Solution Manual for College Algebra 6th Edition by Dugopolski ISBN 03219166039780321916600

Fulllink download
Test
Bank

https://testbankpack.com/p/test-bank-for-college-algebra-6th-edition-by-dugopolski-isbn-0321916603-9780321916600/

Solution Manual

$\underline{\text { https: //testbankpack.com/p/solution-manual-for-college-algebra-6th-edition-by- }}$
$\underline{\text { dugopolski-isbn-0321916603-9780321916600/ }}$
2.1 Functions

For Thought

1. False, since $\{(1,2),(1,3)\}$ is not a function.
2. False, since $f(5)$ is not defined. 3. True
3. False, since a student's exam grade is a function of the student's preparation. If two classmates had the same IQ and only one prepared, then the one who prepared will most likely achieve a higher grade.
4. False, since $(x+h) 2=x 2+2 x h+h 2$
5. False, since the domain is all real numbers.
6. True
7. True 9. True 3 3
8. False, since $\overline{8}, 8$ and $\overline{8}, 5$ are two ordered pairs with the same first coordinate and different second coordinates.

2.1 Exercises

1. function
2. function
3. relation
4. function
5. independent, dependent
6. domain, range
7. difference quotient
8. Since different U.S. coins have different diameters, then a is a function of b and b is a function of a.
9. Since an item has only one price, b is a function of a. Since two items may have the same price, a is not a function of b.
10. a is not a function of b since there may be two students with the same semester grades but different final exams scores. b is not a function of a since there may be identical final exam scores with different semester grades.
11. a is not a function of b since it is possible that two different students can obtain the same fi-nal exam score but the times spent on studying are different.
12. average rate of change
13. Note, $\mathrm{b}=2 \pi \mathrm{a}$ is equivalent to $\mathrm{a}=2 \mathrm{~b} \pi$.

Then a is a function of b, and b is a function of
a.
$b^{-} 10$
10. Note, $\mathrm{b}=2(5+\mathrm{a})$ is equivalent to $\mathrm{a}=$

So a is a function of b, and b is a function of a .
11. a is a function of b since a given denomination has a unique length. Since a dollar bill and a five- dollar bill have the same length, then b is not a function of a.
b is not a function of a since it is possible that two different students can spend the same time studying but obtain different final exam scores.
16. a is not a function of b since it is possible that two adult males can have the same shoe size but have different ages.
b is not a function of a since it is possible for two adults with the same age to have different shoe sizes.
17. Since $1 \mathrm{in} \approx 2.54 \mathrm{~cm}$, a is a function of b and b is a function of a.
18. Since there is only one cost for mailing a first class letter, then a is a function of b. Since two letters with different weights each under
$1 / 2$-ounce cost 34 cents to mail first class, b is not a function of a.
19. No 20. No 21. Yes
22. Yes 23. Yes 24. No
25. Yes 26. Yes
27. Not a function since 25 has two different sec-ond coordinates. 28. Yes
29. Not a function since 3 has two different second coordinates.
30. Yes 31.Yes 32.Yes
33. Since the ordered pairs in the graph of $y=3 x-8$ are $(x, 3 x-8)$, there are no two ordered pairs with the same first coordinate and different second coordinates. We have a function.
34. Since the ordered pairs in the graph of $y=x 2-3 x+7$ are $(x, x 2-3 x+7)$, there are no two ordered pairs with the same first co-ordinate and different second coordinates. We have a function.
35. Since $y=(x+9) / 3$, the ordered pairs are $(x,(x+$ $9) / 3$). Thus, there are no two ordered pairs with the same first coordinate and different second coordinates. We have a function.
36. Since $y=3^{\sqrt{x}}$, the ordered pairsare $(x, 3 \bar{x})$. Thus, there are no two ordered pairs with the same first coordinate and different second coordinates. We have a function.
37. Since $y= \pm x$, the ordered pairs are ($x, \pm x$). Thus, there are two ordered pairs with the same first coordinate and different second coordinates. We do not have a function.

```
                V
```

38. Since $y= \pm \quad 9+x 2$, the ordered pairs are $(x, \pm 9+x 2) . \quad$ Thus, there are two ordered
pairs with the same first coordinate and different second coordinates. We do not have a function.
39. Since $y=x 2$, the ordered pairs are ($x, x 2$). Thus, there are no two ordered pairs with the same first coordinate and different second coordinates. We have a function.
40. Since $y=x 3$, the ordered pairs are $(x, x 3)$.

Thus, there are no two ordered pairs with the same first coordinate and different second coordinates. We have a function.
41. Since $y=|x|-2$, the ordered pairs are $(x,|x|-2)$. Thus, there are no two ordered pairs with the same first coordinate and differ-ent second coordinates. We have a function.
42. Since $y=1+x 2$, the ordered pairs are
($x, 1+x 2$). Thus, there are no two ordered pairs with the same first coordinate and differ-ent second coordinates. We have a function.
43. Since $(2,1)$ and $(2,-1)$ are two ordered pairs with the same first coordinate and different second coordinates, the equation does not define a function.
44. Since $(2,1)$ and $(2,-1)$ are two ordered pairs with the same first coordinate and different second coordinates, the equation does not define a function.
45. Domain $\{-3,4,5\}$, range $\{1,2,6\}$
46. Domain $\{1,2,3,4\}$, range $\{2,4,8,16\}$
47. Domain $(-\infty, \infty)$, range $\{4\}$
48. Domain $\{5\}$, range $(-\infty, \infty)$
49. Domain $(-\infty, \infty)$;
since $|x| \geq 0$, the range of $y=|x|+5$ is $[5, \infty)$.
50. Domain $(-\infty, \infty)$;
since $\mathrm{x} 2 \geq 0$, the range of $\mathrm{y}=\mathrm{x} 2+8$ is $[8, \infty)$.
51. Since $x=|y|-3 \geq-3$, the domain
of $x=|y|-3$ is $[-3, \infty)$; range $(-\infty, \infty)$
52. Since $\sqrt{y}^{y}-2 \geq-2$, the domain of $x=V_{y}-2$ is [-2, ∞);

Since ${ }^{\sqrt{ }} \mathrm{y}$ is a real number whenever $\mathrm{y} \geq 0$, the range is $[0, \infty)$.
53. Since $\sqrt{l}^{x-4 \text { is a real number whenever } x \geq 4 \text {, the }}$ domain of $y=V_{x-4}$ is $[4, \infty)$.
Since $y=V_{x-4 \geq 0}$ for $x \geq 4$, the range is $[0, \infty)$.
54. Since $\sqrt{ } \sqrt{5-x \text { is a real number whenever } x \leq 5 \text {, the }}$ domain of $y=\sqrt{ } 5-x$ is $(-\infty, 5]$.
Since $y=\sqrt{ } 5-x \geq 0$ for $x \leq 5$, the range is $[0, \infty)$.
55. Since $x=-y 2 \leq 0$, the domain of $x=-y 2$ is $(-\infty$, $0]$; range is $(-\infty, \infty)$.
56. Since $x=-|y| \leq 0$, the domain of $x=-|y|$ is $(-\infty, 0]$; range is $(-\infty, \infty)$.
57. 658.5
59. $g(2)=3(2)+5=11$
60. $g(4)=3(4)+5=17$
61. Since $(3,8)$ is the ordered pair, one obtains $f(3)=8$. The answer is $x=3$.
62. Since $(2,6)$ is the ordered pair, one obtains $f(2)=6$. The answer is $x=2$.
63. Solving $3 \mathrm{x}+5=26$, we find $\mathrm{x}=7$.
64. Solving $3 x+5=-4$, we find $\mathrm{x}=-3$.
65. $\mathrm{f}(4)+\mathrm{g}(4)=5+17=22$
66. $f(3)-g(3)=8-14=-6$
67. $3 \mathrm{a} 2-\mathrm{a} 68.3 \mathrm{w} 2-\mathrm{w}$
69. $4(a+2)-2=4 a+6$ 70. $4(a-5)-2=4 a-22$
71. $3(\mathrm{x} 2+2 \mathrm{x}+1)-(\mathrm{x}+1)=3 \mathrm{x} 2+5 \mathrm{x}+2$
72. $3(\mathrm{x} 2-6 \mathrm{x}+9)-(\mathrm{x}-3)=3 \mathrm{x} 2-19 \mathrm{x}+30$
73. $4(\mathrm{x}+\mathrm{h})-2=4 \mathrm{x}+4 \mathrm{~h}-2$
74. $3(\mathrm{x} 2+2 \mathrm{xh}+\mathrm{h} 2)-\mathrm{x}-\mathrm{h}=3 \mathrm{x} 2+6 \mathrm{xh}+3 \mathrm{~h} 2-\mathrm{x}-\mathrm{h}$
75. $3(\mathrm{x} 2+2 \mathrm{x}+1)-(\mathrm{x}+1)-3 \mathrm{x} 2+\mathrm{x}=6 \mathrm{x}+2$
76. $4(x+2)-2-4 x+2=8$
77. $3(\mathrm{x} 2+2 \mathrm{xh}+\mathrm{h} 2)-(\mathrm{x}+\mathrm{h})-3 \mathrm{x} 2+\mathrm{x}=6 \mathrm{xh}$
+3 h 2 - h
78. $(4 x+4 h-2)-4 x+2=4 h$
79. The average rate of change is

$$
\underline{8,000} 5-20,000=-\$ 2400 \text { per year. }
$$

80. The average rate of change as the number of cubic yards changes from 12 to 30 and from 30 to 60 are

$$
\begin{aligned}
& \frac{528}{30}-\underline{-240}=\$ 16 \text { per yd } 3 \quad \text { and } \\
& 948-\frac{528}{98}=\$ 14 \text { per yd3, respectively. } \\
& 60-30
\end{aligned}
$$

81. The average rate of change on $[0,2]$ is

$$
\frac{\mathrm{h}(2)}{2-0}=\frac{-\mathrm{h}(0)}{2-0}=\frac{-64}{-0}=-32 \mathrm{ft} / \mathrm{sec} .
$$

The average rate of change on [1,2] is

The average rate of change on [1.9, 2] is

$$
\frac{\mathrm{h}(2)}{2-1.9} \cdot \frac{-\mathrm{h}(1.9)}{0.1}=\frac{0-6.24}{0 .}=-62.4 \mathrm{ft} / \mathrm{sec} .
$$

The average rate of change on $[1.99,2]$ is $\underline{\mathrm{h}(2)} . \underline{-\mathrm{h}(1.99)}=\frac{0-0.6384}{}=-63.84 \mathrm{ft} / \mathrm{sec}$.

$$
2-1.99 \quad 0.01
$$

The average rate of change on [1.999, 2] is $\frac{\mathrm{h}(2)}{2-1.999} \cdot \frac{-\mathrm{h}(1.999)}{0}=\frac{0-0.063984}{0.001}=-63.984$ $\mathrm{ft} / \mathrm{sec}$.
82. $\frac{6-70}{2-0}=\frac{-64}{2}=-32 \mathrm{ft} / \mathrm{sec}$
83. The average rate of change is $\underline{673}{ }^{-} 1970 \approx 24$ -54.0 million hectares per year.
84. If 54.0 million hectares are lost each year and
 be eliminated in year $2025(\approx 1988+36.48)$.
85.

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{4(x+h)-4 x}{h} \\
& =-\frac{4 h}{h} \\
& =4
\end{aligned}
$$

86.

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{1}{-(x+h)-\frac{1}{x}} \\
& =\frac{\frac{1}{2} \underline{h}}{h} \\
& =\frac{1}{2}
\end{aligned}
$$

87.

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{3(x+h)+5-3 x-5}{h} \\
& =\frac{3 h}{}
\end{aligned}
$$

$$
\frac{\mathrm{h}(2)}{2-1}=\frac{-\mathrm{h}(1)}{2-1}=-48 \mathrm{ft} / \mathrm{sec} .
$$

88.

$\underset{\underline{3}}{f(x+h)-f(x)}=\frac{-2(x+h)+3+2 x-}{}$

$$
\begin{array}{rl}
\mathrm{h} & \mathrm{~h} \\
= & -2 \mathrm{~h} \\
& \mathrm{~h} \\
= & -2
\end{array}
$$

89. Let $g(x)=x 2+x$. Then we obtain

$$
\begin{array}{r}
\frac{g(x+h)-g(x)}{h}= \\
\frac{(x+h)}{\frac{2}{h}} \frac{+(x+h)-x^{2}-x}{h}= \\
\frac{2 x h+h 2+h}{h}= \\
2 x+h+1
\end{array}=
$$

90. Let $g(x)=x 2-2 x$. Then we get

$$
\begin{gathered}
\frac{g(x+h)-}{\frac{g(x)}{h}}= \\
\frac{(x+h) 2-2(x+h)-x 2+2 x}{h}= \\
\frac{2 x h+h 2-2 h}{h}= \\
2 x+h-2
\end{gathered}=
$$

91. Difference quotient is

$$
\begin{aligned}
& =\frac{-(x+h) 2+(x+h)-2+2 x-x+}{\underline{2}} \\
& =\frac{-2 x h-h 2+h}{h} \\
& =-2 x-h+1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{9 h}{h\left(3^{V_{x}+h+3} V_{x}\right)}}{\frac{3}{-}} \\
& =V_{x+h+V_{x}}
\end{aligned}
$$

94. Difference quotient is

$$
=\mathrm{h}_{4(x+h)-4 x}^{\frac{-2 x+h+2}{\underline{x}}} \cdot \frac{-2 x+h-2}{-2^{\sqrt{x}}+h-2_{x}^{\sqrt{x}}}=
$$

$$
\begin{aligned}
& =\frac{\sqrt{ }}{h(-2 x+h-2 \quad \sqrt{x})} \\
& =\frac{\sqrt{4 h}}{\sqrt{4}}
\end{aligned}
$$

$$
\mathrm{h}(-
$$

$$
\left.2_{-2} x+h-2 \quad x\right)
$$

$$
=\frac{\sqrt{-2}_{x+h}}{x+}
$$

X
95. Difference quotient is

$$
\begin{aligned}
& \frac{(x+h+2)-(x+2)}{V_{x+h}} \\
= & \frac{h}{h\left(V_{x+2)}\right.} \\
= & \downarrow_{x+h+2+V_{x+2)}}^{x+h+2+} \underline{V^{x}} \underline{x+2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 x h+h}{h}-\frac{2}{-h} \\
& =2 x+h-1
\end{aligned}
$$

93. Difference quotient is

$$
\begin{aligned}
& =\quad h \quad \cdot 3{ }^{\sqrt{x}} x+h+3^{\sqrt{x}} \\
& =\quad \underline{9(x+h)}-9 x
\end{aligned}
$$

96. Difference quotient is

$$
\begin{aligned}
& { }^{r} \overline{\underline{x+h}} \overline{\underline{L}}-r \quad r \quad \overline{\bar{x}} \underline{\overline{x+h}}+r^{\bar{x}} \\
& 22 \\
& =2^{2} \quad \frac{2}{r \frac{-2}{-\frac{h}{2}}+\frac{r x}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{h}{2}}{h} \frac{r \underline{x+h}-r \underline{x}}{l} \\
& =\frac{2}{2} \frac{2}{r^{\underline{x}+h}-+r^{\frac{1}{x}}} \\
& =\frac{2}{2} \begin{array}{cc}
2 \\
\sqrt{2}{ }^{\sqrt{ }} \frac{2}{x+h+} & \sqrt{x}
\end{array}
\end{aligned}
$$

97. Difference quotient is

$$
\begin{aligned}
& 1 \\
= & \frac{\frac{x}{x+h}}{h}-\frac{-}{x}-\frac{x(x+h)}{x(x+h)} \\
= & \frac{x-(x+h)}{x h(x+h)} \\
= & \frac{-h}{x h(x+h)} \\
= & \frac{-1}{x(x+h)}
\end{aligned}
$$

98. Difference quotient is

$$
\begin{aligned}
& \frac{3}{x+h}-x^{3} \\
= & \frac{x}{x} \frac{x(x+h)}{x(x+h)} \\
= & \frac{3 x-3(x+h)}{x h(x+h)} \\
= & \frac{-3 h}{x h(x+h)} \\
= & -\frac{-3}{x(x+h)}
\end{aligned}
$$

99. Difference quotient is

$$
\begin{aligned}
& =\frac{3}{x} \cdot \frac{3}{-\frac{x+h+2}{x+2}} \cdot \frac{(x+h+2)(x+2)}{(x+h+2)(x+2)} \\
& =\frac{3(x+2)-3\left(x+h+\frac{2)}{h(x+h+2)(x+2)}\right.}{=\frac{-3 h}{h(x+h+2)(x+2)}} \\
& =-\frac{-3}{(x+h+2)(x+2)}
\end{aligned}
$$

100. Difference quotient is

$$
\begin{aligned}
& =\frac{2}{\frac{x+h-1}{h}-\frac{2 b)}{x-1}} \cdot \frac{(x+h-1)(x-1)}{(x+h-1)(x-1)} \\
& =\frac{2(x-1)-2(x+h-1)}{h(x+h-1)(x-1)}
\end{aligned}
$$

d) $d=s V_{2}$
e) $\quad \mathrm{P}=4 \mathrm{~s} \quad$ f) $\mathrm{s}=\mathrm{P} / 4$
g) $\mathrm{A}=\mathrm{P} 2 / 16$
h) $d=\sqrt{2 A}$
102.
a) $A=\pi r 2$
b) $r=$

| r |
| ---: | :--- |

c) $C=2 \pi r$
d) $d=2 r$
e) $\mathrm{d}=\frac{\mathrm{c}}{\pi} \quad$ f) $\mathrm{A}=\frac{\overline{\mathrm{mi}}}{4}$

103. $\mathrm{C}=500+100 \mathrm{n}$
104. a) When $\mathrm{d}=100 \mathrm{ft}$, the atmospheric pressure is $\mathrm{A}(100)=.03(100)+1=4 \mathrm{~atm}$.
b) When $\mathrm{A}=4.9 \mathrm{~atm}$, the depth is found by solving $4.9=0.03 \mathrm{~d}+1$; the depth is

$$
\mathrm{d}=\frac{3.9}{0.03}=130 \mathrm{ft} .
$$

105.

a) The quantity $\mathrm{C}(4)=(0.95)(4)+5.8=\$ 9.6$ billion represents the amount spent on computers in year 2004.
b) By solving $0.95 n+5.8=20$, we obtain

$$
\mathrm{n}=\frac{14.2}{0.95} \approx 14.9
$$

Thus, spending for computers will be $\$ 20$ billion in year 2015 .
106.
a) The quantity $\mathrm{E}(4)+\mathrm{C}(4)=[0.5(4)+1]+$ $9.6=\$ 12.6$ billion represents the total amount spent on electronics and comput-
ers in year 2004.

$$
\begin{aligned}
(0.5 n+1)+(0.95 n+5.8) & =30 \\
1.45 n & =23.2 \\
n & =16
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-2 h}{h(x+h-1)(x-1)} \\
& =\frac{-2}{(x+h-1)(x-1)} \\
&
\end{aligned}
$$

we find that the total spending will reach $\$ 30$ billion in year $2016(=2000+16)$.
c) The amount spent on computers is growing faster since the slope of C (n) [which is 1] is greater than the slope of $\mathrm{E}(\mathrm{n})$ [which
is 0.95].
107. Let a be the radius of each circle. Note, trian-gle 4 ABC is an equilateral triangle with side 2 a and height $\sqrt{ } 3 a$.

Thus, the height of the circle centered at C from the horizontal line is $\sqrt{ } 3 a+2 a$. Hence, by using a similar reasoning, we obtain that height of the highest circle from the line is
or equivalently $\left(2^{2} 3 a+2 a\right.$
108. In the triangle below, P S bisects the 90 -angle at P and $S Q$ bisects the 60 -angle at Q.

In the 45-45-90 triangle $4 S \underline{P} R$, we find

$$
\mathrm{PR}=\mathrm{SR}=\quad \begin{aligned}
& \vee \\
& 2 \mathrm{~d} / 2 .
\end{aligned}
$$

And, in the 30-60-90 triangle 4 SQR we get

$$
\mathrm{RQ}=2 \underline{6} \mathrm{~d} .
$$

Since P Q = P R + RQ, we obtain

$$
a=(6+2) d
$$

$$
d=\bar{y}_{\bar{\theta}+}^{a} \bar{z}
$$

109. When $\mathrm{x}=18$ and $\mathrm{h}=0.1$, we have

$$
\frac{\mathrm{R}(18.1)}{0.1}-\underline{R}(18)=1950 .
$$

The revenue from the concert will increase by approximately $\$ 1,950$ if the price of a ticket is raised from $\$ 18$ to $\$ 19$.

If $\mathrm{x}=22$ and $\mathrm{h}=0.1$, then

$$
\underline{\mathrm{R}(22.1)} \underline{\mathrm{R}(22)}=-2050 .
$$

0.1

The revenue from the concert will decrease by approximately $\$ 2050$ if the price of a ticket is raised from $\$ 22$ to $\$ 23$.
110. When $\mathrm{r}=1.4$ and $\mathrm{h}=0.1$, we obtain

$$
\frac{\mathrm{A}(1.5)-\mathrm{A}(1.4) \approx-16.1}{0.1}
$$

The needed amount of tin decreases by approximately 16.1 in .2 if the radius increases from 1.4 in. to 2.4 in.
If $r=2$ and $h=0.1$, then

$$
\underline{\mathrm{A}(2.1)} \quad \mathrm{A}(2) \approx 8.6
$$

0.1

The amount of tin needed increases by about 8.6 in. 2 if the radius increases from 2 in . to 3 in .
113.

3	5	1	5
-	-	-	-
$2 x-9$	x	$=$	

$$
\frac{17}{18} x=-1
$$

$$
\mathrm{x}=-2 \underline{1} \cdot \underline{18} 17
$$

$$
x=-179
$$

114. If m is the number of males, then

$$
1
$$

$$
\mathrm{m}+2 \mathrm{~m} \quad=\quad 36
$$

$$
\mathrm{d}=\frac{-\underbrace{\underline{6}}_{-}}{-\frac{\sqrt{-}}{-\frac{2}{2}}} \mathrm{a} .
$$

$$
m=(36) 23
$$

$$
x=24 \text { males }
$$

115. $\mathrm{p} \sum_{\sqrt{(-4+6)^{+(-3-3) 2}}}^{\sqrt{40}=2^{\frac{3}{10}}}={ }^{4+36}=$
116. The slope is $\frac{3-2}{5+1}=\frac{1}{6}$. The line is given by $\mathrm{y}=1_{6}^{1} \mathrm{x}+\mathrm{b}$ for some b . Substitute the coordinates of $(-1,2)$ as follows:

$$
\begin{aligned}
& 1 \\
2 & =\overline{6}(-1)+b \\
\frac{13}{6} & =b
\end{aligned}
$$

The line is given by

$$
y=\frac{1}{6} x+\frac{13}{6} .
$$

117.

$$
\begin{aligned}
\mathrm{x} 2-\mathrm{x}-6 & =36 \\
\mathrm{x} 2-\mathrm{x}-42 & =0 \\
(\mathrm{x}-7)(\mathrm{x}+6) & =0
\end{aligned}
$$

The solution set is $\{-6,7\}$.
118. The inequality is equivalent to

$$
\begin{aligned}
& -13<2 x-9<13 \\
& -4<2 x<22 \\
& -2<x<11
\end{aligned}
$$

The solution set is $(-2,11)$.
120. Let d be the length of the pool. Let x be the rate of the swimmer who after 75 feet passes other swimmer. If x is the length of the pool, then

$$
\begin{aligned}
& 75 \quad \underline{d-75} \\
& x=y
\end{aligned}
$$

and

$$
\frac{d+25}{x}=\frac{2 d}{}-\frac{25}{y} .
$$

Since we may solve for the ratio y / x from both

2.1 Pop Quiz

1. Yes, since $A=\pi r 2$ where A is the area of a circle with radius r .
2. No, since the ordered pairs $(2,4)$ and $(2,-4)$ have the same first coordinates.
3. No, since the ordered pairs $(0,1)$ and $(0,-1)$ have the same first coordinates.
4. $[1, \infty)$ 5. $[2, \infty)$ 6. 9
5. If $2 \mathrm{a}=1$, then $\mathrm{a}=1 / 2$.

40- 20
8. $2008-1998=\$ 2$ per year
9. The difference quotient is

$$
\begin{aligned}
\underline{f(x+}+\frac{\mathrm{h})}{\mathrm{h}} \underline{\mathrm{f}(\mathrm{x})} & =\frac{(x+h) 2+3-x^{2}-3}{\mathrm{~h}} \\
& =\frac{\mathrm{x} 2+2 x h+\mathrm{h} 2-x_{2}}{\mathrm{~h}} \\
& =\frac{2 x h+h 2}{h} \\
& =2 x+h
\end{aligned}
$$

2.1 Linking Concepts

(a) The first graph shows U.S. federal debt in trillions of dollars versus year y

and the second graph shows population P (in hundreds of millions) versus year y .

$$
x=75=d+25
$$

Solving for d , we obtain $\mathrm{d}=200$ or $\mathrm{d}=0$.
Thus, the length of the pool is 200 feet.
(b) The first table shows the average rates of change for the U.S. federal debt

10 - year period ave. rate of change

The second table shows the average rates of change for the U.S. population

10 - year period	ave rate of change
1940-50	$\frac{150.7-1317}{10} \approx 1.9$
1950-60	$\frac{179.3-150,7}{10} \approx 2.9$
1960-70	$\frac{203.31939}{10} \approx 2.4$
1970-80	$\frac{226.5203 .3}{10} \approx 2.3$
1980-90	$10 \stackrel{248}{ }$
	2.2
1990-2000	
	2.6

$$
\text { 2000-2010 } \quad 10 \quad \approx \approx 3.4
$$

(c) The first table shows the difference between consecutive average rates of change for the U.S. federal debt.

10 -year periods	difference
$1940-50 \& 1950-60$	$3.4-20.6=-17.2$
$1950-60 \& 1960-70$	$9.0-3.4=5.6$
$1960-70 \& 1970-80$	$52.8-9.0=43.8$
$1970-80 \& 1980-90$	$229.8-52.8=177.0$
$1980-90 \& 1990-00$	$245.9-229.8=16.1$
$1990-00 \& 2010-00$	$783.4-245.9=537.5$

The second table shows the difference between consecutive average rates of change for the U.S. population.

10 -year periods	difference
$1940-50 \& 1950-60$	$2.9-1.9=1.0$
$1950-60 \& 1960-70$	$2.4-2.9=-0.5$

(e) In part (c), for the federal debt most of the differences are positive and for the population
(f) The U.S. federal debt is growing out of control
(g) for an explanation.
(g) Since most of the differences for the federal debt in part (e) are positive, the federal debts are increasing at an increasing rate. While the U.S. population is increasing at a decreasing rate since most of the differences for popula-tion in part (e) are negative.

1. True, since the graph is a parabola opening down with vertex at the origin.
2. False, the graph is decreasing.
3. True
4. True, since $f(-4.5)=[-1.5]=-2$.
5. True 7. True 8. True
6. False, since the range is the interval $[0,4]$.
7. True

2.2 Exercises

1. square root
2. semicircle
3. increasing
4. constant
5. parabola
6. piecewise
7. Function $y=2 x$ includes the points $(0,0),(1$, 2), domain and range are both $(-\infty, \infty)$
(d) For both the U.S. federal debt and population, the average rates of change are all positive.

8. Function $x=2 y$ includes the points $(0,0)$, $(2,1),(-2,-1)$, domain and range are both $(-\infty, \infty)$

9. Function $\mathrm{x}-\mathrm{y}=0$ includes the points $(-1,-1),(0$, $0),(1,1)$, domain and range are both $(-\infty, \infty)$

10. Function $x-y=2$ includes the points $(2,0),(0$, $-2),(-2,-4)$, domain and range are both $(-\infty, \infty)$

11. Function $y=5$ includes the points $(0,5),(\pm 2,5)$, domain is $(-\infty, \infty)$, range is $\{5\}$

12. $x=3$ is not a function and includes the points $(3,0),(3,2)$, domain is $\{3\}$, range is $(-\infty, \infty)$

13. Function $\mathrm{y}=2 \times 2$ includes the points $(0,0)$, $(\pm 1,2)$, domain is $(-\infty, \infty)$, range is $[0, \infty)$

14. Function $\mathrm{y}=\mathrm{x} 2-1$ goes through $(0,-1)$, $(\pm 1,0)$, domain is $(-\infty, \infty)$, range is $[-1, \infty)$

15. Function $\mathrm{y}=1-\mathrm{x} 2$ includes the points $(0,1)$, $(\pm 1,0)$, domain is $(-\infty, \infty)$, range is $(-\infty, 1]$

16. Function $\mathrm{y}=-1-\mathrm{x} 2$ includes the points $(0,-1),(\pm 1,-2)$, domain is $(-\infty, \infty)$, range is $(-\infty,-1]$

17. Function $y=1+V_{x}$ includes the points $(0,1)$, $(1,2),(4,3)$, domain is $[0, \infty)$, range is $[1, \infty)$

18. Function $y=2-V_{x}$ includes the points (0,2), (4, 0), domain is $[0, \infty)$, range is $(-\infty, 2]$

19. $x=y 2+1$ is not a function and includes the points $(1,0),(2, \pm 1)$, domain is $[1, \infty)$, range is $(-\infty, \infty)$

20. $\mathrm{x}=1-\mathrm{y} 2$ is not function and includes the points $(1,0),(0, \pm 1)$, domain is $(-\infty, 1]$, range is $(-\infty$, $\infty)$

21. Function $\mathrm{x}=\mathrm{y}$ goes through
$(0,0),(2,4),(3,9)$, domain and range is $[0, \infty)$

22. Function $x-1=V_{y}$ goes through (1, 0), $(3,4),(4,9)$, domain $[1, \infty)$, and range $[0, \infty)$,

23. Function $y=3 \bar{x}+1$ goes through $(-1,0),(1,2),(8,3)$, domain $(-\infty, \infty)$, and range $(-\infty, \infty)$
y

24. Function $y=3 x-2$ goes through
$(-1,-3),(1,-1),(8,0)$, domain $(-\infty, \infty)$, and range $(-\infty, \infty)$

25. Function, $x=3$ y goes through $(0,0),(1,1),(2,8)$, domain $(-\infty, \infty)$, and range $(-\infty, \infty)$

$\sqrt{ }$
26. Function, $x=3 y-\overline{1}$ goes through $(0,1)$, $(1,2),(-1,0)$, domain $(-\infty, \infty)$, and range $(-\infty, \infty)$

27. Not a function, $\mathrm{y} 2=1-\mathrm{x} 2$ goes through (1, $0),(0,1),(-1,0)$, domain $[-1,1]$, and range $[-1,1]$

28. Not a function, $\mathrm{x} 2+\mathrm{y} 2=4$ goes through (2 , $0),(0,2),(-2,0)$, domain $[-2,2]$, and range $[-2,2]$

29. Function, $\mathrm{y}=\frac{\sqrt{ }}{1-\mathrm{x} 2}$ goes through $(\pm 1,0),(0,1)$, domain $[-1,1]$, and range $[0,1]$

30. Function, $\mathrm{y}=-\underline{25}-\underline{\mathrm{x} 2}$ goes through $(\pm 5$,
$0),(0,-5)$, domain $[-5,5]$, and range $[-5,0]$

31. Function $\mathrm{y}=\mathrm{x} 3$ includes the points $(0,0)$, $(1,1),(2,8)$, domain and range are both $(-\infty, \infty)$

32. Function $y=-x 3$ includes the points $(0,0),(1$, $-1),(2,-8)$, domain and range are both $(-\infty, \infty)$

33. Function $y=2|x|$ includes the points $(0,0)$, $(\pm 1,2)$, domain is $(-\infty, \infty)$, range is $[0, \infty)$

34. Function $y=|x-1|$ includes the points
$(0,1),(1,0),(2,1)$, domain is $(-\infty, \infty)$, range is $[0, \infty)$

35. Function $y=-|x|$ includes the points $(0,0),(\pm 1$, $-1)$, domain is $(-\infty, \infty)$, range is $(-\infty, 0]$

36. Function $y=-|x+1|$ includes the points range is $(-\infty, 0]$

37. Not a function, graph of $x=|y|$ includes the points $(0,0),(2,2),(2,-2)$, domain is $[0, \infty)$, range is $\quad(-\infty, \quad \infty)$

38. $x=|y|+1$ is not a function and includes the points $(1,0),(2, \pm 1)$, domain is $[1, \infty)$, range is $(-\infty$,
$\infty)$

39. Domain is $(-\infty, \infty)$, range is $\{ \pm 2\}$, some points are $(-3,-2),(1,-2)$

40. Domain is $(-\infty, \infty)$, range is $\{1,3\}$, some

41. Domain is $(-\infty, \infty)$, range is

42. Domain is $(-\infty, \infty)$, range is $[3, \infty)$, some points are $(2,3),(3,4)$

43. Domain is $[-2, \infty)$, range is $(-\infty, 2]$, some points are $(2,2),(-2,0),(3,1)$

44. Domain is $(-\infty, \infty)$, range is $(-1, \infty)$, some points are $(1,1),(4,2),(-1,1)$

45. Domain is $(-\infty, \infty)$, range is $[0, \infty)$, some points are $(-1,1),(-4,2),(4,2)$

46. Domain is $(-\infty, \infty)$, range is $[3, \infty)$, some points are $(-1,3),(0,3),(1,4)$

47. Domain is $(-\infty, \infty)$, range is $(-\infty, \infty)$, some points are $(-2,4),(1,-1)$

48. Domain is $[-2, \infty)$, range is $[0, \infty)$, some points are $(\pm 2,0),(3,1)$

49. Domain is $(-\infty, \infty)$, range is the set of inte-gers, some points are $(0,1),(1,2),(1.5,2)$

50. Domain is $(-\infty, \infty)$, range is the set of even

51. Domain $[0,4)$, range is $\{2,3,4,5\}$, some points are $(0,2),(1,3),(1.5,3)$

52. Domain is $(0,5]$, range is $\{-3,-2,-1,0,1,2\}$, some points are $(0,-3),(1,-2),(1.5,-2)$

53. a. Domain and range are both $(-\infty, \infty)$, decreasing on $(-\infty, \infty)$
b. Domain is $(-\infty, \infty)$, range is $(-\infty, 4]$ increasing on $(-\infty, 0]$, decreasing on $[0, \infty)$
54. a. Domain and range are both $(-\infty, \infty)$, increasing on $(-\infty, \infty)$
b. Domain is $(-\infty, \infty)$, range is $[-3, \infty)$ increasing on $[0, \infty)$, decreasing on $(-\infty, 0]$
55. a. Domain is $[-2,6]$, range is $[3,7]$ increasing on $[-2,2]$, decreasing on $[2,6]$
b. Domain $(-\infty, 2]$, range $(-\infty, 3]$,
increasing on $(-\infty,-2]$, constant on $[-2,2]$
56. a. Domain is $[0,6]$, range is $[-4,-1]$ increasing on $[3,6]$, decreasing on $[0,3]$
b. Domain $(-\infty, \infty)$, range $[1, \infty)$,
decreasing on $(-\infty, 1]$
57. a. Domain is $(-\infty, \infty)$, range is $[0, \infty)$
```
on (-\infty,0]
```

b. Domain and range are both $(-\infty, \infty)$
increasing on $[-2,-2 / 3]$,
decreasing on $(-\infty,-2]$ and $[-2 / 3, \infty)$
58. a. Domain is $[-4,4]$, range is $[0,4]$ increasing on $[-4,0]$, decreasing on $[0,4]$
b. Domain is $(-\infty, \infty)$, range is $[-2, \infty)$ increasing on $[2, \infty)$, decreasing on $(-\infty,-2]$, constant on $[-2,2]$
59. a. Domain and range are both $(-\infty, \infty)$, increasing on $(-\infty, \infty)$
b. Domain is $[-2,5]$, range is $[1,4]$ increasing on $[1,2]$, decreasing increasing on $(-\infty, 2]$, decreasing
b. Domain and range are both $(-\infty, \infty)$, decreasing on $(-\infty, \infty)$
61. Domain and range are both $(-\infty, \infty)$ increasing on $(-\infty, \infty)$, some points are $(0,1),(1,3)$

62. Domain and range are both $(-\infty, \infty)$, decreasing on $(-\infty, \infty)$, some points are $(0,0),(1,-3)$

63. Domain is $(-\infty, \infty)$, range is $[0, \infty)$, increasing on $[1, \infty)$, decreasing on $(-\infty, 1]$, some points are $(0,1),(1,0)$

64. Domain is $(-\infty, \infty)$, range is $[1, \infty)$, increasing on $[0, \infty)$, decreasing on $(-\infty, 0]$, some points are $(0,1),(-1,2)$

65. Domain is $(-\infty, 0) \cup(0, \infty)$, range is $\{ \pm 1\}$, constant on $(-\infty, 0)$ and $(0, \infty)$, some points are $(1,1),(-1,-1)$

66. Domain is $(-\infty, 0) \cup(0, \infty)$, range is $\{ \pm 2\}$, constant on $(-\infty, 0)$ and $(0, \infty)$, some points are $(1,2),(-1,-2)$

67. Domain is $[-3,3]$, range is $[0,3]$, increasing on $[-3,0]$, decreasing on $[0,3]$, some points are $(\pm 3,0),(0,3)$

68. Domain is $[-1,1]$, range is $[-1,0]$, increasing on $[0,1]$, decreasing on $[-1,0]$, some points are $(\pm 1,0),(0,-1)$

69. Domain and range are both $(-\infty, \infty)$, increasing on $(-\infty, 3)$ and $[3, \infty)$, some points are $(4,5),(0,2)$

70. Domain and range are both $(-\infty, \infty)$, decreasing on $(-\infty, \infty)$, some points are $(-1,1),(1,-1)$

