one, since $(\square \circ \square)(0) = (\square \circ \square)(1)$ and $0 = 1$ .                                                                                               |
| 3.      |     | $\square)=\square^2\square\ \square\ (\square)=-\square$                                                                                                                                                                                                                                                                                      |
| 4.<br>= | Let | $\square = \{0 \square 1\} \square \square = \{-2 \square 1 \square 2\} \square \square = \{1 \square 4\} \square \text{ Let } \square : \square \rightarrow \square \text{ be defined by } \square $ |
|         | The | and $\square: \square \to \square$ be defined by $\square(\square) = \square^2 \square$ Then $\square$ is not onto, since $-2 \in \square(\square) \square$ mapping $\square$ is onto. Also $\square \circ \square$ is onto, since $(\square \circ \square)(0) = \square(1) = 1$ and $\square(1) = \square(2) = 4\square$                     |
|         |     | $\square$ and $\square$ be defined as in Problem 1f. Then $\square$ is not one-to-one, $\square$ is one-to-and $\square \circ \square$ is one-to-one.                                                                                                                                                                                         |
| 6       | a   | . Let $\square: Z \to Z$ and $\square: Z \to Z$ be defined by                                                                                                                                                                                                                                                                                 |
|         |     | by                                                                                                                                                                                                                                                                                                                                            |
|         |     | $\bigcup$ if $\Box$ is odd.                                                                                                                                                                                                                                                                                                                   |
|         |     | The mapping $\square$ is one-to-one and the mapping $\square$ is onto, but the composition $\square \circ \square = \square$ is not one-to-one, since $(\square \circ \square)(1) = (\square \circ \square)(2)$ and $1 = 2\square$                                                                                                            |

| b. Let $\square: Z \to Z$ and $\square: Z \to Z$ be defined by $\square(\square) = \square^3$ and $\square(\square) = \square$ . The mapping $\square$ is one-to-one, the mapping $\square$ is onto, but the mapping $\square \circ \square$ given by $(\square \circ \square)(\square) = \square^3$ is not onto, since there is no $\square \in Z$ such that $(\square \circ \square)(\square) = 2\square$                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. a. Let $\Box: Z \to Z$ and $\Box: Z \to Z$ be defined by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7. a. Let $\square: Z \to Z$ and $\square: Z \to Z$ be defined by $\square (\square) = \begin{array}{c} \square & \text{if } \square \text{ is even} \\ \square & \text{if } \square \text{ is odd} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The mapping $\square$ is onto and the mapping $\square$ is one-to-one, but the composition $\square \circ \square = \square$ is not one-to-one, since $(\square \circ \square)(1) = (\square \circ \square)(2)$ and $1 = 2\square$ b. Let $\square : Z \to Z$ and $\square : Z \to Z$ be defined by $\square (\square) = \square$ and $\square (\square) = \square^3\square$ The mapping $\square$ is onto, the mapping $\square$ is one-to-one, but the mapping $\square \circ \square$ given by $(\square \circ \square)(\square) = \square^3$ is not onto, since there is no $\square \in Z$ such that $(\square \circ \square)(\square) = 2\square$ |
| 9. a. Let $\square (\square) = \square \square (\square) = \square^2 \square$ and $\square (\square) =  \square  \square$ for all $\square \in \mathbb{Z}\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| b. Let $\square (\square) = \square^2 \square (\square) = \square$ and $\square (\square) = -\square \square$ for all $\square \in \mathbb{Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12. To prove that $\square$ is one-to-one, suppose $\square$ ( $\square_1$ ) = $\square$ ( $\square_2$ ) $\square$ for $\square_1$ and $\square_2$ in $\square$ Since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\square \circ \square$ is onto, there exist $\square_1$ and $\square_2$ in $\square$ such that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\Box_1 = (\Box \circ \Box) (\Box_1)  \text{and}  \Box_2 = (\Box \circ \Box)$ $(\Box_2) \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Then $\square ((\square \circ \square) (\square_1)) = \square ((\square \circ \square) (\square_2)) \square$ since $\square (\square_1) = \square (\square_2) \square$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(\square \circ \square)(\square (\square_1)) = (\square \circ \square)(\square (\square_2)) \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| This implies that $\Box (\Box_1) = \Box (\Box_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| since $\square \circ \square$ is one-to-one. Since $\square$ is a mapping, then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\square \ (\square \ (\square_1)) = \square \ (\square \ (\square_2)) \ \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Thus $ (\square \circ \square) (\square_1) = (\square \circ \square) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| and $ (\square_2) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Therefore $\Box$ is one-to-one. $\Box_1 = \Box_2 \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| To show that $\square$ is onto, let $\square \in \square$ Then $\square (\square) \in \square$ and therefore $\square (\square) = (\square \circ \square) (\square)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| for some $\square \in \square$ since $\square \circ \square$ is onto. It follows then that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Sinc<br>have | e $\square \circ \square$ is one-to-one, we $\square = \square \ (\square) \ \square$                              |
|--------------|--------------------------------------------------------------------------------------------------------------------|
| and          | ☐ is onto.                                                                                                         |
| Section 1    | 1.4                                                                                                                |
| 1. False     | e 2. True 3. True 4. False 5. True 6. True 7. True                                                                 |
| 8. True      | 9. True                                                                                                            |
| Exercises    | s 1.4                                                                                                              |
| 1. ε         | a. The set $\square$ is not closed, since $-1 \in \square$ and $-1 * -1 = 1 \in \square$                           |
| b.           | The set $\square$ is not closed, since $1 \in \square$ and $2 \in \square$ but $1*2 = 1 - 2 = -1 \in \square$      |
|              | The set $\square$ is closed.                                                                                       |
|              | The set □ is closed.                                                                                               |
|              | The set $\square$ is not closed, since $1 \in \square$ and $1 * 1 = 0 \in \square$                                 |
|              | The set □ is closed.                                                                                               |
| _            | The set □ is closed.                                                                                               |
| h.           | The set $\square$ is closed.                                                                                       |
| 2. a.        | Not commutative, Not associative, No identity element                                                              |
| b.           | Not commutative, Associative, No identity element                                                                  |
| c.           | Not commutative, Not associative, No identity element                                                              |
| d.           | Commutative, Not associative, No identity element                                                                  |
| e.           | Commutative, Associative, No identity element                                                                      |
| f.           | Not commutative, Not associative, No identity element                                                              |
| g.           | Commutative, Associative, 0 is an identity element. 0 is the only invertible element and its inverse is $0\square$ |
| h.           | Commutative, Associative, $-3$ is an identity element. $-\Box - 6$ is the inverse of $\Box\Box$                    |
| i.           | Not commutative, Not associative, No identity element                                                              |
| j.           | Commutative, Not associative, No identity element                                                                  |
| k.           | Not commutative, Not associative, No identity element                                                              |
| 1.           | Commutative, Not associative, No identity element                                                                  |
| m.           | Not commutative, Not associative, No identity element                                                              |
| n.           | Commutative, Not associative, No identity element                                                                  |
| 3. a.        | The binary operation $*$ is not commutative, since $\square * \square = \square * \square \square$                 |

|        | b. There is no identity element.                                                                                                                                      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.     | a. The operation * is commutative, since $\square * \square = \square * \square$ for all $\square \square \square$ in $\square \square$                               |
|        | b. $\Box$ is an identity element.                                                                                                                                     |
|        | c. The elements $\ \square$ and $\ \square$ are inverses of each other and $\ \square$ is its own inverse.                                                            |
| 5.     | a. The binary operation * is not commutative, since $\square * \square = \square * \square \square$                                                                   |
|        | b. $\square$ is an identity element.                                                                                                                                  |
|        | c. The elements $\square$ and $\square$ are inverses of each other and $\square$ is its own inverse.                                                                  |
| 6.     | a. The binary operation * is commutative.                                                                                                                             |
|        | b. $\square$ is an identity element.                                                                                                                                  |
|        | c. $\square$ is the only invertible element and its inverse is $\square$ $\square$                                                                                    |
|        | The set of nonzero integers is not closed with respect to division, since 1 and 2 re nonzero integers but $1 \div 2$ is not a nonzero integer.                        |
|        | The set of odd integers is not closed with respect to addition, since 1 is an odd integer but $1+1$ is not an odd integer.                                            |
| 10.    | a. The set of nonzero integers is not closed with respect to addition defined on $Z$ , since 1 and $-1$ are nonzero integers but $1 + (-1)$ is not a nonzero integer. |
|        | b. The set of nonzero integers is closed with respect to multiplication defined on Z.                                                                                 |
| 11.    | a. The set $\square$ is not closed with respect to addition defined on Z, since $1 \in \square \square \ 8 \in \square$ but $1+8=9 \in \square \square$               |
|        | b. The set $\ \square$ is closed with respect to multiplication defined on Z.                                                                                         |
| 12.    | a. The set $Q-\{0\}$ is closed with respect to multiplication defined on $R\Box$                                                                                      |
|        | b. The set $Q-\{0\}$ is closed with respect to division defined on $R-\{0\}$                                                                                          |
| Sectio | n 1.5                                                                                                                                                                 |
| 1. T   | rue 2. False 3. False                                                                                                                                                 |
| Exerci | ses 1.5                                                                                                                                                               |
| 1.     | a. A right inverse does not exist, since $\Box$ is not onto.                                                                                                          |
|        | b. A right inverse does not exist, since $\Box$ is not onto.                                                                                                          |
|        | c. A right inverse $\square: Z \to Z$ is defined by $\square(\square) = \square -$                                                                                    |
|        | $2 \square$ d. A right inverse $\square : Z \to Z$ is defined by $\square (\square) = 1$                                                                              |
|        | <ul> <li>- □ □ e. A right inverse does not exist, since □ is not</li> </ul>                                                                                           |
|        | onto.                                                                                                                                                                 |
|        | f A right inverse does not exist since □ is not onto                                                                                                                  |

| g. A right inverse does not exist, since □ is not                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| onto. h. A right inverse does not exist, since $\Box$ is                                                                                                                                                                                                                                                                                                                                                          |
| not onto. i. A right inverse does not exist, since $\square$ is                                                                                                                                                                                                                                                                                                                                                   |
| not onto. j. A right inverse does not exist, since $\square$ is                                                                                                                                                                                                                                                                                                                                                   |
| not onto. J. 17 right inverse does not emist, since in is                                                                                                                                                                                                                                                                                                                                                         |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                 |
| k. A right inverse $\square: Z \to Z$ is defined by $\square(\square)$ if $\square$ is even                                                                                                                                                                                                                                                                                                                       |
| $= 2\Box + 1 \text{ if } \Box \text{ is odd.}$                                                                                                                                                                                                                                                                                                                                                                    |
| 1. A right inverse does not exist, since □ is not on to.                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |
| m. A right inverse $\square: Z \to Z$ is defined by $\square(\square)$                                                                                                                                                                                                                                                                                                                                            |
| m. A right inverse $\square: Z \to Z$ is defined by $\square(\square)$ $= \begin{array}{c} 2\square & \text{if } \square \text{ is even} \\ \square - 2 & \text{if } \square \text{ is odd.} \\ 2\square - 1 & \text{if } \square \text{ is even} \end{array}$                                                                                                                                                    |
| $2\square - 1$ if $\square$ is even                                                                                                                                                                                                                                                                                                                                                                               |
| n. A right inverse $\square: Z \to Z$ is defined by $\square(\square)$                                                                                                                                                                                                                                                                                                                                            |
| =                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2. a. A left inverse $\square: Z \to Z$ is defined by $\square(\square) = \begin{cases} \square_{2} \text{if } \square \text{ is even} \\ 1 \text{ if } \square \text{ is odd.} \end{cases}$ b. A left inverse $\square: Z \to Z$ is defined by $\square(\square) = \begin{cases} \square_{3} \text{if } \square \text{ is a multiple of 3} \\ 0 \text{ if } \square \text{ is not a multiple of 3.} \end{cases}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2. a. A left inverse $\square: Z \to Z$ is defined by $\square(\square) = \emptyset$ is even                                                                                                                                                                                                                                                                                                                      |
| $\int_{\Gamma} 1 \text{ if } \square \text{ is odd.}$                                                                                                                                                                                                                                                                                                                                                             |
| $ = \inf_{a \in A}                                  $                                                                                                                                                                                                                                                                                                                                                             |
| b. A left inverse $\square: Z \to Z$ is defined by $\square(\square) = \{0 \text{ if } \square \text{ is not a multiple of 3.} \}$                                                                                                                                                                                                                                                                                |
| c. A left inverse $\square: Z \to Z$ is defined by $\square(\square) = \square - 2\square$                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |
| d. A left inverse $\square: Z \to Z$ is defined by $\square(\square) = 1 - \square$ e. A left inverse $\square: Z \to Z$ is defined by $\square(\square) = 1 - \square$ or if $\square = \square^3$ for some $\square \in Z$ or if $\square = \square^3$ for some $\square \in Z$                                                                                                                                 |
| e. A left inverse $\square: Z \to Z$ is defined by $\square(\square) = \{0, 1, 2, \dots, N\}$ for some $\{0, 2, \dots, N\}$                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |
| f. A left inverse does not exist, since □ is not one-to-one.                                                                                                                                                                                                                                                                                                                                                      |
| g. A left inverse $\square: Z \to Z$ is defined by $\square(\square) = \bigcup_{\substack{\square + 1 \\ 2}}^{\square}$ if $\square$ is even                                                                                                                                                                                                                                                                      |
| $\frac{\Box + 1}{2}$ if $\Box$ is odd.                                                                                                                                                                                                                                                                                                                                                                            |
| h. A left inverse does not exist, since $\square$ is not one-to-one.                                                                                                                                                                                                                                                                                                                                              |
| i. A left inverse does not exist, since $\square$ is not one-to-one.                                                                                                                                                                                                                                                                                                                                              |
| j. A left inverse does not exist, since □ is not one-to-one.                                                                                                                                                                                                                                                                                                                                                      |
| k. A left inverse does not exist, since $\square$ is not one-to-one.                                                                                                                                                                                                                                                                                                                                              |
| $\Box + 1$ if $\Box$ is odd                                                                                                                                                                                                                                                                                                                                                                                       |
| 1. A left inverse $\square: Z \to Z$ is defined by: $\square() = \bigcup_{\overline{2}}$ if $\square$ is even.                                                                                                                                                                                                                                                                                                    |
| m. A left inverse does not exist, since $\Box$ is not one-to-one.                                                                                                                                                                                                                                                                                                                                                 |
| n. A left inverse does not exist, since □ is not one-to-one.                                                                                                                                                                                                                                                                                                                                                      |
| , = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                           |

3. □! 4. Let  $\square : \square \rightarrow \square \square$  where  $\square$  is nonempty.  $\square$  has a left inverse  $\Leftrightarrow \square$  is one-to-one, by Lemma 1.24  $\Leftrightarrow \Box^{-1}(\Box(\Box)) = \Box$  for every subset  $\Box$  of  $\Box\Box$  by Exercise 27 of Section 1.2. 5. Let  $\square : \square \rightarrow \square \square$  where  $\square$  is nonempty.  $\square$  has a right inverse  $\Leftrightarrow \square$  is onto, by Lemma 1.25  $\Leftrightarrow \Box$   $\Box$   $\Box$   $\Box$   $\Box$   $\Box$   $\Box$   $\Box$  for every subset  $\Box$  of  $\Box$   $\Box$  by Exercise 28 of Section 1.2. Section 1.6 1. True 2. False 3. False 4. False 5. False 6. False 7. True

11. True 8. False 9. False 10. False 12. True

1. a. 
$$\Box = \begin{bmatrix} 1 & 0 \\ 3 & 2 \\ 5 & 4 \end{bmatrix}$$
 b.  $\Box = \begin{bmatrix} -1 & -2 \\ 1 & 2 \\ \end{bmatrix}$  c.  $\Box = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 \end{bmatrix}$  d.  $\Box = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$  e.  $\Box = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$  f.  $\Box = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ 

$$\begin{bmatrix} & & & & & & & \\ & 4 & 2 & & & & 1 & 3 \\ & & & & & & & & \end{bmatrix}$$

e. L J f. L J g. Not possible h. Not possible

i. [4] j. 
$$\begin{bmatrix} -12 & 8 & -4 \\ -15 & 10 & -5 \end{bmatrix}$$
  
18 -12 6

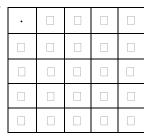
$$= (\Box + 1)(2 - \Box) + (\Box + 2)(4 - \Box) + (\Box + 3)(6 - \Box)$$

6. 
$$\begin{bmatrix} 1 & 6 & -3 & 2 \\ 4 & -7 & 1 & 5 \end{bmatrix}$$

7. a.  $\Box$  b.  $\Box(\Box-1)$  c. 0

d.  $\square$ 





 $\begin{bmatrix} & & & & & \\ & 1 & 2 & & 1 & 1 \end{bmatrix}$ 

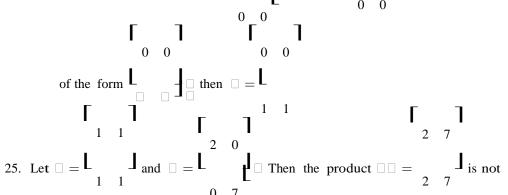
9. (Answer not unique)  $\Box = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} \Box \Box = \begin{bmatrix} 1 & 1 \end{bmatrix}$ 

10. A trivial example is with  $\square = \square_2$  and  $\square$  an arbitrary  $2 \times 2$  matrix. Another

example is provided by 
$$\Box = \begin{bmatrix} 1 & 1 & 1 & 2 & 3 \\ & 1 & 1 & 1 & 1 \end{bmatrix}$$
 and  $\Box = \begin{bmatrix} 2 & 3 & 1 & 1 \\ & 3 & 1 & 2 & 3 \end{bmatrix}$ 

11. (Answer not unique)  $\Box = \mathbf{L}$ 

$$\int_{\square} = \begin{bmatrix} - \\ 3 & 3 \end{bmatrix}$$



26. Let 
$$\Box = \begin{bmatrix} & & & \\ & 1 & 1 \end{bmatrix}$$
 and  $\Box = \begin{bmatrix} & & \\ & 0 & 1 \end{bmatrix}$ . Then the product  $\Box \Box = \begin{bmatrix} & & \\ & 0 & 2 \end{bmatrix}$  is

27. c. Let 
$$\Box = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 and  $\Box = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$ . Then the product  $\Box \Box = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ 

is upper triangular but neither 
$$\square$$
 nor  $\square$  is upper triangular.  $\square$ 

| 30. (Answer not unique) $\Box = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 6 & 7 & 4 \end{bmatrix}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section 1.7                                                                                                                                          |
| 28 Answers to Selected Exercises 4. False 5. Answers to Selected Exercises                                                                           |
| Exercises 1.7                                                                                                                                        |
| <ol> <li>a. This is a mapping, since for every □ ∈ □ there is a unique □ ∈ □ such that (□□□□) is an element of the relation.</li> </ol>              |
| b. This is a mapping, since for every $\square \in \square$ there is $1 \in \square$ such that $(\square \square 1)$ is an element of the relation.  |

| c.   | This is not a mapping, since the element 1 is related to three different values; $1 \Box 1 \Box 1 \Box 3 \Box$ and $1 \Box 5 \Box$                                                                                                                                                                                                                    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | d. This is a mapping, since for every $\square \in \square$ there is a unique $\square \in \square$ such that                                                                                                                                                                                                                                         |
|      | $(\Box\Box\Box)$ is an element of the relation.                                                                                                                                                                                                                                                                                                       |
|      | e. This is a mapping, since for every $\square \in \square$ there is a unique $\square \in \square$ such that                                                                                                                                                                                                                                         |
|      | $(\Box\Box\Box)$ is an element of the relation.                                                                                                                                                                                                                                                                                                       |
| f.   | This is not a mapping, since the element 5 is related to three different values: $5\Box 1\Box 5\Box 3\Box$ and $5\Box 5\Box$                                                                                                                                                                                                                          |
| 2. a | . The relation $\square$ is not reflexive, since $2 \mathbb{Z}/2 \square$ It is not symmetric, since 4R2 but $2 \mathbb{Z}/4 \square$ It is not transitive, since 4R2 and 2R1 but $4 \mathbb{Z}/4 \square$                                                                                                                                            |
| b    | . The relation $\square$ is not reflexive, since $2 \triangledown 2 \square$ It is symmetric, since $\square = -\square$ $\Rightarrow$                                                                                                                                                                                                                |
|      | $\square = -\square\square$ It is not transitive, since $2R(-2)$ and $(-2)R2$ , but $2 \square 2$                                                                                                                                                                                                                                                     |
| c.   | The relation $\square$ is reflexive and transitive, but not symmetric, since for arbitrary $\square\square\square$ and $\square$ in Z we have:                                                                                                                                                                                                        |
|      | $(1) \Box = \Box \cdot 1 \text{ with } 1 \in \mathbb{Z}$                                                                                                                                                                                                                                                                                              |
|      | (2) $6 = 3$ (2) with $2 \in \mathbb{Z}$ but $3 = 6 \square$ where $\square \in \mathbb{Z}$                                                                                                                                                                                                                                                            |
|      | (3) $\square = \square_1$ for some $\square_1 \in \mathbb{Z}$ and $\square = \square_2$ for some $\square_2 \in \mathbb{Z}$ imply $\square = \square_2 = \square (\square_1 \square_2)$ with $\square_1 \square_2 \in \mathbb{Z} \square$                                                                                                             |
| (    | 1. The relation $\square$ is not reflexive, since $1 \not \subset 1 \square$ It is not symmetric, since $1R2 \square$ but                                                                                                                                                                                                                             |
|      | $2 / 1 \square$ It is transitive, since $\square \square \square$ and $\square \square \square \square \square \square$ for all $\square \square \square \square$ and $\square \in \mathbb{Z} \square$                                                                                                                                                |
| e.   | The relation $\square$ is reflexive, since $\square \ge \square$ for all $\square \in Z\square$ It is not symmetric, since $5\square 3$ but $3 \square 5 \square$ It is transitive, since $\square \ge \square$ and $\square \ge \square$ imply $\square \ge \square$ for all                                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                       |
| f.   | The relation $\square$ is not reflexive, since $(-1) \mathbb{Z}(-1) \square$ It is not symmetric, since $1R(-1)$ but $(-1) \mathbb{Z} 1 \square$ It is transitive, since $\square =  \square $ and $\square =  \square $ implies $\square =  \square  =  \square  =  \square $ for all $\square \square \square$ and $\square \in \mathbb{Z} \square$ |
| g.   | The relation $\square$ is not reflexive, since $(-6) \mathbb{V}(-6) \square$ It is not symmetric, since 3R5 but $5 \mathbb{V} 3 \square$ It is not transitive, since 4R3 and 3R2, but $4 \mathbb{V} 2 \square$                                                                                                                                        |
| h    | The relation $\square$ is reflexive, since $\square^2 \ge 0$ for all $\square$ in $Z\square$ It is also symmetric, since $\square \square \ge 0$ implies that $\square \square \ge 0\square$ It is not transitive, since $(-2)\square 0$ and $0\square 4$ but $(-2) / 4\square$                                                                       |
| i    | The relation $\square$ is not reflexive, since $2 \sqrt{2} \square$ It is symmetric, since $\square \subseteq 0$ implies $\square \subseteq 0$ for all $\square \subseteq 0 \in \mathbb{Z} \square$ It is not transitive, since $-1 \square 2$ and $2 \square (-3)$ but $(-1) \sqrt[3]{(-3)} \square$                                                 |
|      | j. The relation $\square$ is not reflexive, since $ \square - \square  = 0 = 1 \square$ It is symmetric, since                                                                                                                                                                                                                                        |
|      | $ \Box - \Box  = 1 \Rightarrow  \Box - \Box  = 1 \Box$ It is not transitive, since $ 2 - 1  = 1$ and $ 1 - 2  = 1$ but $ 2 - 2  = 0 = 1 \Box$                                                                                                                                                                                                         |

|          |    | ~        | _                        |         |
|----------|----|----------|--------------------------|---------|
| A/nswers | to | Selected | $\mathbf{H}(\mathbf{x})$ | ercises |

| k. | The | relation                | ☐ is reflexive, | symmetric and | transitive, | since for | arbitrary [ |  |
|----|-----|-------------------------|-----------------|---------------|-------------|-----------|-------------|--|
|    |     |                         |                 |               |             |           |             |  |
|    | and | $\square$ in $Z\square$ | we have:        |               |             |           |             |  |

| $(1)   \Box - \Box  =  0  \Box 1$ $(2)   \Box - \Box  \Box 1 \Rightarrow  \Box - \Box  \Box 1$                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(3) \mid \square - \square \mid \square 1 \text{ and } \mid \square - \square \mid \square 1 \Rightarrow \square = \square \text{ and } \square = \square \Rightarrow  \square - \square   \square 1 \square$                        |
| 3. a. $\{-3 \square 3\}$ b. $\{-5 \square -1 \square 3 \square 7 \square 11\} \subseteq [3]$                                                                                                                                          |
| 4. <b>b.</b> $[0] = \{ 0 \ 0 \ 0 \ -100 \ -50 \ 0 \ 50 \ 100 \ 0 \ 0 \} $ $[1] = \{ 0 \ 0 \ 0 \ -90 \ -40 \ 10 \ 60 \ 110 \ 0 \ 0 \} $                                                                                                |
| $ [2] = \{ \square \ \square \ \square -8\square -3\square 2\square 7\square 12\square \square \square \} \ \square \ [8] = [3] = \{ \square \ \square \ \square -7\square -2\square 3\square 8\square 13\square \square \square \} $ |
| $[-4] = [1] = \{ \Box \Box \Box \Box -9\Box -4\Box 1\Box 6\Box 11\Box \Box \Box \}$                                                                                                                                                   |
| 5. b. [0] = { \cap \cap \cap -14 \cap -7 \cap 0 \cap 7 \cap 14 \cap \cap \cap \cap \cap \cap 1] = { \cap \cap \cap -13 \cap -6 \cap 1 \cap 8 \cap 15 \cap \cap \cap \cap \cap \cap \cap \cap                                          |
| $ [3] = \{ \square \square \square \square -11\square -4\square 3\square 10\square 17\square \square \square \} \square                           $                                                                                   |
| $[-2] = [5] = \{ \square \square \square -9\square -2\square 5\square 12\square 19\square \square \square \}$                                                                                                                         |
| 6. $[0] = \{ \Box \Box \Box \Box -2 \Box 0 \Box 2 \Box 4 \Box \Box \Box \} \Box [1] = \{ \Box \Box \Box \Box -3 \Box -1 \Box 1 \Box 3 \Box \Box \Box \}$                                                                              |
| 7. $[0] = \{0 \square \pm 5 \square \pm 10 \square \square \square \} \square \{\pm 1 \square \pm 4 \square \pm 6 \square \pm 9\} \subseteq [1] \square \{\pm 2 \square \pm 3 \square \pm 7 \square \pm 8\} \subseteq [2]$            |
| 8. $[0] = \{ 0 \ 0 \ 0 \ -4 \ 0 \ 0 \ 4 \ 8 \ 0 \ 0 \} \ 0 \ [1] = \{ 0 \ 0 \ 0 \ -7 \ 0 \ -3 \ 1 \ 5 \ 0 \ 0 \ 0 \} \ 0 \ [3] = \{ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$                                                            |
| 9. [0] = {                                                                                                                                                                                                                            |
| 10. $[-1] = \{ \Box \Box \Box \Box -3\Box -1\Box 1\Box 3\Box \Box \Box \} \Box$ $[0] = \{ \Box \Box \Box -2\Box 0\Box 2\Box 4\Box \Box \Box \}$                                                                                       |
| 11. The relation □ is symmetric but not reflexive or transitive, since for arbitrary integers □□□□ and □, we have the following:                                                                                                      |
| (1) $\Box + \Box = 2\Box$ is not odd;                                                                                                                                                                                                 |
| (2) $\Box + \Box$ is odd implies $\Box + \Box$ is odd;                                                                                                                                                                                |
| (3) $\Box + \Box$ is odd and $\Box + \Box$ is odd does not imply that $\Box + \Box$ is odd. For example, take $\Box = 1 \Box \Box = 2$ and $\Box = 3 \Box$                                                                            |
| Thus $\square$ is not an equivalence relation on $Z\square$                                                                                                                                                                           |
| 12. a. The relation $\square$ is symmetric but not reflexive or transitive, since for arbitrary lines $\square_1 \square \square_2 \square$ and $\square_3$ in a plane, we have the following:                                        |
| (1) $\Box_1$ is not parallel to $\Box_1\Box$ since parallel lines have no points in common; (2) $\Box_1$ is parallel to $\Box_2$ implies that $\Box_2$ is parallel to $\Box_1$ ;                                                      |

|      | (3) | $\square_1$ is particular. | arallel        | to 🗆 2 | and □2 is   | parallel | to □3            | does | not           | imply   | that | $\Box_1$ is        |
|------|-----|----------------------------|----------------|--------|-------------|----------|------------------|------|---------------|---------|------|--------------------|
|      |     | parallel                   | to $\square_3$ | ☐ For  | example,    | take 🗆 3 | $_3 = \square_1$ | with | $\square_{1}$ | paralle | l to | $\square_2\square$ |
| Thus | □ i | is not an                  | equiva         | alence | relation of | on Z□    |                  |      |               |         |      |                    |

|     | b. | The relation $\square$ is symmetric but not reflexive or transitive, since for arbitrary lines $\square_1 \square \square_2$ and $\square_3$ in a plane, we have the following:                                                                                                                                                  |
|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |    | <ul> <li>(1) □₁ is not perpendicular to □₁;</li> <li>(2) □₁ is perpendicular to □₂ implies that □₂ is perpendicular to □₁;</li> <li>(3) □₁ is perpendicular to □₂ and □₂ is perpendicular to □₃ does not imply that □₁ is perpendicular to □₃□</li> </ul>                                                                        |
|     |    | Thus $\Box$ is not an equivalence relation.                                                                                                                                                                                                                                                                                      |
| 13. | a. | The relation $\square$ is reflexive and transitive but not symmetric, since for arbitrary nonempty subsets $\square\square\square\square$ and $\square$ of $\square$ we have:                                                                                                                                                    |
|     |    | <ul> <li>(1) □ is a subset of □;</li> <li>(2) □ is a subset of □ does not imply that □ is a subset of □;</li> <li>(3) □ is a subset of □ and □ is a subset of □ imply that □ is a subset of □ □</li> </ul>                                                                                                                       |
|     | b. | The relation $\square$ is not reflexive and not symmetric, but it is transitive, since for arbitrary nonempty subsets $\square \square \square \square$ and $\square$ of $\square$ we have:                                                                                                                                      |
|     |    | <ul> <li>(1) □ is not a proper subset of □;</li> <li>(2) □ is a proper subset of □ implies that □ is not a proper subset of □;</li> <li>(3) □ is a proper subset of □ and □ is a proper subset of □ imply that □ is a proper subset of □□</li> </ul>                                                                             |
|     | c. | The relation $\square$ is reflexive, symmetric and transitive, since for arbitrary non-empty subsets $\square$ $\square$ $\square$ and $\square$ of $\square$ we have:                                                                                                                                                           |
|     |    | <ul> <li>(1) □ and □ have the same number of elements;</li> <li>(2) If □ and □ have the same number of elements, then □ and □ have the same number of elements;</li> <li>(3) If □ and □ have the same number of elements and □ and □ have the same number of elements, then □ and □ have the same number of elements.</li> </ul> |
| 14. | a. | . The relation is reflexive and symmetric but not transitive, since if $\Box \Box \Box \Box$ and                                                                                                                                                                                                                                 |
|     |    | $\square$ are human beings, we have:                                                                                                                                                                                                                                                                                             |
|     |    | <ul> <li>(1) □ lives within 400 miles of □;</li> <li>(2) □ lives within 400 miles of □ implies that □ lives within 400 miles of □;</li> <li>(3) □ lives within 400 miles of □ and □ lives within 400 miles of □ do not</li> </ul>                                                                                                |
|     |    | imply that $\square$ lives within 400 miles of $\square$                                                                                                                                                                                                                                                                         |
|     | b. | The relation $\square$ is not reflexive, not symmetric, and not transitive, since if $\square$ $\square$ $\square$ and $\square$ are human beings we                                                                                                                                                                             |
|     |    | have: (1) $\Box$ is not the father of $\Box$ ;                                                                                                                                                                                                                                                                                   |
|     |    | <ul> <li>(2) □ is the father of □ implies that □ is not the father of □;</li> <li>(3) □ is the father of □ and □ is the father of □ imply that □ is not the father of □□</li> </ul>                                                                                                                                              |

|     | c.        | The relation is symmetric but not reflexive and not transitive. Let $\Box \Box \Box$ and $\Box$ be human beings, and we have:                                                                                        |
|-----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |           | (1) $\Box$ is a first cousin of $\Box$ is not a true statement;                                                                                                                                                      |
|     |           | (2) $\square$ is a first cousin of $\square$ implies that $\square$ is a first cousin of $\square$ ;                                                                                                                 |
|     |           | (3) $\square$ is a first cousin of $\square$ and $\square$ is a first cousin of $\square$ do not imply that $\square$ is a first cousin of $\square$ $\square$                                                       |
|     | d.        | The relation $\Box$ is reflexive, symmetric, and transitive, since if $\Box\Box\Box\Box$ and $\Box$ are human beings we have:                                                                                        |
|     |           | <ul> <li>(1) □ and □ were born in the same year;</li> <li>(2) if □ and □ were born in the same year, then □ and □ were born in</li> </ul>                                                                            |
|     |           | the same year;  (3) if □ and □ were born in the same year and if □ and □ were born in the same year, then □ and □ were born in the same year.                                                                        |
|     | e.        | The relation is reflexive, symmetric, and transitive, since if $\Box \Box \Box \Box$ and $\Box$ are human beings, we have:                                                                                           |
|     |           | (1) $\Box$ and $\Box$ have the same mother;                                                                                                                                                                          |
|     |           | (2) $\Box$ and $\Box$ have the same mother implies $\Box$ and $\Box$ have the same                                                                                                                                   |
|     |           | mother; (3) $\square$ and $\square$ have the same mother and $\square$ and $\square$ have the same                                                                                                                   |
|     |           | mother imply that $\square$ and $\square$ have the same                                                                                                                                                              |
|     |           | mother.                                                                                                                                                                                                              |
|     | f.        | The relation is reflexive, symmetric and transitive, since if $\Box \Box \Box \Box$ and $\Box$ are human beings we have:                                                                                             |
|     |           | (1) $\Box$ and $\Box$ have the same hair color;                                                                                                                                                                      |
|     |           | (2) $\Box$ and $\Box$ have the same hair color implies that $\Box$ and $\Box$ have the same hair color;                                                                                                              |
|     |           | (3) □ and □ have the same hair color and □ and □ have the same hair color imply that □ and □ have the same hair color.                                                                                               |
| 15. | a.        | The relation $\square$ is an equivalence relation on $\square \times \square \square$ Let $\square \square \square \square \square$ $\square$ and $\square$ be arbitrary elements of $\square$                       |
|     |           | $(1) ( \square \square \square ) \square ( \square \square \square ) \text{ since } \square \square = \square \square \square$                                                                                       |
|     |           | $(2)  (\square\square\square)\square (\square\square\square) \Rightarrow \square\square = \square\square \Rightarrow (\square\square\square)\square (\square\square\square)\square$                                  |
|     |           | $(3)  (\square\square\square)\square(\square\square\square) \text{ and } (\square\square\square)\square(\square\square\square) \Rightarrow \square\square=\square\square \text{ and } \square\square=\square\square$ |
|     |           | $\Rightarrow$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$                                                                                                                                  |
|     |           | $\Rightarrow \square \square = \square \square \text{ since } \square = 0 \text{ and } \square = 0$                                                                                                                  |
|     |           | $\Rightarrow \ (\square \square \square) \square (\square \square \square) \square$                                                                                                                                  |
|     | <b>b.</b> | The relation $\Box$ is an equivalence relation on $\Box \times \Box \Box$ Let $(\Box \Box \Box) \Box (\Box \Box \Box) \Box (\Box \Box \Box)$                                                                         |
|     | ,         | be arbitrary elements of $\square \times \square$ .                                                                                                                                                                  |
|     |           | (1) (                                 since                                                                                                                                                                          |
|     |           |                                                                                                                                                                                                                      |

|     |     | (2) (                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | c.  | The relation $\square$ is an equivalence relation on $\square \times \square \square$ Let $\square \square \square \square \square$ $\square$ and $\square$ be arbitrary elements of $\square$                                                                                                                                                                                                                    |
|     |     | $(1) (\Box \Box \Box) \Box (\Box \Box \Box) \text{ since } \Box^2 + \Box^2 = \Box^2 + \Box^2 \Box$                                                                                                                                                                                                                                                                                                                |
|     |     | $(2) (\square \square \square) \square (\square \square \square) \Rightarrow \square^2 + \square^2 = \square^2 + \square^2 \Rightarrow \square^2 + \square^2 = \square^2 + \square^2 \Rightarrow (\square \square \square) \square$                                                                                                                                                                               |
|     |     | (3) $(\square\square\square)\square(\square\square\square)$ and $(\square\square\square)\square(\square\square\square)$ $\Rightarrow \square^2 + \square^2 = \square^2 + \square^2$ and                                                                                                                                                                                                                           |
|     |     | $\square^2 + \square^2 = \square^2 + \square^2$                                                                                                                                                                                                                                                                                                                                                                   |
|     |     | $\Rightarrow \square^2 + \square^2 = \square^2 + \square^2$                                                                                                                                                                                                                                                                                                                                                       |
|     |     | $\Rightarrow ( \square \square \square ) \square ( \square \square \square ) \square$                                                                                                                                                                                                                                                                                                                             |
|     | d.  | The relation $\Box$ is an equivalence relation on $\Box \times \Box \Box$ Let $(\Box \Box \Box) \Box (\Box \Box \Box) \Box$ and $(\Box \Box \Box)$ be arbitrary elements of $\Box \times \Box \Box$                                                                                                                                                                                                               |
|     |     | $(1) \ (\square \square \square) \square (\square \square \square) \square \text{ since } \square - \square = \square - \square \square$                                                                                                                                                                                                                                                                          |
|     |     | $(2)  (\bigcirc \bigcirc \bigcirc)  (\bigcirc \bigcirc \bigcirc) \Rightarrow \bigcirc - \bigcirc = \bigcirc - \bigcirc \Rightarrow \bigcirc - \bigcirc = \bigcirc - \bigcirc \Rightarrow (\bigcirc \bigcirc \bigcirc)  (\bigcirc \bigcirc \bigcirc)  \bigcirc$                                                                                                                                                    |
|     |     | (3) ( $\square$ $\square$ ) $\square$ ( $\square$ $\square$ ) and ( $\square$ $\square$ ) $\square$ ( $\square$ $\square$ ) $\Rightarrow$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$                                                                                                                                                                                         |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 16. | The | relation $\square$ is reflexive and symmetric but not transitive.                                                                                                                                                                                                                                                                                                                                                 |
| 17. | a.  | The relation is symmetric but not reflexive and not transitive. Let $\Box \Box \Box$ and $\Box$ be arbitrary elements of the power set $P(\Box)$ of the nonempty set $\Box\Box$                                                                                                                                                                                                                                   |
|     |     | $(1) \ \Box \cap \Box = \emptyset \text{ is not true if } \Box = \emptyset \Box$                                                                                                                                                                                                                                                                                                                                  |
|     |     | $(2)  \square \cap \square = \emptyset \text{ implies that } \square \cap \square = \emptyset \square$                                                                                                                                                                                                                                                                                                            |
|     |     | $(3)  \square \cap \square = \emptyset \text{ and } \square \cap \square = \emptyset \text{ do not imply that } \square \cap \square = \emptyset \square \text{ For example, let}$ $\square = \{\square \square \square \square \square \square\} \square \square = \{\square \square \square\} \square \square = \{\square \square \square\} \square \text{ and } \square = \{\square \square \square\} \square$ |
|     |     | Then $\square \cap \square =$                                                                                                                                                                                                                                                                                                                                                                                     |
|     | ,   | $\{\Box\} = \emptyset \Box \Box \cap \Box = \{\Box\} = \emptyset \text{ but } \Box \cap \Box = \emptyset \Box$                                                                                                                                                                                                                                                                                                    |
|     | b.  | The relation $\square$ is reflexive and transitive but not symmetric, since for arbitrary subsets $\square$ $\square$ $\square$ of $\square$ we have:                                                                                                                                                                                                                                                             |
|     |     | $(1)  \Box \subseteq \Box;$ $(2)  \emptyset \subseteq \Box \text{ but } \Box \text{ str } \emptyset.$                                                                                                                                                                                                                                                                                                             |
|     |     | $(2) \emptyset \subseteq \square \text{ but } \square * \emptyset;$ $(3) \square \subseteq \square \text{ and } \square \subseteq \square \text{ imply } \square \subseteq \square \square$                                                                                                                                                                                                                       |
| 18. |     | relation is reflexive, symmetric, and transitive. Let $\Box \Box \Box \Box$ and $\Box$ be trary elements of the power set $P(\Box)$ and $\Box$ a fixed subset of $\Box\Box$                                                                                                                                                                                                                                       |
|     | (1) |                                                                                                                                                                                                                                                                                                                                                                                                                   |

 $(2) \quad \square \square \Rightarrow \square \cap \square = \square \cap \square \Rightarrow \square \cap \square = \square \cap \square \Rightarrow \square \square \square$