Solution Manual for College Algebra 7th Edition Stewart Redlin Watson ISBN 13051155469781305115545

> Full link download:
> $\underline{\text { https://testbankpack.com/p/solution-manual-for-college-algebra-7th- }}$ $\underline{\text { edition-stewart-redlin-watson-isbn-1305115546-9781305115545/ }}$

PROLOGUE: Principles of Problem Solving

Let r be the rate of the descent. We use the formula time
distance $\quad-1$
$\overline{\text { rate }}$; the ascent takes 15 h , the descent takes $r \mathrm{~h}$, and the
 fast enough to average $30 \mathrm{mi} / \mathrm{h}$ for the 2-mile trip.

Let us start with a given price P. After a discount of 40%, the price decreases to $06 P$. After a discount of 20%, the price decreases to $08 P$, and after another 20% discount, it becomes $0808 P 064 P$. Since $06 P 064 P$, a 40% discount is better.

We continue the pattern. Three parallel cuts produce 10 pieces. Thus, each new cut produces an additional 3 pieces. Since the first cut produces 4 pieces, we get the formula $f n 43 n 1, n 1$. Since $f 14243141427$, we see that 142 parallel cuts produce 427 pieces.

By placing two amoebas into the vessel, we skip the first simple division which took 3 minutes. Thus when we place two amoebas into the vessel, it will take 60357 minutes for the vessel to be full of amoebas.
The statement is false. Here is one particular counterexample:

First half	Player A			Player B	
	1 hit in 99 at-bats: average	$1^{\frac{1}{99}}$		0 hit in 1 at-bat: average 98 hits in 99 at-bats: average	$\underline{98}$
Second half	1 hit in 1 at-bat: average	T			
Entire season	2 hits in 100 at-bats: averag		$\frac{2}{100}$		

Method 1: After the exchanges, the volume of liquid in the pitcher and in the cup is the same as it was to begin with. Thus, any coffee in the pitcher of cream must be replacing an equal amount of cream that has ended up in the coffee cup.
Method 2: Alternatively, look at the drawing of the spoonful of coffee and cream mixture being returned to the pitcher of cream. Suppose it is possible to separate the cream and the coffee, as shown. Then you can see that the coffee going into the cream occupies the same volume as the cream that was left in the coffee.

Method 3 (an algebraic approach): Suppose the cup of coffee has y spoonfuls of coffee. When one spoonful of cream is added to the coffee cup, the resulting mixture has the following ratios: $\quad \frac{\text { cream }}{\text { mixture }} \quad \frac{1}{y 1} \quad \begin{aligned} & \text { coffee } \\ & \text { and } \\ & y 1\end{aligned}$

So, when we remove a spoonful of the mixture and put it into the pitcher of cream, we are really removing $\frac{1}{y 1}$ of a y
spoonful of cream and $\overline{y \quad 1}$ spoonful of coffee. Thus the amount of cream left in the mixture (cream in the coffee) is $y \overline{1} 1 \overline{\text { of a spoonful. This is the same as the amount of coffee we added to the cream. }}$

Let r be the radius of the earth in feet. Then the circumference (length of the ribbon) is $2 r$. When we increase the radius by 1 foot, the new radius is $r 1$, so the new circumference is $2 r 1$. Thus you need $2 r 12 r 2$ extra feet of ribbon.

Principles of Problem Solving

The north pole is such a point. And there are others: Consider a point $a 1$ near the south pole such that the parallel passing through $a 1$ forms a circle $C 1$ with circumference exactly one mile. Any point $P 1$ exactly one mile north of the circle $C 1$ along a meridian is a point satisfying the conditions in the problem: starting at $P 1$ she walks one mile south to the point $a 1$ on the circle $C 1$, then one mile east along $C 1$ returning to the point $a 1$, then north for one mile to $P 1$. That's not all. If a point $a 2$ (or $a 3, a 4, a 5$,) is chosen near the south pole so that the parallel passing through it forms a circle $C_{2}\left(C_{3}, C 4, C 5\right.$,) with a circumference of exactly $\underline{1}_{2}$ mile ($\underline{1}_{3} \mathrm{mi}, \underline{1} \quad \underline{1}_{5}$ $\begin{array}{llll}2 & 3 & 4 & 5\end{array}$
$4 \mathrm{mi}, \quad \mathrm{mi}$, , then the point $P(P, P, P$,$) one mile north of a$
$(a 3, a 4, a 5$,) along a meridian satisfies the conditions of the problem: she walks one mile south from $P 2(P 3, P 4, P 5$,) arriving at $a 2(a 3, a 4, a 5$,$) along the circle C 2(C 3, C 4, C 5$,), walks east along the circle for one mile thus traversing the circle twice (three times, four times, five times,) returning to $a_{2}(a 3, a 4, a 5$,), and then walks north one mile to $P 2$ ($P 3$, P4, P5,).

PREREQUISITES

P. 1 MODELING THE REAL WORLD WITH ALGEBRA

Using this model, we find that if $S \quad 12, L \quad 4 S \quad 412 \quad 48$. Thus, 12 sheep have 48 legs.
If each gallon of gas costs $\$ 350$, then x gallons of gas costs $\$ 35 x$. Thus, $C \quad 35 x$.
If $x \quad \$ 120$ and $T \quad 006 x$, then $T \quad 006120 \quad 72$. The sales tax is $\$ 720$.
If $x \quad 62,000$ and $T 0005 x$, then $T 000562,000 \quad 310$. The wage tax is $\$ 310$.
If70, $t \quad 35$, and $d t$, then $d 7035245$. The car has traveled 245 miles.

$$
\begin{array}{ccc}
V r^{2} h 3^{2} & 5 & 451414 \text { in }^{3} \\
& N & 240
\end{array}
$$

(b) $25 \quad \bar{G} \quad G \quad \overline{25} \quad 7$ gallons
9. (a) $V \quad 95 S \quad 95 \quad 4 \mathrm{~km}^{3} \quad 38 \mathrm{~km}^{3}$
(b) $19 \mathrm{~km}^{3} 95 S \quad S \quad 2 \mathrm{k}^{\mathrm{m}} 3$
11. (a)

Depth (ft)	Pressure (lb/in ${ }^{2}$)	
0		0450 147 147
10	04510	$147 \quad 192$
20		0452147237
30		0453147282
40		0454147327
50		0455147372
60		0456147417

12. (a)

Population	Water use (gal)	
0		0
1000	401000	40,000
2000	402000	80,000
3000	403000	120,000
4000	404000	160,000
5000	405000	200,000

The number N of cents in q quarters is $N 25 q$.
The average A of two numbers, a and b, is $A^{a} a_{2}$.
The cost C of purchasing x gallons of gas at $\$ 350$ a gallon is $C 35 x$.
The amount T of a 15% tip on a restaurant bill of x dollars is $T 015 x$.
The distance d in miles that a car travels in t hours at $60 \mathrm{mi} / \mathrm{h}$ is $d 60 t$.
(b) We know that $P \quad 30$ and we want to find d, so we solve the equation $30147045 d 153045 d$

1532
$d \overline{045} 340$. Thus, if the pressure is $30 \mathrm{lb} / \mathrm{in}$, the depth is 34 ft .

We solve the equation $40 x \quad 120,000$
120,000 40
3000. Thus, the population is about 3000 .

CHAPTER P Prerequisites

The speed r of a boat that travels d miles in 3 hours is $r d_{3}$.
(a) $\begin{array}{lllll}12 & 3 & \$ 1 & \$ 12 & \$ 3\end{array}$

The cost C, in dollars, of a pizza with n toppings is $C 12 n$.
Using the model $C \quad 12 \quad n$ with $C \quad 16$, we get $\begin{array}{lllll}16 & 12 & n & n & 4 . \text { So the pizza has four toppings. }\end{array}$
(a) $330 \quad 280010 \quad 90 \quad 28 \quad \$ 118$ daily days cost miles
(b) The cost is rental rented per mile driven, so C 30 n 01 m .
(c) We have $C \quad 140$ and $n \quad 3$. Substituting, we get $\begin{array}{lllllllllllll}140 & 30 & 3 & 01 m & 140 & 90 & 01 m & 50 & 01 m\end{array}$ m 500. So the rental was driven 500 miles.
21. (a) (i) For an all-electric car, the energy cost of driving x miles is $C e 004 x$.
(ii) For an average gasoline powered car, the energy cost of driving x miles is $C g \quad 012 x$.
(b) (i) The cost of driving 10,000 miles with an all-electric car is $C e 00410,000 \quad \$ 400$.
(ii) The cost of driving 10,000 miles with a gasoline powered car is $C g \quad 01210,000 \quad \$ 1200$.
22. (a) If the width is 20 , then the length is 40 , so the volume is $20204016,000 \mathrm{in}^{3}$.
(b) In terms of width, $V \quad x \quad x \quad 2 x \quad 2 x^{3}$.
23. (a) The GPA is $\frac{4 a 3 b 2 c 1 d 0 f}{a b c d f} \frac{4 a 3 b 2 c d}{a b c d f}$.
(b) Using $a \quad 23 \quad 6, b \quad 4, c \quad 3 \quad 3 \quad 9$, and $d \quad f \quad 0$ in the formula from part (a), we find the GPA to be $463429 \quad 54$

$\begin{array}{lllll}6 & 4 & 9 & 19 & 284 .\end{array}$
 P. 2 THE REAL NUMBERS

1. (a) The natural numbers are 123
(b) The numbers $\quad 3210$ are integers but not natural numbers.
(c) Any irreducible fraction q^{p} with $q \quad 1$ is rational but is not an integer. Examples: $\stackrel{3}{2}_{2}, 5, \frac{1729}{}$
(d) Any number which cannot be expressed as a ratio $\underset{q}{p}$ of two integers is irrational. Examples are $\overline{2}, \quad 3, \quad$, and e.
2. (a) $a b \quad b a$; Commutative Property of Multiplication
(b) $a \quad b \quad c \quad a \quad b \quad c$; Associative Property of Addition
(c) $a b \quad c \quad a b \quad a c$; Distributive Property
3. The set of numbers between but not including 2 and 7 can be written as (a) $x 2 x 7$ in interval notation, or (b) 27 in interval notation.
4. The symbol x stands for the absolute value of the number x. If x is not 0 , then the sign of x is always positive.
5. The distance between a and b on the real line is $d a b \quad \begin{array}{llllll} & b & a\end{array}$. So the distance between $\quad 5$ and 2 is $2 \quad 5 \quad 7$.
6. (a) Yes, the sum of two rational numbers is rational: $\begin{array}{llll}a & c & a d & b c . \\ \bar{b} & \bar{d} & \overline{b d}\end{array}$

No, the sum of two irrational numbers can be irrational (2) or rational (0).
(a) No: $a \quad b b \quad a \quad b \quad a$ in general.

No; by the Distributive Property, $2 a \begin{array}{lllll}2 & 52 a 2 & 52 a & 102 a & 10 .\end{array}$
(a) Yes, absolute values (such as the distance between two different numbers) are always positive.

Yes, b aa b.
(a) Natural number: 100

Integers: $0,100,8$

Rational numbers: $15,0, \underline{5}_{2}, 271,314, \overline{-} 00,8$ Irrational numbers: 7,
$\overline{\text { A }}$
$\overline{\text { A }}$
ommutative Property of addition
Associative Property of addition
Distributive Property
Commutative Property of multiplication
$x 33 x$
$4 A B 4 A 4 B$
$3 x \quad y \quad 3 x \quad 3 y$
$42 m 42 m 8 m$
$\underline{5}_{2} 2 x \quad 4 y^{5}{ }_{2} _2 x \quad 5_{2} _4 y \ldots 5 x _10 y$

31. (a)
(b) $34 \begin{array}{lllllllll} & 4 & 15 & 4 & 4 & 5 & 5 & 4 & 5\end{array}$
(a) $23 \quad 6$ and $2 \quad{\underset{7}{2}}^{7}$, so $3 \quad \stackrel{7}{2}_{2}$

67
$35 \stackrel{7}{2}_{2}$
(a) False
(b) True
37. (a) True
(b) False
39. (a) $x \quad 0$
(b) $t 4$
(c) a
(d) $5 \quad x \quad \frac{1}{-3}$
p 35
(a) A B 12345678
(a) Natural number: 16_4

Integers: $500,16, \underline{20}_{54}$

Rational numbers: $13,13333,534,500,1 \stackrel{2}{2}_{3}$, $16, \underline{246}_{579}, \underline{20}_{5}$ Irrational number: 5^{-}

Commutative $\overline{\text { Aroperty of multiplication }} \overline{\mathbf{A}}$
Distributive Property
Distributive Property
Distributive Property
$73 x 73 x$
$5 x 5 y 5 x \quad y$
24. $a \quad b 8 \quad 8 a \quad 8 b$
26. $\stackrel{4}{3}_{3}$ 6y $\quad \underline{4}_{3} 6 \quad y \quad 8 y$
$3 a b c 2 d 3 a b 3 a c 6 a d$
$\overline{\mathbf{A}}$
a) $\underline{2}_{3} \quad \underline{3}_{5} \quad \frac{10}{15} \quad 15^{9} \quad 15^{1}$

$$
1 \overline{5}_{8} \quad \overline{1}^{6} \quad \overline{24}_{24} \quad \underline{15}_{24}-24^{4} \quad \underline{35}_{24}
$$

$$
\text { 32. } \begin{array}{rrrrrrrrr}
\frac{2}{-} & \frac{2}{3} & \overline{3} & \overline{2} & \overline{1} & \overline{2} & \overline{9} & 2 & 2
\end{array} 2
$$

(a) $3^{\overline{2}^{3}}$ 2 and $3067 \quad 201$, so ${ }^{\overline{2}} 3 \quad 067$

$$
\underline{2}_{3067}
$$

AB 246

067067
(a) False: $3 \quad 173205 \quad 17325$.

False
38.(a) True
40.(a) $y 0$
(c) $b \quad 8$ $y 2$
(a) $B C 24678910$ $B C 8$

(a) AC12345678910

 $A C 7$(a) $B C x=5$
$\begin{array}{llllll}B & C & x & 1 & x & 4\end{array}$
$30 x \quad 3 x \quad 0$

$\begin{array}{lllll}2 & 8 x & 2 & x & 8\end{array}$

$\begin{array}{lll}2 x & x & 2\end{array}$

$\begin{array}{lll}x & 1 & x 1]\end{array}$

$\left.\begin{array}{llll}2 & x & 1 & x\end{array} 11\right]$

$x 1 \quad x 1$

59. (a) $[35]$
(b) 3 5]

201121

[46] [08 [06]

44

(a) A B C12345678910 $A B C \varnothing$
(a) $A C \begin{array}{llll} & 1 & x & 5\end{array}$
$\begin{array}{llllll}A & B & x & 2 & x & 4\end{array}$
28] $\times 2 \times 8$

$1 x \times 1$

$\begin{array}{lllll}1 & x & 2 & x\end{array}$ [12]

$x 5 \quad x \quad[5$

$5 x 2 x 52$

60. (a) [0 2
(b) 20]

20110

[46] [08 [48

66. 6] 210 26]

68. (a) $\begin{array}{llllll}5 & 5 & 5 & 555 \text {, since } 5 \quad 5 .\end{array}$
(b) $73 \quad 73$
(b) $\quad 10 \quad$, since 10 .
69.(a) $646 \quad 42 \quad 2$
(b) $\frac{1}{1} \quad \underline{11} 1$
$\begin{array}{llllllll}\text { (b) } & & 1 & 15 & 5 & 5 \\ \text { 71. (a) } 2 & 6 & & & 12 & 12 & \end{array}$
71. (a) $\begin{array}{llll}2 & 6 & 12 & 12 \\ & \text { (b) }\end{array}$
73. 2355
75. (a) $17 \quad 2 \quad 15$
(b) $\begin{array}{llllll}21 & 3 & 21 & 3 & 24 & 24\end{array}$
(1) $\quad \underline{3} \quad \underline{11} \quad \underline{12} \quad \underline{55} \quad \underline{67} \quad \underline{67}$
74. 251544
70. (a) $2122 \quad 1210 \quad 10$
(b) $\begin{array}{lllll}1 & 111 & 1 & 11 & 01\end{array}$
72. (a)

76. (a) $\frac{7}{15} \quad \frac{1}{21} \quad \frac{49}{105} \quad \frac{5}{105} \quad \frac{54}{105} \quad \frac{18}{35} \quad \frac{18}{35}$
(b) 38
$38 \quad 57$
(c) 261826180808 .
(a) Let $x \quad 0777$. So 10x $77777 x \quad 077779 x \quad 7$. Thus, $x \quad \underline{7}_{9}$.

Let $x \quad 02888$. So 100x 28 888810x $2888890 x$ 26. Thus, $x \quad \underline{26}_{90} \quad \underline{13}_{45}$.
Let $x \quad 0575757$. So $100 x \quad 575757 x \quad 0575799 x \quad 57$. Thus, $x \quad{ }_{99} \quad \underline{37} 33$.
(a) Let $x \quad 52323$. So $100 x \quad 52323231 x \quad 5232399 x$ 518. Thus, $x \quad \xrightarrow{518} 99$.

Let $x \quad 13777$. So $100 x \quad 137777710 x \quad 13777790 x \quad 124$. Thus, $x \quad \frac{124}{90} \quad \underline{62}$.
Let $x \quad 213535$. So 1000x $2135353510 x \quad 213535990 x \quad$ 2114. Thus, $x \quad{ }^{2114}{ }_{990} \quad{ }^{1057} 495$.
79. 3, so33.
80. 2^{-1}, so $\quad 1 \quad 22 \quad 1$.
81. $a b$, so $a \quad b a b \quad b$.

(a) a is negative because a is positive.
$b c$ is positive because the product of two negative numbers is positive.
$a \quad b a b$ is positive because it is the sum of two positive numbers.
$a b a c$ is negative: each summand is the product of a positive number and a negative number, and the sum of two negative numbers is negative.
(a) b is positive because b is negative.
$a b c$ is positive because it is the sum of two positive numbers.
$c \quad a \quad c a$ is negative because c and a are both negative.
$a b^{2}$ is positive because both a and b^{2} are positive.

Distributive Property
86.

Day	T_{O}	T_{G}	$T_{O} T_{G}$	$T_{O} T_{G}$
Sunday	68	77	9	9
Monday	72	75	3	3
Tuesday	74	74	0	0
Wednesday	80	75	5	5
Thursday	77	69	8	8
Friday	71	70	1	1
Saturday	70	71	1	1

TO T_{G} gives more information because it tells us which city had the higher temperature.
(a) When $L 60, x 8$, and $y 6$, we have $L 2 x y 60286602888$. Because 88108 the post office will accept this package.

When $L 48, x 24$, and $y 24$, we have $L 2 x y 48224244896144$, and since 144 108, the post office will not accept this package.
If $x \quad y \quad 9$, then $L \quad 29 \quad 9 \quad 108 \quad L \quad 36 \quad 108 \quad L \quad 72$. So the length can be as long as 72 in .6 ft .
88. Let $x \quad \frac{m_{1}}{n_{1}}$ and $y \quad \frac{m_{2}}{n_{2}}$ be rational numbers. Then $x \quad y \quad \frac{m_{1}}{n_{1}} \quad \frac{m_{2}}{n_{2}} \quad \frac{m 1 n_{2} m 2 n_{1}}{n_{1} n_{2}}$,
$y^{m 1} \frac{m 2}{m 1 n 2} m 2 n 1$, and $x y m 1 m 2 \quad m 1 m 2$. This shows that the sum, difference, and product
of two rational numbers are again rational numbers. However the product of two irrational numbers is not necessarily irrational; for example, $\overline{\bar{z}} \overline{\bar{z}} 2$, which is rational. Also, the sum of two irrational numbers is not necessarily irrational;

	-	-
for example,	2	20

 this is not the case.
Similarly, $\frac{1}{2} \quad \overline{2}$ is irrational.
Following the hint, suppose that $r t q$, a rational number. Then by Exercise 6(a), the sum of the two rational numbers r t and r is rational. But $r t r t$, which we know to be irrational. This is a contradiction, and hence our original premisethat $r t$ is rational-was false.
r is rational, so $r \quad a_{\bar{b}}$ for some integers a and b. Let us assume that $r t \quad q$, a rational number. Then by definition, $q d^{c}$ for some integers c and d. But then $r t q{ }^{a} b t d^{c}$, whence $t a d{ }^{b c}$, implying that t is rational. Once again we have arrived at a contradiction, and we conclude that the product of a rational number and an irrational number is irrational.
90.

x	1	2	10	100	1000
1	1	1	1	1	1
		2	10	100	1000

As x gets large, the fraction $1 x$ gets small. Mathematically, we say that $1 x$ goes to zero.

x	1	05	01	001	0001
$\frac{1}{x}$	1	1			
	$\underline{5} 2$	$\underline{1}$			
	$\underline{\underline{I}} 10$	$\frac{1}{\underline{\underline{T}} 100}$	$\underline{\underline{0001}} 1000$		

As x gets small, the fraction $1 x$ gets large. Mathematically, we say that $1 x$ goes to infinity.
(a) Construct the number 2 on the number line by transferring the length of the hypotenuse of a right triangle with legs of length 1 and 1.

(b) Construct a right triangle with legs of length 1 and 2. By the

Pythagorean Theorem, the length of the hypotenuse is
$\overline{12 \quad 22} \quad-5$. Then transfer the length of the hypotenuse

to the number line.
(c) Construct a right triangle with legs of length $\overline{2}$ and 2
[construct $\overline{2}$ as in part (a)]. By the Pythagorean Theorem,
the length of the hypotenuse is

Then

transfer the length of the hypotenuse to the number line.
(a) Subtraction is not commutative. For example, 5 10185

Division is not commutative. For example, 5 1 1115
Putting on your socks and putting on your shoes are not commutative. If you put on your socks first, then your shoes, the result is not the same as if you proceed the other way around.
Putting on your hat and putting on your coat are commutative. They can be done in either order, with the same result. Washing laundry and drying it are not commutative.
Answers will vary.
Answers will vary.
Answers will vary.
(a) If $x \quad 2$ and $y \quad 3$, then $x \quad y 2 \quad 35 \quad 5$ and $x y 2 \quad 3 \quad 5$.

If $x 2$ and $y 3$, then $x \quad y 5 \quad 5$ and $x y \quad 5$.
If $x 2$ and $y \quad 3$, then $x \quad y 2 \quad 3 \quad 1$ and $x y \quad 5$.
In each case, $x \quad y x y$ and the Triangle Inequality is satisfied.
(b) Case 0: If either x or y is 0 , the result is equality, trivially.

Case 2: If x and y have opposite signs, then suppose
0 and $y \quad 0$. Then $\begin{array}{llllll}x & y & x & y & x & y\end{array}$

P. 3 INTEGER EXPONENTS AND SCIENTIFIC NOTATION

1. Using exponential notation we can write the product $5 \begin{array}{llllll}5 & 5 & 5 & 5 \text { as } 5^{6} \text {. }\end{array}$
2. Yes, there is a difference: $\begin{array}{llllllllllll}4 & 5 & 5 & 5 & 5 & 625 \text {, while } & 5^{4} & 5 & 5 & 5 & 5 & 625 .\end{array}$
3. In the expression 3^{4}, the number 3 is called the base and the number 4 is called the exponent.
4. When we multiply two powers with the same base, we add the exponents. So $3^{4} 3^{5} \quad 3^{9}$.
5. When we divide two powers with the same base, we subtract the exponents. So
6. When we raise a power to a new power, we multiply the exponents. So $3^{4} 2 \quad 3^{8}$.
10CHAPTER P Prerequisites
7. (a) $2^{1} 2$
(b) $2^{3} 8$

8
1

(c) $2 \quad 2$
(d) $23 \begin{array}{lll}3 & 8\end{array}$ $\xrightarrow{1}$

Scientists express very large or very small numbers using scientific notation. In scientific notation, 8,300,000 is $83 \quad 10{ }^{6}$ and 00000327 is $32710{ }^{5}$.
9. (a) No, $\begin{array}{ccccc}2 & 2 & 3 & 2 & 9 \\ \overline{3} & & \overline{2} & & \overline{4} .\end{array}$
(b) Yes, $\begin{array}{lllll} & 5^{4} & 625 \text { and } & 5^{4} & 5^{4}\end{array} 625$.

No, $2 x^{4}{ }^{3} 23 x^{4}{ }^{3} 8 x 12$.
23
123 1, 3 $\quad 27$
$\begin{array}{llllll}\text { (c) } & 5 & 3 & & 5^{2} & 25 \\ & & 2_{2}^{2} & 2 & \\ \text { (c) } 5^{2} & -5 & 52 & 4\end{array}$
12. (a) $5^{3} 125$
(b) $5^{3} 125 \quad 8$
$21^{-} 1$
12

$\overline{2}_{3} \quad$| 3 | |
| :---: | :---: |

(c) $3 \quad 238$

6
(c) $2^{2}{ }_{2}^{3} 64$
(c) $54 \quad 5^{2} \quad 390,625$
$\begin{array}{lrr} \\ \text { (c) } & 1 & 1 \\ 2 & 9\end{array}$
(a) $3^{8} \quad 3^{5} \quad 3^{13} \quad 1,594,323$
(b) $3 \quad 3 \quad 3 \quad 9$
(b) $6^{0} 6 \quad 6$

$$
\begin{array}{cccc}
& & \begin{array}{c}
4 \\
4
\end{array} & 1 \\
4^{4} & 5^{-} & 3
\end{array}
$$

(a) $5^{3} \quad 5 \quad 5^{4} \quad 625$
(b) $\begin{array}{llll}\underline{10}^{7} & 10 & & \\ 1000\end{array}$
(b) $5 \quad 5 \quad 125$
18. (a) $3^{3} 3^{1} 3^{4}$
(c) $7 \quad 7^{3} \quad 343$
(a) $x^{2} x^{3} x^{2} 3{ }^{3}$

236
35352
(b) $x^{x^{3}} \quad 1^{3} x \quad x$
(a) $y^{5} y^{2} \quad y^{5} 2 \quad y^{7}$
(b) $8 x^{2} \quad 8^{2} x^{2} \quad 644^{x 2}$
(b) 2452451
(a) $x^{5} x \quad x \quad x \quad \begin{aligned} & \\ & x\end{aligned}$
$\xrightarrow{y^{10} y^{0}} 10073$
(c) $y^{7 y} \quad y$
22. (a) $y^{2} y^{5} y^{25} y^{3} \quad \frac{1}{y^{3}} \quad$ (b) $z^{5} z^{3} z^{4} z^{5} 34 \quad z^{2} \quad \begin{gathered}2 \\ \text { (c) } \frac{x^{6}}{x^{10}} x^{6} 10\end{gathered} \quad x^{4}$
23. (a) $\frac{a^{\frac{9 a}{a}}{ }^{2}-}{a^{9} 21} a^{6} \quad$ (b) $a^{2} a^{4} \quad a^{2} 4 a^{6} \quad a^{63} a^{18}$
(c) $2 x^{2} 5 x^{6} 2^{2} x^{2} \quad 5 x^{6} \quad 20 x^{2}{ }^{6} \quad 20 x^{8}$ $\begin{array}{lllllllll}z^{2} z^{4} & 224 \\ z^{6} & 4 & 4 & 4 & 4 & 454 & 20\end{array}$
24. (a) $z^{3} z_{1} \quad z^{31} \quad \overline{z^{2}} \quad z^{62} z$
(b) $2 a^{3} a^{2} \quad 2 a^{3} 2 \quad 2 a^{5} \quad 2 a \quad 16 a$
(c) $3 z^{2}{ }^{3} 2 z^{3} 3{ }^{3} z^{23} \quad 2 z^{3} \quad 54 z^{63} \quad 54 z^{9}$
25. (a) $3 x^{2} y 2 x^{3} 32 x^{2} 3 y \quad 6 x^{5} y$
(b) $2 a^{2} b 13 a^{2} b^{2} 23 a^{2} 2 b \quad 12 \quad 6 b$
(c) $4 y^{2} x^{4} y^{2} \quad 4 y^{2} x^{42} y^{2} \quad 4 x^{8} y^{2}{ }^{2} 4 x^{8} y^{4}$
26. (a) $4 x^{3} y^{2} 7 y^{5} 47 x^{3} y^{25} \quad 28 x^{3} y^{7}$
(b) $9 y{ }^{2} z^{2} 3 y 3 z 93 y 23 z^{2} 1_{7} 27 y z^{3}$

$$
1 \quad 2 \quad \frac{8 x^{7} y^{2}}{\cdots}-\quad \frac{2^{2} 8 x^{7} y^{2}}{32 x^{7} y^{2}} \quad 7622
$$

(c) $8 x^{7} y^{2} \quad{ }_{2} x^{3} y \quad 1 x^{3} y \quad 2 \quad x^{3} 2 y^{2} \quad \begin{array}{cllll}6 & y^{6} & 32 x & y & 32 x\end{array}$
(a) $2 x^{2} y^{3} 2_{3 y} \quad 2^{2} 2^{x} 22^{y_{3}} 2{ }_{3 y} 1^{x} 4^{y} 7$

$$
\begin{array}{llllllll}
x_{2} y & 1_{x 2} & 5 & y & 1 & x 7 & y & 1
\end{array} \quad x 7-1 .
$$

$$
7^{3} \quad \underline{x 23}, 3 \quad x^{6} y^{3}
$$

28. (a) $5 x 4 y^{3} 8 x^{3} \begin{array}{lllllll}2 & 5 x^{4} y^{3} & 8^{2} x^{32} & 5 & 8^{2} x\end{array} 6^{6} y^{3} 320 x^{2} y^{3}$
(b) $\frac{y^{2 z} 3}{y 1} \quad \frac{y}{y^{2} z} \quad \frac{1}{y z}$

$$
\xrightarrow[3 b]{-2} \quad 2 \quad \frac{a^{6} b}{b}, 4 \quad a^{6}
$$

(a) $x^{3} y^{3} \quad 1 \quad x 3^{1} y 3$
30. (a) $\quad \begin{array}{lllllll} & x^{2} y^{4} & & x_{2} & & y_{2}^{4} & y^{12} \\ & & y_{2} & 3\end{array}$

(b) $y 2$| 1 | | ${ }^{3}$ | x^{9} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $8 y^{9}$ | | | |

$$
\begin{array}{llll}
\frac{2 a 1}{3 x^{2} y^{5}} & \begin{array}{l}
3 \\
2
\end{array} \quad \frac{b}{3} .1 & 2 \\
&
\end{array}
$$

31. (a) $\begin{array}{lllll}9 x^{3} y & 3^{2} y 3 & 22 x 32 & 4 x 6\end{array}$

$$
-\frac{3}{y} \underline{1} \quad 2 \quad-3 \quad 2 \quad y, 32 \quad \underline{y}^{6}
$$

(c) $\begin{array}{llllll}x & 2 & y 2 & y 1 x 2132 x 32 y 22 & 9\end{array}$
$\underline{y} 1 \quad 1 \quad 3 x-3 \quad 2$
$x^{4} y^{5}$.
32. (a) $\begin{array}{lll}\frac{1}{2}-\underline{a}-3 \\ 5 & -4 & \underline{4} \underline{2} \\ \underline{2}\end{array}$

$$
\begin{aligned}
& a_{2} b 2^{3} a^{3} a^{2} 3 b 23 a 32 a b^{6} b^{6} a \quad b 6 \frac{}{a^{12}} \\
& \underline{x^{2}}, 2 \text { 2y } 3
\end{aligned}
$$

$1 \quad 221 a 35 b$

$41 \quad$| $4 a^{2} b^{3}$ |
| :--- |
| 3 |

b
$4 b$

12CHAPTER P Prerequisites

...
$\underline{s} \underline{\underline{t}} \underline{-4} 2$
(b) $x^{2} y^{3} z 4 \quad x 323 y 2333 z 3343$
$x y^{2} 2 z^{3}$
$\underline{25 t}{ }^{10}$
z^{3}
$x^{3} y^{15}$
35. (a) $69,300,000 \quad 693 \quad 10^{7}$
(b) 7,200,000,000,000 7210^{12}
(c) $0000028536 \quad 28536 \quad 10^{5}$
(d) $00001213 \quad 1213 \quad 10^{4}$
37. (a) $319 \quad 10^{5} \quad 319,000$
(b) $2721 \quad 10^{8} \quad 272,100,000$
(c) $26701^{8} 000000002670$
(d) $999910{ }^{9} 0000000009999$
(a) $5,900,000,000,000 \mathrm{mi} 59 \quad 10^{12} \mathrm{mi}$ $00000000000004 \mathrm{~cm} \quad 4 \quad 10^{13} \mathrm{~cm}$ $\begin{array}{llllllll}33 & \text { billion billion molecules } & 33 & 10^{9} & 10^{9} & 3 & 3 & 10^{19}\end{array}$ molecules
(b) $6 \quad 10^{12} 6,000,000,000,000$
(c) $855 \quad 10^{3} 000855$
(a) $93,000,000 \mathrm{mi} \quad 93 \quad 10^{7} \mathrm{mi}$ 0000000000000000000000053 g
5,
$5,970,000,000,000,000,000,000,000$
kg
5 $\frac{107}{} \quad 100^{24} \mathrm{~kg}^{23} \mathrm{~g}$ g
41. $722^{7} 0^{9} 180610^{12} 721806 \quad 10^{9} 10^{12} 13010^{21} 1310^{20}$
42. $1062 \quad 10^{24} 861 \quad 10^{19} 1062$ 8 $810^{24} 10^{24} \quad 10^{19} \quad 914 \quad 10^{43}$

44. $\begin{gathered}7311634110 \\ 00000000019\end{gathered} \frac{731101^{634} 9^{10}}{1910} \quad \frac{73116341}{19} 101289$
 $59462100000058594621 \quad 10 \quad 5810 \quad 594621 \quad 58$
$74 \quad 10^{14}$
46.

10100 is to 10101 .
48. (a) b^{5} is negative since a negative number raised to an odd power is negative.
(b) b^{10} is positive since a negative number raised to an even power is positive.
(c) $a b^{2} c^{3}$ we have positive negative ${ }^{2}$ negative ${ }^{3}$ positive positive negative which is negative.
(d) Since $b \quad a$ is negative, $b \quad a^{3}$ negative ${ }^{3}$ which is negative.
(e) Since b is negative, $b a_{3}^{4}$ negative ${ }^{4}$ which is positive.

(f) $b c \quad$ negative negative positive positive positive which is negative.
49. Since one light year is $59 \quad 10^{12}$ miles, Centauri is about $43 \quad 59 \quad 10^{12} \quad 254 \quad 10^{13}$ miles away or $25,400,000,000,000$ miles away.

$$
9310^{7} \mathrm{mi} \quad 186000^{\mathrm{mi}}{ }_{t \mathrm{~s} \quad t^{9}} \quad \begin{array}{llll}
\mathrm{s} 186000 & \underline{\mathrm{~s}} 500 \mathrm{~s} & 8^{-1} 3 \mathrm{~min} .
\end{array}
$$

Volumeaverage depth area 37103 m 361014 m 2

m3

The number of molecules is equal to
54. (a)

Person	Weight	Height	$\mathrm{B}_{\mathrm{BMI}} 703 \underline{\underline{H}}^{2}-$	Result
Brian	295 lb	$5 \mathrm{ft} 10 \mathrm{in} .70 \mathrm{in}$.	4232	obese
Linda	105 lb	5 ft 6 in. 66 in.	1695	underweight
Larry	220 lb	$6 \mathrm{ft} 4 \mathrm{in}$.76 in .	2678	overweight
Helen	110 lb	5 ft 2 in. 62 in.	2012	normal

Answers will vary.
55.

Year	Total interest
1	$\$ 15208$
2	30879
3	47026
4	63664
5	80808

Since $10^{6} 10^{3} 10^{3}$ it would take 1000 days 274 years to spend the million dollars.
Since $10^{9} 10^{3} 10^{6}$ it would take $10^{6} \quad 1,000,000$ days 273972 years to spend the billion dollars.

14CHAPTER P Prerequisites

57. (a) $\frac{18^{5}}{9^{5}} \quad \frac{18}{9} \quad 2^{5} \quad 32$

$$
20^{6} \quad 05^{6} \quad 20 \quad 05^{6} \quad 10^{6} \quad 1,000,000
$$

(a) We wish to prove that $a_{n} a^{m n}$ for positive integers $m n$. By definition, a^{n} m factors

n factors
a

n factors

59. (a) We wish to prove that $\bar{b} n \quad \overline{a^{n}}$. By definition, and using the result from Exercise 58(b),

$$
\begin{array}{cccc}
\frac{a}{b} & n & \frac{1}{\underline{a} n} & \frac{1}{a^{n}} \\
& & \frac{b}{a^{n}} \\
& b b^{n}
\end{array}
$$

$b b^{n}$								
	a^{n}	b^{m}	$a n$	$\frac{1}{a^{n}}$	1	b^{m}	b^{m}	
(b) We wish to prove that	b^{m}	a^{n}. By definition,	$b m$	$\frac{1}{b^{m}}$	a^{n}	1	a^{n}	

P. 4 RATIONAL EXPONENTS AND RADICALS

Using exponential notation we can write ${ }^{3}$ 5 as 5^{13}.
Using radicals we can write 5^{12} as 5 .
No. $\overline{5252} 125212 \quad 5$ and $5^{2}-512{ }^{2} 51225$.
$412^{3} 238 ; 43^{12} 64128$

Because the denominator is of the form a, , we multiply numerator and denominator by $a:$| | - | 133 | |
| :--- | :--- | :--- | :--- |
| | $3 \overline{333}$ | - | - |

$5^{13} 5^{23} 5^{1} 5$
No. If a is negative, then $4 \overline{a^{2} 2} a$.
No. For example, if $a 2$, then $a^{2} 48 \overline{22}$, but $a \overline{2} 0$.
9. $\mathbb{1}_{3} 3^{12}$
10. ${ }^{3}{ }^{2} \quad 23$
11. $42342 \begin{array}{cc}3 & 3^{3} 16 \\ 5-3 & - \\ 35 & \end{array}$

$a^{2} 5^{5} a^{2} \quad-$
17. ${ }^{3} \overline{y^{4}} \quad y^{43}$
(a) $164^{2} 4-$
(b) ${ }^{4} \overline{16}^{4} 2^{4}-2$

$$
\begin{array}{lllll}
1 & & 4 & 4 & 1 \\
- & &
\end{array}
$$

(c) ${ }^{4} \quad 164 \quad \overline{2} \quad 2$
(a) $3^{3} 16 \quad 3^{3} 2{ }^{2} 36^{3} \overline{2}$

18	18	7	2^{-}
(b)	81	$\overline{81}$	$\overline{9} 3$

2733233 -

$\overline{42} 22$
(a) $7^{-} 28 \overline{87} 2819 \overline{6 \quad 14}$
(b) $\frac{48}{3^{-}} \quad \square_{316 \quad 4}^{48}$
$4_{24} 4_{54}-4_{24} 54{ }^{4} 12966$
25. (a)6 $\begin{array}{lll}\frac{216}{-} & -216 & - \\ { }^{3} 2^{3} 32-36 & 64 & 6\end{array}$

$$
\underset{-}{\mathrm{I}} \quad \mathrm{I} \quad \underline{1}
$$

(c) $444 \quad 644 \quad 256+2564$
${ }^{4}-\overline{x^{4} x}$
${ }^{5} \overline{32 y^{5}} 2^{5} y^{y^{6}}{ }^{5}{ }^{5} y^{6} \overline{2 y} y^{5} y \quad-$
$4 \overline{16 x 8}^{4} 24 \overline{x^{8} \quad 2} x^{2}$
${ }_{3} x^{3} \overline{y x 3}^{13} y_{13} \quad x^{3} y \quad-$
$36 r 2446 r+2^{-2}-6-+2$
${ }^{3} 6 \overline{4 x-68} x^{3}{ }^{13} 2 x$
$-\quad-\quad-\quad-\quad-$
$3218162 \underline{92422 \underline{322} 42 \overline{32} 72}$
$754825316352 \overline{343} 534393$
1254525595525325553525
16. $\stackrel{1}{-}-\frac{1}{-}$
18. $y{ }^{x^{5}}{ }^{53} x^{552}$
(a) $648^{2} \frac{1}{553}$
8 $\frac{1}{3 y^{5}}$
(b) ${ }^{3} \quad 64 \quad 3 \overline{4^{3}} \quad 4$
(c) ${ }^{5} 32^{5} \quad 2^{5} \quad 2$
22. (a) $2^{3} 812^{3} \overline{33^{3}} 6^{3} \overline{3^{-}}$ $\begin{array}{lll}-12 & - \\ -32 & 23\end{array}$
(b) $-25^{\frac{7}{5}} \quad 5^{-}$

(c) $\begin{array}{llll}49 & 2 & 2 & 7\end{array}$
(a) $\begin{array}{lllll}12 \quad 2412 \quad 242882 \quad 122 \quad 12 \quad 2\end{array}$

$$
\underline{54} \quad 54
$$

(b) $6 \quad 693$
(c) $3 \overline{15}^{3} 7 \overline{5}^{3} 15 \overline{75{ }^{3} 1125}{ }^{3} 1259 \quad 5^{3} 9$ $\begin{array}{llll}\top & \square & \top & 1\end{array}$
26. (a) $5 \overline{8} 54 \quad 5-32^{-} 2$
(b) ${ }_{6} \overline{1}_{6}{ }^{\overline{1}}-\quad 128^{-6} 642$ $3_{3} 4_{3} 4_{3} 111$ -
${ }^{3} 1 \overline{081} 0827^{3} 27 \quad 3 \quad-\quad=$
$5 \overline{x^{10}} x^{10} \quad 15 \quad x^{2}$
${ }^{3} \overline{8 a^{3}}{ }^{3} 3 a^{3} a^{2} \quad 2 a^{3} a^{2}$ -
${ }_{3} \overline{x^{3} y^{6} x^{3}} y^{6}{ }^{13} \quad x y^{2}$
$x^{4} y \frac{4 x^{4} y^{4}}{12} \quad x^{2} y^{2}$

$$
\begin{aligned}
& { }^{4} \overline{48 a^{7} b^{4}}{ }_{4}^{4} 44 \quad 3 \quad{ }^{3} \\
& { }^{4} 2 a b \quad 3 a \quad 2 a b{ }^{4} 3 a \\
& { }^{3} 544^{3} 16^{3} 23^{3}{ }^{3} 2323^{3} 22^{3} 2{ }^{3} 2 \\
& 9 a_{3} a 32 a 2 \quad a \quad a \quad 3 a \quad a \quad a \quad 3 a \quad 1 \quad a \\
& -16 x x^{5}-\quad 42 x \quad x^{2}{ }^{2} x \quad 4 \quad x \quad x^{2} \quad x \quad x^{2}
\end{aligned}
$$

 — - -
$81 x^{2}-8181 x^{2} 181 x^{2}+9 x^{2} 1$
$3 \longdiv { 3 6 2 3 6 y ^ { 2 } 3 6 } x ^ { 2 } \overline { y ^ { 2 } } \quad 3 6 x ^ { 2 } \quad \overline { y ^ { 2 } } \begin{array} { l l l l } { 6 } & { x ^ { 2 } } & { y ^ { 2 } } \end{array}$
49. (a) $16^{14} 2$
(b) $125^{13_{5}}$
(c) $9 \begin{array}{lll}12 & \frac{1}{912} & \frac{1}{3}\end{array}$
50. (a) $27^{13} 3$
$2^{2} 4$
(b) $\begin{array}{lll}8^{13} & 2\end{array}$
(c) $8 \quad \overline{2}$

-		-		-
25	32	5	3	125
-		-		

52. (a) $125^{23} \quad 5^{2} 25$
(b) $\begin{array}{llll}64 & 8 & 512\end{array}$
(c) $277^{43} \quad 3 \quad 4 \quad \overline{81}$

335
_ ${ }^{3}$
53. (a) 52351352313515
(b) 3253352553
(c) $34 \quad 41334$
(b) $\begin{array}{ll}723 \\ 753 \\ 72353 & \perp\end{array}$
(c) $56^{-} \quad 10 \quad 61510 \quad \frac{1}{36}$
54. (a) 3273127327127329

When x 3, y 4, $z 1$ we have $x^{2} y^{2} 3^{2}-4^{2} 9-1625 \quad 5$. \qquad

$$
3 \quad 3
$$

\qquad

When $x \quad 3, y \quad 4, z 1$ we have
$9 x 232 y 23 \quad z 23 \quad 9323 \quad 2423 \quad 123 \quad 3323 \quad 2323113$

$$
3^{2} 2^{2} 194114
$$

When $x \quad 3, y \quad 4, z 1$ we have $x y^{2 z} \quad 34^{2} \quad 1 \quad 122^{2} 144^{1}$.
59. (a) $x^{3} 4 x^{5} 4 x^{34} 54 x^{2}$
60. (a) $r^{16} r^{5} 6 r^{1656} r$

(b) $y^{23} y^{43} \quad y^{23} 43 \quad y^{2}$
(b) $a^{3} 5 a^{3} 10 a^{3} 5310 a^{9} 10 \quad 8 a^{134}$ $\frac{a^{54} \quad 2 a^{34} \quad 3}{a}$
$¥$
62. (a) $\underline{x 34 x^{74}} \quad x^{347454} \quad x^{54}$
63. (a) $8 a 6 b^{32}{ }^{23} 823 a 623 b 32234 a 4 b$
(b) $4 a 6 b 832432 a 632 b 8328 a 9 b 12$
64. (a) $64 a 6 b^{3}{ }^{23} 6423 a 623 b^{3} 2316 a 4 b^{2}$ $23 \quad-1$ 35
66. (a) $x 5 y 13 \quad 12 \quad \begin{array}{r}535 y 1335 \\ 15\end{array}$
67. (a) $y 12 y \quad 3 \quad x 23216 y 12316$ $\underline{x} \underline{x} \underline{2} 16$
(b) $168 z^{32}{ }^{34} 1634834 z^{32348} 6 z^{98}$
(b) $168 z^{32} 1634834 z 32348 \quad 6 z^{98}$
 $3215 t 54 \quad 152 r 4 t \quad 14 \quad 21 t^{14} r 4 t 0 r 4$
x
1
(b) $\begin{array}{rll}x 2^{1} y_{1}{ }_{4} & 4 x y & 2 y \\ L^{2} & 4 & 2\end{array}{ }^{412}$

SECTION P. 4

2

87. $\quad 42 \quad 214 \quad 232 \quad$| | |
| :--- | :--- | :--- | :--- | :--- |

(b) $\frac{1}{55}-\frac{1}{5}-\frac{5 x}{\frac{5 x}{5}}$
x

$$
\begin{array}{llll}
1 & 1 & 3 \bar{x} & 3 \overline{x^{2}}
\end{array}
$$

89. (a) $3 \bar{\mp} \quad 3 \bar{x} \quad \overline{x^{2}} \quad x$
90. 4 3 a $a^{3} 34 b_{12} 24$
$\begin{array}{ll}a b & s^{132}\end{array}$
91. $s s^{3} \quad-\quad a 34$
92. (a) $12 \quad 12=\overline{S^{5}}$

2y $4 \underline{3}$

$\underline{1}-342$
70. $x^{5} x^{5} 2$
72. $5 \frac{\text { 世 }}{x^{3}} \quad-\frac{1}{x 35} \quad x^{35}$
74. $4_{b^{3}} \quad{ }_{b} b^{-} 412 \quad b 54$
76. $2 \boldsymbol{a}$ - $\quad a^{2} \quad 2 a^{12} 232 a^{7} 6$

0. ${ }_{-}^{3} \square^{*} \quad{ }^{3}{ }^{3 x y}$

54x 2y $\underline{-}^{327 y}$
$\bar{a}^{3} \frac{1}{b}-$

$$
\begin{aligned}
& \text { (a) } 12 \\
& \begin{array}{lll}
- & 3 & 12^{-} \\
- & 3 & 4_{2}^{3}
\end{array} \\
& \text { (c) } \begin{array}{lllll}
8 & - & \frac{12}{2} & \frac{5}{5} & -\frac{60}{5^{13}} \\
8^{3} & \\
\hline
\end{array}
\end{aligned}
$$

(c) ${ }_{c^{35}}^{a}{ }_{c 3^{1}} \frac{-a}{5}-\frac{b^{23}}{c^{25}} \quad \frac{a b^{23}}{c}$.
$\underline{1}-\underline{2} \underline{5} \quad \underline{2}$
$\begin{array}{lll}1 & 1 & 3-3-\end{array}$

$\begin{array}{llll}1 & 1 & 6 \bar{x} & 6_{\bar{x}}^{\bar{x}}\end{array}$
(b) $\begin{array}{ccll}6 \overline{x^{\top}} & 6 \overline{x^{\top}} & 6^{-1} & x \\ & 1 & 7-\bar{x} & 7\end{array}$
$1 \quad 7_{-4} \quad{ }_{x^{4}}$
(c) 1
(b) $4 \overline{x^{7}} \quad 4 \overrightarrow{x^{7}} \quad 4 \stackrel{\square}{*}$
(c)

$$
\begin{aligned}
& \square-\frac{x}{x} x \\
& \begin{array}{c}
\text { [} \bar{x}-\bar{x} \bar{x} \bar{x} \overline{3 x^{2}} \frac{3 \overline{x^{2}}}{} \\
x_{3} \overline{x 3}=\frac{x 2}{}
\end{array}
\end{aligned}
$$

18 CHAPTER P Prerequisites
(a) Since $\underline{1}_{z} \quad \underline{1}_{3}, 2^{12} \quad 2^{13}$.
(b) $\begin{array}{llll}2 & 2^{12} \text { and } & 2 & 213\end{array}$ $\begin{array}{lllllllll}1 & 12 & 1 & 13 & 1 & \underline{1} & 1 & 12 & 1\end{array}$
(a) We find a common root: $714731273112 \quad 343112 ; 413 \quad 4412 \quad 44{ }^{7112} \quad 256112$. So $714 \quad 413$.

mile
First convert 1135 feet to miles. This gives 1135 ft 11355280 feet 0215 mi . Thus the distance you can see is given by $D 2 r h h^{2} \overline{2396002150215^{2} 17028413 \text { miles. }}$
(a) Using $f 04$ and substituting $d \quad 65$, we obtain $s 30 f d 30 \quad 04 \quad 65 \quad 28 \mathrm{mi} / \mathrm{h}$.

Using $f 05$ and substituting $s 50$, we find d. This gives $s 30 f d 5030 \overline{05 d} 5015 d 2500 \overline{15 d d} \frac{500}{} 3167$ feet.
(a) Substituting, we get $030600383400^{12} 3650{ }^{13} 1803858313866182216259814$ 18. Since this value is less than 16 , the sailboat qualifies for the race.
Solve for A when $L \quad 65$ and $V \quad 600$. Substituting, we get $03065 \quad 038 A^{12} \quad 360013-16$
$195038 A^{12} 253016038 A^{12} 58016038 A^{12} 2180^{A} 12$ 2738A 32920. Thus, the largest possible sail is 3292 ft^{2}.

$$
23 \quad 12
$$

96. (a) Substituting the given values we get $V \quad 1486 \frac{750050}{241230040^{17707}} \mathrm{ft/s}$.
(b) Since the volume of the flow is $V A$, the canal discharge is $1770775 \quad 13280 \mathrm{ft}^{3} \mathrm{~s}$.
97. (a)

n	11	12	15	$\begin{aligned} & 10 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & \hline \end{aligned}$
$21 n$	$2 \quad 2$	21414	$2-1149$	$2-1072$	$2-1007$

So when n gets large, $2^{1 n}$ decreases toward 1 .
(b)

n	1	2	5	10	100
$11 n$	+ 11	112	115	1110	11100

So when n gets large, 2 increases toward 1.

P. 5 ALGEBRAIC EXPRESSIONS

(a) $2 x^{3} \quad \underline{1}_{2} x 3$ is a polynomial. (The constant term is not an integer, but all exponents are integers.)
$x^{2} \quad \frac{1}{2}_{2} 3 x-x^{-2} \quad \underline{1}_{2} \quad 3 x^{12}$ is not a polynomial because the exponent $\underline{1}_{2}$ is not an integer.
2 is not a polynomial. (It is the reciprocal of the polynomial $x^{2} \quad 4 x \quad 7$. .) $4 x 7$
$x^{5} 7 x^{2} \quad x \quad 100$ is a polynomial.
${ }^{3} 8 x^{6} \quad 5 x^{3} \quad 7 x \quad 3$ is not a polynomial. (It is the cube root of the polynomial $8{ }^{6}{ }^{6}{ }^{5} 3 \begin{array}{llll} & 3 & 7 x & 3 .)\end{array}$
$3 x^{4} 5 x^{2} \quad 15 x$ is a polynomial. (Some coefficients are not integers, but all exponents are integers.)
2. To add polynomials we add like terms. So
3. To subtract polynomials we subtract like terms. So

We use FOIL to multiply two polynomials: $\begin{array}{llllllllllllllll}2 & x & 3 & x & x & x & 3 & 2 & x & 2 & 3 & x^{2} & 5 x & 6\end{array}$.
5. The Special Product Formula for the "square of a sum" is $A B^{2} A^{2} 2 A B B^{2}$. So $2 x 3^{2} \quad 2 x \quad 22 x 33^{2}$

2
$4 x \quad 12 x 9$.

The Special Product Formula for the "product of the sum and difference of terms" is $A B A B A^{2} B^{2}$. So $5 x 5 x 5^{2} x^{2} 25$ x^{2}.
(a) No, $x 5^{2} \quad x^{2} \quad 10 x \quad 25 \begin{array}{clll}2 & 25 . & \\ & & & \\ x 2 & & 2\end{array}$

Yes, if $a \quad 0$, then $\begin{array}{llll}x & a^{2} & x & 2 a x \\ 2 & & a\end{array}$.
(a) Yes, x $\begin{array}{lllllllll}5 & x & 5 & x & 5 x & 5 x & 25 & x & 25 .\end{array}$

9. Binomial, terms $5 x^{3}$ and 6 , degree 3
10. Trinomial, terms $2 x^{2}, 5 x$, and 3 , degree 2
11. Monomial, term 8, degree 0
12. Monomial, term ${ }_{2} x$, degree 7
13. Four terms, terms x, x^{2}, x^{3}, and x^{4}, degree 4
14. Binomial, terms $\quad \overline{2} x$ and $\quad \overline{3}$, degree 1
$\begin{array}{lllllll}6 x & 33 x & 76 x & 3 x 3 & 7 & 9 x & 4\end{array}$
$3 \quad 7 x 11 \quad 4 x 7 x \quad 4 x 3$ 1111x 8
$17.2 x^{2} 5 x x^{2} \quad 8 x \quad 32 x^{2} \quad x^{2}[5 x 8 x] 3 \quad x^{2} \quad 3 x \quad 3$
18. $2 x^{2} \quad 3 x$ 13x x^{2} 5x $42 x^{2} \quad 3 x^{2} 3 x$ 5x1 $4 x^{2} \quad 2 x \quad 3$
$\begin{array}{llllllllll}3 x & 1 & 4 x & 2 & 3 x & 3 & 4 x & 8 & 7 x & 5\end{array}$
$\begin{array}{llllllllll}8 & 2 x & 5 & 7 x & 9 & 16 x & 40 & 7 x & 63 & 9 x\end{array} 103$
21. $5 x^{3} 4 x^{2} 3 x \quad x^{2} 7 x \quad 2 \quad 5 x^{3} \quad 4 x^{2} \quad x^{2} 3 x \quad 7 x \quad 2 \quad 5 x^{3} \quad 3 x^{2} \quad 10 x \quad 2$

23. $2 x x \quad 1 \quad 2 x \quad 2 x$ $x \quad x$
25. $x^{2} x \quad 3 \quad 3 \quad 32$
$27.22 \quad 5 t \quad t \quad 10 \quad 4 \quad 10 t t^{2} \quad 10 t t^{2} 4$
$\begin{array}{llllll}2 & 2 & 3 & 3 & 2\end{array}$

$7 r \quad 3 r \quad 9 r$
31. $x^{2} 2 x^{2} x 12 x^{4} \quad x^{3} \quad x^{2}$
33. $\begin{array}{llllllllll}x & 3 & x & 5 & x^{2} & 5 x & 3 x & 15 & x^{2} & 2 x\end{array} 15$
$24.3 y 2 y 56 y 15 y$
26. $y y^{2} 2 y^{3} \quad 2 y$
$28.53 t 42 t t 32 t^{2} 21 t 20^{x}$
32432
30. 922254
32. $3 x^{3} \quad x^{4} \quad 4 x^{2} \quad 53 x^{7} \quad 12 x^{5} \quad 15^{3}$
34. $4 \times 2 \times 8 \quad 8 \quad 4 x \quad 2 x^{2} \quad 2 \quad 6 x \quad 8$

37. $3 t \quad 2 \quad 7 t \quad 4 \quad 21 t \quad 12 t 14 t 8 \quad 21 t \quad 26 t 8$
36. $2 t \quad 3 t \begin{array}{cccccc}2 & 2 t & 3 t & 3 & 2^{2} t & \\ 2\end{array}$
38. $4 s \quad 12 s \quad 5 \quad 8 s \quad 18 s \quad 5$
39. $3 x$ $5 \begin{array}{llllllllll}2 x & 1 & 6 x^{2} & 10 x & 3 x & 5 & 6\end{array} x^{2} 7 x 5$
$40.7 y \quad 3 \quad 2 y \quad 1 \quad 14 y^{2} \quad 13 y \quad 3$

20 CHAPTER P Prerequisites
41. $x \quad 3 y \quad 2 x \quad y \quad 2 x^{2} \quad 5 x y \quad 3 \begin{array}{llll}2 & \\ 2 & y & 2\end{array}$
42. $4 x$ 5y $3 x \quad y \quad 12 x^{2} \quad 19 x y \quad 5 y^{2}$
43. $2 r \quad 5 s 3 r \quad 2 s \quad 6 r \quad 19 r s \quad 10 s$
44. $6 u \quad 5 \quad u \quad 26 u \quad 7 u \quad 10$
45. $5 x 1^{2} 25 x^{2} 10 x \quad 1$
46. $27 y^{2} 49 y^{2} 28 y 4$
2
47. $3 y 1^{2} \quad 3 y^{2} 23 y 11^{2} 9 y \quad 6 y 1$
49. $2 u^{2} 4 u^{2} 4 u \quad 2$
48. $2 y \quad 5 \quad \begin{array}{ccccccc}2 y & 2 y & 5 & 5 y & 20 y & 25\end{array}$
50. $x \quad 3 y^{2} \quad x \quad 6 x y \quad 9 y$
51. $2 x \quad 3 y^{2} 4 x^{2} 12 x y 9 y^{2}$
52. $r 2 s^{2 r_{2}} 4 r s 4^{2}$
53. $x^{2} 1^{2} \quad x^{4} 2 x^{2} 1$
54. $2 \quad y^{3} \quad y^{6} 4 y^{3} \quad 4$
55. $x \quad 6 \quad x \quad 6 \quad x \quad 36$
57. $3 x \quad 4 \quad 3 x \quad 43 x^{2} \quad 4^{2} 9 x^{2} 16$
56.5 y 5 y $25 \quad y$
58. $2 y \quad 5 \quad 2 y \quad 5 \quad 4^{2} \quad 25$
59. $x 3 y x 3 y-x^{2} 3 y^{2} x^{2} 9 y^{2}$
60. $2 u 2 u 4 u^{2} 2$

64. $x 3^{3} x \quad 3 x \quad 3 \quad 3 x \quad 3 \quad 3 \quad x \quad 9 x \quad 27 x \quad 27$

66. $32 y^{3} 3 \quad 3 \quad 3 \quad 2 y \quad 332 y \quad 2 y \quad 8 y \quad 36 y \quad 54 y \quad 27$
67. $\begin{array}{lllllllllllllll}x & 2 & x & 2 x & 3 x & 2 x & 3 x & 2 x & 4 x & 6 & x & 4 x & 7 x & 6\end{array}$
$\begin{array}{llllll}2 & 3 & 2 & 2 & 2\end{array}$
68. $\begin{array}{lllllllllllll}x & 1 & 2 x & x & 12 x & x & x & 2 x & x & 1 & 2 x & x & 1\end{array}$
69. $2 x \quad 5 \quad x \quad x \quad 12 x \quad 2 x \quad 2 x \quad 5 x \quad 5 x \quad 5 \quad 2 x \quad 7 x \quad 7 x \quad 5$
$\begin{array}{llllll}2 & 2 & 3 & 2 & 3 & 2\end{array}$
70. $1 \begin{array}{llllllllllllll} & 2 x & x & 3 x & 1 x & 3 x & 1 & 2 x & 6 x & 2 x & 2 x & 5 x & x & 1\end{array}$

72. $x^{32} \quad \bar{x} \quad 1 \quad \bar{x} x^{2} \quad x$
75. $x^{2} y^{2} x^{2} \quad y^{2} 2 x^{2} y^{2} x^{4} y^{4} 2 x^{2} y^{2}$
74. $x 14^{2 x} 34^{x} \quad 14^{2 x *}$
"
$\xrightarrow{2} 1$
77. $x^{2} a^{2} x^{2} a^{2} x^{4} \quad a^{4}$
78. $x^{12} y^{12} \quad x^{12} \quad y^{12} x \quad y$
81. $1 x^{23} 1 x^{23} 1 \quad x 43$
83. $x 1 x^{2} \quad x \quad 1 \quad x^{2} \quad x \quad 12 \quad x^{2}$
84. $x_{2} x^{2} \quad x \quad 2 \quad x^{2} \quad x^{4} \quad 3 x^{2} \quad 4$
85. $2 x$ y $33 \begin{array}{lllllllllllll}2 & y & 32 x & y^{2} & 3^{2} & 4 x^{2} & 4 x & y & y^{2} & 9\end{array}$
82. $1 b^{2} 1 b^{2} b^{4} 2 b^{2} 1$
$x^{2} \quad 2 x \quad 1 \quad x^{4} x^{4} \quad x^{2} \quad 2 x \quad 1$
86. x y $\quad \begin{array}{llllllllll}2 & x & y & z & x^{2} & y^{2} & 2 y z\end{array}$
$1 \quad 1 \quad-$
87. (a) RHS $\quad \overline{2} \quad a \quad b^{2} a^{2} \quad b^{2} \quad{ }_{2} a^{2} b^{2} 2 a b a^{2} \quad b^{2} \quad$ RHS
88. LHSa2 $\quad b^{2} \quad c^{2} \quad d^{2} \quad a^{2} c^{2} \quad a^{2} d^{2} \quad b^{2} c^{2} \quad b^{2} d^{2}$

$$
a^{2} c^{2} b^{2} d^{2} 2 a b c d a^{2} d^{2} b^{2} c^{2} 2 a b c d a c \quad b d^{2} a d \quad b c^{2} \text { RHS }
$$

(a) The height of the box is x, its width is $62 x$, and its length is $102 x$. Since Volume height width length, we have $V \quad x 6 \quad 2 x \quad 10 \quad 2 x$.
(b) $V{ }_{x} \begin{array}{llllll}60 & 32 x & 4 x_{2} & & x_{2} & x_{3} \\ 3\end{array} 4^{3}$, degree 3 .
(c) When $x \quad 1$, the volume is $V \quad 60132 \quad 124 \quad 1^{3} 32$, and when $x \quad 2$, the volume is
$\begin{array}{llll}V & 602 & 32 & 224\end{array}$
(a) The width is the width of the lot minus the setbacks of 10 feet each. Thus width $x 20$ and length $y 20$. Since Area width length, we get $A x 20$ y 20 .
$\begin{array}{llllllll}A & x & 20 & y & 20 & x y & 20 x & 20 y\end{array} 400$
For the 100400 lot, the building envelope has $A 100204002080380$ 30,400. For the 200200 , lot the building envelope has A 2002020020180180 32,400. The 200200 lot has a larger buildi ig envelope.
91. (a) A $20001 r^{3} 2000 \quad 1 \quad 3 r \quad 3 r^{2} r^{3} 20006000 r 6000 r^{2} 2000 r^{3}$, degree 3 .

Remember that \% means divide by 100 , so $2 \% 002$.
92. (a) $P R \quad C 50$

Interest rate r	2%	3%	45%	6%	10%
Amount A	$\$ 212242$	$\$ 218545$	$\$ 228233$	$\$ 238203$	$\$ 266200$

(b) The profit on 10 calculators is $P \quad 0051022010 \quad 50 \$ 155$. The profit on 20 calculators is
$\begin{array}{llllll}P & 0 & 05 & 202 & 20 & 20 \\ 50\end{array} \$ 370$.
(a) When $x \quad 1, x 5^{2} 1 \quad 5^{2} 36$ and $x^{2} \quad 25 \quad 1^{2} 25 \quad 26$.

2
$\begin{array}{llll}x & 5^{2} & x & 10 x\end{array} 25$
(a) The degree of the product is the sum of the degrees of the original polynomials.

The degree of the sum could be lower than either of the degrees of the original polynomials, but is at most the largest of the degrees of the original polynomials.

$$
\begin{array}{lllll}
4 x & 4 x & 20 x & x & 10 x
\end{array} 21
$$

Sum: $2 x^{3} \quad x \quad 3 \quad 2 x^{3} \quad x \quad 7 \quad 4$.

P. 6 FACTORING

543
$5 \quad 4 \quad 3$

1. The polynomial $2 x \quad 6 x \quad 4 x$ has three terms: $2 x, 6 x$, and $4 x$.
2. The factor $2 x^{3}$ is common to each term, so $2 x^{5} \quad 6 x^{4} 4 x^{3} \quad 2 x^{3} x^{2} \quad 3 x \quad 2$. 3
 2

To factor the trinomial $x 7 x 10$ we look for two integers whose product is 10 and whose sum is 7 . These integers are 5 and
2, so the trinomial factors as $x 5 \times 2$.
4. The greatest common factor in the expression $4 \begin{array}{lllllll} & x & 1^{2} & x & x & 1^{2} & \text { is } x\end{array} 1^{2}$, and the expression factors as $4 x 1^{\llcorner } x x 1^{\llcorner } x 1^{<} 4 x$.
5. The Special Factoring Formula for the "difference of squares" is $A^{2} \quad B^{2} A \quad B \quad A \quad B$. So

$$
4 x^{2} \quad 25 \quad 2 x \quad 5 \quad 2 x \quad 5
$$

$$
\begin{array}{llll}
2 & 10 x & 25 & x
\end{array} 5^{2} .
$$

7.5a $205 a 4$
8. $3 b 123 b 43 b 4$
9. $2 x^{3} \times x 2 x^{2} 1$
10. $3 x^{4} 6 x^{3} \quad x^{2} \quad x^{2} 3 x^{2} 6 x \quad 1$
11. $2 x^{2}$ y $6 x^{y_{2}} 3 x y$ xy $2 x$ 6y 3
$12.7^{x_{4}}{ }^{y_{2}}{ }_{14 x^{y_{3}}}^{21 x^{y_{4}}}{ }_{7 x^{y_{2}}}{ }^{x_{3}}$ 2y $3^{y_{2}}$
yy $69 y 6 y 6 y 9$
$z 2^{2} 5 z \quad 2 z 2\left[\begin{array}{lll}z & 2 & 5\end{array}\right] \quad z \quad 2 \quad z \quad 3$
15. $x^{2} 8 x \quad 7 \quad x \quad 7 x 1$

17. $x^{2} 2 x \quad 15 \quad x \quad 5 x$
18. $2 x^{2} \quad 5 x \quad 7 \quad x \quad 12 x \quad 7$
19. $3 x^{2} \quad 16 x \quad 5 \quad 3 x \quad 1 x \quad 5$
20. $5^{2} 7 x$ 6 $5 x \quad 3 \quad x \quad 2$

23. $\boldsymbol{x}^{2} \quad 25 \quad x \quad 5 \quad x \quad 5$
24. $9 y^{2} \quad 3$ y 3 y
25. $49 \quad 4 z^{2} \quad 7 \quad 2 z \quad 7 \quad 2 z$
26. $9 a^{2} \quad 16 \quad 3 a \quad 4 \quad 3 a \quad 4$
27. $16 y^{2} z_{2}^{2} 4 y z 4 y z$
28. $a^{2} 36 b^{2}$ a $6 b a 6 b$
$\begin{array}{lllllllllllll}x & 3^{2} & y & x & 3 & y & x & 3 & y x & y & 3 & x & y\end{array}$
$\begin{array}{llllllllllllll}x^{2} & y & 5^{2} & x & y & 5 & x & y & 5 x & y & 5 & x & y & 5\end{array}$
31. $x^{2} 10 x \quad 25 \quad x \quad 5^{2}$

22
33.z $12 z \begin{array}{llll}36 & z & 6\end{array}$
$32.96 y y^{2} 3 y^{2}$
$2 \quad 2$
34. 16648

35. $4 t^{2}$ 20t 25 2t 5^{2}	36. $16 a$	$\begin{array}{ccccc} 24 a & 9 & 4 a & 3 & \\ & 2 & & 2 \end{array}$
37. $9 u^{2} 6 u^{2} 3 u^{2}$	38. $x 2$	$10 x y 25 y \quad x 5 y$
39. $x^{3} 27 \times 3 \times x^{2} 3 x 9$	40. $y 3$	$64 \quad y 4^{y_{2}} 4 y \quad 16$

41. $8 a^{3} 1 \quad 2 a \quad 14 a^{2} \quad 2 a \quad 1$
42. $27 x^{3} y^{3} 3 x$ y $9 x^{2} 3 x y y^{2}$
43. $u^{36} u^{32}{ }^{3} u^{2} u^{2} u^{24}$

3	2	2

48. $3 x \quad x \quad 6 x \quad 2 \quad x \quad 3 x \quad 1 \quad 23 x \quad 13 x \quad 1 \quad x \quad 2$
49. | 3 | 2 | | | 2 | | | 2 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5 x$ | x | $5 x$ | 1 | x | $5 x$ | $15 x$ | $1 x$ | 1 | $5 x$ | 1 | |
| 3 | 2 | | | 2 | | | | 2 | | | |
50. $18 x \quad 9 x \quad 2 x \quad 1 \quad 9 x \quad 2 x \quad 12 x \quad 19 x \quad 12 x \quad 1$
$\begin{array}{lll}3 & 2 & 2\end{array}$
51. $\begin{array}{llllllllllllll}x & x & x & 1 & x & x & 1 & 1 & x & 1 x & 1 & x & 1\end{array}$

$$
\underline{1}
$$

$42.827^{3} 23469^{2}$
44. $11000 y^{3} \quad 1 \quad 10 y 110 y 100 y^{2}$
46. $8 r^{3} 64 t 62 r 4 t^{2} \quad 4 r^{2} \quad 8 r t^{2} \quad 16 t^{4}$ $x^{2} \quad 1$
55. Start by factoring out the power of x with the smallest exponent, that is, x^{32}. So
$x \begin{array}{rrrrrrrr}32 & 12 & 12 & 32 & \\ x & 2 x & x & x & 1 & 2 x & x & x^{32}\end{array}$.
56. $x 1^{72} x^{7} 1^{32} x 1^{32} x 1^{2} 1 x 1^{32}\left[\begin{array}{lll}x & 1 & 1\end{array}\right]\left[\begin{array}{lll}x & 1 & 1\end{array}\right]$

$$
x 1^{32} x 2 x
$$

57. Start by factoring out the power of $\quad x^{2} 1$ with the smallest exponent, ${ }_{2}$ that is, $x^{2} 1^{12}$. So

$$
x^{2} 1^{12} 2 x^{2} 1^{12} x^{2} 1^{12} x^{2} \quad 12^{\frac{x}{x 2}+}
$$

$2 x^{13} x 2^{23} 5 x^{43} x 2^{13} x^{13} x 2^{13}\left[\begin{array}{llllllllllll}2 & x & 2 & 5 x\end{array} x^{13} x 2^{13} 2 x 45 x\right.$

$$
x^{13} x \quad 213 \quad 3 x \quad 4 \quad \underline{3 x} 4 \frac{3}{3 x 2} \cdot \frac{\overline{\bar{x}}}{}
$$

60. $3 x 12 x^{2} 1^{54} \quad x^{3} 2 x^{2} 1^{14} \quad x 12 x^{2} 1^{14} 3 \quad x^{2} 1 x^{2} 1$

61. $12 x^{3} \quad 18 x \quad 6 x \quad 2 x^{2} \quad 3$
62. $30{ }_{x}^{3}{ }_{x} 15^{4}{ }_{x}{ }^{15} 5^{3} 2 x$
63. $6 y^{4} 15 y^{3} \quad 3 y^{3} 2 y \quad 5$
64. $5 a b \quad 8 a b c a b 5 \quad 8 c$

2
2
65. $x \quad 2 x \quad 8 \quad x \quad 4 \quad x \quad 2$
66. $x \quad 14 x \quad 48 \quad x \quad 8 \quad x \quad 6$

24 CHAPTER P Prerequisites
67. $y^{2} 8 y 15$ y 3 y 5
68. ${ }^{2} 6 z \begin{array}{llllll} & 6 & 16 & z & 2 & z\end{array}$
69. $2 x^{2} \quad 5 x \quad 3 \quad 2 x \quad 3 \quad x \quad 1$
70. $2 x^{2} \quad 7 x \quad 4 \quad 2 x \quad 1 \quad x \quad 4$

72. $8 x^{2} \quad 10 x \quad 3 \quad 4 x \quad 3 \quad 2 x \quad 1$

2 2
73. $6 x \quad 5 x \quad 6 \quad 3 x \quad 2 \quad 2 x \quad 3$
74. $6 \quad 5 t \quad 6 t \quad 3 \quad 2 t 23 t$

2
75. $x \quad 36 \quad x \quad 6 \quad x \quad 6$
76. $4 x \quad 25 \quad 2 x \quad 5 \quad 2 x \quad 5$
78. $4 t^{2} \quad 9^{2} \quad 2 t \quad 3 s \quad 2 t \quad 3 s$
77. $494 y^{2} \quad 7 \quad 2 y 72 y$
80. $x^{2} 10 x \quad 25 \quad x \quad 5^{2}$
79. $t^{2} 6 t \quad 9 \quad t \quad 3^{2}$
82. $r_{2} 6 r s \quad 9{ }^{2} \quad r \quad 3 s^{2}$
81. $4 x^{2} 4 x y y^{2} 2 x \quad y^{2}$
83. $t^{3} 1 \begin{array}{llllll} & & & 1 & t^{2} & t\end{array} 1$

85. $8 x \quad 125 \quad 2 x \quad 5 \quad 2 x \quad 5 \quad 2 x \quad 2 x \quad 5 \quad 5 \quad 2 x \quad 5 \quad 4 x \quad 10 x \quad 25$
86. $12527 y^{3} 5^{3} \quad 3 y^{3} 5$ 3y $5^{2} \quad 53 y 3 y{ }^{2} 3 y$
$59 y^{2} 15 y 25$
87. $x^{3} 2 x^{2} x$ x $x^{2} \quad 2 x$ 1x $x 1^{2}$
88. $3 x^{3} 27 x$ 3x $x^{2} 93 x x$ $3 x 3$
89. $x^{4} 2 x^{3} 3 x^{2} x^{2} x^{2} 2 x$ 3x x 1 x 3
90. $3^{5} 5^{4} 2^{33} 3^{2} 52{ }^{3} 312$
95. $y^{3} 3 y^{2} 4 y \quad 12 \quad y^{3} 3 y^{2} 4 y \quad 12 \quad y^{2} y$ 34 y 3y $3 y^{2} 4$

$$
y 3 y 2 y 2 \text { (factor by grouping) }
$$

$$
\begin{array}{llll}
3 & 2 & 2 & 2
\end{array}
$$

$$
\begin{aligned}
& x^{4} y^{3} x^{2} y^{5} x^{2} y^{3} x^{2} y^{2} x^{2} y^{3} x \text { y } x \quad y \\
& 18 y^{3} x^{2} \quad 2 x y^{4} \quad 2 x y^{3} 9 x \quad y
\end{aligned}
$$

(factor by grouping)

99. $a b^{2} a b^{2}\left[\begin{array}{lll}a & b a & b\end{array}\right]\left[\begin{array}{lll}a & b a & b\end{array}\right] \quad 2 b \quad 2 a \quad 4 a b$
100. $1 x$

1	2		$1 x$	
:---:	:---:			
	1			

101. $x^{2} x^{2} 19 \quad x^{2} 1 x^{2} 1 \quad x^{2}$
102. $a^{2} 1 b^{2} 4 \quad a^{2} 1 a^{2} 1 b^{2}$

 $\begin{array}{lllll}x & x & 1 & 1^{2} & x x\end{array}$

$$
y^{4} y 2^{3} y^{5} y 2^{4} y^{4} y 2^{3} 1 \text { y y } 2 y^{4} y 2^{3} y^{2} \quad 2 y \quad 1 y^{4} y 2^{3} y 1^{2}
$$

Start by factoring $y^{2} 7 y \quad 10$, and then substitute $a^{2} \quad 1$ for y. This gives

2108. $a^{2} 2 a 2 a^{2} 2 a 3 a^{2} 2 a 3 a^{2} 2 a 1 a^{2} 2 a 3 a^{2} 2 a 1$

$$
\begin{aligned}
& \begin{array}{lllll}
a & 1 & a & 3 & a
\end{array} 1^{2} \\
& 3 x^{2} 4 x 12^{2} x^{3} 24 x 124_{x}^{2} 4 x 12[34 x 12 x 24] 4_{x}^{2} x 312 x 368 x 4_{x}^{2} x 320 x 3616 x^{2} \times 35 x 9
\end{aligned}
$$

 $2 x^{2} 4^{4} \times 235 x^{2} 10 x 2 x^{2} 82 x^{2} 4^{4} x x^{3} 37 x^{2} 10 x \quad 8$
$111.3^{2 x} 1^{2} 2 x 3^{12} \quad 2 x 1^{3} \quad 2^{-1} \begin{array}{lllllllllllllll}12 & 2 x & 1^{2} & x & 3^{12} & 6 x & 32 x & 1 & 2^{1}\end{array}$
$\begin{array}{llllll}1 & 23 & 2 & 13 & 1 & 23\end{array}$ $3 x 6 \quad 2 x \quad 3 \quad x \quad 6 \quad 22 x \quad 3 \quad 2$ 3_x_-6_ $\quad 2 x _3\left[\begin{array}{llllll}2 x _3 & 3 _x _6 & 4\end{array}\right]$
$\underline{1}_{3} x 6^{23} 2 x \quad 3\left[\begin{array}{llllllllll}2 x & 3 & 12 x & 72\end{array}\right] \underline{1}_{3} x 6^{23} 2 x ~ 3 ~ 14 x ~ 69$

$$
\begin{aligned}
& x^{12} 3 x 4^{12} 3 x \quad 2
\end{aligned}
$$

The volume of the shell is the difference between the volumes of the outside cylinder (with radius R) and the inside cylinder
 average radius is $\frac{R r}{2}$ and $2 \quad \frac{R r}{2}$ is the average circumference (length of the rectangular box), h is the height, and $R \quad r$ is the thickness of the rectangular box. Thus $V \quad \begin{array}{llllllllllllll} & R & h & r & h & 2 & 2 & h & R & r & 2\end{array} \quad$ average radius height thickness
h

(a) Mowed portion field habitat

(a) $\begin{array}{cccccccc}528^{2} & 527^{2} & 528 & 527 & 528 & 527 & 1 & 1055 \\ 2 & 2 & & & & & & \\ & & & & & & \end{array}$

122	120	122	120	122	120	2	242	484	
1020^{2}	1010	1020	1010	1020	1010	10	2030	20,300	

(a) $501 \quad 499 \quad 500 \quad 1 \quad 500 \quad 1 \quad 500^{2} 11250,000 \quad 1 \quad 249,999$
$\begin{array}{lllllllllll}79 & 61 & 70 & 9 & 70 & 9 & 70^{2} & 9 & 4900 & 81 & 4819\end{array}$
$20071993 \quad 2000 \quad 72000 \quad 7 \quad 2000^{2} \quad 7^{2} 4,000,000 \quad 49 \quad 3,999,951$
(a) $A_{4} \quad B^{4} A^{2} \quad B^{2} \quad A^{2} \quad B^{2} \quad A \quad B A \quad B \quad A^{2} \quad B^{2}$ $A^{6} \quad B^{6} \quad A^{3} \quad B^{3} \quad A^{3} \quad B^{3}$ (difference of squares)
$A \quad B \quad A^{2} \quad A B \quad B^{2} \quad A \quad B \quad A^{2} \quad A B \quad B^{2} \quad$ (difference and sum of cubes)
$\begin{array}{lllllllll}\text { (b) } 12^{4} & 7^{4} & 20,736 & 2,401 & 18,335 ; 12^{6} & 7^{6} & 2,985,984 & 117,649 & 2,868,335\end{array}$
(c) $18,335 \quad 12^{4} \quad 7^{4} \quad 12 \quad 7 \quad 12 \quad 7 \quad 12^{2} \quad 7^{2} \quad 5 \quad 19 \quad 144$ $2,868,33512^{6} 7^{6} 12712712^{2} 1277^{2} 12^{2} 1277^{2} 519144844914484495$

19277109

120. (a) A
$A \quad 1 \quad A^{2} \quad A \quad 1 \quad A^{3} \quad A^{2} \quad A \quad A^{2} \quad A \quad 1 \quad A^{3} \quad 1$
$\begin{array}{lllllllllllll} & A & A^{3} & A^{2} & A & 1 & A^{4} & A^{3} & A^{2} & A & A^{3} & A^{2} & A\end{array}$
(b) We conjecture that $A^{5} \quad 1 \quad A \quad 1 \quad A^{4} \quad A^{3} \quad A^{2} \quad A \quad$ 1. Expanding the right-hand side, we have
 $1 A^{5} \quad 1$, verifying our
conjecture. Generally, $A^{n} \quad 1 \quad A \quad 1 \quad A^{n 1} \quad A^{n 2} \quad A \quad 1 \quad$ for any positive integer n.
121. (a)

(b) Based on the pattern in part (a), we suspect that $A^{5} 1 A \quad 1 \quad A^{4} A^{3} A^{2} A \quad 1$. Check:

| | $A^{4} A^{3}$ | $A^{2} A 1$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | A | 1 |
| A^{5} | $A^{4} A^{3}$ | $A^{2} A 1$ | | |
| $A^{5} A^{3}$ | A^{2} | A | | |
| | | | | 1 |

The general pattern is $A^{n} 1 \quad A \quad 1 \quad A^{n 1} \quad A^{n 2} \quad A^{2} \quad A \quad 1$, where n is a positive integer.

P. 7 RATIONAL EXPRESSIONS

1.(a) $3 x$.
$\overline{x 2} \quad 1$ is a rational expression.
$\frac{x 1}{2 \times 3}$ is
numerator of the expression is $\quad 1$, which is not a polynomial.
$\frac{x x_{2} 1_{x_{3}}}{3 x 3}$ is a rational expression.

To simplify a rational expression we cancel factors that are common to the numerator and denominator. So, the expression | x | 1 | x | 2 |
| :--- | :--- | :--- | :--- |
| x | 3 | x | 2 | simplifies to \(\begin{array}{lll}x \& 1

x \& 3\end{array}\).
$\overline{\mathbf{A}} \quad \ddot{\mathbf{A}} \mathbf{r} \overline{\mathbf{A}} \quad \overline{\mathbf{A}} \quad \overline{\mathbf{A}} \quad \overline{\mathbf{A}}$
o multiply two rational expressions we multiply their numerators together and multiply their denominators together. So
$\frac{2}{x} \frac{1}{x} \frac{x}{x} \frac{2 x}{2}$ is the same as $\frac{2 x}{x} 1 \times 33$.

4. (a) $x \quad x 1 \quad x 1^{2}$ has three terms.

The least common denominator of all the terms is $\begin{array}{llll}x & 1 & 2\end{array}$.
(c) $\frac{1}{x} \frac{2}{x 1} \quad \frac{x}{x 1^{2}} \quad \frac{x 1^{2}}{x_{2} x 1^{2}} \frac{2 x x 1}{x 2_{2}^{2}} \frac{x}{22^{2}} \frac{x x}{x 1^{2}}{ }^{2} x_{2} \frac{x 1^{2} 2 x x 1 x^{2}}{x x 1^{2}}$

(b) No; $x_{5} 5^{2} x^{2} \quad 10 x \quad 25 x^{2} 25$, so $x \quad 5 \quad \begin{array}{cllllll} & x^{2} & 10 x & 25 & x^{2} 25\end{array}$
6. (a) Yes, $\overline{3} \quad \overline{3} \quad \overline{3} \quad 1 \overline{3}$.

No. We cannot "separate" the denominator in this way; only the numerator, as in part (a). (See also Exercise 101.)
7. The domain of $4 x^{2} \quad 10 x \quad 3$ is all real numbers.
8. The domain of $x^{4} \quad 3 \quad 9 x$ is all real numbers.
9. Since $x \quad 30$ we have x 3. Domain: $\begin{array}{llll}x & x & 3\end{array}$
10. Since $3 t 60$ we have $t 2$. Domain: $t t 2$
11. Since $x \quad 3 \quad 0, x 3$. Domain; $x \quad x 3$
12. Since $x \quad 1 \quad 0, x \quad 1$. Domain; $\begin{array}{llll}x & x & 1\end{array}$
13. $x^{2} \quad x \quad 2 \quad x \quad 1 \quad x \quad 2 \quad 0 \quad x 1$ or 2 , so the domain is $x \quad x 12$.
14. $2 x \quad 0$ and $\begin{array}{lllll}x & 1 & 0 & x & 0 \text { and } x 1 \text {, so the domain is } x\end{array} \quad x \quad 0$.
$\begin{array}{lllllllll}5 x & 3 & 2 x & 1 & 5 x & 3 & 2 x & 1 & 2 x\end{array}$
$4 x^{2} 1$
$\begin{array}{lllllll}4 & x & 1 & x & 1 & x & 1\end{array}$
$1.2 \begin{array}{llll}10 \times 3 & \text { - } \\ \text { 5 } & \\ x_{x 3} & 2 x_{3} & { }_{2} & x_{3}\end{array}$
16.

x_{2}^{2}
$17 . x^{2} 4$
$x 2 x 22$$\quad x 2$

 29. $t^{2} 3 \begin{array}{lllll}2 & 3 & \\ t^{2} & 9 & t 3 t 3 \\ t^{2} 9 t 3 t 3\end{array} \frac{1}{t^{2} 9}$

32. $x^{2} y$
$x \quad x y 2 y$
$\begin{array}{llllllll}x & y & x & y & x & 2 y & x & y\end{array}$

\square

34. $2 x \quad x \quad 15$
$x 3$
$\begin{array}{llll}x & 3 & 2 x & 5\end{array}$
$\begin{array}{llll}2 x & 1 & 3 x & 2\end{array}$
$\begin{array}{llll}2 x & 5 & 3 x & 2\end{array}$
3
$x \quad x^{3} \quad x^{2} \quad 2 x \quad 1$
35. $x \quad 1$ x

$$
\begin{array}{lllll}
3 & x & 1 & x & 1
\end{array}
$$

$\overline{y z} \quad x \quad z \quad \overline{1} y y^{-}-\quad-$

1 | $\begin{array}{c}x \\ x\end{array} \frac{31 x}{} 4$ |
| :--- |

40. $\frac{3 x 2}{x 1} 2 \quad \frac{3 x 2}{x 1} \quad \frac{x 1}{x 1} \quad \frac{3 x 22 x 2}{x 1} \quad \frac{x 4}{x 1}$

$2 \quad 3 \quad 4 \quad 2 b^{2} \quad 3 a b \quad 4 a^{2} \quad 2 b^{2} 3 a b 44^{2}$
41. $\begin{array}{cccccccc}\overrightarrow{a^{2}} & \overline{a b} & \overrightarrow{b^{2}} & a^{2} b^{2} \\ 1 & 1 & 1 & 1 & \overrightarrow{a^{2} b^{2}} & \overrightarrow{a^{2} b^{2}} & & \\ & x & 1 & a^{2} b^{2} & x & 2 x & 1\end{array}$

42. $\frac{1}{x}_{2}^{1} \frac{1}{x^{2}} \cdot \frac{1}{x^{3}} \cdot \frac{x^{2}}{x^{3}} \cdot \frac{x}{x^{3}}{ }_{2^{3}}^{1} \frac{x^{2} x 1}{x^{3}}$
43. $x 3 \quad x^{2} 7 x 12$

$\begin{array}{lll}2 x & 8 & 1\end{array}$

2×7

x| 1 | x | 2 | x | $4 x$ | 1 | x | 2 | x | $4 x$ | 1 | x | 2 | x | $4 x$ | 1 | x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

56. $\frac{x}{x^{2} \times 6} \quad \frac{1}{x 2} \quad \frac{2}{x 3} \quad \frac{x}{x} 3 \times 2 \quad \frac{1}{x} \quad \frac{2}{x 3}$

60. | $\bar{x} 2$ | | x | \bar{x} | 2 | 1 | $2 x$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $13 y$ | | | 3 | y | y | y |
| | $\underline{2}$ | y | 1 | $\underline{2}$ | | |
| | | | | | | |

$$
\begin{array}{llllllll}
y 1 & y & y & 1 & 3 & y & 1
\end{array}
$$

2

$$
\begin{aligned}
& \begin{array}{llll}
\underline{x} & \underline{x} & \underline{x}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllll}
x^{2} & y^{2} & x^{2} & y^{2} x & x & x
\end{array}
\end{aligned}
$$

32 CHAPTER P Prerequisites

$x 6$
32

$1 x$
$21 x$

82. 131
83. $\frac{31 x}{1 x^{23}} \frac{x 1 x}{1 x^{2}} \frac{131 x}{\frac{[31}{3}}-\frac{2 x 3}{1 x^{43}}$

$\begin{array}{ccccccc} & 1 & 1 & & \bar{x} & & \bar{y} \\ \text { 88. } & \bar{x} 4 & \bar{x} & 4 & \underline{x} \\ & & & x & 1\end{array}$

$$
\begin{array}{llrrrr}
1 & 5 & 15 & 15 & 15 & 4
\end{array}
$$

$\begin{array}{llllllll}\text { 91. } & 3 & 3 & 15 & 31 & \overline{5} & 31 & \overline{5}\end{array}$

93.
 $h 2 * \quad h \quad$ - $_{*} \quad \times h \quad 2$ - $_{x x_{1}}$

97. (a)

98. (a) The average $\operatorname{cost} A \quad \overline{\text { number of shirts }} \quad x$
(b)
99.

From the table, we see that the expression $\frac{x^{2} \quad 9}{}$ approaches 6 as x approaches 3 . We simplify the expression:

table.

101. Answers will vary.

102. (a) $5 \quad a \quad 5 \quad a \quad a$
$\begin{array}{lllll}5 & \overline{5} & \overline{5} & 1 & \overline{5} \text {, so the statement is true. }\end{array}$

$$
\begin{array}{llllll}
x & 1 & 5 & 1 & 6 \\
\hline y & 1 & & 2 & 1 & 3
\end{array}
$$

(b) This statement is false. For example, take $x \quad 5$ and y 2. Then LHS

	x	5	5
RHS	\bar{y}	$\overline{2}$, and 2	2.

0
This statement is false. For example, take x lllllllll 0 and $y \quad 1$. Then LHS $\quad x \quad y 0$, while

(d) This statement is false. For example, take $x \quad 1$ and y 1. Then LHS 2 $2 a \quad 2$

RHS $\overline{z b} \quad 21$, and 21.

This statement is true: $a_{a} 1_{1} a^{1_{1}} a_{a}$.
$\overline{b b} b b b$
(f) This statement is false. For example, take x

	1	2	1	2	3	1	3
	-	-	-	-	-	-	-
RHS	2	x	2	2	2, and 3	2.	

103. (a)

x			$\frac{1}{2}$	$\frac{2}{10}$	$\frac{100}{100}$	$\frac{1000}{2}$	$\underline{10,000}-$
x	$\frac{1}{x}$	2	3333	25	2011	20001	2000001

It appears that the smallest possible value of $x \quad \bar{x}$ is 2 .
(b) Because x 0, we can multiply both sides by x and preserve the inequality: $x \quad \begin{array}{lllll} & - & x & - & x\end{array}$ $x^{2} 1 \begin{array}{llllllll}2 & 2 x & x^{2} & 2 x & 1 & 0 x & 1 & 0 \text {. The last statement is true for all } x\end{array} 0$, and because each step is 1 reversible, we have shown that $x \quad x 2$ for all $x \quad 0$.

P. 8 SOLVING BASIC EQUATIONS

Substituting $x \quad 3$ in the equation $4 x \quad 210$ makes the equation true, so the number 3 is a solution of the equation.
Subtracting 4 from both sides of the given equation, $3 x 410$, we obtain $3 x 441043 x 6$. Multiplying by $\underline{1}_{3}$, we have $\underline{1}_{3}$ $3 x{ }^{\frac{1}{4}} 36 x 2$, so the solution is $x 2$.
x
3. (a) $\overline{2} 2 x \quad 10$ is equivalent to $z^{\frac{5}{2}} x \quad 10 \quad 0$, so it is a linear equation.
$x^{2}-2 x 1$ is not linear because it contains the term x^{2}, a multiple of the reciprocal of the variable.
$\begin{array}{llllll}x & 7 & 5 & 3 x & 4 x & 0 \text {, so it is linear. }\end{array}$
(a) $x \quad x \quad 1 \quad 6 \quad x^{2} \quad x \quad 6$ is not linear because it contains the square of the variable.
$x 2 \bar{x}$ is not linear because it contains the square root of $x 2$.
$3 x^{2} 2 x \quad 1 \quad 0$ is not linear because it contains a multiple of the square of the variable.
(a) This is true: If $a \quad b$, then $\begin{array}{lllll}a & x & b & x\end{array}$.

This is false, because the number could be zero. However, it is true that multiplying each side of an equation by a nonzero number always gives an equivalent equation.
This is false. For example, 55 is false, but $5^{2} 5^{2}$ is true.
3
To solve the equation $x \quad 125$ we take the cube root of each side. So the solution is $x{ }^{3} \begin{array}{lllll} & 125 & 5\end{array}$
(a) When $x 2$, LHS 427871 and RHS 92318321 . Since LHS RHS, $x 2$ is not a solution.

When x 2, LHS 4278715 and RHS 923183 15. Since LHS RHS, $x 2$ is a solution.

When x 1, LHS $\left.25 \begin{array}{llllllll} & 5 & 2 & 53\end{array}\right)$ and RHS $8 \quad 1 \quad$ 9. Since LHS RHS, $x \quad 1$ is not a solution.
(a) When x 2, LHS 1 [2 32] 1 [21] 110 and RHS 4262880 . Since LHS RHS, $x 2$ is a solution.

When $x 4$ LHS 1 [2 34] 1 [21] 132 and RHS 44641610 . Since LHS RHS, $x 4$ is not a solution.
10. (a) When x 2, LHS $\frac{1}{2} \quad \frac{1}{2} \frac{1}{2} \frac{1}{2} \cdot{ }^{1}-\frac{1}{2} 1$ and RHS 1. Since LHS RHS, $x 2$ is a solution.
(b) When $x 4$ the expression 44 is not defined, so $x 4$ is not a solution.
11. (a) When x 1, LHS $21^{13} \begin{array}{lllllll}3 & 2 & 1 & 32 & 35 \text {. Since LHS } 1, x 1 \text { is not a solution. }\end{array}$
(b) When x 8 LHS $28^{13} 32223431$ RHS. So $x \quad 8$ is a solution.
12. (a) When x 4, LHS $\quad \frac{432}{46} \quad \frac{2^{3}}{2} \quad \frac{8}{2} 4$ and RHS 484 . Since LHS RHS, $x \quad 4$ is a solution.

When $x \quad b$, LHS $\begin{array}{lllll}b & a & b & a & \\ \text { is not defined, so } x & b & & \\ b & b 0\end{array}$
$\begin{array}{lllllllllll}b & & b & 2 & \underline{b} & b^{2} & - & \underline{b} \underline{2} & \underline{b}^{2} & \underline{b} \\ \text { 14. (a) When } x & \overline{2} \text {, LHS } & 2 & b & 2 & \frac{1}{4} b^{2} & 4 & 2 & -2^{4} & \text { RHS. So } x & 2 \text { is a solution. }\end{array}$
$1 \quad \begin{array}{lllllllll}1 & \mathrm{I} & 2 & \underline{1} & \underline{1} & \underline{1} & \underline{b} & \underline{1}\end{array}$
(b) When $x \quad b$, LHS $\quad b \quad b \quad b \quad{ }_{4} b^{2} \quad b^{2} 1 \quad 4$, so $x \quad b$ is not a solution.
15. $5 x \quad 6 \quad 14 \begin{array}{lllll}5 x & 20 & x & 4\end{array}$
17. $72 x 152 x 8 x 4$
19. ${ }^{\frac{1}{2}} \quad x \quad 7 \quad 3 \quad{ }_{2} x 4 \quad x 8$
21. $3 x \quad 3 \quad 5 x \quad 3 \quad 0 \quad 8 x \quad x \quad 0$
23. $7 x$ 1 $14 \begin{array}{lllll} & 4 & 2 x & 9 x & 3\end{array}$
25. $x \quad 3 \quad 4 x \quad 3 \quad 5 x \quad x$
16. $3 x\left[\begin{array}{llllll}4 & 7 & 3 x & 3 & x & 1\end{array}\right.$
18. $4 x \quad 95 \quad 1 \quad 4 x \quad 96 \quad x \quad 24$

1

20. | $\frac{1}{2}$ | | | |
| :--- | :--- | :--- | :--- |

24. $1 x \begin{array}{llllll} & x & 43 & 2 x & x & 2\end{array}$
 $\frac{4}{5}$

29. $21 \begin{array}{lllllllllllllllll} & x & 3 & 1 & 2 x & 5 & 2 & 2 x & 3 & 6 x & 5 & 2 & 2 x & 8 & 6 x 6 & 8 x & x\end{array} \quad \frac{3}{4}$

1
$\begin{array}{lllllllllllllllll}31.4 y & 2 & y & 6 & 5 & y 4 y & 2 & y & 30 & 6 y & 3 y & 2 & 30 & 6 y & 9 y & 32 & y\end{array} \quad 9$
32. r 2 [1 $302 r 4]\left[\begin{array}{lllllllllllllllll}61 & r & 2 & 1 & 6 & 12 & 61 & r & 2 & 6 & 11 & 61 & r & 12 r & 22 & 61 & 13 r\end{array} 39\right.$ $r 3$
33. $x \quad \frac{1}{3} \quad x \quad \frac{1}{2} x \quad 5 \quad 0 \quad 6 x \quad 2 x \quad 3 x \quad 30 \quad 0$ (multiply both sides by 6) $x \quad 30$
34. $\begin{array}{llllllllllllllllllll}\frac{2}{3} y & \frac{1}{2} & y & 34 & \boxed{y} 1 \\ & 8 y & 6 & y & 3 & 3 & y & 1 & 8 y & 6 y & 18 & 3 y & 3 & 14 y & 18 & 3 y & 3 & 11 y & 21\end{array}$

36 CHAPTER P Prerequisites

$$
2 x^{x} \begin{array}{llllllllllllllll}
& x & 1 & 6 x & 8 x & 2 x & x & 1 & 24 x & 7 x & 1 & 24 x & 1 & 17 x & x & 1
\end{array}
$$

$$
\overline{2} 417 \bar{\square}
$$

36. $3 x \quad \frac{5 x}{2} \quad \frac{x}{3} \quad \frac{1}{6} \quad 18 x \quad 15 x \quad 2 \quad \begin{array}{lllllllll} & x & 1 & 1 & 3 x & 2 x & 1 & x & 1\end{array}$

$\begin{array}{llllllllllll}x x & 1 x & 3^{2} & x & x & x & 6 x & 9 & x & 6 x & 95 x & 9\end{array} \quad x$
$\begin{array}{llllllllllllllllllllllllll}x & 1 & 4 x & 52 x & 3^{2} & 4 x & x & 5 & 4 x & 12 x & 9 & x & 512 x & 9 & 13 x & 14 & x & 13\end{array}$
2
$t 4^{2} t\left[4^{2} 32 t^{2} \quad 8 t \quad 16 \quad t \quad 8 t \quad 16 \quad 3216 t \quad 32 \quad t 2\right.$ $1 \quad 4$
37. $x \quad 3 x=1 \quad 3 \quad 4 \quad 3 x$ (multiply both sides by the LCD, $3 x$) $1 \quad 3 x \quad x$

$$
\overline{2 x \quad 4} 32
$$

$$
\bar{x} x \overline{4} x \quad 4 \quad 4 \quad 5 x \quad 36 x \quad 24 \quad 5 x \quad 15 \quad x 39
$$

47. $\bar{x}^{-\frac{3}{1}} \quad \frac{1}{2} \quad \frac{1}{3 x 3^{-}}$
$\begin{array}{lllllllllll}363 x & 3 & 2\end{array}$ [multiply both sides by $6 x$ x 1] $\begin{array}{llllll}18 & 3 x & 3 & 23 x & 15 & 2\end{array}$
$3 x 13 \quad x \quad 3$

$$
12 x^{2} 5 x \quad 12 x^{2} \quad 24 x \quad 15 \quad 19 x 15 \quad x \quad \frac{15}{19}
$$

49. $\bar{z} \quad \frac{1}{2 z} \quad \frac{1}{5 z} \quad \frac{10}{z} 1 \quad 10 z \quad 1 \quad 5 z \quad 1 \quad 2 z \quad 11010 z$ [multiply both sides by $10 z z \quad 1$] $\begin{array}{lllllllll}3 & z & 1 & 100 z & 3 z & 3 & 100 z & 3 & 97 z\end{array} \frac{3}{97} \quad z$

But substituting $x \quad 2$ into the original equation does not work, since we cannot divide by 0 . Thus there is no solution.

\qquad
$x 4 x \times 24 \times 3 \times x 46 x 12$ (multiply both sides by $x \times 4] 3 x 7 x 164 x 16 x 4$. But substituting $x 4$ into the original equation does not work, since we cannot divide by 0 . Thus, there is no solution.
54. $\frac{1}{2 x} \frac{2}{2 x^{2} x} \quad 2 x \quad 1 \quad 2 x \quad 1 \quad 1 \quad 1$. This is an identity for $x \quad 0$ and $x \quad \frac{1}{2}$, so the solutions are

```
all real numbers except 0 and !
x 2 25 x5
3x 2
    2 2
5x 15 x 3 x3
```


61. $x \quad 16 \quad 0 \quad x \quad 16$ which has no real solution.
62. $6 x^{2} \quad 100 \quad 0 \quad 6 x^{2} 100 \quad x^{2} \quad-\quad{ }_{3}$,
63. $x \quad 35 \quad x \quad 35 \quad x \quad 3 \quad 5$
64. $3 x 4 \quad 7 \quad 3 x \quad 47$
$3 x 4$
wffich has no real solution.
65. $x_{5}^{3} \quad 27 \quad x \quad 27^{13} \quad 3$
66. $x \quad 320 x 32 x 32 \quad 2$

If $x \quad 2 \quad 0$, then $x 2 . \quad$ The solutions are 2 .

$x 23$, then $x 5$. The solutions are 5 and 1 .
$\begin{array}{lllll}x & 1^{4} & 16 & 0 x & 1\end{array}{ }_{1}^{4}$, which has no real solution.
$\begin{array}{lllllllllll}3 \times & 3^{3} & 375 x & 3^{3} & 125 x & 3 & 125^{13} & 5 & x & 3 & 5 \\ 8\end{array}$
$\begin{array}{lllllllllll}4 & x & 2^{5} & 1 x & 2^{5} & \underline{1}_{4} & x & 2^{5} & \underline{1}_{4} & x 2 & 5 \\ 1_{4}\end{array}$
${ }^{3} * 5 \times 5^{3} 125$
$\begin{array}{llllllllllllllll}x 43 & 16 & 0 x^{4} 3 & 16 & 24 & x^{4} 3^{3} & 24^{3} & 212 & x^{4} & 212 & x & 212 & 14 & 23 & 8\end{array}$
$53 \quad 53 \quad 53 \quad 355153$
$\begin{array}{lllllllllll}2 x & 64 & 0 & 2 x & 64 & x & 32 & x 32 & 2 & 2 & 8\end{array}$
$6 x 2321606 x_{2} 3 \quad 216 \quad x^{23} \quad 36$ 944
79. $302 x \quad 148 \quad 1092 \quad 302 x \quad 944 x \quad \overline{302} 313$

$82.395 x 232 x$ 200 195 $332 x x$
83. $316 x 463419 x \quad 724316 x \quad 1463419 x \quad 30344497 \quad 103 x \quad x \quad 1034366$
 026×194

$176026 x 194176303244 x 026 x 194533429 x 455 x 727303244 x$

$x \quad \overline{455} 160$
$173 x$
320
86. $212 x$ 1 151
87. $r \quad \overline{12}_{M} \quad \frac{12}{r}$
88. d $\begin{array}{llll} & r T H & T & \frac{d}{r H}\end{array}$
89. $P V{ }^{2} R T \quad R \quad \frac{P V}{n T}$
90.F $G \quad \frac{m M}{r^{2}} m \quad \frac{F r}{G M}$
$P 2 l 22 P 2 l P 2 l_{2}$
$\begin{array}{lll}1 & 1\end{array}$
92. $\bar{R} \quad \overline{R_{1}} \quad \overline{R 2} R 1 R 2 \quad R R 2 \quad R R 1$ (multiply both sides by the LCD, $R R 1 R 2$). Thus $R 1 R 2 R R 1 \quad R R 2$

93. $V \quad{ }_{3} r^{2} h r^{2} \quad h r \quad h$

$$
\underline{4}_{3} \quad 3 \quad \underline{3 V_{3}} \quad 3 V
$$

95. $V{ }^{2}{ }^{3 r}{ }^{2}{ }^{r}{ }^{2}{ }^{2}{ }^{4}{ }^{r} \quad 4 \quad-\quad \frac{a^{2}}{2} \quad$ -
96. $a^{2} b^{2} c^{2} b^{2} c^{2} a^{2} b \quad \overline{c^{2} a^{2}}$

$x \quad \begin{array}{lll} & \begin{array}{lll}-1 \\ a^{2} & & 1\end{array}\end{array}$

a $\quad \frac{1}{2} b_{2} b$
97. (a) The shrinkage factor when 250 is $S \quad-\frac{0032250}{10,000} \underline{25} \frac{825}{10,000} 000055$. So the beam shrinks 000055120250007 m , so when it dries it will be 12025000712018 m long.
(b) Substituting $S \quad 000050$ we get $000050 \quad-\frac{003225}{10,000} 5 \quad 0032 \quad 25 \quad 75 \quad 0032$ 75 $\overline{0032} 234375$. So the water content should be $234375 \mathrm{~kg} / \mathrm{m}^{3}$.
98. Substituting $C \quad 3600$ we get $\begin{array}{llllllll}3600 & 450 & 375 x & 3150 & 375 x & x & \overline{375} 840 \text {. So the toy manufacturer can }\end{array}$ manufacture 840 toy trucks.
99. (a) Solving for when $P \quad 10,000$ we get $10,000 \quad 156^{33} 6410286 \mathrm{~km} / \mathrm{h}$.
(b) Solving for when $P \quad 50,000$ we get $50,000 \quad 156^{33} 320513147 \mathrm{~km} / \mathrm{h}$.
100. Substituting $F \quad 300$ we get $300 \quad 0 \quad 3 x^{34} \quad 1000 \quad 10^{3} \quad x^{34} x^{14} 10 \begin{array}{lllllll} & 10^{4} & 10,000 \mathrm{lb} \text {. }\end{array}$
101. (a) $30 k 5 k 0 k 1 k 5 k 12 k 6 k 3$
(b) $31 \begin{array}{lllllllllllllllll} & k & 5 & k & 1 & k & 1 & 3 & k & 5 & k & k & 1 & k & 2 & 1 & k\end{array} 3$
(c) $\begin{array}{lllllllllllllllllll}3 & 2 & k & 5 & k & 2 & k & 1 & 6 & k & 5 & 2 k & k & 1 & k & 1 & k & 1 . x & 2\end{array}$ is a solution for every value of k. That is, $x \quad 2$ is a solution to every member of this family of equations.
102. When we multiplied by x, we introduced $x \quad 0$ as a solution. When we divided by $x \quad 1$, we are really dividing by 0 , since
$\begin{array}{lllll}x & 1 & x & 1 & 0 .\end{array}$

P. 9 MODELING WITH EQUATIONS

An equation modeling a real-world situation can be used to help us understand a real-world problem using mathematical methods. We translate real-world ideas into the language of algebra to construct our model, and translate our mathematical results back into real-world ideas in order to interpret our findings.

In the formula I Pr t for simple interest, P stands for principal, r for interest rate, and t for time (in years).
(a) A square of side x has area $A x^{2}$.

A rectangle of length l and width has area $A \quad l$.
A circle of radius r has area $A r^{2}$.
Balsamic vinegar contains 5\% acetic acid, so a 32 ounce bottle of balsamic vinegar contains $325 \% 32100^{5} 16$ ounces of acetic acid.

7. If n is the first integer, then $n \quad 1$ is the middle integer, and $n 2$ is the third integer. So the sum of the three consecutive integers is $n \quad \begin{array}{lllll}n & 1 n & 2 & 3 n & 3 .\end{array}$
8. If n is the middle integer, then $n 1$ is the first integer, and $n 1$ is the third integer. So the sum of the three consecutive integers is $n \begin{array}{lllll}1 & n & n & 1 & 3 n \text {. }\end{array}$
9. If n is the first even integer, then $n 2$ is the second even integer and $n 4$ is the third. So the sum of three consecutive even integers is $n \quad 2 n 43 n 6$.
10. If n is the first integer, then the next integer is $n 1$. The sum of their squares is
$n^{2} n 1^{2} n^{2} n^{2} 2 n 11 \quad 2 n^{2} 2 n 1$.
If s is the third test score, then since the other test scores are 78 and 82 , the average of the three test scores is 78
$\frac{82 s 160 s}{33}$.
12. If q is the fourth quiz score, then since the other quiz scores are 8,8 , and 8 , the average of the four quiz scores is $\begin{array}{llllll}8 & 8 & 8 & q & 24 & q\end{array}$

If x dollars are invested at $2 \frac{1}{2}_{2} \%$ simple interest, then the first year you will receive $0025 x$ dollars in interest. If n is the number of months the apartment is rented, and each month the rent is $\$ 795$, then the total rent paid is $795 n$. Since is the width of the rectangle, the length is four times the width, or 4 . Then

$$
\text { area length width } 4 \quad 4^{2} \mathrm{ft}^{2}
$$

Since is the width of the rectangle, the length is 4 . Then
$\begin{array}{llllllll}\text { perimeter } 2 & \text { length } 2 & \text { width } & 2 & 4 & 2 & 4\end{array}$
If d is the given distance, in miles, and distance rate time, we have time

$\frac{1 \mathrm{~h}}{60 \mathrm{~min}} \quad-\quad$.

If x is the quantity of pure water added, the mixture will contain 25 oz of salt and $3 x$ gallons of water. Thus the concentration is $\frac{25}{3 x}$.
20. If p is the number of pennies in the purse, then the number of nickels is $2 p$, the number of dimes is $42 p$, and the number of quarters is $2 p 42 p 4 p 4$. Thus the value (in cents) of the change in the purse is $1 p 52 p 1042 p 254 p$ $4 p 10 p 4020 p 100 p 100131 p 140$.

If d is the number of days and m the number of miles, then the cost of a rental is $C 65 d 020 m$. In this case, $d 3$
and $C 275$, so we solve for m : $275653020 m 27519502 m 02 m 80 m 02400$. Thus, Michael drove $4 \overline{00}$ miles.
22. If m is the number of messages, then a monthly cell phone bill (above $\$ 10$) is $B 10010 m 1000$. In this case,

$$
\begin{array}{lllllllll}
B & 385
\end{array} \text { and we solve for } m: 385 \quad 10 \quad 0 \quad 10 m \quad 1000010 \mathrm{~m} \quad 1000 \quad 285 m \quad 1000 \quad \overline{01} 285
$$

m 1285. Thus, Miriam sent 1285 text messages in June.

If x is Linh's score on her final exam, then because the final counts twice as much as each midterm, her average score

24. Six students scored 100 and three students scored 60 . Let x be the average score of the remaining 256316 students. $\begin{array}{lllllllllll}\text { Because the overall average is } 84 \% & 084 \text {, we have } & 6 & 100 & 360 & 16 x & 084 & 780 & 16 x & 0842500 & 2100\end{array}$
$16 x \quad 1320 \times \frac{1320}{} 16 \quad 825$. Thus, the remaining 16 students' average score was 825%.
Let m be the amount invested at $4 \cdot \frac{1}{2} \%$. Then $12,000 ~ m$ is the amount invested at 4%.
Since the total interest is equal to the interest earned at $4 \frac{1}{2}_{2} \%$ plus the interest earned at 4%, we have
45
$5250045 m 00412,000 \mathrm{~m} 5250045 m 480004 m 450005 \mathrm{~mm} 00059000$. Thus $\$ 9000$ is invested at $4 \frac{1}{2}_{2} \%$, and
$\$ 12,0009000 \$ 3000$ is invested at 4%.
Let m be the amount invested at $5 \cdot \frac{1}{2} \%$. Then $4000 m$ is the total amount invested. Thus
$4 \frac{1}{2}_{2} \%$ of the total investment interest earned at $4 \% \quad$ interest earned at $5 \frac{1}{-2} \%$
20
So $00454000 \quad m \quad 0044000 \quad 0055 m \quad 180 \quad 0045 m \quad 160 \quad 0055 m \quad 20 \quad 001 m \quad m \quad \overline{001} \quad 2000$.
Thus $\$ 2,000$ needs to be invested at $5{ }^{1} \%$.
2
2625
27. Using the formula $I \quad \operatorname{Pr} t$ and solving for r, we get
28. If $\$ 1000$ is invested at an interest rate a\%, then 2000 is invested at
a
a $\underline{1}$
percentage, the total interest is I 10001001200010021 10a $20 a 10$ 30a 10. Since the total interest is \$190, we have $19030 a 1018030 a$ a 6 . Thus, the $\$ 1000$ is invested at 6% interest.

30. Let s be the husband's annual salary. Then her annual salary is 115 s. Since husband's annual salary wife's annual salary total annual income, we have s 1 15s $69,875215 s 69,875$ s 32,500. Thus the husband's annual salary is $\$ 32,500$.
31. Let x be the overtime hours Helen works. Since gross pay regular salary overtime pay, we obtain the equation 90
 worked 8 hours of overtime.
32. Let x be the hours the assistant worked. Then $2 x$ is the hours the plumber worked. Since the labor charge is equal to the plumber's labor plus the assistant's labor, we have $4025452 x 25 x 402590 \times 25 x 4025115 x x \frac{4025}{} 11535$. Thus the assistant works for 35 hours, and the plumber works for 23570 hours.
$262503500 r \quad 1 \quad r \quad 3500-0075$ or 75% 2

All ages are in terms of the daughter's age 7 years ago. Let y be age of the daughter 7 years ago. Then $11 y$ is the age of the movie star 7 years ago. Today, the daughter is $y 7$, and the movie star is $11 y 7$. But the movie star is also 4 times his daughter's age today. So 4 y $711 y 74 y 2811 y 7217 y$ y 3 . Thus the movie star's age today is 113740 years.

Let h be number of home runs Babe Ruth hit. Then $h 41$ is the number of home runs that Hank Aaron hit. So $1469 h$ $h 411428$ 2h h 714. Thus Babe Ruth hit 714 home runs.

Let p be the number of pennies. Then p is the number of nickels and p is the number of dimes. So the value of the coins in the purse is the value of the pennies plus the value of the nickels plus the value of the dimes. Thus
$144001 p 005 p 010 p 144016 p \quad p \quad{ }_{0}{ }^{44} 16 \quad 9$. So the purse contains 9 pennies, 9 nickels, and 9 dimes. Let q be the number of quarters. Then $2 q$ is the number of dimes, and $2 q 5$ is the number of nickels. Thus 300 value of the nickels value of the dimes value of the quarters. So
$3000052 q 50102 q 025 q 300010 q 025020 q 025 q 275055 q q^{2} 0{ }^{75} 555$. Thus Mary has 5 quarters, 2510 dimes, and 25515 nickels.

Let l be the length of the garden. Since area width length, we obtain the equation $112525 l l \underline{1125} 2545 \mathrm{ft}$. So the garden is 45 feet long.

Let be the width of the pasture. Then the length of the pasture is 2 . Since area length width we have 115,200 22
2257,600240 . Thus the width of the pasture is 240 feet.
39. Let x be the length of a side of the square plot. As shown in the figure, area of the plot area of the building area of the parking lot. Thus, $x^{2} 6040 \quad 12,000 \quad 2,400 \quad 12,000 \quad 14,400 \quad x 120$. So the plot of land measures 120 feet by 120 feet.

Let be the width of the building lot. Then the length of the building lot is 5 . Since a half-acre is ${ }^{1}{ }_{2} 43,56021,780$ and area is length times width, we have $21,78055^{22} 4,35666$. Thus the width of the building lot is 66 feet and the length of the building lot is 566330 feet.
41. The figure is a trapezoid, so its area is base1 base2 2° height. Putting in the known quantities, we have
$120 \begin{array}{lllll}\frac{y}{2} & 2 y & \begin{array}{lll}3 & 2 & 2 \\ 2\end{array} & y & 80\end{array} \quad y$
$\begin{array}{ll}\text { - } & \text { - } \\ 804 & \text { Since length is positive, } y \text { 4, } \\ \text { - } & 894 \text { inches. }\end{array}$
42. First we write a formula for the area of the figure in terms of x. Region A has dimensions 10 cm and $x \mathrm{~cm}$ and region B has dimensions 6 cm and $x \mathrm{~cm}$. So the shaded region has area $10 \quad x 6 x \quad 16 x \mathrm{~cm}^{2}$. We are given that this is equal to $144 \mathrm{~cm}^{2}$, so $144 \quad 16 x \quad x \quad \frac{144}{16} 9 \mathrm{~cm}$.

Let x be the width of the strip. Then the length of the mat is $202 x$, and the width of the mat is $152 x$. Now the perimeter is twice the length plus twice the width, so $1022202 \times 2152 x 102404 \times 304 x 102708 \times 328 x x 4$. Thus the strip of mat is 4 inches wide.
Let x be the width of the strip. Then the width of the poster is $1002 x$ and its length is $1402 x$. The perimeter of the printed area is 21002140480 , and the perimeter of the poster is $21002 x 21402 x$. Now we use the fact that the perimeter of the poster is $1 \underline{1}_{2}$ times the perimeter of the printed area: $21002 x 21402 x \underline{3}_{2} 4804808 \times 7208 \times 240 \times 30$. The blank strip is
thus 30 cm wide.

Let x be the length of the man's shadow, in meters. Using similar triangles, $\begin{array}{lllllll}10 & x & x & 20 & 2 x & 6 x & 4 x\end{array} 20$
5. Thus the man's shadow is 5 meters long.
46. Let x be the height of the tall tree. Here we use the property that corresponding sides in similar triangles are proportional. The base of the similar triangles starts at eye level of the woodcutter, 5 feet. Thus we obtain the proportion
$25 x 51515025 x 125225025 \times 2375 \times 95$. Thus the tree is 95 feet tall.

Let x be the amount (in mL) of 60% acid solution to be used. Then $300 x \mathrm{~mL}$ of 30% solution would have to be used to yield a total of 300 mL of solution.

	60% acid	30% acid	Mixture
mL	x	$300 x$	300
Rate (\% acid)	060	030	050
Value	$060 x$	$030300 x$	050300

Thus the total amount of pure acid used is $060 x \quad 030300 \quad x 050 \quad$| | 3000 | $3 x$ | 90 | 150 | x | $\overline{03}$ | 200 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | .

So 200 mL of 60% acid solution must be mixed with 100 mL of 30% solution to get 300 mL of 50% acid solution.
48. The amount of pure acid in the original solution is $30050 \% \quad 150$. Let x be the number of mL of pure acid added. Then x. Because its concentration is to be 60%, we must have $150 x_{60 \%} 06300 x$ 30
$150 \times 06300 \times 150 \times 18006 \times 04 \times 30 \times 0475$. Thus, 75 mL of pure acid must be added.

Let x be the number of grams of silver added. The weight of the rings is 518 g 90 g .

	5 rings	Pure silver	Mixture
Grams	90	x	$90 \quad x$
Rate (\% gold)	090	0	075
Value	09090	$0 x$	$07590 \quad x$

So $090900 \times 07590 \times 81675075 \times 075 \times 135 x^{13} 075^{5} 18$. Thus 18 grams of silver must be added to get the required mixture.

Let x be the number of liters of water to be boiled off. The result will contain $6 x$ liters.

	Original	Water	Final
Liters	6	x	$6 x$
Concentration	120	0	200
Amount	1206	0	$2006 x$

Let x be the number of liters of coolant removed and replaced by water.

	60% antifreeze	60% antifreeze (removed)	Water	Mixture
Liters	36	x	x	36
Rate (\% antifreeze)	060	060	0	050
Value	06036	$060 x$	$0 x$	05036

 must be removed and replaced by water.

Let x be the number of gallons of 2% bleach removed from the tank. This is also the number of gallons of pure bleach added to make the 5% mixture.

	Original 2\%	Pure bleach	5% mixture
Gallons	$100 x$	x	100
Concentration	002	1	005
Bleach	$002100 x$	$1 x$	005100

So $002100 \times x 0051002002 \times \times 5098 \times 3 \times 306$. Thus 306 gallons need to removed and replaced with pure bleach.

Let c be the concentration of fruit juice in the cheaper brand. The new mixture that Jill makes will consist of 650 mL of the original fruit punch and 100 mL of the cheaper fruit punch.

	Original Fruit Punch	Cheaper Fruit Punch	Mixture
mL	650	100	750
Concentration	050	c	048
Juice	050650	$100 c$	048750

So $050650100 c 048750325100 c 360100 c 35 c 035$. Thus the cheaper brand is only 35% fruit juice.

Let x be the number of ounces of $\$ 300$ oz tea Then $80 x$ is the number of ounces of $\$ 275$ oz tea.

	$\$ 300$ tea	$\$ 275$ tea	Mixture
Pounds	x	$80 x$	80
Rate (cost per ounce)	300	275	290
Value	$300 x$	$27580 x$	29080

So $300 \times 27580 \times 29080300 \times 220275 \times 232025 \times 12 \times 48$. The mixture uses 48 ounces of $\$ 300$ oz tea and 8048 32 ounces of $\$ 275$ oz tea.

Let t be the time in minutes it would take Candy and Tim if they work together. Candy delivers the papers at a rate of 70^{1} of the job per minute, while Tim delivers the paper at a rate of 80^{1} of the job per minute. The sum of the fractions of
the job that each can do individually in one minute equals the fraction of the job they can do working together. So we have $\begin{array}{llllllllll}1 & 1 & 1 & 560 & 8 t & 7 t & 560 & 15 t & t & 37-\text { minutes. Since }{ }^{1} \text { of a minute is } 20 \text { seconds, it would take them } \\ - & - & - & & & & & \end{array}$
$t 70803337$ minutes 20 seconds if they worked together.

Let t be the time, in minutes, it takes Hilda to mow the lawn. Since Hilda is twice as fast as Stan, it takes Stan $2 t$ minutes to mow the lawn by himself. Thus 40 | | $\frac{1}{t}$ | | $\frac{1}{2 t}$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | to mow the lawn.

Let t be the time, in hours, it takes Karen to paint a house alone. Then working together, Karen and Betty can paint a house in $\frac{2}{3} t$ hours. The sum of their individual rates equals their rate working together, so | 1 | $\underline{1}$ | | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | $6 \quad t \quad 9 \quad t \quad 3$. Thus it would take Karen 3 hours to paint a house alone.

Let h be the time, in hours, to fill the swimming pool using Jim's hose alone. Since Bob's hose takes 20% less time, it uses only 80% of the time, or $08 h$. Thus $18 \quad \bar{h} 18 \quad \begin{array}{cccccccccccc} & 1 & & 1 & & \\ 08 h & 1 & 18 & 08 & 18 & 08 h & 144 & 18 & 08 h & 324 & 08 h\end{array}$
$h 405$. Jim's hose takes 405 hours, and Bob's hose takes 324 hours to fill the pool alone.
59. Let t be the time in hours that Wendy spent on the train. Then $\frac{11}{2} t \quad$ is the time in hours that Wendy spent on the bus. We construct a table:

	Rate	Time	Distance		
By train	40	t	$40 t$		
By bus	60	$\underline{11}$	$\underline{2} t$	$\underline{\frac{11}{2} t}$	
:---					

The total distance traveled is the sum of the distances traveled by bus and by train, so $300 \quad 40 t \quad 60 \quad \frac{11}{2} t$ $300 \quad 40 t \quad 330 \quad 60 t \quad 30 \quad 20 t \quad t \quad \underline{30} 2015$ hours. So the time spent on the train is $55 \quad 15 \quad 4$ hours.

Let r be the speed of the slower cyclist, in mi / h. Then the speed of the faster cyclist is $2 r$.

	Rate	Time	Distance
Slower cyclist	r	2	$2 r$
Faster cyclist	$2 r$	2	$4 r$

When they meet, they will have traveled a total of 90 miles, so $2 r 4 r 906 r 90 r 15$. The speed of the slower cyclist is 15 mi / h, while the speed of the faster cyclist is $21530 \mathrm{mi} / \mathrm{h}$.
Let r be the speed of the plane from Montreal to Los Angeles. Then $r 020 r 120 r$ is the speed of the plane from Los Angeles to Montreal.

The total time is the sum of the times each way, so 9
$5512 r 25006122500666 r 18,00015,00066 r 33,000 r^{33} 666^{, 000} 500$. Thus the plane flew at a speed of $500 \mathrm{mi} / \mathrm{h}$ on the trip from Montreal to Los Angeles.
Let x be the speed of the car in mi/h. Since a mile contains 5280 ft and an hour contains $3600 \mathrm{~s}, 1 \mathrm{mi} / \mathrm{h} \frac{5280}{3600} \underline{\mathrm{ft}} \mathrm{S} \underline{22} 15 \mathrm{ft} / \mathrm{s}$.

The truck is traveling at $50 \frac{22}{\frac{22}{2}} 3 \mathrm{ft} / \mathrm{s}$. So in 6 seconds, the truck travels $6 \frac{220}{} 3440$ feet. Thus the back end
of the car must travel the length of the car, the length of the truck, and the 440 feet in 6 seconds, so its speed must be $\underline{1430440} \quad \underline{242} \mathrm{ft} / \mathrm{s}$. Converting to mi / h, we have that the speed of the car is $\underline{242} \quad \underline{15} \quad 55 \mathrm{mi} / \mathrm{h}$.
$3 \quad 22$

Let x be the distance from the fulcrum to where the mother sits. Then substituting the known values into the formula given, we have $1008 \quad 125 x \quad 800 \quad 125 x \quad x \quad 64$. So the mother should sit 64 feet from the fulcrum.

Let be the largest weight that can be hung. In this exercise, the edge of the building acts as the fulcrum, so the 240 lb man is sitting 25 feet from the fulcrum. Then substituting the known values into the formula given in Exercise 43, we have 240 255600051200 . Therefore, 1200 pounds is the largest weight that can be hung.
65. Let l be the length of the lot in feet. Then the length of the diagonal is $l 10$. We apply the Pythagorean Theorem with the hypotenuse as the diagonal. So
$\begin{array}{llllllllllll}l^{2} & 50^{2} & l & 10^{2} & l^{2} & 2500 & l^{2} & 20 l & 100 & 20 l & 2400 & l\end{array} 120$.

Let r be the radius of the running track. The running track consists of two semicircles and two straight sections 110 yards long, so we get the equation $2 r 2204402 r 220 r \underline{110} 3503$. Thus the radius of the semicircle is about 35 yards.

Let h be the height in feet of the structure. The structure is composed of a right cylinder with radius 10 and height ${ }^{2} 3 h$ and a cone with base radius 10 and height ${ }_{5}^{1} h$. Using the formulas for the volume of a cylinder and that of a cone, we obtain the equation $140010^{2} \quad 3 h \quad \frac{1}{3} 10 \quad \frac{1}{3} h 1400 \quad \frac{200}{3} h \quad \frac{100}{9} h \quad 126 \quad 6 h \quad h$ (multiply both sides $\underline{2}$
by $\frac{9}{100}$) $126 \quad 7 h \quad h \quad$ 18. Thus the height of the structure is 18 feet.
68. Let h be the height of the break, in feet. Then the portion of the bamboo above the break is $10 h$. Applying the Pythagorean Theorem, we obtain

h	2	3	10	h	2	9	100	$20 h$	h	91

$h \quad \overline{20} 455$. Thus the break is 455 ft above the ground.
Pythagoras was born about 569 BC in Samos, Ionia and died about 475 BC. Euclid was born about 325 BC and died about 265 BC in Alexandria, Egypt. Archimedes was born in 287 bC in Syracuse, Sicily and died in 212 bC in Syracuse.
Answers will vary.

CHAPTER P REVIEW

(a) Since there are initially 250 tablets and she takes 2 tablets per day, the number of tablets T that are left in the bottle after she has been taking the tablets for x days is $T 2502 x$.
After 30 days, there are $250230 \quad 190$ tablets left.
We set $T \quad 0$ and solve: $\begin{array}{llllllll}250 & 2 x & 0 & 250 & 2 x & x & 125 \text {. She will run out after } 125 \text { days. }\end{array}$
(a) The total cost is $\$ 2$ per calzone plus the $\$ 3$ delivery charge, so $C 2 x 3$.

4 calzones would be $24 \quad 3 \quad \$ 11$.
We solve C 2x $\begin{array}{lllllll}3 & 15 & 2 x & 12 & x & 6 \text {. You can order six calzones. }\end{array}$
(a) 16 is rational. It is an integer, and more precisely, a natural number.

16 is rational. It is an integer, but because it is negative, it is not a natural number.
164 is rational. It is an integer, and more precisely, a natural number.
2 is irrational.
$\underline{8}_{3}$ is rational, but is neither a natural number nor an integer.
$\underline{8}_{24}$ is rational. It is an integer, but because it is negative, it is not a natural number.
(a) 5 is rational. It is an integer, but not a natural number.
${ }^{25} 6$ is rational, but is neither an integer nor a natural number.
255 is rational, a natural number, and an integer.
3 is irrational.
${ }^{24} 16 \quad \underline{3}_{2}$ is rational, but is neither a natural number nor an integer.
20
10 is rational, a natural number, and an integer.
5. Commutative Property of addition.
7. Distributive Property.
9. (a) $\begin{array}{cccccc}5 & 2 & 5 & 4 & 9 & 3 \\ 5 & \overline{3} & \overline{6} & 6 & 6 & 2 \\ 5 & 2 & 5 & 4 & 1 & \\ - & & - & - & - & \end{array}$
6. Commutative Property of multiplication.
8. Distributive Property.
10. (a) $\begin{array}{ccccc}7 & 11 & 21 & 22 & 1 \\ 7 & 15 & \overline{30} & \frac{30}{30} & 40 \\ - & 11 & 21 & 22 & 43\end{array}$
(b) $\begin{array}{llllll}10 & 15 & 30 & 30 & 30 \\ 30 & 12 & 3035^{3} & 55^{-} & 25 \\ - & - & & -\end{array}$
12. (a) $7 \quad 35 \quad 7 \quad 12 \quad 12 \quad 2$
(b) $\begin{array}{lllll}\frac{30}{7} & \frac{12}{35} & \frac{30 \quad 12}{7 \quad 35} & \frac{612}{77} & \frac{72}{49}\end{array}$
13. $x\left[\begin{array}{lll}2 & 62 & x\end{array}\right.$

15. x 4] $x \quad 4$

16. $x\left[\begin{array}{lll}2 & x\end{array}\right.$
_2
$x 5 x[5$
18. $x \quad x$
3

$\begin{array}{llll}1 & x & 5 & x 15]\end{array}$

(a) $C \quad D 12]$
(a) A $B 10 \underline{\underline{1}}_{2} 1$
(b) $\left.C \begin{array}{ll}D & 0\end{array} 1\right]$

234
$\begin{array}{lll}A & B & 1\end{array}$
23. (a) $A \quad C \quad 12$
(b) $B \quad D \quad \underline{1}_{2}$

1
71033
(a) $A \quad D \quad 01$ $B C \underline{1}_{21}$
393966

$$
\begin{aligned}
& 2^{3} 3^{2} \underline{1}_{8} 1 \quad 9{ }^{8}-1-\quad- \\
& \begin{array}{lll}
9 & 72 & 72
\end{array} 72 \\
& 6423433^{23} 42 \quad 16
\end{aligned}
$$

$2.50100 \quad 10-$
4 - $\quad-$
29.21613 $\begin{aligned} \frac{1}{216} 3 & \frac{1}{\overline{216}} \\ 242 & \frac{1}{6} \\ \frac{242}{242} & \end{aligned}$
31.
(a) $4 \quad 04 \quad 4$
(b) $4 \quad 48 \quad 8$

46 CHAPTER P Prerequisites

$\begin{array}{lll}2 & & \\ 2 & 121 & 11\end{array}$
(a) 5

32
2
(b)

5
38
8

61. $x^{6} 1 x^{3} 1 \begin{array}{lllllllllllllll} & 1 & x^{3} & 1 & x & 1 & x^{2} & x & 1 & x & 1 & x^{2} & x & 1\end{array}$

32
63. $x \quad 27 x 3 x \quad 3 x 9$

$$
\text { 64. } 3 y^{3} 81_{x}^{3} \quad 3 y^{3} 27 x^{3} 3 y \quad 3 x y^{2} \quad 3 x y \quad 9 x^{2}
$$

48 CHAPTER P Prerequisites
65. $4 x^{3} 8 x^{2} 3 x \quad 6 \quad 4 x^{2} x \quad 2 \quad 3 x \quad 24 x^{2} 3 x<2$

$$
\begin{array}{llll}
3 & 2 & 2 & 2
\end{array}
$$

2^{67}

69. $2 y \quad 7 \quad 2 y \quad 7 \quad 4 y^{2} 49$

32

74. $2 x .1 \cdots 2 x \quad 32 x \quad 1 \quad 32 x .1 \quad 1 \quad 8 x .12 x \quad 6 x .1$

78. $\frac{x^{2} 2 x 15}{x^{2} 6 x 5} \frac{x^{2} x 12}{x^{2} 1} \quad \frac{x 5 x 3 \times 1 \times 1}{x 5 x} 1 \quad \frac{x 1}{x 4 x} 3 \quad x 4$ 79. $\frac{1}{x 1} \frac{x x 1}{x 1} \frac{1}{x 1} \quad \frac{x-x 1}{x 1} \quad 2 \quad 2$

81.
${ }_{2}^{2} \bar{x}{ }^{1} \overline{x 2}{\stackrel{3}{x \cdot 2^{2}}}_{\frac{2 x 2}{x x 2^{2}} \quad \frac{x 2}{x x 2^{2}} \quad \frac{3 x}{x x 2^{2}}}$

$x 2 x 1 x 2$
$\begin{array}{lllllllllll}x & 2 & x & 1 & 2\end{array} \quad \begin{array}{lllllll}x & 1\end{array}$
$\begin{array}{lllllll}x^{2} & x & 2 & x & 1 & 2 x & 4\end{array}$

$\begin{array}{rrrrrrrrr} & x & 2 & x & 2 & 2 x & x & 2 & 2 x\end{array}$

$$
\begin{aligned}
& \begin{array}{llllll}
x & x & 1 & x & x & 1
\end{array}
\end{aligned}
$$

105. $7 x$ 6 $\quad 4 x$ $9 \begin{array}{lllll} & 3 x & 15 & x & 5\end{array}$
106. $8 \quad 2 x 14 x 3 x 6 x 2$
107. ${ }_{3}^{1} x \quad \frac{1}{2} \quad 2 \quad 2 x \quad 3 \quad 12 \quad 2 x \quad 15 \quad x$ $\frac{15}{2}$
108. $\frac{2}{3} x \quad \frac{3}{5} \quad \frac{1}{5} 2 x \quad 10 x \quad 9 \quad 3 \quad 30 x \quad 40 x 6 \quad x$ $\frac{6}{40} \quad \frac{3}{20}$
109. $2 x x_{5} \begin{array}{lllllllllllllllll} & 4 x & 5 & 8 & 5 x & 2 x & 6 & 4 x & 20 & 8 & 5 x 2 x & 26 & 8 & 5 x & 3 x 18 & x 6\end{array}$ $x 52 x 5$
110. $\left.\quad \begin{array}{llllllllllllllll}2 & - & - & 3 & x & 5 & 2 & 2 x & 5 & 5 & 3 x & 15 & 4 x & 10 & 5 x & 30\end{array}\right) x 30$ $\begin{array}{ll}x \quad 1 \\ 2 x \quad 1 & 2\end{array}$

 last equation is never true, there is no real solution to the original equation.

> 114. $x 2^{2} \quad x \quad 4^{2} x 2^{2} x 4^{2} \quad 0\left[\begin{array}{lll}x & 2 x & 4\end{array}\right]\left[\begin{array}{lll}x & 2 x & 4\end{array}\right] 0$ $\left[\begin{array}{llll}x & 2 & x & 4\end{array}\right]\left[\begin{array}{llll}x & 2 & x & 4\end{array}\right] 62 x\left[\begin{array}{lllllll}6 & 0 & 2 x & 2 & 0 & x & 1\end{array}\right.$.
> $x^{2} \quad 144 \quad x 12$
> $4 x^{2} \quad 49 \quad x^{2} \quad \underline{49}_{4} \quad x_{2}^{72}$
> 33
> $\begin{array}{lllllll}x & 27 & 0 & x & 27 & x & 3 .\end{array}$
$6 x^{4} 15 \quad 0 \quad 6 x^{4} 15 \quad x^{45} \underline{2}_{2}$. Since x^{4} must be nonnegative, there is no real solution.
$\begin{array}{lllllll}x & 1 & 3 & 64 & x & 14 & x 1\end{array} 45$.
$\begin{array}{lllllllll}x & 2^{2} & 2 & 0 x & 2^{2} & 2 & x & 22 & x 22 \text {. }\end{array}$
$3 * \overline{3} \times 3{ }^{3} 27$.
$x^{23} 4 x^{132} 4 x^{13} 2 x 8$.
$4 x^{34} 500 \quad 0 \quad 4 x^{34} 500 \quad x^{34} 125 \quad x \quad 125^{43} 5^{4} 625$.
$\begin{array}{lllllllllll}x & 2^{15} & 2 & x & 2 & 2 & 32 & x & 2 & 32 & 34 .\end{array}$
$\underline{x} . \underline{ }$
125. $A \quad 2 \quad 2 A \quad x \quad y \quad x \quad 2 A \quad y$.

127. Multiply through by $t: J \quad \bar{t} \quad \overline{2 t} \quad \overline{3 t} t J \quad 1 \quad 1 \quad \overline{2} \quad \overline{3} \quad \overline{6} t \quad \frac{1}{6 J} \quad, J \quad 0$.
128. $F \quad k \begin{array}{ccccc}\frac{q 1 q 2}{r^{2}} & r^{2} & k & F & r k 2\end{array} \quad \frac{q 1 q 2}{F}$. (In real-world applications, r represents distance, so we would take the positive root.)

Let x be the number of pounds of raisins. Then the number of pounds of nuts is $50 x$.

	Raisins Nuts Mixture		
Pounds	x	$50 \quad x$	50
Rate (cost per pound)	320	240	272

So $320 \times 24050 \times 27250320 x 120240 \times 13608 \times 16 \times 20$. Thus the mixture uses 20 pounds of raisins and 502030 pounds of nuts.

Let t be the number of hours that Anthony drives. Then Helen drives for $t{ }^{\frac{1}{4}} 4$ hours.

	Rate	Time	Distance
Anthony	45	t	$45 t$
Helen	40	t	$\frac{1}{4}$

When they pass each other, they will have traveled a total of 160 miles. So $45 t 40 t \quad \frac{1}{4} 160 \quad 45 t 40 t \quad 10 \quad 160$
$85 t 170 t 2$. Since Anthony leaves at 2:00 P.M. and travels for 2 hours, they pass each other at 4:00 P.M.
Let x be the amount invested in the account earning 15% interest. Then the amount invested in the account earning 25% is $7000 x$.
 x 5475. Thus, Luc invested $\$ 5475$ in the account earning 15% interest and $\$ 1525$ in the account earning 25% interest.
The amount of interest Shania is currently earning is $6000003 \$ 180$. If she wishes to earn a total of $\$ 300$, she must earn another $\$ 120$ in interest at a rate of 125% per year. If the additional amount invested is x, we have the equation $00125 x 120 \times 9600$. Thus, Shania must invest an additional $\$ 9600$ at 125% simple interest to earn a total of $\$ 300$ interest per year.
Let t be the time it would take Abbie to paint a living room if she works alone. It would take Beth $2 t$ hours to paint the living room alone, and it would take $3 t$ hours for Cathie to paint the living room. Thus Abbie does $\underset{t}{1}$ of the job per hour,

Beth does $\overline{2 t}$ of the job per hour, and Cathie does $\overline{3 t}$ of the job per hour. So $\begin{array}{ccccccccc}1 & \frac{1}{t} & \frac{1}{2 t} & \frac{1}{3 t} & 1 & 6 & 3 & 2 & 6 t\end{array}$ 11
$6 t$ 11-t 6. So it would Abbie 1 hour 50 minutes to paint the living room alone.
Let be width of the pool. Then the length of the pool is 2 , and its volume is $828464 \quad 16^{2} \quad 8464$
2529 23. Since 0 , we reject the negative value. The pool is 23 feet wide, 22346 feet long, and 8 feet deep.

CHAPTER P TEST

(a) The cost is $C \quad 9 \quad \overline{15 x}$
$\begin{array}{llllll}\text { There are four extra toppings, so } x & 4 \text { and } C & 9 & 154 & \$ 15 .\end{array}$
(a) 5 is rational. It is an integer, and more precisely, a natural number.

5 is irrational.
$\underline{9}_{33}$ is rational, and it is an integer.
$1,000,000$ is rational, and it is an integer.
(a) $A \quad B \quad 015$

A B20 $\underline{1}_{21357}$
(a)

3
[03]
(b)

[42

4266
5. (a) 2^{6}
64
(b) $\quad 2^{6}$
64
(c) $2 \begin{array}{ccc}6 & \frac{1}{2} & \underline{1} \\ & 2 & 264 \\ 4 & 2 & 9\end{array}$
(d) $\begin{array}{lll}710 & 72 & \underline{1} \\ 79\end{array}$

$$
\underline{3} \quad 2 \quad 2 \quad 2 \quad \underline{4} \quad 5 \overline{32} \quad 2 \quad \underline{1}
$$

$\begin{array}{lllll}- & & & & \\ 4 & 2 & \frac{3}{4} & - \\ 16 & \end{array}$
(h) $811^{34} \quad 3^{4}$
33
-1
$\begin{array}{lllll}\text { (e) } & 2 & 3 & 9 & \text { (f) }\end{array}$
(b) $00000003965 \quad 3965 \quad 10^{7}$
6. (a) $\begin{aligned} & 186,000,000,000 \\ & a^{2} b^{2}\end{aligned} 186 \quad 10 \begin{aligned} & 11\end{aligned}$
7. (a) $\overline{a b^{3}} \quad \bar{b}$
$2 x 3 y 2^{2} 4^{y} x^{4} 6-$

$$
2
$$

(c) $2 x^{12} y^{2} \quad 3 x_{14} y \quad 1 \quad 232 x 12214 y^{2} 21 \quad 18 x$

2012545255255535 -
${ }_{\text {(1) }}^{18 x 3} \overline{y^{49} 2} x^{2} \bar{x} y^{2}{ }^{2} \quad 3 x y^{2} \quad 2 x$
$2 x^{2} y$
$22 x 2232 y 2122_{4 x 10 y}$
8. (a) $3 x \quad 6 \quad 42 x \quad 5 \quad 3 x \quad 18 \quad 8 x \quad 20 \quad 11 x \quad 2$
(b) $x \quad 3 \quad 4 x \quad 5 \quad 4 x^{2} 5 x \quad 12 x \quad 15$

(f) $x_{2}^{2} x \quad 3 x$ 3 $x^{2} x^{2} 9 x^{4} 9 x^{2}$
(a) ${ }_{2}^{4 x} \quad 25 \quad 2 x \quad 5 \quad 2 x \quad 5$
$\begin{array}{lllllll}2 x & 5 x & 12 & 2 x & 3 & x & 4\end{array}$

$\begin{array}{llll}4 & 3 & 2\end{array}$

(e) $2 x y^{2} 102 x$ y $25 \quad 2 x y^{2} 25 \quad 2 x \quad y \quad 5^{2} \quad 2 x \quad y \quad 5^{2}$
(f) $x^{3} y 4 x y$ x $y x^{2}$ 4xyx $\begin{aligned} & \text { a }\end{aligned}$ x 2
10. (a) $\frac{x^{2} 3 x 2}{x_{2}^{2} x 2} \quad \frac{x 1 x 2}{x 1 \times 2} \quad \frac{x 2}{x 2}$
(b) (c)
$\left.\begin{array}{lll}\begin{array}{ll}x & x \\ x & y\end{array} & \begin{array}{l}y \\ x\end{array} \\ \hline\end{array}\right]$
(d) $+\quad+\quad+\quad+x y \quad x y \quad x y \quad x y \quad y x$
11. (a) 3432232232 - $\quad 2-3-2$

(c) $1 *$
(a) $4 x \quad 3 \quad 2 x \quad 7 \quad 4 x \quad 2 x \quad 732 x \quad 10 \quad x \quad 5$. $8 x^{3} 125{ }^{3} 8 x^{3} \quad 3 \quad 1 \overline{25} 2 x 5 \quad x^{5}$ $x^{23} 64 \quad 0 x^{23} 64 \quad x^{23} \overline{3^{32}} 6432 \quad x \quad 8^{3} \quad 512$.

$$
x \quad x 3
$$

$\begin{array}{lllllllllll}3 x & 1^{2} & 18 & 0 & 3 x & 1^{2} & 18 x ـ^{2} & 6 & x & 16 & x 6\end{array}$
$E m c^{2} \quad E \quad c^{2} \quad c^{E}$. (We take the positive root because c represents the speed of light, which is positive.)
14. Let d be the distance in km, between Bedingfield and Portsmouth.

Direction	Distance	Rate	Time
Bedingfield Portsmouth	d	100	d
		100 Portsmouth Bedingfield	d
		75	75

We have used time $\frac{\text { distance }}{\text { rate }}$ to fill in the time column of the table. We are given that the sum of the times is 35 hours.

FOCUS ON MODELING

1. (a) The total cost is cost of	maintenance	number	copy	number	copier

(b) In this case the cost is rental copy number . Each month the copy cost is cost of months cost of months
8000006480 . Thus we get $C 2$ 95n 480n $575 n$.
(c)

Years	n	Purchase	Rental
1	12	8,980	6,900
2	24	12,160	13,800
3	36	15,340	20,700
4	48	18,520	27,600
5	60	21,700	34,500
6	72	24,880	41,400

(d) The cost is the same when $C 1 \quad C 2$ are equal. So $5800 \quad 265 n \quad 575 n \quad 5800 \quad 310 n \quad n \quad 1871$ months.

(a) The cost of Plan 1 is		cost per mile	number of miles		3	65	$015 x$	195	0	$15 x$.

The cost of Plan 2 is 3
daily
cost
When x 400, Plan 1 costs $195015400 \$ 255$ and Plan 2 costs $\$ 270$, so Plan 1 is cheaper. When $x 800$, Plan 1 costs 195 $015800 \$ 315$ and Plan 2 costs $\$ 270$, so Plan 2 is cheaper.
The cost is the same when $195015 \times 27001575 x \times 500$. So both plans cost $\$ 270$ when the businessman drives 500 miles.
(a) The total cost is
setupcost pernumber . So $C \quad 800022 x$.
costtireof tires
price per number . So $R \quad 49 x$. tireof tires

Profit Revenue Cost. So $P \quad R \quad C \quad 49 x 8000 \quad 22 x \quad 27 x 8000$.
Break even is when profit is zero. Thus $27 \times 8000027 x 8000 \times 2963$. So they need to sell at least 297 tires to break even.
(a) Option 1: In this option the width is constant at 100 . Let x be the increase in length. Then the additional area is increase
width in length $100 x$. The cost is the sum of the costs of moving the old fence, and of installing the new one. The cost of moving is \$6 $100 \$ 600$ and the cost of installation is $210 x \quad 20 x$, so the total cost is C 20x 600. Solving for x, we get C 20x $60020 x \quad C \quad 600 \quad x \quad \frac{C \quad 600}{20}$. Substituting in the area C 600
we have $A 1 \quad 100 \quad 20 \quad 5 C \quad 600 \quad 5 C \quad 3,000$.
Option 2: In this option the length is constant at 180 . Let y be the increase in the width. Then the additional area is length increase $180 y$. The cost of moving the old fence is $6180 \quad \$ 1080$ and the cost of installing the new in width
$\begin{array}{lllllllllllll}\text { one is } 210 y & 20 x & \text {, so the total cost is } C & 20 y & 1080\end{array}$. Solving for y, we get $C \quad 20 y \quad 1080 \quad 20 y \quad C \quad 1080$

(b)

Cost, C	Area gain $A 1$ from Option 1	Area gain $A 2 \mathrm{from}^{2}$
$\$ 1100$	$2,500 \mathrm{ft}^{2}$	$180 \mathrm{ft}^{2}$
$\$ 1200$	$3,000 \mathrm{ft}^{2}$	$1,080 \mathrm{ft}^{2}$
$\$ 1500$	$4,500 \mathrm{ft}^{2}$	$3,780 \mathrm{ft}^{2}$
$\$ 2000$	$7,000 \mathrm{ft}^{2}$	$8,280 \mathrm{ft}^{2}$
$\$ 2500$	$9,500 \mathrm{ft}^{2}$	
$\$ 3000$	$12,000 \mathrm{ft}^{2}$	$12,780 \mathrm{ft}^{2}$

If the farmer has only $\$ 1200$, Option 1 gives him the greatest gain. If the farmer has only $\$ 2000$, Option 2 gives him the greatest gain.
(a) Design 1 is a square and the perimeter of a square is four times the length of a side. $244 x$, so each side is $x 6$ feet long. Thus the area is $6^{2} 36 \mathrm{ft}^{2}$.
Design 2 is a circle with perimeter $2 r$ and area r^{2}. Thus we must solve $2 r 24 r^{12}$. Thus, the area is 122144 $458 \mathrm{ft}^{2}$. Design 2 gives the largest area.
(b) In Design 1, the cost is $\$ 3$ times the perimeter p, so $1203 p$ and the perimeter is 40 feet. By part (a), each side is then $\stackrel{40}{4}_{4} 10$ feet long. So the area is $10^{2} 100 \mathrm{ft}^{2}$.

In Design 2, the cost is $\$ 4$ times the perimeter p. Because the perimeter is $2 r$, we get $120 \quad 42 r$ so 12015 . The area is $r^{215} 2225716 \mathrm{ft}^{2}$. Design 1 gives the largest area. 8
(a) Plan 1: Tomatoes every year. Profit acres Revenue cost 1001600300130,000 . Then for n years the profit is $P 1$ 130,000n.
Plan 2: Soybeans followed by tomatoes. The profit for two years is Profitacres
soybean tomato
revenue revenue $1001200 \quad 1600280,000$. Remember that no fertilizer is
needed in this plan. Then for $2 k$ years, the profit is $P 2 \quad 280,000 k$.
When $n 10, P 1130,000101,300,000$. Since $2 k 10$ when $k 5, P 2280,00051,400,000$. So Plan B is more profitable.
7. (a)

For Plan A: CA $25 \quad 210 x$ 1020x \quad 5. For Plan B: CB $\begin{array}{lllllllllll}40 & 15 & 10 x & 1015 x & 25 .\end{array}$
For Plan C: CCllllll $\begin{array}{lllll}60 & 1 & 10 x & 10 & 10 x\end{array} \quad 50$. Note that these equations are valid only for $x \quad 1$.
If Gwendolyn uses 22 GB , Plan A costs $25122 \$ 49$, Plan B costs $401215 \$ 58$, and Plan C costs $60121 \$ 72$.

If she uses 37 GB , Plan A costs $25272 \$ 79$, Plan B costs $402715 \$ 80$ 50, and Plan C costs $60271 \$ 87$.

If she uses 49 GB , Plan A costs 25392 \$103, Plan B costs $403915 \$ 98$ 50, and Plan C costs $60391 \$ 99$.
(i) We set C A $C \begin{array}{llllllll}C B & 20 x & 5 & 15 x & 25 & 5 x & 20 & x\end{array}$ 4. Plans A and B cost the same when 4 GB are used.

We set C A C C $20 x 510 x 5010 x 45 \times 4$ 5. Plans A and C cost the same when 45 GB are used.

We set C B C C $15 \times 2510 \times 505 \times 25 \times 5$. Plans B and C cost the same when 5 GB are used.
(a) In this plan, Company A gets $\$ 32$ million and Company B gets $\$ 32$ million. Company A's investment is $\$ 14$ million, so they make a profit of $3214 \$ 18$ million. Company B's investment is \$2 million, so they make a profit of 3226 $\$ 06$ million. So Company A makes three times the profit that Company B does, which is not fair.
The original investment is $1426 \$ 4$ million. So after giving the original investment back, they then share the profit of $\$ 2$ 4 million. So each gets an additional \$12 million. So Company A gets a total of $1412 \$ 26$ million and Company B gets $2612 \$ 38$ million. So even though Company B invests more, they make the same profit as Company A, which is not fair.
The original investment is $\$ 4$ million, so Company A gets $\underline{1}_{\underline{4}} \underline{4}^{6} 64 \$ 24$ million and Company B gets ${ }_{4}^{2}{ }_{4}^{6} 64 \quad \$ 416$ million. This seems the fairest.

EQUATIONS AND GRAPHS

1.1 the coorbinate plane

The point that is 2 units to the left of the y-axis and 4 units above the x-axis has coordinates 24 .

If x is positive and y is negative, then the point $x y$ is in Quadrant IV.

The distance between the points $a b$ and $c d$ is $c a^{2} d b^{2}$. So the distance between 12 and 710 is $71^{2} 102^{2} 6^{2} 8^{2} 36$
6410010.
4. The point midway between $a b$ and $c d$ is $\frac{a c}{2} \frac{b d}{2}$. So the point midway between 12 and 710 is

				$-\quad-46$
17	2	10	8	12

$A 51, B 12, C$ 26,D 62,E 4 1,F 20,G 1 3,H2 2
Points A and B lie in Quadrant 1 and points E and G lie in Quadrant 3 .
7. $05,10,12$, and $\underline{1}_{2} \stackrel{2}{2}_{3} 8$
8.
$50,20,26$
13 , and

10. $x y$ y 2

11. $x y x 4$

13. $x y 3 x 3$

15. $x y$ $x y \quad 0$
$x y$
17. $x y$

12. $x y$ y 3

14. $x y \quad 0 \quad y \quad 2$

16. $x y$ $x y \quad 0$

x	0 and y	0 or x
	0 and $y 0$	$x y$
x	0 and y	0 or x
	0 and $y 0$	

yA
18. $x y$

19. $x y 1 \quad x \quad 1$ and $2 \quad y \quad 2$

20. $x y 3 \quad x \quad 3$ and $1 \quad y 1$

21. The two points are 02 and 30 .
(a) $d 30^{2} \begin{array}{lllll} & 0 & 2^{2} & 3^{2} 2^{2} & 9413\end{array}$
$\begin{array}{lll}3 \quad 0 & \underline{32} & 3\end{array}$
(b) midpoint: $\begin{array}{lllll}2 & 2 & 2\end{array}$
22. The two points are 21 and 22 .
(a) $d 22^{2} 1^{2} 2^{2} \quad 43^{2} 2^{2} 169255$
(b) midpoint: $\frac{22}{2} \frac{12}{2}$
02^{1}
23. The two points are 33 and 53 .
(a) $d 3 \quad 5^{2-} \quad 33^{2}$
$8 \overline{262436} 10010$
(b) midpoint: $3 _ { 2 } 5 3 \longdiv { 2 3 }$

10
24. The two points are 23 and 41 .
(a) $d 2 \quad 4{ }^{2} 31{ }^{2} 6^{2} 2^{2} 36 \quad 450 \quad 2 \quad 10$
(b) midpoint: $2_{2}^{4} \overline{2} \overline{1} \quad 12$
25. (a)
(b) $d 0 \quad 6^{2}$

$$
6 ^ { 2 } 8 \longdiv { 2 }
$$

06816
-_
26. (a)
(b) $d 2 \quad 10^{2}$

$210 \underline{5 \quad 0} 5$
(c) Midpoint: $\quad 2 \quad 2 \quad 42$
27. (a)

(b) d
 $\frac{4}{\text { Midpoint: }} \frac{52}{}$

13
(c) Midpoint: 2 2

22
29. (a)
(b) d

$$
144-16160-410-\quad-
$$

$$
\begin{array}{ll}
66 & 22 \\
\hline
\end{array}
$$

(c) Midpoint:

2
200
28. (a)
(b) d

(c)

$$
\begin{array}{llllll}
6 & 1 & 3 & 1 & 7 & 1
\end{array}
$$

2
30. (a)

$d 0 \quad 5^{2} 60^{2}$

$$
\begin{array}{llll}
5^{2} & 6^{2} & \overline{25 \quad 36} & 61 \\
& \boxed{0} \quad 5 \quad 6 \quad 0 & \underline{5}
\end{array}
$$

(c) Midpoint: 223
31. $d A B$

$$
1 \quad 5^{2} \quad 3 \quad 3^{2}
$$

$d A C 11^{2} 33^{2} 6^{2}$. So the area is 4624 .

The area of a parallelogram is its base times its height. Since two sides are parallel to the x-axis, we use the length of one of these as the base. Thus, the base is
$d A B \quad 15^{2} 2$
4^{2}
4. The 22
height is the
is 624 . So the area of the parallelogram is base height 4416 .

The point S must be located at 04 . To find the area, we find the length of one side and square it. This gives

> | $d Q R \quad$ | $5 \quad 0^{2} \quad 1 \quad 6^{2}$ |
| :--- | :--- | :--- | :--- | :--- |

$$
5^{2} 5^{2}
$$

$$
25 \quad 2550 \quad-
$$

2
So the area is $\overline{50} \quad 50$.

$d 0 A 60^{2} \rightarrow 0^{2} 6^{2} 7^{2} 36-4985$. \qquad
$d 0 B$

$$
5 \quad 0^{2} \quad 8 \quad 0^{2}
$$

36. $d E C$

01

Thus point C is closer to point E.

37. $d P R \quad \frac{13^{2} 11^{2}}{\square} \quad$| 42_{2}^{2} |
| :--- | :--- | :--- | :--- |$\quad \overline{164} \quad \overline{20} \quad \overline{5}$.

$\begin{array}{rrrrr}d Q R & 11^{2} 2 & 2 & 16 & 4 . \text { Thus point } Q \\ & 13 & 04 & & \end{array}$ is closer to point R.
(a) The distance from 73 to the origin is $\begin{array}{lllllll}7 & 0^{2} & 3 & 0^{2} 7^{2} & 3^{2} 49 & 958 \text {. The distance from - }\end{array}$ 37 to the origin is $\overline{30^{2} 70^{2}} \quad \overline{3^{2} 7^{2}} \quad \overline{99} \quad$ 58. So the points are the same distance from the origin.
(b) The distance from $a b$ to the origin is $a 0^{2} \quad b_{0}^{2} a^{2} b^{2}$. The distance from $b a$ to the origin is

$$
b 0^{2} a 0^{2} b^{2} a^{2} \quad a^{2} b^{2} \text {. So the points are the same distance from the origin. }
$$

Since we do not know which pair are isosceles, we find the length of all three sides.
d $A B$
30^{2}
12^{2}
$3^{2} \quad 3^{2}$
$\begin{array}{lllll}9 & 9 & 18 & 3 & 2 .\end{array}$
$d C B$

$1 \quad 16$
17.
$d A C$
$0 \quad 4^{2} \quad 2 \quad 3^{2}$
$\overline{4^{2} \quad 1^{2}}$
$\overline{16 \quad 1}$
$\overline{17}$. So sides $A C$ and $C B$ have the same length.
40. Since the side $A B$ is parallel to the x-axis, we use this as the base in the formula area $\underline{1}_{2}$ base height. The height is the change in the y-coordinates. Thus, the base is 246 and the heightiv 41 . So the area is $\frac{1}{2} 639$.
41. (a) Here we have $A \quad 22, B \quad 3 \quad 1$, and $C 3 \quad 3$. So

The area of the triangle is $\frac{1}{2} d C B d A B^{\underline{1}_{2}} \quad 10.21010$. -

d BC

$$
211^{2} 23^{2}
$$

$$
9^{2} 1^{2}
$$

$81 \quad 1$
82.
$\underset{2}{\text { Since }}\left[\begin{array}{ll}d & A \\ 412\end{array}\right][d A C] \quad[d B C]$, we conclude that the triangle is a right triangle. The area is
43. We show that all sides are the same length (its a rhombus) and then show that the diagonals are equal. Here we have $A 29, B \quad 46, C \quad 10$, and D5 3. So
$d A B \quad 42_{69}^{2} \quad 63_{2} \quad 36 \quad 9 \quad 45$;

$d C D \quad 51^{2} \quad 2 \quad 22$
d D A $255^{2} \overline{3^{2}} \quad 30-6 \frac{3-36945}{3^{2} 6^{2} 9} 3645$. So the points form a rhombus. Also d A C12 $\quad 0 \quad, 9_{3}^{2} 2_{9}^{2} 9-8190-3-10$, \qquad
and d B D5 $\quad 4^{2} \quad \begin{array}{llllll}3 & 6^{2} & 9^{2} & 2 & 81 & 990\end{array} 310$. Since the diagonals are equal, - \quad the rhombus is a square.
44. $d A B$
$31^{2} 113^{2}$
$4^{2} 8^{2}$
$16 \quad 64$
8045.

Ancur mis? \qquad
$d A C 512153^{2} \quad 6^{2} 12^{2} 36 \quad 144 \underline{180} \quad 6 \quad 5$. So $\underline{d A} B \quad d \underline{B} C \quad d A C$,
and the points are collinear.
45. Let $P 0 y$ be such a point. Setting the distances equal we get
$0 \overline{5}^{2} \quad y 5^{2} 01^{2} \quad y \quad 12$

$05^{2} 5^{2} 22$
$4 \quad 5125126 ;$ \qquad
$01^{2} 41^{2} 1^{2} 5^{2} 25126 . \quad-\quad-\quad \square$
46. The midpoint of $A B$ is $C \quad \begin{array}{cccccccc}1 & 3 & 0 & 6\end{array} \quad$ 3. So the length of the median $C C \quad$ is $d C \quad C$
2
4162025.
$2 x \quad 2 \quad \begin{aligned} & 2 x\end{aligned}$
48. We solve the equation 6 \qquad to find the x coordinate of B. This gives 6 \qquad 2
$122 x \quad x$ 10. Likewise,
$8 \quad 2$
$163 y y$
13. Thus, B
49. (a)
y
c
1013.
(b) The midpoint of $A C$ is $\begin{array}{llllll}2 & 7 & 1 & 7 & 2^{-\frac{5}{3}} 3 \text {, the midpoint }\end{array}$
of $B D$ is $\quad \begin{array}{llllll}4 & 1 & 2 & 4 & \underline{5} & 3 .\end{array}$

(c) Since the they have the same midpoint, we conclude that the diagonals bisect each other.

51. (a) The point 53 is shifted to 533285 .
(b) The point $a b$ is shifted to $a 3 b 2$.
(c) Let $x y$ be the point that is shifted to 34 . Then $x \quad 3 y 234$. Setting the x-coordinates equal, we get
$\begin{array}{lllll}x & 3 & 3 & x & 0\end{array}$. Setting the y-coordinates equal, we get $y \quad 2 \quad 4 \quad y \quad 2$ So the point is 02 .
(d) $A 51$, so $A \quad 5 \quad \begin{array}{lll}5 & 1 & 221 ; B 32 \text {, so } B \\ 3 & 324 \text {; and } C \quad 21 \text {, }\end{array}$ so C2 31253 .
52. (a) The point 37 is reflected to the point 37 .
(b) The point $a b$ is reflected to the point $a b$.
(c) Since the point $a b$ is the reflection of $a b$, the point 41 is the reflection of 41 .
(d) $A 33$, so $A 33$; $B 61$, so B

61 ; and $C \quad 14$, so $C 14$.
53. (a) $d A B \quad 1126$. The walking distance is

We want the
$\begin{array}{lllllll}4 & 11 & 2 & 26 & 7 & 24 & 31 \\ \text { blocks. Straight-line distance is }\end{array}$
$4 \frac{11^{2} 226^{2}}{7^{2} 24^{2} 625} 25$ blocks.
(c) The two points are on the same avenue or the same street.
$\begin{array}{llll}3 & 27 \quad \overline{717}\end{array}$
54. (a) The midpoint is at $\quad 2 \quad 2 \quad 1512$, which is at the intersection of 15 th Street and 12 th Avenue.
(b) They each must walk $15 \quad 312 \quad 7 \quad 12 \quad 5 \quad 17$ blocks.
55. The midpoint of the line segment is 6645 . The pressure experienced by an ocean diver at a depth of 66 feet is $45 \mathrm{lb} / \mathrm{in}^{2}$.

coordinate of B, we have $8 \begin{gathered}\frac{22}{22} \\ \frac{y^{2}}{2} \\ 16\end{gathered} \quad 3 \quad y \quad y \quad 13$. Thus $B \quad 1013$.
57. We need to find a point $S x 1 y 1$ such that $P Q R S$ is a parallelogram. As indicated by Example 3, this will be the case if the diagonals $P R$ and $Q S$ bisect each other. So the midpoints of $P R$ and $Q S$ are the same. Thus
$\sum_{2}^{0} 5 \frac{3 \quad 3}{2}$
$x 12 y 2$
22 . Setting the x-coordinates equal, we get
$\square_{2} \underbrace{}_{0} \frac{x_{1} 2}{2}$
$2 x 13$.

Setting the y-coordinates equal, we get $\frac{3}{2} \quad \frac{y 1}{2} 3 \begin{array}{lllll}2 & 3 & y 1 & 2\end{array}$

$y 12$. Thus $S 32$.

1.2 GRAPHS OF EQUATIONS IN TWO VARIABLES: CIRCLES

If the point 23 is on the graph of an equation in x and y, then the equation is satisfied when we replace x by 2 and y by 3 .
We check whether $23216^{?} \quad$? This is false, so the point 23 is not on the graph of the equation $2 y x \quad 1$.
To complete the table, we express y in terms of x : $2 y \begin{array}{lllllllllll} & x & 1 & y & \frac{1}{2} x & 1 & & \frac{1}{2} x & \frac{1}{2}\end{array}$

x		y	$x y$		
2	T	2			

2. To find the x-intercept(s) of the graph of an equation we set y equal to 0 in the equation and solve for x : $20 \quad x \quad 1$

1 , so the x-intercept of $2 y \quad x \quad 1$ is 1 .
To find the y-intercept(s) of the graph of an equation we set x equal to 0 in the equation and solve for y : $2 y \quad 0 \quad 1$
$\underline{1}_{2}$, so the y-intercept of $2 y \quad x \quad 1$ is $\underline{1}_{2}$.

The graph of the equation $x 1^{2}$ y $\quad 2^{2} 9$ is a circle with center 12 and radius 93.
(a) If a graph is symmetric with respect to the x-axis and $a b$ is on the graph, then $a b$ is also on the graph.
(b) If a graph is symmetric with respect to the y-axis and $a b$ is on the graph, then $a b$ is also on the graph.
(c) If a graph is symmetric about the origin and $a b$ is on the graph, then $a b$ is also on the graph.
(a) The x-intercepts are 3 and 3 and the y-intercepts are 1 and 2 .
(b) The graph is symmetric about the y-axis.

Yes, this is true. If for every point $x y$ on the graph, $x y$ and $x y$ are also on the graph, then $x y$ must be on the graph as well, and so it is symmetric about the origin.
No, this is not necessarily the case. For example, the graph of $y x$ is symmetric about the origin, but not about either axis.
9. $\left.\begin{array}{lll}y & 3 & 4 x . \text { For the point } 0 \\ 1 & ? & 3: 3 \\ 1 & & 3\end{array}\right) 4111$. Yes.
3403 3. Yes. For $40: 0$
3440
13. No. For 1 :

So the points 03 and 1 are on the graph of this equation.
 1 ? $\overline{10}$. Yes.

So the points 32 and 01 are on the graph of this equation.

For $11 \begin{array}{lllllllll} & 1: & 1 & 2 & 1 & 1 & 01 & 2 & 1\end{array} 0$. Yes.
So the points 10 and 11 are on the graph of this equation.
12. m $^{x^{2}}$ 11. For the point $11: 11^{2} 1 \begin{array}{lllll}1 & 1 & 1 & 1\end{array}$. No. For 12^{1} :

So the points 12 and 12 are on the graph of this equation.

$\begin{array}{llllllllll}4 & 4 & 1 & 1 & 1 & 1 . & \text { es. For } 23: & 2 & 2 & 233 \\ 2\end{array}$?

So the points $01,2 \quad 1$, and 23 are on the graph of this equation.
$\begin{array}{lllllll}1 & 4 & 12 & 9 & \\ & & & & & \text { 1. Yes. }\end{array}$
14. $01: 0^{2} 1^{2} \quad 1 \quad \stackrel{?}{0} \quad 0 \quad 1 \quad \stackrel{?}{i} 0$. Yes.
$\bar{T}_{22}=\overline{2}^{2} \quad 2 \overbrace{}^{2} \quad ? \quad 10 \overline{44} \quad 1 \quad 0$. Yes.
$\begin{array}{llllllll}\overline{3} & 1 & \underline{3} & 2 & 1 & ? & 3 & 1\end{array} ?$

So the points 01 ,
15. y

16. $y 2 x$.

$y 2 x$

Solve for $y: 2 x$ y 6 y $2 x 6$.

21. $y \quad 1 \quad x^{2}$

20. Solve for $x: x \quad \begin{array}{lllll}4 y & 8 & x & 4 y & 8 .\end{array}$

23. $y x^{2} 2$

x	
3	y
2	2
1	1
0	2
1	1
2	2
3	7

$9 y x^{2}$. To make a table, we rewrite the equation as y
$1_{9} x^{2}$.

x	y
9	9
3	1
0	0
3	1
9	9

$\begin{array}{ll}x & y^{2}\end{array}$.

24. $y x^{2}-4$

x	y
3	5
2	0
1	3
0	4
1	3
2	0
3	5

$$
4 y x^{2}
$$

	y
44	21
0	
2	0
4	4

28. $x y \quad 2 \quad y \quad x^{2}$.

yx.

x	y
$\overline{0}$	$\overline{0}$
1	1
4	2
1	1
2	2
4	2
9	3
16	4

31. $y 9 x^{2}$. Since the radicand (the expression inside the square root) cannot be negative, we must have
$\begin{array}{lllllll}9 & x^{2} & 0 & x^{2} & 9 & x & 3 .\end{array}$

30. $y \quad 2 \quad$ -

$y 9 \quad x^{2}$. \qquad

Since the radicand (the expression inside the square root) cannot be negative, we must have $9 x^{2}$ $x 3$.

x	y
3	0
2	$\overline{5}$
2	-
1	$2 \overline{2}$
0	3
1	$2-2$
2	$\overline{5}$
3	0

$x y$. In the table below, we insert values of y and find the corresponding value of x.

x	y
3	3
2	2
1	1
0	0
1	1
2	2
3	3

35. $y \quad 4 \quad x$.

x	y
6	2
4	0
2	2
0	4
2	2
4	0
6	2

$x y^{3}$. Since $x y^{3}$ is solved for x in terms of y, we insert
values for y and find the corresponding values of x in the table below.

x	y
27	3
8	2
1	1
0	0
1	1
8	2
27	3

39. $y \quad x^{4}$.

x	y
3	81
2	16
1	1
0	0
1	1
2	16
3	81

38. $y \quad x^{3} \quad 1$.

x	y
3	28
2	9
1	2
0	1
1	1
2	7
3	26

40. y

$16 x$	$4 . y$
3	65
2	0
1	15
0	16
1	15
2	0
3	65

$3 \quad 2$
41. $y 001 x \quad x$

-2000
43. $y 12 x \quad 17 ;$ [110$]$ by [120]

\qquad
45. ${ }^{y}{ }^{2}$

2
42. $y 003 x$

-50
44. y

$y x 6$. To find x-intercepts, set $y 0$. This gives $0 x 6 x 6$, so the x-intercept is 6 . To find y-intercepts, set $x 0$. This gives $y 06 y 6$, so the y-intercept is 6 .
$2 x 5 y$ 40. To find x-intercepts, set $y 0$. This gives $2 x 50402 x 40 x 20$, and the x-intercept is 20 . To find y-intercepts, set x 0 . This gives $205 y 40 y 8$, so the y-intercept is 8 .
$y x^{2} 5$. To find x-intercepts, set $y 0$. This gives $0 x^{2} 5 x^{2} 5 x 5$, so the x-intercepts are 5 . To find y-intercepts, set $x 0$. This gives $y 0^{2} 55$, so the y-intercept is 5 .
$y^{2} 9 x^{2}$. To find x-intercepts, set $y 0$. This gives $0^{2} 9 x^{2} x^{2} 9 x 3$, so the x-intercepts are 3 . To find y-intercepts, set $x 0$.

This gives $y^{2} 90^{2} 9 y 3$, so the y-intercepts are 3 .
$y 2 x y 2 x$. To find x-intercepts, set $y 0$. This gives $02 x 02 x 12 x 1 x \quad 2$, so the x-intercept is T^{12}. -

To find y-intercepts, set $x \quad 0$. This gives $y \quad 20 y<20 \quad 1 \quad y \quad 1$, so the y-intercept is 1 .

32
2
$x^{2} x$ y y 1 . To find x-intercepts, set $y 0$. This gives $x^{2} x 001 x^{2} 1 x$, so the x-intercepts are 1 and 1 .
 $y x 1$. To find x-intercepts, set $y 0$. This gives $0 \times 10 x 1 x 1$, sothe intercept is 1 . To find y-intercepts, set $x 0$. This gives $y 01 y 1$, so the y-intercept is 1 .
$x y 5$. To find x-intercepts, set $y 0$. This gives $x 0505$, which is impossible, so there is no x-intercept. To find y intercepts, set $x 0$. This gives 0 y 505 , which is again impossible, so there is no y-intercept.
55. $4 x 2 \quad 25 y 2 \quad 100$. To find x-intercepts, set $y \quad 0$. This gives $4 x 2 \quad 2502 \quad 100$
x-intercepts are 5 and 5 .
To find y-intercepts, set $x \quad 0$. This gives $402 \quad 25 y 2100 \quad y 2 \quad 4 \quad y$
2 , so the y-intercepts are
2 and 2.
$25 x^{2} y^{2}$ 100. To find x-intercepts, set $y 0$. This gives $25 x^{2} 0^{2} 100 x^{2} 4 x 2$, so the x-intercepts are 2 and 2 .

To find y-intercepts, set $x 0$. This gives $250^{2} y^{2} 100 y^{2} 100$, which has no solution, so there is no y-intercept.
57. $y ~ 4 x \quad x^{2}$. To find x-intercepts, set y. This gives $\begin{array}{llllllll}0 & 4 x & x^{2} & 0 & x 4 & x 0 & x & \text { or } x\end{array} 4$, so the x-intercepts are 0 and 4 .

To find y-intercepts, set $x \quad 0$. This gives $y 40 \quad 0^{2} \quad y \quad 0$, so the y-intercept is 0 .

x-intercepts are 3 and 3 .
To find y-intercepts, set $x \quad 0$. This gives $\frac{0^{2}}{9} \quad \frac{y^{2}}{4} 1 \quad \frac{y^{2}}{4} 1 \quad y^{2} \quad 4 \quad x 2$, so the y-intercepts are 2 and 2 .
$x^{4} y^{2} x$ x 16. To find x-intercepts, set $y 0$. This gives $x^{4} 0^{2} x 016 x^{4} 16 x$ 2. So the x-intercepts are 2 and 2 .

To find y-intercepts, set x
0 . This gives $0^{4} \quad y^{2}$

$0 y$	16	2	16	y	4. So the y-intercepts
are 4 and 4.	y				

$x^{2} y^{3} x^{2} y^{2} 64$. To find x-intercepts, set $y 0$. This gives $x^{2} 0^{3} x^{2} 0^{2} 64 x^{2} 64 x$. So the x-intercepts are 8 and 8 .

61. (a) $y x^{3} \quad x^{2}$; [2 2 $]$ by $\left[\begin{array}{ll}1 & 1\end{array}\right]$

(b) From the graph, it appears that the x-intercepts are 0 and 1 and the y-intercept is 0 .
(c) To find x-intercepts, set $y \quad 0$. This gives $\begin{array}{lllllllll}0 & x^{3} & x^{2} & x^{2} & x & 1 & 0 & x & 0\end{array}$ or 1 . So
32

2
the x-intercepts are 0 and 1 .
To find y-intercepts, set $x \quad 0$. This gives
$y 0^{3} 0^{2} \quad 0$. So the y-intercept is 0 .

43
62. (a) $y x$ 2x; [2 3] by [3 3]

2
63. (a) ${ }^{y} x^{2} \quad 1 \quad$; $\left[\begin{array}{lll}5 & 5\end{array}\right]$ by $\left[\begin{array}{ll}3 & 1\end{array}\right]$

64. (a) $y \quad \int^{x}$; [5 5] by [2 2]

65.(a) $\left.y^{3} x ;-\overline{[} 55\right]$ by [22$]$

(b) From the graph, it appears that the x-intercepts are 0 and 2 and the y-intercept is 0 .
(c) To find x-intercepts, set $y \quad 0$. This gives $\begin{array}{llllllll}0 & x^{4} & 2 x^{3} & x^{3} & x & 2 & 0 & x\end{array} 0$ or 2 . So
the x-intercepts are 0 and 2 .
To find y-intercepts, set $x \quad 0$. This gives $y 0^{4} 20^{3} 0$. So the y-intercept is 0 .
(b) From the graph, it appears that there is no x-intercept and the y-intercept is 2 .
(c) To find x-intercepts, set $y \quad 0$. This gives $0 x 2 \frac{2}{1 \text {, which has no solution. So there is no }}$ x-intercept.

To find y-intercepts, set $x \quad 0$. This gives 2
$y 02 \quad 12$. So the y-intercept is 2 .
(b) From the graph, it appears that the x - and y-intercepts are 0 .
(c) To find x-intercepts, set $y \quad 0$. This gives $\underbrace{}_{n 21-x} \begin{aligned} & x \\ & 0 \\ & 0\end{aligned}$ Sothe x-intercept is 0.

To find y-intercepts, set $x \quad 0$. This gives 0 $y 0210$. So the y-intercept is 0 .
(b) From the graph, it appears that and the x - and y-intercepts are 0 .
(c) To find x-intercepts, set $y \quad 0$. This gives $0^{3} x$ $x \quad 0$. So the x-intercept is 0 .
To find y-intercepts, set $x \quad 0$. This gives $y^{3} 0-0$. So the y-intercept is 0 .

43
66. (a) $y 1$

-4
67. $x^{2} y^{2} 9$ has center 00 and radius 3 .

69. $x 3^{2} y^{2} 16$ has center 30 and radius 4 .

71. $x 3^{2}$ y 4^{2} 25 has center 34 and radius 5 .

From the graph, it appears that the x-intercepts are (b) 1 and 1 and the y-intercept is 1 .
(c) To find x-intercepts, set $y \quad 0$. This gives $0 \quad 3 \frac{x^{2}}{1} x^{2} 0 \quad x 1$. So the
intercepts are 1 and 1.
To find y-intercepts, set $x \quad 0$. This gives
$y^{3} 10^{2} \quad$. So the y-intercept is 1 .
68. $x^{2} y^{2} \quad 5$ has center 00 and radius 5 .

70. ${ }^{2}$ y $2^{2} 4$ has center 02 and radius 2 .
x

72. $x 1^{2}$ y $2^{2} 36$ has center 12 and radius 6 .

73. Using $h 3, k$ 2, and r 5, we get $x 3^{2}$ y $\quad 2^{2} 5^{2} x 3^{2}$ y $2^{2} \quad 25$.
74. Using $h 1, k 3$, and r, we get $x 1^{2}$ y3 $3^{2} 3^{2} x 1^{2}$ y $3^{2} 9$.
75. The equation of a circle centered at the origin is $x^{2} y^{2} r^{2}$. Using the point 47 we solve for r^{2}. This gives
$4^{2} \quad 7^{2} \begin{array}{llllll} & & & 2 & 2 & 2\end{array} \begin{array}{cc}2 & 49 \\ 65 & r\end{array}$. Thus, the equation of the circle is $x \quad y \quad 65$
76. Using $h 1$ and k 5, we get $x 1^{2}$ y $\quad 5^{2} \quad r^{2} x \quad 1 \begin{array}{llllll} & & & 5^{2} & r^{2} \text {. Next, using the point }\end{array}$

77. The center is at the midpoint of the line segment, which is $\frac{1}{2} \quad \begin{array}{lll}1 & 5 \\ 2\end{array} \quad 25$. The radius is one half the diameter,

78. The center is at the midpoint of the line segment, which is $\frac{17}{2} \frac{35}{2} \frac{3}{} 1$. The radius is one half the

35
79. Since the circle is tangent to the x-axis, it must contain the point 70 , so the radius is the change in the y-coordinates.

80. Since the circle with $r 5$ lies in the first quadrant and is tangent to both the x-axis and the y-axis, the center of the circle is at 55 . Therefore, the equation of the circle is $x 5^{2}$ y $\quad 5^{2} \quad 25$.
81. From the figure, the center of the circle is at 22 . The radius is the change in the y-coordinates, so $r 2 \quad 0 \quad 2$.

Thus the equation of the circle is $x 2^{2}$ y $2^{2} 2^{2}$, which is $x 2^{2}$ y $2^{2} 4$.
82. From the figure, the center of the circle is at $\perp 1$. The radius is the distance from the center to the point 20 . Thus

Thus, the center is 25 , and the radius is 4 .
Completing the square gives $x^{2} y^{2} 6 y 20 x^{2} y^{2} 6 y_{2} \underline{Z}_{-}{ }_{2} \underline{6}_{2_{-}}^{2} x y_{y^{2}}^{2} 6 y_{-} 929 x^{2} y 3^{2} 7$. Thus, the circle has center 03 and radius 7 .

$4^{\frac{1}{2}}$. Thus, the circle has center

CHAPTER 1 Equations and Graphs

 $11 \cdots 1$
$\overline{4} \quad \overline{4}$ and radius $\overline{2}$.

$\begin{array}{llll} & \begin{array}{l}1 \\ -\end{array} \quad y \quad 12\end{array}$

1. Thus, the circle has center 2
2. Completing the square gives x^{2} y $\quad 4 x$ 10y 2192. First divide by 4 , then complete the square. This gives

1
41 and radius 1 .

93. Completing the square gives $x^{2} y^{2} \quad 6 x \quad 12 y \quad 45 \quad 0$
$\begin{array}{lllllll}x & 3^{2} & y & 6^{2} 45 & 9 & 36 & 0 \text {. Thus, the }\end{array}$ center is 36 , 3 , and the radius is 0 . This is a degenerate
$\begin{array}{rrrcccccc}x^{2} & 16 x & \frac{16}{2} & 2 & y^{2} & 12 y & \underline{12} & 2 & \\ & 2 & 200 & & \underline{2} & 2 & 2 \\ & & & & & & & \underline{12} & \end{array}$
94. $x^{2} y^{2} \quad 16 x$ 12y $200 \quad 0 \quad \square$

$\begin{array}{lllllll}x & 8 & y & 6 & 200 & 64 & \text { 36100. Since }\end{array}$
completing the square gives $r^{2} 100$, this is not the equation of a circle. There is no graph.
95. x-axis symmetry: $y x^{4} x^{2} \quad y x^{4} \quad x^{2}$, which is not the same as $y x^{4} \quad x^{2}$, so the graph is not symmetric with respect to the x-axis.
y-axis symmetry: $y x^{4} x^{2} x^{4} x^{2}$, so the graph is symmetric with respect to the y-axis.
Origin symmetry: $y x^{4} x^{2} y \quad x^{4} \quad x^{2}$, which is not the same as $y \quad x^{4} \quad x^{2}$, so the graph is not symmetric with respect to the origin.
96. x-axis symmetry: $x y^{4} y^{2} y^{4} y^{2}$, so the graph is symmetric with respect to the x-axis.
y-axis symmetry: $x^{4} y^{4} \quad y$-axis. $\quad y^{2}$, which is not the same as $x \quad y^{4}$

Origin symmetry: $x y y^{4} y^{2} x y^{4} y^{2}$, which is not the same as $x \quad y^{4} \quad y^{2}$, so the graph is not symmetric with respect to the origin.
x-axis symmetry: $y x^{3} 10 x y x^{3} 10 x$, which is not the same as $y x^{3} 10 x$, so the graph is not symmetric with respect to the x-axis.
y-axis symmetry: $y x^{3} 10 x y x^{3} 10 x$, which is not the same as $y x \quad 10 x$, so the graph is not symmetric with respect to the y-axis.

Origin symmetry: $y x^{3} 10 x y x^{3} 10 x y x^{3} 10 x$, so the graph is symmetric with respect to the origin.
x-axis symmetry: $y x^{2}$ xy $x^{2} x$, which is not the same as $y x^{2} x$, so the graph is not symmetric with respect to the x-axis.
y-axis symmetry: $y x^{2} x y \quad x^{2} \quad x$, so the graph is symmetric with respect to the y-axis. Note that $x x$.

Origin symmetry: $y x^{2}$ xy x^{2} xy $x_{1}^{2} x$, which is not the same as $y x^{2} x$, so the graph is not symmetric with respect to the origin.
x-axis symmetry: $\begin{array}{lllllllll}4 & y^{4} & x^{2} & y^{2} & 1 & x^{4} & y^{4} & x^{2} & y^{2}\end{array}$, so the graph is symmetric with respect to the x-axis. y-axis symmetry: $\begin{array}{llllll}4\end{array} y^{4} x^{2} y^{2} \quad \begin{array}{llll}x^{4} & y^{4} & x^{2} & y^{2} \\ 4 & 4 & 2 & 2\end{array}$, so the graph is symmetric with respect to the y-axis.
Origin symmetry: $x^{4} y^{4} x^{2} y^{2} 1 x$ y $x \quad y \quad 1$, so the graph is symmetric with respect to the origin.
x
x-axis symmetry: $x^{2} y^{2} x$ y $1 x^{2} y^{2} x y 1$, which is not the same as $y^{2} x y 1$, so the graph is not symmetric with respect to the x-axis.

$2 \quad 22$

22
y-axis symmetry: x^{2} y x x $\begin{array}{lllll}x & y & x y & \text {, which is not the same as } x \quad y \quad x y & \text {, so the graph is not symmetric with respect }\end{array}$ to the y-axis.

Origin symmetry: $x^{2} y^{2} x y \quad 1 \quad x^{2} y^{2} \quad x y \quad 1$, so the graph is symmetric with respect to the origin.
101. Symmetric with respect to the y-axis.

102. Symmetric with respect to the x-axis.
yA

Symmetric with respect to the origin.
y^{\wedge}

$x y x^{2} y^{2} 1$. This is the set of points inside (and on) the circle $x^{2} \quad y^{2}$. 1 .

107. Completing the square gives $x^{2} \quad y^{2}$ 4y $\quad 12 \quad 0$
$x^{2} \quad y^{2} \quad 4 y$
42
$\overline{2}$
12
42
$x^{2} y 2^{2}$
the circle $x^{2} y^{2} 4$, with center 00 and radius 2 sits
completely inside the larger circle. Thus, the area is $4^{2} 2^{2}$ 16412 .
$x y x^{2} y^{2} 4$. This is the set of points outside

108. This is the top quarter of the circle of radius 3 . Thus, the area is $4^{1} 9^{9}-4$.

(a) The point 53 is shifted to 533285 .

The point $a b$ is shifted to $a \quad 3 b 2$.
Let $x y$ be the point that is shifted to 34 . Then $x 3 y 234$. Setting the x-coordinates equal, we get $x 33 x 0$. Setting the y-coordinates equal, we get $y 24 y 2$ So the point is 02 .
A51, so A531221; B32, so B332204; and C21, so C231253.
110. (a) Symmetric about the x-axis.
(b) Symmetric about the y-axis.

(a) In 1980 inflation was 14%; in 1990 , it was 6%; in 1999 , it was 2%.

Inflation exceeded 6\% from 1975 to 1976 and from 1978 to 1982.
Between 1980 and 1985 the inflation rate generally decreased. Between 1987 and 1992 the inflation rate generally increased.
The highest rate was about 14% in 1980. The lowest was about 1% in 2002.
(a) Closest: 2 Mm . Farthest: 8 Mm .

 733. The distance from 1332 to the center 00 is $d \quad 1330^{2} \quad 0^{2}-57689 \quad$ 240. The distance
from 7332 to the center 00 is d
733

114. (a) (i) $x 2^{2} y 1^{2}$ 9, the center is at 21 , and the radius is $3 . x \quad 6$

9 the center is at 21 , and the radius is 3 . x. 6 , the distance between centers is

$\overline{26^{2} 2} \quad$| 22 | - | | | |
| :--- | :--- | :--- | :--- | :--- |
| 169 | 25 | 5. Since 5 | 3 | 4 , these circles intersect. |

43
14 4
(ii) $\quad x^{2} y \quad 2^{2}$ 4, the center is at 02 , and the radius is 2. $x 5^{2} y \quad 14^{2} \quad 9$, $\begin{aligned} & \text { the center is at } 514, \\ & 05^{2} 214^{2}\end{aligned} \frac{\text { and the radius is 3. The distance between centers is }}{5^{2} 12^{2}} \quad \overline{25144} \quad \underline{169} 13 . \quad$ Since 1323 ,
these circles do not intersect.
(iii) $x 3^{2} y 1^{2} 1$, the center is at 31 , and the radius is $1 . x 2^{2} y 2^{2}$, the center is at 22 ,
and the radius is 5 . The distance between centers is

Since 1015 , these circles intersect.

$$
12^{2} \quad 1_{3}^{2}
$$

If the distance d between the centers of the circles is greater than the sum $r 1 r 2$ of their radii, then the circles do not intersect, as shown in the first diagram. If $d r 1 r 2$, then the circles intersect at a single point, as shown in the second diagram. If $d r 1 r 2$, then the circles intersect at two points, as shown in the third diagram.

Case $1 \begin{array}{llll} & d & r_{1} & r_{2}\end{array}$

1. We find the "steepness" or slope of a line passing through two points by dividing the difference in the y-coordinates of these points by the difference in the x-coordinates. So the line passing through the points 01 and 25 has slope	5	1
2	0	

(a) The line with equation $y \quad 3 x \quad 2$ has slope 3 .

Any line parallel to this line has slope 3 .

Any line perpendicular to this line has slope $\underline{1}_{3}$.
The point-slope form of the equation of the line with slope 3 passing through the point 12 is $y<3 x 1$.
For the linear equation $2 x 3 y 120$, the x-intercept is 6 and the y-intercept is 4 . The equation in slope-intercept form is $y{ }^{2}{ }_{3}$ $x 4$. The slope of the graph of this equation is $\frac{2}{3}$.
The slope of a horizontal line is 0 . The equation of the horizontal line passing through 23 is $y 3$.
The slope of a vertical line is undefined. The equation of the vertical line passing through 23 is $x 2$.
(a) Yes, the graph of $y 3$ is a horizontal line 3 units below the x-axis.

Yes, the graph of $x 3$ is a vertical line 3 units to the left of the y-axis.
No, a line perpendicular to a horizontal line is vertical and has undefined slope.
Yes, a line perpendicular to a vertical line is horizontal and has slope 0 .
8.

Yes, the graphs of $y 3$ and $x 3$ are perpendicular lines.
9.
11. $m \xrightarrow{x 2} \quad x 1 \quad 7 \quad 2 \quad 5$
13. $m^{\underline{x_{2}} \quad x_{1}} 0 \underline{5} \quad 0$

15
10. $\begin{array}{llllllll}m & y 2 & y 1 & 1 & 0 & 1 & -1\end{array}$
$\begin{array}{llll}x_{2} & x_{1} 3 & 03 & 3\end{array}$
12. $m \begin{array}{llll}\begin{array}{lll}y 2 & y 1 & 2 \\ x_{2} & x_{1} & 1\end{array} & 3 & -3 \\ & - & 8\end{array}$
14. $m \begin{array}{llllll}\frac{y_{2}}{x_{2}} & y_{1} & 1 & 3 \\ x_{2} & x_{1} & 1 & 4 & 4 & 4 \\ 3-3\end{array}$
16. m

$y 2$			$y 122$
$x 2$	$x 1$	6	3

17. For 1 , we find two points, 12 and $0 \quad 0$ that lie on the line. Thus the slope of 1 is $m \quad x 2 x 1 \quad 102$.

$2 \quad 2$ and $3 \quad 1$.Thus, the slope of 3 is $m \quad \overline{x 2} \quad$		
1		

32
3. For 4, we find the points

21 and
$y 2 \quad y 1$

1
-1
2 2. Thus, the slope of 4 is $m_{x 2} \quad x 1$

$$
22
$$

(b)

 First we find the slope, which is m y $y^{y} 32 \underline{5} 1$. Substituting into y y_{1} m $x x_{1}$, we get $x_{2} x_{1} 41$ $\underline{5}$
$\begin{array}{lllllllllll}y & 3 & 1 & x & 4 y & 3 & x & 4 & x & y & 1\end{array} 0$.
31. We are given two points, 25 and 1 . Thus, the slope is m into $\begin{array}{llllllllllll} & y 1 & m x & x 1\end{array}$, we get $y \quad 58[x 2] \quad y 8 x \quad 11$ or $8 x \quad y \quad 110$.
32. We are given two points, 17 and 47 . Thus, the slope is m
 $\begin{array}{llll}y_{2} y_{1} & \begin{array}{ll}77 \\ x_{2} & x_{1}\end{array} \quad \begin{array}{l}\text { 4 }\end{array} \quad 0 . \quad \text { Substituting into }\end{array}$
$\begin{array}{llllllllllll}y & y 1 & m x & x 1 \text {, we get } y \quad 7 & 0 x & 1 & y & 7 \text { or } y & 7 & 0 .\end{array}$
We are given two points, 10 and $0 \quad 3$. Thus, the slope is $m \begin{array}{llll}y 2 & y 13 & 03 & 3\end{array}$

34. We are given two points, $8 \quad 0$ and $0 \quad 6$. Thus, the slope is $m \quad \begin{array}{lllll}x_{2} & x_{1} & 8 & 8 & \text { 4 Using the } y \text {-intercept }\end{array}$ we have $y \quad \underline{3}_{4} x 6 \quad 3 x \quad 4 y \quad 24 \quad 0$.
Since the equation of a line with slope 0 passing through $a b$ is $y \quad b$, the equation of this line is $y 3$.
Since the equation of a line with undefined slope passing through $a b$ is $x a$, the equation of this line is $x 1$.
Since the equation of a line with undefined slope passing through $a b$ is $x a$, the equation of this line is $x 2$.
Since the equation of a line with slope 0 passing through $a b$ is $y b$, the equation of this line is $y 1$.
Any line parallel to $y 3 x 5$ has slope 3 . The desired line passes through 12 , so substituting into $y y 1 m x x 1$, we get $y 23 x$ 1y $3 x 1$ or $3 x y 10$.
into $y \quad y 1 \begin{array}{lllllllllllll} & m x & x 1 \text {, we get } y & 2 & 2\left[\begin{array}{ll}x & 3\end{array}\right] & y & 2 x & 8 \text { or } 2 x & y & 8 & 0 .\end{array}$

Since the equation of a horizontal line passing through $a b$ is $y b$, the equation of the horizontal line passing through 45 is $y 5$.

Any line parallel to the y-axis has undefined slope and an equation of the form $x a$. Since the graph of the line passes through the point 45 , the equation of the line is $x 4$.
43. Since $\begin{array}{llllll}x & 2 y & 6 & 2 y x & 6 & y\end{array}$
$\frac{1}{2} x \quad 3$, the slope of this line is $\frac{1}{2}$. Thus, the line we seek is given by $\begin{array}{lllllllll}y 6 & \overline{2} x & 12 y & 12 x & 1 & x & 2 y & 11 & 0 .\end{array}$
44. Since $2 x \quad 3 y \quad 4 \quad 0 \quad 3 y 2 x \quad 4 \quad y$

2	4	$\overline{2}$,	
$3 x$	3 , the slope of this line is m $\underline{2}$	3. Substituting m	3 and

$b 6$ into the slope-intercept formula, the line we seek is given by $y \quad \begin{array}{llllll} & 3 x & 6 & 2 x & 3 y & 18\end{array} 0$.

Any line parallel to $x 5$ has undefined slope and an equation of the form $x \quad a$. Thus, an equation of the line is $x 1$.
Any line perpendicular to $y 1$ has undefined slope and an equation of the form $x a$. Since the graph of the line passes through the point 26 , an equation of the line is $x 2$.

First find the slope of the line $4 x$ 8y $\quad 1$. This gives $4 x$ 8y $18 y 4 x \quad 1 \quad y \underline{1}_{2} x \quad \underline{1}_{8}$. So the slope of the $\underline{2}_{32} x \underline{1}_{2} 1$ linethatisperpendicularto $4 x 8 y \operatorname{lism} 122$.Theequationofthelineweseekisy

y	$\stackrel{2}{3}_{3}$	$2 x$	1	$6 x$	$3 y$	1	0.

49. First find the slope of the line passing through 225 and $2 \quad 1$. This gives $m \quad$| | 1 | 5 | 4 |
| :--- | :--- | :--- | :--- | of the line we seek is $\begin{array}{llllllll}7 & 1 & x & 1 x & y & 6 & 0\end{array}$.
50. First find the slope of the line passing through $1 \quad 1$ and 51 . This gives m

1	1	${ }^{2}$	${ }^{1}$
5	1	${ }^{2}$, and so the slope	

of the line that is perpendicular is m $2 x \quad y \quad 7 \quad 0$.

$$
\begin{array}{lllllll}
y & 1 & \underline{3}_{2} x 22 y & 2 & 3 x & 2
\end{array}
$$

51. (a)

12 2. Thus the equation of the line we seek is $y 11$
2×2
52. (a)

$\begin{array}{llllllll}2 y & 2 & 3 x & 6 & 3 x & 2 y & 8 & 0 .\end{array}$
$\begin{array}{llll}2 x & y & 7 & 0 .\end{array}$

$y 2 x \quad b, b \quad 0,1,3,6$. They have the same slope, so they are parallel.
55.

_4
$\mathrm{m}=1.5$
$m \times 3, m 0,025,075,15$. Each of the lines contains
the point 30 because the point 30 satisfies each equation $y m x 3$. Since 30 is on the x-axis, we could also say that they all have the same -intercept.
ymx $3, m 0,025,0$ 75,15. Each of the lines contains the point 03 because the point 03 satisfies each equation $y m x 3$. Since 03 is on the y-axis, they all have the same y-intercept.
56.

$$
\mathrm{m}=_^{-10} \quad \mathrm{~m}=_^{10}
$$

$2 m x 3, m 0,05,1,2,6$. Each of the lines contains the point 32 because the point 32 satisfies each equation $y 2 m x 3$.
$y 3 x \times 3$. So the slope is 1 and the y-intercept is
3.

58. $y \quad \underline{2}_{3} x \quad$ 2. So the slope is $\stackrel{2}{3}_{3}$ and the y-intercept
is 2 .

59. $2 x \quad y \quad 7 \quad y \quad 2 x \quad 7$. So the slope is 2 and the y-intercept is 7 .

$4 \times 5 y 105 y 4 x 10 y \underline{4}^{4} \times 2$. So the slope is $\underline{4}_{5}$ and the y intercept is 2 .

$y 4$ can also be expressed as $y 0 x 4$. So the slope is 0 and the y-intercept is 4 .

60. $2 x$ 5y $05 y 2 x$ y $5^{2} x$. So the slope is 2 and the y-intercept is 0 .
5

62. $3 x \quad 4 y \quad 12 \quad 4 y \quad 3 x \quad 12 \quad y \quad \underline{3}_{4} x$ 3. So the slope is $\frac{3}{}$ and the y-intercept is 3 . -

$x 5$ cannot be expressed in the form $y m x b$. So the slope is undefined, and there is no y-intercept. This is a vertical line.

$\begin{array}{ll}x & 3 \text { cannot be expressed in the form } y m x \quad b \text {. So the 66. } y 2 \text { can also be expressed as } y \quad 0 x \quad 2 \text {. So the slope }\end{array}$
slope is undefined, and there is no y-intercept. This is a vertical line.

is 0 and the y-intercept is 2 .

$\begin{array}{lllllllllll}5 x & 2 y & 10 & 0 \text {. To find } x \text {-intercepts, we set } y & 0 \text { and } & 68.6 x & 7 y & 42 & 0 \text {. To find } x \text {-intercepts, we set } y & 0 \text { and }\end{array}$ $\begin{array}{llllllllllllllllllll}\text { solve for } x: 5 x & 20 & 10 & 0 & 5 x & 10 & x & 2 \text {, so } & & \text { solve for } x: 6 x & 70 & 42 & 0 & 6 x & 42 & x & 7 \text {, so }\end{array}$ the x-intercept is 2 .
To find y-intercepts, we set $x \quad 0$ and solve for y :
$50 \quad 2 y \quad 10 \quad 0 \quad 2 y \quad 10 \quad y \quad 5$, so the y-intercept is 5 .
 the x-intercept is 7 .
To find y-intercepts, we set $x \quad 0$ and solve for y :
$60 \quad 7 y \quad 42 \quad 0 \quad 7 y \quad 42 \quad y \quad 6$, so the y-intercept is 6 .

$\underline{1}_{2} x \quad \underline{1}_{3} y \quad 1 \quad 0$. To find x-intercepts, we set $y \quad 0$ and $\quad \mathbf{7 0 .} \underline{1}_{3} x, \underline{1}_{5} y .2$. To find x-intercepts, we set $y \quad 0$ and
solve for $x: \frac{1}{2} x \quad \frac{1}{3} 0 \quad 1 \quad 0 \quad \frac{1}{2} x 1 \quad x 2$,
so the x-intercept is 2 .
To find y-intercepts, we set $x \quad 0$ and solve for y :
$\begin{array}{lllllllll}\frac{1}{2} 0 & \frac{1}{3} y & 1 & 0 & \frac{1}{3} & y & 1 & y & 3, \text { so the }\end{array}$
y-intercept is 3 .

$y \quad 6 x \quad 4$. To find x-intercepts, we set $y \quad 0$ and solve
for $x: 06 \times 46 \times 4 x^{2} 3$, so the x-intercept is $\stackrel{2}{2}^{3}$.

To find y-intercepts, we set $x \quad 0$ and solve for y : 6044 , so the y-intercept is 4 .

solve for $x: \frac{1}{3} x \quad \frac{1}{5} 0 \quad 2 \quad 0 \quad \frac{1}{3} x \quad 2 \quad x \quad 6$, so
the x-intercept is 6 .
To find y-intercepts, we set $x \quad 0$ and solve for y :
$\begin{array}{lllll}\frac{1}{3} & 0 & \frac{1}{5} y & 2 & 0\end{array} \frac{1}{5} y 2 \quad y 10$, so the
y-intercept is 10 .

$y 4 x 10$. To find x-intercepts, we set $y 0$ and solve for x : $04 \times 104 \times 10 x^{\underline{5}_{2}}$, so the x-intercept is $\stackrel{5}{2}_{2}$.

To find y-intercepts, we set $x \quad 0$ and solve for y : 401010 , so the y-intercept is 10 .

To determine if the lines are parallel or perpendicular, we find their slopes. The line with equation $y 2 x 3$ has slope 2 . The line with equation $2 y 4 x 502 y 4 x 5 y 2 x \underline{5}_{2}$ also has slope 2 , and so the lines are parallel.
To determine if the lines are parallel or perpendicular, we find their slopes. The line with equation $y \underline{1}_{2} x 4$ has slope $\underline{1}_{2}$. The line with equation $2 x$ y 1 4y $2 x$ $1 y^{\underline{1}_{2}} x^{\underline{1}_{4}}$ has slope $\underline{1}_{2} 112$, and so the lines are neither parallel nor perpendicular. To determine if the lines are parallel or perpendicular, we find their slopes. The line with equation $3 x \quad 4 y \quad 4$ $4 y 3 x 4 y^{\underline{3}} 4 x$, has slope $\underline{3}_{4} 4$. The line with equation $4 x 3 y 53 y 4 x 5 y^{\underline{4}_{3}} x^{\underline{5}} 3$ has slope $\underline{4}_{3} 3^{1} 4$, and so the lines are perpendicular.
To determine if the lines are parallel or perpendicular, we find their slopes. The line with equation $2 x \quad 3 y \quad 10$ $3 y 2 x$ 10 $y^{\underline{2}} 3 x \frac{10}{3} 3$ has slope $\frac{2}{3} 3$. The line with equation $3 y 2 x 703 y 2 x 7 y^{\underline{2}} 3 x^{\frac{7}{-}} 3$ also has slope $\frac{2}{3}$, and so the lines
are parallel.

To determine if the lines are parallel or perpendicular, we find their slopes. The line with equation $7 x \quad 3 y \quad 2$

neither parallel nor perpendicular.
To determine if the lines are parallel or perpendicular, we find their slopes. The line with equation $6 y \quad 2 x \quad 5$
6y $2 x \quad 5 \quad y \quad \underline{1}_{3} x \quad \underline{5}_{6}$ has slope $\underline{1}_{3}$. The line with equation $2 y \quad 6 x$ 1 $2 y 6 x \quad 1 \quad y 3 x \underline{1}_{2}$ has slope $\quad 3 \quad 1^{1} 3$, and so the lines are perpendicular.
79. We first plot the points to find the pairs of points that determine each side. Next we

80. We first plot the points to determine the perpendicular sides. Next find the slopes of the sides. The slope of $A B$ is $31 \quad-4 \quad \underbrace{2}$, and the slope of $A C$ is
$\frac{81}{9362}$. Since $-9 \quad-3363$
slope of $A B$ slope of $A C$
$3^{\underline{2}} 2^{\underline{3}}$
1 the sides are perpendicular, and $A B C$ is a right triangle.

81. We first plot the points to find the pairs of points that determine each side. Next we find the slopes of opposite sides. The slope of $A B$ is $-\frac{3}{1}=\frac{1}{11} \quad \underline{2} \quad \underline{1}$ and the slope of $D C$ is $\begin{array}{lll}6 \quad 8 & \frac{2}{10} \quad \frac{1}{5} \text {. Since these slope are equal, these two sides }\end{array}$ are parallel. Slope of $A D$ is $6 \quad 1 \quad 5 \quad 5$, and the slope of $B C$ is

3	8	5	0	1	1

$11 \quad 10 \quad 15$. Since these slope are equal, these two sides are parallel.

Since slope of $A B$ slope of $A D \quad \frac{1}{5} 51$, the first two sides are
each perpendicular to the second two sides. So the sides form a rectangle.

$$
\begin{array}{lll}
9 & 1 & 8
\end{array}
$$

82. (a) The slope of the line passing through $11 \begin{array}{lllllll} & & \text { and } & 9 & \text { is } & \overline{3} & 1\end{array} \quad \overline{2}$. The slope of the line passing through 1
and $\quad 621$ is $\quad 6 \quad 1 \quad 5 \quad 4$. Since the slopes are equal, the points are collinear.
734
(b) The slope of the line passing through $1 \quad 3$ and $\quad 17$ is $\quad 11 \quad \overline{2} 2$. The slope of the line passing through ——

13 and 415 is 41
5. Since the slopes are not equal, the points are not collinear.
83. We need the slope and the midpoint of the line $A B$. The midpoint of $A B$ is $\quad \frac{17}{2} \frac{4}{4} \quad 241$ and the slope of $A B$ is $m \quad \begin{array}{ccc}24 & 6 \\ & \frac{6}{6} 1 \text {. The slope of the perpendicular bisector will have slope } & \frac{1}{m} \quad \frac{1}{1} 1 . \text { Using the }\end{array}$ point-slope form, the equation of the perpendicular bisector is $\begin{array}{lllllll} & 1 & 1 x & 4 & \text { or } x & y & 3\end{array}$
 0 , we have $20 \begin{array}{lllllllll}0 & 3 x & 0 & 3 x & 6 & x & 2 \text {. Thus, the area of the triangle is } \underline{1}_{2} & 3 & 2\end{array}$

(a) The line tangent at 34 will be perpendicular to the line passing through the points 00 and 34 . The slope of this line is	4	0	4
	0	$\frac{4}{3}$. Thus, the slope of the tangent line will be $\begin{array}{lll}\frac{1}{43} & \frac{3}{4}\end{array}$. Then the equation of the tangent	$\begin{array}{lllllllllll}\text { line is } y & 4 & \underline{3}_{4 _} x & 3 & 4 y & 4 & 3 x & 3 & 3 x & 4 y & 25 \\ 0\end{array}$.

Since diametrically opposite points on the circle have parallel tangent lines, the other point is 34 .
(a) The slope represents an increase of 002 C every year. The T-intercept is the average surface temperature in 1950, or 15 C .
In 2050, $t 20501950$ 100, so $T 0021001517$ degrees Celsius.
(a) The slope is $00417 D 004172008$ 34. It represents the increase in dosage for each one-year increase in the child's age.
When $a \quad 0, c \quad 83401834 \mathrm{mg}$.

The slope, 4 , represents the decline in number of spaces sold for each $\$ 1$ increase in rent. The y-intercept is the number of spaces at the flea market, 200, and the x-intercept is the cost per space when the manager rents no spaces, $\$ 50$.
90.(a)

The slope is the cost per toaster oven, $\$ 6$. The y-intercept, $\$ 3000$, is the monthly fixed cost - the cost that is incurred no matter how many toaster ovens are produced.
91. (a)

C	30	20	10	0	10	20	30
F	22	4	14	32	50	68	86

(b) Substituting a for both F and C , we have a $5^{\frac{9}{-}} a \quad 325^{-4}-32$
$a 40$. Thus both scales agree at
40.
$\begin{array}{lll}80 \quad 70 & 10 & 5\end{array}$
 equation is $t \quad 80 \quad 24 \frac{5}{-n} \quad 168 t \quad 80 \quad 245^{5} n \quad 35+24^{5} n 45$.
(b) When $n \quad 150$, the temperature is approximately given by $t \quad 24^{5-} 150 \quad 45 \quad 7625 \mathrm{~F} 76 \mathrm{~F}$.
93. (a) Using t in place of x and V in place of y, we find the slope of the line using the points 04000 and 4200 . Thus, the slope is
$m \quad \begin{array}{r}200 \quad 4000 \\ 4 \quad 0\end{array} \frac{3800}{4} 950$. Using the V-intercept, the
linear equation is $V 950 t 4000$.
(c) The slope represents a decrease of $\$ 950$ each year in the value of the
computer. The V-intercept represents the cost of the computer.
(d) When $t 3$, the value of the computer is given by

V950 $34000 \quad 1150$.
change in pressure

94. (a) We are given $\overline{10 \text { feet change in depth }} 100434$. Using P for pressure and d for depth, and using the point $P 15$ when $d \quad 0$, we have $P \quad 150434 d \quad 0 P 10434 d 15$.
(c) The slope represents the increase in pressure per foot of descent. The y-intercept represents the pressure at the surface.
(d) When P 100, then $100 \quad 0434 d \quad 150434 d \quad 85$
d 1959 ft . Thus the pressure is $100 \mathrm{lb} / \mathrm{in}^{3}$ at a depth of approximately 196 ft .
(b) y

(b)
 negative, and constant when the slope is 0 .

CHAPTER 1 Equations and Graphs

We label the three points A, B, and C. If the slope of the line segment $A \bar{B}$ is equal to the slope of the line segment $B C$, then the points A, B, and C are collinear. Using the distance formula, we find the distance between A and B, between B and C, and between A and C. If the sum of the two smaller distances equals the largest distance, the points A, B, and C are collinear.
Another method: Find an equation for the line through A and B. Then check if C satisfies the equation. If so, the points are collinear.

1.4 SOLVING QUADRATIC EQUATIONS

1. (a) The Quadratic Formula states that x

 $\xrightarrow{b} \quad \frac{b}{2}_{2 a}^{2 a c}$(b) In the equation $\begin{gathered}1 \\ x\end{gathered} \quad x \quad 4 \quad 0, a \quad=\quad, b 1$, and $c 4$. So, the solution of the equation is

(a) To solve the equation $x^{2} 4 x 50$ by factoring, we write $x^{2} 4 x 5 \times 5 \times 10$ and use the Zero-Product Property to get $x 5$ or $x 1$.
(b) To solve by completing the square, we add 5 to both sides to get $x^{2} 4 x \quad 5$, and then add $\quad \frac{4}{2}{ }^{2}$ to both sides to get $\begin{array}{llllllllll}x & 4 x & 4 & 5 & 4 x & 2\end{array} \quad 9 \quad x \quad 23 \quad x \quad 5$ or $x 1$.
To solve using the Quadratic Formula, we substitute $a \quad 1, b 4$, and $c 5$, obtaining

For the quadratic equation $a x b x c 0$ the discriminant is $D b \quad 4 a c$. If $D 0$, the equation has two real solutions; if $D 0$, the equation has one real solution; and if $D 0$, the equation has no real solution. x There are many possibilities. For example, $x^{2} 1$ has two solutions, ${ }^{2} 0$ has one solution, and ${ }^{2} 1$ has no solution.

```
x
\mp@subsup{x}{}{2}
\mp@subsup{x}{}{2}
x 4
5x 2
6x 2
2s' 5s 3 2s 2r 5s 3
    2 2
4y 9y 28 4y 9y 28 04y 7 y 4 4 0 4y 7 0 0r y 4 0. Thus, y y % or y__4.
```



```
x
```


CHAPTER 1 Equations and Graphs

$6 x \times 121 \times 6 x^{2} 6 \times 21 \times 6 x^{2} 5 \times 2102 \times 33 x 702 \times 30$ or $3 x 70$. If 2×30, then $x^{\frac{3}{z}}$; if 3×70, then $x^{7} 3$.
$\begin{array}{llllllllllllllll}x^{2} & 8 x & 1 & 0 & x^{2} & 8 x 1 & x^{2} & 8 x & 161 & 16 x & 4^{2} & 15 & x & 415 & x & 415 .\end{array}$

$\begin{array}{cllllllllllllllllll}x & 6 & 6 & 2 & 0 & x & 6 x & 2 & x & 6 x & 9 & 2 & 9 x & 3 & 11 & x & 311 & x 311 . \\ 2 & & & & & 2 & & & 2 & & & & & 2 & & & & \end{array}$
$\begin{array}{lllllllllllllllllllll}x & 6 x & 11 & 0 & x & 6 x & 11 & x & 6 x & 9 & 11 & 9 x & 3 & 20 & x & 32 & 5 & x & 3 & 2 & 5 .\end{array}$
 $\underline{1}_{2}$ or $x_{2}{ }_{2}$

${ }^{5} 21$.
$\begin{array}{llllll}2 & 2 & 2 & 2 & 2 & 2\end{array}$
23. $x 22 x 210 x \quad 22 x 21 x \quad 22 x 11211121121 \times 11 \quad 100 \times 1110 \times 11$ 10. Thus, $x 1$ or $x 21$.
$\begin{array}{lllll}2 & 2 & 2 & 2 & 2\end{array}$
$\begin{array}{lllllll}x & 18 x & 19 x & 18 x 9 & 199 & 1981 x 9 & 100 x 9 \\ 10 x 9 & 10\end{array}$, so $x 1$ or $x 19$.

32. | $10 x$ |
| ---: |
| 2 |$\quad 9 x\left[\begin{array}{lllllllll}7 & 05 x & 7 & 2 x & 1 & 0 & x & 5 & \text { or } x\end{array} 2\right.$.

 $x \quad \frac{3}{2}$.

CHAPTER 1 Equations and Graphs

discriminant is less than 0 , the equation has no real solution.
$3 \quad 5 z \quad z 2 \quad 0 \quad z b b^{2} \frac{4 a c 55^{2} \overline{413525}}{2 a 2122} \quad 12513$.
\qquad -
\qquad 2
10y ${ }_{2} \begin{array}{lll}16 y & 5 & 0 \\ 2\end{array}$
$b b \quad 4 a c 1 \overline{616 \quad 41} 0516256 \quad 200 \quad 1656 \quad 814$.
$2 a 210202010$
$\begin{array}{lllllllllll}25 x^{2} & 70 x & 49 & 05 x & 7^{2} & 0 & 5 x & 7 & 0 & 5 x 7 & x^{7} 5_{5}\end{array}$
$3 x 2 \quad 2 x \quad 2 \quad 0 \quad x b b^{2} \frac{4 a c 22^{2} \overline{43224}}{2 a 2366} 24220$. Since the $\quad-\quad-\quad-\quad-\quad-\quad$
discriminant is less than 0 , the equation has no real solution.

Since the discriminant is less than 0 , the equation has no real solution.

$x^{2} 2450 x 15000$

$$
24502450^{2} 4115012450600256004245000015
$$

$$
2122
$$

$$
x^{2} \quad 1800 x \quad 0810 \quad 0
$$

x	$18000^{2} 410810$	
solution is x	0900.	$\frac{1800}{2} \quad \frac{1800=}{2} 0900$. Thus the only

52. $S \quad \frac{n n}{2^{-}}$- $\quad 2 S \quad n \quad{ }^{2} n \quad n \quad{ }^{2} n \quad 2 S 0 . \quad$ Using the Quadratic Formula,

$\begin{array}{lllll}A & 2 x^{2} & 4 x h & 2 x^{2} & 2 \\ 4 x h & A & 0 \text {. Using the Quadratic Formula, }\end{array}$

54. A $2 r 2 r h$
$2 r 2 r h A$
0. Using the Quadratic Formula,

55. $\frac{1}{s_{2} a} \quad \frac{1}{s \quad b} \quad \frac{1}{c} c s \quad b \quad c s$ as $a \operatorname{s}$ bcs $b c c s \quad a c{ }^{s_{2}}$ as $b s a b$
$s \quad a b 2 c s a b a c b c \quad 0$. Using the Quadratic Formula,

$$
\begin{array}{lllll}
\hline a & b & 2 c a^{2} & b^{2} 4 c^{2} 2 a b & 2 \\
\hline
\end{array}
$$

$D b^{2} 4 a c \quad 220^{2} 41121 \quad 484484 \quad 0$. Since $D \quad 0$, this equation has one real solution.
$\begin{array}{lllllll}D & b^{2} & 4 a c & 221^{2} & 41 & 121 & 48841\end{array} 48400441$. Since $D \quad 0$, this equation has two real solutions.
$D \quad b^{2} \quad 4 a c^{2} 44 \quad \underline{13}_{8} \quad 25 \quad 26 \quad$ 1. Since D is negative, this equation has no real solution. 5

$a^{2} x^{2} \quad 2 a x \quad 1 \quad 0 a x 1^{2} 0 \quad a x \quad 1 \quad 0$. So $a x \quad 1 \quad 0$ then $a x 1 \quad x_{a}{ }^{1}$.
ax 2a1xa10[axa1] x 10 axa 10 or $x 10$. If axal 0, then $x \quad$; if $x 10$, then x.

We want to find the values of k that make the discriminant 0 . Thus $k^{2} 4425 \quad 0 \begin{array}{lllll}2 & 400 & k 20\end{array}$
We want to find the values of k that make the discriminant 0 . Thus $D 36^{2} 4 k k 04 k \quad 36 \quad 2 k 36 k 18$.
67. Let n be one number. Then the other number must be $55 n$ since $n 55 n$
55. Because the product is 684, we have $n 55 n 68455 n n^{2} \quad 684 n^{2} 55 n 6840$

$$
n^{2} n^{2} 4 n \quad 4 \quad 12520 n^{2} 4 n 1248 \quad 2 \quad n^{2} 2 n 6242 n \quad 24 n \quad 26 . \text { So } n \quad 24 \text { or } n 26 .
$$

Let be the width of the garden in feet. Then the length is 10 . Thus $87510{ }^{2} 10875035250$. So 350 in which case 35 which is not possible, or 250 and so 25 . Thus the width is 25 feet and the length is 35 feet.

Let be the width of the bedroom. Then its length is7. Since area is length times width, we have $2287^{2} 7^{2} 7228019120190$ or 120 . Thus 19 or 12 . Since the width must be positive, the width is 12 feet.

Let be the width of the garden in feet. We use the perimeter to express the length l of the garden in terms of width. Since the perimeter is twice the width plus twice the length, we have $20022 l 2 l 2002 l 100$. Using
the formula for area, we have $2400100100^{22} 1002400040600$. So 40040 , or 60060 . If 40, then $l 1004060$. And if 60 , then
1006040 . So the length is 60 feet and the width is 40 feet.
72. First we write a formula for the area of the figure in terms of x. Region A has dimensions 14 in . and x in. and region B has dimensions $13 x$ in. and x in. So the area of the figure is $14 x\left[\begin{array}{llllllll}13 & x & x\end{array}\right] \begin{array}{llll}14 x & 13 x & x^{2} & x^{2} \\ 2 & 27 x\end{array}$ are given that this is equal to 160 in 2, so $\begin{array}{lllllll}160 & x & 27 x & x & 27 x & 160 & 0\end{array}$

$x 32 x 5 x 32$ or x 5. x must be positive, so $x 5$ in.
The shaded area is the sum of the area of a rectangle and the area of a triangle. So A y $1 \underline{1}_{2}$ y $y \underline{1}_{2} y^{2} y$. We are given that the area is $1200 \mathrm{~cm}^{2}$, so $1200{ }^{\frac{1}{2}} y^{2}$ y $y^{2} 2 y 24000$ y 50 y $480 . y$ is positive, so $y 48 \mathrm{~cm}$.

Using the Quadratic Formula, x
74. Setting $P 1250$ and solving for x, we have $1250 \frac{1}{10} x 300 x 30 x \quad-1 \quad 2_{10} x \quad \frac{1}{2} 2_{10}^{2} x \quad 30 x \quad 1250 \quad 0$.

$$
2 \overline{10}
$$

Let x be the length of one side of the cardboard, so we start with a piece of cardboard x by x. When 4 inches are

$$
{ }^{2} 16 x 6425 x^{2}
$$

$16 \times 390 \times 3 \times 130$. So $x 3$ or x 13. But $x 3$ is not possible, since then the length of the base would be 385 and all lengths must be positive. Thus $x 13$, and the piece of cardboard is 13 inches by 13 inches.

Let r be the radius of the can. Now using the formula $V r^{2} h$ with $V 40 \mathrm{~cm}^{3}$ and $h 10$, we solve for r. Thus $40 r^{2} 104 r^{2} r$
2. Since r represents radius, $r 0$. Thus $r 2$, and the diameter is 4 cm .

Let be the width of the lot in feet. Then the length is6. Using the Pythagorean Theorem, we have

$$
26^{2} 174^{2} 22123630,2762^{2} 12302400^{2} 61512001261200 \text {. So either } 1260 \text { in which case } 126 \text { which is not }
$$

possible, or 1200 in which case 120 . Thus the width is 120 feet and the length is 126 feet.

Let h be the height of the flagpole, in feet. Then the length of each guy wire is $h 5$. Since the distance between the points where the wires are fixed to the ground is equal to one guy wire, the triangle is equilateral, and the flagpole is the perpendicular bisector of the base. Thus from the Pythagorean Theorem, we get

the height is $h \quad 2 \quad 15 \quad 10 \quad 3 \quad 3232 \mathrm{ft} \quad 32 \mathrm{ft} 4 \mathrm{in}$.
Let x be the rate, in mi / h, at which the salesman drove between Ajax and Barrington.

Direction	Distance	Rate	Time
Ajax Barrington	120	x	120
Barrington Collins	150	x	10

We have used the equation time $\frac{\text { distance }}{\text { rate }}$ to fill in the "Time" column of the table. Since the second part of the trip
took 6 minutes (or 10 hour) more than the first, we can use the time column to get the equation $\begin{array}{llllll}x & x & 10 & x & 10\end{array}$
 drove either $50 \mathrm{mi} / \mathrm{h}$ or $240 \mathrm{mi} / \mathrm{h}$ between Ajax and Barrington. (The first choice seems more likely!)

Let x be the rate, in mi / h, at which Kiran drove from Tortula to Cactus.

Direction	Distance	Rate	Time
Tortula Cactus	250	x	250
Cactus Dry Junction	360	$x \quad 10$	$\frac{360}{x} \frac{10}{}$

We have used time

$$
\begin{aligned}
& \text { distance to fill in the time column of the ta } \\
& \text { hus we get the equation } \frac{250}{x} \quad \frac{360}{x} 10
\end{aligned}
$$

$11250 x$ 10360x
$11 x x \quad 10250 x \quad 2500 \quad 360 x 11 x^{2} \quad 110 x 11 x^{2} \quad 500 x \quad 2500$

Kiran drove either $454 \mathrm{mi} / \mathrm{h}$ (impossible) or $50 \mathrm{mi} / \mathrm{h}$ between Tortula and Cactus.

Let r be the rowing rate in km / h of the crew in still water. Then their rate upstream was $r 3 \mathrm{~km} / \mathrm{h}$, and their rate downstream was $r 3 \mathrm{~km} / \mathrm{h}$.

Direction	Distance	Rate	Time		
Upstream	6	r	3		
	6	$r 3$ Downstream	6	$r 3$	$r 3$
:---					

Since the time to row upstream plus the time to row downstream was 2 hours 40 minutes
$\underline{8}_{3 \text { _hour, we get the equation }}$

$$
\begin{array}{ccccccccccccccccc}
\frac{6}{r} 3 & \frac{6}{r} 3 & \frac{8}{3} & 63 & r & 3 & 6 & 3 & 38 & r & 3 & r & 318 r & 54 & 18 r & 54 & 8 r^{2}
\end{array} \quad 72
$$

which is impossible because the rowing rate is positive. If $r 60$, then $r 6$. So the rate of the rowing crew in still water is 6 km/h.
Let r be the speed of the southbound boat. Then $r 3$ is the speed of the eastbound boat. In two hours the southbound boat has traveled $2 r$ miles and the eastbound boat has traveled $2 r 32 r 6$ miles. Since they are traveling is directions
$8 r^{2} 24 r 86408 r^{2} 3 r 10808 r 12 r 90$. So $r 12$ or $r 9$. Since speed is positive, the speed of the southbound boat is 9 mi / h.

Using $h 0 \quad 288$, we-solve $016 t^{2} \quad 288$, for $t \quad 0$. So $016^{2} \quad 288 \quad 16^{2} \quad 288$
$t \quad 183 \quad$ 2. Thus it takes $3 \quad 2424$ seconds for the ball the hit the ground.
84. (a) Using $h 0 \quad 96$, half the distance is 48 , so we solve the equation $48 \quad 16 t^{2} \quad 96 \quad 48 ~ 16 t^{2} \quad 3 \quad t^{2}$ $t \quad \overline{3}$. Since $t 0$, it takes $\quad \overline{3} \quad 1732 \mathrm{~s}$.

The ball hits the ground when $h 0$, so we solve the equation $016 t^{2} 9616 t^{2} 96^{t}{ }^{2} 6 t 6$. Since $t 0$, it takes 62449 s .

(a) Setting h 24, we $1 \quad 1$
$t 1$ or $t \quad-$ Therefore, the ball reaches 24 feet in 1 second (ascending) and again after $1 \geq$ seconds (descending).
(b) Setting h 48, we have $4816 t^{2} 40 t 16 t^{2} 40 t \quad 48 \quad 0 \quad 2 t^{2} \quad 5 t$

60
$t \quad \frac{5 \quad \overline{2548}}{4} \quad 5 \quad{ }_{4}^{23}$. However, since the discriminant $D \quad 0$, there is no real solution, and hence the ball never reaches a height of 48 feet.
(c) The greatest height h is reached only once. So $h 16 t^{2} 40 t 16 t^{2} 40 t h 0$ has only one solution. Thus $D 40^{2} 416 h 0$ $160064 h 0 h 25$. So the greatest height reached by the ball is 25 feet.
(d) Setting $h 25$, we have $2516 t^{2} 40 t 16 t^{2} 40 t 2504 t 5^{2} 0 t 1 \frac{1}{4}$. Thus the ball reaches the highest point of its path after $1 \frac{1}{4}_{4}$ seconds.
86. If the maximum height is 100 feet, then the discriminant of the equation, $16 t^{2}$ ot 100 , must equal zero. So $0 \quad b^{2} 4 a c o^{2} 416100 o^{2} 6400 o 80$. Since $o 80$ does not make sense, we must have $o 80 \mathrm{ft} / \mathrm{s}$.
87. (a) The fish population on January 1, 2002 corresponds to $t \quad 0$, so $F \quad 1000 \quad 30 \quad 1700{ }^{2} 30000$. To find when the population will again reach this value, we set $F 30000$, giving
$30000100030 \quad 17 t \quad t^{2} 30000 \quad 17000 t 1000 t^{2} \quad 0 \quad 17000 t \quad 1000 t^{2} \quad 1000 t 17$ tt 0 or
t 17. Thus the fish population will again be the same 17 years later, that is, on January 1, 2019.
(b) Setting $F \quad 0$, we have 01000
$\begin{array}{cccc}30 & 17 t t^{2} t^{2} \quad 17 t \\ - & \frac{17 \quad 20 \quad 2}{2} .\end{array}$

18 612. Since
$t 0$ is inadmissible, it follows that the fish in the lake will have died out 18612 years after January 1, 2002, that is on August 12, 2020.
 radius, r, in terms of $y: \begin{array}{llllllll}y & 2 & r & r & y & 2\end{array}$. Thus the $1 \quad 1 \quad 2$
 2
 $2 \begin{aligned} & -y 360 \\ & \text { long. }\end{aligned}$. Therefore, $y 360-2<1691$. Thus one wire is 1691 in . long and the other is
89. Let be the uniform width of the lawn. With cut off each end, the area of the factory is $2402180 \quad 2$. Since $\begin{array}{lllllll}\text { the lawn and the factory are equal in size this area, is } & \frac{1}{2} & 240 & 180 \text {. So 21,600 } & 43,200 & 4803604\end{array}$
$0 \quad 4^{2} 84021,60042210540043018030$ or180. Since 180 ft is too
wide, the width of the lawn is 30 ft , and the factory is 120 ft by 180 ft .

Let t be the time, in hours it takes Irene to wash all the windows. Then it takes Henry $t \underline{3}_{2}$ hours to wash all the windows, and the sum of the fraction of the job per hour they can do individually equals the fraction of the

$$
92 t \quad 3 \quad 29 t 5 t 2 t \quad 318 t \quad 27 \quad 18 t \quad 10 t^{2} \quad 15 t \quad 10 t \quad 21 t \quad 27 \quad 0
$$

2139
or $t \quad 20 \quad 3$. Since $t \quad 0$ is impossible, all the windows are washed by Irene alone in 3 hours and by Henry alone in
$3 \quad \underline{3}_{2} \quad 4 \underline{1}_{2}$ hours.
Let t be the time, in hours, it takes Kay to deliver all the flyers alone. Then it takes Lynn $t 1$ hours to deliver all the flyers

$t 1 t 3 t 20$. So $t 3$ or $t 2$. Since $t 2$ is impossible, it takes Kay 3 hours to deliver all the flyers alone.

Let x be the distance from the center of the earth to the dead spot (in thousands of miles). Now setting

	K	0012 K	K	0012 K		
			-			2
F 0, we have 0	x^{2}	$239 x^{2}$	x^{2}	$239 x^{2}$	$K 239 x^{2}$	$0012 K x$
	2	2				

So either $x 24190326499268$ or $x 24190326499215$. Since 268 is greater than the distance from the earth to the moon, we reject it; thus $x 215,000$ miles.
If we have $x^{2} 9 x 20 \times 4 \times 50$, then $x 4$ or $x 5$, so the roots are 4 and 5 . The product is 4520 , and the sum is 459 . If we have $x 2 x 8 \times 4 \times 20$, then $x 4$ or $x 2$, so the roots are 4 and 2 . The product is 428 , and the sum is $4 \quad 2 \quad$ 2. Lastly, if we have $x^{2} 4 x \quad 2 \quad 0$, then using the Quadratic Formula,

and $\begin{array}{llllllllllllllllll} & r 2 & \text { are roots, then } x & b x & c & x & r 1 & x & r 2 & & x & r 1 x & r 2 x & r 1 r 2 & x & r 1 & r 2 & x\end{array} r 1 r 2$. Equating the coefficients, we get $c \quad r 1 r 2$ and $b \quad r 1 \quad r 2$.

Let x equal the original length of the reed in cubits. Then $x 1$ is the piece that fits 60 times along the length of the field, that is, the length is $60 x \quad 1$. The width is $30 x$. Then converting cubits to ninda, we have

5. Since x must be positive, the original length of the reed is 6 cubits.

1.5 COMPLEXNUMBERS

The imaginary number i has the property that i^{2}.
For the complex number $34 i$ the real part is 3 and the imaginary part is 4 .
(a) The complex conjugate of $34 i$ is $3 \overline{4 i} 34 i$.
$\begin{array}{lllll}3 & 4 i & 3 & 4 i 3^{2} \frac{2}{4} & 25\end{array}$
If $34 i$ is a solution of a quadratic equation with real coefficients, then $3-4 i \quad 34 i$ is also a solution of the equation.
Yes, every real number a is a complex number of the form $a 0 i$.
Yes. For any complex number $z, z \quad z \begin{array}{llllll}a & b i a & b i & \overline{b i} & \overline{b i} & b i\end{array} 2 a$, which is a real number.
7. 5 7i: real part 5 , imaginary part 7 . $\quad 8.64 i$: real part 6 , imaginary part 4 .
$\begin{array}{llll}\frac{2}{2} 5 i \\ 3 & \frac{2}{3} & \frac{5}{3} & i \text { : real part } 3 \text {, imaginary part } \\ 3 & 3 .\end{array}$
11. 3: real part 3 , imaginary part 0 .
12. $\frac{1}{2}$: real part $\quad 2^{\frac{1}{2}}$, imaginary part 0 .
13. $\frac{2}{3} i$: real part $0_{\text {_ imaginary part }} \frac{2}{3}$.
14. i 3: real part 0 , imaginary part ${ }^{-} 3$.
15. 343 2i: real part $\quad 3$, imaginary part 2 .
16.25 2 i 5: real part 2, imaginary part
18.3i $23 i 2$ [33] i
$26 i$

21. $6 \quad 6 i 9 \quad i 6 \quad 9$
$1 \quad-3 \quad 1 \quad 3$
$61 i 35 i$
22.3 $2 i 5$
$\frac{1}{3} i 3 \quad 52$
$\frac{1}{3} i 2$
$\frac{7}{3} i$
23.7 $2 i 5 \quad 2 i 75 \quad 2 \quad 2 i \quad 2 \quad 2 i$
$\begin{array}{lllllllll}4 & i 2 & 5 i 4 & i & 2 & 5 i 4 & 21 & 5 i 6 & 6 i\end{array}$
$\begin{array}{lllllllll}12 & 8 i 7 & 4 i 12 & 8 i & 7 & 4 i 12 & 78 & 4 i 19 & 4 i\end{array}$
$\begin{array}{llllllll}6 i & 4 & i & 6 i & 4 & i 46 & 1 i 4 & 7 i\end{array}$
27.4 $12 i \quad 4 \quad 8 i$
28. $234 i \quad 6 \quad 8 i$
$\begin{array}{llllllllllll}7 & i & 4 & 2 i & 28 & 14 i & 4 i & 2 i^{2} & 28 & 214 & 4 i & 30\end{array} 10 i$
$\begin{array}{lllllllllllll}5 & 3 i & 1 & i & 5 & 5 i & 3 i & 3 i^{2} & 5 & 35 & 3 i & 8 & 2 i\end{array}$
$\begin{array}{llllllllllll}6 & 5 i & 2 & 3 i & 12 & 18 i & 10 i & 15 i^{2} & 12 & 1518 & 10 & i\end{array} 27 \quad 8 i$
$\begin{array}{llllllllll}2 & i & 3 & 7 i 6 & 14 i & 3 i & 7 i^{2} 6 & 714 & 3 i & 1\end{array} 17 i$
$25 i \quad 2 \quad 5 i \quad 2^{2} \quad 5 i^{2} 4 \begin{array}{llllll} & 4 & 25 & 1 & 29\end{array}$
$\begin{array}{lllllll}3 & 7 i & 3 & 7 i & 3^{2} & 7 i^{2} & 58\end{array}$
$25 i^{2} 2^{2} \quad 5 i^{2} 225 i \quad 4 \quad 25 \quad 20 i 21 \quad 20 i$
$37 i^{2} \quad 3^{2} \quad 7 i^{2} \quad 237 i 40 \quad 42 i$
37. $\bar{i} \quad \bar{i} \quad \bar{i} \quad \bar{i} \quad \overline{i^{2}} \quad \overline{1} i$
$\begin{array}{llllllllll}1 & 1 & 1 & i & 1 & i 1 & i & 1 & i & 1\end{array} 1$
38. $\overline{1 i} \overline{1 i} \overline{1 i} \overline{1 i^{2}} \overline{11} \quad \overline{2} \quad \overline{2} \quad \overline{2 i}$
$\underline{23 i} \underline{23 i} \underline{1 \quad 2 i} \quad \underline{2} 4 i \quad 3 i \quad 6 i \underline{2} \quad \underline{2} 64 \quad 3 i \quad \underline{8} \quad \underline{8} \quad 1$
39. $122 i \quad 1 \quad 2 i \quad 1 \quad 2 i \quad 1 \quad 4 i^{2} \quad 4 \quad 5 \quad$ or $5 \quad 5 i$

49. $3 i 535 i^{2}{ }^{2} i 243 \quad 12 i$
$243 i$
50. $2 i^{4} \quad 2^{4} i^{4} \quad 161 \quad 16$
51. $i^{i 1000 i^{4}} 250 \quad 1^{250} 1$
52. $i^{1002} i^{4}{ }^{250} i^{2} \quad 1 i^{2} \quad 1$
53. $\overline{49} \quad 49$
55. $\overline{3} \quad 12 i \quad 32 i \quad \begin{array}{lll}\text { - } & \text { - } 26\end{array}$
-- $\quad 9 i$
54. $1681 \longrightarrow 4$
56. $\overline{\frac{1}{3}} \overline{27} \quad \overline{\frac{1}{3}} 3 i \quad 3 \quad 3 i$

$\begin{array}{llllllllll}z 3 & 4 i & 5 & 2 i & 3 & 4 i & 5 & 2 i & 8 & 2 i\end{array}$
z3 $4 i \begin{array}{llllll}5 & 2 i & 2 i & 2 i\end{array}$
$z z \quad 3 \quad 4 i 34 \begin{array}{lllll}2 & 4 & 4^{2} & 25\end{array}$
$\begin{array}{lllllllll}z 3 & 4 i & 5 & 2 i & 15 & 6 i & 20 i & 8 i^{2} & 23\end{array} 14 i$
LHS $\approx a b i c d i a b i c d i a c b d i a c b d i$. RHS $z a b i c d i a c b d i a c b d i$.

Since LHS RHS, this proves the statement.
LHS ₹ a bi c $d i$ ac adi bcibdi ${ }^{2}$ ac bd ad bc i ac bd ad bc i. RHS ₹ a bi c di a bic di ac adi bci bdi ${ }^{2}$ ac bd ad bc i.
Since LHS RHS, this proves the statement.

Because $i^{4} \quad$, we have $i^{n} \quad i^{r}$, where r is the remainder when n is divided by 4, that is, $n 4 k r$, where k is an integer and $0 \quad r \quad$ 4. Since $444641111 \quad$ 2, we must have $i^{4446} \quad i^{2} 1$.

1.6 Solving other TYes of eauations

Note: In cases where both sides of an equation are squared, the implication symbol is sometimes used loosely. For example, $\boldsymbol{*}$ $x \Gamma^{\prime \prime}{ }^{\prime} x^{2} \times 1^{2}$ is valíd only for positive x. In these cases, inadmissible solutions are identified later in the solution.
(a) To solve the equation $x^{3} \quad 4 x^{2}$, 0 we factor the left-hand side: $\begin{array}{llll}2 & x & 4 & 0 \text {, as above. }\end{array}$

The solutions of the equation $\begin{array}{llllll}x & x & 4 & 0 \text { are } x & 0 \text { and } x & 4 .\end{array}$
(a) Isolating the radical in $2 \bar{x} x \quad 0$, we obtain $2 x x$.

Now square both sides: $2 x^{2} x^{2}-2 x x^{2}$.
Solving the resulting quadratic equation, we find $2 x x^{2} x^{2} 2 x x x 20$, so the solutions are $x 0$ and $x 2$.

We substitute these possible solutions into the original equation: 2000 , so $x 0$ is a solution, but 22240 , so $x 2$

The equation $x 1^{2} \quad 5 x \quad 1 \quad 6 \quad 0$ is of quadratic type. To solve the equation we set $\begin{array}{llll} & x & 1 \text {. The resulting }\end{array}$
 $x 1$ or $x 2$. You can verify that these are both solutions to the original equation.

The equation $x^{6} 7 x^{3} 80$ is of quadratic type. To solve the equation we set W^{3}. The resulting quadratic equation is W^{2} 7W 80.
$\begin{array}{lllllllllll}x & x & 0 & x x & 1 & 0 & x & 0 & \text { or } x & 1 & 0 \text {. Thus, the two real solutions are } 0 \text { and } 1 .\end{array}$

$\begin{array}{lllllllllllllllll}x & 25 x & x & 25 & 0 & x & x & 5 & x & 5 & 0 & x & 0 & \text { or } x & 5 & 0 & \text { or } x\end{array} \quad 5 \quad 0$. The three $25 x 0 x x$
real solutions are 5,0 , and 5 .

CHAPTER 1 Equations and Graphs

$$
\begin{array}{ccccccccccccc}
x^{5} & 5 x^{3} & x^{5} & 5 x^{3} & 0 & x^{3} & x^{2} & 50 & x & 0 & \text { or } & 5 & 0 . \text { The solutions are } 0 \text { and } 5 . \\
x^{5} & 3 x^{2} & 0 & x^{2} & x^{3} & 30 & x & 0 & \text { or } x^{3} & 3 & 0 . \text { The solutions are } 0 \text { and }{ }^{3} 3 .
\end{array}
$$

$x \quad 2 \quad 0$. The solutions are 0 and 2 .

11. $04 z^{5} 10 z^{2} 2 z^{2} 2 z^{3} 5$. If $2 z^{2} \quad 0$, then $z \quad 0$. If $2^{3} 50$, then $2 z^{3} \quad$		z	$\frac{35}{2}$	

$0125 t 102 t 7 \quad t 7125 t 32$. If $t 70$, then $t 0$. If $125 t 320$, then $t 31252^{3} 52$ - The solutions are $0^{\operatorname{and}_{35}}$

$\begin{array}{rl}2 & 0 \text {; if } x\end{array} 20$, then $x 2$, and $x \quad 2 x 40$ has no real solution. Thus the solutions are $x \quad 0$ and $x 2$.
14. $0 x^{4} 64 x \quad x \quad x^{3} 64 x \quad 0$ or $x^{3} 64 \quad 0$. If $x^{3} 640$, then $x^{3} 64 \quad x 4$. The solutions are 0 and 4.
15. $0 x^{3} 5 x^{2} 6 x \quad x \quad x^{2} \quad 5 x \quad 6 x x \quad 2 \quad x \quad 3 x \quad 0, x \quad 2 \quad 0$, or $x \quad 3 \quad 0$. Thus $x \quad 0$, or $x \quad 2$, or
x 3. The solutions are $x \quad 0, x \quad 2$, and $x 3$.
16. $0 x^{4} x^{3} 6 x^{2} x^{2} \quad x^{2} x<6 \quad x^{2} x \quad 3 \quad x \quad 2$. Thus either $x^{2} \quad 0$, so $x \quad 0$, or $x \quad 3$, or $x 2$. The

18. $0 y^{5} 8 y^{4} 4 y^{3} y^{3} y^{2} 8 y 4$. If ${ }_{y}^{3} 0$, then $y 0$. If $y^{2} 8 y 4 \quad 0$, then using the Quadratic Formula, we have $y \quad \ldots \quad \underline{8}-\frac{8^{2} 414}{21} 2$
 $x \quad \overline{3}$. If $y \quad y \quad 1 \quad 0$, then $3 x \quad 5 \quad 3 x \quad 5 \quad 1 \quad 0 \quad 9 x \quad 33 x \quad 31 \quad 0$. The discriminant is 2
$\begin{array}{llllllll}b^{2} & 4 a c & 33 & 49 & 3127 & 0\end{array}$, so this case gives no real solution. The solutions are $x \quad y \quad \frac{5}{3}$ and $x \quad \frac{4}{3}$.

$x \quad 5 \quad 0$ and $x 5$. If $y^{-} 40$, then $x \quad 5 \quad 4 \quad 0$ and x. If $y \quad 4 \quad 0$, then $x \quad 5 \quad 4 \quad 0$ and $x 9$. Thus, the solutions are 9,5 , and 1 .

2

CHAPTER 1 Equations and Graphs

$x 2 x$
2. The solutions are 5 and
2.
22. $0 \begin{array}{lllllllllllllllllllllllllll} & 2 x^{3} & x^{2} & 18 x & 9 & x^{2} & 2 x & 1 & 92 x & 1 & 2 x & 1 & x^{2} & 9 & 2 x & 1 & x & 3 & x & 3\end{array}$

1
-3 , and 3 .
23. $x^{3} x^{2} \quad x \quad 1 \quad x^{2}$ no real solution, the only solution comes from x 2

4
solution is $z \quad 1$. We must check the original equation to make sure this value of z does not result in a zero denominator. 1

0

$m \quad \overline{3^{8} 5}$. Verifying that neither of these values of m results in a zero denominator in the original equation, we see that the solutions are $\overline{85}$ and $\overline{85}$.

28. | $5 x$ | 7 | x | 2 | 0 . If $5 x$ | 7 | 0 , then x | 5 ; if x | 2 | 0 , then x | 2 . The solutions are |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\overline{5}$ and 2 .

1

0						
$10 x$	$30 \quad 12 x$	$4 x^{2}$	$12 x$	04	$\frac{12}{300}$	Using the Quadratic Formula, we have

or $x 500$. Thus $x \quad 100$ or $x 50$. The solutions are 100 and 50 .

31. $1 \frac{1}{x 1 \quad x \quad 2} \quad \frac{2}{x 1} \quad \frac{1}{x 2}$
$\begin{array}{llllllllllllll}x & 1 & x & 2 & 1 & 2 & x & 2 x & 1 x & 3 x & 2 & 1 & 2 x & 4\end{array}$
$x^{2} \quad 2 \quad 0 \quad x 2$. We verify that these are both solutions to the original equation.

Formula, x 5____
2
$\underline{x} \underline{x} 1 \quad 2$

$3 x$ 19x $2803 x 7 \times 40$. Thus either $3 x 70$, so $x \quad 3$, or $x 4$. The solutions are 3 and 4 .
34. $\frac{1}{x} \quad \frac{2}{x^{2}} \quad 0 x^{2} 2 x 10 x^{2} 2 x 20$
$\begin{array}{llllll}22 & 2 & 4 & 1 & 224 & 8\end{array} 2_{4}$. Since the radicand is negative, the $\overline{\text { re }}$ is no real solution. 2122

40.
$x 1$ or x 2. Substituting into the original equation, we get $31^{2} 12 \overline{2} \overline{\text {, which }}$ is true, and $322^{2} 1$, which is also true. So the solutions are $\overline{x 1 \text { and } x} 2$.
$\begin{array}{llllllllllll}x & x_{2} & x^{2} & x^{2} & x^{2} & x & 2 & x & 1 & x & 2 & 0\end{array} \quad x 1$ or $x \quad 2$. Substituting
 true. So $x 2$ is the only real solution.
42. $\sqrt{46 x} \cdot 2 x$

$$
2_{2 x} 2^{2}
$$

$$
\overline{6 x 4 x^{2}} x^{2} \quad 3 x \quad 2 x \quad 2 \quad 2 x \quad 10 \quad x 2
$$

or $x \quad 1$ Substituting into the original equation, we get 4 $\overline{2}$.

622
$\overline{16} 4$, which is false, and

			1
46	2	2	2

11, which is true. So $x \quad \frac{1}{2}$ is the only real solution.
43. $\begin{array}{rllllllllllllllllllllll}2 x & 1 & 1 & x & 2 x & 1 & x & 1 & 2 x & 1 & x & 1 & 2 x & 1 & x^{2} & 2 x & 1 & 0 & 2 & 4 x & x & x & 4 .\end{array}$

Potential solutions are $x 0$ and $x 4 x$. These are only potential solutions since squaring is not a reversible operation. We must check each potential solution in the original equation.

44. $x \quad 9 \quad 3 x\left[\begin{array}{lllllllll}0 & x & 93 x & x & 9 & 3 x & 0 & x & 3 x\end{array} \quad\right.$. Using the Quadratic Formula to find the potential
$3 \longdiv { 3 ^ { 2 } 4 1 9 }$
$345 \quad 3 \quad 3 \quad 5$
solutions, we have $x \quad 21 \quad 2 \quad-$. Substituting each of these solutions into the
original equation, we see that $x \quad \underline{3} \overline{3} \overline{5}$ is a solution, but $x \quad \underline{3} \frac{3}{2} \underline{5}$ is not. Thus $x \quad \frac{33}{2} \overline{5}$ is the only solution.
$\left.\begin{array}{llllllllllllll}x x & 1 & 3 & x & 3 x & 1 x & 3^{2} x & 1^{2} & \bar{x} & 6 x & 9 & x & 1 & x\end{array}\right) 7 x$
$x 2 \times 50$. Potential solutions are $x 2$ and $x 5$. We must check each potential solution in the original equation. Checking x 2: 2213 , which is false, so $x 2$ is $\overline{\text { not a solution. Checking } x 5: 5513523 \text {, which is true, so } x 5 \text { is the only solution. }}$
$3 x 21 x 3 x 1 x 3 x^{2}+x^{2} \quad 3 x x^{2} 2 x+x^{2} 3 x \quad 2 \quad 0$. Using
 $x \quad \frac{3}{2} \overline{17}$ is the only solution.
$3 \overline{x 12 x} 13 x 1^{2} \overline{2 x T}^{2} 3 x \sqrt{44 x} 1 \times 12 x 44 \overline{x 1 x} 22 x 1 \times 2^{2} 2 x 1^{2} \bar{x}^{2} 4 x 44 \times 1 x^{2} 8 x 0 x x 80 \times 0$ or $x 8$.

Substituting each of these solutions into the original equation, we see that $x 0$ is not a solution but $x 8$ is a solution. Thus, x 8 is the only solution.

$$
\begin{array}{lllllllll}
1 & x & 1 & x & 4 & 1 & x & 1 & x
\end{array}
$$

48. $\begin{array}{rlllllllllll}\Gamma-x & \Gamma \bar{x} & \top \bar{x} & \top x-2 & 2^{\perp} & 1 & x 1 & x & 2 & 1 x & 1 x & 4\end{array}$ $2 \quad 2$

$$
\begin{array}{llll}
1 & 1 & x & 1
\end{array}
$$

$x 1$ $1 x^{2} \quad 1 \quad x^{2} \quad 0$, so x

0 . We verify that this is a solution to the original equation.
$x^{4} 4 x^{2} 30$. Let $y x^{2}$. Then the equation becomes $y^{2} 4 y 30 y 1 y 30$, so $y 1$ or $y 3$. If $y 1$, then $x^{2} 1 x 1$, and if $y 3$, then $x^{2} 3$ $x 3$.
$x^{4} 5 x^{2} 60$. Let $y x^{2}$. Then the equation becomes $y^{2} 5 y 60 y 2 y 30$, so $y 2$ or $y 3$. If $y 2$, then $x^{2} 2 x 2$, and if $y 3$, then $x^{2} 3$ $x 3$.
$2 x^{4} 4 x^{2} 10$. The LHS is the sum of two nonnegative numbers and a positive number, so $2 x^{4} 4 x^{2} 110$. This equation has

or x. The solutions are ${ }^{3} \quad \overline{3}$ and 1 .

The solutions are 3 and 1 .

$0 \times 5^{2} 3 \times 510[x 55][x 52] x x 7 x 0$ or $x 7$. The solutions are 0 and 7 .

$\begin{array}{llll}x & 13 x & x^{1} 4_{-} .\end{array}$The solutions are -1_{2} and $-\frac{1}{4}$.

57. Let $\begin{array}{llllll} & \frac{1}{x} &$| 1 | 2 | | |
| :--- | :--- | :--- | :--- |$\quad \text {. Then } x & 1 & & 2\end{array}$

80 becomes ${ }^{2} 28 \quad 042 \quad 0$. So4 0
4, and
2 02. When4, we have
2, we have
x
$\begin{array}{llllll}x & 12 & 12 x & 2 & 32 x & x \\ & & x & 2 & & 4 x\end{array}$
$4 x$
4. When
$x \quad 1$
$414 x 434 x \quad x$
58. Let $\overline{x 2}$. Then $\overline{x 2} \quad \overline{x 2}$
4 becomes ${ }^{2} 44004842$. Now if
20 , then $x 2 \overline{2} x 22 x \overline{2 x 4}$
$x 4$. The solution is 4 .

23 43 23 | 4 | 2 | 23 | 23 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllll}\text { Let } u x \quad \text {. Then } 0 x & 5 x & 6 \text { becomes } u & 5 u 60 u 3 u 20 u 30 \text { or } u 20 \text {. If } u 30 \text {, then } x & 30 x & 3 x 3 & \text { 3 3. If } u 2\end{array}$ 0 , then $x^{23} 20 x_{-}^{23} 2 x 2^{32} 2$ 2. The solutions are 3 3and 22.
 $4^{4} 256$, or $u 1^{4} * 10^{4} * 1$. However, ${ }^{4} *$ is the positive fourth root, $\overline{-}$ so this cannot equal 1 . The only solution is 256 .
61. $4 x \quad 1 \begin{array}{lllllllllllll} & 12 & 5 x & 1^{32} & x & 52 & 0 & x & 14 & 5 x & 1 & x & 1\end{array} \quad 0$
 3. The solutions are 1,0 , and 3 .
62. Let $u \quad x \quad 4$; then $0 \quad 2 x \quad 4^{73} \quad x \quad 4^{43} \quad x \quad 4^{13} \quad 2 u^{73} u^{43} u^{13} u^{13} 2 u \quad 1 \quad u \quad$. So $x 40 x 4$, or $2 u 12 \times 412 \times 702 x 7 x^{\frac{7}{2}} 2$, or $u 1 \times 41 \times 50 \times 5$. The solutions are $4,{ }^{7} 2$, and 5 .
63. $x^{32} 10 x^{12} 25 x^{12} \quad 0 \quad x^{12} x^{2} 10 x x^{250} x^{12} x 5^{2} 0$. Now $x^{12} \quad 0$, so the only solution is $x 5$.
64. $x^{12} \times 12$
$6 x^{32} 0 x^{32} x^{2} x \quad 60 x^{32} x \quad 2 x<30$. Now $x^{12} 0$, and furthermore the original equation cannot have a negative solution. Thus, the only solution is $x 3$.
 $x 363 x 26 \quad 3^{x} 16 \quad 9 u^{3} 3 u^{2} 3 u 90 \quad u^{3} u^{2} 3 u 9{ }^{2} u \quad 3 \quad 3 u \quad 3 \quad u \quad 3 u^{2} \quad 3$. $\left.\begin{array}{cccccccccc}\text { So } u & 3 & 0 \text { or } u & 3 & 0 \text {. If } u & 3 & 0 \text {, then } x & -30 x & 3 & x\end{array}\right]$ 729. If $u \quad 30$, then $x 1330 x^{13} 3 x 3^{3}$ 27. The solutions are 729 and 27.

Let $u x$. Then $0 \times 5 \times 6$ becomes $u^{z}-5 u 6 u 3 u 20$. If $u 30$, then $\times 30 \times 3 \times 9$. If $u 20$, then $\times 20 \times 2 \times 4$. The solutions are 9 and 4.
$1 \quad 4 \quad 4$
$\underline{1} \quad 1$
67. $x 3 \quad x 2 \quad x \quad \begin{array}{llllllllllll}0 & 1 & 4 x & 4 x^{2} & 01 & 2 x^{2} & 0 & 1 & 2 x & 0 & 2 x 1 & x\end{array}$

2 . The solution is 2 .

Thus the solutions are2 3,2 3,2 3, and $\overline{3}$.
$* 5 * 5$. Squaring both sides, we get $x \quad 5 \quad x \quad 25 x \quad 5 \quad 25 \quad x$. Squaring both sides again, we
get $x 525 x^{2} \times 562550 x x^{2} 0 x^{2} 51 x 620 \times 20 \times 31$. Potential solutions are $x 20$ and $x 31$. We must check each potential solution in the original equation.
Checking x 20: 205205252055205, which is true, and hence $x 20$ is a solution.

Checking $x 31: 3153453634575$, which is false, and hence $x 31$ is not a solution. The only real solution is $x 20$.
 solutions are 0 and 2.

If $x \quad 3^{12} \quad 0$, then $x \quad 3 \quad 0 \quad x \quad 3$. If $x^{2} \quad x \quad 3 \quad 0$, then using the Quadratic Formula $x \quad \underline{1}_{2}^{\underline{13}}$. The solutions are 3 and $\underline{1}_{\underline{2}}^{\underline{13} \text {. }}$
72. Let $u \quad 11 x^{2}$. By definition of u we require it to be nonnegative. Now $11 x^{2}$
$-\underline{u^{2}}-e^{1 .} \quad 2$
Multiplying both sides by u we obtain $u^{2} 2 u 0 u^{2} u 2 u 2 u 1$. So $u 2$ or u. But since u must be nonnegative, we only have $u 211 x^{2} 211 x^{2} 4 x^{2} 7 x 7$. The solutions are
$\overline{7}$.

then x 2. So $x 2$ is a solution but $x \quad 7$ is not, since it does not satisfy the original equation.
74. 1
$\overline{x \quad \overline{2 x 1}} \quad \bar{x}$ We square both sides to get $1 \quad \bar{x}{ }_{5}$
$2 x \quad 14 \frac{z}{x}-16-8-x \quad x 2 x \quad 1 \quad 16 \quad 8 \quad x$. Again, squaring both sides, we obtain
$2 x 1168 x^{2} 2562 \overline{5} 6 * 64 x 62 x 255256 *$. We could continue squaring both sides until we found possible solutions; however, consider the last equation. Since we are working with real numbers, for x to be defined, we must have $x \overline{0}$. Then 62×2550 while $256 * 0$, so there is no solution.
75. $0 x^{4} 5 a x^{2} 4 a^{2} a x^{2} 4 a x^{2}$. Since a is positive, $a x^{2} \begin{array}{lllllll}x^{2} & 0 & x^{2} & a & x & \quad & \bar{a}\end{array} \quad$ Again, since a is 76. positive, $4 a x \quad \begin{array}{llllll} & & & & \\ & & 4 & x & x & 2\end{array}$. Thus the four solutions are $\quad a$ and $2 \quad a$.

x
x ax al x-6. Squarine beth sides, we have
$\begin{array}{llllllllllllll}x & a & 2 & x & a x & a-x & a \\ 2 & -6 & 2 x & 2 & x & a x & a & 2 x & 12 & 2 & x & a x-a-12\end{array}$
x ax $\begin{array}{llllllllllllll}\mathbf{c}^{2} & \text { 6. Squaring both sides again we have } x & a & x & a & 36 & x^{2} & a^{2} & 36 & x^{2} & a^{2} & 36\end{array}$

However, the original equation includes the term $b^{6} \bar{x}$, and we cannot take the sixth root of a negative number, so this is not a solution. The only solution is $x a^{6}$.
79. Let x be the number of people originally intended to take the trip. Then originally, the cost of the trip is $\frac{900}{x}$. After 5 people

900							
x	2. Thus 900	x	5	x	2900	900	$2 x$

$x 450, x \quad$ 45. Since the number of people on the trip must be positive, originally 50 people intended to take the trip.
80. Let n be the number of people in the group, so each person now pays $\frac{120,000}{n}$. If one person joins the group, then there would be $n \quad 1$ members in the group, and each person would pay $\frac{120,000}{n} 6000$. So $n 1 \quad \frac{120,000}{n} 6000120,000$

6000	$6000{ }^{1}$	
n	120,000	n

20 n 4

5 . Thus n
4 or $n \quad 5$. Since n must be positive, there are now 4 friends in the group.
We want to solve for t when $P \quad$ 500. Letting $u t$ and substituting, we have $500 \quad 3 t 10 t 140$
$500 \quad 3 u^{2} \quad 10 u \quad 140 \quad 0 \quad 3 u^{2} \quad 10 u \quad 360 \quad u \quad 5 \quad 1105$. Since $u \quad t$, we must have $u 0$. So
\qquad
$-\quad u 511059414$ $t 88$ 62. So it will take 89 days for the fish population to reach 500.3

Let d be the distance from the lens to the object. Then the distance from the lens to the image is d 4. So substituting $F 48, x \quad d$, and $y \quad d \quad 4$, and then solving for x, we have $\quad \frac{1}{48} \quad \frac{1}{d} \quad \frac{1}{d 4}$. Now we multiply by the LCD, $48 d d \quad 4$, to get $d d \quad 4 \quad 48 d \quad 4 \quad 48 d \quad \begin{array}{cllllllll}d^{2} & 4 d & 96 d & 192 & 0 & d^{2} & 136 d & 192\end{array}$ $\underline{136104}$. So $d 16$ or $d 12$. Since $d 4$ must also be positive, the object is 12 cm from the lens. 2

Let x be the height of the pile in feet. Then the diameter is $3 x$ and the radius is $\underline{3}_{2} x$ feet. Since the volume of the cone is

$$
\overline{3} 24 \overline{33}
$$

84. Let r be the radius of the tank, in feet. The volume of the spherical tank is $\frac{4}{3} r^{3}$ and is also $750 \quad 0 \quad 1337 \quad 100$ 275. So ${ }_{3}^{4} r^{3} 100275 r^{3} 23938 \quad r 288$ feet.
85. Let r be the radius of the larger sphere, 3 in mm. Equating the volumes, we have $\quad \begin{array}{lllll}\frac{4}{3} r^{3} & \frac{4}{3} 23 & 33 & 43\end{array}$

$$
r^{3} 2^{3} 3^{3} 4^{4} r^{3} 99 r \quad 99463 \text {. Therefore, the radius of the larger sphere is about } 463 \mathrm{~mm} .
$$

$$
\begin{aligned}
& x^{2} x\left[\begin{array}{lllllllllllll}
2 & 36 x & 5 & 0 x & 5 & x^{2} & 360 x & 5 & x & 6 & 6 & 0 & x
\end{array} 6\right. \text { is the only positive } \\
& \text { solution. So the box is } 2 \text { feet by } 6 \text { feet by } 15 \text { feet. }
\end{aligned}
$$

Let x be the length, in miles, of the abandoned road to be used. Then the length of the abandoned road not used

CHAPTER 1 Equations and Grifths $\frac{33856}{6} \quad \underline{26112} \quad \frac{184}{6} \quad \underline{88} \quad \frac{136}{3} \quad$ SECTION $1.6 \quad$ Solving Other Types of Equations 109 road, 16 miles of the abandoned road should be used. A completely new road would have length $\quad \underset{10^{2}}{2} \quad 40^{2}$ (let $\left.x \quad 0\right)$ and would cost $\overline{1700} \quad 200,000 \quad 83$ million dollars. So no, it would not be cheaper.
88. Let x be the distance, in feet, that he goes on the boardwalk before veering off onto the sand.

The distance along the boardwalk from where he started to the point on the boardwalk closest to the umbrella is $2 \quad 2 \overline{750} \quad 210 \quad 720 \mathrm{ft} .2$ Thus the $\quad 2$
720×210

518,400	1440	44,100	$1440 x \quad 562,500$.			
		Distance	Rate	Time		
Along boardwalk		x	4		\underline{x}	
Across sand	$x^{x^{2}} 1440 x \quad 562.500$		2	$\underline{x}-2$	$1440 x$ -2	562,500

Since 4 minutes 45 seconds 285 seconds, we equate the time it takes to walk along the beardwalk and across the sand
 sides, we get $1140 x^{2} 4 x^{2} 1440 x \quad 562,5001,299,600 \quad 2280 x \quad 2 \quad 2500 x \quad 2,250,000$

2

$x 720$, and $x 4400 x 440$. Checking $x 720$, the distance across the sand is
210 feet. So $\frac{720}{4} 4 \frac{210}{2} 180105285$ seconds. Checking x 440, the distance across the sand is
$720440{ }^{2} 210^{2} 350$ feet. So $\frac{440}{4} \frac{350}{2} 110175285$ seconds. Since both solutions are less than or equal to 720 feet, we
have two solutions: he walks 440 feet down the boardwalk and then heads towards his umbrella, or he walks 720 feet down the boardwalk and then heads toward his umbrella.
Let x be the length of the hypotenuse of the triangle, in feet. Then one of the other sides has length $x 7$ feet, and since the perimeter is 392 feet, the remaining side
must have length $392 x \quad x \quad 7 \quad 3992 x$. From the Pythagorean Theorem, we get $x 7^{2} 3992 x^{2} x^{2} \quad 4 x^{2} 1610 x \quad 159250 \quad 0$. Using the

Quadratic Formula, we get

side of length $x 7$ combined with the hypotenuse already exceeds the perimeter of 392 feet, and so we must have $x 175$. Thus the other sides have length 1757168 and 399217549 . The lot has sides of length 49 feet, 168 feet, and feet.

Let h be the height of the screens in inches. The width of the smaller screen is $h 7$ inches, and the width of the bigger

91. Since the total time is 3 s , we have $3 \quad 4 \quad$ 1090. Letting $\quad d$, we have $3 \quad 4 \quad 1090 \quad 1090 \quad 4 \quad 3 \quad 0$ ${ }^{2}{ }_{54565400} 545591054$

Since 0 , we have $d 1151$, so $d 13256$. The well 4 is 1326 ft deep.

CHAPTER 1 Equations and Graphs

(a) Method 1: Let $u x$, so $u^{\frac{Z}{=}} x$. Thus $x \times 20$ becomes $\bar{t}^{\frac{z}{u}} u 20 u 2 u 10$. So $u 2$ or $u 1$. If $u 2$, then $x 2 x 4$. If $u 1$, then $x 1 x$ 1. So the possible solutions are 4 and 1. Checking $x 4$ we have 4724220 . Checking $x 1$ we have 1121120 . The only solution is 4 .
Method 2: $x \times 20 \bar{x} 2 x x^{2} 4 x 4 x x^{2} 5 x 40 \bar{x} 4 x 10$. So the possible solutions are 4 and 1 . Checking will result in the same solution.

2

$\begin{array}{lllllllll}\text { The solutions are } 2 & 3^{2} \\ \text { Method 2: Multiplying by the LCD, } x & 3^{2} \text {, we get } x & \frac{12}{x^{2}} & -\frac{10}{x^{3}} & 10 & 3^{2}\end{array}$
$1210 x \quad 3 x \quad 3^{2}$
$\begin{array}{lllllllllll}0 & 12 & 10 x & 30 & x^{2} & 6 x & 9 & 0 & x^{2} & 4 x & 9\end{array} 0$. Using the Quadratic

Formula, we have u

1.7 solving ineaualties

1. (a) If $x \quad 5$, then $x \quad 3 \quad 5 \quad 3 \quad x \quad 3 \quad 2$.
(b) If $x \quad 5$, then $3 x \quad 35 \quad 3 x \quad 15$.
(c) If $x \quad 2$, then $\begin{array}{cccc}3 x & 3 & 2 & 3 x\end{array}$.
(d) If $x \quad 2$, then $\quad x \quad 2$.
2. To solve the nonlinear inequality $\frac{x \quad 1}{x \quad 2} 0$ we
first observe that the numbers 1 and 2 are zeros of the numerator and denominator. These numbers divide the real line into the three

Interval		1	12	2	
Sign of x	1				
Sign of x	2				
Sign ofx 1 x 2					

intervals1, 12 , and 2 .
The endpoint 1 satisfies the inequality, because $\underline{1}-0 \quad 0$, but 2 fails to satisfy the inequality because $\quad 21$ is not
12
22
defined.
Thus, referring to the table, we see that the solution of the inequality is [12 .
(a) No. For example, if $x 2$, then $x x \begin{array}{llll}12 & 1 & 2 & 0 \text {. }\end{array}$

No. For example, if $x \quad 2$, then $x x$ llll 236 .
(a) To solve $3 x$ 7, start by dividing both sides of the inequality by 3 .

To solve $5 x \quad 2 \quad 1$, start by adding 2 to both sides of the inequality.
5.

x	$23 x-\frac{1}{3}$
5	$17 \frac{1}{3}$; no
1	$5 \frac{1}{3}$; no
0	2 0; no
$\frac{2}{3}$	$0 \quad \frac{1}{3}$; no
5	$\frac{1}{3}$;
1	$1 \frac{1}{3}$; yes
5	$47 \frac{1}{3}$; yes
3	$7 \quad \frac{1}{3}$; yes
5	$13-\frac{}{3}$; ${ }^{\text {y }}$

7.

The elements 3 and 5 katis 1 6ineqes

11. $5 x 6 \times 55^{\underline{6}}$. Interval: $\xrightarrow[\frac{6}{5}]{5^{\underline{6}}}$
6.

8.

	23×2
52	82; no 1242 ; no
02 - 5,3,	

12. $2 x \quad 8 \quad x \quad$ 4. Interval: [4

Graph:

$23 x 83 \times 28 \times 2$ Interval: 2

Graph:

$\begin{array}{lllll}2 x & 1 & 0 & 2 x 1 & x^{1}\end{array}$
$\begin{array}{crrrrr}\text { 14. } 3 x \quad 11 & 5 & 3 x & 6 & x & 2 \\ \begin{array}{c}\text { Interval: } \\ \text { Graph: }\end{array} & & 2 & & & \end{array}$
$152 \times 2 \times 51 \times 2$ Interval: 2

Graph:

Interval:
Graph:

$53 x \quad 2 \quad 9 x \quad 6 x 3 \quad x_{2}^{i}$

Graph:

$\underline{2}_{3} \quad \frac{1_{2}}{2} \quad \underline{1}_{6} \quad x$ (multiply both sides by 6)
$4 \begin{array}{lllllll} & 3 x & 1 & 6 x & 3 & 9 x & \underline{1}_{3}\end{array} x$

Interval: ${ }^{1}$

Graph:

24. $27 x \quad 3 \quad 12 x \quad 16 \quad 14 x^{3} \quad 6 \quad 12 x \quad 16$
$2 x \quad 22 \quad x \quad 11$
Interval: 11]

Graph:

$53 x 41493 x 183 \times 6$ Interval: [36]

Graph:

28. $85 \times 4545 \times 9{ }^{4} 5 x^{-9} 5$

Interval: $\quad 4_{5}-9_{5}$

Graph:

$-5 \quad 5$
29. $282 x 1102 x 95 x$

expression by 12) $11 \quad 2 x \quad 5 \quad$ 11 $\quad x \quad 2$

$$
\frac{5}{13} \underline{11}
$$

Interval: 22

Graph:

$\frac{9}{2}$
30. $3 \quad 3 x \quad 7 \quad \frac{1}{2} 10 \quad 3 x$
$\frac{10}{3} x \quad \frac{13}{6}$
Interval: $\frac{10}{3} \quad \frac{13}{6}$
Graph \qquad $-3 \quad-6$
$143 x$
1
32. $\overline{2} \quad \overline{5} \quad \overline{4}$ (multiply each expression by 20)
$\begin{array}{lllllll}10 & 44 & 3 x & 510 & 16 & 12 x & 5\end{array}$
2612×11
${ }_{6} \underline{13}_{x} \quad{ }_{12} \quad \underline{11}_{12} \quad \underline{11}_{x} \quad{ }_{6}$

Interval: $11 \quad 13$
126

Graph:

$x 2 \times 30$. The expression on the left of the inequality changes sign where $x 2$ and where $x 3$. Thus we must check the intervals in the following table.

Interval	2	23	3
Sign of x Sign of x x 3			
Sign of $x 2 x$	x		

From the table, the solution set is
$\begin{array}{ll}x & 2\end{array} \quad x$ 3. Interval: $\quad 23$.

Graph:

$x 5 x 40$. The expression on the left of the inequality changes sign when $x 5$ and $x 4$. Thus we must check the intervals in the following table.

Interval	4	45	5
Sign of x	5		
Sign of x	4		
Sign of x	5	x	4

From the table, the solution set is $x x 4$ or $5 x$. Interval: 4] [5.

$x 2 x 70$. The expression on the left of the inequality changes sign where $x 0$ and where $x^{7} 2$. Thus we must check the intervals in the following table.

Interval	$\frac{7}{2}$	${ }^{7}$	
Sign of x			0
Sign of $2 x 7$			
Sign of $x 2 x 7$			

From the table, the solution set is

Graph: $\longrightarrow 7$

CHAPTER 1 Equations and Graphs

$x 23 x 0$. The expression on the left of the inequality changes sign when $x 0$ and x^{2}. Thus we must check the intervals in the following table.

From the table. the solution set is

	From the table. the solution set is			
Interval	0	0	$\frac{2}{3}$	
Sign of x Sign of $23 x$		$x 0$ or	$\begin{array}{r} 3 \\ 2 \end{array}$	
Sign of $x 23 x$		nterval:0]	3.	

3
$x^{2} 3 x 180 \times 3 \times 60$. The expression on the left of the inequality changes sign where $x 6$ and where $x 3$. Thus we must check the intervals in the following table.

Interval	3	36	6
Sign of $x 3$			
Sign of $x 6$			
Sign of $x 3 \times 6$			

From the table, the solution set is x
3×6. Interval: [36].
Graph:

38. $x^{2} \quad 5 x \quad 6 \quad 0 \quad x \quad 3 \quad x \quad 2 \quad 0$. The expression on the left of the inequality changes sign when $x \quad 3$ and 2. Thus we must check the intervals in the following table.

Interval	3	32	2
Sign of $x 3$			
Sign of $x 2$			
Sign of $x 3 \times 2$			

From the table, the solution set is $x x 3$ or $2 x$. Interval: 32 .

Graph:

$2 x^{2} x 12 x^{2} x 10 x 12 x 10$. The expression on the left of the inequality changes sign where $x 1$ and where $x{ }^{1} 2$. Thus we must check the intervals in the following table.

Interval	1	$1 \frac{1}{2}$	$\frac{1}{2}$
Sign of $x \quad 1$ Sign of $2 x$$\quad 1$			
Sign of $x \quad 1 \quad 2 x \quad 1$			

From the table, the solution set is

40. $x^{2} \quad x \quad 2 \quad x^{2} \quad x \quad 2 \quad 0 \quad x \quad 1 \quad x \quad 2 \quad 0$. The expression on the left of the inequality changes sign when

1 and $x \quad 2$. Thus we must check the intervals in the following table.
From the table, the solution set is

Interval	1	12	2
Sign of x Sign of $x$$\quad 2$			
Sign of $x \quad 1 \times 2$			

$x \quad 1 \quad x \quad 2$. Interval: 12 .
Graph:

$3 x^{2} 3 x 2 x^{2} 4 x^{2} 3 x 40 x 1 x 40$. The expression on the left of the inequality changes sign where $x 1$ and where $x 4$. Thus we must check the intervals in the following table.

From the table, the solution set is

Interval	1	14	4
Sign of x Sign of $x$$\quad 4$			
Sign of $x \quad 1 \times 4$			

$x \quad 1 x 4$. Interval: 14 .

Graph:

$5 x^{2} 3 x 3 x^{2} 22 x^{2} 3 x 202 x 1 \times 20$. The expression on the left of the inequality changes sign when $x^{1} 2$ and $x 2$. Thus we
must check the intervals in the following table.

$x^{2} 3 x 6 x^{2} 3 x 180 \times 3 \times 60$. The expression on the left of the inequality changes sign where $x 6$ and where $x 3$. Thus we must check the intervals in the following table.

Interval	3	36	6
Sign of $x 3$			
Sign of $x 6$			
Sign of $x 3 x 6$			

From the table, the solution set is

$x \quad x$	3 or $6 \quad x$	
Interval:		3
Graph:		

44. $x^{2} \quad 2 x \quad 3 \quad \begin{array}{llllllllll}2 & 2 x & 3 & 0 & x & 3 & x & 1 & 0 \text {. The expression on the left of the inequality changes sign when }\end{array}$

3 and x 1. Thus we must check the intervals in the following table.

Interval	3	31	1	
Sign of x	3			
Sign of x	1			
Sign of x	3	x	1	

From the table, the solution set is

$x^{2} 4 x^{2} 40 x 2 x 20$. The expression on the left of the inequality changes sign where $x 2$ and where $x 2$. Thus we must check the intervals in the following table.

Interval	2	22	2
Sign of x 2 Sign of x 2 Sign of x 2×2			

From the table, the solution set is

$x^{2} 9 x^{2} 90 x 3 \times 30$. The expression on the left of the inequality changes sign when $x 3$ and $x 3$. Thus we must check the intervals in the following table.

Interval	3	33	3
Sign of $x 3$			
Sign of $x 3$			
Sign of $x 3 \times 3$			

From the table, the solution set
is $x \times 3$ or $3 x$. Interval: 3] [3.

Graph:

$x 2 x 1 \times 30$. The expression on the left of the inequality changes sign when $x 2, x 1$, and $x 3$. Thus we must check the intervals in the following table.

Interval	2	21	13	3
Sign of x	2			
Sign of x	1			
Sign of x	3			
Sign of $x 2 \times 1 \times 3$				

From the table, the solution set is $x x 2$ or $1 \quad x \quad 3$. Interval:2] [13]. Graph:

$x 5 \times 2 \times 10$. The expression on the left of the inequality changes sign when $x 5, x 2$, and $x 1$. Thus we must check the intervals in the following table.

Interval	1	12	25	5
Sign of x	5			
Sign of x	2			
Sign of x	1			
Sign of x	$5 \times$	\times	2×1	

From the table, the solution set is x	1	x	2 or 5	x. Interval:	12	0	5	0	. Graph:
						1		2	5

$x 4 \times 2^{2} 0$. Note that $x 2^{2} 0$ for all $x 2$, so the expression on the left of the original inequality changes sign only when $x 4$. We check the intervals in the following table.

Interval	2	24	4
Sign of $x 4$ Sign of $x 2^{2}$			
Sign of $x 4 \times 2^{2}$			

From the table, the solution set is
$x \times 2$ and $x 4$. We exclude the endpoint 2 since the original expression cannot be 0 . Interval: 22
4.

Graph:

$x 3^{2} x 10$. Note that $x 3^{2} 0$ for all $x 3$, so the expression on the left of the original inequality changes sign only when $x 1$. We check the intervals in the following table.

Interval	3	31	1
Sign of $x 3^{2}$ Sign of x 1			
Sign of $x 3^{2} \times 1$			

From the table, the solution set is $x x 1$. (The endpoint 3 is already excluded.) Interval: 1 .

Graph: $\longrightarrow \underbrace{\infty}_{-1}$
$x 2^{2} \times 3 x 10$. Note that $x 2^{2} 0$ for all x, so the expression on the left of the original inequality changes sign only when $x 1$ and $x 3$. We check the intervals in the following table.

Interval	1	12	23	3
Sign of $x 2^{2}$				
Sign of x	3			
Sign of x	1			
Sign of $x 2^{2} \times 3 \times 1$	x			

From the table, the solution set is $\begin{array}{lllll}x & 1 & x & 3 \text {. Interval: }\left[\begin{array}{ll}1 & 3\end{array}\right] \text {. Graph: }\end{array}$

52. $x^{2} \quad x^{2} \quad 1 \quad 0 \quad x^{2} x \quad 1 \quad x \quad 1 \quad 0$. The expression on the left of the inequality changes sign when $x \quad 1$ and

0 . Thus we must check the intervals in the following table.

Interval	1	10	01	1
$\text { Sign of } x^{2}$				
Sign of $x \quad 1$				
Sign of $x \quad 1$				
Sign of $x^{2} \quad x^{2} 1$				

From the table, the solution set is $x x 1, x 0$, or $1 x$. (The endpoint 0 is included since the original expression is allowed to be 0.) Interval: 1] 0 [1. Graph: \qquad

$0, x 2$ and where x 4. Thus we must check the intervals in the following table.

Interval	2	20	02	2
Sign of x				
Sign of $x 2$				
Sign of $x 2$				
Sign of $x \times 2 \times 2$				

From the table, the solution set is $\begin{array}{lllll}x & 2 & x & 0 \text { or } x & 2 \text {. Interval: } 20 \quad 2 \text {. Graph: }\end{array}$

54. $16 x x^{3} 0 x^{3} 16 x x x^{2} 16 x x 4 x 4$. The expression on the left of the inequality changes sign when $x 4, x 0$, and $x 4$. Thus we must check the intervals in the following table.

Interval	4	40	04	4
Sign of $x 4$				
Sign of x				
Sign of $x 4$				
Sign of $x \times 4 \times 4$				

From the table, the solution set is $x \quad 4 \quad x \quad 0$ or $4 x$. Interval: [40] [4. Graph:

$\begin{array}{lll}\begin{array}{ll}x & 3 \\ 55 & 1\end{array} \text { 0. The expression on the left of the inequality changes sign where } x 3 \text { and where } x & - \\ 1\end{array}$ check the intervals in the following table.

From the table, the solution set is

Interval $x ~ 3 ~$	3	32	1
Sign of $2 x 1$			
Sign of $\frac{x}{2 x} 1$			

$x 3$ or $x \quad \underline{1}_{2}$. Since the denominator
cannot equal $0, x 2^{\underline{1}}$.

Interval:3] $\quad 2^{\underline{1}}$.
Graph: $\longrightarrow{ }_{-3}^{\longrightarrow}$
$4 x$
0 . The expression on the left of the inequality changes sign when $x 4$ and $x 4$. Thus we must check the $x 4$ intervals in the following table.

Interval	4	44	4
Sign of $4 x$			
Sign of $x 4$			
$\frac{4 x}{4} x$			
Sign of $x 4$			

From the table, the solution set
is $x x 4$ or $x 4$.
Interval: 44
Graph:

$4 x_{0}$. The expression on the left of the inequality changes sign where $x 4$. Thus we must check the intervals in $x 4$ the following table.

Interval	4	44	4
Sign of $4 x$			
Sign of $x 4$			
Sign of $\frac{4}{x} \frac{}{x 4}$			

From the table, the solution set is

$$
\begin{array}{lll}
x & x & 4 \text { or } x
\end{array}
$$

Interval: $\quad 4 \quad 4$

Graph: $\xrightarrow[{ }_{-}^{\circ} 4]{ }{ }_{4}$
$x \quad 1$
$x \quad 1$
$x \quad 1$
2×3
$3 x 5$
58. $2 \overline{x 3} 0 \quad \overline{x 3} 20 \quad \overline{x 3} \quad \begin{array}{llll}x 3 & \bar{x} 3\end{array}$ The expression on the left of the inequality changes sign when $x \quad \underline{5}_{3}$ and_ x. Thus we must check the intervals in the following table.

Interval	$\frac{5}{3}$	$\frac{5}{3} 3$	3
Sign of $3 x 5$ Sign of $x 3$			
Sign of $\frac{3 x 5}{x 3}$			

From the table, the solution set is

changes sign where $x 16$ and where $x 5$. Thus we must check the intervals in the following table.

Interval	5	516	16
Sign of $x 16$ Sign of $x 5$			
Sign of $\frac{x 16}{x 5}$			

From the table, the solution set is
$x x 5$ or $x 16$. Since the denominator cannot
equal 0 , we must have x. Interval: 5 [16 .

Graph:

60. $\frac{3 x}{3 x} 1$
$\frac{3 x}{3 x} 10$
$\frac{3 x}{3 x} \quad \frac{3 x}{3 x} 0$
$\frac{2 x}{3 x}$
0 . The expression on the left of the inequality changes sign when $x \quad 0$ and $x \quad 3$. Thus we must check the intervals in the following table.

Interval	0	03	3
Sign of $3 x$ Sign of $2 x$			
Sign of $\frac{2 x}{2 x}$			
.			

Since the denominator cannot equal 0 , we must $\begin{array}{lllll}\text { have } x & 3 \text {. The solution set is } x & 0 & x & 3 .\end{array}$

Interval: [0 3 .
Graph:

61. $x \quad x_{x} \mathcal{X}$
$0 x x$
0
x
$0 \quad x$
0 . The expression on the left of the
inequality changes sign where $x 0$, where $x 2$, and where $x 2$. Thus we must check the intervals in the following table.

Interval	2	20	02	2
Sign of $2 x$ Sign of x Sign of 2 x				
Sign ofx x				

From the table, the solution set is $\quad x \quad x 1$ or
x . Interval:1 30 .

- 3

$\begin{array}{llllllll}x & x & 1 & 0 & x & x & 1 & 0 \text {. The expression on the left of the inequality changes sign where } x 2 \text {, where }\end{array}$
1 , where $x \quad 0$, and where $x \quad 1$. Thus we must check the intervals in the following table.

Interval	2	21	10	01	1
Sign of $x 2$					
Sign of $x 1$					
Sign of x					
Sign of $x 1$					
Sign of $\frac{x}{x} \frac{x}{x} \frac{1}{x} 1$					

Since $x \quad 1$ and $x \quad 0$ yield undefined expressions, we cannot include them in the solution. From the table, the solution $\begin{array}{llllll}\text { set is } x & 2 & x & 1 \text { or } 0 & x & 1 \text {. Interval: }\left[\begin{array}{ll}2 & 1\end{array}\right]\end{array}$

CHAPTER 1	Equations and Graphs										
3	4	3	4	$3 x$	$4 x$	$1 x$	x	1	$3 x$	$4 x$	4

The expression on the left of the inequality changes sign when $x 2, x 2$,

0 , and $x \quad 1$. Thus we must check the intervals in the following table.

Interval	2	20	01	12	2
Sign of $2 x$					
Sign of $2 x$					
Sign of x					
Sign of $x 1$					
Sign of $\frac{2}{2} \frac{x}{2} x$					

Since $x \quad 0$ and $x \quad 1$ give undefined expressions, we cannot include them in the solution. From the table, the solution set

expression on the left of the inequality changes sign where $x 3$, where $x 2$, where $x 0$, and where $x 1$. Thus we must check the intervals in the following table.

Interval	2	20	01	13	3
Sign of $x 3$					
Sign of $x 2$					
Sign of x					
Sign of $x \frac{1}{x}$					
Sign of $\frac{x 3}{x 1}$					

From the table, the solution set is $x \quad 2 \quad x \quad 0$ or $1 \quad x \quad 3$. The points $x \quad 0$ and $x \quad 1$ are excluded from the solution set because they make the denominator zero. Interval: [20
$13]$. Graph:

and $x 1$. Thus we must check the intervals in the following table.

Interval	2	21	19	9
Sign of $x 9$				
Sign of $x 2$				
Sign of $x \frac{1}{x}$	-			
Sign of $\underline{x-2}$				

From the table, the solution set is $x \quad 2 \quad x \quad 1$ or $9 \quad x$. The point $x \quad 1$ is excluded from the solution set because it makes the expression undefined. Interval: [21
[9

Graph: $\xrightarrow[-3]{\text { From the table, the }}$
68. $\frac{1}{x 1} \quad \frac{1}{x 2} \quad 0 \quad \frac{x 2}{x \mid x 2} \quad \begin{gathered}x 1 \\ \frac{x}{x} 1 \times 2\end{gathered}$
expression on the left of the inequality changes sign when x
$\begin{array}{llll}x & 2 & x\end{array}$
2×3
$x|x \neq 0 \quad x| x \geq 2$
0 . The in the following table.

From the table, the solution set is $x x 2$ or
$x 1$. The points $x 2$ and $x 1$ are
excluded from the solution because the expression is undefined at those values. Interval:2

-2
$\begin{array}{llll}x & 1 & x & 2_{0} \text {. Note that } x\end{array} 2^{2} \quad 0$ for all x. The expression on the left of the original inequality changes sign $x 2^{2}$
when $x \quad 2$ and $x \quad 1$. We check the intervals in the following table.

Interval	2	21	12	2
Sign of $x 1$				
Sign of $x 2$				
Sign of $x 2^{2}$				
$\frac{x x_{2}}{x 2^{2}}$				
Sign of $\frac{}{x}$				

From the table, and recalling that the point $x \quad 2$ is excluded from the solution because the expression is undefined at those values, the solution set is $x \quad x \quad 2$ or $x \quad 1$ and $x \quad 2$. Interval: $\quad 2] \quad\left[\begin{array}{lll}12 & 2\end{array}\right.$ Graph:

70. $\frac{2 x 1 \times 3^{2}}{x 4} 0$. Note that $x 320$ for all x 3. The expression on the left of the inequality changes sign
when $x \quad 2$ and $x \quad 4$. We check the intervals in the following table.

Interval	$\frac{1}{2}$	$-{ }^{1} 3$	34	4
Sign of $2 x \quad 1$ Sign of $x 3^{2}$ Sign of $x \quad 4$				
Sign of $\frac{2 x 1 \times 3^{2}}{x 4}$				

From the table, the solution set is $x x$ and $2 x 4$. We exclude the endpoint 3 because the original expression cannot be 0 . Interval: $\stackrel{1}{2}_{2} 3 \quad 34 . \mathrm{Graph}: \longrightarrow$
71. $x^{4} \quad x^{2} \quad x^{4} \quad x^{2}$
changes sign where $x \quad 0$, where $x \quad 1$, and where $x 1$. Thus we must check the intervals in the following table.

Interval	1	10	01	1
Sign of x^{2}				
Sign of $x \quad 1$				
Sign of $x \quad 1$				
Sign of $x^{2} \times 1 \times 1$				

From the table, the solution set is $x x 1$ or $1 x$. Interval:11. Graph:

72. $x^{5} \quad x^{2} \quad x^{5} \quad x^{2}$

Since these are not real solutions. The expression $x \quad x \quad 1$ does not change signs, so we must check the intervals in the following table.

Interval	0	01	1
$\text { Sign of } x^{2}$			
Sign of $x \quad 1$ Sign of $x^{2} \quad x \quad 1$			

From the table, the solution set is $x \quad 1 \quad x$. Interval: 1 . Graph: \qquad

For $169 x^{2}$ to be defined as a real number we must have $169 x^{2} \quad 04 \quad 3 x 43 x \quad 0$. The expression in the

inequality changes sign at x	$\frac{4}{3} \text { and } x \quad \frac{4}{3}$	-	- -	-
		${ }^{4}$		4
	Interval	3	$3=^{3}$	3
	Sign of $43 x$			
	Sign of $43 x$			
	Sign of $4 \quad 3 x 43 x$			

Thus $\underline{4}_{3} \quad x \quad$ 4.
For $3 x^{2} 5 x 2$ to be defined as a real number we must have $3 x^{2} 5 x 203 x 2 x 10$. The expression on the left of the inequality changes sign when $\underline{2}_{3}$ and x. Thus we must check the intervals in the following table.

Interval		3^{2}	3^{2}
Sign of $3 x$ Sign of $x \quad 1$			1
Sign of $3 x \quad 2 \times 1$			

Thus $x \quad \frac{2}{3}$ or $1 \quad x$.
75. For $\quad \frac{1}{x^{2}} \quad 5 x \quad 14 \quad 12$ to be defined as a real number we must have $x^{2} \begin{array}{llllll}5 x & 14 & 0 x & 7 & x & \text { 20. The }\end{array}$
expression in the inequality changes sign at $x \quad 7$ and $x 2$.

Interval	2	27	7
Sign of $x \quad 7$ Sign of $x \quad 2$			
Sign of $x 7 \times 2$			

Thus $x 2$ or $7 x$, and the solution set is 27 .
76. For $4 \quad \stackrel{\square}{x}$ to be defined as a real number we must have $\frac{1}{\sum^{2}} \frac{x}{x} \quad 0$. The expression on the left of the inequality changes
sign when $x \quad 1$ and $x 2$. Thus we must check the interyals in the following table.

Interval	2	21	1
Sign of $1 x$			
Sign of $\frac{2}{2} x$			
$\frac{1}{2 x}$			
Sign of x			

Thus $2 x$. Note that $x 2$ has been excluded from the solution set because the expression is undefined at that value.
$\begin{array}{ll}b c & b c \\ - & \end{array}$

1	$b c$	c	c
-	-		

c c
77. $a b x \quad c \quad b c$ (where $a, b, c \quad 0)$
$b x \quad c$
a $b x$
a c x
$b \quad a c$

Inserting the relationship $C \quad \begin{array}{lllllllllllll}\boldsymbol{5}_{9} F & 32 \text {, we have } 20 & C & 30 & 20 & \underline{5}_{9} & F & 32 & 30 & 36 & F & 32 & 54\end{array}$
$F 86$.

Let x be the average number of miles driven per day. Each day the cost of Plan A is $30010 x$, and the cost of Plan B is Plan B saves money when $5030010 x 2001 x 200 x$. So Plan B saves money when you average more than 200 miles a day.

Let m be the number of minutes of long-distance calls placed per month. Then under Plan A, the cost will be 005 m , and under Plan B, the cost will be 5012 m . To determine when Plan B is advantageous, we must solve $005 m \quad 0 \quad 012 m \quad 20007 m \quad 2857 \mathrm{~m}$. So Plan B is advantageous if a person places fewer than minutes of long-distance calls during a month.

We need to solve $6400035 m 22007100$ for m. So $6400035 m 220071004200035 m 4900$ 12,000 m 14,000. She plans on driving between 12,000 and 14,000 miles.
(a) $T 20100^{h}$, where T is the temperature in C, and h is the height in meters.

Solving the expression in part (a) for h, we get $h 10020 T$. So $0 h 5000010020 T 5000020 T 5020 T 3020 T 30$.
Thus the range of temperature is from 20 C down to 30 C .
(a) Let x be the number of $\$ 3$ increases. Then the number of seats sold is $120 \quad x$. So $P \quad 200 \quad 3 x 3 x \quad P$
$200 \quad x \quad \underline{1}_{3} P \quad 200$. Substituting for x we have that the number of seats sold is
$120 x \quad 120 \quad \underline{1}_{3 _} P \underbrace{}_{-} 200-1_{3} P \frac{560}{3}_{3}$
$90 \underline{1}_{3} P \frac{560}{} 3115270360 P 200345270 P 560345290 P 215290 P$ 215. Putting this into standard order, we have 215 $P 290$. So the ticket prices are between $\$ 215$ and $\$ 290$.

If the customer buys x pounds of coffee at $\$ 650$ per pound, then his cost c will be $650 x$. Thus $x \quad 6^{c} 5$. Since the c
scale's accuracy is 003 lb , and the scale shows 3 lb , we have $3 \quad 003 \quad x \quad 3 \quad 003 \quad 297 \quad \overline{65} \quad 303$ $650297 c 65030319305 c 19695$. Since the customer paid $\$ 1950$, he could have been over- or undercharged by as much as 195 cents.
87.00004 $\frac{4,000,000}{d^{2}} 001$. Since $d^{2} \quad 0$ and $d 0$, we can multiply each expression by d^{2} to obtain $00004 d^{2} 4,000,000001 d^{2}$. Solving each pair, we have $00004 d^{2} 4,000,000 \quad d^{2} 10,000,000,000$ 2
$d 100,000$ (recall that d represents distance, so it is always nonnegative). Solving 4,000,000 $001 d$ 400,000,000
$d^{2} 20,000 d$. Putting these together, we have $20,000 d 100,000$.
88. $\frac{600,000}{x^{2} 300} 500600,000 \quad 500 \quad x^{2} 300$ (Note that $x^{2} 300 \quad 300 \quad 0$, so we can multiply both sides by the denominator and not worry that we might be multiplying both sides by a negative number or by zero.) $1200 \quad x \quad 300$ 2
$\begin{array}{llllllll}0 & x & 900 & 0 & x & 30 & x & 30\end{array}$. The expression in the inequality changes sign at $x \quad 30$ and $x 30$. However, since x represents distance, we must have $x 0$.

Interval	030	30
Sign of $x 30$		
Sign of $x 30$		
Sign of $x 30 \times 30$		

So $x \quad 30$ and you must stand at least 30 meters from the center of the fire.
89. $12816 t 16 t^{2} 3216 t^{2} 16 t 96016 \quad t^{2} t 6016 t 3 t 2 \quad 0$. The expression on the left of the inequality changes sign at $x 2$, at $t 3$, and at $t 2$. However, $t 0$, so the only endpoint is $t 3$.

Interval	03	3
Sign of 16		
Sign of $t 3$		
Sign of $t 2$		
Sign of $16 t 3 t 2$		

So $0 t 3$.

0140150 . The possible endpoints are 014001440 and 015001550 .

Interval	1040	4050	5075
Sign of 0 1 4			
Sign of 0 1 5			
Sign of 0 1 4 4 0 1 5			

Thus he must drive between 40 and $50 \mathrm{mi} / \mathrm{h}$.
2
91. $240 \quad \overline{20} \quad-22400$
$\frac{1}{20} 3800$. The expression in the inequality changes sign at
60 and80. However, since represents the $\left.\begin{array}{l|l|l|}\hline \text { speed, we must have0. } \\ \text { Interval }\end{array}\right)$

So Kerry must drive between 0 and $60 \mathrm{mi} / \mathrm{h}$.
92. Solve $2400 \quad 20 x \quad 2000 \quad 8 x \quad 00025 x^{2} \quad 2400 \quad 20 x \quad 2000$
$00025 x 1 \times 44000$. The expression on the left of the inequality changes sign when $x 400$ and $x 4400$. Since the manufacturer can only sell positive units, we check the intervals in the following table.

Interval	0400	4004400	4400
Sign of $00025 x \quad 1$			
Sign of $x 4400$			
Sign of $00025 x \quad 1 \times 4400$			

So the manufacturer must sell between 400 and 4400 units to enjoy a profit of at least $\$ 2400$.
Let x be the length of the garden and its width. Using the fact that the perimeter is 120 ft , we must have $2 x 2120$
$60 x$. Now since the area must be at least $800 \mathrm{ft}^{2}$, we have $800 \quad x \quad x 60 \quad x \quad 800 \quad 60 x \quad x^{2}$
$\begin{array}{llllllllllll}x^{2} & 60 x & 800 & 0 & x & 20 & x & 40 & 0 \text {. The expression in the inequality changes sign at } x & 20 \text { and } x & 40 .\end{array}$ However, since x represents length, we must have $x 0$.

Interval	020	2040	40
Sign of $x 20$			
Sign of $x 40$			
Sign of $x 20 \times 40$			

The length of the garden should be between 20 and 40 feet.
Case 1: $a b 0$ We have a a $a b$, since $a 0$, and $b a b b$, since $b 0$. So $a^{2} a b b^{2}$, that is $a b 0 a^{2} b^{2}$. Continuing, we have a $a^{2} a b^{2}$, since $a 0$ and $b^{2} a b^{2} b$, since $b^{2} 0$. So $a^{3} a b^{2} b^{3}$. Thus $a b 0 a^{3} b^{3}$. So $a b 0 a^{n} b^{n}$, if n is even, and $a^{n} b$, if n is odd.

Case 2: $0 a b$ We have $a a a b$, since $a 0$, and $b a b b$, since $b 0$. So $a^{2} a b b^{2}$. Thus $0 a b a^{2} b^{2}$. Likewise, $a^{2} a a^{2} b$ and b $a^{2} b b^{2}$, thus $a^{3} b^{3}$. So $0 a b a^{n} b^{n}$, for all positive integers n.

Case 3: $a 0 b$ If n is odd, then $a^{n} b^{n}$, because a^{n} is negative and b^{n} is positive. If n is even, then we could have either a^{n} b^{n} or $a^{n} b^{n}$. For example, 12 and $1^{2} 2^{2}$, but 32 and $3^{2} 2$.

The rule we want to apply here is " $a b a c b c$ if $c 0$ and $a b a c b c$ if $c 0$ ". Thus we cannot simply multiply by x, since we don't yet know if x is positive or negative, so in solving $1^{3} x$, we must consider two cases. Case 1: $x 0$ Multiplying both
sides by x, we have x 3. Together with our initial condition, we have $0 x$ 3. Case 2: $x 0$ Multiplying both sides by x, we have x 3. But $x 0$ and $x 3$ have no elements in common, so this gives no additional solution.

Hence, the only solutions are $0 \quad x \quad 3$.

$\underline{a}_{b} \quad d^{c}$, so by Rule 3, $a^{a} b \quad d d^{c a d} b \quad c$. Adding a to both sides, we have $\frac{a d}{b} \quad a \quad c \quad a$. Rewriting the left-hand
side as $\underline{a d} \quad \underline{a b} \quad a b \quad d \quad$ and dividing both sides by $b \quad d$ gives $\underline{a} \quad \underline{a}$.
$\begin{array}{ccccccccc}b & b & \\ \text { Similarly, } a & c & \underline{c b} c & \underline{c b} \quad d\end{array}$, so $\begin{array}{llll}a & c & \underline{c} . & b\end{array} \quad b \quad d$

$$
d \quad d \quad b \quad d \quad d
$$

1.8

The equation $x \quad 3$ has the two solutions 3 and 3 .
(a) The solution of the inequality $x \quad 3$ is the interval [33].

The solution of the inequality $x \quad 3$ is a union of two intervals3] [3.
(a) The set of all points on the real line whose distance from zero is less than 3 can be described by the absolute value inequality $x 3$.
The set of all points on the real line whose distance from zero is greater than 3 can be described by the absolute value inequality $x 3$.
(a) $2 x \quad 1 \quad 5$ is equivalent to the two equations $2 x \quad 1 \quad 5$ and $2 x \quad 15$.
$\begin{array}{llllll}3 x & 2 & 8 \text { is equivalent to } 8 & 3 x & 2 & 8 .\end{array}$
$\begin{array}{llll}5 x & 20 & 5 x 20 & x 4 .\end{array}$
$3 x \quad 103 \times 10 \quad x^{10_{3}}$.
$\begin{array}{lllllll}5 x & 3 & 28 & 5 x & 25 x & 5 & x 5 .\end{array}$

x. 32 is equivalent to $x \begin{array}{lllll}32 & x & 3 & x & 1 \text { or } x \\ 5\end{array}$.
2×37 is equivalent to either $2 \times 372 \times 10 \times 5$; or $2 \times 372 \times 4 \times 2$. The two solutions are $x 5$ and $x 2$.
$x 405$ is equivalent to $x \quad 405 \quad x 4 \quad 05 \quad x 45$ or $x 35$.
x 43. Since the absolute value is always nonnegative, there is no solution.
$2 x 311$ is equivalent to either $2 x 3112 x 14 x 7$; or $2 x 3112 x 8 x 4$. The two solutions are $x 7$ and $x 4$.
$2 x 11$ is equivalent to either $2 \times 11 \times 9$; or $2 x 11 x 13$. The two solutions are $x 9$ and $x 13$.
$43 x 613 x 633 x 63$, which is equivalent to either $3 x 633 x 3 x 1$; or $3 x 633 x 9 \times 3$. The two solutions are $x 1$ and $x 3$.
$52 x 61452 x 8$ which is equivalent to either $52 x 82 x 3 x \underline{\underline{3}}_{2}$; or $52 x 82 x 13 x \underline{13}_{2}$. The two solutions are $x \underline{3}_{2}$ and x $\underline{13}_{2}$.
$3 \times 56153 \times 59 \times 5$, which is equivalent to either $x 53 \times 2$; or $x 53 \times 8$. The two solutions are $x 2$ and $x 8$.
$20 \quad 2 x \quad 4 \quad 152 x \quad 45$. Since the absolute value is always nonnegative, there is no solution.

$x \quad \frac{35}{5}$; or $\underline{1}_{-1}-5 \quad 5-^{-1} x \quad \underline{25} \quad x \quad \underline{25}$.The two solutions are $x \quad \underline{25}$ and $x \quad \underline{35}$.

$\stackrel{3}{-}_{-x} \quad 13 \quad x \quad \stackrel{65}{ }$. The two solutions are $x \quad \stackrel{25}{ }$ and x | 6 |
| :--- |
| 65 |

21. $x \quad 13 x \quad 2$, which is equivalent to either $\begin{array}{llllll}x & 1 & 3 x & 22 x & 3 & x\end{array}$ $\frac{3}{2}$; or $x \quad 13 x \quad 2$
$\begin{array}{llllll}x & 13 x & 2 & 4 x 1 & x^{1} 4_{-} \text {. The two solutions are } x-3 & 2_{-} \text {and } x-1\end{array} 4_{-}$.
$x 32 x 1$ is equivalent to either $x 32 x 1 \times 2 \times 2$; or $x 32 x 1 \times 32 x 13 x 4 x^{4}-3$. The two solutions are $x 2$ and $x^{4} 3$.
$x 55 x$ 5. Interval: [5 5].

CHAPTER 1 Equations and Graphs

24. $2 x 20202 x 2010 x$ 10. Interval: [10 10].

$\underline{1}_{2} x \quad 1 x \quad 2$ is equivalent to $x \quad 2$ or $x 2$. Interval:2] [2.
$x \quad 410$ is equivalent to $\begin{array}{llllll}10 & x & 4 & 106 & x & \text { 14. Interval: }\left[\begin{array}{l}6 \\ 14\end{array}\right] \text {. }\end{array}$
$\begin{array}{lllllll}x & 3 & 9 & \text { is equivalent to } x & 39 & x 6 \text {; or } x & 3\end{array} 9 x$ 12. Interval:612.
$\begin{array}{lllllllll}x & 1 & 1\end{array}$ is equivalent to $x \quad 1 \quad 1 \quad x \quad 0$; or $x \quad 11 \quad x 2$. Interval:2] [0.
$\begin{array}{llllllll}x & 4 & 0 & \text { is equivalent to } x & 4 & 0 & x & 4 \\ 0 & 0 & x 4\end{array}$. The only solution is $x 4$.

2][1.
25. $3 x \quad 2 \quad 7$ is equivalent to $3 x \quad 2 \quad \begin{array}{lllllllllll}7 & 3 x & 5 & x & \underline{5}_{3} \text {; or } 3 x & 2 & 7 & 3 x & 9 & x & \text { 3. Interval: }\end{array}$
${ }^{5} 3 \quad \cdots \quad 3$
$\begin{array}{llllllllllll}2 x & 3 & 0 & 404 & 2 x & 3 & 0 & 2 & 2 & 2 x & 34 & 13\end{array}$ x 1 7. Interval: $\left[\begin{array}{llll}1 & 3 & 1 & 7\end{array}\right]$.

26. $\begin{array}{lllllll}\frac{x}{3} & \frac{x 2}{3} & 26 & x & 2 & 64 & x\end{array}$ 8. Interval: 48 .
$\begin{array}{llll}1 & 8 & x^{-} & \text {9. Interval: - }\end{array}$ 9] [7.
$x 600010001 x 600016001 x 5$ 999. Interval: 60015999.
x a dd x a d a d x a d. Interval: $a d a d$.
$\begin{array}{lllllllllllll}4 x & 2 & 3 & 13 & 4 x & 2 & 16 x & 2 & 44 & x & 2 & 46 & x\end{array}$ 2. Interval: 62.
$32 x 412 x 422 x 42$ which is equivalent to either $2 x 422 x 2 x 1$; or $2 x 422 x 6 x 3$. Interval: 3] [1 .
27. $8 \quad 2 x \quad 1 \quad 62 x \quad 122 x \quad 1 \quad 22 \quad 2 x \quad 1 \quad 21 \quad 2 x \quad 3$

Interval. $\frac{1}{2} \frac{3}{2}$.
$\begin{array}{llllllll}7 x & 2 & 5 & 4 & 7 x & 21 x & 2^{1}{ }_{7} \text {. Since the absolute value is always nonnegative, the inequality is }\end{array}$ true for all real numbers. In interval notation, we have

${ }_{4 n \times} \quad \underline{1}$ Inteval: $-1 \quad \underline{1}$

42.

Interval: [54 42].
45. $1 x$ 4. If $x \quad 0$, then this is equivalent to $1 \quad x \quad 4$. If $x \quad 0$, then this is equivalent to $1 x \quad 41 \quad x 4$
$4 x$ 1. Interval: [41 1] [14].
 $\frac{9}{2} 55 \quad \frac{11}{2}$
$1 \begin{array}{lllllll}1 & 1 & 1 & 1 & 15 & 13\end{array}$
47. $\begin{array}{llllllllllllll}7 & 7 & 1 & 2 x & 7(x 7) x & 7 & 2 & 2 & x & 7 & 2 & 2 & x & 2\end{array}$
$\begin{array}{llll} & \begin{array}{l}15 \\ \text { Interval: } \\ 27\end{array} & 7 & \frac{13}{-}\end{array}$

```
3
```

2. Now for $x \quad 2$, we have

	$\underline{7}$	$\underline{8}$
Interval:	5	5.

49. $x \quad 3$
50. $x 2$
51. $x 75$
52. $x 24$
53. $x 2$
54. $x 1$
55. $x \quad 3$
56. $x 4$
(a) Let x be the thickness of the laminate. Then $x \quad 0020 \quad 0003$.
$x \quad 0020 \quad 00030003 \quad x \quad 0020 \quad 0003 \quad 0017 \quad x \quad 0023$.
$\frac{h 68222}{2929}$
h 682
between 624 in and 740 in .
$x 1$ is the distance between x and $1 ; x 3$ is the distance between x and 3 . So $x 1 x 3$ represents those points closer to 1 than to 3 , and the solution is $x 2$, since 2 is the point halfway between 1 and 3 . If $a b$, then the solution to $x a x b$ is $x a$ $2 b$

1.9 solving Equations and inequalities graphically

The solutions of the equation $x^{2} \quad 2 x \quad 3 \quad 0$ are the x-intercepts of the graph of $y x^{2} \quad 2 x \quad 3$.

2 2

The solutions of the inequality $x \quad 2 x 30$ are the x-coordinates of the points on the graph of $y x \quad 2 x 3$ that lie above the x axis.
(a) From the graph, it appears that the graph of $y x^{4} 3 x^{3} x^{2} 3 x$ has x-intercepts $1,0,1$, and 3 , so the solutions to the equation $x^{4} 3 x^{3} x^{2} 3 x 0$ are $x 1, x 0, x 1$, and $x 3$.

432
From the graph, we see that where $1 x 0$ or $1 x 3$, the graph lies below the x-axis. Thus, the inequality $x \quad 3 x \quad x \quad 3 x 0$ is satisfied for $x 1 \times 0$ or 1×3 [10 [[13].
(a) The graphs of $y 5 x x^{2}$ and $y 4$ intersect at $x 1$ and at $x 4$, so the equation $5 x x^{2} 4$ has solutions $x 1$ and $x 4$.

The graph of $y 5 x x^{2}$ lies strictly above the graph of $y 4$ when $1 x 4$, so the inequality $5 x x^{2} 4$ is satisfied for those values of x, that is, for $x 1 x 414$.
5. Algebraically: $\begin{array}{lllllll}x & 4 & 5 x & 1216 & 4 x & x 4 .\end{array}$

Graphically: We graph the two equations $y 1 \quad x \quad 4$ and
$y 2 \quad 5 x \quad 12$ in the viewing rectangle [64] by
[102]. Zooming in, we see that the solution is $x 4$.
6. Algebraically: $\begin{array}{lllllll}\frac{1}{2} x & 3 & 6 & 2 x 9 & \frac{3}{2} & x & x 6 .\end{array}$

Graphically: We graph the two equations y1 $\quad \leq x \quad 3$ and $y 262 x$ in the viewing rectangle [105] by
[105]. Zooming in, we see that the solution is x
6.

Graphically: We graph the two equations $y 1 \quad x \quad 2 x-$
and $y 27$ in the viewing rectangle [22] by [28].

9. Algebraically: $\begin{array}{lllll}x^{2} & 32 & 0 & x^{2} & 32\end{array}$
$x 324$

Graphically: We graph the equation $y 1 x \quad 32$ and
determine where this curve intersects the x-axis. We use the viewing rectangle [10 10] by [5 5]. Zooming in, we see that solutions are $x 566$ and $x 566$.

Algebraically: $x^{2} 90 x^{2} 9$, which has no real solution.

Graphically: We graph the equation $y x^{2} 9$ and see that
this curve does not intersect the x-axis. We use the viewing rectangle [55] by [530].

8. Algebraically: $\frac{4}{x} 2 \frac{6}{2 x} \quad \frac{5}{2 x 4}$ 46
$\begin{array}{llllllllll}2 x x & 2 & x & 2 & 2 x & 2 x x & 2 & 2 x & 4\end{array}$
$2 x 4 x \quad 2 \quad 6 \quad x 58 x \quad 6 x \quad 12 \quad 5 x$
$123 x 4 x$.
Graphically: We graph the two equations

rectangle [55] by [10 10]. Zooming in, we see that
there is only one solution at $x 4$.

Graphically: We graph the equation $y x^{3} \quad 16$ and determine where this curve intersects the x-axis. We use the viewing rectangle [5 5] by [5 5]. Zooming in, we see that the solution is $x 252$.

Algebraically: $\begin{array}{lllll}x^{2} 3_{2}^{3} & 2 x x^{2} 2 x & 3 & 0 & \\ 22^{2} 413 & 21 & \frac{2}{8} \\ & 21\end{array}$.
Because the discriminant is negative, there is no real solution.

Graphically: We graph the two equations y1 $x^{2} 3$ and $y 2$ $2 x$ in the viewing rectangle [46] by [6 12], and see that the two curves do not intersect.

Algebraically: $16 x^{4} \quad 625 \quad x^{4} \quad \underline{625}_{16}$
$\underline{5}$
225.

Graphically: We graph the two equations y1 $16 x$ and $y 2625$ in the viewing rectangle [5 5] by [610 640]. Zooming in, we see that solutions are $x 25$.

Algebraically: $x \quad 5^{4} 80 \quad 0 x \quad 5^{4} 80$ $5^{4} 802^{4} 5 \overline{x 5} 2^{4} 5$. Graphically: We grāph the equation $y 1 \times 5{ }^{4} 80$
and determine where this curve intersects the x-axis. We
use the viewing rectangle [19] by [55]. Zooming in, we see that solutions are $x 201$ and $x 799$.

We graph $y x^{2} 7 x 12$ in the viewing rectangle [06 6] by [0

10 1]. The solutions appear to be exactly $x 3$ and $x 4$. [In 2
fact $x \quad 7 \times 12 \times 3 \times 4$.]

14. Algebraically: $2 x^{5} \quad 243 \quad 0 \quad 2 x^{5} \quad 243 \quad x^{5} \quad \underline{243}_{2}$
$x \quad 5 \underline{\underline{243}} 2_{2} \quad \underline{3}_{2}{ }_{2}^{5}{ }^{5} 16$.
Graphically: We graph the equation y $2 x^{5} 243$ and
determine where this curve intersects the x-axis. We use the viewing rectangle [5 10] by [5 5].
Zooming in, we see that the solution is $x \quad 261$.

Algebraically: $\begin{array}{lllllll}x & 2^{5} & 64 x & 2^{5} & \underline{64} 6 & \underline{32}\end{array}$
$\underline{32}_{3} \quad \underline{2}_{3}{ }^{5} 81 \cdot x 2 \quad-3{ }_{81} \cdot x 2^{5}$
5
Graphically: We graph the two equations $y 16 \times 2$ and
$y 264$ in the viewing rectangle [5 5] by [5070]. Zooming in, we see that the solution is $x 039$

We graph $y x^{2} 075 x \quad 0 \quad 125$ in the viewing rectangle [2 2] by [$\left.\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$. The solutions are $x 0$ 25 and $x 050$.

CHAPTER 1 Equations and Graphs
We graph $y x^{3} 6 x^{2} 11 x 6$ in the viewing rectangle
[14 4] by $\left[\begin{array}{lll}0 & 1 & 0\end{array} 1\right.$. The solutions are $x 100, x 2$
00 , and $x 300$.

Since $16 x^{3} 16 x^{2} \times 116^{3} 16^{2} x$, 0 , we graph y 16^{3} 2

x

$16 x \times 1$ in the viewing rectangle [22] by [$\left.0 \begin{array}{lll}x & 1 & 1\end{array}\right]$. The
solutions are:
$x 100, x 025$, and $x 025$.

find that the solution is near 16 . Zooming in, we see that solutions is $x \quad 162$.

22. $1 x_{1} x_{2}$
$1 x-\overline{1 x} 0$ Since x is only defined
for $x \quad 0$,
[1 5] by [$\left.\begin{array}{lll}1 & 1\end{array}\right]$. In this rectangle, there appears to be an exact solution at $x \quad 0$ and
another solution between $x \quad 2$ and $x \quad 25$. We

then use the viewing rectangle [$\begin{array}{lll}2 & 3 & 2\end{array} 35$] by
[001001], and isolate the second solution as 2314 . Thus the solutions are $x 0$ and 231.
23. We graph $y x^{13} x$ in the viewing rectangle [$\left.\begin{array}{ll}3 & 3\end{array}\right]$ by $\left[\begin{array}{ll}1 & 1\end{array}\right]$. The solutions are $x 1, x \quad 0$, and $x \quad 1$, as can be verified by substitution.

24. Since x^{12} is defined only for $x \quad 0$, we start by graphing $y x^{1 / 2} x^{15} x$ in the viewing rectangle [15] by [11] We see a solution at $x \quad 0$ and another one between $x \quad 3$ and $x \quad 35$. We then use the viewing rectangle [$\begin{array}{lll}3 & 3 & 3\end{array} 4$ 4] by [0010001], and isolate the second

 solution as $x 331$. Thus, the solutions are
$x \quad 0$ and $x 331$.

We graph $y 2 x 1$ Land $y x$ in the viewing rectangle [36] by [06] and see that the only solution to the equation $2 x 11 x$ is $x 4$, whieh ean be verified by substitution.

We graph $y 3 x 2$ and $y 1 x$ in the viewing rectangle [74] by [28] and see that the only solution to the equation $3 x 21 x$ is $x 356$, which can be verified by substitution.

We graph y $2 x^{4} 4 x^{2} 1$ in the viewing rectangle [2 2] by [540] and see that the

$$
4 \quad 2
$$

equation $2 x \quad 4 x \quad 10$ has no solution.

We graph $y x^{6} 2 x^{3} 3$ in the viewing rectangle [2 2] by [5 15] and see that the 63
equation $x \quad 2 x \quad 30$ has solutions $x 1$ and $x 144$, which can be verified by substitution.

$x^{3} 2 x^{2} x 10$, so we start by graphing the function $y x^{3} 2 x^{2} x 1$ in the viewing rectangle [1010] by [

100 100]. There appear to be two solutions, one near $x 0$ and another one between $x 2$ and $x 3$. We then use the viewing rectangle [15] by [11] and zoom in on the only solution, $x 255$.

$x^{4} 8 x^{2} 20$. We start by graphing the function y $x^{4} 8 x^{2} 2$ in the viewing rectangle [1010] by [10 10]. There appear to be four solutions between $x 3$ and $x 3$. We then use the viewing rectangle [5 5] by [11], and zoom to find the four solutions

$x 278, x 051, x \quad 051$, and $x 278$.
$x x \quad 1 \quad x \quad 2 \underline{1}_{6-} x$
$\begin{array}{llllll}x x & 1 & x & 2 & 1_{6} x & 0\end{array}$. We start by graphing the function $y x \times 1 \times 2 \frac{1}{6}_{6} x$ in the viewing rectangle [5 5] by [10 10]. There appear to be three solutions. We then use the viewing rectangle [2525] by [11 1] and zoom into the

$x^{4} 16 x^{3}$. We start by graphing the functions $y 1 x^{4}$ and $y_{2} 16 x^{3}$ in the viewing rectangle [1010] by [5 40]. There appears to be two solutions, one near $x 2$ and another one near $x 2$. We then use the viewing rectangle [2422] by [27
 to find the solution at $x 179$.

We graph $y x^{2}$ and $y 3 x 10$ in the viewing rectangle [47] by [5 30]. The solution to the inequality is [25].

Since $05 x^{2} 0875 x \quad 025 \quad 05 x^{2} 0875 x \quad 025 \quad 0$, we graph 2
$y 05 x 0875 x 025$ in the viewing rectangle [31 1] by [55]. Thus the solution to the inequality is [$\begin{array}{ll}0 & 0\end{array}$ 25].

Since $x^{3} \quad 11 x \quad 6 x^{2} \quad 6 \quad x^{3} \quad 6 x^{2} \quad 11 x \quad 6 \quad 0$, we graph
$y x^{3} 6 x^{2} 11 x 6$ in the viewing rectangle [05] by [5 5]. The solution set is 10] [2 030 0].

36. Since $16 x^{3} \quad 24^{2} x \quad 1$
x 9
$16 x^{3} \begin{array}{cccc}24 x^{2} & 9 x & 1 & 0, \text { we graph } \\ & 3 & 2 & \end{array}$ $y \quad 16 x \quad 24 x \quad 9 x \quad 1$ in the viewing rectangle [3 1] by [5 5]. From this rectangle, we see that $x 1$ is an x-intercept, but it is

$\begin{array}{lllll}-3 & -2 & -1 & -2 & 1\end{array}$

-0.01 unclear what is occurring between $x 05$ and $x \quad 0$. We then use the viewing rectangle [10$]$ by [001001]. It shows $y 0$ at $x 025$. Thus in interval notation, the solution is 1025025 .

Since $x^{13} x x^{13} x 0$, we graph $y x^{13} x$ in the viewing rectangle [3 3] by [111]. From this, we find that the solution set is 101 .

Since $05^{x_{2}} 12 x 05 x^{2} 12 x 0$, we graph $y 05^{x_{2}} 12 x$ in the viewing rectangle [$\left.\begin{array}{ll}1 & 1\end{array}\right]$ by $\left[\begin{array}{ll}1 & 1\end{array}\right]$. We locate the x intercepts at
$x 0$ 535. Thus in interval notation, the solution is approximately 0 535] [0 535 .

Since $x 1^{2} x^{3} x 1^{2} x^{3} 0$, we graph $y x 1^{2} x^{3}$ in the
viewing rectangle [44] by [111]. The x-intercept is close to $x 2$. Using a trace function, we obtain $x 2148$. Thus the solution is [2 148 .

We graph the equations y $3 x^{2} 3 x$ and $y 2 x^{2} 4$ in the viewing rectangle [26] by [5

50]. We see that the two curves intersect at $x 1$ and at $x 4$, and that the first curve is lower than the second for $1 x 4$. Thus, we see that the inequality $3 x^{2} 3 x x^{2} 4$ has the solution set 14 .

42. We graph the equations $y \quad 5 x^{2} 3 x$ and $y 3 x^{2} \quad 2$ in the viewing rectangle [32 2] by [$\left.\begin{array}{ll}5 & 20\end{array}\right]$. We see that the two curves intersect at $x 2$ and at $x \quad 2^{\underline{1}}$ which can be verified by substitution. The first curve is larger than the second for $x 2$ and for $x 2^{1}$, so the solution set of the inequality $5 x^{2} 3 x \quad 3 x^{2} \quad 2$ is
$2] 2^{\underline{1}}$.

We graph the equation $\begin{array}{llllll} & x & 2^{2} & x & 3 & x\end{array} 1$ in the viewing rectangle [24] by [15 5] and see that the inequality $x 2^{2} \times 3 \times 10$ has the solution set [1 3].
44. We graph the equation $y x^{2} x^{2} 1$ in the viewing rectangle [2 2] by [111] and see that the inequality $x^{2} x^{2} \quad 10$ has the solution set $1] 0[1$.

45. To solve $53 x \quad 8 x \quad 20$ by drawing the graph of a single equation, we isolate all terms on the left-hand side: $5 \quad 3 x \quad 8 x \quad 20$
$\begin{array}{llllllllll}5 & 3 x & 8 x & 20 & 8 x & 20 & 8 x & 2011 x & 25 & 0 \text { or } 11 x \\ 25 & 0 .\end{array}$
We graph $y 11 x 25$, and see that the solution is x 22 , as in Example 2.

Graphing $y x^{3} 6 x^{2}$ ax by [0 and $y x$ in the viewing rectangle [001 002] 0 and
$x 001$ are solutions of the equation
0502 2, we see that $* x^{3} 6 x^{2}$
$9 x *$.

(a) We graph the equation

$$
10 x 05 x^{2} 0001 x^{3} 5000 \text { in the viewing }
$$ rectangle [0 600] by [30000 20000].

From the graph it appears that $0 \quad 10 x 005 x^{2} 0001 x^{3} 5000$ for
100×500, and so 101 cooktops must be produced to begin to make a profit.

We graph the equations $y \quad 15,000$ and
$y 10 x 05 x^{2} 0001 x^{3} 5000$ in the viewing rectangle
[250 450] by [11000 17000]. We use a zoom or trace
company's profits are greater than $\$ 15,000$ for $279 x$ 400.

48. (a)

Using a zoom or trace function, we find that y 10 for $x \quad 667$. We
could estimate this since if $x=\frac{100}{x}$, then $\frac{x}{5280}{ }^{2} 000036$. So for
$x \quad 100$ we have $\quad 15 x 5280 \quad 15 x$. Solving $15 x 10$ we
get 15100 or $x \quad \overline{15} 667 \mathrm{mi}$.

Answers will vary.
Calculators perform operations in the following order: exponents are applied before division and division is applied before addition. Therefore, $Y_{-} 1=x^{\wedge} 1 / 3$ is interpreted as $y^{x} \quad x$, which is the equation of a line. Likewise,
x

$$
-\quad ¥ _2=x / x+4 \text { is } 3
$$

interpreted as $y \quad \bar{x} \quad 4 \quad 1 \quad 4 \quad$ 5. Instead, enter the following: $Y_{-} 1=x^{\wedge}(1 / 3), Y _2=x /(x+4)$.

1.10 modeling variation

If the quantities x and y are related by the equation $y 3 x$ then we say that y is directly proportional to x, and the constant of proportionality is 3 .
If the quantities x and y are related by the equation $y x^{3}$ then we say that y is inversely proportional to x, and the constant of proportionality is 3 .
If the quantities x, y, and z are related by the equation $z \quad 3^{x} y$ then we say that z is directly proportional to x and inversely proportional to y.
4. Because z is jointly proportional to x and y, we must have $z \quad k x y$. Substituting the given values, we get $10 \quad k 4 \quad 5 \quad 20 k \quad k \quad \stackrel{1}{4}$. Thus, x, y, and_ z are related by the equation_ $z \frac{1}{2} x y$.
(a) In the equation $y 3 x, y$ is directly proportional to x.

In the equation $y \quad 3 x \quad 1, y$ is not proportional to x.
6. (a) In the equation $y \frac{3}{x \quad 1}, y$ is not proportional to x.
(b) In the equation $y \quad x, y$ is inversely proportional to x.

CHAPTER 1 Equations and Graphs
$T k x$, where k is constant. $\quad P k$, where k is constant.
k
z, where k is constant. $k m n$, where k is constant.
${ }_{y} \frac{k s}{t}$, where k is constant.
$z \quad k \quad y$, where k is constant.

P $T_{k x^{2}}^{k}$, where k is constant.
14. $A \quad \overline{t 3}$, where k is constant.
16. $S \quad k r^{2}$, where k is constant.
18. $A \quad k \quad x y$, where k is constant.
17. $R \quad b^{3}$, where k is constant.
$x \quad 6$, we have $42 k 6 k$ 7. So $y 7 x$.
19. Since y is directly proportional to $x, y \quad k x$. Since $y \quad 42$ when $x \quad 6$, we have $42 k 6 k \quad 7$. So $y \quad 7 x$.

k	\underline{k}		24	
\bar{t}. Since3 when t	8 , we have 3	$8 k$	24, so	\bar{t}.

P is directly proportional to T, so $P \quad k T$. Since $P \quad 20$ when $T \quad 300$, we have $20 \quad k 300 k \quad 15^{1}$. So $P \quad 15^{\frac{1}{r}} T$.
$k x$
Since A is directly proportional to x and inversely proportional to $t, A \quad t$. Since $A \quad 42$ when $x \quad 7$ and $t \quad 3$, we
have $42 \quad \frac{k 7}{3} k \quad 18$. Therefore, $A \quad \frac{18 x}{t}$.
$S \quad k p q$. Since $S \quad 180$ when $p \quad 4$ and $q \quad 5$, we have $180 \quad k 45180 \quad 20 k \quad k \quad 9$. So $S \quad 9 p q$.
25. Since W is inversely proportional to the square of $r, W \quad \frac{k}{r^{2}} \quad$. Since $W \quad 10$ when $r \quad 6$, we have $10 \quad \frac{k}{6^{2}} \quad k \quad 360$. 360

So $W \quad r_{2}$.
26. $t \quad k \quad \frac{x y}{r}$. Since $t 25$ when $x \quad 2, y \quad 3$, and r 12, we have $25 \quad k$
$\begin{array}{llll}23 \\ 12 & k & 50 . \text { So } t & 50 \frac{x y}{r} .\end{array}$

Since C is jointly proportional to l, , and h, we have $C k l h$. Since $C 128$ when $l h 2$, we have $128 k 2221288 k k 16$. Therefore, $C 16 \mathrm{lh}$.

	k			
29. R	x	. Since R	25 when x	121,25

k	$\frac{k}{124}$	
	$11 k$	27 5. Thus, R
		$a 22$

30. $M \quad k \quad d$. Since $M \quad 128$ when $a \quad d$ and $b \quad c \quad 2$, we have $128 \quad k$
a

$4 k \quad$ 32. So M $32 d$.
31. (a) $z k{ }^{\frac{x^{3}}{2}}$
(b) If we replace x with $3 x$ and y with $2 y$, then $z \quad k \quad \begin{array}{lllll}2 y^{3} & \frac{27}{x^{3}} & \frac{27}{4} & k & y^{2}\end{array}$, so z changes by a factor of 4.
$\underline{\underline{x}} \underline{2}$
32. (a) $z \quad k \quad y^{4}$

(a) $z k x^{3} y^{5}$

If we replace x with $3 x$ and y with $2 y$, then $z k 3 x^{3} 2 y^{5} 864 k x^{3} y^{5}$, so z changes by a factor of 864 .
34. (a) $z \quad \frac{k}{x^{2} y^{3}}$
(b) If we replace x with $3 x$ and y with $2 y$, then $z \quad \begin{array}{lll}-\frac{k}{3} x^{2} 2 y^{3} & \frac{1}{-} \frac{k}{7} & \\ 72 x^{2} y^{3}\end{array}$, so z changes by a factor of 72 .
35. (a) The force F needed is $F k x$.
(b) Since $F \quad 30 \mathrm{~N}$ when $x \quad 9 \mathrm{~cm}$ and the spring's natural length is 5 cm , we have 30 k9 $5 k \quad 75$.
(c) From part (b), we have $F \quad 75 x$. Substituting $x \quad 11 \quad 5 \quad 6$ into $F \quad 75 x$ gives $F 756 \quad 45 \mathrm{~N}$.
36. (a) $C \mathrm{kpm}$
(b) Since $C \quad 60,000$ when $p \quad 120$ and $m \quad 4000$, we get $60,000 \quad k 1204000 k \quad \frac{1}{8} \quad$. So $C^{\frac{1}{8}} p m$. 1
(c) Substituting $p 92$ and m 5000, we get $C \quad 8 \quad 925000 \quad \$ 57,500$.
37. (a) $P \quad k s^{3}$.
(b) Since $P 96$ when $s \quad 20$, we get $96 \quad k 20^{3} \quad k \quad 0012$. So $P \quad 0012{ }^{3}$. 3
(c) Substituting $x \quad 30$, we get $P 001230324$ watts.
38. (a) The power P is directly proportional to the cube of the speed s, so $P k^{3}$.
(b) Because $P \quad 80$ when $s \quad 10$, we have $80 k 10^{3} \quad k \quad \frac{80}{1000} \quad \frac{2}{2} \quad 008$.
(c) $\begin{array}{llll}\text { Substituting } k & \frac{2}{25} \\ 25 & \text { and } s & 15 \text {, we have } P & \frac{2}{25} \\ \frac{15}{3}\end{array}$
39. $D k s$. Since $D 150$ when s 40, we have $150 k 40$, so $k 009375$. Thus, $D 009375 s$. If D 200, then $200009375 s^{2} s^{2} 2133$ 3, so $s 46 \mathrm{mi} / \mathrm{h}$ (for safety reasons we round down).
40. $L \quad k s^{2}$ A. Since $L \quad 1700$ when $s 50$ and A 500, we have $1700 k 50^{2}$ 500k 000136 . Thus $L \quad 000136 s^{2} A$. When $A \quad 600$ and $s \quad 40$ we get the lift is $L \quad 000136 \quad 40^{2} \quad 600 \quad 13056 \mathrm{lb}$.
41. $F \quad k A s^{2}$. Since $F \quad 220$ when $A \quad 40$ and $s \quad$ 5. Solving for k we have $220 \quad k 40 \quad 5^{2} \quad 220 \quad 1000 k$ $k \quad 022$. Now when $A \quad 28$ and $F \quad 175$ we get $175022028 s^{2} \quad 284090 \quad s^{2}$ so $s 284090 \quad 533 \mathrm{mi} / \mathrm{h}$.
(a) $T^{2} k d^{3}$
 $T^{2} 16610{ }^{19} 27910^{93} 36010^{9} T 60010^{4}$. Hence the period of Neptune is 6.0010^{4} days 164 years.
(a) $P{ }^{k} T_{V}$.
(b) Substituting P 33 2, T 400, and V 100, we get $332 \quad \frac{k 400}{100} k \quad 8$ 3. Thus $k \quad 83$ and the equation is $83 T$
$P \quad \bar{V}$.
(c) Substituting $T \quad 500$ and $V \quad$ 80, we have $P \quad \frac{83500}{80} 51875 \mathrm{kPa}$. Hence the pressure of the sample of gas is about 519 kPa .
(a) $F \quad k \quad r \underline{S 2}$

(a) The loudness L is inversely proportional to the square of the distance d, so $L d^{k}$.
(b) Substituting $d \quad 10$ and $L \quad 70$, we have 70 $\quad \frac{k}{10^{2}} \quad k 7000$.
(c) Substituting $2 d$ for d, we have $L \quad-\frac{-k}{2 d^{2}} \quad \begin{array}{lll}4 & -\frac{k}{2} \\ d^{2}\end{array}$, so the loudness is changed by a factor of $\frac{1}{4}$.
(d) Substituting $\underline{1} d$ for d, we have $L \quad \underline{\underline{k}}-\quad 4 \quad \underline{k}$., so the loudness is changed by a factor of 4 .
$\overline{2} d$
46. (a) The power P is jointly proportional to the area A and the cube of the velocity, so $P \quad k A^{3}$.
(b) Substituting 2 for and $\frac{1}{2} A$ for A, we have $P \quad k \quad \frac{1}{2} \quad A \quad 2^{3} 4 k A^{3}$, so the power is changed by a factor of 4 .
(c) Substituting $\frac{1}{2} \quad$ for and $3 A$ for A, we have $P k 3 A \quad \frac{1}{2} \quad \frac{3}{8} A k^{3}$, so the power is changed by a factor of $\frac{3}{8}$.
47. (a) $R \quad \frac{k L}{d^{2}}$
(b) Since $R \quad 140$ when $L \quad 12$ and $d \quad 0005$, we get $140 \quad \frac{k 12}{0005^{2}} k \quad \frac{7}{2400} 0002916$.
(c) Substituting $L 3$ and $d \quad 0008$, we have $R \quad \overline{2400} \overline{0008^{2}} \quad \overline{32} 137$.

If we substitute $2 d$ for d and $3 L$ for L, then $R^{k 3 L_{3} k L}$, so the resistance is changed by a factor of ${ }^{\frac{3}{3}}$.

$$
\overline{2 d^{2}} 4 d^{2-4}
$$

48. Let S be the final size of the cabbage, in pounds, let N be the amount of nutrients it receives, in ounces, and let c be the number of other cabbages around it. Then $S \quad k \quad \frac{N}{c} \quad$. When $N \quad 20$ and $c \quad 12$, we have $S \quad 30$, so substituting, we have
$30 k \frac{20}{12}$
\underline{N}
$30 k \quad 12 k \quad 18$. Thus $S \quad 18$
c. When N
10 and $c \quad 5$, the final size is $S 18$
$36 \frac{10}{1 \mathrm{~b}}$.
$434 \begin{array}{lllllll} & E_{S} & k 6000^{4} & 6000 & 4 & 4\end{array}$
49. (a) For the sun, $E S \quad k 6000$ and for earth $E \mathrm{E} \quad k 300$. Thus $\quad \begin{array}{lllllll} & \mathrm{E} & k 300 & 300 & 20 & 160,000 \text {. So the sun }\end{array}$ produces 160,000 times the radiation energy per unit area than the Earth.
$\frac{4435,000^{2}}{43,960^{2}} \frac{435,000}{3,960} \quad 2$ times the surface area of the Earth. Thus the total radiation emitted by the sun is 160,000 $\quad 1,930,670,340$ times the total radiation emitted by the Earth. 3,960
Let V be the value of a building lot on Galiano Island, A the area of the lot, and q the quantity of the water produced. Since V is jointly proportional to the area and water quantity, we have $V k A q$. When $A 20030060,000$ and $q 10$, we have $V \$ 48$ 000 , so $48,000 k 60,00010 k 008$. Thus $V 008 A q$. Now when $A 400400160,000$ and $q 4$, the value is $V 008160,0004$ \$51,200.
(a) Let T and l be the period and the length of the pendulum, respectively. Then $T k l$.
(b) $\begin{array}{lllllllll} & k & \bar{l} & T & & k & & l & l\end{array} \quad \begin{aligned} & \underline{2} \\ & k^{2}\end{aligned}$. If the period is doubled, the new length is $\begin{array}{llll}\frac{2 T^{2}}{k^{2}} & \frac{T^{2}}{k^{2}}\end{array} 4 l$. So we would
quadruple the length l to double the period T.
Let H be the heat experienced by a hiker at a campfire, let A be the amount of wood, and let d be the distance from campfire. So $H k d^{A}$ 3. When the hiker is 20 feet from the fire, the heat experienced is $H k 20 \frac{A}{3}$, and when the amount

(a) \underline{k}
(b)

Since f is inversely proportional to L, we have $f \quad L$, where k is a positive constant.
k - -

If we replace L by $2 L$ we have $2 L \quad 2 \quad L \quad 2 f$. So the frequency of the vibration is cut in half.
(a) Since r is jointly proportional to x and $P \quad x$, we have $r \quad k x P \quad x$, where k is a positive constant.
(b) When 10 people are infected the rate is $r \quad k 105000 \quad 10 \quad 49,900 k$. When 1000 people are infected the rate is
$k 1000500010004,000,000 k$. So the rate is much higher when 1000 people are infected. Comparing 1000 people infected $\quad 4,000,000 \mathrm{k}$
these rates, we find that $\overline{10 \text { people infected }} \frac{49,900 \mathrm{k}}{} 80$. So the infection rate when 1000 people are infected is about 80 times as large as when 10 people are infected.
When the entire population is infected the rate is $r k 5000500050000$. This makes sense since there are no more people who can be infected.
55. Using $B \quad k_{d 2}$ with $k \frac{L}{\frac{L}{0}}$

2510
26 , and $d 24$
10^{19}, we have $B \quad 0080 \begin{array}{ll}25 \quad 10 & 26 \\ & 19_{2}^{-} 347\end{array}$
2
The star's apparent brightness is about $347 \quad 10{ }^{14} \mathrm{~W}$ m .

$\begin{array}{llll}B & 8 & 10^{16}\end{array}$ we find $d 0080$
$58 \quad 1030$
23810 , so the star is approximately 23810 m from earth
82
1016
22
22

Examples include radioactive decay and exponential growth in biology.

CHAPTER 1 REVIEW

equation $y 0{ }^{\underline{12}} 7 x 2 y{ }^{\underline{12}} 7 x$

$$
\underline{24}_{7} 12 x 7 y 240 .
$$

2. (a)

its equation is y
$112 x 2$
$\begin{array}{lllllll}y & 11 & 2 x & 4 & y & 2 x & 15 .\end{array}$

(b) The distance from P to Q is

$$
\begin{aligned}
& \begin{array}{llll}
d P & Q^{2} 11 & 1^{2} \\
25 & 100125 & 5 & 5
\end{array}
\end{aligned}
$$

(c) The midpoint is $\frac{27^{7}-111}{2} \quad \frac{9}{2} 6$.
(e) The radius of this circle was found in part (b). It is 2 , and
$r d P, Q \quad 55$. So an equation is
$x \quad 7^{2} \quad y \quad 1^{2}$
5 5_
$x 7^{2} y 1^{2} 125$.

3. (a)

(d) The line has slope m 64 and equation $y \quad 25^{\underline{8}} \quad x \quad 6$
$y 25^{-\frac{8}{-}} \quad \underline{48}_{5} \quad y \quad 5^{-8} x \quad \underline{38}_{5}$.

(b) The distance from P to Q is
 $100256356 \quad 289$
(c) The midpoint is $6_{2} \frac{4}{} \quad 2^{\frac{14}{1}}-6$.

8
105 (e) The radius of this cirele was found in part (b). It is
$r d P Q \quad 2$ 89. So an equation is
$[x 6]^{2}$ y $2^{2} 289$ -
$x 6^{2}$ y $2^{2} 356$.

4. (a)

The line has slope $m^{26} \underline{41}$, and 53^{82}

$$
\begin{aligned}
& \text { has equation } y 2 \frac{1}{2}_{2} \text { x } 5 \text { y } 2 \frac{1}{2}_{2 x} \frac{5}{2}_{2} y \\
& \underline{1}_{2} x \underline{9}_{2} .
\end{aligned}
$$

5.

7. $d A C$

d $B C \quad 51^{2} 33^{2}$
$51^{2} 33^{2}$
6. $x y \quad x \quad 4$ or y

72. Therefore, B is closer to C.

The circle with center at 25 and radius 2 hasequation $\begin{array}{llllllllllllllll}2 & y & 5^{2} & 2^{2} & 2^{2} & y & 5 & & 2\end{array}$
9. The center is $C 5$ 1, and the point $P 0 \quad 0$ is on the circle. The radius of the circle is
$r d 2 P C 20 \quad 5^{2} \quad 0 \quad 1{ }^{2}$
$=0 \quad 5^{2} 01^{2}$
26. Thus, the equation of the circle is $\begin{array}{llll}x & 5 & y & 126 .\end{array}$
10. The midpoint of segment $P Q$ is $\frac{2 \quad 1}{2} \frac{3 \quad 8}{2}$

$$
\frac{1}{2^{*}}-11
$$

$$
\frac{1}{2} \text { of the distance from } P \text { to } Q \text {, or }
$$

$\underline{1} \quad \underline{11} \quad \underline{17}$

11. (a) $x \quad \begin{array}{lllll} & { }^{2} & 2 & & \\ & 6 y & 9 & 0 x\end{array}$

$$
\begin{array}{lllllll}
x_{2} & 2 x & 1 y^{2} & 6 y & 9 & 9 & 1
\end{array} 9
$$

$$
\begin{array}{lllll}
x & 1^{2} & y & 3^{2} & 1 \text {, an equation of a circle. }
\end{array}
$$

(a) $2 x^{2} \quad 2 y^{2} \quad 2 x \quad 8 y \underline{1}_{2} \quad 2 \quad{ }^{2} 4 y \underline{1}_{4}$
x
$21 \quad 2 \quad \begin{array}{lll}x & x_{1} y & 1\end{array}$

$$
4 _\quad y \quad 4 y _4 _\quad 4 _4 _4 x
$$

$x \quad \underline{1}_{2}-{ }^{2} \quad y \quad 2^{2} \quad \underline{9}_{2}$, an equation of a circle.
13. (a) $x^{2} \quad y^{2} 72 \quad 12 x x^{2} \quad 12 x y^{2} 72 x^{2} \quad 12 x \quad 36 y^{2} 72 \quad 36 x 6^{2} y^{2} 36$.

Since the left side of this equation must be greater than or equal to zero, this equation has no graph.
14. (a) $x^{2} y^{2} 6 x$ 10y $3400 x^{2} 6 x y^{2} 10 y 34$
$2 \quad 2$
$\begin{array}{lllllll}x & 6 x & 9 y & 10 y & 2534 & 9 & 25\end{array}$
$x \quad 3^{2} \quad y \quad 5^{2}$, an equation of a point.

The circle has center 13 and
(b) radius 1 . $2 x y 6 y \quad 9$
 must be g
y^{2}
$10 y 34$
(b) The circle has center 22

(b) This is the equation of the point

15. $y \quad 2 \quad 3 x$

$\stackrel{y}{x} \quad-\quad$
$7 x 7$
17. 271 y 2

19. $y 16 x^{2}$

x	y
0	0
1	1
2	4
3	9

16. $2 x$ y $\quad 1 \quad 0 \quad y \quad 2 x \quad 1$

$x \quad y$
$0 \quad 5 x \quad 4 y \quad 0$
18. 45

20. $8 x y^{2} 0 y^{2} 8 x$

22. $y \quad \overline{x^{2}}$

x	y
1	0
$1 \frac{1}{2}$	$\frac{-3}{2}$
0	1
1	0

$y 9 x^{2}$
x-axis symmetry: replacing y by y gives $y 9 x^{2}$, which is not the same as the original equation, so the graph is not symmetric about the x-axis.
y-axis symmetry: replacing x by x gives $y 9 x^{2} 9 x^{2}$, which is the same as the original equation, so the graph is symmetric about the y-axis.
Origin symmetry: replacing x by x and y by y gives $y 9 x^{2}$ y $9 x^{2}$, which is not the same as the original equation, so the graph is not symmetric about the origin.
To find x-intercepts, we set y and solve for x : $\begin{array}{llllllll}0 & 9 & x^{2} & x^{2} & 9 & x 3\end{array}$, so the x-intercepts are 3 and 3 .

$6 x$ y 36
x-axis symmetry: replacing y by y gives $6 x y^{2} 366 x y^{2} 36$, which is the same as the original equation, so the graph is symmetric about the x-axis.
y-axis symmetry: replacing x by x gives $6 x y^{2} 366 x y^{2} 36$, which is not the same as the original equation, so the graph is not symmetric about the y-axis.

2
Origin symmetry: replacing x by x and y by y gives $6 x y^{2} 366 x y \quad 36$, which is not the same as the original equation, so the graph is not symmetric about the origin.

To find x-intercepts, we set $y \quad 0$ and solve for $x: \begin{array}{lllll}6 x & 0^{2} & 36 & x & 6 \text {, so the } x \text {-intercept is } 6 \text {. } 6 \text {. } 6 \text {, }\end{array}$
To find y-intercepts, we set $x \quad 0$ and solve for $y: 60 y^{2} \quad 36 y 6$, so the y-intercepts are 6 and 6 .
$\begin{array}{llll}x & y & 1 & 1\end{array}$
x-axis symmetry: replacing y by y gives $x^{2} y 1^{2} 1 x^{2} y 1^{2} 1$, so the graph is not symmetric about the x-axis.
y-axis symmetry: replacing x by x gives $x^{2} y 1^{2} 1 x^{2} y 1^{2} 1$, so the graph is symmetric about the y-axis.

Origin symmetry: replacing x by x and y by y gives $x^{2} y 1^{2} 1 x^{2} y 1^{2} 1$, so the graph is not symmetric about the origin. x

To find y-intercepts, we set $x 0$ and solve for $y: 0^{2} y 1^{2} 1 y 11 y 0$ or 2 , so the y-intercepts are 0 and 2 .
x^{4}
y
x-axis symmetry: replacing y by y gives $x^{4} 16 y x^{4} 16 y$, so the graph is not symmetric about the x-axis.
y-axis symmetry: replacing x by x gives $x^{4} \begin{array}{llllll}4 & & x^{4} & x & 16 & y\end{array}$, so the graph is symmetric about the y-axis.
Origin symmetry: replacing x by x and y by y gives $x^{4} 16 y x \quad 16 y$, so the graph is not symmetric about the origin.

To find x-intercepts, we set $y 0$ and solve for $x: x^{4} 160 x^{4} 16 x 2$, so the x-intercepts are 2 and 2 .

To find y-intercepts, we set $x \quad 0$ and solve for $y: 0^{4} \quad 16 \quad y \quad y 16$, so the y-intercept is 16 . $9 x^{2} 16 y^{2} 144$
x-axis symmetry: replacing y by y gives $9 x^{2} 16 y^{2} 1449 x^{2} 16 y^{2} 144$, so the graph is symmetric about the x-axis.
y-axis symmetry: replacing x by x gives $9 x^{2} 16 y^{2} 1449 x^{2} 16 y^{2} 144$, so the graph is symmetric about the y-axis.

Origin symmetry: replacing x by x and y by y gives $9 x^{2} 16 y^{2} 1449 x^{2} 16 y^{2} 144$, so the graph is symmetric about the origin.
(b) To find x-intercepts, we set $y 0$ and solve for x : $9 x^{2} 160^{2} 1449 x^{2} 144 x 4$, so the x-intercepts are 4 and 4 .

To find y-intercepts, we set $x \quad 0$ and solve for y : $90^{2} \quad 16 y^{2} \quad 144 \quad 16^{2} \quad 144$, so there is no y-intercept.
28. $y \quad 4$
x-axis symmetry: replacing y by y gives $y x^{4}$, which is different from the original equation, so the graph is not symmetric about the x-axis.
y-axis symmetry: replacing x by x gives $y \quad \frac{4}{x}$, which is different from the original equation, so the graph is not symmetric about the y-axis.

Origin symmetry: replacing x by x and y by y gives $y \quad \bar{x} y \quad \bar{x}$, so the graph is symmetric about the origin.

To find x-intercepts, we set $y \quad 0$ and solve for $x: 0 \quad x^{4}$ has no solution, so there is no x-intercept.

To find y-intercepts, we set $x 0$ and solve for y. But we'cannot substitute $x \quad 0$, so there is no y-intercept.
$x^{2} \quad 4 x y \quad y^{2} \quad 1$
x-axis symmetry: replacing y by y gives $x^{2} 4 x y y^{2} 1$, which is different from the original equation, so the graph is not symmetric about the x-axis.

2
y-axis symmetry: replacing x by x gives $x^{2} 4 x y y \quad 1$, which is different from the original equation, so the graph is not symmetric about the y-axis.

Origin symmetry: replacing x by x and y by y gives $x^{2} 4 x y y^{2} 1 x^{2} 4 x y y^{2}$, so the graph is symmetric about the origin.

To find x-intercepts, we set $y 0$ and solve for $x: x^{2} 4 x 00^{2} 1 x^{2} 1 x 1$, so the x-intercepts are 1 and 1 .

To find y-intercepts, we set $x 0$ and solve for y : $0^{2} 40 y y^{2} 1 y^{2} 1 y 1$, so the y-intercepts are 1 and 1 .
$x^{3} x y^{2} 5$
x-axis symmetry: replacing y by y gives $x^{3} x y^{2} 5 x^{3} x y^{2}$ 5, so the graph is symmetric about the x-axis.
y-axis symmetry: replacing x by x gives $x^{3} x$ y \quad, which is different from the original equation, so the graph is not symmetric about the y-axis.

Origin symmetry: replacing x by x and y by y gives $x^{3} x y^{2} 5$, which is different from the original equation, so the graph is not symmetric about the origin.
To find x-intercepts, we set $y \quad 0$ and solve for $x: x^{3} x 0^{2} \quad x^{3} \quad 5 \quad x{ }^{3} 5$, so the x-intercept is ${ }^{3} 5$.
2
To find y-intercepts, we set $x \quad 0$ and solve for $y: 0^{3} \quad 0 y \quad 5$ has no solution, so there is no y-intercept.
(a) We graph $y x^{2} 6 x$ in the viewing rectangle [10 10] by [10 10].

From the graph, we see that the x-intercepts are 0 and 6 and the y-intercept is 0 .
(a) We graph $y 5 x$ in the viewing rectangle [106 6] by [15].

From the graph, we see that the x-intercept is 5 and the y-intercept is approximately 224 .
(a) We graph $y x^{3} 4 x^{2} 5 x$ in the viewing rectangle $[48]$ by $\left[\begin{array}{lll}30 & 20] \\ \hline\end{array}\right.$

From the graph, we see that the x-intercepts are 1,0 , and 5 and the y-intercept is 0 .
(a) We graph $\begin{array}{lllllll}x 2 & y^{2} & 1 & y^{2} & 1 & x 2 & - \\ & & & & & \end{array}$
\qquad
y
$1 x_{2}$ in the viewing
rectangle [33$]$ by 4
[22].

From the graph, we see that the x-intercepts are 2 and 2 and the y-intercepts are 1 and 1 .
35. (a) The line that has slope 2 and y-intercept 6 has the slope-intercept equation $2 x 6$.

An equation of the line in general form is $2 x \quad y \quad 6 \quad 0$.
(c)

36. (a) The line that has slope $z^{\underline{1}}$ and passes through the point 63 has equation $y 32^{\underline{1}} x \quad 6 \quad y \quad 3 \quad 2^{-\frac{1}{x}} x \quad 6 \quad y \quad 2^{\frac{1}{x}} x$.
(b) $\begin{array}{lllllllllll} & 2^{1} x & 3 & y & 3 & x & 62 y & 6 & x & 2 y & 0\end{array}$.
(c)

(c)

(a) The vertical line that passes through the point 32 has equation x
$x 3 x 30$.
3. (c)

40. (a) The horizontal line with y-intercept 5 has equation $y \quad 5$. $y 5 y 50$.
(c)

41. (a) $2 x \quad 5 y \quad 10 \quad 5 y \quad 2 x \quad 10 \quad y \quad \underline{2}_{5} x _$2, so the given line has slope_(c)
$\underline{2}_{5}$. Thus, an equation of the line passing through 11 parallel to this line is $y \quad 1 \quad \underline{2}_{5 _} x _1 \quad y \quad \underline{2}_{5 _} x \quad \underline{s}_{5}$
$y \stackrel{2}{2}_{5 x} \stackrel{3}{3}_{5}$ 5y $2 x \quad 3 \quad 2 x$ 5y 30 .
42. (a) The line containing 24 and 44 has slope $m \quad \frac{44}{42} \quad-24$, and the line passing through the origin with this slope has equation $y \quad 4 x$.
$\begin{array}{llll}y 4 x & 4 x & y & 0 .\end{array}$
(c)

43. (a) The line $y \quad \frac{1}{2} x \quad 10$ has slope $\quad \frac{1}{2}$, so a line perpendicular to this one has
slope 12 2. In particular, the line passing through the origin
perpendicular to the given line has equation $y 2 x$.
(b) $y 2 x \quad 2 x \quad y \quad 0$.
(c)

44. (a) x 3y $16 \begin{array}{llllll}16 & 0 & 3 y & x & 16 & y\end{array}$ $\frac{1}{3} x \stackrel{16}{3}_{3}$, so the given line has
(c)
slope $\frac{1}{3}$. The line passing through 17 perpendicular to the given line has $\begin{array}{llllll}\text { equation } y 7 & \frac{1}{13} & x & 1 y & 73 x & 1 y 3 x\end{array} 10$.
(b) $y 3 x \quad 10 \quad 3 x \quad y \quad 10 \quad 0$.

45. The line with equation $y \quad \underline{1}_{3} x$ ins slope $\quad \underline{1}_{3_{-}}$. The line with equation $9 y \quad 3 x \quad 3 \quad 0 \quad 9 y \quad 3 x \quad 3$ $\underline{1}_{3 x} \quad \underline{1}_{3}$ also has slope $\underline{1}_{3}$, so the lines are parallel.
 slope $\begin{array}{cc}8 & 1 \\ 55 & 8\end{array}$, so the lines are perpendicular.
(a) The slope represents a stretch of 03 inches for each one-pound increase in weight. The s-intercept represents the length of the unstretched spring.
(b) When5, s 03525152540 inches.
(a) We use the information to find two points, 060000 and 370500 . Then the slope is

$$
m \quad \frac{70,500}{30} \frac{60,000}{3} \quad \frac{10,500}{3,500 . \text { So } S \quad 3,500 t \quad 60,000}
$$

The slope represents an annual salary increase of $\$ 3500$, and the S-intercept represents her initial salary.
When t 12, her salary will be $S 35001260,000 \quad 42,000 \quad 60,000 \quad \$ 102,000$.
$\begin{array}{llllllllllllll}x^{2} & 9 x & 14 & 0 x & 7 & x & 2 & 0 & x & 7 \text { or } x & 2 .\end{array}$
$\begin{array}{llllllllll}x^{2} & 24 x & 144 & 0 x & 12^{2} & 0 & x & 12 & 0 & x 12 .\end{array}$

$x 1$.
52. $3 x^{2} \quad 5 x \quad 2 \quad 03 x \quad 1 \quad x \quad 2 \quad 0 \quad x \quad \frac{1}{3}$ or $x 2$.

56. $x \quad 3 x 90 c$

There is no real solution.
1 2

57. $x \quad x \quad 1 . \quad 3 \quad x \quad 1 \quad 2 x 3 x-1 x-12 x$

CHAPDER51. ItquatienssandeGraphnakes the expression undefined, we reject this solution. Hence the only solution is x 5.
59. $x^{4} \quad 8 x^{2} \quad 9 \quad 0 x^{2}$
$x 3$, however $x \quad 10$ has no real solution. The solutions are $x 3$.
$x 4 * 32$. Let $u x$. Then $u^{2} 4 u \quad 440$. If $u 80$, $\quad 32 u^{2} 4 u 320 u 8 u 40$ So either $u 80$ or $8 x 64$. If $u 40$, then $u 4 \bar{x} 4$, then $u 8 x$ solution. So the only solution is $\bar{x} \quad$ which has no real 64.
 only solution comes from $1 \quad x \quad \begin{array}{llllllll} & & & & 1 & x & 0 & x\end{array} 1$.
62. $1 x^{2} 2 \Gamma \neq 150$. Let $u \Gamma x$, then the equation becomes $u^{2} 2 u 150 u 5 u 30 u 50$ or $u 30$. If $u 50$, then $u 51 * 5 * 4 x 16$. If u 30 , then $u 31 * 3 * 4$, which has no real solution. So the only solution is $\bar{x} 16$.
63. $x \quad 7 \quad 4 \quad x \quad 74 \quad x \quad 7 \quad 4$, so $x \quad 11$ or $x \quad 3$.

64. $2 x \quad 5 \quad 9$ is equivalent to $2 x \quad 59 \quad 2 x \quad$| | 5 | 9 | $\frac{5}{2}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | . So $x 2$ or $x \quad 7$.
65. (a) $23 i 1 \quad 4 i 2 \quad 13 \quad 4 i \quad 3 \quad i$
(b) $2 \begin{array}{llllllllllll}i & 3 & 2 i & 6 & 4 i\end{array} \quad \begin{array}{llllllllllll}2 & 3 i & 6 & i & 2 & 8 & i\end{array}$
66. (a) $\begin{array}{llllllllll}36 i 6 & 4 i & 3 & 6 i & 6 & 4 i & 3 & 66 & 4 i & 3\end{array}$
$\begin{array}{llllllll} & \underline{1}- \\ \text { (b) } 4 i & 2 & & & & & & \\ 2 & 8 i & 2 i^{2} & 2 & 8 i & & & \\ & & & & & & & \end{array}$
67. (a) $\frac{42 i}{2 i} \quad \frac{42 i}{2 i} \frac{2 i}{2 i} \quad \frac{88 i 2 i}{4 i^{2}} \quad \frac{88 i 2}{41} \quad \frac{68 i}{5} \quad \frac{6}{5} \quad{ }_{5}^{-8} i$
(b) 1
$111 \quad 1 \quad 1 \quad i \quad 1 \quad i \quad 1 \quad i \quad 2$
$i \begin{array}{lllll} & i^{2} & 1 & 1 & 2\end{array}$
68. (a) $\frac{83 i}{43 i} \quad \frac{83 i}{43 i} \frac{43 i}{43 i} \quad \frac{3212 i 9 i}{169 i^{2}} \quad \frac{3212 i 9}{169} \quad \frac{4112 i}{25} \quad \frac{41}{25} \quad \frac{12}{25 i}$
$\begin{array}{llllllll}\text { (b) } & 10 & 40 & i & 10 & 2 i & 10 & 20 i\end{array}$
$x^{2} \quad 16 \quad 0 \quad x^{2} 16 \quad x 4 i$
2
$x 12 \quad x 1223 i$

$x_{2} \quad 6 x \quad 10 \quad 0 x^{b b_{2}} \frac{4 a c 6624110636}{2 a 212} \xrightarrow{40} \quad$| |
| :--- |

$2 x 23 x 20 x^{332} \frac{422373_{7_{i}}}{22444}$
73. $x^{4} 256 \quad 0 x^{2} \quad 16 \quad x^{2} 16 \quad 0 \quad x 4$ or $x 4 i$
74. $x^{3} 2 x^{2} 4 x \quad 8 \quad 0 x \quad 2 x^{2} 4 x \quad 2$ or $x 2 i$

Let r be the rate the woman runs in mi / h. Then she cycles at $r 8 \mathrm{mi} / \mathrm{h}$.

	Rate	Time	Distance
Cycle	r	8	$\frac{4}{r 8}-$
Run	r	25	25

	$52 r 8$	$2 r r 8$	$8 r$	$5 r$	$402 r$	$16 r$	$02 r$	r 40
	$3 \quad \overline{3} \overline{4240}$	$39 \quad 320$		$3 \quad 329$				
r	_-22	4		4	. Sinc	- 0	the	gative

$r \quad \underline{34} \underline{329} 378 \mathrm{mi} / \mathrm{h}$.

76. Substituting 75 for d, we have $75 \quad x$
$\begin{array}{cc}x & 30 \text { or } x\end{array} \quad 50$. The speed of the car was $30 \mathrm{mi} / \mathrm{h}$.
77. Let x be the length of one side in cm . Then $28 x$ is the length of the other side. Using the Pythagorean Theorem, we

$\begin{array}{llllllllll}2 x & 12 & x & 16 & 0 \text {. So } x & 12 & \text { or } x & 16 \text {. If } x & 12 \text {, then the other side is } 28 & 12\end{array} \quad 16$. Similarly, if $x \quad 16$, then the other side is 12 . The sides are 12 cm and 16 cm .
78. Let l be length of each garden plot. The width of each plot is then $\frac{80}{l}$ and the total amount of fencing material is

$\begin{array}{llll}\text { 79. } 3 x & 211 & 3 x 9 & x 3 . \\ \text { Interval: } & 3 & \text {. }\end{array}$
80. $12 \times \begin{array}{llll}x & 7 x & 12 & 8 x\end{array} \frac{3}{2} x$.
Interval: $\quad \frac{3}{2}$

Graph

$\begin{array}{llllllll}3 & x & 2 x & 7 & 10 & 3 x & \underline{10} 3 & x\end{array}$
82. $1 \begin{array}{lllll} & 2 x & 5 & 36 & 2 x 23\end{array}$
Interval: 3 1].
Interval: $\underline{10}_{3}$
Graph:

$x^{2} 4 x 120 \times 2 \times 60$. The expression on the left of the inequality changes sign where $x 2$ and where $x 6$. Thus we must check the intervals in the following table.
of $x \quad 2 x \quad 6$
Interval
6
62
2
Sign of $x 2$
Sign of $x 6$

Interval:62
Graph:

\qquad
$x^{2} 1 x^{2} 10 x 1 x 10$. The expression on the left of the inequality changes sign when $x 1$ and $x 1$. Thus we must check the intervals in the following table.

Interval	1	11	1
Sign of $x \quad 1$			
Sign of $x \quad 1$			
Sign of $x \quad 1 \times 1$	1		

Interval: [111$]$
Graph:

 changes sign where $x \quad 1$ and where $x \quad$ 4. Thus we must check the intervals in the following table.

We exclude $x \quad 1$, since the expression is not

Interval	4	4	1	1
Sign of x 4 Sign of x 1				
x 4 Sign of x				

[4 1.
Graph:

 3
1 and 2 . Thus we must check the intervals in the following table.
Interval:1] 3

Interval	1	$1 \overline{2}$	$\overline{2}$
Sign of $2 x_{3} 3$ Sign of x_{1}			

Sign of $2 x \quad 3 x \quad 1$
87. $\frac{x 4}{x^{2} 4} 0 \quad \frac{x 4}{x 2 \times 2}$ 0. The expression on the left of the inequality changes sign where $x 2$, where $x 2$, and where x 4. Thus we must check the intervals in the following table.

Interval						2	22	24	4
Sign of x	4								
Sign of x	2								
Sign of x	2								
Sll	4								
Sign of x	2	x	2						

Since the expression is not defined when $x \quad 2$ we exclude these values and the solution is
2 24].
Graph: $-\underset{2}{\longrightarrow} \underset{2}{\longrightarrow} 4$
88. $\begin{gathered}\frac{5}{x^{3}} x^{2} 4 x 4\end{gathered} 0$

expression on the left of the inequality changes sign when
21 and 2.
table.

	Interval	2	21	12	2
	Sign of $x \quad 1$ Sign of $x \quad 2$ Sign of $x \quad 2$				
	Sign of $\begin{array}{llllll}1 & 1 & \times & 2 & x & 2\end{array}$				
Interval: Graph:					

89. $x \quad 5 \quad 3 \quad 3 \quad x \quad 5 \quad 3 \quad 2 \begin{array}{llllll}x & x & 8\end{array}$ Interval: [2 8]
90. $x \quad 4 \quad 002 \quad 002 \quad x \quad 4 \quad 002$
$398 \quad x \quad 402$
Interval: 398402
Graph: $\xrightarrow[2]{\bullet}$
Graph: $\underset{3.98}{\sim} \xrightarrow[4.02]{\sim}$
91. $2 x 11 \begin{array}{llllllllllll} & 1 \text { is equivalent to } 2 x & 1 & 1 \text { or } 2 x & 1 & \text { 1. Case 1: } 2 x & 1 & 1 & 2 x & 0 & x & \text { 0. Case } 2: 2 x\end{array} 1$ $\begin{array}{llllll}2 x & 2 & x & \text { 1. Interval: } & 1]\end{array}[0 \quad$. Graph:

92. $x \quad 1$ is the distance between x and 1 on the number line, and $x \quad 3$ is the distance between x and 3 . We want those points that are closer to 1 than to 3 . Since 2 is midway between 1 and 3 , we get $x 2$ as the solution. Graph:

 on the left of the inequality changes sign where $8 \quad 3 x \quad 03 x 8 \quad x \quad 3^{\underline{8}}$; or where $x 3$. Thus we must check the intervals in the following table.

Interval	3	$3^{\frac{8}{3}}$	$\frac{8}{3}$
Sign of $83 x$			
Signof $3 x$			
Sign of $83 x 3 x$			

Interval: $\quad 33^{\underline{8}}$.
Graph:

1
(b) For $\frac{4}{4 \pi x}$ to define a real number we must have $x x^{4} \begin{array}{llllllllll} \\ 4 & x & 1 & x^{3} 0 & x & 1 & x & 1 & x & x^{2} \\ 0\end{array}$.

The
x 1 Anll - 1214 which is imaginary. We check the intervals in the following table.

Interval	0	01	1
Sign of x Sign of $1 x$ Sign of $1 \times x^{2}$			
Sign of $x 1 \begin{array}{lllll}1 & x & 1 & x & x 2\end{array}$			

Interval: 01.
Graph:

94. We have $8 \quad 3^{4},{ }^{3} 12 r^{3}$

$6 \quad$| 6 | 36 | $36 \lcm{39}$ |
| :--- | :--- | :--- |

From the graph, we see that the graphs of $y x^{2} 4 x$ and $y x 6$ intersect at $x 1$ and $x 6$, so these are the solutions of the 2
equation $x \quad 4 \times x 6$.
From the graph, we see that the graph of $y x^{2} 4 x$ crosses the x-axis at $x 0$ and $x 4$, so these are the solutions of the equation 2
$x 4 x 0$.
From the graph, we see that the graph of $y x^{2} 4 x$ lies below the graph of $y x$ for $1 x 6$, so the inequality $24 x \times 6$ is satisfied on the interval [16].

From the graph, we see that the graph of $y x^{2} 4 x$ lies above the graph of $y x 6$ for $x 1$ and $6 x$, so the inequality $x^{2} 4 x x 6$ is satisfied on the intervals 1] and [6.

From the graph, we see that the graph of $y x^{2} 4 x$ lies above the x-axis for $x \quad 0$ and for $x 4$, so the inequality $24 x 0$ is satisfied on the intervals 0] and [4.

From the graph, we see that the graph of $y x^{2} 4 x$ lies below the x-axis for $0 x 4$, so the inequality $x^{2} 4 x 0$ is satisfied on the interval [04].
$x^{2} \quad 4 x \quad 2 x$ 7. We graph the equations $y 1 x^{2}$ 4x 102. x 4 $\quad 4 x^{2}-5$. We graph the equations $y 1 x 4$
and $y 22 x 7$ in the viewing rectangle $\left[\begin{array}{ll}10 & 10\end{array}\right]$ by
[5 25]. Using a zoom or trace function, we get the solutions $x 1$ and $x 7$.

and $y 2 \quad x^{2} \quad 5$ in the viewing rectangle [4 5] by
[0 10]. Using a zoom or trace function, we get the solutions $x \quad 250$ and $x \quad 276$.

$x^{4} 9 x^{2} \quad x$ 9. We graph the equations $y 1 x^{4} 9 x^{2}$ 104. $x \quad 3 \quad 5 \quad 2$. We graph the equations
and $y 2 x \quad 9$ in the viewing rectangle [55] by
[25 10]. Using a zoom or trace function, we get the
$\begin{array}{lllll}\text { solutions } x & 272, x & 115, x & 100, \text { and } x & 287 .\end{array}$

$y 1 \quad x \quad 3 \quad 5$ and $y 2 \quad 2$ in the viewing rectangle [20 20] by [0 10]. Using Zoom and/or Trace, we get the solutions $x \quad 10, x \quad 6, x \quad 0$, and $x \quad 4$.

105. $4 x \quad 3 \quad x^{2}$. We graph the equations $y 1 \quad 4 x \quad 3$ and 2
$y 2 x$ in the viewing rectangle [55] by [0 15]. Using a zoom or trace function, we find the points of intersection are at $x 1$ and $x 3$. Since we want $4 x 3 x^{2}$, the solution is the interval [13].

$x^{4} 4 x^{2} \underline{1}_{2} x$ 1. We graph the equations
$y 1 x^{4} 4 x^{2}$ and $y_{2}{ }^{1} 2 x 1$ in the viewing rectangle [5 5]
by [5 5]. We find the points of intersection are at $x 185$,
$x 060, x 045$, and $x 200$. Since we want $x^{4} 4 x^{2} \underline{1}_{2} \times 1$, the solution is
185060045200.

106. $x^{3} 4 x^{2} \quad 5 x \quad$ 2. We graph the equations
$3 \quad 2$
$y 1 x \quad 4 x \quad 5 x$ and $y 22$ in the viewing rectangle [1010] by
[5 5]. We find that the point of intersection is at $x 507$.
Since we want ${ }^{3} \quad 2 \times x$, the solution is the interval 5 07.

$x^{2} 16 \quad 10 \quad 0$. We graph the equation

2
$x \quad 16 \quad 10$ in the viewing rectangle [10 10] by
[10 10]. Using a zoom or trace function, we find that the x-intercepts are $x 510$ and $x 245$. Since we

2

want $x 16100$, the solution is approximately 510] [

245 245] [510.

109. Here the center is at 00 , and the circle passes through the point 512 , so the radius i

r	22	5	0	120		25	144		2	

$x \quad y \quad$ 169. The line shown is the tangent that passes through the point 512 , so it is perpendicular to the line through the points 00 and 512 . This line has slope $m 1 \quad \overline{50} \quad \overline{5}$. The slope of the line we seek is
 $y \quad 12^{5} x \frac{169}{125 x} \quad 12 y \quad 169 \quad 0$.

Because the circle is tangent to the x-axis at the point 50 and tangent to the y-axis at the point 05 , the center is at 55 and the radius is 5 . Thus an equation is $x 5^{2} y 5^{2} 5^{2} x 5^{2} y_{5} 5_{1}^{2} 25$. The slope of
the line passing through the points $\quad 81$ and $\begin{array}{llllll}5 & 5 \text { is } m & \overline{5} 8 & \overline{3} & \overline{3} \text {, so an equation of the line we seek is }\end{array}$ $1^{4} 3 _x _3 \quad 4 x$ _- $3 y$ __ 350.

Since M varies directly as z we have $M \quad k z$. Substituting $M 120$ when $z \quad 15$, we find $120 \quad k 15 k 8$.
Therefore, $M 8 z$.
112. Since z is inversely proportional to y, we have $z \quad y$. Substituting $z \quad 12$ when $y \quad 16$, we find $12 \quad \overline{16} k \quad 192$. 192

Therefore $z \quad y$.
113. (a) The intensity I varies inversely as the square of the distance d, so $I \quad \frac{k}{d^{2}}$.

$$
k
$$

(b) Substituting $I \quad 1000$ when $d \quad 8$, we get $1000 \quad 8^{2} \quad k \quad 64,000$.
(c) From parts (a) and (b), we have $I \quad \frac{64,000}{d^{2}}$. Substituting $d \quad 20$, we get $I 20^{64,000} 160$ candles.

Let f be the frequency of the string and l be the length of the string. Since the frequency is inversely proportional to the

	k	k		
length, we have f	\bar{l}. Substituting l	12 when k	440 , we find 440	$12 k$

Let be the terminal velocity of the parachutist in mi/h and be his weight in pounds. Since the terminal velocity is directly proportional to the square root of the weight, we have k. Substituting 9 when 160 , we solve
$\begin{array}{llll} & \\ \begin{array}{l}\text { for } k \text {. This gives } 9 \\ 0712240 \mathrm{Hmi} / \mathrm{h} .\end{array} & \overline{160} k & \overline{9} & \overline{160} 0712 \text {. Thus0 } 712 \quad \text {. When240, the terminal velocity is }\end{array}$

Let r be the maximum range of the baseball and be the velocity of the baseball. Since the maximum range is directly proportional to the square of the velocity, we have $r l^{2}$. Substituting 60 and $r 242$, we find $242 k 60{ }^{2} k 00672$. If 70, then we have a maximum range of $r 0067270^{2} 3294$ feet.

CHAPTER 1 TEST

2. (a)

The x-intercept occurs when $y 0$, so $0 x^{2} 4 x^{2} 4 x 2$. The y-intercept occurs when $x 0$, so $y 4$.
x-axis symmetry: $y x^{2} 4 y^{2} 4$, which is not the same as the original equation, x so the graph is not symmetric with respect to the x-axis.
y-axis symmetry: $y x^{2} 4 y x^{2} 4$, which is the same as the original equation, so

$$
2
$$ the graph is symmetric with respect to the y-axis. Origin symmetry: $y x^{2} 4 y x$ the graph is symmetric with respect to the y-axis. Origin symmetry: $y x^{2} 4 y x$

4 , which is not the same as the original equation, so the graph is not symmetric with respect to the origin.
There are several ways to determine the coordinates of S. The diagonals of a square have equal length and are perpendicular. The diagonal $P R$ is horizontal and has length is 6 units, so the diagonal $Q S$ is vertical and also has length 6 . Thus, the coordinates of S are 36 .

(b) The length of $P Q$ is | 0 | 3^{2} | 3 | 0^{2} | $\overline{18}$ | 3 | $\overline{2}$. So the area of |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 2 $P Q R S$ is $3 \quad \overline{2} \quad 18$.

(b) The distance between P and Q is
$d P Q 3 \quad 5^{2} \begin{array}{llll}64 & 6^{2} 6589\end{array}$

(c) The midpoint is 2 | 3 | 5 | $1-6$ | 7 |
| :---: | :---: | :---: | :---: |
| | 2 | 12 | | .

(d) The slope of the line is $1 \quad 6 \quad 5 \quad \underline{5}$.
.
(e) The perpendicular bisector of $P Q$ contains the midpoint, 127 , and it slope is the negative reciprocal of $8^{\frac{5}{2}}$. Thus the slope is $5^{1} 85^{\underline{8}}$. Hence the equation $\begin{array}{lllllllllll}\text { is } y & 2^{-7} 5^{8} & x & 1 & y & 5^{\frac{8}{8}} x & 5^{\frac{8}{8}} & 2^{\frac{7}{8}} & 5^{\frac{8}{x}} x & 10^{\frac{51}{2}} \text {. That is, }\end{array}$ $\underline{8}_{5} \times \frac{51}{10}_{10}$.

The center of the circle is the midpoint, $1^{-\frac{7}{2}}$, and the length of the radius is $\underline{1}_{2} 89$. Thus the equation of the circle whose diameter is $P Q$ is $x 1^{2} y \underline{7}_{2}^{2} \underline{1}_{2} 89^{2} \times 1^{2} y \underline{7}_{2} \overline{2}^{89} 4$.
(a) $x^{2} y^{2} \quad 25 \quad 5^{2}$ has center 00 (b) $x 2^{2}$ y $1^{2} 9 \quad 3^{2}$ has
and radius 5 .

center $2 \quad 1$ and radius 3 .

(a) $x 4 \quad y^{2}$. To test for symmetry about the x-axis, we replace y with y : $4 y^{2} \times 4 y^{2}$, so the graph is symmetric about the x-axis. To test for symmetry about the y-axis, we replace x with x :

$$
x 4 y^{2} \text { is different from the original equation, so the graph is not }
$$

symmetric about the y-axis.
For symmetry about the origin, we replace x with x and y with $y: x 4 y$ ${ }^{2} x 4 y^{2}$, which is different from the original equation, so the graph is not symmetric about the origin.
To find x-intercepts, we set $y 0$ and solve for $x: x 40^{2} 4$, so the x intercept is 4 .

To find y-intercepts, we set $x \quad 0$ and solve for $y:$: $0 \quad 4 \quad 4 \begin{array}{lllll}y^{2} & y^{2} & 4\end{array}$ $y 2$, so the y-intercepts are 2 and 2 .
$y x 2$. To test for symmetry about the x-axis, we replace y with $y: y x 2$ is different from the original equation, so the graph is not symmetric about the x-axis.
To test for symmetry about the y-axis, we replace x with x : $y x 2 \times 2$ is different from the original equation, so the graph is not symmetric about the y-axis.
To test for symmetry about the origin, we replace x with x and y with $y: y x$ $2 y x 2$, which is different from the original equation, so the graph is not symmetric about the origin.
To find x-intercepts, we set $y 0$ and solve for $x: 0 \times 2 \times 20 \times 2$, so the x-intercept is 2 .
To find y-intercepts, we set $x 0$ and solve for $y: y$
022 , so the y-intercept is 2 .
6. (a) To find the x-intercept, we set $y \quad 0$ and solve for x : $3 x \quad 50 \quad 15$ $3 x \quad 15 \quad x \quad 5$, so the x-intercept is 5 .

To find the y-intercept, we set $x \quad 0$ and solve for $y: 30 \quad 5 y \quad 15$ $5 y \quad 15 y 3$, so the y-intercept is 3 .
(c) $3 x \quad 5 y \quad 15 \quad 5 y \quad 3 x \quad 15 \quad y \quad \frac{3}{3} x \quad 3$.
(d) From part (c), the slope is $\frac{3}{5}$.
(e) The slope of any line perpendicular to the given line is the
(b)
 negative reciprocal of its slope, that is, $3^{1} 5^{\frac{5}{3}} 3$.
7. (a) $3 x$ y $10 \quad 0 \quad y 3 x \quad 10$, so the slope of the line we seek is 3 . Using the point-slope, $y 63 x \quad 3$ $\begin{array}{lllllll}y & 63 x & 9 & 3 x & y & 3 & 0 .\end{array}$

8. (a) When $x \quad 100$ we have $T \quad 00810048844$, so the temperature at one meter is 4 C .
(c) The slope represents an increase of 008 C for each one-centimeter increase in depth, the x-intercept is the depth at which the temperature is 0 C , and the T-intercept is the temperature at ground level.
(b)

9. (a) $x^{2} \quad x \quad 12 \quad 0 x \quad 4 \quad x \quad 3 \quad 0$. So $x \quad 4$ or $x 3$.
$\underset{\sim}{(a) 2 x} \quad 410 \times$
2
(c) $3{ }_{2} x \overline{3} \times 3 \times x 33 x^{2}$

$x 5 \times 6 \times 2 \times 30$. Thus, $x 2$ and $x 3$ are potential solutions. Checking in the original equation, we see that only $x 3$ is valid.
$x^{12} 3 x^{14} 20$. Let $u x^{14}$, then we have $u^{2} 3 u 20 u 2 u 10$. So either $u 20$ or $u 10$. If $u 20$, then $u 2^{x} 4_{2 x 2^{4}}^{16}$. If u 14
10 , then $u 1 x \quad 1 x$. So $x 1_{x}$ or $x 16$.
$x^{4} 3 x^{2} \quad 2 \quad 0 x^{2} 1 x^{2}$ 20. So $\begin{array}{lllllll}2 & 1 & 0 & x 1 \text { or } x^{2} & 2 & 0 & x 2 \text {. Thus the }\end{array}$
solutions are $x 1, x \quad 1, x 2$, and x
$\overline{2}$.
$10 \quad 10 \quad 10 \quad \underline{2}$
(f) $3 \quad x 410$
$\begin{array}{llll}0 & 3 x & 4 & 10 x\end{array}$
$x 43 x$
3. So $x 433$ or $x 4 \quad \frac{10}{3} \quad \frac{22}{3}$. Thus the solutions are $x \quad \frac{2}{3}$ and $x \quad \frac{22}{3}$.
(a) $3 \begin{array}{llllllll}2 i 4 & 3 i & 3 & 42 i & 3 i & 7 & i\end{array}$
$32 i 43 i 342 i 3 i 1 \quad 5 i$

(d) 43
$43 i 43 i$
$169 i$
16925
$25 i$
(e) $i^{488 i^{2}} 24 \quad 1^{24} 1$
(f) ${ }^{2282} \quad$ - \quad -
28 22

$28 \quad 2 \quad$	24	$2 i$	$4 i 2$	6	$2 i$

Using the Quadratic Formula, $2 x^{2} \quad 4 x \quad 3 \quad 0 x \begin{array}{lll}442 & 42 & 348 \\ 1_{2}^{2} i\end{array} \quad-$ 224^{2}
12. Let be the width of the parcel of land. Then 70 is the length of the parcel of land. Then ${ }^{2} 70{ }^{2} 130^{2}$
$\begin{array}{lllllllllllll}22 & 140 & 4900 & 16,900 & 2^{2} & 140 & 12,000 & 0 & 2 & 70 & 6000 & 050120 & 0 .\end{array}$
So50 or120. Since0, the width is 50 ft and the length is 70120 ft .
13. (a) $4 \quad 5 \quad 3 x$ 1793x $12 \quad 3 \quad x 4$. Expressing in standard form we have: $4 x 3$.

Interval: [43 . Graph:

(b) $\begin{array}{lllll}x & 1 & x & 2 & 0 \text {. The expression on the left of the inequality changes sign when } x \quad 0, x \quad 1 \text {, and } x 2 \text {. Thus }\end{array}$ we must check the intervals in the following table.

Interval	2	20	01	1
Sign of x				
Sign of $x 1$				
Sign of $x 2$				
Sign of $x \times 1 \times 2$				

From the table, the solution set is $\begin{array}{llllll}x & 2 & x & 0 & \text { or } 1 & x \text {. }\end{array}$
Graph: $-\underset{2}{\sim}$
(c) $x \quad 4 \quad 3$ is equivalent to $\begin{array}{lllllll}3 & x & 4 & 3 & 1 & x & \text { 7. Interval: 17. Graph: }\end{array}$

Interval: 201.
(d) $\frac{2 x-3}{x 1} 1 \quad \frac{2 x-3}{x 1} 100 \quad \frac{2 x 3}{x 1} \quad \frac{x 1}{x 1} \quad 0 \quad \frac{x 4}{x 1} \quad 0$. The expression on the left of the inequality changes sign where $x 4$ and where $x 1$. Thus we must check the intervals in the following table.

Interval	1	14	4
Sign of $x$$\quad 4$			
Sign of x	$\frac{1}{4}$		
$\operatorname{Sign~of~}^{x}$			
x	1		

Since $x \quad 1$ makes the expression in the inequality undefined, we exclude this value. Interval: 14$]$.
Graph: $\longrightarrow{ }_{-1}^{\text {- }}$
$5^{5} 9 F 32109 F 321841 F 50$. Thus the medicine is to be stored at a temperature between 41 F and 50 F .

For $6 x x^{2}$ to be defined as a real number $6 x x^{2} 0 x 6 x 0$. The expression on the left of the inequality changes sign when x 0 and $x 6$. Thus we must check the intervals in the following table.

Interval	0	06	6
Sign of x Sign of $6 \quad x$			
	Sign of $x 6 \quad x$		

From the table, we see that $\quad 6 x \quad x^{2}$ is defined when $0 \quad x \quad 6$. 3
16. (a) $x \quad 9 x \quad 1 \quad 0$. We graph the equation 3
$x \quad 9 x 1$ in the viewing rectangle [55] by [

10 10]. We find that the points of intersection

2
(b) $x \quad 1 \quad x \quad 1$. We graph the equations

2
$y 1 x \quad 1$ and $y 2 x 1$ in the viewing rectangle [55]
by [5 10]. We find that the points of intersection
occur at $x 1$ and $x 2$. Since we want $x \quad 1 x 1$, the solution is the interval [12].

17. (a) $M \quad k \quad \frac{h^{2}}{L}$

4 62
k. 12
H^{2} k 400. Thus M 400
(b) Substituting $\quad 4, h \quad 6, L \quad 12$, and $M \quad$ 4800, we have 4800
(c) Now if L,

10, 3 , and $h \quad 10$, then $M \quad 400 \frac{3102}{10}$
12,000 . So the beam can support 12,000 pounds.

FOCUS ON MODELING Fitting Lines to Data

1. (a)

Using a graphing calculator, we obtain the regression line y $18807 x 8265$.

Using $x 58$ in the equation $y 18807 x 8265$, we get $y 188075882651917 \mathrm{~cm}$.

FOCUS ON MODELING

2. (a)

Using a graphing calculator, we obtain the regression line y $164163 x 62183$.

Using $x \quad 95$ in the equation
$y 164163 x 62183$, we get
$y \quad 1641639562183 \quad 938$ cans.

Using a graphing calculator, we obtain the regression line y $6451 x 01523$.

Using $x 18$ in the equation $y 6451 x 01523$, we get $y 64511801523116$ years.

Letting $x 0$ correspond to 1990, we obtain the regression line y $18446 x 3522$.

Using $x 21$ in the equation $y 18446 x 352$ 2, we get y 184462135223909 ppm CO 2 , slightly lower than the measured value.
5. (a)

6. (a)

7. (a)

8. (a)

Using a graphing calculator, we obtain the regression line y 4 857x 22097.

Using $x 100 \mathrm{~F}$ in the equation
$y 4857 x 22097$, we get $y 265$ chirps per minute.

Using a graphing calculator, we obtain the regression line y 01275×7929.

Using $x 30$ in the regression line equation, we get y 01275307929410 million km^{2}.
(b) Using a graphing calculator, we obtain the regression line y0 168x 1989.
(c) Using the regression line equation
$y 0168 x 1989$, we get $y 813 \%$ when
$x 70 \%$.

Using a graphing calculator, we obtain y 3 9018x 4197.

The correlation coefficient is $r 098$, so linear model is appropriate for x between 80 dB and 104 dB .

Substituting $x 94$ into the regression equation, we get y 3901894419753 . So the intelligibility is about 53%.
9. (a)

Using a graphing calculator, we
obtain y $027083 x 4629$.
We substitute $x 2006$ in the model $y 027083 x 4629$ to get $y 804$, that is, a life expectancy of 804 years.

The life expectancy of a child born in the US in 2006 was 777 years, considerably less than our estimate in part (b).
10. (a)

Year	x	Height (m)
1972	0	564
1976	4	564
1980	8	578
1984	12	575
1988	16	590
1992	20	587
1996	24	592
2000	28	590
2004	32	595
2008	36	596

Using a graphing calculator, we obtain the regression line y $5664000929 x$.

Students should find a fairly strong correlation between shoe size and height.
Results will depend on student surveys in each class.

