Solution Manual for Chemistry for Today General Organic and Biochemistry Hybrid 8th Edition by Seager Slabaugh ISBN 1285185978 9781285185972

Full link download Solution Manual

https://testbankpack.com/p/solution-manual-for-chemistry-for-today-general-organic-and-biochemistry-hybrid-8th-edition-by-seager-slabaugh-isbn-1285185978-9781285185972/

Test Bank

https://testbankpack.com/p/test-bank-for-chemistry-for-today-general-organic-and-biochemistry-hybrid-8th-edition-by-seager-slabaugh-isbn-1285185978-9781285185972/

Chapter 2: Atoms and Molecules

hydrogen 1.0079

CHAPTER OUTLINE

2.1 Symbols and Formulas2.2 Inside the Atom2.4 Relative Masses of Atoms2.6 and Molecules

2.3 Isotopes 2.5 Isotopes and Atomic Weights

2.6 Avogadro's Number: The Mole2.7 The Mole and Chemical

Formulas

LEARNING OBJECTIVES/ASSESSMENT

When you have completed your study of this chapter, you should be able to:

- 1. Use symbols for chemical elements to write formulas for chemical compounds. (Section 2.1; Exercise 2.4)
- 2. Identify the characteristics of protons, neutrons, and electrons. (Section 2.2; Exercises 2.10 and 2.12)
- 3. Use the concepts of atomic number and mass number to determine the number of subatomic particles in isotopes and to write correct symbols for isotopes. (Section 2.3; Exercises 2.16 and 2.22)
- 4. Use atomic weights of the elements to calculate molecular weights of compounds. (Section 2.4; Exercise 2.32)
- 5. Use isotope percent abundances and masses to calculate atomic weights of elements. (Section 2.5; Exercise 2.38)
- 6. Use the mole concept to obtain relationships between number of moles, number of grams, and number of atoms for elements, and use those relationships to obtain factors for use in factor-unit calculations. (Section 2.6; Exercises 2.44 a & b and 2.46 a & b)
- 7. Use the mole concept and molecular formulas to obtain relationships between number of moles, number of grams, and number of atoms or molecules for compounds, and use those relationships to obtain factors for use in factor-unit calculations. (Section 2.7; Exercise 2.50 b and 2.52 b)

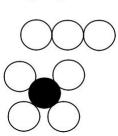
LECTURE HINTS AND SUGGESTIONS

- 1. The word "element" has two usages: (1) a homoatomic, pure substance; and (2) a kind of atom. This dual usage confuses the beginning student. It often helps the beginning student for the instructor to distinguish the usage intended in a particular statement. e.g. "There are 112 elements, meaning 112 kinds of atoms." or "Each kind of atom (element) has a name and a symbol." or "Water contains the element (kind of atom) oxygen."
- 2. Emphasize that the term "molecule" can mean: (1) the limit of physical subdivision of a molecular compound; (2) the smallest piece of a molecular compound; or (3) the basic building block of which a molecular compound is made. Do not try to differentiate at this time the differences between ionic solids, molecular compounds, or network solids.
- 3. Many students fail to make a connection that a given pure substance has only one kind of constituent particle present; i.e., pure water contains only one kind of molecule, the water molecule. The molecule of water is made up of atoms of hydrogen and oxygen, but there are no molecules of hydrogen or oxygen in pure water.

- 4. The student will memorize the names and symbols for approximately one-third of the 112 elements to be dealt with-those commonly encountered in this course or in daily living. Mentioning both the name and the symbol whenever an element is mentioned in the lecture will aid the student's memorizing.
- 5. While memorization of the names and symbols is important, it should not become the major outcome of this class. Avoid reinforcing the mistaken notion that chemistry is merely learning formulas and equations.

30 Chapter 2

6. It should be emphasized that the mole is a convenient way of measuring out needed numbers of atoms and molecules In the correct ratios for chemical reactions. Explain that the term "mole" is the same type of term as "dozen," "pair," or "gross," except that it specifies a much larger number of items.


SOLUTIONS FOR THE END OF CHAPTER EXERCISES SYMBOLS AND FORMULAS (SECTION 2.1)

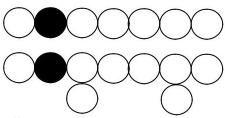
2.1 a. A diatomic molecule of an element*

b. A diatomic molecule of a compound*

c. A triatomic molecule of an element

d. A molecule of a compound containing one atom of one element and four atoms of another element

*Note: Each of these structures could be drawn in many different ways.


a. A triatomic molecule of a compound*

 A molecule of a compound containing two atoms of one element and two atoms of a second element*

c. A molecule of a compound containing two atoms of one element, one atom of a second element, and four atoms of a third element*

d. A molecule containing two atoms of one element, six atoms of a second element, and one atom of a third element*

*Note: Each of these structures could be drawn in many different ways.

2.3 a. A diatomic molecule of fluorine (two fluorine atoms) F2; like Exercise 2.1 a

b. A diatomic molecule of hydrogen chloride (one hydrogen atom and one chlorine atom)

HCl; like Exercise 2.1 b

c. A triatomic molecule of ozone (three oxygen atoms) O₃; like Exercise 2.1 c*

d. A molecule of methane (one carbon atom and four hydrogen atoms)

CH4; like Exercise 2.1 d*

*The number and variety of atoms are alike. The actual structures of the molecules are different.

;2.4 a. A molecule of water (two hydrogen atoms and one oxygen H₂O; like Exercise 2.2 a*

atom)

b. A molecule of hydrogen peroxide (two hydrogen atoms and H₂O₂; like Exercise 2.2 b*

two oxygen atoms)

*The number and variety of atoms are alike. The actual structures of the molecules are different.

c. A molecule of sulfuric acid (two hydrogen atoms, one sulfur atom, and four oxygen atoms)

d. A molecule of ethyl alcohol (two carbon atoms, six hydrogen atoms, and one oxygen atom) $\,$

H₂SO₄; like Exercise 2.2 c*

C₂H₆O; like Exercise 2.2 d*

2.5	a.	ammonia (NH ₃)	1 nitrogen atom; 3 hydrogen atoms
	b.	acetic acid (C ₂ H ₄ O ₂)	2 carbon atoms; 4 hydrogen atoms; 2 oxygen atoms
	c.	boric acid (H ₃ BO ₃)	3 hydrogen atoms; 1 boron atom; 3 oxygen atoms
	d.	ethane (C ₂ H ₆)	2 carbon atoms; 6 hydrogen atoms
2.6		d (CII)	4. 1
2.6		methane (CH ₄)	1 carbon atom; 4 hydrogen atoms
		perchloric acid (HClO ₄)	1 hydrogen atom; 1 chlorine atom; 4 oxygen atoms
	c.	methylamine (CH ₅ N)	1 carbon atom; 5 hydrogen atoms; 1 nitrogen atom
	d.	propane (C ₃ H ₈)	3 carbon atoms; 8 hydrogen atoms
2.7	a.	H3PO3 (phosphorous acid)	The numbers should be subscripted: H ₃ PO ₃ The
	b.	SICl4 (silicon tetrachloride)	elemental symbol for silicon is Si: SiCl4 Only one
	c.	SOO (sulfur dioxide)	O should be written and a subscript 2 should be added: SO ₂
	d.	2HO (hydrogen peroxide—two hydrogen atoms and two oxygen atoms)	The number 2 should be a subscript after H and after O: H ₂ O ₂
2.8	a.	HSH (hydrogen sulfide)	More than one H is part of the compound; a subscript should be used: H ₂ S
	b.	HCLO ₂ (chlorous acid)	The elemental symbol for chlorine is Cl (the second letter of a symbol must be lowercase): HClO ₂
	c.	2HN ₂ (hydrazine – two hydrogen	The subscripts should reflect the actual number of each type of atom in the compound: H ₂ N ₄ The
	d.	atoms and four nitrogen atoms) C2H6 (ethane)	numbers should be subscripted: C ₂ H ₆

INSIDE THE ATOM (SECTION 2.2)

		Charge	Mass (u)
a.	5 protons and 6 neutrons	5	11
b.	10 protons and 10 neutrons	10	20
c.	18 protons and 23 neutrons	18	41
d.	50 protons and 76 neutrons	50	126
		Charge	Mass (u)
a.	4 protons and 5 neutrons	4	9
b.	9 protons and 10 neutrons	9	19
c.	20 protons and 23 neutrons	20	43
d.	47 protons and 60 neutrons	47	107
	b.c.d. a.b.c.	b. 9 protons and 10 neutronsc. 20 protons and 23 neutrons	a. 5 protons and 6 neutrons 5 b. 10 protons and 10 neutrons 10 c. 18 protons and 23 neutrons 18 d. 50 protons and 76 neutrons 50 Charge a. 4 protons and 5 neutrons 4 b. 9 protons and 10 neutrons 9 c. 20 protons and 23 neutrons 20

- 2.11 The number of protons and electrons are equal in a neutral atom.
 - a. 5 electrons
- b. 10 electrons
- c. 18 electrons d. 50 electrons

^{*}The number and variety of atoms are alike. The actual structures of the molecules are different.

32 Chapter 2

;2.12 The number of protons and electrons are equal in a neutral atom.

electrons electrons

4 electrons b. c. 20 d. 47 electrons

ISOTOPES (SECTION 2.3)

b. argon-40

c. strontium-88

2.13		Electrons	Protons
a.	sulfur	16	16
b.	As	33	33
c.	element number 24	24	24

2.14	Electrons	Protons
a. potassium	19	19
b. Cd	48	48
c. element number 51	51	51

2.15		Protons	Neutrons	Electrons
	a. 12^{25} Mg	12	13	12
	b. ¹³ 6 C	6	7	6
	c. ^{19⁴¹} K	19	22	19

; 2.16	Protons	Neutrons	Electrons
a. 16 ³⁴ S	16	18	16
b. 91 ₄₀ Zr	40	51	40
c. ¹³¹ 54 Xe	54	77	54

2.17	a. cadmium-110b. cobalt-60c. uranium-235	¹¹⁰ ₄₈ Cd ⁶⁰ ₂₇ Co ²³⁵ ₉₂ U
2.18	a. silicon-28	14 ²⁸ Si

	C.	strontium-88	⁸⁸ 38 Sr		
2.19			Mass Number	Atomic Number	Symbol
	a.	5 protons and 6 neutrons	11	5	11, B
	b.	10 protons and 10 neutrons	11	J	5
	c.	18 protons and 23 neutrons	20	10	10 ²⁰ Ne
	d.	50 protons and 76 neutrons	41	18	₁₈ ⁴¹ Ar

 $_{18}^{40}\,{\rm Ar}$

	c.	18 protons and 23 neutrons			10
	d.	50 protons and 76 neutrons	41	18	₁₈ ⁴¹ Ar
			126	50	¹²⁶ 50 Sn
2.20					
	a.	4 protons and 5 neutrons	Mass Number	Atomic Number	Symbol
	b.	9 protons and 10 neutrons	9	4	₄ ⁹ Be
	c.	20 protons and 23 neutrons	19	9	¹⁹ 9 F
	d.	47 protons and 60 neutrons	43	20	20 ⁴³ Ca

107 47 ¹⁰⁷₄₇ Ag

2.21	a.	contains 18 electrons and 20 neutrons	
	b.	a calcium atom with a mass number of 40	³⁸ 18 Ar
	c.	an arsenic atom that contains 42 neutrons	⁴⁰ 20 Ca
			⁷⁵ 33 As
; 2.22	a.	contains 17 electrons and 20 neutrons	
	b.	a copper atom with a mass number of 65	³⁷ 17 Cl

c. a zinc atom that contains 36 neutrons

RELATIVE MASSES OF ATOMS AND MOLECULES (SECTION 2.4)

Two element pairs whose average atoms have masses that are within 0.3 u of each other are 2.23 argon (Ar 39.95 u) and calcium (40.08 u) as well as cobalt (Co 58.93u) and nickel (Ni 58.69u).

2.24 12 u
$$\frac{1 \text{ atom He}}{4 \text{ u He}}$$
 = 3 atoms He

2.25
$$28 \text{ u} \quad \frac{1 \text{ atom Li}}{7 \text{ u Li}} = 4 \text{ atoms Li}$$

 $77.1\% \times 52.00 \text{ u} = 0.771 \times 52.00 \text{u} = 40.1 \text{ u}$; Ca; calcium 2.26

In the first 36 elements, the elements with atoms whose average mass is within 0.2 u of being 2.27 twice the atomic number of the element are:

Atom	Atomic Number	Relative Mass	Ratio
helium (He)	2	4.003	2.002
carbon (C)	6	12.01	2.002
nitrogen (N)	7	14.01	2.001
oxygen (O)	8	16.00	2.000
neon (Ne)	10	20.18	2.018
silicon (Si)	14	28.09	2.006
sulfur (S)	16	32.07	2.004
calcium (Ca)	20	40.08	2.004

2.28
$$\frac{1}{2}$$
 × 28.09 u = 14.05 u; N; nitrogen

2.29	a.	fluorine (F2)	$(2 \times 19.00 \text{ u}) = 38.00 \text{ u}$
	b.	carbon disulfide (CS ₂)	$(1 \times 12.01 \text{ u}) + (2 \times 32.07 \text{ u}) = 76.15 \text{ u}$
	c.	sulfurous acid (H2SO3)	$(2 \times 1.008 \text{ u}) + (1 \times 32.07 \text{ u}) + (3 \times 16.00 \text{ u}) = 82.09 \text{ u}$
	d.	ethyl alcohol (C2H6O)	$(2 \times 12.01 \text{ u}) + (6 \times 1.008 \text{ u}) + (1 \times 16.00 \text{ u}) = 46.07 \text{ u}$
	e.	ethane (C ₂ H ₆)	$(2 \times 12.01 \text{ u}) + (6 \times 1.008 \text{ u}) = 30.07 \text{ u}$
2.30	0	cultur trioxida (SOa)	

2.30 a. sulfur trioxide (SO₃)
$$(1 \times 32.07 \text{ u}) + (3 \times 16.00 \text{ u}) = 80.07 \text{ u}$$

b. glycerin (C₃H₈O₃) $(3 \times 12.01 \text{ u}) + (8 \times 1.008 \text{ u}) + (3 \times 16.00) = 92.09 \text{ u}$

c sulfuric acid (H₂SO₄)
$$(2 \times 1.008 \text{ u}) + (1 \times 32.07 \text{ u}) + (4 \times 16.00 \text{ u}) = 98.09 \text{ u}$$
d nitrogen (N₂)
$$2 \times 14.01 \text{ u} = 28.02 \text{ u}$$
e propane (C₃H₈)
$$(3 \times 12.01 \text{ u}) + (8 \times 1.008 \text{ u}) = 44.09 \text{ u}$$

2.31 The gas is most likely to be N₂O based on the following calculations:

NO:
$$(1 \times 14.01 \text{ u}) + (1 \times 16.00 \text{ u}) = 30.01 \text{ u}$$

N₂ O: $(2 \times 14.01 \text{ u}) + (1 \times 16.00 \text{ u}) = 44.02 \text{ u}$
NO₂: $(1 \times 14.01 \text{ u}) + (2 \times 16.00 \text{ u}) = 46.01 \text{ u}$

The experimental value for the molecular weight of an oxide of nitrogen was 43.98 u, which is closest to the theoretical value of 44.02 u, which was calculated for N₂O.

;2.32 The gas is most likely to be ethylene based on the following calculations:

acetylene :
$$(2 \times 12.01 \text{ u}) + (2 \times 1.008 \text{ u}) = 26.04 \text{ u}$$

ethylene : $(2 \times 12.01 \text{ u}) + (4 \times 1.008 \text{ u}) = 28.05 \text{ u}$
ethane : $(2 \times 12.01 \text{ u}) + (6 \times 1.008 \text{ u}) = 30.07 \text{ u}$

The experimental value for the molecular weight of a flammable gas known to contain only carbon and hydrogen is 28.05 u, which is identical to the theoretical value of 28.05 u, which was calculated for ethylene.

2.33 The x in the formula for glycine stands for 5, the number of hydrogen atoms in the chemical formula.

$$(2 \times 12.01 \text{ u}) + (x \times 1.008 \text{ u}) + (1 \times 14.01 \text{ u}) + (2 \times 16.00 \text{ u}) = 75.07 \text{ u}$$

 $x \times 1.008 \text{ u} + 70.03 \text{ u} = 75.07 \text{ u}$
 $x \times 1.008 \text{ u} = 5.04 \text{ u}$
 $x = 5$

2.34 The y in the formula for serine stands for 3, the number of carbon atoms in the chemical formula.

$$(y \times 12.01 \text{ u}) + (7 \times 1.008 \text{ u}) + (1 \times 14.01 \text{ u}) + (3 \times 16.00 \text{ u}) = 105.10 \text{ u}$$

 $y \times 12.01 \text{ u} + 69.07 \text{ u} = 105.10 \text{ u}$
 $y \times 12.01 \text{ u} = 36.03 \text{ u}$
 $y = 3$

ISOTOPES AND ATOMIC WEIGHTS (SECTION 2.5)

- 2.35 a. The number of neutrons in the nucleus $22.9898 11 = 11.9898 \approx 12$ neutrons
 - b. The mass (in u) of the nucleus (to three significant figures) 23.0 u
- 2.36 a. The number of neutrons in the nucleus $26.982 13 = 13.982 \approx 14$ neutrons
 - b. The mass (in u) of the nucleus (to three significant figures) 27.0 u
- 2.37 $7.42\% \times 6.0151~u + 92.58\% \times 7.0160~u = \\ 0.0742 \times 6.0151~u + 0.9258 \times 7.0160~u = 6.94173322~u; 6.942~u~with \\ SF~or$

 $\overline{(7.42 \times 6.0151 \text{ u}) + (92.58 \times 7.0160 \text{ u})} = 6.94173322 \text{ u}$; 6.942 u with SF 100

The atomic weight listed for lithium in the periodic table is 6.941 u. The two values are the very close.

;2.38 $19.78\% \times 10.0129 \text{ u} + 80.22\% \times 11.0093 \text{ u} =$

$$0.1978 \times 10.0129~u + 0.8022 \times 11.0093~u = 10.81221208~u;~10.812~u$$
 with SF

or

 $(19.78 \times 10.0129 \text{ u}) + (80.22 \times 11.0093 \text{ u}) = 10.81221208 \text{ u}; 10.812 \text{ u} \text{ with SF } 100$

The atomic weight listed for boron in the periodic table is 10.81 u. The two values are close to one another.

2.39 $92.21\% \times 27.9769 \text{ u} + 4.70\% \times 28.9765 \text{ u} + 3.09\% \times 29.9738 \text{ u} =$

$$0.9221 \times 27.9769 \text{ u} + 0.0470 \times 28.9765 \text{ u} + 0.0309 \times 29.9738 \text{ u} = 28.08558541 \text{ u}; 28.09 \text{ u}$$
 with SF

or

 $\overline{(92.21 \times 27.9769 \text{ u}) + (4.70 \times 28.9765 \text{ u}) + (3.09 \times 29.9738 \text{ u})} = 28.08558541 \text{ u}; 28.09 \text{ u with SF } 100$

The atomic weight listed for silicon in the periodic table is 28.09 u. The two values are the same.

2.40 $69.09\% \times 62.9298 \text{ u} + 30.91\% \times 64.9278 \text{ u} =$

$$0.6909 \times 62.9298 \text{ u} + 0.3091 \times 64.9278 \text{ u} = 63.5473818 \text{ u}$$
; 63.55 u with SF

or

$$(69.09 \times 62.9298 \text{ u}) + (30.91 \times 64.9278 \text{ u}) = 63.5473818 \text{ u}; 63.55 \text{ u} \text{ with SF}$$

The atomic weight listed for copper in the periodic table is 63.55 u. The two values are the same.

AVOGADRO'S NUMBER: THE MOLE (SECTION 2.6)

2.41
$$\underbrace{\begin{array}{c} 6.02 \times 10^{23} \text{ atoms P} \\ \hline 31.0 \text{ g P} \\ \hline \\ 6.02 \times 10^{22} \end{array}}_{= 6.02 \times 10^{23} \text{ atoms P}} = 3.21 \text{ g S}$$

$$= 3.21 \text{ g S}$$

2.42 1.60 g O
$$\frac{6.02 \times 10^{23} \text{ atoms O}}{16.00 \text{ g Q}} = 6.02 \times 10^{22} \text{ atoms O}$$

$$6.02 \times 10^{22} \qquad \frac{19.0 \text{ g F}}{6.02 \times 10^{23}} = 1.90 \text{ g F}$$

1 mol Be atoms = 6.02×10^{23} Be atoms 6.02×10^{23} Be atoms = 9.01 g Be 1 mol Be atoms = 9.01 g Be

2.46 ;a. The number of grams of silicon in 1.25 mol of silicon

1 mol Si atoms = 28.1 g Si;
$$\frac{28.1 \text{ g Si}}{1 \text{ mol Si atoms}}$$
$$28.1 \text{ g Si}$$

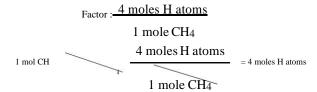
;b. The mass in grams of one calcium atom

(Note: One atom is assumed to be an exact number.)

37 Chapter 2

$$6.02 \times 10^{23}$$
 Ar atoms = 39.9 g Ar; $\frac{6.02 \times 10^{23} \text{ Ar atoms}}{39.9 \text{ g Ar}}$ = 3.09×10^{23} Ar atoms = 39.9 g Ar = 3.09×10^{23} Ar atoms

THE MOLE AND CHEMICAL FORMULAS (SECTION 2.7)


2.47
$$(1 \times 31.0 \text{ u}) + (3 \times 1.01 \text{ u}) = 34.0 \text{ u}; 1 \text{ mole PH }_3 = 34.0 \text{ g PH}_3$$

 $(1 \times 32.1 \text{ u}) + (2 \times 16.0 \text{ u}) = 64.1 \text{ u}; 1 \text{ mole SO }_2 = 64.1 \text{ g SO}_2$
 $6.02 \times 10^{23} \text{ molecules SO}$
 6.41 g SO_2
 6.02×10
 64.1 g SO_2
 64.1 g SO_2
 $6.02 \times 10^{23} \text{ molecules PH}_3$
 $6.02 \times 10^{23} \text{ molecules PH}_3$
 $6.02 \times 10^{23} \text{ molecules PH}_3$
 $6.02 \times 10^{23} \text{ molecules PH}_3$

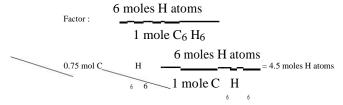
2.48
$$(1 \times 10.8 \text{ u}) + (3 \times 19.0 \text{ u}) = 67.8 \text{ u}; 1 \text{ mole BF}_3 = 67.8 \text{ g BF}_3$$

 $(2 \times 1.01 \text{ u}) + (1 \times 32.1 \text{ u}) = 34.1 \text{ u}; 1 \text{ mole H}_2 \text{ S} = 34.1 \text{ g H}_2 \text{S}$

$$0.34 \text{ g H}_2 \text{S} = \frac{6.02 \times 10^{23} \text{ molecules H S}}{34.1 \text{ g H}_2 \text{S}} = 6.0 \times 10^{21} \text{ molecules H S}$$

- 2.49 a. methane (CH₄) 1. 2 CH₄
- molecules contain 2 C atoms and 8 H atoms.
- 2. 10 CH₄ molecules contain 10 C atoms and 40 H atoms.
- 3. 100 CH₄ molecules contain 100 C atoms and 400 H atoms.
- 4. 6.02×10^{23} CH4 molecules contain 6.02×10^{23} C atoms and 24.08×10^{23} H atoms.
- 1 mol of CH₄ molecules contains 1 mole of C atoms and 4 moles of H atoms
- 6. 16.0 g of methane contains 12.0 g of C and 4.04 g of H.
- b. ammonia (NH₃)
- 1. 2 NH 3 molecules contain 2 N atoms and 6 H atoms.
- 2. 10 NH₃ molecules contain 10 N atoms and 30 H atoms.
- 3. 100 NH₃ molecules contain 100 N atoms and 300 H atoms.
- 4. 6.02×10^{23} NH $_3$ molecules contain 6.02×10^{23} N atoms and 18.06×10^{23} H atoms.
- 5. 1 mol of NH $_3$ molecules contains 1 mole of N atoms and 3 moles of H atoms.
- 6. 17.0 g of ammonia contains 14.0 g of N and 3.03 g of H.

- c. chloroform (CHCl₃)
- 1. 2 CHCl₃ molecules contain 2 C atoms, 2 H atoms, and 6 Cl atoms.
- 2. 10 CHCl3 molecules contain 10 C atoms, 10 H atoms, and 30 Cl atoms.
- 3. 100 CHCl₃ molecules contain 100 C atoms, 100 H atoms, and 300 Cl atoms.
- 4. 6.02×10^{23} CHCl₃ molecules contain 6.02×10^{23} C atoms, 6.02×10^{23} H atoms, and 18.06×10^{23} Cl atoms.
- 5. 1 mol of CHCl₃ molecules contains 1 mole of C atoms, 1 mole of H atoms, and 3 moles Cl atoms.
- 6. 119 g of chloroform contains 12.0 g of C, 1.01 g of H, and 106 g of Cl.
- 2.50 a. benzene (C₆H₆)
- 1. 2 C₆ H₆ molecules contain 12 C atoms and 12 H atoms.
- 2. 10 C₆ H₆ molecules contain 60 C atoms and 60 H atoms.
- 3. 100 C₆ H₆ molecules contain 600 C atoms and 600 H atoms.
- 4. 6.02×10^{23} C₆ H₆ molecules contains 36.12×10^{23} C atoms and 36.12×10^{23} H atoms.
- 5. 1 mol of C₆ H₆ molecules contain 6 moles of C atoms and 6 moles of H atoms.
- 6. 78.1 g of benzene contains 72.0 g of C and 6.1 g of H.
- ;b. nitrogen dioxide (NO₂)
- 1. 2 NO₂ molecules contain 2 N atoms and 4 O atoms.
- 2. 10 NO₂ molecules contain 10 N atoms and 20 O atoms.
- 3. 100 NO₂ molecules contain 100 N atoms and 200 O atoms.
- 4. 6.02×10^{23} NO₂ molecules contain 6.02×10^{23} N atoms and 12.04×10^{23} O atoms.
- 1 mol of NO₂ molecules contains 1 mole of N atoms and 2 moles of O atoms.
- 6. 46.0 g of nitrogen dioxide contains 14.0 g of N and 32.0 g of O.
- c. hydrogen chloride (HCl)
- 1. 2 HCl molecules contain 2 H atoms and 2 Cl atoms.
- 2. 10 HCl molecules contain 10 H atoms and 10 Cl atoms.
- 3. 100 HCl molecules contain 100 H atoms and 100 Cl atoms.
- 4. 6.02×10^{23} HCl molecules contain 6.02×10^{23} H atoms and 6.02×10^{23} Cl atoms.
- 5. 1 mol of HCl molecules contains 1 mole of H atoms and 1 mole Cl atoms.
- 6. 36.5 g of hydrogen chloride contains 1.01 g of H and 35.5 g of Cl.
- a. **Statement 5.** 1 mol of CH₄ molecules contains 1 mole of C atoms and 4 moles of H atoms.



b. **Statement 6.** 17.0 g of ammonia contains 14.0 g of N and 3.03 g of H.

c. Statement 6. 119 g of chloroform contains 12.0 g of C, 1.01 g of H, and 106 g of Cl.

Factor:
$$\frac{106 \text{ g Cl}}{119 \text{ g CHCl}_3}$$
$$\frac{106 \text{ g Cl}}{119 \text{ g CHCl}_3} \times 100 = 89.1\% \text{ Cl in CHCl}_3$$

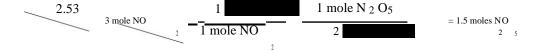
a. **Statement 5.** 1 mol of C₆ H₆ molecules contains 6 moles of C atoms and 6 moles of H atoms.

;b. Statement 4. 6.02×10^{23} NO₂ molecules contain 6.02×10^{23} N atoms and 12.04×10^{23} O atoms.

Factor:
$$12.04 \times 10^{23} \text{ O atoms}$$

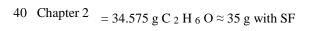
$$1 \text{ mole NO}_2$$

$$12.04 \times 10^{23} \text{ O atoms}$$


$$0.50 \text{ mole NO}$$

$$1 \text{ mole NO}_2$$

$$1 \text{ mole NO}_2$$


c. **Statement 6.** 36.5 g of hydrogen chloride contains 1.01 g of H and 35.5 g of Cl.

Factor
$$\frac{.35.5 \text{ g Cl}}{36.5 \text{ g HCl}}$$

 $\frac{.35.5 \text{ g Cl}}{.00} \times 100 = 97.3\% \text{ Cl in HCl}$
 $\frac{.36.5 \text{ g HCl}}{.00} \times 100 = 97.3\% \text{ Cl in HCl}$

Note: The 3 mol assumed to be an exact number.

2.57 **Statement 4.** 6.02×10^{-23} C $_6$ H $_5$ NO $_3$ molecules contain 36.12×10^{-23} C atoms, 30.1×10^{-23} H atoms, 6.02×10^{-23} N atoms, and 18.06×10^{-23} O atoms.

Statement 5. 1 mol C ₆ H ₅ NO ₃ molecules contain 6 moles of C atoms, 5 moles of H atoms, 1 mole of N atoms, and 3 moles of O atoms.

Statement 6. 139 g of nitrophenol contains 72.0 g of C, 5.05 g of H, 14.0 g of N, and 48.0 g of O.

a. **Statement 6.** 139 g of nitrophenol contains 72.0 g of C, 5.05 g of H, 14.0 g of N, and 48.0 g of O.

b. **Statement 5.** 1 mol C ₆ H ₅ NO ₃ molecules contain 6 moles of C atoms, 5 moles of H atoms, 1 mole of N atoms, and 3 moles of O atoms.

Factor:
$$\frac{3 \text{ moles of O atoms}}{1 \text{ mole C }_{6}\text{ H}_{5}\text{ NO}_{3}}$$

$$\frac{3 \text{ moles of O atoms}}{1.50 \text{ moles C }_{6}\text{ H}_{5}\text{ NO}_{3}} \frac{3 \text{ moles of O atoms}}{1 \text{ mole C }_{6}\text{ H}_{5}\text{ NO}_{3}} = 4.50 \text{ moles of O atoms}$$

C. Statement 4. 6.02×10^{23} C $_6$ H $_5$ NO $_3$ molecules contain 36.12×10^{23} C atoms, 30.1×10^{23} H atoms,

$$6.02 \times 10^{23} \, \text{N atoms, and } 18.06 \times 10^{23} \quad \text{O atoms.}$$

$$36.12 \times 10^{23} \, \text{C atoms}$$

$$6.02 \times 10^{-23} \, \text{C }_{6} \, \text{H}_{5} \, \text{NO}_{3} \, \text{molecules}$$

$$22 \quad 36.12 \times 10^{23} \, \text{C atoms}$$

$$9.00 \times 10^{-\frac{1}{1000} \, \text{molecules} \, \text{C}_{6} \, \text{H}_{5} \, \text{NO}_{3}} \, \frac{3}{6.02} \quad \times 10^{23} \, \text{C HNO} \quad \text{molecules} = 5.4 \times 10^{-23} \, \text{C atoms}$$

2.58

Statement 4. 6.02×10^{23} H₃ PO₄ molecules contain 18.06×10^{23} H atoms, 6.02×10^{23} P atoms and 24.08×10^{23} O atoms.

Statement 5. 1 mol H₃ PO₄ molecules contains 3 moles of H atoms, 1 mole of P atoms, and 4 moles of O atoms.

Statement 6. 98.0 g of phosphoric acid contains 3.03 g of H, 31.0 g of P, and 64.0 g of O.

a. Statement 6. 98.0 g of phosphoric acid contains 3.03 g of H, 31.0 g of P, and 64.0 g of O.

$$\begin{array}{c}
3.03 \text{ g H} \\
98.0 \text{ g H}_3 \text{ PO}_4
\end{array}$$

$$\begin{array}{c}
3.03 \text{ g H} \\
98.0 \text{ g H}_3 \text{ PO}_4
\end{array}$$

$$\begin{array}{c}
3.03 \text{ g H} \\
498.0 \text{ g H}_4 \text{ PO}_4
\end{array}$$

b. **Statement** 5. 1 mol H₃ PO₄ 4 moles of O atoms.

molecules contains 3 moles of H atoms, 1 mole of P atoms, and

$$\begin{array}{c}
4 \text{ moles of O atoms} \\
1.25 \text{ moles HPO} \\
\hline
 & 1 \text{ mole H3 PO4}
\end{array} = 5.00 \text{ moles of O atoms}$$

c. Statement 4. 6.02×10^{23} H₃ PO₄ molecules contain 18.06×10^{23} H atoms, 6.02×10^{23} P atoms,

and
$$24.08 \times 10^{23}$$
 O atoms.
$$6.02 \times 10^{23} \, P \text{ atoms}$$
Factor:
$$6.02 \times 10^{23} \, P \text{ atoms}$$

$$6.02 \times 10^{23} \, P \text{ atoms}$$

$$8.42 \times 10^{21} \text{ molecules HPO} \underbrace{\frac{6.02 \times 10^{23} \text{ P atoms}}{4 \text{ } 6.02 \times 10^{23} \text{ HPO molecules}}}_{3} = 8.42 \times 10^{21} \text{ P atoms}$$

2.59 Urea (CH₄N₂O) contains the higher mass percentage of nitrogen as shown in the calculation below:

2.60 Magnetite (Fe₃O₄) contains the higher mass percentage of iron as shown in the calculation below:

$$\frac{167 \text{ g Fe}}{231 \text{ g Fe }_{3} \text{ O }_{4}} \times 100 = 72.3\% \text{ Fe in Fe }_{3} \text{ O }_{4}$$

$$\frac{112 \text{ g Fe}}{100} \times 100 = 70.0\% \text{ Fe in Fe }_{2} \text{ O }_{3}$$

$$160 \text{ g Fe }_{2} \text{ O }_{3}$$

2.61 Calcite (CaCO₃) contains the higher mass percentage of nitrogen as shown in the calculation below: 40.1~g Ca \times 100 = 40.1% Ca in CaCO₃

100 g CaCO₃

$$\frac{40.1~g~Ca}{184~g~CaMgC~_2~O_6} \times 100 = 21.8\%~Ca~in~CaMgC~_2~O_6$$

ADDITIONAL EXERCISES

U-238 contains 3 more neutrons in its nucleus than U-235. U-238 and U-235 have the same volume because the extra neutrons in U-238 do not change the size of the electron cloud. U-238 is 3u heavier than U-235 because of the 3 extra neutrons. Density is a ratio of mass to volume; therefore, U-238 is more dense than U-235 because it has a larger mass divided by the same volume.

2.64
$$\frac{-23}{1.99 \times 10} \times \frac{14 \text{ protons} + \text{neutrons}}{1 \text{ C} - 12 \text{ atom}} = \frac{2.32 \times 10^{-23} \text{ g}}{1 \text{ C} - 14 \text{ atom}}$$

2.65 D 2 O:
$$(2 \times 2 \text{ u}) + (1 \times 16.00 \text{ u}) = 20 \text{ u}$$

2.66 In Figure 2.2, the electrons are much closer to the nucleus than they would be in a properly scaled drawing. Consequently, the volume of the atom represented in Figure 2.2 is much less than it should be. Density is calculated as a ratio of mass to volume. The mass of this atom has not changed; however, the volume has decreased. Therefore, the atom in Figure 2.2 is much more dense than an atom that is 99.999% empty.

ALLIED HEALTH EXAM CONNECTION

- 2.67 The symbol K on the periodic table stands for (a) potassium.
- 2.68 (b) Water is a chemical compound. (a) Blood and (d) air are mixtures, while (c) oxygen is an element.
- 2.69 (c) Compounds are pure substances that are composed of two or more elements in a fixed proportion. Compounds can be broken down chemically to produce their constituent elements or other compounds.
- 2.70 17³⁴ Cl has (a) 17 protons, 17 neutrons (34-17=17), and 17 electrons (electrons = protons in neutral atom).
- 2.71 If two atoms are isotopes, they will (c) have the same number of protons, but different numbers of neutrons.
- 2.72 Copper has (b) 29 protons because the atomic number is the number of protons.
- 2.73 Atoms are electrically neutral. This means that an atom will contain (c) an equal number of protons and electrons.
- 2.74 The negative charged particle found within the atom is the (b) electron.
- 2.75 Two atoms, L and M are isotopes; therefore, they would not have (b) atomic weight in common.
- 2.76 The major portion of an atom's mass consists of (a) neutrons and protons.
- 2.77 The mass of an atom is almost entirely contributed by its (a) nucleus.
- 2.78 (d) $_{16}^{33}$ S²⁻ has 16 protons, 17 neutrons, and 18 electrons.
- 2.79 An atom with an atomic number of 58 and an atomic mass of 118 has (c) 60 neutrons.
- 2.80 The mass number of an atom with 60 protons, 60 electrons, and 75 neutrons is (b) 135.

- 2.81 Avogadro's number is (c) 6.022 x 10₂₃.
- 2.82 (c) 1.0 mol NO_2 has the greatest number of atoms (1.8×10^{24} atoms). 1.0 mol N has 6.0×10^{23} atoms, 1.0 g N has 4.3×10^{22} atoms, and 0.5 mol NH_3 has 1.2×10^{24} atoms.
- 2.83 A sample of 11 grams of CO₂ contains (c) 3.0 grams of carbon.

- 2.84 The molar mass of calcium oxide, CaO, is (a) 56 g (40 g Ca + 16 g O).
- 2.85 The mass of 0.200 mol of calcium phosphate is (b) 62.0 g.

$$0.200 \text{ mol Ca}_{3} \qquad (PO_{4}) \qquad \frac{310 \text{ g Ca}_{3} (PO_{4})}{1 \text{ mol Ca}_{3} (PO_{4})} = 62.0 \text{ g Ca}_{3} \qquad (PO_{4})$$

2.86 (b) 2.0 moles Al are contained in a 54.0 g sample of Al.

$$54.0 \text{ g Al} = 2.00 \text{ mole Al}$$

CHEMISTRY FOR THOUGHT

- a. Atoms of different elements contain different numbers of protons.
 - b. Atoms of different isotopes contain different numbers of neutrons, but the same number of protons.
 - 2.88 Aluminum exists as one isotope; therefore, all atoms have the same number of protons and neutrons as well as the same mass. Nickel exists as several isotopes; therefore, the individual atoms do not have the weighted average atomic mass of 58.69 u.

2.89
$$\frac{2.36 \times 10^3 \text{ g}}{12 \text{ oranges}} = 197 - \frac{\text{g}}{\text{orange}}$$

None of the oranges in the bowl is likely to have the exact mass calculated as an average. Some oranges will weigh more than the average and some will weigh less.

$$\frac{6.02 \times 10^{23} \text{ CS}_{2} \text{ molecules}}{2 \text{ mol S}} = 7.5 \times 10^{22} \text{ }_{\text{CS}_{2} \text{ molecules}}$$

- 2.92 If the atomic mass unit were redefined as being equal to 1/24th the mass of a carbon-12 atom, then the atomic weight of a carbon-12 atom would be 24 u. Changing the definition for an atomic mass unit does not change the relative mass ratio of carbon to magnesium. Magnesium atoms are approximately 2.024 times as heavy as carbon-12 atoms; therefore, the atomic weight of magnesium would be approximately 48.6 u.
- 2.93 The ratio of the atomic weight of magnesium divided by the atomic weight of hydrogen would not change, even if the atomic mass unit was redefined.
- 2.94 The value of Avogadro's number would not change even if the atomic mass unit were redefined. Avogadro's number is the number of particles in one mole and has a constant value of 6.022 x 10₂₃.

EXAM QUESTIONS MULTIPLE CHOICE

- 1. Why is CaO the symbol for calcium oxide instead of CAO?
 - a. They both can be the symbols for calcium oxide.
 - b. They are both incorrect as the symbol should be cao.
 - c. A capital letter means a new symbol.
 - d. They are both incorrect as the symbol should be CaOx.

Answer:

- 2. What is the meaning of the two in ethyl alcohol, C₂H₅OH?
 - a. All alcohol molecules contain two carbon atoms.
 - b. There are two carbon atoms per molecule of ethyl alcohol.
 - c. Carbon is diatomic.
 - d. All of these are correct statements.

Answer:

- 3. The symbols for elements with accepted names:
 - a. consist of a single capital letter.
 - b. consist of a capital letter and a small letter.
 - c. consist of either a single capital letter or a capital letter and a small letter.
 - d. no answer is correct

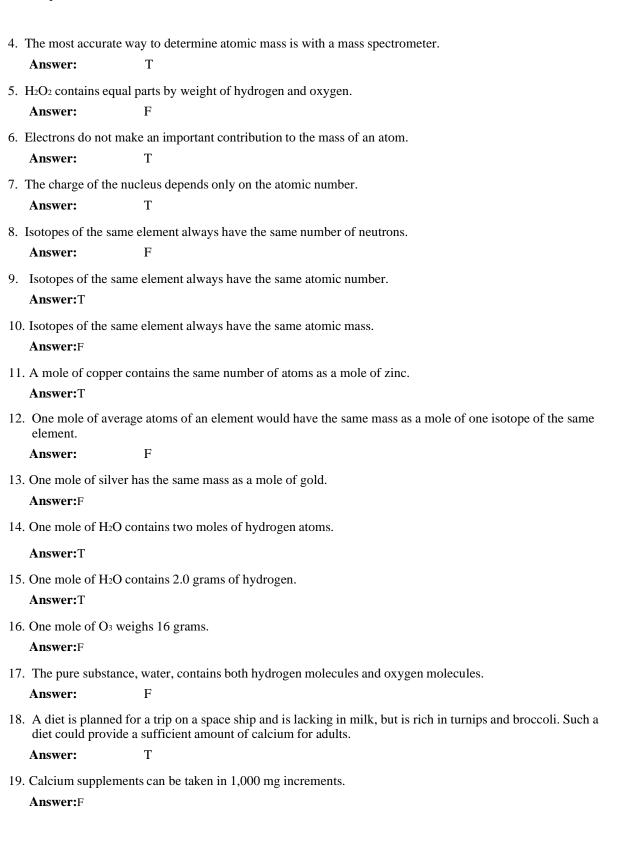
Answer: C

- 4. A molecular formula:
 - a. is represented using the symbols of the elements in the formula.
 - b. is represented using a system of circles that contain different symbols.
 - c. cannot be represented conveniently using symbols for the elements.
 - d. is represented using words rather than symbols.

Answer: A

5.		ving uses the unit of "u"? a. atoms b. relative masses of	c. molecular weights of molecules d. more than one response is correct							
	Answer:	D								
6.	What is meant by ca	arbon-12?								
	b. The carbon atoc. The carbon ato	om has a relative mass of approom has a relative mass of approom has a relative mass of appropint of carbon is 12°C.	ximately 12 pounds							
	Answer:	C								
7.	Refer to a periodic table and tell how many helium atoms (He) would be needed to get close to the same mass as an average oxygen atom (O).									
	a. six	b. four	c. twelve	d. one-fourth						
	Answer:	В								
8.	Determine the mole	ecular weight of hydrogen pero	xide, H2O2 in u.							
	a. 17.01	b. 18.02	c. 34.02	d. 33.01						
	Answer:	С								
9.	Using whole number a. 56	ers, determine the molecular we b. 57	eight of calcium hyd c. 58	roxide, Ca(OH) ₂ . d. 74						
	Answer:	D. 57	c. 30	u. / 1						
10.	 10. The average relative mass of an ozone molecule is 48.0 u. An ozone molecule contains only oxygen atoms What does this molecular weight indicate about the formula of the ozone molecule? a. It contains a single oxygen atom. b. It contains two oxygen atoms. c. It contains three oxygen atoms. d. The data tell nothing about the formula of an ozone molecule. 									
	Answer:	С								
11	a. proton and electron and ne		c. proton and	neutron surrounding electron						
	Answer:	С								
12	. Which of the follow a. proton Answer:	ving particles is the smallest? b. electron c. 3	neutron	d. they are all the same size						
13. How many electrons are in a neutral atom of carbon-13, 13C?										
13	a. 6	b. 18	c. 12	d. no way to tell						
	Answer:	A								

14.			ing ca	arries	s a negative charge?		1			
	a. b.	a proton a neutron				c. d.	an electron both proton and neutr	on		
			~			u.	both proton and neutr	OII		
	Ans	swer:	С							
15.		Which of the following is located in the nucleus of an atom?								
	a. b.	protons neutrons				c. d.	electrons protons and neutrons			
			D			u.	protons and neutrons			
1.0		swer:		.1	1 1 0					
10.	a. equ equ	equal numbers al numbers of al numbers of no	of pro proto eutror	otons ons a ons an						
	Ans	swer:	В							
17.	 7. Isotopes differ from each other in what way? a. They have different numbers of protons in the nucleus. b. They have different numbers of neutrons in the nucleus. c. They have different numbers of electrons outside the nucleus. d. More than one response is correct 									
	Ans	swer:	В							
18.	In v	what way is U-23	38 dif	feren	t from U-235?					
	a. three more electrons				c.	three more neutrons				
	b. three more protons			d.	there is no difference					
	Ans	swer:	C							
19. How many protons are found in the nucleus of a boron-11 (B) atom?										
	a.	11		b.	6	c.	5	d.	4	
	Ans	swer:	C							
20.	Hov	w many neutrons	s are f	found	l in the nucleus of a bo	oron-	11 (B) atom?			
	a.	11		b.	6	c.	5	d.	4	
	Ans	swer:	В							
21.	Wha	at is the mass nu	mber	of a	carbon-13 (C) atom?					
	a.	13		b.	12	c.	6	d.	7	
	Ans	swer:	A							
22.	pare a.	enthesis). Calcul neon-20 28.97	ate th , 90.9	e ato 2% (has the following ison mic weight of neon in 19.99 u); neon-21, 0.2 37.62	u fro 57%	om these data.	.82%	each isotope is given in (21.99 u) 20.17	
	Ans	swer:	D							


23.	isotopic masses larger percenta a. Li-6 b. Li-7 c. each is pre	s are given in ge in the natu sent at 50%	n (L1) consists of a parentheses. Us a parentheses. Us a parenthese of the consists of a parenthese of the consists of a parenthese of the consists of a parenthese of a paren	e the period	lic table and de					
	Answer:	В								
24.	What mass of a a. 33.0		n grams contains . 74.92	the same nuc.	umber of atoms 4.16		of argon (Ar)? 149.84			
	Answer:	В								
25.	26.98 g samplea. The numberb. The numberc. The number	of aluminunger of Cr atomer of Al atomer of Cr atomer of Cr atomer of Cr atomer	er of Cr atoms in n? ns is greater than ns is greater than ns and Al atoms a as and Al atoms c	the number the number re the same	of Al atoms.			as in a		
	Answer:	В								
26.	mercury is heat a. less than 2 b. the same a	ted until it bo 00.6 or it wo s Avogadro's s when it is a	ı liquid							
	Answer:	C								
27.	how many gran	ne formula for dinitrogen monoxide is N2O. If a sample of the oxide was found to contain 0.0800 g of oxygen ow many grams of nitrogen would it contain?								
	a. 0.140	b	. 0.280	c.	0.560	d.	0.0700			
	Answer:	A								
28.	=		(Fe) atoms would	-	5 0 2 10					
	a. 55.85 g	b	. 27.95 g	c.	6.02 x 10 ₂₃ g	d.	6.02 x 10-23 g			
	Answer:	A								
29.	a. Avogadro'	s number	ned in a sample o	c.	one	8.38 g?				
		Avogadro's n	umber	d.	one-tenth					
	Answer:	В								
30.	Which of the for a. 5.0 mol H ₂	_	the largest mass? . 3.5 mol NH ₃	c.	8.0 mol C	d	6.0 mol C ₂ H ₂			
			. 5.5 11101 11113	C.	8.0 IIIOI C	u.	0.0 III01 C2112			
	Answer:	D								

Answer:

В

12	XX71		, . c	. 16 . '. V CO	1. 1.4	. 2	,					
43.	a. 14.2%	ercen		sulfur in K2SO4, round 18.4%		54.4%		22.4%				
	Answer:	В										
44.		of mo				•		es up one milliliter of space?				
	a. 1 Answer:	C	b.	18	c.	55.6	d.	1000				
45	. How many neutrons	How many neutrons are in an atom that has a mass number of 75 and contains 35 protons?										
	a. 40		b.	35	c.	75	d.	no way to know				
	Answer:	A										
46	. Atoms that have the	same	ato	mic number but differ	by n	nass number are called	!?					
	a. protons		b.	neutrons	c.	isotopes	d.	positrons				
	Answer:	C										
47		023 at		of carbon, what would	-	=						
	a. 12.01 g	ъ	υ.	6.005 g	C.	3.003 g	u.	1.000 g				
	Answer:	В										
48	_			ving molecular formula			_	_				
	a. OSO is the correct	et fori	m			OO should be written						
	b. SO should be So				a.	OO should be written	1 as	O ₂				
	Answer:	D										
49	. Determine the numb	er of	elec	trons and protons in el	eme	nt 43, technetium, Tc.						
	a. 43 protons, 43 ele	ectror	ıs		c.	56 protons, 43 electro	ons					
	b. 43 protons, 56 ele	ectroi	ıs		d.	99 protons, 43 electro	ons					
	Answer:	A										
50.	a. Assigning C-12b. Measuring the toc. Comparing the	as we rue m differ	eigh ass ence	is the system of atomic ing exactly 12 u and co of each subatomic part es in protons and electr affected by electromagn	ompaicle.	aring other elements to	it.					
	Answer:	A										
ΤI	RUE-FALSE											
1.	The symbols for all o	f the	elen	nents are derived from	the l	Latin names.						
	Answer:	F										
2.	The symbols for all o	f the	elen	nents always begin with	h a c	apital letter.						
	Answer:	T										
3.	The first letter of the	svml	bol f	or each of the elements	s is t	he first letter of its En	glisł	n name.				

Answer:F

20. Protons and neutrons have approximately the same mass.

Answer:T