Solution Manual for College Algebra 6th Edition by Dugopolski ISBN 0321916603 9780321916600

Fulllink download

Test

Bank

https://testbankpack.com/p/test-bank-for-college-algebra-6th-edition-bydugopolski-isbn-0321916603-9780321916600/

Solution Manual

https://testbankpack.com/p/solution-manual-for-college-algebra-6th-edition-bydugopolski-isbn-0321916603-9780321916600/

2.1 Functions

For Thought

- 1. False, since $\{(1, 2), (1, 3)\}$ is not a function.
- 2. False, since f (5) is not defined. 3. True
- 4. False, since a student's exam grade is a function of the student's preparation. If two classmates had the same IQ and only one prepared, then the one who prepared will most likely achieve a higher grade.
- 5. False, since (x + h)2 = x2 + 2xh + h2
- 6. False, since the domain is all real numbers.
- 7. True 8. True 9. True 3 3
- 10. False, since $\overline{8}$, 8 and $\overline{8}$, 5 are two ordered

pairs with the same first coordinate and different second coordinates.

- 2.1 Exercises
- 1. function
- 2. function
- 3. relation
- 4. function
- 5. independent, dependent
- 6. domain, range
- 7. difference quotient

- 12. Since different U.S. coins have different diameters, then a is a function of b and b is a function of a.
- 13. Since an item has only one price, b is a function of a. Since two items may have the same price, a is not a function of b.
- 14. a is not a function of b since there may be two students with the same semester grades but different final exams scores. b is not a function of a since there may be identical final exam scores with different semester grades.
- 15. a is not a function of b since it is possible that two different students can obtain the same fi-nal exam score but the times spent on studying are

different.

- 8. average rate of change
- 9. Note, $b = 2\pi a$ is equivalent to $a = 2b\pi$.

121

Then a is a function of b, and b is a function of a.

10. Note, b = 2(5 + a) is equivalent to a =

So a is a function of b, and b is a function of a.

11. a is a function of b since a given denomination has a unique length. Since a dollar bill and a five- dollar bill have the same length, then b is not a function of a. b is not a function of a since it is possible that two different students can spend the same time studying but obtain different final exam scores.

16. a is not a function of b since it is possible that two adult males can have the same shoe size but have different ages.

b is not a function of a since it is possible for two adults with the same age to have different shoe sizes.

- 17. Since 1 in \approx 2.54 cm, a is a function of b and b is a function of a.
- 18. Since there is only one cost for mailing a first class letter, then a is a function of b. Since two letters with different weights each under

1/2-ounce cost 34 cents to mail first class, b is not a function of a.

- 19. No 20. No 21. Yes
- 22. Yes 23. Yes 24. No
- 25. Yes 26. Yes
- 27. Not a function since 25 has two different sec-ond coordinates. 28. Yes
- 29. Not a function since 3 has two different second coordinates.
- 30. Yes 31.Yes 32.Yes

- 33. Since the ordered pairs in the graph of
 - y = 3x 8 are (x, 3x 8), there are no two ordered pairs with the same first coordinate and different second coordinates. We have a function.
- 34. Since the ordered pairs in the graph of

 $y = x^2 - 3x + 7$ are $(x, x^2 - 3x + 7)$, there are no two ordered pairs with the same first co-ordinate and different second coordinates. We have a function.

- 35. Since y = (x + 9)/3, the ordered pairs are (x, (x + 9)/3). Thus, there are no two ordered pairs with the same first coordinate and different second coordinates. We have a function.
- 36. Since y = 3 x, the ordered pairs are (x, 3x). Thus, there are no two ordered pairs with the same first coordinate and different second co-ordinates. We have a function.
- 37. Since $y = \pm x$, the ordered pairs are $(x, \pm x)$. Thus, there are two ordered pairs with the same first coordinate and different second coordinates. We do not have a function.
- 38. Since $y = \pm$ $9 + x^2$, the ordered pairs are (x, \pm $9 + x^2$). Thus, there are two ordered

pairs with the same first coordinate and different second coordinates. We do not have a function.

- 39. Since $y = x^2$, the ordered pairs are (x, x2). Thus, there are no two ordered pairs with the same first coordinate and different second coordinates. We have a function.
- 40. Since y = x3, the ordered pairs are (x, x3).

Thus, there are no two ordered pairs with the same first coordinate and different second coordinates. We have a function.

- 41. Since y = |x| 2, the ordered pairs are (x, |x| 2). Thus, there are no two ordered pairs with the same first coordinate and different second coordinates. We have a function.
- 42. Since $y = 1 + x^2$, the ordered pairs are

(x, 1 + x2). Thus, there are no two ordered pairs with the same first coordinate and different second coordinates. We have a function.

- 43. Since (2, 1) and (2, -1) are two ordered pairs with the same first coordinate and different second coordinates, the equation does not define a function.
- 44. Since (2, 1) and (2, -1) are two ordered pairs with the same first coordinate and different second coordinates, the equation does not define a function.
- 45. Domain {-3, 4, 5}, range {1, 2, 6}
- 46. Domain {1, 2, 3, 4}, range {2, 4, 8, 16}
- 47. Domain $(-\infty, \infty)$, range {4}
- 48. Domain {5}, range $(-\infty, \infty)$
- 49. Domain $(-\infty, \infty)$; since $|x| \ge 0$, the range of y = |x| + 5 is $[5, \infty)$.
- 50. Domain $(-\infty, \infty)$; since $x2 \ge 0$, the range of y = x2 + 8 is $[8, \infty)$.
- 51. Since $x = |y| 3 \ge -3$, the domain of x = |y| 3 is $[-3, \infty)$; range $(-\infty, \infty)$
- 52. Since $\sqrt[n]{y} 2 \ge -2$, the domain of $x = \sqrt[n]{y} 2$ is $[-2, \infty)$;

Since $^{\bigvee}$ y is a real number whenever $y \ge 0$, the range is $[0, \infty)$.

- 53. Since $\sqrt[4]{x-4}$ is a real <u>num</u>ber whenever $x \ge 4$, the domain of $y = \sqrt[4]{x-4}$ is $[4, \infty)$. Since $y = \sqrt[4]{x-4} \ge 0$ for $x \ge 4$, the range is $[0, \infty)$.
- 54. Since $\sqrt[4]{5-x}$ is a real <u>num</u>ber whenever $x \le 5$, the domain of $y = \sqrt[4]{5-x}$ is $(-\infty, 5]$. Since $y = \sqrt[4]{5-x} \ge 0$ for $x \le 5$, the range is $[0, \infty)$.
- 55. Since $x = -y2 \le 0$, the domain of x = -y2 is $(-\infty, 0]$; range is $(-\infty, \infty)$.
- 56. Since $x = -|y| \le 0$, the domain of x = -|y| is $(-\infty, 0]$; range is $(-\infty, \infty)$.
- 57. 6 58.5
- 59. g(2) = 3(2) + 5 = 11
- 60. g(4) = 3(4) + 5 = 17

- 61. Since (3, 8) is the ordered pair, one obtains f (3) = 8. The answer is x = 3.
- 62. Since (2, 6) is the ordered pair, one obtains

f (2) = 6. The answer is x = 2.

- 63. Solving 3x + 5 = 26, we find x = 7.
- 64. Solving 3x + 5 = -4, we find x = -3.
- 65. f(4) + g(4) = 5 + 17 = 22
- 66. f(3) g(3) = 8 14 = -6
- 67. 3a2 a68.3w2 w
- 69. 4(a+2)-2 = 4a+6 70. 4(a-5)-2 = 4a-22
- 71. $3(x^2 + 2x + 1) (x + 1) = 3x^2 + 5x + 2$
- 72. $3(x^2 6x + 9) (x 3) = 3x^2 19x + 30$
- 73. 4(x+h) 2 = 4x + 4h 2
- 74. $3(x^2 + 2xh + h^2) x h = 3x^2 + 6xh + 3h^2 x h$
- 75. $3(x^2 + 2x + 1) (x + 1) 3x^2 + x = 6x + 2$ 76. 4(x + 2) - 2 - 4x + 2 = 8
- 77. $3(x^2 + 2xh + h^2) (x + h) 3x^2 + x = 6xh + 3h^2 h$
- 78. (4x + 4h 2) 4x + 2 = 4h
- 79. The average rate of change is

$$\frac{8,000}{5} = -\$2400 \text{ per year.}$$

80. The average rate of change as the number of cubic yards changes from 12 to 30 and from 30 to 60 are $528 = -240 = $16 \text{ per yd}_3 \qquad \text{and}$

30 - 12948 $-\frac{528}{528} = $14 \text{ per yd3}, \text{ respectively}.$ 60 - 30

81. The average rate of change on [0, 2] is

$$\frac{h(2) - h(0)}{2 - 0} = \frac{0}{2 - 0} = -32 \text{ ft/sec.}$$

The average rate of change on [1, 2] is

The average rate of change on [1.9, 2] is

$$\frac{h(2)}{2-1.9} = \frac{0-6.24}{0.1} = -62.4 \text{ ft/sec.}$$

The average rate of change on [1.99, 2] is <u>h(2)</u> -<u>h(1.99)</u> = 0-0.6384 = -63.84 ft/sec.

The average rate of change on [1.999, 2] is $\frac{h(2)}{2^{-1.999}} = \frac{0 - 0.063984}{0.001} = -63.984$ ft/sec.

82.
$$\frac{6-70}{2-0} = \frac{-64}{2} = -32$$
 ft/sec

- 83. The average rate of change is $\underline{673} = \underline{1970} \approx 24$ -54.0 million hectares per year.
- 84. If 54.0 million hectares are lost each year and since <u>1970</u>54.0 ≈ 36.48 years, the forest will be eliminated in year 2025 (≈ 1988 + 36.48).

85.

$$\frac{f(x+h) - f(x)}{h} = \frac{4(x+h) - 4x}{h}$$
$$= \frac{-4h}{h}$$
$$= 4$$

86.

$$\frac{\mathbf{f}(\mathbf{x} + \mathbf{h}) - \mathbf{f}(\mathbf{x})}{\mathbf{h}} = \frac{\mathbf{h} - \mathbf{x}}{\mathbf{h}}$$
$$= \frac{\mathbf{h} - \mathbf{x}}{\mathbf{h}}$$
$$= \frac{\mathbf{h} - \mathbf{x}}{\mathbf{h}}$$
$$= \frac{\mathbf{h} - \mathbf{x}}{\mathbf{h}}$$
$$= \frac{\mathbf{h} - \mathbf{x}}{\mathbf{h}}$$

87.

$$\frac{f(x+h) - f(x)}{h} = \frac{3(x+h) + 5 - 3x - 5}{h}$$

<u>3h</u>

<u>h(2)</u> –h(1)	<u>0</u> <u>-48</u>	
2 - 1	= 2 - 1 = -48 ft/sec.	

h = 3 88.

$$\frac{f(x+h) -f(x)}{2} = \frac{-2(x+h) + 3 + 2x - \frac{1}{2}}{h}$$

$$h \qquad \qquad h$$

$$= \frac{-2h}{h}$$

$$h$$

 $= \frac{9h}{h(3\sqrt[4]{x} + h + 3\sqrt[4]{x})}$ $= \sqrt[4]{x} + h + \sqrt[4]{x}$

94.

Difference quotient is

$$\sqrt[4]{-2x+h+2} = \frac{\sqrt{2x+h+2}}{h} \cdot \frac{\sqrt{-2x+h+2}}{-2\sqrt{x}+h-2\sqrt{x}} = \frac{\sqrt{2x+h-2}}{\sqrt{x}+h-2\sqrt{x}}$$

$$= \frac{\sqrt{2x+h-2}}{\sqrt{x}+h-2\sqrt{x}}$$

$$= \frac{\sqrt{2x+h-2}}{\sqrt{x}+h-2\sqrt{x}}$$

$$= \frac{\sqrt{2x+h-2}}{\sqrt{x}+h-2\sqrt{x}}$$

$$= \sqrt{2x+h-2\sqrt{x}}$$

$$= \sqrt{2x+h-2\sqrt{x}}$$

95. Difference quotient is

$$\frac{\sqrt{2}}{x+h+2} = \frac{\sqrt{2}}{h} \frac{\sqrt{2}}{x+h+2} + \frac{\sqrt{2}}{x+h+2}$$

$$=\frac{(x+h+2)-(x+2)}{h(\sqrt{x+h+2}+\sqrt{x+2})}$$
$$=\frac{h(\sqrt{x+h+2}+\sqrt{x+2})}{h(\sqrt{x+h+2}+\sqrt{x+2})}$$
$$=\sqrt{x+h+2}$$

89. Let
$$g(x) = x^2 + x$$
. Then we obtain

$$\frac{\underline{g(x+h)} - \underline{g(x)}}{h} =$$

$$\frac{\underline{(x+h)}^2 + \underline{(x+h)} - \underline{x^2} - \underline{x}}{h} =$$

$$\frac{2xh + h2 + h}{h} = 2x + h + 1.$$

90. Let $g(x) = x^2 - 2x$. Then we get

$$\frac{g(x + h) - g(x)}{g(x)} = \frac{h}{h} = \frac{(x + h)2 - 2(x + h) - x2 + 2x}{h} = \frac{h}{h}$$

$$\frac{2xh + h2 - 2h}{h} = 2x + h - 2.$$

91. Difference quotient is

$$= \frac{-(x + h) 2 + (x + h) -2 + 2x - x +}{h}$$

$$= \frac{-2xh - h 2 + h}{h}$$

$$= -2x - h + 1$$

92. Difference quotient is

$$= \frac{(x + \underline{h})2 - (x + \underline{h}) + 3 - x2 + x - 3}{-}$$

93. Difference quotient is

$$= \frac{4}{h} \frac{\sqrt{1-3}}{1-3} \frac{\sqrt{1-3}}{x} \frac{\sqrt{1-3}}{\sqrt{1-3}} \sqrt{1-3} \frac{\sqrt{1-$$

h

•

96. Difference quotient is

$$r \xrightarrow{x+h} - r \xrightarrow{x} r \xrightarrow{x+h} + r \xrightarrow{x}$$

$$= h \xrightarrow{r x+h} - x$$

$$= h \xrightarrow{r x+h} - x$$

$$= h \xrightarrow{r x+h} - x$$

$$= h \xrightarrow{r x+h} + r \xrightarrow{x}{2}$$

$$= h \xrightarrow{r x+h} + r \xrightarrow{x}{2}$$

$$= \frac{h}{2} \xrightarrow{r} \xrightarrow{r}{2} \xrightarrow{r}{2}$$

$$= \frac{h}{2} \xrightarrow{r}{2}$$

$$= \frac{1}{2} \xrightarrow{r}{2}$$

$$= \frac{2}{2} \xrightarrow{r}{2}$$

$$= \frac{2}{\sqrt{2}} \sqrt[2]{\sqrt{x+h}} + \sqrt{x}$$

97. Difference quotient is

$$= \frac{\overline{x+h} - \overline{x}}{h} \cdot \frac{x(x+h)}{x(x+h)}$$
$$= \frac{x - (x+h)}{xh(x+h)}$$
$$= \frac{-h}{xh(x+h)}$$
$$= \frac{-h}{xh(x+h)}$$
$$= \frac{-1}{x(x+h)}$$

1

1

98. Difference quotient is

$$= \frac{3}{h} \frac{x + h - x}{x(x + h)}$$

$$= \frac{3x - 3(x + h)}{xh(x + h)}$$

$$= \frac{-3h}{xh(x + h)}$$

$$= \frac{-3}{x(x + h)}$$

99. Difference quotient is

$$= \frac{3}{x+h+2} \cdot \frac{3}{(x+h+2)(x+2)}$$

$$= \frac{3(x+2)-3(x+h+2)(x+2)}{h(x+h+2)(x+2)}$$

$$= \frac{3(x+2)-3(x+h+2)}{h(x+h+2)(x+2)}$$

$$= \frac{-3h}{h(x+h+2)(x+2)}$$

$$= \frac{-3}{(x+h+2)(x+2)}$$

100. Difference quotient is

$$= \frac{2}{\frac{x+h-1}{h}} \frac{2^{b}}{\frac{x-1}{x-1}} \frac{By \text{ solving}}{(x+h-1)(x-1)}$$
$$= \frac{2(x-1)-2(x+h-1)}{h(x+h-1)(x-1)}$$

d)
$$d = s^{4}2$$
 e) $P = 4s$ f) $s = P/4$
g) $A = P 2/16$ h) $d = \sqrt{2A}$
102. a) $A = \pi r^{2}$ b) $r = \frac{r}{\pi} \frac{A}{\pi}$ c) $C = 2\pi r$
d) $d = 2r$ e) $d = \frac{c}{\pi}$ f) $A = \frac{\frac{a}{\pi}}{4}$
g) $d = 2 \frac{r}{\pi}$
103. $C = 500 + 100n$

1

- 104. a) When d = 100 ft, the atmospheric pressure is A(100) = .03(100) + 1 = 4 atm.
 - b) When A = 4.9 atm, the depth is found by

solving 4.9 = 0.03d + 1; the depth is

$$d = \frac{3.9}{0.03} = 130 \text{ ft.}$$

105.

- a) The quantity C (4) = (0.95)(4) + 5.8 = \$9.6billion represents the amount spent on computers in year 2004.
- b) By solving 0.95n + 5.8 = 20, we obtain

$$n = \frac{14.2}{0.95} \approx 14.9.$$

Thus, spending for computers will be \$20

billion in year 2015.

106.

a) The quantity E(4) + C (4) = [0.5(4) + 1] + 9.6 = \$12.6 billion represents the total amount spent on electronics and comput-

ers	in	year	2004.
		-	

(0.5n+1) + (0.95n+5.8) = 30

1.45n = 23.2n = 16

$$= \frac{-2h}{h(x+h-1)(x-1)}$$

$$= \frac{-2}{(x+h-1)(x-1)}$$

$$\frac{\sqrt{}}{\sqrt{}}$$

$$\frac{\sqrt{}}{d 2}$$

we find that the total spending will reach 30 billion in year 2016 (= 2000 + 16).

c) The amount spent on computers is growing faster since the slope of C (n) [which is 1] is greater than the slope of E(n) [which

is 0.95].

107. Let a be the radius of each circle. Note, trian-gle 4ABC is an equilateral triangle with side 2a and height $\sqrt[4]{3a}$.

Thus, the height of the circle centered at C from $\frac{1}{2}$

the horizontal line is $\sqrt[n]{3a + 2a}$. Hence, by using a similar reasoning, we obtain that height of the highest circle from the line is

 $2\sqrt[9]{3a+2a}$ or equivalently $(2\sqrt[9]{3+2})a$.

108. In the triangle below, P S bisects the 90-angle at P and SQ bisects the 60-angle at Q.

In the 45-45-90 triangle 4SP R, we find

PR = SR =
$$\sqrt[4]{2d/2}$$
.
And, in the 30-60-90 triangle 4SQR we get
RQ = 26 d .

Since P Q = P R + RQ, we obtain

$$\begin{array}{rcl} \frac{a}{2} & = & \frac{2}{\sqrt{2}} \frac{\sqrt{4}}{\sqrt{2}} & \frac{6}{2} \\ a & = & \frac{2}{\sqrt{2}} \frac{1}{\sqrt{2}} + & \frac{6}{\sqrt{2}} \\ a & = & (6 + 2) \\ d & = & \frac{a}{\sqrt{6} + \sqrt{2}} \end{array}$$

109. When x = 18 and h = 0.1, we have

$$\frac{\mathbf{R}(18.1)}{0.1} - \frac{\mathbf{R}(18)}{0.1} = 1950.$$

The revenue from the concert will increase by approximately \$1,950 if the price of a ticket is raised from \$18 to \$19.

If x = 22 and h = 0.1, then

R(22.1) R(22) =
$$-2050$$
.

0.1

The revenue from the concert will decrease by approximately \$2050 if the price of a ticket is raised from \$22 to \$23.

110. When r = 1.4 and h = 0.1, we obtain

$$\frac{A(1.5) - A(1.4) \approx}{0.1} - 16.1$$

The needed amount of tin decreases by approximately 16.1 in.2 if the radius increases from 1.4 in. to 2.4 in.

If r = 2 and h = 0.1, then

A(2.1) A(2)
$$\approx$$
 8.6

0.1

The amount of tin needed increases by about 8.6 in.2 if the radius increases from 2 in. to 3 in.

113.

114. If m is the number of males, then 1

$$m+2 m = 36$$

$$m = (36)23$$

x = 24 males

$$d = \frac{-\frac{\sqrt{6}}{6}}{4} = \frac{\sqrt{2}}{2}a.$$

115. p =
$$\sqrt{\frac{-4+36}{(-4+6)^2 + (-3-3)^2}}$$
 = $\sqrt{\frac{-4+36}{4+36}}$ = $\sqrt{\frac{4+36}{10}}$

116. The slope is $\frac{3-2}{5+1} = \frac{1}{6}$. The line is given by $y = \frac{1}{6}x + b$ for some b. Substitute the coordinates of (-1, 2) as follows:

$$2 = \overline{6} (-1) + b$$
$$\frac{13}{6} = b$$

The line is given by

$$y = \frac{1}{6} x + \frac{13}{6} .$$

117.

$$x2 - x - 6 = 36$$

$$x2 - x - 42 = 0$$

$$(x - 7)(x + 6) = 0$$

The solution set is $\{-6, 7\}$.

118. The inequality is equivalent to

$$-13 < 2x - 9 < 13$$

 $-4 < 2x < 22$
 $-2 < x < 11$

The solution set is (-2, 11).

120. Let d be the length of the pool. Let x be the rate of the swimmer who after 75 feet passes

other swimmer. If x is the length of the pool, then $75 \quad \frac{d-75}{2}$

and

$$\frac{d+25}{x} = \frac{2d}{y} - \frac{25}{y}.$$

x =y

Since we may solve for the ratio y/x from both

2.1 Pop Quiz

- 1. Yes, since $A = \pi r^2$ where A is the area of a circle with radius r.
- 2. No, since the ordered pairs (2, 4) and (2, -4) have the same first coordinates.
- 3. No, since the ordered pairs (0, 1) and (0, -1) have the same first coordinates.
- 4. [1,∞) 5. [2,∞) 6. 9
- 7. If 2a = 1, then a = 1/2. 40- 20
- 8. 2008 1998 = \$2 per year
- 9. The difference quotient is

$$\frac{f(x+h) - f(x)}{h} = \frac{(x+h)2 + 3 - x2 - 3}{h}$$
$$= \frac{x2 + 2xh + h2 - x 2}{h}$$
$$= \frac{2xh + h2}{h}$$
$$= 2x + h$$

2.1 Linking Concepts

(a) The first graph shows U.S. federal debt in trillions of dollars versus year y debt

and the second graph shows population P (in hundreds of millions) versus year y.

200m
20011

100m

1940 1970 2000 year

	$\mathbf{x} =$	75	=	d + 25 .	
Solving for	rd, we	e obtain		d = 200 or	$\mathbf{d}=~0.$
Thus, the l	length	of the	po	ol is 200 feet	t.

(b) The first table shows the average rates of change for the U.S. federal debt

10 – year period ave. rate of change

1940 - 50	$\frac{257-51}{10} = 20.6$
1950 - 60	$\frac{291-257}{10} = 3.4$
	381-291
1960 - 70	10 -
= 9.0	
1970 - 80	<u>909-381</u> <u>57.8</u>
1080 - 00	$\frac{10}{3207-909} = -220.8$
1700 90	5666-3207
1990 - 2000	<u>10</u> = 245.9
2000 - 2010	$\frac{13.500-5666}{10}$ - = 783.4

The second table shows the average rates of change for the U.S. population

10 – vear period	ave. rate of change
	Ũ
1940 - 50	$\frac{150.7-131.7}{10} \approx 1.9$
1950 - 60	$\frac{179.3-150.7}{10} \approx 2.9$
1960 - 70	$\frac{203.3-179.3}{10} \approx 2.4$
1970 - 80	$\frac{226.5-203.3}{10} \approx 2.3$
	. 248 7. 226 5
1980 – 90	10
	≈ 2.2
1990 - 2000	10
2	≈ 2.6 _{308 7-274 8}
2000 2010	300.7 214.0
2000 - 2010	$10 \simeq 3.4$

(c) The first table shows the difference between consecutive average rates of change for the U.S. federal debt.

10-year periods	difference
1940-50 & 1950-60	3.4 – <u>20.6</u> = –17.2
1950-60 & 1960-70	9.0 <u>- 3.4</u> = 5.6
1960-70 & 1970-80	52.8 - 9.0 = 43.8
1970-80 & 1980-90	229.8 - 52.8 = 177.0
1980-90 & 1990-00	245.9 - 229.8 = 16.1
1990-00 & 2010-00	783.4 <u>- 245.</u> 9 = 537.5

The second table shows the difference between consecutive average rates of change for the U.S. population.

10-year periods	difference
1940-50 & 1950-60	2.9 - 1.9 = 1.0
1950-60 & 1960-70	2.4 - 2.9 = -0.5

- (e) In part (c), for the federal debt most of the differences are positive and for the population
- (f) The U.S. federal debt is growing out of control
 - (g) for an explanation.
- (g) Since most of the differences for the federal debt in part (e) are positive, the federal debts are

increasing at an increasing rate. While the U.S. population is increasing at a decreasing rate since most of the differences for popula-tion in part (e) are negative.

- 1. True, since the graph is a parabola opening down with vertex at the origin.
- 2. False, the graph is decreasing.
- 3. True
- 4. True, since f(-4.5) = [-1.5] = -2.
- 6. True 7. True 8. True
- 9. False, since the range is the interval [0, 4].
- 10. True
- 2.2 Exercises
- 1. square root
- 2. semicircle
- 3. increasing
- 4. constant
- 5. parabola
- 6. piecewise

- Function y = 2x includes the points (0, 0), (1, 2), domain and range are both (-∞, ∞)
- (d) For both the U.S. federal debt and population, the average rates of change are all positive.

8. Function x = 2y includes the points (0, 0), (2, 1), (-2, -1), domain and range are both $(-\infty, \infty)$

9. Function x - y = 0 includes the points (-1, -1), (0, 0), (1, 1), domain and range are both (-∞, ∞)

10. Function x - y = 2 includes the points (2, 0), (0, -2), (-2, -4), domain and range are both $(-\infty, \infty)$

11. Function y = 5 includes the points (0, 5), (±2, 5), domain is (- ∞ , ∞), range is {5}

12. x = 3 is not a function and includes the points (3, 0), (3, 2), domain is {3}, range is $(-\infty, \infty)$

13. Function y = 2x2 includes the points (0, 0), $(\pm 1, 2)$, domain is $(-\infty, \infty)$, range is $[0, \infty)$

14. Function $y = x^2 - 1$ goes through (0, -1), $(\pm 1, 0)$, domain is $(-\infty, \infty)$, range is $[-1, \infty)$

15. Function $y = 1 - x^2$ includes the points (0, 1), $(\pm 1, 0)$, domain is $(-\infty, \infty)$, range is $(-\infty, 1]$

16. Function $y = -1 - x^2$ includes the points $(0, -1), (\pm 1, -2)$, domain is $(-\infty, \infty)$, range is $(-\infty, -1]$

17. Function $y \perp 1 + x$ includes the points (0, 1), (1, 2), (4, 3), domain is $[0, \infty)$, range is $[1, \infty)$

18. Function $y = 2 - \sqrt{x}$ includes the points (0, 2), (4, 0), domain is $[0, \infty)$, range is $(-\infty, 2]$

19. x = y2 + 1 is not a function and includes the points (1, 0), $(2, \pm 1)$, domain is $[1, \infty)$, range is $(-\infty, \infty)$

20. x = 1 - y2 is not function and includes the points (1, 0), (0, ±1), domain is (- ∞ , 1], range is (- ∞ , ∞)

- 21. Function x = y goes through
 - (0, 0), (2, 4), (3, 9), domain and range is $[0, \infty)$

22. Function $x - 1 = \sqrt{y}$ goes through (1, 0), (3, 4), (4, 9), domain $[1, \infty)$, and range $[0, \infty)$,

23. Function y = 3 x + 1 goes through (-1, 0), (1, 2), (8, 3), domain (- ∞ , ∞), and range (- ∞ , ∞)

- 24. Function $\underline{y} = 3 x 2$ goes through
 - (-1, -3), (1, -1), (8, 0), domain $(-\infty, \infty)$, and range $(-\infty, \infty)$

25. Function, $x \perp 3$ y goes through (0, 0), (1, 1), (2, 8), domain $(-\infty, \infty)$, and range $(-\infty, \infty)$

26. Function, x = 3 y – 1 goes through (0, 1), (1, 2), (-1, 0), domain (- ∞ , ∞), and range (- ∞ , ∞)

27. Not a function, y2 = 1 − x2 goes through (1, 0), (0, 1), (−1, 0), domain [−1, 1], and range [−1, 1]

28. Not a function, x2 + y2 = 4 goes through (2, 0), (0, 2), (-2, 0), domain [-2, 2], and range [-2, 2]

31. Function $y \neq x3$ includes the points (0, 0), (1, 1), (2, 8), domain and range are both $(-\infty, \infty)$

32. Function y = -x3 includes the points (0, 0), (1, -1), (2, -8), domain and range are both $(-\infty, \infty)$

33. Function y = 2 |x| includes the points (0, 0), (±1, 2), domain is (- ∞ , ∞), range is [0, ∞)

34. Function y = |x - 1| includes the points (0, 1), (1, 0), (2, 1), domain is $(-\infty, \infty)$, range is $[0, \infty)$

35. Function y = -|x| includes the points (0, 0), $(\pm 1, -1)$, domain is $(-\infty, \infty)$, range is $(-\infty, 0]$

36. Function y = -|x + 1| includes the points

37. Not a function, graph of x = |y| includes the points (0, 0), (2, 2), (2, -2), domain is $[0, \infty),$ range is $(-\infty, \infty)$

38. $x = |y| \downarrow 1$ is not a function and includes the points (1, 0), (2, ±1), domain is $[1, \infty)$, range is $(-\infty, \infty)$

39. Domain is (-∞, ∞), range is {±2}, some points are (-3, -2), (1, -2)

40. Domain is $(-\infty, \infty)$, range is $\{1, 3\}$, some

41. Domain is $(-\infty, \infty)$, range is $(-\infty, -2] \cup (2, \infty)$, some points are (2, 3), (1, -2)

42. Domain is (-∞, ∞), range is [3, ∞), some points are (2, 3), (3, 4)

43. Domain is [-2, ∞), range is (-∞, 2], some points are (2, 2), (-2, 0), (3, 1)

44. Domain is (-∞, ∞), range is (-1, ∞), some points are (1, 1), (4, 2), (-1, 1)

45. Domain is $(-\infty, \infty)$, range is $[0, \infty)$, some points are (-1, 1), (-4, 2), (4, 2)

46. Domain is $(-\infty, \infty)$, range is $[3, \infty)$, some

47. Domain is (-∞, ∞), range is (-∞, ∞), some points are (-2, 4), (1, -1)

48. Domain is [−2, ∞), range is [0, ∞), some points are (±2, 0), (3, 1)

49. Domain is (-∞, ∞), range is the set of inte-gers, some points are (0, 1), (1, 2), (1.5, 2)

50. Domain is $(-\infty, \infty)$, range is the set of even

51. Domain [0, 4), range is {2, 3, 4, 5}, some points are (0, 2), (1, 3), (1.5, 3)

52. Domain is (0, 5], range is {-3, -2, -1, 0, 1, 2}, some points are (0, -3), (1, -2), (1.5, -2)

- a. Domain and range are both (-∞, ∞), decreasing on (-∞, ∞)
 - b. Domain is (-∞, ∞), range is (-∞, 4] increasing on (-∞, 0], decreasing on [0, ∞)
- a. Domain and range are both (-∞, ∞), increasing on (-∞, ∞)
 - b. Domain is (-∞, ∞), range is [-3, ∞) increasing on [0, ∞), decreasing on (-∞, 0]
- 55. a. Domain is [-2, 6], range is [3, 7] increasing on [-2, 2], decreasing on [2, 6]
 - b. Domain (-∞, 2], range (-∞, 3], increasing on (-∞, -2], constant on [-2, 2]
- 56. a. Domain is [0, 6], range is [-4, -1] increasing on [3, 6], decreasing on [0, 3]

b. Domain $(-\infty, \infty)$, range $[1, \infty)$,

decreasing on $(-\infty, 1]$

57. a. Domain is $(-\infty, \infty)$, range is $[0, \infty)$

on (-∞, 0]

- b. Domain and range are both (-∞, ∞) increasing on [-2, -2/3], decreasing on (-∞, -2] and [-2/3, ∞)
- 58. a. Domain is [-4, 4], range is [0, 4] increasing on [-4, 0], decreasing on [0, 4]
 - b. Domain is (-∞, ∞), range is [-2, ∞) increasing on [2, ∞), decreasing on (-∞, -2], constant on [-2, 2]
- 59. a. Domain and range are both (-∞, ∞), increasing on (-∞, ∞)
 - b. Domain is [-2, 5], range is [1, 4] increasing on [1, 2], decreasing

increasing on $(-\infty, 2]$, decreasing

- b. Domain and range are both (-∞, ∞), decreasing on (-∞, ∞)
- 61. Domain and range are both (-∞, ∞) increasing on (-∞, ∞), some points are (0, 1), (1, 3)

62. Domain and range are both (-∞, ∞), decreasing on (-∞, ∞), some points are (0, 0), (1, -3)

63. Domain is (-∞, ∞), range is [0, ∞), increasing on [1, ∞), decreasing on (-∞, 1], some points are (0, 1), (1, 0)

64. Domain is (-∞, ∞), range is [1, ∞), increasing on [0, ∞), decreasing on (-∞, 0], some points are (0, 1), (-1, 2)

65. Domain is $(-\infty, 0) \cup (0, \infty)$, range is $\{\pm 1\}$, constant on $(-\infty, 0)$ and $(0, \infty)$, some points are (1, 1), (-1, -1)

66. Domain is (+∞, 0) ∪ (0, ∞), range is {±2}, constant on (-∞, 0) and (0, ∞), some points are (1, 2), (-1, -2)

67. Domain is [-3, 3], range is [0, 3], increasing on [-3, 0], decreasing on [0, 3], some points are (±3, 0), (0, 3)

68. Domain is [-1, 1], range is [-1, 0], increasing on [0, 1], decreasing on [-1, 0], some points are (±1, 0), (0, -1)

69. Domain and range are both (-∞, ∞), increasing on (-∞, 3) and [3, ∞), some points are (4, 5), (0, 2)

70. Domain and range are both (-∞, ∞), decreasing on (-∞, ∞), some points are (-1, 1), (1, -1)

