Solution Manual for College Algebra Enhanced with Graphing Utilities 7th Edition Sullivan ISBN 01341113119780134111315

Full link download
Solution Manual
https://testbankpack.com/p/solution-manual-for-college-algebra-enhanced-with-graphing-utilities-7th-edition-sullivan-isbn-0134111311-9780134111315/

Test Bank

https://testbankpack.com/p/test-bank-for-college-algebra-enhanced-with-graphing-utilities-7th-edition-sullivan-isbn-0134111311-9780134111315/

Chapter 2
 Graphs

Section 2.1

$$
y=2 x-4
$$

x	$y=2 x-4$	(x, y)
-2	$y=2(-2)-4=-8$	$(-2,-8)$
0	$\underline{\nu}=2(0)-4=-4$	- (0, -4)
2	. \boldsymbol{y}. $=2(2)-4=0$	(2,0)

-10
Based on the graph, the intercepts are $(2,0)$ and $0,-4)$.

$$
\begin{array}{rlrl}
x^{2}-4 x-12=0 & \\
x-6 & (x+2)=0 & \\
x-6=0 & \text { or } & x+2 & =0 \\
x=6 & x & =-2
\end{array}
$$

The solution set is $\{-2,6\}$.
intercepts
y-axis
4
$(-3,4)$
c

$$
\begin{array}{ll}
y=x+2 & \\
x \text {-intercept: } & y \text {-intercept: } \\
0=x+2 & y=0+2 \\
-2=x & y=2
\end{array}
$$

The intercepts are $(-2,0)$ and $(0,2)$.

$$
y=x-6
$$

$$
x \text {-intercept: } \quad y \text {-intercept: }
$$

$$
0=x-6 \quad y=0-6
$$

$$
6=x \quad y=-6
$$

The intercepts are $(6,0)$ and $(0,-6)$.

13. $y=2 x+8$
x-intercept: $\quad y$-intercept:
$0=2 x+8 \quad y=2(0)+8$
8. False; a graph can be symmetric with respect to $\quad 2 x=-8 \quad y=8$
both coordinate axes (in such cases it will also be symmetric with respect to the origin).

$$
x=-4
$$

For example: $x^{2}+y^{2}=1$
a

Copyright © 2017 Pearson Education, Inc.

$y=3 x-9$
$\begin{array}{lc}x \text {-intercept: } & y \text {-intercept: } \\ =3 x- & =3(0) \\ 93 x=9 & -9 y=-9 \\ x=3 & \\ \text { The intercepts are } & (3,0) \text { and }(0,-9) .\end{array}$

$y=x^{2}-1$

$$
\begin{array}{lr}
x \text {-intercepts: } & y \text {-intercept: } \\
0=x^{2}-1 & =0^{2}- \\
2=1 & 1 y=-1 \\
x= \pm 1 &
\end{array}
$$

The intercepts ar

$$
(-1,0), 1,0), \text { and }(0,-1 .
$$

16. $y=x^{2}-9$

x-intercepts:		y-intercept:	
0	$=x^{2}-9$	y	$=0^{2}-9$
x^{2}	$=9$	y	$=-9$
x	$= \pm 3$		

The intercepts are $(-3,0),(3,0)$, and $(0,-9)$.

17. $y=-x^{2}+4$

$$
\begin{array}{ll}
x \text {-intercepts: } & y \text {-intercepts: } \\
0=-x^{2}+4 & y=-(0)^{2}+4 \\
x^{2}=4 & y=4 \\
x= \pm 2 &
\end{array}
$$

The intercepts are $(-2,0),(2,0)$, and $(0,4)$.

18. $y=-x^{2}+1$

$$
\begin{array}{ll}
x \text {-intercepts: } & y \text {-intercept: } \\
0=-x^{2}+1 & y=-(0)^{2}+1 \\
x^{2}=1 & y=1 \\
x= \pm 1 &
\end{array}
$$

The intercepts are $(-1,0),(1,0)$, and $(0,1)$.

19. $2 x+3 y=6$
x-intercepts:
y-intercept:

$$
\begin{aligned}
2 x+3(0) & =6 \\
2 x & =6 \\
x & =3
\end{aligned}
$$

$$
2(0)+3 y=6
$$

$$
2 x=6 \quad 3 y=6
$$

$y=2$
The intercepts are $(3,0)$ and $(0,2)$.

20. $5 x+2 y=10$

$$
x \text {-intercepts: }
$$

y-intercept:

$$
\begin{array}{rlrl}
5 x+2(0) & =10 & 5(0)+2 y & =10 \\
5 x & =10 & 2 y & =10 \\
x & =2 & y & =5
\end{array}
$$

The intercepts are $(2,0)$ and $(0,5)$.

$$
9 x^{2}+4 y=36
$$

$$
\begin{array}{rlrl}
x \text {-intercepts: } & & y \text {-intercept: } \\
9 x^{2}+4(0) & =36 & 9(0)^{2}+4 y=36 \\
9 x^{2} & =36 & y & =36 \\
2 & =4 & y & =9 \\
x & = \pm 2 & &
\end{array}
$$

The intercepts are $-2,0),(2,0)$, and $(0,9)$.

$$
4 x^{2}+y=4
$$

$$
x \text {-intercepts: } \quad y \text {-intercept: }
$$

The intercepts are

23.

24.

25.

26.

28.

30.

31.

32.

a. Intercepts: $(-1,0)$ and $(1,0)$

Symmetric with respect to the x-axis, y-axis, and the origin.
a. Intercepts: $(0,1)$

Not symmetric to the x-axis, the y-axis, nor the origin
a. Intercepts: $\left(-\frac{\pi}{}, 0\right),(0,1)$, and $\left(\frac{\pi}{}, 0\right)$

Symmetric with respect to the y-axis.
a. Intercepts: $(-2,0),(0,-3)$, and $(2,0)$

Symmetric with respect to the y-axis.
a. Intercepts: $(0,0)$

Symmetric with respect to the x-axis.
38. a. Intercepts: $(-2,0),(0,2),(0,-2)$, and $(2,0)$

Symmetric with respect to the x-axis, y-axis, and the origin.
a. Intercepts: $(-2,0),(0,0)$, and $(2,0)$

Symmetric with respect to the origin.
a. Intercepts: $(-4,0),(0,0)$, and $(4,0)$

Symmetric with respect to the origin.
a. x-intercept: $[-2,1]$, y-intercept 0

Not symmetric to x-axis, y-axis, or origin.
a. x-intercept: $[-1,2]$, y-intercept 0

Not symmetric to x -axis, y -axis, or origin.
a. Intercepts: none

Symmetric with respect to the origin.
a. Intercepts: none

Symmetric with respect to the x-axis.
45.

46.

47.

48.

49. $y^{2}=x+4$

$$
\begin{array}{ll}
x \text {-intercepts: } & y \text {-intercepts: } \\
0^{2}=x+4 & y^{2}=0+4 \\
-4=x & y^{2}=4 \\
& y= \pm 2
\end{array}
$$

The intercepts are $(-4,0),(0,-2)$ and $(0,2)$.

$$
\begin{aligned}
-y)^{2} & =x+4 \\
y^{2} & =x+4 \text { same }
\end{aligned}
$$

Test y-axis symmetry: Let $x=-x$

$$
y^{2}=-x+4 \text { different }
$$

Test origin symmetry: Let $x=-x$ and $y=-y$.

$$
\begin{aligned}
-y)^{2} & =-x+4 \\
y^{2} & =-x+4 \text { different }
\end{aligned}
$$

Therefore, the graph will have x-axis symmetry.
50. $y^{2}=x+9$

$$
\begin{aligned}
& x \text {-intercepts: } \\
&(0)^{2}=-x+9 \\
& 0=-x+9 \\
& x=9
\end{aligned}
$$

y-intercepts:

$$
\begin{aligned}
y^{2} & =0+9 \\
y^{2} & =9 \\
y & = \pm 3
\end{aligned}
$$

The intercepts are $(-9,0),(0,-3)$ and $(0,3)$.
Test x-axis symmetry: Let $y=-y$

$$
\begin{aligned}
& (-y)^{2}=x+9 \\
& y^{2}=x+9 \text { same }
\end{aligned}
$$

Test y-axis symmetry: Let $x=-x$
$y^{2}=-x+9$ different

```
Test origin symmetry: Let \(x=-x\) and \(y=-y\).
\((-y)^{2}=-x+9\)
\[
y^{2}=-x+9 \text { different }
\]
```

Therefore, the graph will have x-axis symmetry.
51. $y=\sqrt[3]{x}$
x-intercepts: $\quad y$-intercepts:
$0=\sqrt[3]{x} \quad y=\sqrt[3]{0}=0$
$0=x$
The only intercept is $(0,0)$.
Test x-axis symmetry: Let $y=-y$
$y=\sqrt[3]{x}$ different
Test y-axis symmetry: Let $x=-x$
$y=\sqrt[3]{-x}=-\sqrt{ } x$ different
Test ofjgin symmetry: Let $x=-x$ and $y=-y$

$$
\begin{aligned}
& y=\sqrt[3]{-x}=-\sqrt{5} \\
& x y \sqrt{=^{3}} x \text { sanke }
\end{aligned}
$$

Therefore, the graph will have origin symmetry.

$$
\begin{array}{lc}
y=5^{2} \sqrt{ } & \\
x \text {-intercepts: } & y \text {-intercepts: } \\
0=\sqrt[3]{x} & y=\sqrt[5]{0}=0 \\
0=x &
\end{array}
$$

The only intercept is $(0,0)$.

$$
\begin{aligned}
& \text { Test origin symmetry. } \text { Let } x=-x \text { and } y=-y \\
& \begin{array}{l}
-y=\sqrt[5]{-x}=-\sqrt[5]{x} \\
y=\sqrt[5]{x} \text { same }
\end{array}
\end{aligned}
$$

Therefore, the graph will have origin symmetry.
53. $x^{2}+y-9=0$
x-intercepts: $\quad y$-intercepts:
$\begin{array}{rlrl}x^{2}-9 & =0 & 0^{2}+y-9 & =0 \\ x^{2} & =9 & y & =9\end{array}$

$$
x= \pm 3
$$

The intercepts are $(-3,0),(3,0)$, and $(0,9)$.
Test x-axis symmetry: Let $y=-y$
$x^{2}-y-9=0$ different
Test y -axis symmetry: Let $x=-x$
$(-x)^{2}+y-9=0$

$$
x^{2}+y-9=0 \text { same }
$$

Test origin symmetry: Let $x=-x$ and $y=-y$

$$
(-x)^{2}-y-9=0
$$

$$
x^{2}-y-9=0 \text { different }
$$

Therefore, the graph will have y-axis symmetry.
54. $x^{2}-y-4=0$
x-intercepts: $\quad y$-intercept:

$$
x^{2}-0-4=0 \quad 0^{2}-y-4=0
$$

Test \underline{x}-axis symmetry: Let $y=-y$

$$
y={ }^{5} x \text { different }
$$

Test y-axis symmetry: Let $x=-$ $x y={ }^{5}-x=-{ }^{5} x$ different

$$
\begin{array}{rlr}
x & =4 & -y=4 \\
x & = \pm 2 & y=-4
\end{array}
$$

The intercepts are $(-2,0),(2,0)$, and $(0,-4)$.
Test x-axis symmetry: Let $y=-y x$
$2-(-y)-4=0$
$x^{2}+y-4=0$ different
Test y-axis symmetry: Let $x=-x$
$-x)^{2}-y-4=0$
$2-y-4=0$ same
Test origin symmetry: Let $x=-x$ and $y=-y$
$-x)^{2}-(-y)-4=0$
$2+y-4=0$ different
Therefore, the graph will have y-axis symmetry.

$$
9 x^{2}+4 y^{2}=36
$$

$$
x \text {-intercepts: } \quad y \text {-intercepts: }
$$

$$
9 x^{2}+4(0)^{2}=36
$$

$$
9(0)^{2}+4 y^{2}=36
$$

$$
\begin{aligned}
9 x^{2} & =36 \\
x^{2} & =4
\end{aligned}
$$

$$
4 y^{2}=36
$$

$$
y^{2}=9
$$

$$
x= \pm 2
$$

$$
y= \pm 3
$$

The intercepts are $(-2,0),(2,0),(0,-3)$, and $0,3)$.
Test $\underline{x \text {-axis symmetry: Let } y=-y ~}$

$$
\begin{aligned}
9 x^{2}+4(-y)^{2} & =36 \\
9 x^{2}+4 y^{2} & =36 \text { same }
\end{aligned}
$$

Test y-axis symmetry: Let $x=-x$

$$
\begin{aligned}
& 9(-x)^{2}+4 y^{2}=36 \\
& \quad 9 x^{2}+4 y^{2}=36 \text { same }
\end{aligned}
$$

Test origin symmetry: Let $x=-x$ and $y=-y$

$$
\begin{aligned}
& 9(-x)^{2}+4(-y)^{2}=36 \\
& 9 x^{2}+4 y^{2}=36 \text { same }
\end{aligned}
$$

Therefore, the graph will have x-axis, y-axis, and origin symmetry.

$$
\begin{array}{rr}
4 x^{2}+y^{2}=4 & \\
x \text {-intercepts: } & y \text {-intercepts: } \\
4 x^{2}+0^{2}=4 & 4(0)^{2}+y^{2}=4 \\
4 x_{2}=4 & y^{2}=4 \\
x_{2}=1 & y= \pm 2 \\
x= \pm 1 &
\end{array}
$$

The intercepts are $-1,0,1,0,0,-2$, and $(0,2)$.
Test x-axis symmetry: Let $y=-y$
$4 x^{2}+(-y)^{2}=4$

$$
4 x^{2}+y^{2}=4 \text { same }
$$

Test y-axis symmetry: Let $x=-x$
57. $y=x^{3}-27$

$$
\begin{array}{rlrl}
x \text {-intercepts: } & & y \text {-intercepts: } \\
0 & =x^{3}-27 & y & y 0^{3}-27 \\
x^{3} & =27 & & y=-27 \\
x & =3 & &
\end{array}
$$

The intercepts are $(3,0)$ and $(0,-27)$.
Test $\underline{x \text {-axis symmetry: Let } y=-y ~}$

$$
y=x^{3}-27 \text { different }
$$

Test y-axis symmetry: Let $x=-x$

$$
\begin{aligned}
& =(-x)^{3}-27 \\
& =-x^{3}-27 \text { different }
\end{aligned}
$$

Test origin symmetry: Let $x=-x$ and $y=-y$ 3
$-y=(-x)-27$

$$
y=x^{3}+27 \text { different }
$$

Therefore, the graph has none of the indicated symmetries.
58. $y=x^{4}-1$
x-intercepts: $\quad y$-intercepts:

$$
\begin{array}{rlrl}
0 & =x^{4}-1 & & y=0^{4}-1 \\
x^{4} & =1 & y=-1 \\
x & = \pm 1 & (\quad)(,)
\end{array}
$$

The intercepts are $-1,0,1,0$, and $0,-1$.
Test x-axis symmetry: Let $y=-y$

$$
y=x^{4}-1 \text { different }
$$

$$
=(-x)^{4}-1
$$

$$
\begin{aligned}
& 4(-x)^{2}+y^{2}=4 \\
& \quad 4 x^{2}+y^{2}=4 \text { same }
\end{aligned}
$$

Test origin symmetry: Let $x=-x$ and $y=$ $-y$

$$
4(-x)^{2}+(-y)^{2}=4
$$

Chapter 2: Graphs

$y=x^{4}-1$ same
Test origin symmetry: Let $x=-x$ and $y=-y y=$ $(-x)^{4}-1$ $y=x^{4}-1$ different

$$
4 x^{2}+y^{2}=4 \text { same }
$$

Therefore, the graph will have x-axis, y-axis,
and origin symmetry.

Section 2.1: Intercepts; Symmetry; Graphing Key Equations
Therefore, the graph will have y-axis symmetry.
$y=x^{2}-3 x-4$
x-intercepts: $\quad y$-intercepts:
$0=x^{2}-3 x-4 \quad y=0^{2}-3(0)-4$
$0=(x-4)(x+1, \quad y=-4$
$x=4$ or $x=-1$
The intercepts are $(4,0),(-1,0)$, and $(0,-4)$.

Test $\underline{x \text {-axis symmetry: Let } y=-y}$

$$
y=x^{2}-3 x-4 \text { different }
$$

Test y-axis symmetry: Let $x=-x$

$$
\begin{aligned}
& =(-x)^{2}-3(-x)-4 \\
& =x^{2}+3 x-4 \text { different }
\end{aligned}
$$

Test origin symmetry: Let $x=-x$ and $y=-y$

$$
\begin{aligned}
& y=(-x)^{2}-3(-x)-4 \\
& y=x^{2}+3 x-4 \text { different }
\end{aligned}
$$

Therefore, the graph has none of the indicated symmetries.
60. $y=x^{2}+4$

$$
\begin{array}{ll}
x \text {-intercepts: } & y \text {-intercepts: } \\
0=x^{2}+4 & y=0^{2}+4 \\
x^{2}=-4 & y=4
\end{array}
$$

no real solution
The only intercept is $(0,4)$.
$\underline{\text { Test }} \underline{x \text {-axis symmetry: Let } y=-y}$

$$
y=x^{2}+4 \text { different }
$$

Test y-axis symmetry: Let $x=-x$

$$
\begin{aligned}
& =(-x)^{2}+4 \\
y & =x^{2}+4 \text { same }
\end{aligned}
$$

Test origin symmetry: Let $x=-x$ and $y=-y$

$$
\begin{aligned}
-y & =(-x)^{2}+4 \\
y & =x^{2}+4 \text { different }
\end{aligned}
$$

Therefore, the graph will have y-axis symmetry.

$$
\begin{array}{ll}
y x & \\
y=\frac{x^{2}+}{9} & y \text {-intercepts: } \\
x \text {-intercepts: } & y=\frac{3(0)}{0^{2}+9}=\frac{0}{9}=0 \\
0=-\frac{3 x}{x^{2}+9} & \\
3 x=0 & \\
x=0 &
\end{array}
$$

The only intercept is $(0,0)$.
$\underline{\text { Test }} \underline{y} \underline{\text {-axis symmetry: }}$ Let $x=-x$

$$
\underline{3(-x)}
$$

$$
y=(-x)^{2}+9
$$

$$
y=-\frac{3 x}{x^{2}+9} \text { different }
$$

Test origin symmetry: Let $x=-x$ and $y=-y$

$$
\begin{aligned}
& \frac{3(-x)}{(-x)^{2}+9} \\
-y & =-\frac{3 x}{x^{2}+9} \\
y & =-\frac{3 x}{x^{2}+9} \cdot \text { same }
\end{aligned}
$$

Therefore, the graph has origin symmetry.

$$
y=\frac{x^{2}-}{42 x}
$$

$$
x \text {-intercepts: } \quad y \text {-intercepts: }
$$

$$
0=\frac{x^{2}-4}{2 x} \quad y=\frac{0^{2}-4}{2(0)}=\frac{-4}{0}
$$

$$
\begin{array}{r}
x^{2}-4=0 \\
x^{2}=4 \\
x= \pm 2
\end{array}
$$

The intercepts are $(-2,0)$ and $(2,0)$.
Test x-axis symmetry: Let $y=-y$
$-y={\underset{2 x}{x} \cdot-4}_{2}^{2}$ different
Test y-axis symmetry: Let $x=-x$

$$
\begin{aligned}
= & \left(-\frac{x)^{2}-4}{2(-x)}\right. \\
& =-\frac{x^{2}}{2 x} \cdot \frac{4}{2} \text { different }
\end{aligned}
$$

Test origin symmetry: Let $x=-x$ and $y=-y$

$$
\begin{aligned}
& \quad \frac{(-x)^{2}-4}{-y=2(-x)} \\
& -y=x^{2} .-4
\end{aligned}
$$

Chapter 2: Graphs

$$
\begin{aligned}
& \frac{\text { Test } x \text {-axis symmetry: Let } y=-y}{-y=\frac{3 x}{} \text { different }} \\
& x^{2}+9
\end{aligned}
$$

Section 2.1: Intercepts; Symmetry; Graphing Key Equations

$$
y=\frac{x^{2}-\frac{2 x}{2 x}}{\frac{-4}{2}} \text { same }
$$

Therefore, the graph has origin symmetry.
$y=\frac{-x_{3} 2}{9^{x-}}$
x-intercepts:
y-intercepts:

$$
0=\frac{-x^{3}}{2}
$$

$$
x^{3}=0
$$

$$
x=0
$$

The only intercept is $(0,0)$.
Test $\underline{x \text {-axis symmetry: Let } y=-y}$

$$
\begin{gathered}
y=\frac{-x^{3}}{2-9} \\
y=\frac{x_{3}}{x^{2}-9} \text { different }
\end{gathered}
$$

Test y-axis symmetry: Let $x=-x$

$$
\begin{aligned}
y= & \frac{-(-x)^{3}}{(-x)^{2}-9} \\
y= & \frac{x_{3}}{x^{2}-9} \text { different }
\end{aligned}
$$

Test origin symmetry: Let $x=-x$ and $y=-y$

$$
\begin{gathered}
-y=\frac{-(-x)^{3}}{(-x)^{2}-9} \\
-y=\frac{x^{3}}{x^{2}-9} \\
-x^{3} \\
y=\overline{x^{2}-9} \text { same }
\end{gathered}
$$

Therefore, the graph has origin symmetry.

$$
y=x^{4}+\frac{1}{2 x^{5}}
$$

x-intercepts:
y-intercepts:

$$
0=\frac{x^{\frac{4}{2}}+1}{2 x^{5}} \quad y=\frac{0^{4}+1}{2(0)^{5}}=\frac{1}{0}
$$

$$
x^{4}=-1 \quad \text { undefined }
$$

no real solution
There are no intercepts for the graph of this equation.
Test x-axis symmetry: Let $y=-y$

Test y-axis symmetry: Let $x=-x$

$$
\begin{aligned}
& =(-\underline{x})^{4} \pm \underline{1} \\
& 2(-x)^{5} \\
& x_{4}+1 \\
& y= \\
& -2 x
\end{aligned}
$$

Test origin symmetry: Let $x=-x$ and $y=-y$

$$
\begin{aligned}
-y= & (-x)^{4} \pm \underline{1} \\
& 2(-x)^{5}
\end{aligned}
$$

$$
\begin{aligned}
-y= & \frac{x^{4}+1}{-2 x^{5}} \\
y= & \frac{x_{4}+1}{2 x^{5}} \text { same }
\end{aligned}
$$

Therefore, the graph has origin symmetry.

$$
y=x^{3}
$$

66. $x=y^{2}$

Chapter 2: Graphs

$$
y=\frac{x_{4}+1}{\text { different } 2 x^{5}}
$$

Section 2.1: Intercepts; Symmetry; Graphing Key Equations

168
Copyright © 2017 Pearson Education, Inc.

$y=x \sqrt{ }$
$y=1 x$

If the point $(3, b)$ is on the graph of $y=4 x+1$, then we have $b=4(3)+1=12+1=13$ Thus, $b=13$.

If the point $(-2, b)$ is on the graph of

$$
\begin{gathered}
x+3 y=2, \text { then we have } \\
(-2)+3(b)=2 \\
-4+3 b=2 \\
3 b=6 \\
b=2
\end{gathered}
$$

Thus, $b=2$.
If the point $(a, 4)$ is on the graph of

$$
\begin{aligned}
& y=x^{2}+3 x, \text { then we } \\
& \text { have } 4=a^{2}+3 a \\
& 0=a^{2}+3 a-4 \\
& =(a+4)(a-1) \\
& a+4=0 \quad \text { or } a-1=0 \\
& a=-4 \quad a
\end{aligned} \begin{aligned}
& =1
\end{aligned}
$$

Thus, $a=-4$ or $a=1$.

If the point $(a,-5)$ is on the graph of

$$
=x^{2}+6 x, \text { then we have }
$$

$$
-5=a^{2}+6 a
$$

$$
=a^{2}+6 a+5
$$

$$
=(a+5)(a+1)
$$

$$
a+5=0 \quad \text { or } a+1=0
$$

$$
a=-5 \quad a=-1
$$

Thus, $a=-5$ or $a=-1$.
a. $0=x^{2}-5$

$$
\begin{aligned}
& 2=5 \\
& x= \pm \sqrt{5}
\end{aligned}
$$

The x -intercepts are $x=-\sqrt{5}$ and $x=\sqrt{5}$.
$y=(0)^{2}-5=-5$
The y-intercept is $y=-5$.
The intercepts are $(-\sqrt{5}, 0),(\sqrt{5,0})$, and $0,-5)$.
b. x -axis (replace y by -y):

$$
\begin{aligned}
& y=x^{2}-5 \\
& y=5-x^{2} \text { different }
\end{aligned}
$$

y-axis (replace x by $-x$):
$y=(-x)^{2}-5=x^{2}-5$ same
origin (replace x by $-x$ and y by $-y$):

$$
\begin{aligned}
-y & =(-x)^{2}-5 \\
y & =5-x^{2} \text { different }
\end{aligned}
$$

The equation has y-axis symmetry.

$$
y=x^{2}-5
$$

Additional points:

a. $\quad \begin{aligned} 0= & x^{2} \\ 2 & =8 \\ & =8 \\ x & = \pm 2 \sqrt{2}\end{aligned}$

The x -intercepts are $x=-22 \sqrt{\text { and }} x$

$$
\begin{aligned}
= & 22 \sqrt{ } \\
= & (0)^{2}-8=-8
\end{aligned}
$$

The y-intercept is $y=-8$.
The intercepts are $(-2 \sqrt{2}, 0),(2 \sqrt{2,0})$, and $0,-8)$.
b. x-axis (replace y by $-y$):

$$
\begin{aligned}
& y=x^{2}-8 \\
& y=8-x^{2} \text { different }
\end{aligned}
$$

$$
y \text {-axis (replace } x \text { by }-x \text {): }
$$

$$
y=(-x)^{2}-8=x^{2}-8 \text { same }
$$

origin (replace x by $-x$ and y by $-y$):

$$
\begin{aligned}
-y & =(-x)^{2}-8 \\
y & =8-x^{2} \text { different }
\end{aligned}
$$

x	$y=x^{2}-5$	(x, y)
1	$y=1^{2}-8=-7$	$1,-7$
-1	from symmetry	$(-1,-\div)$
2	$y=2^{2}-8=-4$	$(2,-4)$
-2	from symmetry	$(-2,-4)$

a. $x-(0)^{2}=-9$

$$
x=-9
$$

The x -intercept is $x=-9$.

$$
\begin{aligned}
0)-y^{2} & =-9 \\
y^{2} & =-9 \\
y^{2} & =9 \rightarrow y= \pm 3
\end{aligned}
$$

The y-intercepts are $y=-3$ and $y=3$.
The intercepts are $(-9,0),(0,-3)$, and $0,3)$.
b. x -axis (replace y by -y):

$$
\begin{gathered}
2 \\
-(-y)^{2}=-9 \\
-y^{2}=-9 \text { same }
\end{gathered}
$$

y-axis (replace x by $-x$):

$$
x-y=-9
$$

$$
x+y^{2}=9 \text { different }
$$

origin (replace x by $-x$ and y by $-y$):

$$
\begin{gathered}
x-(-y)^{2}=-9 \\
2
\end{gathered}
$$

Chapter 2: Graphs
The equation has y-axis symmetry.
$y=x^{2}-8$
Additional points:

Section 2.1: Intercepts; Symmetry; Graphing Key Equations

$$
\begin{aligned}
& x-y=-9 \\
& x+y^{2}=9 \text { different }
\end{aligned}
$$

The equation has x -axis symmetry.
c. $x-y^{2}=-9$ or $x=y^{2}-9$

Additional points:

76. a. $x+(0)^{2}=4$

$$
x=4
$$

The x -intercept is $x=4$.

$$
\begin{aligned}
(0)+y^{2} & =4 \\
y^{2} & =4 \rightarrow y= \pm 2
\end{aligned}
$$

The y-intercepts are $y=-2$ and $\quad y=2$.

The intercepts are $(4,0),(0,-2)$, and $(0,2)$.
b. x -axis (replace y by -y):

$$
\begin{aligned}
x+(-y)^{2} & =4 \\
x+y^{2} & =4 \text { same }
\end{aligned}
$$

y-axis (replace x by $-x$):

$$
\begin{aligned}
-x+y^{2} & =4 \\
x-y^{2} & =-4 \text { different }
\end{aligned}
$$

origin (replace x by $-x$ and y by $-y$):

$$
\begin{array}{r}
-x+(-y)^{2}=4 \\
-x+y^{2}=4
\end{array}
$$

77. a. $x^{2}+(0)^{2}=9$

$$
\begin{aligned}
x^{2} & =9 \\
x & = \pm 3
\end{aligned}
$$

The x -intercepts are $x=-3$ and $x=3$.

$$
\begin{aligned}
(0)^{2}+y^{2} & =9 \\
y^{2} & =9 \\
y & = \pm 3
\end{aligned}
$$

The y-intercepts are $y=-3$ and $\quad y=3$.

The intercepts are $(-3,0),(3,0),(0,-3)$, and $(0,3)$.
b. x -axis (replace y by $-y$):

$$
\begin{aligned}
& x^{2}+(-y)^{2}=9 \\
& \quad x^{2}+y^{2}=9 \text { same }
\end{aligned}
$$

y-axis (replace x by $-x$):

$$
\begin{aligned}
& (-x)^{2}+y^{2}=9 \\
& \quad x^{2}+y^{2}=9 \text { same }
\end{aligned}
$$

origin (replace x by $-x$ and y by $-y$):

$$
\begin{aligned}
(-x)^{2}+(-y)^{2} & =9 \\
x^{2}+y^{2} & =9 \text { same }
\end{aligned}
$$

$$
x-y^{2}=-4 \text { different }
$$

The equation has x-axis symmetry, y-axis symmetry, and origin symmetry.

The equation has x -axis symmetry.
c. $x+y^{2}=4$ or $x=4-y^{2}$

Additional points:
$x^{2}+y^{2}=9$

a. $x^{2}+(0)^{2}=16$

$$
\begin{aligned}
& 2=16 \\
& x= \pm 4
\end{aligned}
$$

The x-intercepts are $x=-4$ and $x=4$.

$$
\begin{aligned}
0)^{2}+y^{2} & =16 \\
y^{2} & =16 \\
y & = \pm 4
\end{aligned}
$$

The y-intercepts are $y=-4$ and $y=4$. The intercepts are $(-4,0),(4,0),(0,-4)$, and $(0,4)$.
x-axis (replace y by $-y$):

$$
\begin{aligned}
& x^{2}+(-y)^{2}=16 \\
& \quad x^{2}+y^{2}=16 \text { same }
\end{aligned}
$$

y-axis (replace x by $-x$):

$$
\begin{aligned}
-x)^{2}+y^{2} & =16 \\
x^{2}+y^{2} & =16 \text { same }
\end{aligned}
$$

origin (replace x by $-x$ and y by $-y$):

$$
-x)^{2}+(-y)^{2}=16
$$

$$
x^{2}+y^{2}=16 \text { same }
$$

The equation has x -axis symmetry, y axis symmetry, and origin symmetry.
c. $x^{2}+y^{2}=16$
79. a. $0=x^{3}-4 x$

$$
\begin{aligned}
& 0=x\left(x^{2}-4\right) \\
& x=0 \text { or } x^{2}-4=0 \\
& x^{2}=4 \\
& x= \pm 2
\end{aligned}
$$

The x-intercepts are $x=0, x=-2$, and

$$
\begin{aligned}
x & =2 . \\
& =0^{3}-4(0)=0
\end{aligned}
$$

The y-intercept is $y=0$.
The intercepts are $(0,0),(-2,0)$, and 2,0).
b. x-axis (replace y by $-y$):

$$
\begin{aligned}
& y=x^{3}-4 x \\
& y=4 x-x^{3} \text { different }
\end{aligned}
$$

$$
y \text {-axis (replace } x \text { by }-x \text {): }
$$

$$
\begin{aligned}
& =(-x)^{3}-4(-x) \\
& =-x^{3}+4 x \text { different }
\end{aligned}
$$

origin (replace x by $-x$ and y by $-y$):

$$
\begin{aligned}
& y=(-x)^{3}-4(-x) \\
& y=-x^{3}+4 x \\
& y=x^{3}-4 x \text { same }
\end{aligned}
$$

The equation has origin symmetry.

$$
y=x^{3}-4 x
$$

Additional points:

x	$y=x^{3}-4 x$	(x, y)
1	3	$1,-3$
-1	$y=1-41=-3$	
from symmetry	$(-1,3)$	

Chapter 2: Graphs

Section 2.1: Intercepts; Symmetry; Graphing Key Equations
80. a. $0=x^{3}-x$

$$
\begin{aligned}
0 & =x\left(x^{2}-1\right. \\
x=0 \text { or } x^{2}-1 & =0 \\
x_{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

The x -intercepts are $x=0, x=-1$, and $=1$ 。

$$
=0^{3}-(0)=0
$$

The y-intercept is $y=0$.
The intercepts are $(0,0),(-1,0)$,
and $(1,0)$.
x-axis (replace y by $-y$):

$$
\begin{aligned}
& y=x^{3}-x \\
& y=x-x^{3} \text { different }
\end{aligned}
$$

y-axis (replace x by $-x$):

$$
=(-x)^{3}-(-x)
$$

$y=-x^{3}+x$ different
origin (replace x by $-x$ and y by $-y$):

$$
\begin{aligned}
& y=(-x)^{3}-(-x) \\
& y=-x^{3}+x \\
& y=x^{3}-x \text { same }
\end{aligned}
$$

The equation has origin symmetry.

$$
y=x^{3}-x
$$

Additional points:

x	$y=x^{3}-4 x$	(x, y)
2	$y=2^{3}-(2)=6$	$(2,6)$
-2	from symmetry	$(-2,-6)$

For a graph with origin symmetry, if the point (
$a, b)$ is on the graph, then so is the point $-a,-b)$. Since the point $(1,2)$ is on the graph
of an equation with origin symmetry, the point $-1,-2)$ must also be on the graph.

For a graph with y-axis symmetry, if the point $a, b)$ is on the graph, then so is the point $-a, b)$. Since 6 is an x-intercept in this case, the point $(6,0)$ is on the graph of the equation. Due to the y-axis symmetry, the point $(-6,0)$ must also be on the graph. Therefore, -6 is another x intercept.

For a graph with origin symmetry, if the point ($a, b)$ is on the graph, then so is the point $-a,-b)$. Since -4 is an x-intercept in this case, the point $(-4,0)$ is on the graph of the equation.

Due to the origin symmetry, the point $(4,0)$
must also be on the graph. Therefore, 4 is another x-intercept.

For a graph with x-axis symmetry, if the point ($a, b)$ is on the graph, then so is the point $a,-b)$. Since 2 is a y-intercept in this case, the point $(0,2)$ is on the graph of the equation. Due to the x-axis symmetry, the point $(0,-2)$ must also be on the graph. Therefore, -2 is another y intercept.
a. $\left(x^{2}+y^{2}-x\right)^{2}=x^{2}+y^{2}$ x-intercepts:

$$
\left.x_{2}+(0)^{2}-x\right)^{2}=x_{2}+(0)^{2}
$$

$$
\begin{gathered}
\left.x^{2}-x\right)^{2}=x^{2} \\
4-2 x^{3}+x^{2}=x^{2} \\
4-2 x^{3}=0 \\
x^{3}(x-2)=0 \\
x^{3}=0 \quad \text { or } \quad x-2=0 \\
x=0 \quad x=2
\end{gathered}
$$

重

Chapter 2: Graphs
Section 2.1: Intercepts; Symmetry; Graphing Key Equations 173
Copyright © 2017 Pearson Education, Inc.
y-intercepts:
$\left.(0)^{2}+y_{2}-0\right)^{2}=(0)^{2}+y 2$

$$
\begin{aligned}
&\left.y^{2}\right)^{2}=y^{2} \\
& y^{4}= y^{2} \\
& y^{4}-y^{2}= 0 \\
& y^{2}\left(y^{2}-1\right)=0 \\
& y^{2}=0 \text { or } y^{2}-1=0 \\
& y=0 \quad y^{2}=1 \\
& y= \pm 1
\end{aligned}
$$

The intercepts are $(0,0),(2,0),(0$,
$-1)$, and $(0,1)$.
Test $\underline{x \text {-axis symmetry: Let } y=-y}$

$$
\begin{aligned}
& \left(x_{2}+(-y)^{2}-x\right)^{2}=x_{2}+(-y)^{2} \\
& \left(x^{2}+y^{2}-x\right)^{2}=x^{2}+y^{2} \quad \text { same }
\end{aligned}
$$

Test y-axis symmetry: Let $x=-x$
$\left.(-x)^{2}+y 2-(-x)\right)^{2}=(-x)^{2}+y 2$

$$
\left(x^{2}+y^{2}+x\right)^{2}=x^{2}+y^{2}
$$

different
Test origin symmetry: Let $x=-x$ and $y=-y$

$$
\left.(-x)^{2}+(-y)^{2}-(-x)\right)^{2}=(-x)^{2}+(-y)^{2}
$$

$$
\left(x^{2}+y^{2}+x\right)^{2}=x^{2}+y^{2}
$$

different
Thus, the graph will have x-axis symmetry.
a. $16 y^{2}=120 x-225$
x-intercepts:

$$
\begin{aligned}
& y^{2}=120(0)-225 \\
& y^{2}=-225 \\
& y^{2}=-\frac{225}{} 16
\end{aligned}
$$

no real solution
y-intercepts:

$$
\begin{aligned}
& 16(0)^{2}=120 x-225 \\
& =120 x-225 \\
& -120 x=-225
\end{aligned}
$$

Test x-axis symmetry: Let $y=-y$

$$
\begin{aligned}
16(-y)^{2} & =120 x-225 \\
16 y^{2} & =120 x-225 \text { same }
\end{aligned}
$$

Test y-axis symmetry: Let $x=-x$
$16 y^{2}=120(-x)-225$
$16 y^{2}=-120 x-225$ different
Test origin symmetry: Let $x=-x$ and $y=-y$

$$
\begin{aligned}
16(-y)^{2} & =120(-x)-225 \\
16 y^{2} & =-120 x-225 \text { different }
\end{aligned}
$$

Thus, the graph will have x-axis symmetry.
87. a.

b. Since $\sqrt{x^{2}}=|x|$ for all x, the graphs of $y=\sqrt{x^{2}}$ and $y=|x|$ are the same.
c. For $y=(\sqrt{x})^{2}$, the domain of the variable x is $x \geq 0$; for $y=x$, the domain of the
variable x is all real numbers. Thus, $\left(\sqrt{x}^{2}\right)^{2}=x$ only for $x \geq 0$.
d. For $y=\sqrt{x^{2}}$, the range of the variable y is $y \geq 0$; for $y=x$, the range of the variable y is all real numbers. Also, $\sqrt[x]{2^{-}}=x$ only if $x \geq 0$. Otherwise, $\sqrt{k^{2}}=-x$.
88. Answers will vary. A complete graph presents enough of the graph to the viewer so they can
"see" the rest of the graph as an obvious continuation of what is shown.
89. Answers will vary. One example:

90. Answers will vary
91. Answers will vary
92. Answers will vary.

Case 1: Graph has x-axis and y-axis symmetry,

$$
\begin{aligned}
& x,-y) \text { on graph } \rightarrow(-x,-y) \text { on graph } \\
& \text { from } y \text {-axis symmetry) }
\end{aligned}
$$

Since the point $(-x,-y)$ is also on the graph, the graph has origin symmetry.
Case 2: Graph has x-axis and origin symmetry, show y-axis symmetry.
$x, y)$ on graph $\rightarrow(x,-y)$ on graph
from x-axis symmetry)
$x,-y)$ on graph $\rightarrow(-x, y)$ on graph from origin symmetry)
Since the point $(-x, y)$ is also on the graph, the graph has y-axis symmetry.

Case 3: Graph has y-axis and origin symmetry, show x-axis symmetry.
(x, y) on graph $\rightarrow(-x, y)$ on graph
(from y-axis symmetry)
$(-x, y)$ on graph $\rightarrow(x,-y)$ on graph
(from origin symmetry)
Since the point $(x,-y)$ is also on the graph, the graph has x-axis symmetry.
93. Answers may vary. The graph must contain the points $(-2,5),(-1,3)$, and $(0,2)$. For the graph to be symmetric about the y-axis, the graph must also contain the points $(2,5)$ and 1,3 (note that $(0,2)$ is on the y-axis).

For the graph to also be symmetric with respect to the x-axis, the graph must also contain the points $(-2,-5),(-1,-3),(0,-2),(2,-5)$, and
$1,-3$. Recall that a graph with two of the
symmetries (x -axis, y -axis, origin) will necessarily have the third. Therefore, if the original graph with y-axis symmetry also has x axis symmetry, then it will also have origin symmetry.
94. $\underline{6+(-2)}=4=1$

Chapter 2: Graphs
show origin symmetry.
$x, y)$ on graph $\rightarrow(x,-y)$ on graph (from x-axis symmetry)

Section 2.1: Intercepts; Symmetry; Graphing Key Equations

$$
6-(-2) \quad 8 \quad 2
$$

$$
\begin{gathered}
3 x^{2}-30 x+75=3(x \\
2-10 x+25)= \\
3(x-5)(x-5)=3(x-5)^{2} \\
- 1 9 \longdiv { = (- 1) } (1 9 6) = 1 4 i \\
x^{2}-8 x+4=0 \\
2-8 x=-4 \\
2-8 x+16=-4+16 \\
x-4)^{2}=12 \\
-4= \pm \sqrt{12} \\
x=4 \pm \sqrt{12} \\
=4 \pm 2
\end{gathered}
$$

Section 2.2

1. undefined; 0
2. 3; 2
x-intercept: $2 x+3(0)=6$

$$
\begin{aligned}
2 x & =6 \\
x & =3
\end{aligned}
$$

y-intercept: $\quad 2(0)+3 y=6$

$$
3 y=6
$$

$$
y=2
$$

3. True

False; the slope is $\underline{3}_{2}$.

$$
\begin{aligned}
& y=3 x+5 y \\
& =32 x+\frac{5}{2}
\end{aligned}
$$

True; $2(1)+(2)=4$?

$$
\begin{aligned}
2+2 & =4 \\
4 & =4 \text { True }
\end{aligned}
$$

$m 1=m 2 ; y$-intercepts; $m 1 m 2=-1$
9. False; perpendicular lines have slopes that are opposite-reciprocals of each other.
10. d
11. c
12. b
13. a. Slope $=\frac{1-0}{2-0}=\frac{1}{2}$

If x increases by 2 units, y will increase by 1 unit.
14. a. Slope $=\frac{1-0}{-2-0}=-\frac{1}{2}$

If x increases by 2 units, y will decrease by 1 unit.
15. a. Slope $=\underset{1-(-2)}{-\frac{1-2}{3}}-=-\frac{1}{3}$
b. If x increases by 3 units, y will decrease by 1 unit.
16. a. Slope = . $2=1=1$

$$
2-(-1) \quad 3
$$

b. If x increases by 3 units, y will increase by 1 unit.
17. Slope $=\frac{y_{2}-y_{1}}{x_{2}-x}=\frac{0-3}{4-2}=-\frac{3}{2}$

2
$-{ }_{-}{ }_{2}$

Slope $=\begin{array}{ll}\frac{y_{2}-y_{1}}{} & \frac{4-2}{x_{2}-x_{1}} \\ 3-4 \frac{-1}{-1}\end{array}=-2$

Slope $=\frac{y_{2}-y_{1}}{}=\underline{1-3}=\frac{-2}{}=-1$
$x_{2}-x_{1} \quad 2-(-2) \quad 4 \quad 2$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3}{2-(-1)}=\frac{-1}{3}$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \frac{-1-(-1)=0}{02-(-3) \overline{5}}=$

$$
\text { Slope }=y_{2}-y_{1} \quad 2-0=2 \text { undefined. }
$$

$P=(1,2) ; m=3$

$$
P=(2,1) ; m=4
$$

$P=(2,4) ; m=-{ }^{3} 4-$

$$
P=(1,3) ; m=-5^{2}
$$

$P=(-1,3) ; m=0$

$$
P=(2,-4) ; m=0
$$

$P=(0,3)$; slope undefined

(note: the line is the y-axis)
$P=(-2,0)$; slope undefined

Slope $=4=1^{4}$; point: $(1,2)$

If x increases by 1 unit, then y increases by 4 units.
Answers will vary. Three possible points are:

$$
\begin{aligned}
& x=1+1=2 \text { and } y=2+4=6 \\
& \left.\quad \begin{array}{l}
2,6) \\
= \\
\\
\\
3,10
\end{array}\right) \\
& x=3+1=3 \text { and } y=6+4=10
\end{aligned}
$$

Slope $=2=1^{2}$-, point: $(-2,3)$

If x increases by 1 unit, then y increases by 2 units.
Answers will vary. Three possible points are:

$$
\begin{aligned}
x= & -2+1=-1 \text { and } y=3+2=5 \\
& -1,5) \\
= & -1+1=0 \text { and } y=5+2=7
\end{aligned}
$$

$0,7)$

$$
x=0+1=1 \text { and } y=7+2=9
$$

$(1,9)$

$$
3_{-}=\underline{3}
$$

Slope $=-2=2 ;$ point: $(2,-4)$

If x increases by 2 units, then y decreases by 3 units.
Answers will vary. Three possible points are:

$$
\begin{aligned}
& x=2+2=4 \text { and } y=-4-3=-7 \\
& \quad 4,-7) \\
& x=4+2=6 \text { and } y=-7-3=-10 \\
& \quad 6,-10) \\
& =6+2=8 \text { and } y=-10-3=-13
\end{aligned}
$$

$8,-13)$

$$
\text { Slope }=43 ; \text { point: }(-3,2)
$$

If x increases by 3 units, then y increases by 4 units.
Answers will vary. Three possible points are:

$$
x=-3+3=0 \text { and } y=2+4=6
$$

$0,6)$
$=0+3=3$ and $y=6+4=10$
3,10)

$$
x=3+3=6 \text { and } y=10+4=14
$$

$6,14)$
Slope $=-2=\overline{-}_{1} \underline{2}$; point: $(-2,-3)$

Answers will vary. Three possible points are:

$$
\begin{aligned}
& \begin{array}{c}
x= \\
\\
\quad-2+1=-5) \\
= \\
\\
\\
\\
0,-1+1=0
\end{array} \\
& x=0+1=1 \text { and } y=-3-2=-5 \\
& \quad(1,-9)
\end{aligned}
$$

If x increases by 1 unit, then y decreases by 1 unit.
Answers will vary. Three possible points are:

$$
x=4+1=5 \text { and } y=1-1=0
$$

$$
\begin{aligned}
& \quad 5,0) \\
& =5+1=6 \text { and } y=0-1=-1 \\
& \quad 6,-1) \\
& x=6+1=7 \text { and } y=-1-1=-2 \\
& 7,-2)
\end{aligned}
$$

$(0,0)$ and $(2,1)$ are points on the line.

$$
\text { Slope }=\frac{\underline{-}, \underline{0}}{--}=\frac{1}{2}
$$

y-intercept is 0 ; using $y=m x+b$:

$$
\begin{aligned}
y & =\frac{1}{2} x+0 \\
y & =x \\
0 & =x-2 y \\
-2 y & =0 \text { or } y=-2 x
\end{aligned}
$$

$(0,0)$ and $(-2,1)$ are points on the line.

$$
\begin{aligned}
& \text { Slope }=\frac{1-0}{-2-0}=-2^{-\frac{1}{\underline{1}}}-\frac{1}{2} \\
& y \text {-intercept is } 0 ; \text { using } y=m x+b: \\
& \quad=-\frac{1}{2} 2 x
\end{aligned}
$$

Chapter 2: Graphs
Section 2.2: Lines
If x increases by 1 unit, then y decreases by 2 units.

$$
\begin{aligned}
& \quad+02 y=-x \\
& +2 y=0 \\
& x+2 y=0 \text { or } y=-=_{2} x
\end{aligned}
$$

$(-1,3)$ and $(1,1)$ are points on the line.

$$
\begin{aligned}
& \text { Slope }=\frac{1-3}{1-(-1)}=\frac{-2}{2}=-1 \\
& \text { Using } y-y_{1}=m\left(x-x_{1}\right) \\
& \begin{aligned}
-1 & =-1(x-1)
\end{aligned} \\
& y-1=-x+1 \\
& \qquad \begin{aligned}
y & =-x+2 \\
+y & =2 \text { or } y=-x+2
\end{aligned}
\end{aligned}
$$

$(-1,1)$ and $(2,2)$ are points on the line.

$$
\begin{aligned}
& \text { Slope }=\frac{2}{2}-\frac{-1}{(-1)}=\frac{1}{3} \\
& \text { Using } y-y_{1}=m\left(x-x_{1}\right) \\
& -1=\frac{1}{3}(x-(-1)) \\
& y-1=\underline{1}_{\underline{3}}(x+1) \\
& y-1=\underline{3}_{3} x+\underline{1}_{3} \\
& y=\frac{1}{-x+} \underline{4}_{3}^{3}
\end{aligned}
$$

$$
-3 y=-4 \text { or } y=-\frac{1}{3} x+3
$$

$y-y_{1}=m\left(x-x_{1}\right), m=2 y$
$-3=2(x-3)$
$y-3=2 x-6$

$$
=2 x-3
$$

$2 x-y=3$ or $y=2 x-3$
$y-y_{1}=m\left(x-x_{1}\right), m=-1 y$

$$
-2=-1(x-1)
$$

$$
y-2=-x+1
$$

$$
=-x+3
$$

$$
+y=3 \text { or } y=-x+3
$$

$$
y-y_{1}=m\left(x-x_{1}\right), m=-
$$

$$
1_{2 y-2=-} 1_{2(x-1)}
$$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right), m= \\
1 y-1=1(x-(-1)) \\
-1=x+1 \\
y=x+2 \\
-y=-2 \text { or } y=x+2
\end{gathered}
$$

Slope $=3$; containing $(-2,3)$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-3 & =3(x-(- \\
2)) y & =3=3 x+6 \\
y & =3 x+9 \\
3 x-y & =-9 \text { or } y=3 x+9
\end{aligned}
$$

Slope $=2$; containing the point $(4,-3)$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
-(-3) & =2(x-4) \\
y+3 & =2 x-8 \\
& =2 x-11 \\
2 x-y & =11 \text { or } y=2 x-11
\end{aligned}
$$

Slope $=-\frac{2}{-} 3$; containing $(1,-1)$

$$
\begin{aligned}
& y-y_{1}=m\left(\underset{2}{2}-x_{1}\right) \\
& y-(-1)=-\underset{(x-1)}{3} \\
& y+1=-\underset{-}{2} x+\frac{2}{3} \\
& y=-\underset{-}{2} x-1 \\
& 3 \quad 3 \\
& x+3 y=-1 \text { or } y=-\frac{2}{3} x-\frac{1}{2}
\end{aligned}
$$

1
Slope $=2 ;$ containing the point $(3,1)$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
-1=\underline{1}_{\underline{2}}(x-3)
\end{gathered}
$$

$$
y-1=1_{2} x-\underline{3}_{2}
$$

$$
\begin{aligned}
& y-2=-\underline{1}_{2} x+\underline{1}_{2} \\
& y=-1_{x+}{ }^{5} \\
& 22
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { _5 } \\
& +2 y=5 \text { or } y=-2 x+2
\end{aligned}
$$

$$
\begin{aligned}
\text { Slope }= & -3 ; y \text {-intercept }=3 y \\
& =m x+b \\
& =-3 x+3 \\
3 x+y & =3 \text { or } y=-3 x+3 \\
\text { Slope }= & -5 ; y \text {-intercept }=-7 y \\
= & m x+b \\
& =-5 x+(-7) \\
5 x+y & =-7 \text { or } y=-5 x-7
\end{aligned}
$$

Containing (1,3) and ($-1,2$)

$$
\begin{aligned}
& m=\frac{2-3}{-1-1}=\frac{-1}{-2}=\frac{1}{2} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=\frac{1}{2}(x-1) \\
& y-3=\frac{1}{2} x-\frac{1}{2} \\
& y=\frac{1}{2} x+\frac{5}{2} \\
& x-2 y=-5 \text { or } y=\frac{1}{2} x+\frac{5}{2}
\end{aligned}
$$

Containing the points $(-3,4)$ and $(2,5)$

$$
\begin{aligned}
& m=\frac{5-4}{2-(-3)}=\frac{1}{5} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{1}{5}(x-2) \\
& y-5=\frac{1}{5} x-\frac{2}{5} \\
& y=\frac{1}{5} x+\frac{23}{5} \\
& x-5 y=-23 \text { or } y=\frac{1}{5} x+\frac{23}{5}
\end{aligned}
$$

x-intercept $=2 ; y$-intercept $=-1$
Points are $(2,0)$ and $(0,-1)$

$$
\begin{gathered}
m=\frac{-1-0}{0-2} \quad=\frac{-1}{-2}=\frac{1}{2} \\
y=m x+b \\
={ }^{-} 2 x-1
\end{gathered}
$$

x-intercept $=-4 ; y$-intercept $=4$
Points are $(-4,0)$ and $(0,4)$

$$
\begin{aligned}
m= & \frac{4-0}{0}-(-4) \\
& =\frac{4}{4}=1 \\
y & =1 x+b \\
y & =x+4 \\
-y & =-4 \text { or } y=x+4
\end{aligned}
$$

Slope undefined; containing the point $(2,4)$
This is a vertical line.
$=2 \mathrm{No}$ slope-intercept form.
Slope undefined; containing the point $(3,8)$ This is a vertical line.
$=3$ No slope-intercept form.
Horizontal lines have slope $m=0$ and take the form $y=b$. Therefore, the horizontal line passing through the point $(-3,2)$ is $y=2$.

Vertical lines have an undefined slope and take the form $x=a$. Therefore, the vertical line passing through the point $(4,-5)$ is $x=4$.

Parallel to $y=4 x ;$ Slope $=4$
Containing ($-1,2$)

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =4(x-(-1)) \\
y-2 & =x+4 \rightarrow y=4 x+6 \\
4 x-y & =-6 \text { or } y=4 x+6
\end{aligned}
$$

Parallel to $y=-3 x$; Slope $=-3$; Containing the point ($-1,2$)

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =-3(x-(-1)) \\
y-2 & =-3 x-3 \rightarrow y=-3 x-1 \\
3 x+y & =-1 \text { or } y=-3 x-1
\end{aligned}
$$

Chapter 2: Graphs

$$
x-2 y=2 \text { or } y=12 x-1
$$

Parallel to $5 x-y=-2$; Slope $=5$
Containing the point $(0,0)$

$$
\begin{aligned}
& y-y_{1}=m(x- \\
& \left.x_{1}\right) y-0=5(x \\
& -0) y=5 x \\
& 5 x-y=0 \text { or } y=5 x
\end{aligned}
$$

Parallel to $x-2 y=-5$;

$$
\underline{1}
$$

Slope $=2 ;$ Containing the point $(0,0)$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-0={\underset{2}{2}}_{1}(x-0) \rightarrow y={\underset{2}{2}}^{x}
\end{aligned}
$$

Parallel to $x=5$; Containing (4,2)
This is a vertical line.
= 4No slope-intercept form.

Parallel to $y=5$; Containing the point $(4,2)$
This is a horizontal line. Slope $=0$

$$
=2
$$

1

Perpendicular to $y=6 x+4$; Containing $(1,-2)$

Slope of perpendicular $=-6$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
-(-2) & =-6(x-1) \\
y+2 & =-6 x+2 \rightarrow y=-6 x \\
6 x+y & =0 \text { or } y=-6 x
\end{aligned}
$$

Perpendicular to $y=8 x-3$; Containing the
point (10, -2)

$$
\text { Slope of perpendicular }=-\stackrel{1}{8}_{8}
$$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
-(-2) & =-1_{8}(x-10)
\end{aligned}
$$

Perpendicular to $2 x+5 y=2$; Containing the point $(-3,-6)$
Slope of perpendicular $=\stackrel{5}{2}_{2}$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-(-6) & =\frac{5}{2}_{2}(x-(-3)) \rightarrow y+6={ }^{5} x
\end{aligned}
$$

$$
+1_{2 y}=5_{2 x+}{ }^{3} 2
$$

$$
5 x-2 y=-3 \text { or } y=2 x+2
$$

Perpendicular to $x-3 y=-12$; Containing the point (0, 4)
Slope of perpendicular $=-$
$3 y=m x+b$
$y=-3 x+4$
$3 x+y=4$ or $y=-3 x+4$

Perpendicular to $x=8$; Containing $(3,4)$
Slope of perpendicular $=0$ (horizontal line) $y=4$

Perpendicular to $y=8$;
Containing the point $(3,4)$

Slope of perpendicular is undefined (vertical line). $x=3$ No slope-intercept form.
$y=2 x+3 ;$ Slope $=2 ; y$-intercept $=3$

74. $y=-3 x+4 ;$ Slope $=-3 ; y$-intercept $=4$

$$
\begin{aligned}
& y+2=-\frac{1}{8} x+\frac{5}{4} \rightarrow y=-\frac{1}{8} x-\frac{3}{4} \\
& x+8 y=-6 \text { or } y=-\frac{1}{8} x-\frac{3}{4}
\end{aligned}
$$

183183
CopCtightiehald7BEarBearsohediruatime, Inc.
$1_{4 y=x-1 ; y=4 x-4}$

$$
1_{3 x+y=2 ; y=-} 1_{3 x+2}
$$

$$
\text { Slope }=-{ }^{1} 3 ; y \text {-intercept }=2
$$

$$
y={ }^{1} 2 x+2 ; \text { Slope }=12 ; y \text {-intercept }=2
$$

78. $y=2 x+\frac{1}{2}$; Slope $=2 ; y$-intercept $={ }_{2}$
$x+4 y=4 ; 4 y=-x+4 \rightarrow y=-\underline{1}_{4} 4 x+$ _1

1 Slope $=-4 ; y$-intercept $=1$

$-x+3 y=6 ; 3 y=x+6 \rightarrow y=\underline{1}_{3} x$
+2 Slope $=13 ; y$-intercept $=2$

$2 x-3 y=6 ;-3 y=-2 x+6 \rightarrow y=2 x$
-2 Slope $=23 ; y$-intercept $=-2$

82. $3 x+2 y=6 ; 2 y=-3 x+6 \rightarrow y=-\frac{3}{2} x+3$

$$
\text { Slope }=-\frac{3}{2} ; y \text {-intercept }=3
$$

$x+y=1 ; y=-x+1$ Slope $=$
$-1 ; y$-intercept $=1$

$x-y=2 ; y=x-2$ Slope $=$
1; y-intercept $=-2$

86. $y=-1$; Slope $=0 ; y$-intercept $=-1$

$$
y=5 ; \text { Slope }=0 ; y \text {-intercept }=5
$$

88. $x=2$; Slope is undefined
y-intercept - none

89. $y-x=0 ; y=x$

Slope $=1 ; y$-intercept $=0$

$x+y=0 ; y=-x$
Slope $=-1 ; y$-intercept $=0$

$$
2 y-3 x=0 ; 2 y=3 x \rightarrow y=2^{3} x
$$

$$
\text { Slope }={ }^{3} 2 ; y \text {-intercept }=0
$$

$3 x+2 y=0 ; 2 y=-3 x \rightarrow y=-2^{3} x$

3

93. a.
x-intercept: $2 x+3(0)=$

$$
\begin{aligned}
2 x & =6 \\
x & =3
\end{aligned}
$$

The point $(3,0)$ is on the graph.
y-intercept: $2(0)+3 y=6$

$$
\begin{array}{r}
3 y=6 \\
y=2
\end{array}
$$

The point $(0,2)$ is on the graph.

a. x-intercept: $3 x-2(0)=6$

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

The point $(2,0)$ is on the graph.
y-intercept: $3(0)-2 y=6$

$$
\begin{aligned}
-2 y & =6 \\
y & =-3
\end{aligned}
$$

The point $(0,-3)$ is on the graph.

a. x-intercept: $-4 x+5(0)=40-4$

$$
\begin{gathered}
x=40 \\
x=-10
\end{gathered}
$$

The point $(-10,0)$ is on the graph.
y-intercept: $-4(0)+5 y=40$

$$
\begin{aligned}
5 y & =40 \\
y & =8
\end{aligned}
$$

The point $(0,8)$ is on the graph.
b.

a. x-intercept: $6 x-4(0)=24$

$$
\begin{gathered}
6 x=24 \\
x=4
\end{gathered}
$$

The point $(4,0)$ is on the graph.
y-intercept: $6(0)-4 y=24$

$$
\begin{aligned}
-4 y & =24 \\
y & =-6
\end{aligned}
$$

The point $(0,-6)$ is on the graph.
b.

a. x-intercept: $7 x+2(0)=21$

$$
\begin{aligned}
7 x & =21 \\
x & =3
\end{aligned}
$$

The point $(3,0)$ is on the graph.
y-intercept: $7(0)+2 y=21$

$$
\begin{aligned}
2 y & =21 \\
y & =\underline{21}
\end{aligned}
$$

$$
\begin{aligned}
& \text { The point }\lrcorner_{0,}{ }^{21} \stackrel{2}{\text { is on the graph. }} \\
& \lrcorner \quad \bar{\sqsupset}\lrcorner
\end{aligned}
$$

b.

a. x-intercept: $5 x+3(0)=185$

$$
\begin{gathered}
x=18 \\
x=\frac{18}{5}
\end{gathered}
$$

The point 18

y-intercept: $5(0)+3 y=18$

$$
3 y=18
$$

$$
y=6
$$

The point $(0,6)$ is on the graph.
b.

a. x-intercept: ${ }^{1} 2 x+13(0)=1$

$$
\begin{aligned}
& 1 \\
& 2 x=1 \\
& x=2
\end{aligned}
$$

The point $(2,0)$ is on the graph.

$$
\begin{aligned}
& y \text {-intercept: }\left.\begin{array}{r}
1 \\
2 \\
2
\end{array}\right)+{ }_{3}^{1} y=1 \\
&- \\
& y=3
\end{aligned}
$$

The point $(0,3)$ is on the graph.
b.

a. x-intercept: $x-23(0)=4$

$$
x=4
$$

The point $(4,0)$ is on the graph.

$$
\begin{aligned}
& y \text {-intercept: }(0)-\frac{2}{y} y=4 \\
& 3 \\
&- \\
& y=-6
\end{aligned}
$$

The point $(0,-6)$ is on the graph.
b.

a. x-intercept: $0.2 x-0.5(0)=1$

$$
0.2 x=1
$$

$$
x=5
$$

The point $(5,0)$ is on the graph.

$$
\begin{aligned}
y \text {-intercept: } 0.2(0)-0.5 y & =1 \\
-0.5 y & =1 \\
y & =-2
\end{aligned}
$$

The point $(0,-2)$ is on the graph.
b.

a. x-intercept: $-0.3 x+0.4(0)=1.2$

$$
\begin{aligned}
-0.3 x & =1.2 \\
x & =-4
\end{aligned}
$$

The point $(-4,0)$ is on the graph.
y-intercept: $-0.3(0)+0.4 y=1.2$
$0.4 y=1.2$

$$
y=3
$$

The point $(0,3)$ is on the graph.
b.

The equation of the x-axis is $y=0$. (The slope is 0 and the y-intercept is 0 .)

The equation of the y-axis is $x=0$. (The slope is undefined.)

The slopes are the same but the y-intercepts are different. Therefore, the two lines are parallel.

The slopes are opposite-reciprocals. That is, their product is -1 . Therefore, the lines are perpendicular.

The slopes are different and their product does
not equal -1 . Therefore, the lines are neither parallel nor perpendicular.

The slopes are different and their product does not equal - 1 (in fact, the signs are the same so the product is positive). Therefore, the lines are neither parallel nor perpendicular.

Intercepts: $(0,2)$ and $(-2,0)$. Thus, slope $=1$.

$$
y=x+2 \text { or } x-y=-2
$$

Intercepts: $(0,1)$ and $(1,0)$. Thus, slope $=-1 . y$

$$
=-x+1 \text { or } x+y=1
$$

Intercepts: $(3,0)$ and $(0,1)$. Thus, slope $=-1 \underline{3}$.

$$
y=-\frac{1}{3} 3 x+1 \text { or } x+3 y=3
$$

Intercepts: $(0,-1)$ and $(-2,0)$. Thus,

$$
\begin{aligned}
& \text { slope }=-\underline{1}_{2} . \\
& \quad \underline{1} \\
& y=-2 x-1 \text { or } x+2 y=-2 \\
& P_{1}=(-2,5), P_{2}=(1,3): m_{1}=\frac{5-3=2}{=}=e^{2}-2= \\
& P_{2}=(1,3), P_{3}=(-1,0): m_{2}=\underline{3}^{-}-\underline{0}-1=2
\end{aligned}
$$

$$
(\underline{)}
$$

Since $m_{1} m_{2}=-1$, the line segments $P_{1} P_{2}$ and $P_{2} P_{3}$ are perpendicular. Thus, the points P_{1},
P_{2}, and P_{3} are vertices of a right triangle.

$$
\begin{gathered}
P_{1}=(1,-1), P_{2}=(4,1), P_{3}=(2,2), P_{4}=(5,4) \\
m=\underline{1-(-1)}=\underline{2} ; m=\underline{4-1}=3
\end{gathered}
$$

$$
\begin{gathered}
P_{1}=(-1,0), P_{2}=(2,3), P_{3}=(1,-2), P_{4}=(4,1) \\
m=-\underline{3-0}=\underline{3}=1 ; m=\underline{1-3}=-1 ; \\
122-\frac{24-2}{4}, ~ \\
m=\frac{1-(-2)}{4-1}=\frac{3}{3}=1 ; m=\frac{-2}{-2}=-1
\end{gathered}
$$

Opposite sides are parallel (same slope) and adjacent sides are perpendicular (product of slopes is -1). Therefore, the vertices are for a rectangle.

$$
\begin{gathered}
P_{1}=(0,0), P_{2}=(1,3), P_{3}=(4,2), P 4=(3,-1) \\
m_{12}=\frac{3-0}{1-0}=3 ; m_{23}=\frac{2-3}{4-1}=-\frac{1}{3} ; \\
m_{34}=\frac{-1-2}{3-4}=3 ; m_{14}^{=} \frac{-1-0}{3-0}=-\frac{1}{3} \\
d_{12}=\sqrt{1-0)^{2}+(3-0)^{2}}=\sqrt{1+9}=\sqrt{0} \\
\left.d_{23}=\sqrt{4-1)^{2}+(2-3}\right)^{2}=\sqrt{9+1}=\sqrt{10} \\
d_{34}=\sqrt{3-4)^{2}+(-1-2)^{2}}=\sqrt{1+9}=\sqrt{0} \\
\left.d_{14}=\sqrt{3-0)^{2}+(-1-0}\right)^{2}=\sqrt{9+1}=\sqrt{0}
\end{gathered}
$$

Opposite sides are parallel (same slope) and adjacent sides are perpendicular (product of slopes is -1). In addition, the length of all four sides is the same. Therefore, the vertices are for a square.

Let $x=$ number of miles driven, and let $C=\operatorname{cost}$ in dollars.
Total cost $=($ cost per mile $)($ number of miles $)$

+ fixed cost
$C=0.60 x+39$
When $x=110, C=(0.60)(110)+39=\$ 105.00$.

$$
\begin{gathered}
12 \\
m=\frac{4-1}{4} \frac{-2}{5-2}=\underline{2} \\
34
\end{gathered} ; m \underset{13}{=} \frac{24-(-1)}{2-1}=3-4 .
$$

Each pair of opposite sides are parallel (same slope) and adjacent sides are not perpendicular. Therefore, the vertices are for a parallelogram.

When $x=230, C=(0.60)(230)+39=\$ 177.00$.
Let $x=$ number of pairs of jeans manufactured, and let $C=$ cost in dollars.
Total cost $=($ cost per pair $)($ number of pairs $)+$ fixed cost
$C=8 x+500$
When $x=400, C=(8)(400)+500=\$ 3700$.
When $x=740, C=(8)(740)+500=\$ 6420$.
Let $x=$ number of miles driven annually, and let C $=$ cost in dollars.
Total cost $=($ approx cost per mile $)($ number of miles) + fixed cost
$C=0.16 x+1461$

Let $x=$ profit in dollars, and let $S=$ salary in dollars.
Weekly salary $=(\%$ share of profit) $($ profit $)$ + weekly pay

$$
S=0.05 x+375
$$

a. $C=0.0757 x+15.14 ; 0 \leq x \leq 800$ b.

For 200 kWh ,

$$
C=0.0757(200)+15.14=\$ 30.28
$$

For 500 kWh ,

$$
C=0.0757(500)+15.14=\$ 52.99
$$

For each usage increase of 1 kWh , the monthly charge increases by $\$ 0.0757$ (that is, 7.57 cents).
a. $C=0.0901 x+7.57 ; 0 \leq x \leq 1000$

For 200 kWh ,
$C=0.0901(200)+7.57=\$ 25.59$
For 500 kWh ,
$C=0.0901(500)+7.57=\$ 52.62$
For each usage increase of 1 kWh , the monthly charge increases by $\$ 0.0901$ (that is, 9.01 cents).
a. $K={ }^{\circ} C+273$

$$
\begin{gathered}
{ }^{\circ} C=9^{5}\left({ }^{\circ} F-32\right) \\
{ }_{-} 5
\end{gathered}
$$

$$
K=9 \quad\left({ }^{\circ} F-32\right)+273
$$

$$
\text { _5 } \quad 160
$$

$$
K=9 \quad{ }^{\circ} F-\quad 9+273
$$

$$
\begin{aligned}
& =\frac{5}{o}^{99} F+\underline{2297} \\
& =\underline{1}_{9}^{9}\left(5^{\circ} F+2297\right)
\end{aligned}
$$

a. The y-intercept is $(0,30)$, so $b=30$. Since the ramp drops 2 inches for every 25 inches of run, the slope is $m=-\frac{-}{2}=-25^{2}$.

2
Thus, the equation is $y=-25 \quad x+30$.
Let $y=0$.

$$
\begin{aligned}
& 0=-25^{2} x+30 \\
&-2 \\
& 25 \quad x=30 \\
& \underline{25} \square 2 x \square=\underline{25}(30) \\
& 2 \square \square 25 \square \sqsupset \\
& x=375
\end{aligned}
$$

The x-intercept is $(375,0)$. This means that the ramp meets the floor 375 inches (or 31.25 feet) from the base of the platform.

$$
\begin{aligned}
& \left({ }^{\circ} C,{ }^{\circ} F\right)=(0,32) ;\left({ }^{\circ} C,{ }^{\circ} F\right)=(100,212) \\
& \text { slope }=2 \underline{12-32}=\underline{180}=\underline{9} \\
& \text { 100-0 } \\
& 100 \\
& { }^{\circ} \mathrm{F}-32=-{ }_{-}^{9}\left({ }^{\circ} \mathrm{C}-0\right) \\
& 5 \\
& { }^{\circ} C=\overline{-}_{-}^{5}\left({ }^{\circ} F-32\right) \\
& 9 \\
& { }^{\circ} C={ }^{5}=(70-32) \stackrel{5}{=}(38) \\
& 9 \quad 9
\end{aligned}
$$

189

Copyright © 2017 Pearson Education, Inc.

No. From part (b), the run is 31.25 feet which exceeds the required maximum of 30 feet. First, design requirements state that the maximum slope is a drop of 1 inch for each 12 inches of run. This means $m \leq 12$.

Second, the run is restricted to be no more than 30 feet $=360$ inches. For a rise of 30 inches, this means the minimum slope is $\frac{30}{360}=\frac{1}{12}$. That is, $|m| \geq \frac{1}{12}$. Thus, the

only possible slope is $m=12$. The
diagram indicates that the slope is negative. Therefore, the only slope that can be used to obtain the 30 -inch rise and still meet design
requirements is $m=-12^{1}$. In words, for every 12 inches of run, the ramp must drop exactly 1 inch.
a. The year 2000 corresponds to $x=0$, and the year 2013 corresponds to $x=13$. Therefore, the points $(0,20.6)$ and $(13,8.5)$ are on the line. Thus, $m=\frac{20.6-8.5}{0-13}=\frac{12.1}{-13}=-0.93$. The y-intercept is 20.6 , so $b=20.6$ and the equation is $y=-0.93 x+20.6$
x-intercept: $0=-0.93 x+20.6$

$$
x=22.15
$$

y-intercept: $y=-0.93(0)+20.6=20.6$
The intercepts are $(22.15,0)$ and $(0,20.6)$.
c. The y-intercept represents the percentage of twelfth graders in 2000 who had reported daily use of cigarettes. The x-intercept represents the number of years after 2000 when 0% of twelfth graders will have reported daily use of cigarettes.
d. The year 2025 corresponds to $x=25$.

$$
=-0.93(25)+20.6=-2.65
$$

This prediction is not reasonable since it is negative.
a. Let $x=$ number of boxes to be sold, and
$A=$ money, in dollars, spent on advertising. We have the points

$$
\left(x_{1}, A_{1}\right)=(100,000,40,000) ;
$$

$$
\begin{aligned}
\left(x_{2}, A_{2}\right)= & (200,000,60,000) \\
\text { slope }= & =\frac{60,000-40,000}{200,000-100,000} \\
= & \underline{20,000}=\underline{1} \\
& 100,0005 \\
A-40,000= & \frac{1}{5}(x-100,000) \\
A-40,000= & \frac{1}{5} x-20,000 \\
A= & \frac{1}{5} x+20,000
\end{aligned}
$$

If $x=300,000$, then

$$
={ }^{1} 5(300,000)+20,000=\$ 80,000
$$

Each additional box sold requires an additional $\$ 0.20$ in advertising.

Find the slope of the line containing (a, b) and

$$
\begin{gathered}
b, a): \\
\text { slope }=\frac{a-b}{b-a}=-1
\end{gathered}
$$

The slope of the line $y=x$ is 1 .
Since $-11=-1$, the line containing the points (a, b) and (b, a) is perpendicular to the line $y=x$.

The midpoint of (a, b) and (b, a) is

$$
=\frac{\square\lceil a}{22}+b, b+a \sqsupset \sqsubset .
$$

Since the coordinates are the same, the midpoint lies on the line $y=x$.
Note: $\frac{a+b}{2}=\frac{b+a}{2}$
$2 x-y=C$
Graph the lines:
$x-y=-4$
$x-y=0$
$x-y=2$
All the lines have the same slope, 2. The lines
are parallel.

Refer to Figure 33.

$$
\begin{aligned}
& \text { length of } O A=d(O, A)=\sqrt{1+m_{1}^{2}} \\
& \text { length of } \overline{O B}=d(O, B)=\sqrt{1+m_{2}} \\
& \text { length of } \\
& \text { laB }=d(A, B)=m_{1}-m_{2}
\end{aligned}
$$

Now consider the equation

$$
\left.\left({\sqrt{1+m_{1}^{2}}}^{2}\right)^{2}+\sqrt{\left(1+m_{2}\right.}{ }^{2}\right)^{2}=\left(m_{1}-m_{2}\right)^{2}
$$

If this equation is valid, then $A O B$ is a right triangle with right angle at vertex O.

$$
\begin{aligned}
\left(\sqrt{1+m_{1}^{2}}\right)^{2}+\left(\sqrt{1+m_{2}^{2}}\right)^{2} & =\left(m_{1}-m_{2}\right)^{2} \\
1+m_{1}^{2}+1+m^{2} & =m^{2}-2 m_{1} m_{2}+m_{2}^{2} \\
2+m_{1}^{2}+m_{2}^{2} & =m_{1}^{2}-2 m_{1} m_{2}+m_{2}^{2}
\end{aligned}
$$

But we are assuming that $m_{1} m_{2}=-1$, so we have

$$
\begin{gathered}
2+m_{1}^{2}+m_{2}^{2}=m_{1}^{2}-2(-1)+m_{2}^{2} \\
2+m_{1}^{2}+m_{2}^{2}=m_{1}^{2}+2+m_{2}^{2} \\
0=0
\end{gathered}
$$

Therefore, by the converse of the Pythagorean Theorem, $A O B$ is a right triangle with right angle at vertex O. Thus Line 1 is perpendicular to Line 2.
(b), (c), (e) and (g)

The line has positive slope and positive y-intercept.
(a), (c), and (g)

The line has negative slope and positive y-intercept.
(c)

The equation $x-y=-2$ has slope 1 and y intercept (0,2). The equation $x-y=1$ has slope 1 and y-intercept $(0,-1)$. Thus, the lines are parallel with positive slopes. One line has a positive y-intercept and the other with a negative y-intercept.
(d)

The equation $y-2 x=2$ has slope 2 and y intercept $(0,2)$. The equation $x+2 y=-1$ has

has a positive y-intercept and the other with a negative y-intercept.

135-137. Answers will vary.
No, the equation of a vertical line cannot be written in slope-intercept form because the slope is undefined.

No, a line does not need to have both an x intercept and a y-intercept. Vertical and horizontal lines have only one intercept (unless they are a coordinate axis). Every line must have at least one intercept.

Two lines with equal slopes and equal y intercepts are coinciding lines (i.e. the same).

Two lines that have the same x-intercept and y intercept (assuming the x-intercept is not 0) are the same line since a line is uniquely defined by two distinct points.

No. Two lines with the same slope and different x intercepts are distinct parallel lines and have no points in common.
Assume Line 1 has equation $y=m x+b_{1}$ and Line 2 has equation $y=m x+b 2$,
Line 1 has x-intercept $-\frac{b}{m^{1}}{ }^{1}$ and y-intercept b_{1} . Line 2 has x-intercept $-b m^{2}$ and y-intercept
b_{2}. Assume also that Line 1 and Line 2 have unequal x-intercepts.

Section 2.2: Lines
If the lines have the same y-intercept, then $b_{1}=b_{2}$.

Copyright © 2017 Pearson Education, Inc.

$$
b_{1}=b_{2} \sqsupset \stackrel{b}{m}^{1} \equiv{ }^{b}{ }^{2} m^{2} \sqsupset-\frac{b}{\bar{m}^{1}}=-{ }^{b} m^{2} \quad \quad \frac{x^{2} y-3}{}{ }_{-2} \frac{x^{2}}{}--2
$$

same x-intercept, which contradicts the original assumption that the lines have unequal x -
intercepts. Therefore, Line 1 and Line 2 cannot have the same y-intercept.

Yes. Two distinct lines with the same y-intercept, but different slopes, can have the same x-intercept
if the x-intercept is $x=0$.
Assume Line 1 has equation $y=m 1 x+b$ and Line
2 has equation $y=m_{2} x+b$,
Line 1 has x-intercept $-\frac{-b}{m}$ and y-intercept b.
Line 2 has x-intercept $--\frac{b}{m_{2}}$ and y-intercept b.
Assume also that Line 1 and Line 2 have unequal slopes, that is $m_{1} \neq m_{2}$.
If the lines have the same x-intercept, then

$m_{1} m_{2}$

$$
\begin{aligned}
& \frac{b}{m}=\frac{--b}{m} \\
& 1 \quad 2 \\
& -m_{2} b=-m_{1} b \\
& -m_{2} b+m_{1} b=0 \\
& \text { But }-m_{2} b+m_{1} b=0 \square b\left(m_{1}-m_{2}\right)=0 \\
& \quad b=0 \\
& \text { or } m 1-m_{2}=0 \square m_{1}=m_{2}
\end{aligned}
$$

Since we are assuming that $m 1 \neq m 2$, the only way that the two lines can have the same x-intercept is if $b=0$.

Answers will vary.
$\left.m=\begin{array}{c}y_{2}=y_{1} \\ x_{2}-x_{1} \quad-4(-2 \\ 1-3\end{array}\right)=\frac{-6}{}=-\underline{3}$
It appears that the student incorrectly found the slope by switching the direction of one of the subtractions.

$$
=x^{2} y^{8}
$$

$\underline{x} \underline{2} \underline{2} \underline{8}$

$$
=1=x^{4} y^{16}
$$

$$
\begin{gathered}
h^{2}=a^{2}+b^{2} \\
2 \\
\quad 2+15 \\
16+225 \\
289 \\
h=\sqrt{289}=17
\end{gathered}
$$

$$
(x-3)^{2}+25=49
$$

$$
x-3)^{2}=24
$$

$$
x-3= \pm \sqrt{2} 4
$$

$$
x-3= \pm 2 \sqrt{6}
$$

$$
x=3 \pm 2 \sqrt{6}
$$

The solution set is: $\{3-2 \sqrt{6,3}+2 \sqrt{6}\}$.

$$
\begin{array}{rl}
2 x \mid-5+7 & <10 \\
|2 x-5| & <3 \\
-3 & <2 x-5< \\
3 & 2<2 x<8 \\
1 & <x<4
\end{array}
$$

The solution set is: $\{x \mid 1<x<4\}$.
Interval notation: $(1,4)$

Section 2.3

1. add; $\left(\underline{1}_{2} 10\right)^{2}=25$

$$
\begin{aligned}
(x-2)^{2} & =9 \\
-2 & = \pm \sqrt{9} \\
-2 & = \pm 3 \\
& =2 \pm 3 \\
=5 & \text { or } x=-1
\end{aligned}
$$

The solution set is $\{-1,5\}$.
False. For example, $x^{2}+y^{2}+2 x+2 y+8=0$ is not a circle. It has no real solutions.
radius
True; $r^{2}=9 \rightarrow r=3$
False; the center of the circle

$$
x+3)^{2}+(y-2)^{2}=13 \text { is }(-3,2) .
$$

d
a
Center $=(2,1)$
Radius $=$ distance from $(0,1)$ to $(2,1)$

$$
=\left(\sqrt{2-0)^{2}+(1-1)^{2}}=4 \sqrt{=} 2\right.
$$

Equation: $(x-2)^{2}+(y-1)^{2}=4$
Center $=(1,2)$
Radius $=$ distance from $(1,0)$ to $(1,2)$

$$
=\left(\sqrt{1-1)^{2}+(2-0)^{2}}=4 \sqrt{=} 2\right.
$$

Equation: $(x-1)^{2}+(y-2)^{2}=4$

Center $=$ midpoint of $(1,2)$ and $(4,2)$

$$
\left(\underline{1+}_{2}^{4}, \underline{2}_{2} \underline{2}\right)=\left(\underline{5}_{2,2}\right)=
$$

Radius $=$ distance from $\left(\underline{5}_{2,2}\right)$ to $(4,2)$

$$
\begin{array}{r}
(x-h)^{2}+(y-k)^{2}=r^{2} \\
(x-0)^{2}+(y-0)^{2}=2^{2} \\
x^{2}+y^{2}=4
\end{array}
$$

General form: $x^{2}+y^{2}-4=0$

$$
\begin{gathered}
(x-h)^{2}+(y-k)^{2}=r^{2} \\
(x-0)^{2}+(y-0)^{2}=3^{2} \\
x^{2}+y^{2}=9
\end{gathered}
$$

General form: $x^{2}+y^{2}-9=0$

$$
\begin{gathered}
(x-h)^{2}+(y-k)^{2}=r^{2} \\
(x-0)^{2}+(y-2)^{2}=2^{2} \\
2 \quad 2 \\
x+(y-2)=4
\end{gathered}
$$

General form: $x^{2}+y^{2}-4 y+4=$ $4 x^{2}+y^{2}-4 y=0$

Radius $=$ distance from $(1,2)$ to $(2,3)$

$$
\sqrt{2-1^{2}+(3-2)^{2}}=\sqrt{2}
$$

Equation: $(x-1)^{2}+(y-2)^{2}=2$
193
16. $(x-h)^{2}+(y-k)^{2}=r^{2}$
$(x-1)^{2}+(y-0)^{2}=3^{2}$

$$
(x-1)^{2}+y^{2}=9
$$

General form: $x^{2}-2 x+1+y^{2}=9$

$(x-h)^{2}+(y-k)^{2}=r^{2}$

$$
(x-4)^{2}+(y-(-3))^{2}=5^{2}
$$

$$
x-4)^{2}+(y+3)^{2}=
$$

25 General form:

$$
\begin{gathered}
2-8 x+16+y^{2}+6 y+9=25 \\
2+y^{2}-8 x+6 y=0
\end{gathered}
$$

$$
\begin{aligned}
&(x-h)^{2}+(y-k)^{2}=r^{2} \\
&(x-2)^{2}+(y-(-3))^{2}=4^{2} \\
&(x-2)^{2}+(y+3)^{2}=16
\end{aligned}
$$

General form: $x^{2}-4 x+4+y^{2}+6 y+9=16$

$$
{ }^{2}+y^{2}-4 x+6 y-3=0
$$

19. $(x-h)^{2}+(y-k)^{2}=r^{2}$
$(x-\quad-2)^{2}+(y-1)^{2}=4^{2}$

$$
(x+2)^{2}+(y-1)^{2}=16
$$

General form: $x^{2}+4 x+4+y^{2}-2 y+1=16$

General form: $x^{2}+10 x+25+y^{2}+4 y+4=49$
$2+y^{2}+10 x+4 y-20=0$

$(x-h)^{2}+(y-k)^{2}=r^{2}$
$\begin{array}{ll}\square \\ \square & \frac{1}{2}^{2} \\ ป^{+(y} & -0)^{2}=\frac{1}{\beth} \beth^{2}\end{array}$

$$
\frac{⿺^{x}-}{2} \frac{1^{2}}{2}+y^{2}=\frac{1}{4}
$$

General form: $x^{2}-x+\frac{1}{4}+y^{2}=\frac{1}{4}$

$(x-h)^{2}+(y-k)^{2}=r^{2}$

$$
i^{2}+\underset{-\underset{-}{y}+}{-} \quad \frac{12}{7} \quad=\frac{1}{4}
$$

General form: $x^{2}+y^{2}+y+\frac{1}{4} 4 \equiv$

$$
\begin{aligned}
& x^{2}+y^{2}=4 \\
& x^{2}+y^{2}=2^{2}
\end{aligned}
$$

Center: $(0,0) ;$ Radius $=2$
b.

$$
\begin{aligned}
x \text {-intercepts: } x^{2}+(0)^{2} & =4 \\
2 & =4 \\
& = \pm \sqrt{4}= \pm 2 \\
y \text {-intercepts: }(0)^{2}+y^{2} & =4 \\
2 & =4 \\
& = \pm \sqrt{4}= \pm 2
\end{aligned}
$$

The intercepts are $(-2,0),(2,0),(0$, $-2)$, and (0,2).
$x^{2}+(y-1)^{2}=1$
$2+(y-1)^{2}=1^{2}$
Center:(0, 1); Radius = 1

$$
\begin{gathered}
x \text {-intercepts: } x^{2}+(0-1)^{2}=1 \\
2+1=1 \\
x^{2}=0 \\
x= \pm \sqrt{0}=0 \\
y \text {-intercepts: }(0)^{2}+(y-1)^{2}=1(\\
y-1)^{2}=1 \\
y-1= \pm \sqrt{1} \\
y-1= \pm 1 \\
y=1 \pm 1 \\
y=2 \text { or } y=0
\end{gathered}
$$

The intercepts are $(0,0)$ and $(0,2)$.
$2(x-3)^{2}+2 y^{2}=8$
$(x-3)^{2}+y^{2}=4$
Center: $(3,0)$; Radius $=2$
b.

x-intercepts: $(x-3)^{2}+(0)^{2}=4$

$$
\begin{aligned}
&(x-3)^{2}=4 \\
& x-3= \pm \sqrt{4} \\
& x-3= \pm 2 \\
& x=3 \pm 2 \\
& x=5 \text { or } x=1
\end{aligned}
$$

y-intercepts: $(0-3)^{2}+y^{2}=4$

$$
\begin{aligned}
&(-3)^{2}+y^{2}=4 \\
& 9+y^{2}=4 \\
& y^{2}=-5 \\
& \text { No real solution. }
\end{aligned}
$$

The intercepts are $(1,0)$ and $(5,0)$.

$$
\begin{aligned}
& 3(x+1)^{2}+3(y-1)^{2}=6 \\
& x+1)^{2}+(y-1)^{2}=2
\end{aligned}
$$

a. Center: $(-1,1) ;$ Radius $=\sqrt{2}$
b.

$$
\begin{aligned}
& x \text {-intercepts: }(x+1)^{2}+(0-1)^{2}=2 \\
&x+1)^{2}+(-1)^{2}=2 \\
&(x+1)^{2}+1=2 \\
&(x+1)^{2}=1 \\
& x+1= \pm \sqrt{1} \\
& x+1= \pm 1 \\
& x=-1 \pm 1 \\
& x=0 \text { or } x=-2 \\
& y \text {-intercepts: }(0+1)^{2}+(y-1)^{2}=2 \\
&(1)^{2}+(y-1)^{2}=2 \\
& 1+(y-1)^{2}=2 \\
&(y-1)^{2}=1 \\
& y-1= \pm \sqrt{1} \\
& y-1= \pm 1 \\
& y= 1 \pm 1 \\
& y=2 \text { or } y=0
\end{aligned}
$$

The intercepts are $(-2,0),(0,0)$, and $(0,2)$.

$$
\begin{aligned}
& x^{2}+y^{2}-2 x-4 y-4=0 \\
& x^{2}-2 x+y^{2}-4 y=4 \\
&\left.x^{2}-2 x+1\right)+\left(y^{2}-4 y+4\right)=4+ \\
& 1+4(x-1)^{2}+(y-2)^{2}=3^{2}
\end{aligned}
$$

Center: $(1,2) ;$ Radius $=3$

x-intercepts: $(x-1)^{2}+(0-2)^{2}=3^{2}$

$$
\begin{aligned}
(x-1)^{2}+(-2)^{2} & =3^{2} \\
(x-1)^{2}+4 & =9 \\
(x-1)^{2} & =5 \\
x-1 & = \pm \sqrt{5} \\
x & =1 \pm \sqrt{5}
\end{aligned}
$$

$$
\begin{aligned}
y \text {-intercepts: }(0-1)^{2}+(y-2)^{2} & =3^{2} \\
(-1)^{2}+(y-2)^{2} & =3^{2} \\
1+(y-2)^{2} & =9 \\
(y-2)^{2} & =8 \\
y-2 & = \pm \sqrt{8} \\
y-2 & = \pm 2 \sqrt{2} \\
)^{y} & =2 \pm 2 \sqrt{2}
\end{aligned}
$$

The intercepts are $1-\sqrt{, 0},(1+\sqrt{5}, 0)$,
$(0,2-\sqrt{2})$, and $(0,2 \sqrt{22})$.
28. $x^{2}+y^{2}+4 x+2 y-20=0$

$$
x^{2}+4 x+y^{2}+2 y=20
$$

$$
\left.x^{2}+4 x+4\right)+\left(y^{2}+2 y+1\right)=20+4
$$

$$
+1(x+2)^{2}+(y+1)^{2}=5^{2}
$$

Center: $(-2,-1)$; Radius $=5$
b.

x-intercepts: $(x+2)^{2}+(0+1)^{2}=5^{2}($

$$
\begin{aligned}
x+2)^{2}+1 & =25(\\
x+2)^{2} & =24 \\
x+2 & = \pm \sqrt{24} \\
x+2 & = \pm 2 \sqrt{6} \\
x & =-2 \pm 2 \sqrt{6}
\end{aligned}
$$

y-intercepts: $(0+2)^{2}+(y+1)^{2}=5^{2}$

$$
\begin{aligned}
4+(y+1)^{2} & =25 \\
(y+1)^{2} & =21 \\
y+1 & = \pm \sqrt{21} \\
y & =-1 \pm \sqrt{21}
\end{aligned}
$$

The intercepts are $(-2-2 \sqrt{6}, 0)$,

$$
\begin{gathered}
x^{2}+y^{2}+4 x-4 y-1=0 \\
x^{2}+4 x+y^{2}-4 y=1 \\
\left.x^{2}+4 x+4\right)+\left(y^{2}-4 y+4\right)=1+4 \\
+4(x+2)^{2}+(y-2)^{2}=3^{2} \\
\text { Center: }(-2,2) \text {; Radius }=3
\end{gathered}
$$

x-intercepts: $(x+2)^{2}+(0-2)^{2}=$

$$
\begin{aligned}
3^{2}(x+2)^{2} & +4 \\
=9(x+2)^{2}=5 & \\
x+2= \pm & 5 \\
x=-2 \pm & 5
\end{aligned}
$$

$$
y \text {-intercepts: }(0+2)^{2}+(y-2)^{2}=3^{2}
$$

$$
4+(y-2)^{2}
$$

$$
=9(y-
$$

$$
2)^{2}=5
$$

$$
y-2= \pm 5
$$

$$
y=2 \pm \sqrt{5}
$$

The intercepts are $(-2-5$,
0),

$$
(-2+5,0),(0,2-5), \text { and }(0,2+5)
$$

30. $x^{2}+y^{2}-6 x+2 y+9=0$

$$
x^{2}-6 x+y^{2}+2 y=-9
$$

$$
\left.x^{2}-6 x+9\right)+\left(y^{2}+2 y+1\right)=-9+
$$

$$
\begin{gathered}
+1(x-3)^{2}+(y+1)^{2}= \\
1^{2}
\end{gathered}
$$

Center: $(3,-1) ;$ Radius $=1$
b.

$$
\begin{aligned}
x \text {-intercepts: }(x-3)^{2}+(0+1)^{2} & =1^{2} \\
(x-3)^{2}+1 & =1 \\
(x-3)^{2} & =0 \\
x-3 & =0 \\
x & =3 \\
y \text {-intercepts: }(0-3)^{2}+(y+1)^{2} & =1^{2} \\
9+(y+1)^{2} & =1 \\
(y+1)^{2} & =-8
\end{aligned}
$$

No real solution.
The intercept only intercept is $(3,0)$.

$$
\begin{aligned}
& x^{2}+y^{2}-x+2 y+1=0 \\
& \quad 2-x+y^{2}+2 y=-1 \\
& \frac{1}{-}{ }^{2}-x+\left(y^{2}+2 y+1\right)=-1+\frac{1}{4}+1
\end{aligned}
$$

b.

No real solutions

$$
\begin{array}{r}
\frac{1}{4}+(y+1)^{2}=\frac{1}{4} \\
y+1^{2}=0 \\
y+1=0
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
-\quad-\lrcorner 11 \\
-\quad 2-\square 2 \square
\end{array}
\end{aligned}
$$

Chapter 2: Graphs
$0,-1 . \quad$ Section 2.3: Circles

$$
(\quad) y=-1
$$

$$
x^{2}+y^{2}+x+y={ }^{1} 2=0
$$

$$
x^{2}+x+y^{2}+y=\frac{1}{2}
$$

Center:

$$
=1
$$

b.

c. x-intercepts: +2

$$
\sqsupset^{-} \frac{x_{2}^{2}}{\square}+\frac{1}{4}=1
$$

198

Copyright © 2017 Pearson Education, Inc.

$$
\begin{aligned}
& 2 x^{2}+2 y^{2}-12 x+8 y-24=0 \\
& x^{2}+y^{2}-6 x+4 y=12 \\
& x^{2}-6 x+y^{2}+4 y=12 \\
& \left.x^{2}-6 x+9\right)+\left(y^{2}+4 y+4\right)=12+9 \\
& +4(x-3)^{2}+(y+2)^{2}=5^{2}
\end{aligned}
$$

Center: (3,-2); Radius $=5$
b.

x-intercepts: $(x-3)^{2}+(0+2)^{2}=5^{2}($

$$
\begin{aligned}
x-3)^{2}+4 & =25(\\
x-3)^{2} & =21 \\
x-3 & = \pm \sqrt{21} \\
x & =3 \pm \sqrt{21}
\end{aligned}
$$

y-intercepts: $(0-3)^{2}+(y+2)^{2}=5^{2}$

$$
\begin{array}{r}
9+(y+2)^{2}=25 \\
(y+2)^{2}=16
\end{array}
$$

$$
\begin{gathered}
y+2= \pm 4 \\
y=-2 \pm 4 \\
y=2 \quad \text { or } y=-6
\end{gathered}
$$

The intercepts are $(3-\sqrt{21}, 0),(3+\sqrt{21}, 0)$,

$$
(0,-6), \text { and }(0,2)
$$

34. a. $2 x^{2}+2 y^{2}+8 x+7=0$

$$
\begin{aligned}
2 x^{2}+8 x+2 y^{2} & =-7 \\
x^{2}+4 x+y^{2} & =-\frac{7}{2}
\end{aligned}
$$

$$
\left(x^{2}+4 x+4\right)+y^{2}=-\frac{7}{2}+4
$$

$$
(x+2)^{2}+y^{2}=\frac{1}{2}
$$

$$
(x+2)^{2}+y^{2}=\underline{2}
$$

Center: $(-2,0) ;$ Radius $=\frac{\underline{\sqrt{2}}}{2}$

$$
\text { Center: }(-2,0) \text {; Radius: } r=2
$$

b.

Copyright © 2017 Pearson Education, Inc.

$$
x \text {-intercepts: } \begin{aligned}
&(x+2)^{2}+(0)^{2}=2^{2}(\\
&x+2)^{2}=4 \\
&(x+2)^{2}=\sqrt{ \pm} 4 \\
& x+2= \pm 2 \\
& x=-2 \pm 2 \\
& x=0 \text { or } x=-4
\end{aligned}
$$

y-intercepts: $(0+2)^{2}+y^{2}=2^{2}$

$$
\begin{aligned}
4+y^{2} & =4 \\
y^{2} & =0 \\
y & =0
\end{aligned}
$$

The intercepts are $(-4,0)$ and $(0,0)$.

$$
\begin{aligned}
3 x^{2}+3 y^{2}-12 y= & 0 \\
2+y^{2}-4 y & =0 \\
2+y^{2}-4 y+4 & =0+4 \\
2+(y-2)^{2} & =4
\end{aligned}
$$

Center: $(0,2)$; Radius: $r=2$
b.

x-intercepts: $x^{2}+(0-2)^{2}=4$

$$
\begin{aligned}
2+4 & =4 \\
x^{2} & =0
\end{aligned}
$$

$$
x=0
$$

$$
y \text {-intercepts: } 0^{2}+(y-2)^{2}=4
$$

$$
\begin{aligned}
(y-2)^{2} & =4 \\
y-2 & = \pm \sqrt{4} \\
y-2 & = \pm 2 \\
y & =2 \pm 2 \\
y=4 & \text { or } y=0
\end{aligned}
$$

The intercepts are $(0,0)$ and $(0,4)$.

Center at $(0,0)$; containing point $(-2,3)$.

$$
\begin{aligned}
& r=\sqrt{(-2-0)^{2}+(3-0)^{2}}=\sqrt[4+9=]{\sqrt{2}}= \\
& \text { Equation: }(x-0)^{2}+(y-0)^{2}=(\sqrt{13})^{2} \\
& x^{2}+y^{2}=13
\end{aligned}
$$

Center at $(1,0)$; containing point $(-3,2)$.

$$
r=\sqrt{-3-12+2-0{ }^{2}}=\sqrt{16+4}=\sqrt{20}=2 \sqrt{5}
$$

Equation: $(x-1)^{2}+(y-0)^{2}=(\sqrt{20})^{2}$

$$
2 \quad 2
$$

$$
x-1)+y=20
$$

Center at $(2,3)$; tangent to the x-axis.

$$
r=3
$$

Equation: $(x-2)^{2}+(y-3)^{2}=3^{2}$

$$
x-2)^{2}+(y-3)^{2}=9
$$

Center at $(-3,1)$; tangent to the y-axis.
$r=3$
Equation: $(x+3)^{2}+(y-1)^{2}=3^{2}$

$$
x+3)^{2}+(y-1)^{2}=9
$$

Endpoints of a diameter are $(1,4)$ and $(-3,2)$. The center is at the midpoint of that diameter:
Center: $\left.{ }^{\square} \square_{22}^{\square}\right] \quad 4+(-3) 4+2 \sqsubset{ }_{\square}=(-1,3)$
Radius: $r=\sqrt{(1-(-1))^{2}+(4-3)^{2}}=\sqrt{ } \sqrt{4+1}=5$
Equation: $(x-(-1))^{2}+(y-3)^{2}=(5)^{2}$

$$
x+1)^{2}+(y-3)^{2}=5
$$

Endpoints of a diameter are $(4,3)$ and $(0,1)$.
The center is at the midpoint of that diameter:

Raqation. $=(x(4) 2)_{2}^{2}+\left(4 y_{(3}-2\right)_{2}^{2}=(\sqrt{5})^{2}$

$$
(x-2)^{2}+(y-2)^{2}=5
$$

Copyright © 2017 Pearson Education, Inc.

Center at $(-1,3)$; tangent to the line $y=2$. This means that the circle contains the point $(-1,2)$, so the radius is $r=1$.
Equation: $(x+1)^{2}+(y-3)^{2}=(1)^{2}$

$$
x+1)^{2}+(y-3)^{2}=1
$$

Center at (4, -2); tangent to the line $x=1$. This means that the circle contains the point $(1,-2)$, so the radius is $r=3$.
Equation: $(x-4)^{2}+(y+2)^{2}=(3)^{2}$

$$
x-4)^{2}+(y+2)^{2}=9
$$

(c); Center: $(1,-2) ;$ Radius $=2$
(d) ; Center: $(-3,3)$; Radius $=3$
(b) ; Center: $(-1,2)$; Radius $=2$
(a) ; Center: $(-3,3)$; Radius $=3$

Let the upper-right corner of the square be the point (x, y). The circle and the square are both centered about the origin. Because of symmetry, we have that $x=y$ at the upper-right corner of the square. Therefore, we get

$$
\begin{aligned}
& 2+y^{2}=9 \\
& 2+x^{2}=9 \\
& 2 x^{2}=9 \\
& x^{2}=\frac{9}{2} \\
& x=\sqrt{\frac{3}{2}}=\frac{3 \sqrt{2}}{2}
\end{aligned}
$$

The length of one side of the square is $2 x$. Thus, the area is
50. The area of the shaded region is the area of the circle, less the area of the square. Let the upperright corner of the square be the point (x, y). The circle and the square are both centered about the origin. Because of symmetry, we have that x $=y$ at the upper-right corner of the square.
Therefore, we get

$$
\begin{aligned}
x^{2}+y^{2} & =36 \\
x^{2}+x^{2} & =36 \\
x^{2} & =36 \\
x^{2} & =18 \\
x & =3 \sqrt{2}
\end{aligned}
$$

The length of one side of the square is $2 x$. Thus, the area of the square is $\left(23\lfloor 2)^{2}=72\right.$ square units. From the equation of the circle, we have $r=6$. The area of the circle is

$$
r^{2}=\pi(6)^{2}=36 \pi \text { square units. }
$$

Therefore, the area of the shaded region is $A=36 \pi-72$ square units.

The diameter of the Ferris wheel was 250 feet, so the radius was 125 feet. The maximum height was 264 feet, so the center was at a height of $264-125=139$ feet above the ground. Since the center of the wheel is on the y-axis, it is the point $(0,139)$. Thus, an equation for the wheel is:

$$
\begin{array}{r}
x-0)^{2}+(y-139)^{2}=125^{2} \\
2^{2}+(y-139)^{2}=15,625
\end{array}
$$

The diameter of the wheel is 520 feet, so the radius is 260 feet. The maximum height is 550 feet, so the center of the wheel is at a height of $550-260=290$ feet above the ground. Since the center of the wheel is on the y-axis, it is the point (0,290). Thus, an equation for the wheel is:

$$
\begin{gathered}
x-0)^{2}+(y-290)^{2}=260^{2} \\
2+(y-290)^{2}=67,600 \\
x^{2}+y^{2}+2 x+4 y-4091=0 \\
2+2 x+y^{2}+4 y-4091=0 \\
2+2 x+1+y^{2}+4 y+4=4091+5 \\
x+1)^{2}+(y+2)^{2}=4096
\end{gathered}
$$

The circle representing Earth has center ($-1,-2$) and radius $=\sqrt{4096}=64$.
So the radius of the satellite's orbit is $64+0.6=64.6$ units.
The equation of the orbit is

$$
\begin{aligned}
& x+1)^{2}+(y+2)^{2}=(64.6)^{2} \\
& 2+y^{2}+2 x+4 y-4168.16=0
\end{aligned}
$$

Copyright © 2017 Pearson Education, Inc.

54. a.

$$
\begin{array}{r}
x^{2}+(m x+b)^{2}=r^{2} \\
x^{2}+m^{2} x^{2}+2 b m x+b^{2}=r^{2} \\
\left(1+m^{2}\right) x^{2}+2 b m x+b^{2}-r^{2}=0
\end{array}
$$

There is one solution if and only if the discriminant is zero.

$$
\begin{array}{r}
(2 b m)^{2}-4\left(1+m^{2}\right)\left(b^{2}-r^{2}\right)=04 b \\
2^{2} m^{2}-4 b^{2}+4 r^{2}-4 b^{2} m^{2}+4 m^{2} \\
r^{2}=0-4 b^{2}+4 r^{2}+4 m^{2} r^{2}=0-b \\
2+r^{2}+m^{2} r^{2}=0 \\
r^{2}\left(1+m^{2}\right)=b^{2}
\end{array}
$$

Using the quadratic formula, the result from part (a), and knowing that the discriminant is zero, we get:

$$
\begin{aligned}
& \left(1+m^{2}\right) x^{2}+2 b m x+b^{2}-r^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& 2\left(1+m^{2}\right) \quad b^{2} \quad b^{2} \quad b \\
& y=m_{-}^{-} \quad b+b \\
& =\frac{-m^{2} r^{2}}{b}+b=\frac{-m^{2} r^{2}+b^{2}}{b}=\frac{r^{2}}{b}
\end{aligned}
$$

The slope of the tangent line is m.
The slope of the line joining the point of tangency and the center is:

$$
\begin{aligned}
& r^{2} \\
& \text { [- }{ }^{-}{ }^{-} \\
& \text {b.- }=\frac{r^{2}}{b} \frac{b}{-m r^{2}}=-\frac{1}{m} \\
& =\frac{m r^{2}}{b}-0
\end{aligned}
$$

Therefore, the tangent line is perpendicular to the line containing the center of the circle and the point of tangency.
$x^{2}+y^{2}=9$
Center: (0,0)
Slope from center to $(1,2 \sqrt{2})$ is $\underline{2 \sqrt{2}-0}=\frac{2 \sqrt{2}}{}=2 \sqrt{2}$. $\quad \sqrt{ }$

Equation of the tangent line is:

$$
\begin{gathered}
\frac{\sqrt{2}}{2} \\
y-\sqrt[3]{2}=-\sqrt{4}(x-\sqrt{1}) \\
y-22=-\frac{2}{4} x+\frac{2}{4} \\
4 y-8 \sqrt{2}=-\sqrt{2} x+\sqrt{2} \\
\sqrt{2} x+4 y=9 \sqrt{2} \\
\sqrt{2} x+4 y-9 \sqrt{2}=0 \\
x^{2}+y^{2}-4 x+6 y+4=0 \\
\left(x^{2}-4 x+4\right)+\left(y^{2}+6 y+9\right)=-4+4+9 \\
(x-2)^{2}+(y+3)^{2}=9
\end{gathered}
$$

Center: $(2,-3)$
Slope from center to $(3,2 \sqrt{2}-3)$ is

$$
\underline{2 \sqrt{2}-3-(-3)}=\underline{2 \sqrt{2}}=2 \sqrt{ }
$$

3-2 1
Slope of the tangent line is: $\frac{-1}{\sqrt[2]{2}}=-\frac{\sqrt{2}}{4}$
Equation of the tangent line:

$$
\begin{aligned}
y-(22-3) & =-\frac{\sqrt{2}}{4}(x-3) \\
y-2 \sqrt{2}+3 & =-\frac{\sqrt{2}}{2} x+\frac{3 \sqrt{2}}{4} \\
\sqrt{2} & \sqrt{4} \sqrt{ } \\
4 y-82+12 & =-2 x+32 \\
\sqrt{2} x+4 y-1 \sqrt{2}+12 & =0
\end{aligned}
$$

Let (h, k) be the center of the circle.

$$
\begin{aligned}
&-2 y+4=0 \\
& y= x+4 \\
& y=\begin{array}{l}
2 \\
2
\end{array} \\
&
\end{aligned}
$$

The slope of the tangent line is ${ }^{1} 2$. The slope from (h, k) to $(0,2)$ is -2 .
$2-k=-2$
$0-h$
$2-k=2 h$

$$
1-0 \quad 1
$$

Slope of the tangent line is $\frac{-1}{22}=-\frac{2}{4}$.

The other tangent line is $y=2 x-7$, and it has
slope 2.

Copyright © 2017 Pearson Education, Inc.

The slope from (h, k) to $(3,-1)$ is $-\frac{1}{2}$.

$$
\begin{aligned}
\frac{-1-k}{3-h} & =-\frac{1}{2} \\
2+2 k & =3-h \\
2 k & =1-h \\
& =1-2 k
\end{aligned}
$$

Solve the two equations in h and k :

$$
\begin{aligned}
& 2-k=2(1-2 k) \\
& 2-k=2-4 k \\
& 3 k=0 \\
&=0 \\
&=1-2(0)=1
\end{aligned}
$$

The center of the circle is $(1,0)$.
Find the centers of the two circles:

$$
\begin{gathered}
2+y^{2}-4 x+6 y+4=0 \\
\left(x^{2}-4 x+4\right)+\left(y^{2}+6 y+9\right)=-4+4+9 \\
x-2)^{2}+(y+3)^{2}=9
\end{gathered}
$$

Center: ($2,-3$)

$$
\begin{gathered}
2+y^{2}+6 x+4 y+9=0 \\
\left(x^{2}+6 x+9\right)+\left(y^{2}+4 y+4\right)=-9+9+4 \\
x+3)^{2}+(y+2)^{2}=4
\end{gathered}
$$

Center: $(-3,-2)$
Find the slope of the line containing the centers:

$$
=\frac{-2}{-3-25}=\frac{(-3)}{-25}=-1
$$

Find the equation of the line containing the centers:

$$
\begin{gathered}
\quad \underline{1} \\
y+3=-5(x-2) \\
y+15=-x+2 \\
+5 y=-13 \\
+5 y+13=0
\end{gathered}
$$

$$
\begin{gathered}
C=2 \pi r \\
6 \pi=2 \pi r \\
\underline{6 \pi}=\underline{2 \pi r} \\
2 \pi \\
3=r
\end{gathered}
$$

The radius is 3 units long.
(b), (c), (e) and (g)

We need $h, k>0$ and $(0,0)$ on the graph.
(b), (e) and (g)

We need $h<0, k=0$, and $h|>| r$.
Answers will vary.
The student has the correct radius, but the signs of the coordinates of the center are incorrect. The student needs to write the equation in the standard form $(x-h)^{2}+(y-k)^{2}=r^{2}$.

$$
\begin{aligned}
& x+3)^{2}+(y-2)^{2}=16 \\
& x-(-3))^{2}+(y-2)^{2}=42
\end{aligned}
$$

Thus, $(h, k)=(-3,2)$ and $r=4$.

$$
\begin{aligned}
A= & \pi r^{2} \\
& \pi(13)^{2} \\
& 169 \pi \mathrm{~cm}^{2} \\
C= & 2 \pi r \\
& 2 \pi(13) \\
& 26 \pi \mathrm{~cm}
\end{aligned}
$$

$$
(3 x-2)\left(x^{2}-2 x+3\right)=3 x^{3}-6 x^{2}+9 x-2 x^{2}+4 x-6
$$

$$
3 x^{3}-8 x^{2}+13 x-6
$$

$$
2 \sqrt{2+3 x-1}=x+1
$$

Therefore, the path of the center of the circle has the equation $y=2$.

$$
\begin{aligned}
2 x^{2}+3 x-1 & =(x+1)^{2} \\
2 x^{2}+3 x-1 & =x^{2}+2 x+1 \\
x^{2}+x-2 & =0 \\
x+2)(x-1) & =0 \\
& =-2 \text { or } x=1
\end{aligned}
$$

We need to check each possible solution:

$$
\begin{aligned}
\text { Check } x & =-2 \\
\sqrt{2(-2)^{2}+3(-2)-1} & =(-2)+1 \\
\sqrt{2(4)-6-1} & =-1 \\
& \text { no }
\end{aligned}
$$

$$
\text { Check } x=1
$$

$$
\sqrt{2(1)^{2}+3(1)-1}=(1)+1
$$

$$
\sqrt{2+3-1}=2
$$

$$
\sqrt{4}=2
$$

yes
The solution is $\{1\}$
68. Let t represent the time it takes to do the job together.

	Time to do job	Part of job done in one minute
	22	$2 \frac{1}{2}$
Aaron	28	$2 \frac{1}{8}$
Elizabeth	28	1
Together	t	

$$
\begin{aligned}
\frac{1}{22}+\frac{1}{28} & =\frac{1}{t} \\
14 t+11 t & =308 \\
25 t & =308 \\
= & 12.32
\end{aligned}
$$

Working together, the job can be done in 12.32 minutes.

Section 2.4

$$
y=k x
$$

False. If y varies directly with x, then $y=k x$, where k is a constant.
b
c

$$
\begin{aligned}
& y=k x \\
& 2=10 k \\
& k=10^{2}= \\
& 1_{5 y}={ }^{1} 5 x \\
& v=k t \\
& 16=2 k \\
& 8=k \\
& v=8 t \\
& A=k x^{2} \\
& 4 \pi=k(2)^{2} \\
& 4 \pi=4 k \\
& =k \\
& A=\pi x^{2} \\
& V=k x^{3} \\
& 36 \pi=k(3)^{3} \\
& 36 \pi=27 k \\
& k=\frac{36 \pi}{27}=\frac{4}{3} \\
& F=\frac{k_{d}}{2} \\
& 10=\frac{k}{5^{2}} \\
& 10=25^{k} \\
& =250 \\
& F=\underline{250} \\
& d^{2} \\
& y=\frac{k}{\sqrt{x}} \\
& 4=\overline{\sqrt{ }} 9 \\
& 4=k_{3}
\end{aligned}
$$

$z=k\left(x^{2}+y^{2}\right)$

$$
5=k\left(3^{2}+4^{2}\right)
$$

$$
5=k(25) k
$$

$$
=25^{5}={ }^{1} 5
$$

$$
z=\frac{1}{5}\left(x^{2}+y^{2}\right)
$$

$$
T=k\left({ }^{3} x\right)\left(d^{2}\right)
$$

$$
18=k(3 \sqrt{2})\left(3^{2}\right)
$$

$$
18=k(18)
$$

$$
1=k
$$

$$
T=(\sqrt[3]{x})\left(d^{2}\right)
$$

13. $M=\frac{k d \underline{2}}{x}$

$$
24=\frac{k\left(4^{2}\right)}{\sqrt{9}}
$$

$$
24=\frac{16 k}{\sqrt{3}}
$$

$$
24-3 \quad 9
$$

$$
k=-\quad \text { i }=
$$

$16-2$

$$
=\frac{-9 d^{2}}{2^{2}}
$$

$$
z=k\left(x^{3}+y^{2}\right)
$$

$$
1=k\left(2^{3}+3^{2}\right.
$$

$$
)_{1=k(17)}
$$

$$
=17^{1}
$$

$$
1_{-}
$$

$$
z=17 \quad\left(x^{3}+y^{2}\right)
$$

15.

$$
\begin{aligned}
& \frac{e^{2}}{d} \quad T_{2}=k a_{3} \\
22 & =\frac{k\left(2^{3}\right)}{4^{2}} \\
4 & =\frac{k(8)}{16} \\
4 & =\underline{k}_{2} \\
& =8 \\
T_{2}= & \frac{8 a_{3}}{d_{2}} \\
z^{3}= & k\left(x^{2}+y^{2}\right) \\
2^{3}= & k\left(9^{2}+4^{2}\right) \\
8 & =k(97) \\
k & =\frac{8}{97} . \\
z^{3}= & \frac{8}{97} \cdot\left(x^{2}+y^{2}\right)
\end{aligned}
$$

17. $V=\frac{4 \pi}{r} r^{3}$

3
18. $c^{2}=a^{2}+b^{2}$
19. $A=\frac{1}{b h}$

2
20. $p=2(l+w)$
21. $F=\left(6.67 \times 10^{-11}\right) \frac{\square m M}{\square{ }^{2}}$
22. $T=\frac{2 \pi}{\sqrt{32}} \sqrt{l}$
23. $\begin{aligned} p & =k B \\ 6.49 & =k(1000) \\ 0.00649 & =k\end{aligned}$

Therefore we have the linear equation $=0.00649 \mathrm{~B}$.
If $B=145000$, then $=0.00649(145000)=\$ 941.05$.

$$
\left.\begin{array}{l}
p=k B \\
\quad 8.99=k(1000) \\
0.00899=k \\
\text { Therefore we have the linear equation } \\
\quad=0.00899 B . \\
\text { If } B=175000, \text { then } \\
\quad=0.00899(175000)=\$ 1573.25 . \\
\\
\begin{array}{rl}
s=k t^{2}
\end{array} \\
\quad=k(1)^{2} \\
\quad=16
\end{array}\right\} \begin{aligned}
& \text { Therefore, we have equation } s=16 t^{2} . \\
& \text { If } t=3 \text { seconds, then } s=16(3)^{2}=144 \text { feet. } \\
& \text { If } s=64 \text { feet, then } \\
& 64=16 t^{2} \\
& t^{2}=4 \\
& t= \pm 2
\end{aligned}
$$

Time must be positive, so we disregard $t=-2$.
It takes 2 seconds to fall 64 feet.

$$
\begin{aligned}
& v=k t \\
& \qquad \begin{aligned}
64 & =k(2) \\
& =32
\end{aligned}
\end{aligned}
$$

Therefore, we have the linear equation $v=32 t$.
If $t=3$ seconds, then $v=32(3)=96 \mathrm{ft} / \mathrm{sec}$.

$$
\begin{gathered}
E=k W \\
=k(20) \\
k=20^{3}
\end{gathered}
$$

3
Therefore, we have the linear equation $E=\ldots W$.

If $W=15$, then $E=\overline{20}(15)=2.25$.

$$
\begin{aligned}
& k \\
& \begin{aligned}
k=l
\end{aligned} \\
& \begin{aligned}
256 & =48^{k} \\
& =12,288
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\text { If } \begin{aligned}
R= & 576, \text { then } \\
& =\frac{12,288}{l} \\
576 l= & 12,288 \\
& \frac{12,}{} 288-64 \\
l= & 576=3 \text { inches }
\end{aligned}
\end{aligned}
$$

$$
R=k g
$$

$$
47.40=k(12)
$$

$$
3.95=k
$$

Therefore, we have the linear equation $R=3.95 \mathrm{~g}$.
If $g=10.5$, then $R=(3.95)(10.5) \approx \$ 41.48$.
$C=k A$

$$
\begin{aligned}
23.75 & =k(5) \\
4.75 & =k
\end{aligned}
$$

Therefore, we have the linear equation $C=4.75 \mathrm{~A}$.
If $A=3.5$, then $C=(4.75)(3.5)=\$ 16.63$.
$D=\underline{k}_{p}$
a. $D=156, p=2.75$;

$$
156=\frac{k}{2.75}
$$

$$
=429 \mathrm{So},
$$

429

$$
D=\quad p
$$

$$
D=\frac{429}{3} 3=143 \text { bags of candy }
$$

$$
t=\frac{k}{S}
$$

$$
\begin{gathered}
t=40, s=30 \\
40=30^{k} \\
k=1200
\end{gathered}
$$

12,288
So, we have the equation $t=-$

$$
t=\underline{1200}^{4} 40=30 \text { minutes }
$$

Therefore, we have the equation $R=$

$$
\text { 33. } \begin{aligned}
& V=P_{-}^{k} \\
& V=600, P=150 ; \\
& 600=150 k \\
& k=90,000
\end{aligned}
$$

So, we have the equation $V=$ \qquad
90,000
If $P=200$, then $V=\quad 200=450 \mathrm{~cm}^{3}$.
$i=R^{k}-$
k
If $i=30, R=8$, then $30=_$and $k=240$.
8

If $R=10$, then $i={ }^{240} 10=24$ amperes.
$W=k \overline{d^{2}}$

If $W=125, d=3960$ then

$$
1 \angle J=s 960^{2} \text { and } k=1,960,200,000
$$

So, we have the equation $W=$ \qquad
At the top of Mt. McKinley, we have

$$
=3960+3.8=3963.8, \text { so }
$$

$W=\frac{1,960,200,000}{(3963.8)^{2}} \approx 124.76$ pounds.

$$
k-
$$

\xrightarrow{k}

$$
\begin{aligned}
55 & =3960^{2} \\
& =862,488,000
\end{aligned}
$$

38. $V=\frac{\pi}{3} r^{2} h$
k
39.

$$
\begin{aligned}
& \overline{d_{2}} \\
& \text { If } I=0.075, d=2 \text {, then } \\
& k
\end{aligned}
$$

$$
0.3
$$

So, we have the equation $I=d 2$.
If $d=5$, then $I={ }_{5}^{0} \mathbf{5}^{3}=0.012$ foot-candles.

$$
\begin{aligned}
F & =k A v^{2} \\
& =k(20)(22)^{2} \\
& =9860 k \\
k & =9680 \frac{11}{=} 8801
\end{aligned}
$$

So, we have the equation $F=$ \qquad $A v^{2}$. 880

$$
=880^{1}(47.125)(36.5)^{2} \approx 71.34 \text { pounds. }
$$

$$
h=k s d^{3}
$$

$$
=k(75)(2)^{3}
$$

$$
=600 \mathrm{k}
$$

$$
0.06=k
$$

So, we have the equation $h=0.06 \mathrm{sd}^{3}$.

$$
\text { If } \begin{aligned}
h & =45 \text { and } s=125, \text { then } \\
45 & =(0.06)(125) d^{3} \\
& =7.5 d^{3}
\end{aligned}
$$

$$
6=d^{3}
$$

$$
d=\sqrt[3]{6} \approx 1.82 \text { inches }
$$

So, we have the equation $W=$ \qquad -
If $d=3965$, then
$W=862,488,000 \approx 54.86$ pounds.
37. $V=\pi r^{2} h$

$$
\begin{aligned}
V & =\frac{k T}{P} \\
100 & =\frac{k(300)}{15} \\
& =20 k \\
5 & =k
\end{aligned}
$$

So, we have the equation $V=\frac{5}{P} T$.

$$
\begin{aligned}
& \text { If } V=80 \text { and } T=310, \text { then } \\
& 80=\underline{5(310)} \\
& P \\
& 80 P=1550 \\
& P=\frac{1550}{} 80=19.375 \text { atmospheres }
\end{aligned}
$$

$$
K=k m v^{2}
$$

$$
1250=k(25)(10)^{2}
$$

$$
1250=2500 k
$$

$$
=0.5
$$

So, we have the equation $K=0.5 m v^{2}$. If $m=25$ and $v=15$, then

$$
K=0.5(25)(15)^{2}=2812.5 \text { Joules }
$$

44. $R=k l$

$$
\begin{gathered}
\overline{d^{2}} \\
1.24=\frac{k(432)}{(4)^{2}}
\end{gathered}
$$

$$
1.24=27 k
$$

$$
\text { So, we have the equation } R=\frac{1.24 l}{27 d^{2}}
$$

$$
\text { If } R=1.44 \text { and } d=3 \text {, then }
$$

$$
\begin{aligned}
1.44 & =\frac{1.24 l}{27(3)^{2}} \\
1.44 & =\frac{1.24 l^{2}}{243} \\
349.92 & =1.24 l \\
l & =\frac{349.92}{1.24} \approx 282.2 \text { feet }
\end{aligned}
$$

45. $S=\frac{k p d}{t}$
$100=k(25)(5)$ 0.75

$$
\begin{aligned}
S= & \frac{k w t^{2} l}{2} \\
& =\frac{k(4)(2)}{8} \\
& =2 k \\
& =k
\end{aligned}
$$

So, we have the equation $S=\frac{375 w t}{l}$.

$$
\begin{aligned}
& \text { If } l=10, w=6 \text {, and } t=2 \text {, then } \\
& S=\frac{375(6)(2)^{2}}{10}=900 \text { pounds. }
\end{aligned}
$$

47 - 50. Answers will vary.

$$
3 x^{3}+25 x^{2}-12 x-100
$$

$$
\left(3 x^{3}+25 x^{2}\right)-(12 x+100)
$$

$$
x \quad(3 x+25)-4(3 x+25)
$$

$$
\left(x^{2}-4\right)(3 x+25)
$$

$$
(x-2)(x+2)(3 x+25)
$$

52.

$$
\begin{aligned}
&-\frac{x-2}{2}=\frac{5}{x+3}+\frac{x-2}{(x+3)(x+4)} \\
& x+3 x^{x}+7 x+12 \frac{5(x+4)}{-1}-\frac{x-2}{(x+3)(x+4)+(x+3)(x+4)} \\
&=\frac{5(x+4)+(x-2)}{(x+3)(x+4)} \\
&=\frac{5 x+20+x-2}{(x+3)(x+4)} \\
&=\frac{6 x+18}{(x+3)(x+4)} \\
&=\frac{6(x+3)}{(x+3)(x+4)}=\frac{6}{(x+4)} \\
& \underline{3}
\end{aligned}
$$

Chapter 2: Graphs
Section 2.4: Variation

$$
\begin{aligned}
& =125 k \\
0.6 & =k
\end{aligned}
$$

So, we have the equation $S=\quad$.
If $p=40, d=8$, and $t=0.50$, then $S=\frac{0.6(40)}{0.50}=384 \mathrm{psi}$.
53. $\underline{4}^{2}=\underline{4}^{2}$
$25 \quad 25$

8
5125

The term needed to rationalize the denominator is $\sqrt{7}+2$.

Chapter 2 Review Exercises

$P_{1}=(0,0)$ and $P_{2}=(4,2)$
a. \quad slope $=\frac{y}{x}=\frac{2-0}{4-0}=\frac{2}{4}=\frac{1}{2}$

For each run of 2 , there is a rise of 1 .
$P_{1}=(1,-1)$ and $P_{2}=(-2,3)$
a. \quad slope $=\frac{y}{x}=\frac{3-(-1)}{-2-1}=\frac{4}{-3}=-\frac{4}{3}$

For each run of 3 , there is a rise of -4 .
$P_{1}=(4,-4)$ and $P_{2}=(4,8)$
a. \quad slope $=\frac{y}{x}=\frac{8-(-4)}{4-4}=\frac{12}{0}$,undefined

An undefined slope means the points lie on a vertical line. There is no change in x.
$P_{1}=(-2,-1)$ and $P_{2}=(3,-1)$
a. slope $=\underline{v}=\frac{-1-(-1)}{\underline{0}}=0$

$$
x \quad 3-(-2) \quad 5
$$

A slope of 0 means the points lie on a horizontal line. There is no change in y.

$$
\begin{array}{cc}
2 x=3 y^{2} & \\
x \text {-intercepts: } & y \text {-intercepts: } \\
2 x=3(0)^{2} & 2(0)=3 y^{2} \\
2 x=0 & 0=y^{2} \\
x=0 & y=0
\end{array}
$$

The only intercept is $(0,0)$.
Test x-axis symmetry: Let $y=-y$

$$
\begin{aligned}
& 2 x=3(-y)^{2} \\
& 2 x=3 y^{2} \text { same }
\end{aligned}
$$

Test y-axis symmetry: Let $x=-x$

$$
2(-x)=3 y^{2}
$$

x-intercepts: $\quad y$-intercepts:

$$
\begin{array}{rlrl}
x^{2}+4(0)^{2} & =16 & (0)^{2}+4 y^{2} & =16 \\
x^{2} & =16 & 4 y^{2} & =16 \\
x & = \pm 4 & y^{2} & =4 \\
y & = \pm 2
\end{array}
$$

The intercepts are $(-4,0),(4,0),(0,-2)$, and (0,2).
Test x-axis symmetry: Let $y=-y$

$$
\begin{aligned}
x^{2}+4(-y)^{2} & =16 \\
x^{2}+4 y^{2} & =16 \text { same }
\end{aligned}
$$

Test y-axis symmetry: Let $x=-x$

$$
\begin{aligned}
& -x)^{2}+4 y^{2}=16 \\
& \quad x^{2}+4 y^{2}=16 \text { same }
\end{aligned}
$$

Test origin symmetry: Let $x=-x$ and $y=-y$.

$$
-x)^{2}+4(-y)^{2}=16
$$

$$
x^{2}+4 y^{2}=16 \text { same }
$$

Therefore, the graph will have x-axis, y-axis, and origin symmetry.

$$
y=x^{4}-3 x^{2}-4
$$

$$
\begin{array}{rlrl}
x \text {-intercepts: } & & y \text {-intercepts: } \\
0 & =x^{4}-3 x^{2}-4 \\
& \left(x^{2}\right)(& y=(0)^{4}-3(0)^{2}-4 \\
0 & =x^{2}-4 \quad x^{2}+1 & =-4 \\
x^{2}-4 & =0 & \\
2 & =4 \\
x & & \\
x & = \pm 2 &
\end{array}
$$

The intercepts are $(-2,0),(2,0),(0,-4)$, and $(0,2)$.

Test $\underline{x \text {-axis symmetry: Let } y=-y}$

$$
\begin{aligned}
& y=x^{4}-3 x^{2}-4 \\
& y=-x^{4}+3 x^{2}+4 \text { different }
\end{aligned}
$$

Test y-axis symmetry: Let $x=-x$

Chapter 2: Graphs

$$
-2 x=3 y^{2} \text { different }
$$

Test origin symmetry: Let $x=-x$ and $y=-y$.

$$
2(-x)=3(-y)^{2}
$$

$$
-2 x=3 y^{2} \text { different }
$$

Therefore, the graph will have x-axis symmetry.

$$
x^{2}+4 y^{2}=16
$$

Chapter 2 Review Exercises

$$
=(-x)^{4}-3(-x)^{2}-4
$$

$$
y=x^{4}-3 x^{2}-4 \quad \text { same }
$$

Test origin symmetry: Let $x=-x$ and $y=-y$.

$$
\begin{aligned}
& y=(-x)^{4}-3(-x)^{2}-4 \\
& y=x^{4}-3 x^{2}-4 \\
& y=-x^{4}+3 x^{2}+4 \quad \text { different }
\end{aligned}
$$

Therefore, the graph will have y-axis symmetry.
$y=x^{3}-x$
x-intercepts:
y-intercepts:

$$
\begin{aligned}
& = \\
& =x\left(x^{2}-1\right) \\
& =x(x+1)(x-1) \\
& =0, x=-1, x=1
\end{aligned}
$$

The intercepts are $(-1,0),(0,0)$, and $(1,0)$.
Test $\underline{x \text {-axis symmetry: Let } \quad=-y, ~ y ~}$

$$
\begin{aligned}
& y=x^{3}-x \\
& \\
& \quad \begin{aligned}
y= & -x^{3}+x \\
& \text { different } \quad x=-x
\end{aligned}
\end{aligned}
$$

Test y-axis symmetry: Let

$$
\begin{aligned}
& \quad=(-x)^{3}-(-x) \\
& y=-x^{3}+x \text { different } \quad x=-x \text { and } y=-y .
\end{aligned}
$$

Test origin symmetry: Let

$$
\begin{aligned}
& y=(-x)^{3}-(-x) \\
& y=-x^{3}+x \\
& y=x^{3}-x \quad \text { same }
\end{aligned}
$$

Therefore, the graph will have origin symmetry.
9. $x^{2}+x+y^{2}+2 y=0$
x-intercepts: $x^{2}+x+(0)^{2}+2(0)=0$

$$
\begin{gathered}
x^{2}+x=0 \\
x(x+1)=0 \\
x=0, x=-1
\end{gathered}
$$

y-intercepts: $(0)^{2}+0+y^{2}+2 y=0$

$$
\begin{gathered}
y^{2}+2 y=0 \\
y(y+2)=0 \\
y=0, y=-2
\end{gathered}
$$

The intercepts are $(-1,0),(0,0), \quad$ and $(0,-2)$.
Test x-axis symmetry: Let $y=-y$

$$
\begin{aligned}
x^{2}+x+(-y)^{2}+2(-y) & =0 \\
x^{2}+x+y^{2}-2 y & =0 \quad \text { different }
\end{aligned}
$$

Test y-axis symmetry: Let $x=-x$

$$
\overline{(-x)^{2}+(-x)+y^{2}+2} y=0
$$

$x^{2}-x+y^{2}+2 y=0 \quad$ different
Test origin symmetry: Let $x=-x$ and $y=-y$.

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-(-2))^{2}+(y-3)^{2}=4^{2} \\
& x+2)^{2}+(y-3)^{2}=16 \\
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-(-1))^{2}+(y-(-2))^{2}=1^{2} \\
& x+1)^{2}+(y+2)^{2}=1 \\
& x^{2}+(y-1)^{2}=4 \\
& 2+(y-1)^{2}=2^{2}
\end{aligned}
$$

x-intercepts: $x^{2}+(0-1)^{2}=4$

$$
\begin{aligned}
x^{2}+1 & =4 \\
x^{2} & =3 \\
x & = \pm \sqrt{3}
\end{aligned}
$$

y-intercepts: $0^{2}+(y-1)^{2}=4$

$$
\begin{gathered}
y-1)^{2}=4 y \\
-1= \pm 2 \\
y=1 \pm 2 \\
y=3 \text { or } y=-1
\end{gathered}
$$

The intercepts are $(-\sqrt{3}, 0)(\sqrt{3}, 0,0,-1$, and $(0,3)$.

$$
\begin{array}{r}
x^{2}+y^{2}-2 x+4 y-4=0 x^{2}-2 x+ \\
y^{2}+4 y=4 \\
\left.x^{2}-2 x+1\right)+\left(y^{2}+4 y+4\right)=4+1+4 \\
x-1)^{2}+(y+2)^{2}=3^{2}
\end{array}
$$

$$
\begin{aligned}
(-x)^{2}+(-x)+(-y)^{2}+2(-y) & =0 \\
x^{2}-x+y^{2}-2 y & =0 \quad \text { different }
\end{aligned}
$$

$$
\text { Center: }(1,-2) \text { Radius }=3
$$

x-intercepts: $x-1^{2}+0+2^{2}=32$

$$
\begin{aligned}
x-1 \quad 2+4 & =9 \\
x-1 \quad 2 & =5 \\
& \sqrt{ } \\
x-1 & = \pm 5 \\
x \quad(\quad) \quad & \pm \sqrt{ } 5
\end{aligned}
$$

y-intercepts: $0-1^{2}+y+2^{2}=32$

$$
\begin{aligned}
1+(y+2)^{2} & =9 \\
(y+2)^{2} & =8 \\
y+2 & = \pm \sqrt{8} \\
y+2 & = \pm 2 \sqrt{2} \\
y & =-2 \pm 2 \sqrt{2}
\end{aligned}
$$

The intercepts are $1-\sqrt{5}, 0 \stackrel{(}{\prime} 1+\sqrt{5}, 0$),

$$
\begin{gathered}
(0,-2-2 \sqrt{2}) \text {, and }(0,-2+2 \sqrt{2}) \\
3 x^{2}+3 y^{2}-6 x+12 y=0 \\
2^{2}+y^{2}-2 x+4 y=0 x \\
2^{2}-2 x+y^{2}+4 y=0 \\
\left.x^{2}-2 x+1\right)+\left(y^{2}+4 y+4\right)=1+4 \\
\left(\begin{array}{l}
()
\end{array}\right) \\
x-12+y+2=\sqrt{5} \quad
\end{gathered}
$$

Center: $(1,-2)$ Radius $=\sqrt{5}$

18. x-intercept $=2$; containing the point
$(4,-5)$ Points are $(2,0)$ and $(4,-5)$.

$$
\begin{aligned}
& m=\frac{-5}{4}-\frac{-0}{2}=-\frac{5}{2} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-0=-\frac{5}{2}(x-2) \\
& y=-\underline{5}_{2} x+5 \text { or } 5 x+2 y=10
\end{aligned}
$$

$$
\begin{aligned}
& y \text {-intercept }=-2 \text {; containing }(5,-3) \\
& \text { Points } \operatorname{are}_{(-3)}^{(-3)}{ }^{0-5} \quad \text { and }(Q,-2)=-\frac{1}{5} \\
& y=m x+b \\
& y=-\frac{1}{;} x-2 \text { or } x+5 y=-10
\end{aligned}
$$

Containing the points $(3,-4)$ and $(2,1)$

$$
\begin{aligned}
& m=\frac{1-(-4)}{2-3}=\frac{5}{-1}=-5 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& -(-4)=-5(x-3) \\
& y+4=-5 x+15 \\
& y=-5 x+11 \text { or } 5 x+y=11
\end{aligned}
$$

Parallel to $2 x-3 y=-4$

$$
\begin{aligned}
2 x-3 y & =-4 \\
-3 y & =-2 x-4 \\
\frac{-3 y}{-3} & =-\frac{2 x}{-3}=\underline{4} \\
& \underline{2}-4 \\
y & =3 x+3
\end{aligned}
$$

$$
\text { Slope }=\frac{2}{3} 3 ; \text { containing }(-5,3)
$$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
-3={ }^{2} 3(x-(-5)) \\
y-3={ }^{2} \underline{3}(x+5)
\end{gathered}
$$

$$
y-3=\frac{2}{3} 3 x+{ }^{10} 3
$$

$$
y=\frac{2}{2} x+\frac{19}{} \text { or } 2 x-3 y=-19
$$

$$
33
$$

Perpendicular to $3 x-y=-4$

$$
3 x-y=-4
$$

$$
\begin{aligned}
y-y 1 & =m\left(x-x_{1}\right) \\
-4 & =-1_{3}(x-(-2)) \\
y-4 & =-1_{3} x-2^{2} \\
y & =-\frac{1}{3} x+\frac{10}{3} \text { or } x+3 y=10
\end{aligned}
$$

23. $4 x-5 y=-20$

$$
-5 y=-4 x-20
$$

_4

$$
y=5 \quad x+4
$$

$$
-
$$

$$
\text { slope }=5 ; y \text {-intercept }=4
$$

$$
x-5(0)=-20
$$

$$
4 x=-20
$$

$$
=-5
$$

$$
\frac{1}{2}-\frac{1}{3}-1
$$

$$
\begin{aligned}
x-1 \quad y & =-1 \\
1_{y} & = \\
3 & =1_{2} \bar{x}-{ }^{1} 6 \\
2 & \underline{1}
\end{aligned}
$$

$$
y=x+2
$$

$$
\text { slope }={ }^{3} 2 ; y \text {-intercept }=-\frac{1}{-} 2
$$

x-intercept: Let $y=0$.
111

Chapter 2: Graphs

$$
y=3 x+4
$$

The slope of this line is 3 , so the slope of a line 1
perpendicular to it is -3 .
1
Slope $=-3$; containing $(-2,4)$

$$
\begin{array}{rlrl}
2 x-3 y=12 & \\
x \text {-intercept: } & y \text {-intercept: } \\
2 x-3(0) & =12 & 2(0)-3 y & =12 \\
2 x & =12 & -3 y & =12 \\
x & =6 & y & =-4
\end{array}
$$

The intercepts are $(6,0)$ and $(0,-4)$.

$1_{2 x+}-3 y=2$
x-intercept: $\quad y$-intercept:

$$
\frac{1}{2} x+\frac{1}{3}(0)=2 \quad \frac{1}{2}(0)+\frac{1}{3} y=2
$$

$$
\begin{array}{rr}
\frac{1}{2} x=2 & \frac{1}{3} y=2 \\
x=4 & y=6
\end{array}
$$

The intercepts are $(4,0)$ and $(0,6)$.

Given the points $A=(-2,0), B=(-4,4)$,
and $C=(8,5)$.

Find the distance between each pair of points.

$$
\begin{gathered}
d(A, B)=\sqrt{(-4-(-2))^{2}+(4-0)^{2}} \\
\sqrt{4+16} \\
\sqrt{20}=2 \sqrt{5} \\
d(B, C)=\sqrt{(8-(-4))^{2}+(5-4)^{2}} \\
\sqrt{144+1} \\
\sqrt{145} \\
d(A, C)=\sqrt{(8-(-2))^{2}+(5-0)^{2}} \\
\sqrt{100+25}
\end{gathered}
$$

$$
\begin{aligned}
& \left.\sqrt{20})^{2}+(\sqrt{125})^{2} \sqrt{(145}\right)^{2} \\
& 20+125=145 \\
& 145=145
\end{aligned}
$$

The Pythagorean Theorem is satisfied, so this is a right triangle.

Find the slopes:

$$
\begin{aligned}
& m_{A B}=-\frac{4-0}{4-(-2)}=-\frac{4}{-2}=-2 \\
& m_{B C}=-\frac{5-4}{8-(-4)}=\frac{1}{12} \\
& m_{A C}=-\frac{5-0}{8-(-2)}=\frac{5}{10}=\frac{1}{2}
\end{aligned}
$$

Since $m A B \quad m A C=-2 \quad 2=-1$, the sides $A B$ and $A C$ are perpendicular and the triangle is a right triangle.
Endpoints of the diameter are $(-3,2)$ and (5,-6). The center is at the midpoint of the diameter:

$$
\begin{aligned}
\text { Center: } & \stackrel{-3+5}{2}-\frac{2+(-6)}{2} \\
\text { Radius: } \quad r= & \sqrt{(1-(-3))^{2}+(-2-2)^{2}} \\
& \sqrt{16+16} \\
& \sqrt{32}=4 \sqrt{2}
\end{aligned}
$$

Equation: $(x-1)^{2}+(y+2)^{2}=(48)^{2}$

$$
x-1^{2}+y+2 \quad 2=32
$$

31. slope of $A B=\frac{1-5}{6-2}=-1$

$$
\begin{aligned}
& p=k B \\
& 854=k(130,000) \\
& k=\frac{854}{130,000}=\frac{427}{65,000}
\end{aligned}
$$

Therefore, we have the equation $p=65,000 \quad B$.

$$
\text { If } B=165,000 \text {, then }
$$

$$
\begin{aligned}
& p=65,000^{427}(165,000)=\$ 1083.92 \\
& k
\end{aligned}
$$

$$
w=d^{2}
$$

$$
200=\frac{k}{3960^{2}}
$$

$$
=(200)\left(3960^{2}\right)=3,136,320,000
$$

Therefore, we have the equation

$$
w=\underline{3,136,320,000} .
$$

$$
d^{2}
$$

$$
\text { If } d=3,136,320,000 \times 3961 \text { miles, then }
$$

$$
w=\longrightarrow \approx 199.9 \text { pounds. }
$$

$$
\begin{aligned}
& H=k s d \\
& 135=k(7.5)(40) \\
& \quad=300 k \\
& k=0.45
\end{aligned}
$$

So, we have the equation $H=0.45 s d$.
If $s=12$ and $d=35$, then

$$
=0.45(12)(35)=189 \mathrm{BTU}
$$

Chapter 2 Test

1. a. $m=\underline{y_{2}-v_{1}}=\underline{-1-3} \quad=\underline{-4}=-\underline{2}$

Chapter 2: Graphs
slope of $A C={ }_{8-2}=-1$

- $-1-\frac{1}{1}$
slope of $B C=-{ }_{8-6}=-1$
Therefore, the points lie on a line.
$\begin{array}{lrlll}x_{2} & -x & 5-(-1) & 6 & 3\end{array}$

If x increases by 3 units, y will decrease by 2 units.

$$
\begin{array}{rr}
x^{2}+y=9 & \\
x \text {-intercepts: } & y \text {-intercept: } \\
x^{2}+0=9 & (0)^{2}+y=9 \\
x^{2}=9 & y=9 \\
x= \pm 3 &
\end{array}
$$

The intercepts are $(-3,0),(3,0)$, and $(0,9)$.
Test x-axis symmetry: Let $y=-y$

$$
\begin{aligned}
& x^{2}+(-y)=9 \\
& \quad x^{2}-y=9 \text { different }
\end{aligned}
$$

Test y-axis symmetry: Let $x=-x$

$$
\begin{aligned}
-x)^{2}+y & =9 \\
2+y & =9 \text { same }
\end{aligned}
$$

Test origin symmetry: Let $x=-x$ and $y=-y$

$$
\begin{aligned}
(-x)^{2}+(-y) & =9 \\
x^{2}-y & =9 \text { different }
\end{aligned}
$$

Therefore, the graph will have y-axis symmetry.
5. Slope $=-2$; containing $(3,-4)$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-4)=-2(x-3)
\end{gathered}
$$

$$
2 x+3 y=9
$$

$$
y=-2 x+9
$$

$$
=-\underline{2} 3 x+3
$$

$$
\text { slope }=-\frac{2}{2} ; y \text {-intercept }=3
$$

$$
3
$$

$$
x+3(0)=9
$$

$$
3 x=9
$$

$$
=3
$$

$$
3 x-4 y=24
$$

$$
\begin{array}{rlrl}
x \text {-intercepts: } & y \text {-intercept: } \\
3 x-4(0)=24 & 3(0)-4 y & =24 \\
3 x & =24 & y & =-6 \\
=8 &
\end{array}
$$

The intercepts are $(8,0)$ and $(0,-6)$.

8. $(x-h)^{2}+(y-k)^{2}=r^{2}$

$$
\begin{aligned}
(x-4)^{2}+(y-(-3))^{2} & =5^{2} \\
(x-4)^{2}+(y+3)^{2} & =25
\end{aligned}
$$

General form: $\quad(x-4)^{2}+(y+3)^{2}=25$

$$
\begin{array}{r}
y+4=-2 x+6 \\
y=-2 x+2
\end{array}
$$

$$
\begin{array}{r}
x^{2}-8 x+16+y^{2}+6 y+9=25 \\
x^{2}+y^{2}-8 x+6 y=0
\end{array}
$$

$$
\begin{gathered}
x^{2}+y^{2}+4 x-2 y-4=0 \\
x^{2}+4 x+y^{2}-2 y=4 \\
\left.x^{2}+4 x+4\right)+\left(y^{2}-2 y+1\right)=4+4+ \\
1(x+2)^{2}+(y-1)^{2}=3^{2}
\end{gathered}
$$

Center: $(-2,1)$; Radius $=3$

$$
\begin{aligned}
2 x+3 y= & 6 \\
y & =-2 x+6 \\
& =-\frac{2}{3} x+2
\end{aligned}
$$

Parallel line
Any line parallel to $2 x+3 y=6$ has slope $m=-\frac{2}{3}$. The line contains $(1,-1)$:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
-(-1) & =-\frac{2}{3}(x-1) \\
y+1 & =-\frac{2}{3} x+\frac{2}{3} \\
& =-\frac{2}{3} 3 x=1
\end{aligned}
$$

Perpendicular line
Any line perpendicular to $2 x+3 y=6$ has slope
$\underline{3}$
$m=2$. The line contains $(0,3)$:
$y-y_{1}=m(x-$
니 3
2

Let $R=$ the resistance, $l=$ length, and $r=$ radius.
Then $R=k r^{l}$
Now, $R=10 \quad \underline{r}=6 \times 10^{-3}$ inch, so
ohms, when
$l=50$ feet and

$$
\begin{aligned}
10= & k \frac{50}{\left.6 \times 10^{-3}\right)^{2}} \\
= & 10\left(\frac{6}{\times 10_{-3}}\right)^{2}=7.2 \\
& \times 10^{-6} 50
\end{aligned}
$$

Therefore, we have the equation

$$
=\left(7.2 \times 10^{-6}\right) r 2
$$

If $l=100$ feet and $r=7 \times 10^{-3}$ inch, then $R=(7.2 \times 10-6) \quad 100$

$$
\overline{\left(7 \times 10_{3}^{-}\right)^{2}} \approx 14.69 \mathrm{ohms}
$$

Chapter 2 Cumulative Review

$$
\begin{aligned}
3 x-5 & =0 \\
3 x & =5 \\
x & =\underline{5}_{3}
\end{aligned}
$$

$$
\begin{array}{r}
\text { The solution set is } \square \stackrel{\square}{ } \square \square \\
\square 3 \square
\end{array}
$$

$$
\begin{aligned}
& x^{2}-x-12=0 \\
& x-4(x+3)=0 \\
&=4 \text { or } x=-3
\end{aligned}
$$

The solution set is $\{-3,4\}$.

$$
\begin{gathered}
2 x^{2}-5 x-3=0 \\
2 x+1)(x-3)=0 \\
\quad 1 \\
=-2 \text { or } x=3
\end{gathered}
$$

$$
\text { The solution set is } \square--, 3 \sqsupset \text {. }
$$

$$
y=\underline{3}_{2} x+3
$$

$$
\begin{aligned}
x^{2}- & 2 x-2=0 \\
& \frac{-2 \sqrt{-22_{2}-41-2}}{x=} \\
= & 2 \pm \sqrt{\frac{2}{2}+8} \\
& \frac{2 \pm \sqrt{12}}{2} \\
& \frac{2 \pm 2 \sqrt{3}}{2} \\
& 1 \pm \sqrt{3}
\end{aligned}
$$

The solution set is $\{1 \sqrt{3}, 1+\sqrt{3}\}$.

$$
x^{2}+2 x+5=0
$$

$$
\begin{aligned}
x & =-2 \pm \frac{\sqrt{2}-2}{2}-\frac{4}{1}-2 \\
& =\frac{-2}{2} \pm \frac{\sqrt{4-20}}{2} \\
& =\frac{-2}{2} \pm \frac{\sqrt{-16}}{2}
\end{aligned}
$$

No real solutions

$$
2 x+\sqrt{=3}
$$

$$
\begin{aligned}
&\sqrt{2 x+1})^{2}=3^{2} \\
& x+1=9 \\
& 2 x=8 \\
&=4
\end{aligned}
$$

$$
\text { Check: } \sqrt{2(4)+1}=3 \text { ? }
$$

$$
\begin{aligned}
\sqrt{9} & =3 ? \\
3 & =3 \text { True }
\end{aligned}
$$

The solution set is $\{4\}$.
7. $|x-2|=1$

$$
\left.\begin{array}{rlrl}
x-2 & =1 & \text { or } & \\
x-2 & =-1 \\
x & =3 & & x
\end{array}\right)
$$

The solution set is 1,3 .

$$
\begin{aligned}
& x^{2}+\sqrt{4 x=2} \\
& \left.\sqrt{x^{2}+4 x}\right)^{2}=2^{2} \\
& 2+4 x=4 \\
& 2+4 x-4=0 \\
& x=\frac{-4 \pm \sqrt{4^{2}}}{2(1)} \frac{-4(1) \frac{(-4)}{2}}{2}=\frac{-4 \pm \sqrt{16+16}}{2} \\
& =\frac{-4 \pm \sqrt{32}}{2}=\frac{-4 \pm 4 \sqrt{2}}{2}=-2 \pm 2 \sqrt{2}
\end{aligned}
$$

Check $x=-2+2 \sqrt{2}$:

$$
\begin{aligned}
\sqrt{(-2+2 \sqrt{2})^{2}+4(-2+2 \sqrt{2})} & =2 ? \\
\sqrt{4-8 \sqrt{2}+8-8+8 \sqrt{2}} & =2 ?
\end{aligned}
$$

$$
\sqrt{4}=2 \text { True }
$$

Check $x=-2-2 \sqrt{2}$:

$$
\begin{aligned}
\sqrt{(-2-2 \sqrt{2})^{2}+4(-2-2 \sqrt{2})} & =2 ? \\
\sqrt{4+8 \sqrt{2}+8-8-8 \sqrt{2}} & =2 ? \\
\sqrt{4} & =2 \text { True }
\end{aligned}
$$

The solution set is $\{-2-2 \sqrt{2},-2+2 \sqrt{2}\}$.

2

$$
\begin{gathered}
x=-9 \\
= \pm \sqrt{-9} \\
x= \pm 3 i
\end{gathered}
$$

The solution set is $\{-3 i, 3 i\}$.
$x^{2}-2 x+5=0$

The solution set is $\{1-2 i, 1+2 i\}$.

$$
\begin{aligned}
2 x-3 & \leq 7 \\
2 x & \leq 10 \\
& \leq 5 \\
\{\nmid x & \leq 5\} \text { or }(-\infty, 5]
\end{aligned}
$$

15. $d(P, Q)=\sqrt{(-1-4)^{2}\left(3^{-}-\left(^{-2}\right)\right)^{2}}$

$$
=\sqrt{-5)^{2}+(5)^{2}}
$$

$$
=\sqrt{25+25}
$$

$$
=\sqrt[50]{\sqrt{0}}=5 \sqrt{2}_{3+(-2)}
$$

16. $y=x^{3}-3 x+1$

$$
(-2,-1):
$$

$$
(-2)^{3}-(3)(-2)+1=-8+6+1=-1
$$

$(-2,-1)$ is on the graph.
$(2,3)$:
$(2)^{3}-(3)(2)+1=8-6$
$+1=3(2,3)$ is on the graph.
$(3,1)$:

$$
\begin{aligned}
& -1<x+4<5 \\
& -5<x<1 \\
& \{x-5<x<1\} \text { or }(-5,1) \\
& x-2 \leq 1 \\
& 1 \leq x-2 \leq 1 \\
& 1 \leq x \leq 3 \\
& \{x 1 \leq x \leq 3\} \text { or }[1,3] \\
& 2+x>3 \mid \\
& 2+x<-3 \text { or } 2+x>3 \\
& \{x<-5 \text { or }\} x>1, \quad(\quad) \\
& x \mid x<-5 \text { or } x>1 \text { or }-\infty,-5 \quad 1, \infty
\end{aligned}
$$

The points $(-1,4)$ and $(2,-2)$ are on the line.

$$
\begin{aligned}
\text { Slope } & =\frac{=-2-4}{2-(-1)}=\frac{-5}{3}=-2 \\
y-y_{1} & =m\left(x-x_{1}\right) \\
-4 & =-2(x-(-1)) \\
y-4 & =-2(x+1) \\
y & =-2 x-2+ \\
4 y & =-2 x+2
\end{aligned}
$$

19. Perpendicular to $y=2 x+1$; Contains $(3,5)$

$$
\text { Slope of perpendicular }=-\frac{1}{2}
$$

$$
\begin{equation*}
y-y_{1}=m\left(x-x_{1}\right) \tag{2}
\end{equation*}
$$

$$
y-5=-\frac{1}{(x-3)}
$$

$$
2
$$

$$
y-5=-\underline{1} x+\underline{3}
$$

22

$$
\begin{aligned}
& (3)^{3}-(3)(3)+1=27-9+ \\
& 1 \\
& =19 \neq 1(3,1) \text { is not on the } \\
& \text { graph. }
\end{aligned}
$$

Chapter 2: Graphs
$y=-\frac{1}{2} x+\frac{13}{2}$

$$
\begin{gathered}
x^{2}+y^{2}-4 x+8 y-5=0 \\
2-4 x+y^{2}+8 y=5 \\
\left.x^{2}-4 x+4\right)+\left(y^{2}+8 y+16\right)=5+4 \\
+16(x-2)^{2}+(y+4)^{2}=25 \\
x-2)^{2}+(y+4)^{2}=5^{2}
\end{gathered}
$$

Center: $(2,-4)$; Radius $=5$

Chapter 2 Project

Internet-based Project

