Solution Manual for College Algebra Graphs and Models 5th Edition by Bittinger ISBN 03217839569780321783950

Full link download:

Solution Manual:
https://testbankpack.com/p/solution-manual-for-college-algebra-graphs-and-
models-5th-edition-by-bittinger-isbn-0321783956-9780321783950/

Test Bank:
https://testbankpack.com/p/test-bank-for-college-algebra-graphs-and-models-5th-edition-by-bittinger-isbn-0321783956-9780321783950/

Chapter 2

More on Functions

Exercise Set 2.1

Forx-values from-5 to 1 , they-values increase from -3 to 3 . Thus the function is increasing on the interval $(-5,1)$.
b) Forx-values from 3 to 5 , they-values decrease from 3 to 1 . Thus the function is decreasing on the interval $(3,5)$.
c) Forx-values from 1 to 3 ,yis 3 . Thus the function is constant on $(1,3)$.
2.a) Forx-values from 1 to 3 , they-values increase from 1 to 2 . Thus, the function is increasing on the interval $(1,3)$.
b) Forx-values from 5-to 1, they-values decrease from 4 to 1 . Thus the function is decreasing on the interval $(-5,1)$.
c) Forx-values from 3 to 5 ,yis 2 . Thus the function is constant on $(3,5)$.
3.a) Forx-values from 3 to 1 , the y-values increase from- 4 to 4 . Also, for x-values from 3 to 5 , the y values increase from 2 to 6 . Thus the function is increasing on $(-3,-1)$ and on $(3,5)$.
b) Forx-values from 1 to 3 , they-values decrease from 3 to 2 . Thus the function is decreasing on the interval $(1,3)$.
c) Forx-values from-5 to- 3 ,yis 1 . Thus the function is constant on $(-5,-3)$.
4.a) Forx-values from 1 to 2 , they-values increase from 1 to 2 . Thus the function is increasing on the interval $(1,2)$.
is decreasing on $(-5,-2)$, on $(-2,1)$, and on $(3,5)$.
c) Forx-values from 2 to $3, y$ is 2 . Thus the function isconstant on $(2,3)$.
5.a) Forx-values from- ∞ to-8, they-values increase from- $-\infty$ o
2. Also, for x-values from -3 to -2 , the y-values increase from-2 to 3 . Thus the function is increasing on $(-\infty,-8)$ and on $(-3,-2)$.
b) Forx-values from-8 to-6, they-values decrease from 2 to -2 . Thus the function is decreasing on the interval $(-8,-6)$.
c) Forx-values from-6 to $-3, y$ is -2 . Also, forxvalues from -2 to ∞, y is 3 . Thus the function is constant on $(-6,-3)$ and on $(-2, \infty)$.
6.a) Forx-values from 1 to 4 , they-values increase
from 2 to 11 . Thus the function is increasing on the interval $(1,4)$.
b) Forx-values from-1 to 1 , the y-values decrease from 6 to 2 . Also, for x-values from 4 to ∞, the y - values decrease from 11 to $-\infty$. Thus the function is decreasing on $(-1,1)$ and on $(4, \infty)$.
c) Forx-values from $-\infty$ to -1 ,yis 3 . Thus the func- tion is constant on $(-\infty,-1)$.
7.The x-values extend from -5 to 5 , so the domain is
$[-5,5]$. They-values extend from -3 to 3 , so the range
is $[-3,3]$.
8.Domain: [-5,5]; range: [1,4]
9.The x-values extend from -5 to -1 and from 1 to 5 , so the domain is $[-5,-1] \cup[1,5]$.
They-values extend from -4 to 6 , so the range is $[-4,6]$.
10.Domain: [-5,5]; range: $[1,3]$
11.The x-values extend from $-\infty$ to ∞, so the domain
is $(-\infty, \infty)$.
They-values extend from $-\infty$ to 3 , so the range is $(-\infty, 3]$.
12.Domain: $(-\infty, \infty)$; range: $(-\infty, 11]$
13. From the graph we see that a relative maximum value of the function is 3.25 . It occurs at $x=2.5$. There is no relative minimum value.

The graph starts rising, or increasing, from the left and stops increasing at the relative maximum. From this point, the graph decreases. Thus the function is increasing on $(-\infty, 2.5)$ and is decreasing on $(2.5, \infty)$.
14. From the graph we see that a relative minimum value of 2 occurs at $x=1$. There is no relative maximum value.
The graph starts falling, or decreasing, from the left and stops decreasing at the relative minimum. From this point, the graph increases. Thus the function is increasing on $(1, \infty)$ and is decreasing on $(-\infty, 1)$.
15. From the graph we see that a relative maximum value of the function is 2.370 . It occurs at $x=0.667$. We also see that a relative minimum value of 0 occurs at $x=2$.
The graph starts rising, or increasing, from the left and stops increasing at the relative maximum. From this point it decreases to the relative minimum and then increases again. Thus the function is increasing on $(-\infty,-0.667)$ and on $(2, \infty)$. It is decreasing on $(-0.667,2)$.
16. From the graph we see that a relative maximum value of 2.921 occurs at $x=3.601$. A relative minimum value of 0.995 occurs at $x=0.103$.

The graph starts decreasing from the left and stops decreasing at the relative minimum. From this point it increases to the relative maximum and then decreases again. Thus the function is increasing on $(0.103,3.601)$ and is decreasing on $(-\infty, 0.103)$ and on $(3.601, \infty)$.
17.

The function is increasing on $(0, \infty)$ and decreasing on $(-\infty, 0)$. We estimate that the minimum is 0 at $x=0$. There are nomaxima.
18.

Increasing: $(-\infty, 0)$
Decreasing: $(0, \infty)$
Maximum: 4 at $x=0$
Minima: none
19.

The function is increasing on $(-\infty, 0)$ and decreasing on $(0, \infty$ We estimate that the maximum is 5 at $x=0$. There are nominima.
20.

Increasing: $(-3, \infty)$
Decreasing: $(-\infty,-3)$
Maxima: none
Minimum: -5 at $x=-3$
21.

The function is decreasing on $(-\infty, 3)$ and increasing on $(3, \infty$ We estimate that the minimum is 1 at $x=3$. There are no maxima.
22.

Increasing: $(-\infty,-4)$
Decreasing: $(-4, \infty)$
Maximum: 7 at $x=-4$
Minima: none
23.

Beginning at the left side of the window, the graphfirst
drops as we move to the right. We see that the function is
decreasing on $(-\infty, 1)$. We thenfind that the function is increasing on $(1,3)$ and decreasing again on $(3$,$))\$he$ MAXIMUM and MINIMUM features also show that the relative maximum is -4 at $x=3$ and the relative minimum is -8 at $x=1$.

24.

Increasing: $(-\infty,-2.573),(3.239, \infty)$
Decreasing: $(-2.573,3.239)$
Relative maximum: 4.134 at $x=-2.573$
Relative minimum: -15.497 at $x=3.239$
25.

Wefind that the function is increasing on $(-1.552,0)$ and on (1.552∞) and decreasing on $(\infty,-1.552)$ and on $(0,1.552)$. The relative maximum is 4.07 at $x=0$ and the relative minima are $z .314$ at $x=1.552$ and 2.314 at $x=1.552$.

26.

Increasing: $(-3, \infty)$
Decreasing: $(-\infty,-3)$
Relative maxima: none
Relative minimum: 9.78 at $x=-3$

b) 22,506 at $a=150$
c) The greatest number of baskets will be sold when $\$ 150$ thousand is spent on advertising. For that amount, 22,506 baskets will be sold.
28.a) $y 880.1 x^{2} 81.2 x 898.6$

b) Using the MAXIMUM feature wefind that the relative maximum is 102.2 att= 6 . Thus, we know that the patient's temperature was the highest at $t=6$, or 6 days after the onset of the illness and that the highest temperature was $102.2^{\circ} \mathrm{F}$.
29. Graphy $=\frac{8 x}{x^{2}+1}$.

Increasing: $(-1,1)$
Decreasing: $(-\infty,-1),(1, \infty)$
30. Graphy= $\frac{-4}{}$.
$x^{2}+1$
Increasing: $(0, \infty)$
Decreasing: $\sqrt{ }^{(-\infty, 0)}$
31. Graph $y=x \quad \overline{4-x^{2}}$, for $-2 \leq x \leq 2$.

Increasing: $(-1.414,1.414)$
Decreasing: $(-2,-1.414),(1.414,2)$
32.Graph $y=-0.8 x \quad \sqrt{9-x^{2}}$, for $-3 \leq x \leq 3$.

Increasing: $(-3,-2.121),(2.121,3)$
Decreasing: $(-2.121,2.121)$
33. If $x=$ the length of the rectangle, in meters, then the 480-2x
width is 2 , or 240-x. We use the formula Area $=$ length \times width:

$$
\begin{aligned}
& A(x)=x(240-x), \text { or } \\
& A(x)=240 x-x^{2}
\end{aligned}
$$

34. Leth= the height of the scarf, in inches. Then the length of the base $=2 h 7$.

$$
\begin{aligned}
& A(h)=\frac{1}{2}(2 h-7)(h) \\
& A(h)=h 2-\frac{7}{2} h
\end{aligned}
$$

35. Aftertminutes, the balloon has risen $120 t \mathrm{ft}$. We use the

$$
\begin{aligned}
& \text { Pythagorean theorem. } \\
& {[d(t)]^{2}=(120 t)^{2}+400^{2}}
\end{aligned}
$$

$$
d(t)=\overline{(120 t)^{2}+400^{2}}
$$

We considered only the positive square root since distance must be nonnegative.
36. Use the Pythagorean theorem.

$$
\begin{aligned}
{[h(d)]^{2}+(3700)^{2} } & =d_{2} \\
{[h(d)]^{2} } & =d_{2}-3700^{2}
\end{aligned}
$$

$$
h(d)=\sqrt{ } \overline{d^{2} \overline{3700}{ }^{2} \text { Taking the }}
$$ positive square root

37. Letw= the width of the rectangle. Then the length $=\frac{40-2 w}{2}$, or $20-w$. Divide the rectangle into quadrants as shown below.

In each quadrant there are two congruent triangles. One triangle is part of the rhombus and both are part of the rectangle. Thus, in each quadrant the area of the rhombus is one-half the area of the rectangle. Then, in total, the area of the rhombus is one-half the area of the rectangle.

$$
\begin{aligned}
& A(w)=2_{2}^{\frac{1}{(20-w)(w)}} \\
& A(w)=10 w-2^{\frac{w^{2}}{}}
\end{aligned}
$$

38. Letw= the width, in feet. Then the length $=$

$$
\underline{46-2 w}
$$ or 23-w.

$$
\begin{aligned}
& A(w)=(23-w) w \\
& A(w)=23 w-w^{2}
\end{aligned}
$$

39. We will use similar triangles, expressing all distances in feet. 6 in. $=\frac{1}{2} \mathrm{ft}, \sin .=\frac{s}{12} \mathrm{ft}$, and $d y d=3 d \mathrm{ft} \quad \mathrm{We}$ have

$$
\begin{aligned}
& \underline{3 d}=2^{-\frac{1}{-}} \\
& s \quad{ }^{7} 12_{1}{ }^{s} \\
& 12^{\cdot 3 d=7 \cdot} z \\
& \begin{array}{c}
\frac{s d}{4}={ }_{d}={ }^{7} .7
\end{array} \\
& d={ }^{4} \cdot{ }_{-}^{7} \text {,so } \\
& d(s)=\frac{{ }_{1}^{s}}{\frac{14}{s}} .
\end{aligned}
$$

40. The volume of the tank is the sum of the volume of a sphere with radiusrand a right circular cylinder with radiusr and height 6 ft .

$$
V(r)={ }_{\overline{3}}^{4} \pi r 3+6 \pi r 2
$$

41.a) If the length $=x$ feet, then the width $=30-x$ feet.

$$
\begin{aligned}
& A(x)=x(30-x) \\
& A(x)=30 x-x^{2}
\end{aligned}
$$

b) The length of the rectangle must be positive and less than 30 ft , so the domain of the function is $\{x \mid 0<x<30\}$, or $(0,30)$.
c) We see from the graph that the maximum value of the area function on the interval $(0,30)$ appears to be 225 when $x=15$. Then the dimensions that yield the maximum area are length $=15 \mathrm{ft}$ and width $=30-15$, or 15 ft .
42.a) $A(x)=x(360-3 x)$, or $360 x-3 x \quad 2$
b) The domain is $\quad x 0<x<\frac{360}{3}$, or $\{x \mid 0<x<120\}$, or $(0,120)$.
c) The maximum value occurs when $x=60$ so the width of each corral should be 60 yd and the total length of the two corrals should be 360360 , or 180 yd.
43.a) If the height of thefile isxinches, then the widthis $14-2 x$ inches and the length is 8 in . We use the formula Volume $=$ length width height tofind the volume ofthefile.

$$
\begin{aligned}
& V(x)=8(14-2 x) x, \text { or } \\
& V(x)=112 x-16 x^{2}
\end{aligned}
$$

b) The height of thefile must be positive and less than half of the measure of the long si de of the pie ce of plastic. Thus, the domain is $\quad x 0<x<\frac{14}{2}$, or $\{x \mid 0<x<7\}$.
c) $y 112 x 16 x^{2}$

d) Using the MAXIMUM feature, wefind that the maximum yalue of the yolume function occurs when
44.a) When a square with sides of lengthxis cut from each corner, the length of each of the remaining sides of the piece of cardboard is $12-2 x$. Then the dimensions of the box arexby $12-2 x$ by $12-2 x$. We use the formula Volume $=$ length \times width \times height tofind the volume of the box:

$$
\begin{gathered}
V(x)=(12-2 x)(12-2 x)(x) \\
V(x)=\left(144-48 x+4 x^{2}\right)(x) \\
V(x)=144 x-48 x 2+4 x 3
\end{gathered}
$$

This can also be expressed as $V(x)=4 x(x-6)^{2}$, or $V(x)=4 x(6-x)^{2}$.
b) The length of the sides of the square corners that are cut out must be positive and less than half the length of a side of the piece of cardboard. Thus, the domain of the function is $\{x \mid 0<x<6\}$, or $(0,6)$.
c) $y 84 x(68 x)^{2}$

d) Using the MAXIMUM feature, wefind that the maximum value of the volume occurs when $x=2$. When $x=2,12-2 x=12-2 \cdot 2=8$, so the dimensions that yield the maximum volume are 8 cm by 8 cm by 2 cm .
45.a) The length of a diameter of the circle (and a diagonal of the rectangle) is $2 \cdot 8$, or 16 ft . Let $=$
the length of the rectangle. Use the Pythagorean theorem to writelas a function of x.

$$
\begin{aligned}
x 2+l 2 & =16^{2} \\
x 2+l 2 & =256 \\
l_{2} & =256 \times-2
\end{aligned}
$$

$$
l=\quad \overline{256-x^{2}}
$$

Since the length must be positive, we considered only the positive square root.
Use the formula Area = length width tofind the area of the rectangle:

$$
A(x)=x \quad \sqrt{ } \frac{}{256-x^{2}}
$$

b) The width of the rectangle must be positive and less than the diameter of the circle. Thus, the domain of the function is $\{x \mid 0<x<16\}$, or $(0,16)$.
c) ${ }_{150}^{y 8 x} \sqrt{2568 x^{2}}$

d) Using the MAXIMUM feature, wefind that the max-
imum are $\sqrt{ }$ a occurs whenxis about 11.314. When $x \approx$ 11.314, $256-x^{2} \approx 256-(11.314)^{2} \approx 11.313$.
b) The length of the base must be positive, so the domain of the function is $\{x \mid x>0\}$, or $(0, \infty)$.
c)

d) Using the MIMIMUM feature, wefind that the minimum cost occurs when $x \approx 8.618$. Thus, the dimensions that minimize the cost are about

$$
8.618 \mathrm{ft} \text { by } 8.618 \mathrm{ft} \mathrm{by} \frac{320}{(8.618)^{2}} \text {, or about } 4.309 \mathrm{ft} \text {. }
$$

47. $g(x)=\begin{gathered}x+4, \text { for } x \leq 1, \\ 8-x, \text { for } x>1\end{gathered}$

Since $-4 \leq 1, g(-4)=-4+4=0$.

Since $0 \leq 1, g(0)=0+4=4$.
Since $1 \leq 1, g(1)=1+4=5$.
Since $3>1, g(3)=8-3=5$.
48. $f(x)=$

$$
\digamma_{1}^{3, \text { for } x \leq-2, ~}
$$

\square $2^{x+6, \text { for } x>-2}$
$f(-5)=3$
$f(-2)=3$
1
$f(0)={ }_{2} \cdot 0+6=6$
$f(2)=\frac{-2}{2}+6=7$
$-3 x-18$,for $x<-5$,
49. $h(x)=1$, for $-5 \leq x<1$, $x+2$,for $x \geq 1$

Since -5 is in the interval $[-5,1), h(-5)=1$.
Since 0 is in the interval $[-5,1), h(0)=1$.
Since 0 is in the interval $[-5,1), h(0)=1$.
Thus, the dimensions that maximize the area are about 11.314 ft by 11.313 ft . (Answers may vary slightly due to rounding differences.)
64. $f(x)=\frac{1}{2} \underset{2}{[x]]-2}$

This function can be defined by a piecewise function with an infinite number of statements:

65. From the graph we see that the domain is $(-\infty, \infty)$ and the range is $(-\infty, 0) \cup[3, \infty)$.

66.Domain: $(-\infty, \infty)$; range: $(-5, \infty)$

67. From the graph we see that the domain is $(-\infty, \infty)$ and the range is $[-1, \infty)$.
68.Domain: (∞, ∞); range: $(-\infty, 3)$
69.From the graph we see that the domain is () and the range is $\{y \mid y \leq-2$ or $y=-1$ or $y \geq 2\}$.
70.Domain: $(-\infty, \infty)$; range: $(-\infty,-3] \cup(-1,4]$
68. From the graph we see that the domain is ($-\infty, \infty)$ and
the range is 524

$$
\begin{gathered}
\{-,-,\} \text {. An equation for the function is: } \\
-2 \text {,for } x<2 \\
-5(x)=\text { for } x=2 \\
4, \text { for } x>2
\end{gathered}
$$

72.Domain: $(-\infty, \infty)$; range: $\{y \mid y=-3$ or $y \geq 0\}$
$g(x)=\begin{gathered}-3, \text { for } x<0, \\ x, \text { for } x \geq 0\end{gathered}$
73.From the graph we see that the domain is $(-\infty$, doand the range is $(-\infty, 4][2 \rho)$. Finding the slope of each segment and using the slope-intercept or point-slope formula, wefind that an equation for the function is:

$$
x, \text { for } x \leq-1
$$

$g(x)=2$, for $1<x$ 夛
x,for $x>2$
This can also be expressed as follows:
74. Domain: $\quad(-\infty, \propto ;$ range: $y\{y=2$ or $y 0 \geq A n\}$
equation for the function is:
$h(x)=\quad \begin{aligned} & |x|, \text { for } x<3, \\ & -2, \text { for } x \geq 3\end{aligned}$
This can also be expressed as follows:
$h(x)=\begin{gathered}-x, \text { for } x \leq 0, \\ x, \text { for } 0<x<3, \\ -2, \text { for } x \geq 3\end{gathered}$
It can also be expressed as follows:
$-x$, for $x<0$,
$h(x)=\quad x$, for $0 \leq x<3$, -2 ,for $x \geq 3$
75. From the graph we see that the domain is [5,3$]$ and the range is (3,5). Finding the slope of each segment and using the slope-intercept or point-slope formula, wefind that an equation for the function is:

$$
\begin{gathered}
\quad \begin{array}{c}
x+8, \text { for }-5 \leq x<-3, \\
3, \text { for }-3 \leq x \leq 1, \\
3 x-6 \text {,for } 1<x \leq 3
\end{array} \\
\text { 76. Domain: }[-4, \infty) \text {; range: }[-2,4] \\
-2 x-4, \text { for }-4 \leq x \leq-1, \\
f(x)=\begin{array}{l}
x-1, \text { for }-1<x<2, \\
2, \text { for } x \geq 2
\end{array}
\end{gathered}
$$

This can also be expressed as:

$$
f(x)=\begin{aligned}
& -2 x-4, \text { for }-4 \leq x<-1, \\
& x-1, \text { for }-1 \leq x<2, \\
& 2, \text { for } x \geq 2
\end{aligned}
$$

77. $f(x)=5 x_{2}-7$
a) $f(-3)=5(-3)^{2}-7=5 \cdot 9-7=45-7=38$
b) $f(3)=5 \cdot 3^{2}-7=5 \cdot 9-7=45-7=38$
c) $f(a)=5 a_{2-7}$
d) $f(-a)=5(-a)^{2}-7=5 a 2-7$
78. $f(x)=4 x^{3}-5 x$
a) $f(2)=4 \cdot 2^{3}-5 \cdot 2=4 \cdot 8-5 \cdot 2=32-10=22$
b) $f(-2)=4(-2)^{3}-5(-2)=4(-8)-5(-2)=-32+$ $10=-22$
c) $f(a)=4 a{ }_{3}-5 a$
d) $f(-a)=4(-a)^{3}-5(-a)=4(-a$ 3) $-5(-a)=$ $-4 a 3+5 a$
79. Firstfind the slope of the given line.

$$
\begin{gathered}
8 x-y=10 \\
8 x=y+10 \\
8 x-10=y
\end{gathered}
$$

The slope of the given line is 8 . The slope of a line perpendicular to this line is the opposite of the reciprocal of

$$
g(x)=\begin{aligned}
& x, \text { for } x \leq-1 \\
& 2, \text { for }-1<x<2 \\
& x, \text { for } x \geq 2
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
y-y 1=m\left(\begin{array}{ll}
x-x & 1
\end{array}\right) \\
y-1=-\quad \underline{1}_{[x-(-1)]}
\end{array}
\end{aligned}
$$

80. $2 x-9 y+1=0$
$2 x+1=9 y$
$2_{-}+{ }_{-}^{1}=y$
$92 \quad 9$
Slope: ${ }_{9} y$-intercept: $\quad 0$,
81. Graph $y=x \quad 4+4 x 3-36 x_{2}-160 x+400$

Increasing: $(-5,-2),(4, \infty)$
Decreasing: $(-\infty,-5),(-2,4)$
Relative maximum: 560 at $x=-2$
Relative minima: 425 at $x=-5,-304$ at $x=4$
82.Graphy=3.22x $\quad 5-5.208 x$ 3-11

Increasing: $(-\infty,-0.985),(0.985, \infty)$

Decreasing: $(-0.985,0.985)$
Relative maximum:-9.008 at $x=-0.985$

Relative minimum: -12.992 at $x=0.985$
83.a) The function $C(t)$ can be defined piecewise.

2 ,for $0<t<1$,
4 ,for $1 \leq t<2$,
$C(t)=\begin{aligned} & -\quad 6, \text { for } 2 \leq t<3, \\ & -\end{aligned}$

$$
\Gamma_{1}^{\circ}
$$

We graph this function.

b) From the definition of the function in part (a), we see that it can be written as

$$
C(t)=2[[t]]+1, t>0 .
$$

84. If $[[x+2]]=3$, then $3 x+2<2$, or
86.a) The distance fromAtoSis $4-x$. Using the Pythagorean theorem, wefind that the distance fromSto C is $\quad 1+x V^{2}$.
 $3000 x+5000$

$$
1+x^{2}
$$

b) Use a graphing calculator to graphy $=12,000-$ $3000 x+5000 \quad 1+x^{2}$ in a window such as $[0,5,10,000,20,000], \mathrm{Xscl}=1, \mathrm{Yscl}=1000$. Using the MINIMUM feature, wefind that cost is minimized when $x=0.75$, so the line should come to shore 0.75 mi from B.
87.a) We add labels to the drawing in the text.

We write a proportion involving the lengths of the sides of the similar triangles $B C D$ and $A C E$. Then we solve it forh.

$$
\begin{aligned}
& \frac{h}{6-r}=\frac{10}{6} \\
& h=\frac{10}{}(6-r)=\underline{5}_{(6-r)} \\
& 36053 \\
& h=\frac{-r}{30} \\
& \text { Thus, } h(r)=\begin{array}{l}
-5 r \\
3
\end{array} \text {. } \\
& \text { b) } \quad V=\pi r 2 h \\
& 30-5 r \\
& V(r)=\pi r \quad 2 \quad 3 \quad \text { Substituting forh } \\
& \text { c) Wefirst expressrin termsofh. } \\
& h=\frac{30-5 r}{3} \\
& 3 h=30-5 r \\
& 5 r=30-3 h \\
& r=\frac{30-3 h}{5} \\
& V=\pi r 2 h \\
& \text { 30-3h }{ }^{2} \\
& V(h)=\pi \quad 5 \quad h
\end{aligned}
$$

$-5 \leq x<-4$. The possible inputs forxare $\{x \mid-5 \leq x<-4\}$.
85.If $[[x]]^{2}=25$, then $[[x]]=5$ or $[[x]]=5$. For $-\leq \quad 5-x<4,[[x]]=5$. Fors $x<6,[[x]]=5$.
Thus, the possible inputs forxare
$\{x \mid-5 \leq x<-4$ or $5 \leq x<6\}$.

Substituting for r
$\underline{30-3 h^{2}}$
We can also write $V(h)=\pi h$ 5

Exercise Set 2.2

1. $(f+g)(5)=f(5)+g(5)$

$$
\begin{aligned}
& =\left(5^{2}-3\right)+(2 \cdot 5+1) \\
& =25-3+10+1 \\
& =33
\end{aligned}
$$

2. $(f g)(0)=f(0) \cdot g(0)$

$$
\equiv\left(0^{2}-3\right)(2 \cdot 0+1)
$$

3. $(\mathrm{fg})(1) \stackrel{-3}{=}(1)=-31$.

$$
\begin{aligned}
& --^{2} \\
& =\left((-1)^{-}-3\right)-(2(-1)+1) \\
& =-2-(-1)=-2+1 \\
& =-1
\end{aligned}
$$

4. $(f g)(2)=f(2) \cdot g(2)$

$$
\begin{aligned}
& =\left(2^{2}-3\right)(2 \cdot 2+1) \\
& =1 \cdot 5=5
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-\overline{2}_{1}^{12}-3}{2-2^{-1}} \\
& \frac{1}{2-1} \\
& =\frac{\overline{4}^{-3}}{-\frac{11}{}} \\
& =\frac{4}{0}
\end{aligned}
$$

Since division by 0 is not defined, $(f / g)-{ }_{2}{ }^{1}$ does not exist.
6. $(f-g)(0)=f(0)-g(0)$

$$
\begin{aligned}
& =\left(0^{2}-3\right)-(2 \cdot 0+1) \\
& =-3-1=-4
\end{aligned}
$$

7. $(f g)-\frac{1}{2}=f \quad-\frac{1}{2} \cdot g-\frac{1}{2}$

$$
\begin{aligned}
& ={ }^{-} \overline{2}^{1^{2}}-3 \quad 2-\bar{\sigma}^{1}+1 \\
& =-\frac{11}{4} \cdot 0=0 \\
\sqrt{ }= & f(-\underline{\sqrt{3}})-
\end{aligned}
$$

8. $(f / g)(-3)=\overline{g(-\sqrt{ }} 3)$
$(-3)^{2}-3$
$=\frac{(-1}{2(3)+1}$
$=\frac{V^{0}}{}=0$
$-23+1$
$=0+5$
$=0+5=$
9. $(h g)(3)=h(3) g(3)$

$$
\begin{aligned}
& =(3+4)^{\sqrt{ }} 31 \\
& =7^{\sqrt{-}} 2
\end{aligned}
$$

17. $f(x)=2 x+3, g(x)=3-5 x$
a) The domain offand of g is the set of all real numbers, or $(-\infty, \infty)$. Then the domain of $f+g, f-g, f f$, andfgis also $(-\infty, \infty)$. Forf/gwe must exclude
sinceg ${ }_{5}^{3}=0$. Then the domain of f / g is $-\infty, \frac{33}{5} \cup{ }_{5}, \infty \quad$. Forg/fwe must exclude $\underline{3}$

$$
\begin{aligned}
& -{ }_{2} \begin{array}{c}
\text { since } f- \\
\underline{3}^{2}
\end{array}=0 . \text {. The domain of } g / f \text { is } \\
& -\infty,-{ }_{2} \cup-\infty, \infty .
\end{aligned}
$$

b) $(f+g)(x)=f(x)+g(x)=(2 x+3)+(3-5 x)=$ $-3 x+6$ $(f-g)(x)=f(x)-g(x)=(2 x+3)-(3-5 x)=$

$$
2 x+3-3+5 x=7 x
$$

$$
(f g)(x)=f(x) \cdot g(x)=(2 x+3)(3-5 x)=
$$

$$
6 x-10 x_{2}+9-15 x=-10 x^{2}-9 x+9
$$

$$
(f f)(x)=f(x) \cdot f(x)=(2 x+3)(2 x+3)=
$$

$$
\begin{gathered}
4 x 2+12 x+9 \\
(f / g)(x)=\underline{f(x)}=\xrightarrow{2 x+3}
\end{gathered}
$$

$$
(g / f)(x))^{\begin{array}{l}
g(x) \\
g(x)
\end{array}}=\frac{\begin{array}{l}
3-5 x \\
3-5 x
\end{array}}{}
$$

$$
f(x) \quad 2 x+3
$$

18. $f(x)=-x+1, g(x)=4 x-2$
a) The domain of $f, g, f+\underline{1}, f-g, f g$, and $f f$ is
$(-\infty, \infty)$. Sinceg $\quad z_{2}=0$, the domain of f / g is

$$
-\infty, \frac{1}{2} \cup \underset{2^{\prime}}{\infty} . \text { Since } f(1)=0 \text {, the domainof }
$$

g / f is $(-\infty, 1) \cup(1, \infty)$.
b) $(f+g)(x)=(-x+1)+(4 x-2)=3 x-1$

$$
\begin{aligned}
& (f-g)(x)=(-x+1)-(4 x-2)= \\
& -x+1-4 x+2=-5 x+3 \quad+6 \\
& (f g)(x)=(-x+1)(4 x-2)=-4 x \quad 2 \quad x^{-} \\
& (f f)(x)=(-x+1)(-x+1)=x 2-2 x+1 \\
& \quad-x+1
\end{aligned}
$$

$(f / g)(x)=4 x-2$
()()$=\underline{4 x^{-2}}$
$g / f x$
19. ()$=3,()=+4$
$f x \quad x-g x \quad x$
a) Any number can be an input inf, so the domain of f is the set of all real numbers, or $(-\infty, \infty)$.

The domain off/gis the set of all numbers in the domains offand g, excluding those for which $g(x)=0$. Since $g(-4)=0$, the domain of f / g is $(-4, \infty)$.
The domain of $g /$ fis the set of all numbers in
the domains ofgand f, excluding those for which
$f(x)=0$. Since $f(3)=0$, the domain of g / f is $[-4,3) \cup(3, \infty)$.
b) $(f+g)(x)=f(x)+g(x)=x-3+\sqrt{ } x+4$

$$
\begin{aligned}
& (f-g)(x)=f(x)-g(x)=x-3-\sqrt{2} \quad \overline{x+4} \\
& (f g)(x)=f(x) \cdot g(x)=(x-3) \quad x_{x+4}
\end{aligned}
$$

$$
(f f)(x)=f(x)_{2}=\left(\begin{array}{ll}
x & 3
\end{array}\right)^{2}=x_{2-6 x+9}
$$

$$
\begin{aligned}
& (f / g)(x)=\frac{f(x)}{g(x)}=\frac{x-3}{\sqrt{ }} \\
& (g / f)(x)=\frac{g(x)}{f(x)}=\frac{x+4}{x-3}
\end{aligned}
$$

20. $f(x)=x+2, g(x)=x-1$
a) The domain offis $(-\infty, \infty)$. The domain of g consists of all the values ofxfor which $x-1$ is nonnegative, or $[1, \infty)$. Then the domain of $f+g, f-g$, and $f g$ is $[1, \infty)$. The domain offf is $(-\infty, \infty)$. Since $g(1)=0$, the domain of f / g is $(1, \infty)$. Since $f(-2)=0$ and -2 is not in the
domain of g, the domain of g / f is $[1, \infty)$.
b) $(f+g)(x)=x+2+\sqrt{ } \frac{\sqrt{x-1}}{}$

$(f f)(x)=(x+2)(x+2)=x_{2}+4 x+4$

$(g / f)(x)=\frac{}{x+2}$
21. $f(x)=2 x-1, g(x)=-2 x \quad 2$
a) The domain offand of g is $(-\infty, \infty)$. Then the domain of $f+g, f-g, f g$, and $f f$ is $(-\infty, \infty)$.

For f / g, we must exclude 0 since $g(0)=0$. The domain off $/ q$ is
g / f is $-\infty, \frac{1}{2} \cup \begin{aligned} & f_{2} \\ & 2\end{aligned}{ }_{2}$.
The domain of g consists of all values ofxfor which $x+4$ is nonnegative, so we have $x+4 \geq 0$, or $x \geq-4$.Thus, the domain of g is $[-4, \infty)$.

The domain off $+g, f g$, and $f g$ is the set of all numbers in the domains of bothfand g. This is $[-4, \infty)$.
The domain offfis the domain off, or $(-\infty, \infty)$.
b) $(f+g)(x)=f(x)+g(x)=(2 x-1)+(-2 x \quad 2)=$ $-2 x 2+2 x-1$
$(f-g)(x)=f(x)-g(x)=(2 x-1)-(-2 x \quad$ 2) $=$ $2 x 2+2 x-1$
$(f g)(x)=f(x) \cdot g(x)=(2 x-1)\left(\begin{array}{ll}-2 x & 2\end{array}\right)=$ $-4 x 3+2 x 2$
$(f f)(x)=f(x) \cdot f(x)=(2 x-1)(2 x-1)=$ $4 x 2-4 x+1$
$(f / g)(x)=\frac{f(x)}{}=\underline{2 x-1}$
$g(x) \quad-2 x^{2}$
$(\underset{g / f x}{)(})=\frac{g(x)}{f(x)}=\frac{-2 x 2}{2 x-1}$
22. $f(x)=x$ 2-1, $g(x)=2 x+5$
a) The domain offand ofgis the set of all real numbers, or $(-\infty, \infty)$. Then the domain of $f+g, f-g$,
fgandffis $(-\infty, \infty)$. Sinceg $\quad \underline{5_{5}} \quad \underline{5}^{2}=0$, the
domain of f / g is $-\infty,{ }_{2} \cup-{ }_{2}, \infty$. Since
$f(1)=0$ and $f(-1)=0$, the domain of g / f is $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$.
b) $(f+g)(x)=x \quad 2-1+2 x+5=x 2+2 x+4$

$$
(f-g)(x)=x \quad 2-1-(2 x+5)=x \quad 2-2 x-6
$$

$$
(f g)(x)=(x 2-1)(2 x+5)=2 x 3+5 x 2-2 x-5
$$

$(f / g)(x)={ }_{2 X+5}$
$(g / f)(x)=2 x+5$
$\sqrt{ }$ $x^{2}-1$

23. $f(x)=x-3, g(x)=x+3$
a) Since $f(x)$ is nonnegative for values of x in [3, $)_{\infty}$ this is the domain off. Sinceg (x) is nonnegative for values ofxin $[-3, \infty)$, this is the domain of g. The domain of $f+g, f-g$, and $f g$ is the intersection of the domains offand g, or $[3, \infty)$. The domain
of $f f$ is the same as the domain off, or $[3, \infty)$. For f / g, we must exclude $-3 \operatorname{since} g(-3)=0$. This is not in [3, $\}_{\rho}$ so the domain of f / g is $[3$,$) . For$
g / f, we must exclude 3 since $f(3)=0$. The domain
ofg/fis $(3, \infty)$. $\sqrt{ } \quad \sqrt{ }$
b) $(f+g)(x)=f(x)+g(x)=\underline{x-3+\quad \bar{x}+3}$

$$
\begin{aligned}
& (f / g)(x)=\frac{\sqrt{\overline{x-3}}}{\sqrt{\overline{x+3}}} \\
& (g / f)(x)=\frac{\sqrt{x+3}}{\sqrt{\sqrt{*}}}
\end{aligned}
$$

24. $f(x)=\quad x, g(x)=2-x$
a) The domain offis $[0, \infty)$. The domain of g is
$(-\infty, 2]$. Then the domain of $f+g, f g$, and
$f g$ is $[0,2]$. The domain offfis the same as the domain of $f,[0, \nsim$ Since $g(2)=0$, the domain of f / g is $[0,2)$. Since $f(0)=0$, the domain of g / f is $(0,2]$.
b)
25. $f(x)=x+1, g(x)=|x|$
a) The domain offand of g is $(-\infty, \infty)$. Then the domain of $f+g, f-g, f g$, and $f f$ is $(-\infty, \infty)$.

For f / g, we must exclude 0 since $g(0)=0$. The domain of f / g is $(-\infty, 0) \cup(0, \infty)$. For g / f, we
must exclude -1 since $f(-1)=0$. The domain of g / f is $(-\infty,-1) \cup(-1, \infty)$.
b) $(f+g)(x)=f(x)+g(x)=x+1+|x|$
$(f-g)(x)=f(x)-g(x)=x+1-|x|$
$(f g)(x)=f(x) \cdot g(x)=(x+1)|x|$
$(f f)(x)=f(x) \cdot f(x)=(x+1)(x+1)=x 2+2 x+1$
$(f / g)(x)=\frac{x+1}{|x|}$
$(g / f)(x)=\frac{|x|}{x+1}$
26. $f(x)=4|x|, g(x)=1-x$
a) The domain of f and of g is $(-\infty, \infty$ Then the domain of $f+g, f-g, f g$, and $f f$ is $(-\infty, \infty$. Since
$g(1)=0$, the domain of f / g is $(-\infty, 1) \varphi 1$, o Since $f(0)=0$, the domain of g / f is
$(-\infty, 0) \cup(0, \infty)$.
b) $(f+g)(x)=4|x|+1-x$
$(f-g)(x)=4|x|-(1-x)=4|x|-1+x$
$\left.(\underset{f g}{ })()_{X}\right)=4{ }_{|X|}(1 \underset{-X}{ })=4 \underset{|X|-{ }_{X \mid X} \mid}{4}$
$(f f)(x)=4|x| \cdot 4|x|=16 x \quad 2$ $\underline{4|x|}$
$(f / g)(x)=\begin{gathered}1-x \\ 1-x\end{gathered}$
$(g / f)(x)=-4|x|$
27. $f(x)=x_{3}, g(x)=2 x_{2}+5 x_{-}$
a) Since any number can be an input for eitherforg, the domain of $f, g, f+g, f-g, f g$, and $f f$ is the set of all real numbers, or $(-\infty, \infty)$.
Since $g(-3)=0$ and $g \quad \frac{1}{2}=0$, the domain of f / g is $(3) \quad 11$

$$
-\infty,-\cup \quad-3_{2} \cup_{2}, \infty
$$

Since $f(0)=0$, the domain of g / f is
$(-\infty, 0) \cup(0, \infty)$.
b) $(f+g)(x)=f(x)+g(x)=x \quad 3+2 x 2+5 x-3$

$$
(f-g)(x)=f(x)-g(x)=x \quad 3-(2 x 2+5 x-3)=
$$

$$
x 3-2 x_{2} 2-5 x+3
$$

$$
\begin{aligned}
& (f+g)(x)=\sqrt{\underline{X}+} \sqrt{ }{ }^{2} x \\
& (f g)(x)=\sqrt{*_{+}} Z_{-x}^{-} \\
& (f g)(x)=\underline{x} \cdot v_{\underline{z}-x=}^{v} v_{z-x-x^{2}} \\
& (f f)(x)=V_{x} \cdot V_{x=} \quad \sqrt{x^{2}}=|x| \\
& (f / g)(x)=\frac{\sqrt{ } x}{\sqrt{\sqrt{ }} \underline{2}^{-\underline{x}}} \\
& (g / f)(x)=\frac{2 \sqrt{2^{-} \underline{x}}}{\sqrt{\sqrt{x}}}
\end{aligned}
$$

$$
\text { 28. } f(x)=x 2-4, g(x)=x 3
$$

The domain of and of is (). Then the domain of $+, f, \quad g-\infty, \infty \quad$). Since
$f g f-g f g$, andffis $(-\infty, \infty$
$g(0)=0$, the domain of f / g is $(-\infty, 0) \cup(0, \infty)$. Since $f(-2)=0$ and $f(2)=0$, the domain of g / f
is $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$.
b) $(f+f g)(g)(x)=x_{x^{2}}-4 \pm 4-3 x \operatorname{or}_{3} x \mathrm{or}^{ \pm} x^{2}-4+x 2-4$
$\left.(f f)(x)=\left(\begin{array}{ll}x & -4\end{array}\right)\left(\begin{array}{ll}x & 3\end{array}\right)=\begin{array}{ll}x & 5-4 x \\ x & 2\end{array}-4\right)\left(\begin{array}{ll}x \\ x & 2\end{array}\right)=x 4-8 x 2+16$
$(f / g)(x)=\frac{x 2-4}{x x^{3}}$
$(\quad)()=$
($)(1)=$
$g / f x \quad \overline{x^{2}-4}$
29. $f(x)=x+1, g(x)=6-x$
a) Since $x+1=0$ when $x=-1$, we must exclude -1 from the domain of f. It is $(-\infty,-1) \cup(-1, \infty)$. Since $6-x=0$ when $x=6$, we must exclude 6 from the domain of g. It is $(-\infty, 6) \cup(6, \infty)$. The domain
of $f+g, f g$, and $f g$ is the intersection of the
domains offand g, or $(-\infty,-1) \cup 4,6)(6, \infty$. The domain offfis the same as the domain of f, or $(-\infty, 4) \cup 1$,$\} Since there are no values$
ofxfor which $g(x)=0 \operatorname{or} f(x)=0$, the domain of f / g and $g /$ fis $(-\infty,-1) \cup(-1,6) \cup(6, \infty)$.
b) $(f+g)(x)=f(x)+g(x)=\frac{4}{x^{+} 1}+\frac{1}{6-x}$

$$
\begin{aligned}
& \begin{array}{c}
(x-g)(x)=f(x)-g(x)= \\
x+1-\frac{4}{6-x}
\end{array} \\
& 4 \quad 1 \quad 4 \\
& (f g)(x)=f(x) \cdot g(x)=x+1 \cdot 6-x=(x+1)(6-x) \\
& \begin{array}{l}
4 \\
4
\end{array} \\
& (f f)(x)=f(x) \cdot f(x)={ }_{16} \cdot{ }_{x+1} \cdot x+1 \cdot(x+1)^{2} \text {, or } \\
& \bar{x}^{2}+2 x+1 \\
& (f / g)(x)=\frac{x^{4}}{\frac{1}{+1}}=\quad \cdot \quad=\frac{4(6-x)}{6-x} \frac{6-x}{x+1} 1 \quad x+1 \\
& (g / f)(x)=\frac{\frac{1}{6-x}}{4}=\frac{1}{6-x} \cdot \frac{x+1}{4}=\frac{x+1}{4(6-x)}
\end{aligned}
$$

b) $(f+g)(x)=2 x_{2} \underline{2}$

$(f f)(x)=2 x_{2} \cdot 2 \times 2=4 x 4$
$(f / g)(x)=\underline{2 x}_{2}=2 x 2 \cdot \frac{x-5}{=}=x 2(x-5)=x 3-5 x 2$

$$
\begin{array}{ll}
2 & 2
\end{array}
$$

$$
\begin{array}{llll}
x-2^{5} & 2 & 1 & 1
\end{array}
$$

$$
(g / f)(x)=\frac{-5}{2 x^{2}}=_{x-5} \quad 2 x^{2}={ }_{x^{2}(x-5)}=x^{3}-5 x^{2}
$$

$$
\text { 31. } f(x)=\frac{1}{}, g(x)=x 3
$$

x
a) Sincef(0) is not defined, the domain offis
$(-\infty, 0) \cup(0, \infty)$. The domain ofgis $(-\infty, \infty)$.
Then the domain of $f+g$, g g. $f g$, and $f f$ is
$(-\infty, 0)\left(0, \infty_{0}\right.$ Since $g(3)=0$, the domain of f / g is $(-\infty, 0)(0,3) \cup 3, \nprec$ There are no values of x for which $f(x)=0$, so the domain of g / f is $(-\infty, 0) \cup(0, \infty)$.

$$
(f+g)(x)=f(x)+g(x)=\quad \underline{1}_{+x 3}
$$

b)

32. $f(x)=\begin{aligned} & V^{x 2-3 x} \\ & x+6, g(x)=1\end{aligned}$
a) The domain of $f(x)$ is $[-6, \infty)$. The domain of $g(x)$ is $(-\infty, 0) \cup(0, \infty)$. Then the domain of $f+g$, $f-g$, and $f g$ is $[-6,0) \cup(0, \infty)$. The domainofff
is $[-6, \infty)$. Since there are no valuesofxfor which $g(x)=0$,the domainof f / g is $[-6,0) \cup(0, \infty)$. Since $f(-6)=0$, the domain of g / f is $(-6,0) \cup(0, \infty)$.

$$
2
$$

b) $(f+g)(x)=$
$V_{x+6}+\underline{1}$
30. $f(x)=2 x 2, g(x)=$
a) The domain of $f\left(\overline{\Psi^{\xi}\left({ }^{5} \infty\right.}, \infty\right)$. Since $x-5=0$ when $x=5$, the domain ofgis $(-\infty, 5) \cup(5, \infty)$. Then the
domain of $f+g, f-g$, and $f g$ is $(-\infty, 5) \cup(5, \infty)$.
The domain of $f f$ is $(-\infty, \infty$ Since there are no values ofxfor which $g(x)=0$, the domain of f / g
is $(-\infty, 5) \cup(5, \infty)$. Since $f(0)=0$, the domain of g / f is $(-\infty, 0) \cup(0,5) \cup(5, \infty)$.
x

$$
\begin{aligned}
& (f g)(x)=\sqrt{x+6} . \\
& (f f)(x)=\sqrt{ }{ }_{x+6} \cdot \sqrt[x]{\sqrt{x}}{ }_{x+6}=|x+6|
\end{aligned}
$$

$$
\begin{aligned}
& (g / f)(x)=\underline{\sqrt{*}^{*}}=\underline{1} \cdot \underline{\sqrt{1}}=\underline{\sqrt{ } 1}
\end{aligned}
$$

> a) Sincef(2) is not defined, the domain offis $(-\infty, 2)(42, \not, 0$ Since $g(x)$ is nonnegative for values ofxin [1, \}othis is the domain of g. The domain of $f+g, f g$, and $f g$ is the intersection of the domains offand g, or $[1,2)\left(R_{\downarrow}\right)$. Whe domain offfis the same as the domain off, or $(-\infty, 2)\left(42, \chi_{\infty} \circ\right.$ or f / g, we must exclude 1 since $g(1)=0$, so the domain off/gis $(1,2)(2 v) . \infty$ There are no values ofxfor which $f(x)=0$, so the domain ofg/fis $[1,2) \cup(2, \infty)$.
b) $(f+g)(x)=f(x)+g(x)=\frac{3}{x-2}+\underline{\sqrt{ }}$

$$
(f-g)(x)=f(x)-g(x)=x \overrightarrow{7}^{3} \underbrace{}_{x-1} \quad \sqrt{ }
$$

\qquad
$(\mathrm{f})=(\mathrm{f}()=\underline{3}(\quad 1)$ or $3 x-1$
$f g x \quad f x \cdot g x \quad \underline{x^{-}} \quad \begin{array}{lll}\overline{x-} & \overline{3^{x-2}}\end{array}$
$(f f)(x)=f(x) \cdot f(x)=$
$(f / g)(x)=\underset{g(x)}{f^{\frac{x^{3}}{}} \frac{f(x)}{\sqrt{-2}}}$
$(g / f) X$

$=\frac{(x-2)^{x_{X}-1}}{3}$
34. $f(x)=\underset{4-x}{ } g(x)=\frac{}{x-1}$
a) The domain offis $(-\infty, 4) \cup(4, \infty)$. The domain of g is $(-\infty, 1) \cup(1, \infty)$. The domain of $f+g, f-g$, andfgis $(-\infty, 1) \cup(1,4) \cup(4, \infty)$. The domain of $f f$ is $(-\infty, 4) \cup(4, \infty)$. The domain of f / g and of g / f is $(-\infty, 1) \cup(1,4) \cup(4, \infty)$.
b) $\begin{aligned}(f+g)(x) & =\frac{2}{4-x}+\frac{5}{x-1} \\ (f-\quad) & =\underline{-5}-2\end{aligned}$
$(f g)(x)=\frac{2}{}^{4-x} \cdot 5^{x-1}=-10$
(ff) $(x)=\frac{4-x}{2} \cdot \frac{x-1}{2}=\frac{(4-x)(x-1)}{}$
$4-x \quad 4-x \quad(4-x)^{2}$
$(f / g)(x)=\underline{4-{ }_{2}^{x}}=\underline{2(x-1)}$
35. From the graph we see that the domain of F is $[2,11]$ and the domain of G is $[1,9]$. The domain of $F+G$ is the set
of numbers in the domains of bothFand G. This is $[2,9]$.
36. The domain of $F G$ and $F G$ is the set of numbers in the domains of bothFand G. (See Exercise 33.) This is [2,9].
The domain of F / G is the set of numbers in the domains of both F and G, excluding those for which $G=0$. Since $G>0$ for all values ofxin its domain, the domain of F / G is $[2,9]$.
37. The domain of $G / F i$ is the set of numbers in the domains of bothFand G (See Exercise 33.), excluding those for which $F=0$. Since $F(3)=0$, the domain of $G / F i s[2,3) \cup(3,9]$.
38.

39.

40.

41. From the graph, we see that the domain ofFis $[0,9]$ and the domain of G is $[3,10]$. The domain of $F+G$ is the set of numbers in the domains of both F and G. This is $[3,9]$.
42. The domain of F-Gand $F G$ is the set of numbers in the domains of bothFand G. (See Exercise 39.) This is $[3,9]$.

$$
\begin{array}{r}
\frac{5}{x-1} \\
(g / f)(x)=\frac{5(4-x)}{5}=\frac{5(4-x)}{\frac{2}{4-x}} 2(x-1)
\end{array}
$$

The domain of F / G is the set of numbers in the domains of both $F \operatorname{and} G$, excluding those for which $G=0$. Since
$G>0$ for all values ofxin its domain, the domain of F / G is $[3,9]$.
43. The domain of $G / F i$ is the set of numbers in the domains of bothFand G (See Exercise 39.), excluding those for which $F=0$. Since $F(6)=0 \operatorname{and} F(8)=0$, the domain of $G / F i s[3,6) \cup(6,8) \cup(8,9]$.
44. $(F+G)(x)=F(x)+G(x)$

45.

46.

47.a) $P(x)=R(x)-C(x)=60 x-0.4 x \quad 2-(3 x+13)=$
$60 x-0.4 x^{2}-3 x-13=-0.4 x^{2}+57 x-13$
b) $R(100)=60 \cdot 100-0.4(100)^{2}=6000-0.4(10,000)=$
$6000-4000=2000$
$C(100)=3 \cdot 100+13=300+13=313$
$P(100)=R(100)-C(100)=2000-313=1687$
48.a) $P(x)=200 x-x 2-(5000+8 x)=$
$200 x-x \quad 2-5000-8 x=-x \quad 2+192 x-5000$
b) $R(175)=200(175)-175^{2}=4375$
$C(175)=5000+8 \cdot 175=6400$
$P(175)=R(175)-C(175)=4375-6400=-2025$
(We could also use the function found in part (a) to find $P(175)$.)
49. $f(x)=3 x-5$
$f(x+h)=3(x+h)-5=3 x+3 h-5$

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{3 x+3 h-5-(3 x-5)}{h} \\
& =\frac{3 x+3 h-5-3 x+5}{h} \\
& =\frac{3 h}{h}=3
\end{aligned}
$$

50. $f(x)=4 x-1$
$\frac{f(x+h)-f(x)}{h}=\frac{4(x+h)-1-(4 x-1)}{h}=$
$\frac{4 x+4 h-1-4 x+1}{h}=\frac{4 h}{h}=4$
51. $f(x)=6 x+2$
$f(x+h)=6(x+h)+2=6 x+6 h+2$
$\frac{f(x+h)-f(x)}{h}=\frac{6 x+6 h+2-(6 x+2)}{h}$ $=\frac{6 x+6 h+2-6 x-2}{6 h}$
$=\frac{6 h}{h}=6$
52. $f(x)=5 x+3$
$\frac{f(x+h)-f(x)}{h}=\frac{5(x+h)+3-(5 x+3)}{h}=$
$\frac{5 x+5 h+3-5 x-3}{h}=\frac{5 h}{h}=5$
53. $f(x)={\underset{1}{1}}_{x+1}$

311
$f(x+h)=3^{(x+h)+1=} 3^{x+} 3^{h+1}$
$f(x+h)-f(x)=\underline{3}^{\underline{1} \quad \frac{1}{3+}} 3^{h+1}-\quad \frac{1}{3}^{x+1}$
h

$={ }_{1}{ }^{-} x+\overline{3}^{-} h+1-{ }_{3}{ }^{-} x-1$

$$
=\frac{3^{h}}{-1}
$$

54. $f(x)=-{\underset{x}{1}}_{x+7} 2$

$\begin{array}{ll}1 & 1\end{array}$

$$
\frac{-\overline{2}^{x-} \overline{2}^{h} h+7+\overline{2}^{-7}}{h}=\frac{-\frac{1}{2} h}{h}=\frac{1}{2}
$$

$$
57 \cdot f(x)=-\frac{1}{4 x}
$$

$$
1
$$

$$
f(x+h)=-4\left(+{ }_{x}\right)
$$

$$
\frac{x}{f(x+h)-f(x)}=\frac{1}{h}==^{\frac{1}{n}}
$$

$$
-\frac{1 x^{x}}{4(x+h)_{x}}--\frac{1}{4 x} \cdot \frac{x+h}{x+h}
$$

$$
=\frac{h}{\left.-\frac{1}{4 x\left(X^{X}+h\right.}+{ }_{x}^{x+h}\right)}
$$

$$
\begin{aligned}
& =\frac{h}{h}=\frac{\frac{-x+x+h}{4 x(x+h)}}{h}=\frac{\frac{h}{4 x(x+h)}}{h}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 56. } f(x)={ }_{2 x}
\end{aligned}
$$

$$
\begin{aligned}
& x \quad x+h \quad x-x-h \quad-h \\
& \frac{2 x(x+h) \frac{Z x(x+h)}{h}=\frac{2 x(x+h)}{h}=\frac{Z x(x+h)}{h}=.}{h}= \\
& \frac{-h}{2 x(x+h)} \cdot \frac{1}{h}=\frac{-1}{2 x(x+h)}, \text { or }-\quad \frac{1}{2 x(x+h)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 55. } f(x)=\stackrel{1}{=} 3 x \\
& f(x+h)=-\quad 1 \\
& 3(x+h) \quad 1-1 \\
& f(x+h)-f(x)=3\left(\underline{x+h)} 3 x_{-}\right. \\
& h \\
& \begin{array}{l}
=\frac{\frac{1}{3(x+h)} \cdot x^{-}{ }^{-\quad} h_{x+h}^{3 \frac{1}{3 x}} \cdot x+h}{x+h} \\
=\frac{\frac{3 x(x+h)}{x+\frac{3 x(x+h)}{3+}}}{h}
\end{array} \\
& =\frac{\frac{x-(x+h)}{3 x(x+h)}}{h}=\frac{\frac{x-x-h}{3 x(x+h)}}{h} \\
& =\frac{3 x(x+h)}{h}=\frac{-h}{3 x(x+h)}{ }^{1} h \\
& =\frac{-h}{3 x(x+h) \cdot h}=\frac{-1 \cdot h /}{3 x(x+h) \cdot h /} \\
& =\frac{-1}{3 x(x+h)}, \text { or }-\frac{1}{3 x(x+h)} \\
& 1
\end{aligned}
$$

58. $f(x)=-\begin{aligned} & \underline{1} \\ & x\end{aligned}$

$$
\ldots=\frac{1}{-}=1
$$

59. $f(x)=x^{2}+1$

$$
\begin{aligned}
& f(x+h)=(x+h)^{2}+1=x 2+2 x h+h 2+1 \\
& \frac{f(x+h)-f(x)}{h}= x 2+\frac{2 x h+h 2+1-(x 2+1)}{h} \\
&=\frac{x 2+2 x h+h 2+1-x 2-1}{h} \\
&=\frac{2 x h+h 2}{h} \\
&=\frac{h(2 x+h)}{h} \\
&=h \cdot \frac{h x+h}{1} \\
&=2 x+h
\end{aligned}
$$

60. $f(x)=x_{2}-3$
$\frac{f(x+h)-f(x)}{h}=(x+h)^{2}-3-(x-2-3)=$
$\frac{x 2+2 x h+h 2-3-x_{2}+3}{h}=\frac{2 x h+h 2}{h}=\frac{h(2 x+h)}{h}=$
$2 x+h$
61. $f(x)=4-x_{2}$
$f(x+h)=4-(x+h) \quad 2=4-\left(x_{2}+2 x h+h 2\right)=$ $4-x 2-2 x h-h 2$
$f(x+h)-f(x)=4-x 2-2 x h-h 2-(4-x 2)$

$$
\begin{aligned}
& h \quad=\frac{4-x 2-2 x h-h_{2}-4+x 2}{h} \\
&=\frac{-2 x h-h 2}{h}=\frac{h /(-2 x-h)}{h /} \\
&=-2 x-h
\end{aligned}
$$

62. $f(x)=2-x^{2}$
$f(x+h)-f(x) \quad 2-(x+h)^{2}-\left(\begin{array}{ll}2-x & 2\end{array}\right)$

$$
=
$$

$$
\begin{aligned}
& \frac{h}{2-x_{2}-2 x h-h 2-2+x^{2} 2} \\
& h \\
& \underline{h(-2 x-h)}=-2 x-h
\end{aligned}
$$

Copyright © 2013 Pearson Education, Inc.

$$
=\frac{h}{4 x(x+h)} \cdot \frac{1}{h}=\frac{h / \cdot 1}{4 x(x+h) \cdot h /}=\frac{1}{4 x(x+h)} \quad \begin{aligned}
& \text { 63. } f(x)=3 x_{2}-2 x+1 \\
& f(x+h)=3(x+h)^{2}-2(x+h)+1= \\
& 3(x 2+2 x h+h 2)-2(x+h)+1=
\end{aligned}
$$

$3 x 2+6 x h+3 h 2-2 x-2 h+1$
$f(x)=3 x_{2}-2 x+1$
$\frac{f(x+h)-f(x)}{h}=$
$\left(3 x 2+6 x h+3 h_{2}-2 x-2 h+1\right)-\left(3 x_{2}-2 x+1\right)$
$h=$
$\frac{3 x 2+6 x h+3 h 2-2 x-2 h+1-3 x \quad 2+2 x-1}{h}=$
$\frac{6 x h+3 h 2-2 h}{h}=\frac{h\left(6 x+3 h^{-}\right.}{h \cdot 1} \underline{2)}=$
$\underline{h} . \underline{6 x+3 h-2}=6 x+3 h-2$
$h \quad 1$
64. $f(x)=5 x \quad 2+4 x$
$f(x+h)-f(x)=\stackrel{(5 x 2+10 x h+5 h 2+4 x+4 h)-(5 x+4 x)}{=}$
h
h
$\frac{10 x h+5 h 2+4 h}{h}=10_{x+5} h+4$
65. $f(x)=4+5|x|$
$f(x+h)=4+5|x+h|$

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{4+5|x+h|-(4+5|x|)}{h} \\
& =\frac{4+5|x+h|-4-5|x|}{h} \\
& =\frac{5|x+h|-5|x|}{h}
\end{aligned}
$$

66. $f(x)=2|x|+3 x$
$f(x+h)-f(x)=(2|x+h|+3 x+3 h)-(2|x|+3 x)=$
$h \quad h$
$\frac{2|x+h|-2|x|+3 h}{h}$
67. $f(x)=x$ 3
$f(x+h)=(x+h)^{3}=x 3+3 x 2 h+3 x h 2+h 3$
$f(x)=x$ 3
$f(x+h)-f(x)=x 3+3 x 2 h+3 x h 2+h 3-x{ }^{3}=$
$h \quad h$
$\left.\underline{3 x 2 h+3 x h 2+h}{ }^{3}=\underline{h(3 x 2+3 x h+h}{ }^{2}\right)=$
$h \quad h \cdot 1$
$h \cdot \underline{3 x 2+3 x h+h 2}=3 x^{2}+3 x h+h^{2}$
68. $h()=12$
$f x \quad x 3-x$
$\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{3}-2(x+h)-\left(x_{3}-2 x\right)}{h}=$
$\frac{x 3+3 x 2 h+3 x h 2+h 3-2 x-2 h-x 3+2 x}{h}=$
$\underline{3 x 2 h+3 x h 2+h 3-2 h}=\underline{h(3 x 2+3 x h+h 2-2)}=$
$\underline{x+h-4} \quad \underline{x-4}$
${ }^{x+h+3} h_{h} \quad x+3$
$\binom{x+h+3}{(x+h+3)}(x+3)(x+3)=$
$(x+h-4)(x+3)-(x-4)(x+h+3)$
$h(x+h+3)(x+3)$
$x 2+h x-4 x+3 x+3 h-12-\{x h x+3 x-4 x-4 h-12)$

$h(x+h+3)(x+3)$
$\underline{x 2+h x-x+3 h-12-x \quad 2-h x+x+4 h+12}$

7h | $h(x+h+3)(x+3)$ |
| :---: |
| h |

$=\quad$.
$h(x+h+3)(x+3) \quad h(x+h+3)(x+3)$

7
$\frac{7}{(x+h+3)(x+3)}$
$f(x)=\frac{x}{2-x}$

$(x+h)(2-x)-x(2-x-h)$

$2 x-x 2+2 h-h x-2 x+x \quad 2+h x$
$\xrightarrow{(2-x-h)(2-x)}=$

71. Graph $y=3 x-1$.

Wefind some ordered pairs that are solutions of the equation, plot these points, and draw the graph.
When $x=-1, y=3(-1)-1=-3-1=-4$.
When $x=0, y=3 \cdot 0-1=0-1=-1$.

When $x=2, y=3 \cdot 2-1=6-1=5$.

x	y
-1	-4
0	-1
2	5

72.

$$
\begin{aligned}
& \text { 69. } \begin{array}{l}
h \\
3 x 2+3 x h+h 2-2 \\
\text {) }=\underline{x} \underline{\underline{4}}
\end{array} \\
& f_{x} \\
& x+3 \\
& \frac{f(x+h)-f(x)}{h}=\frac{x+h+3-4}{x+3}=
\end{aligned}
$$

73. $\operatorname{Graph} x-3 y=3$.

First wefind thex-and y-intercepts.

$$
\begin{array}{r}
x-3 \cdot 0=3 \\
x=3
\end{array}
$$

Thex-intercept is $(3,0)$.

$$
\begin{aligned}
0-3 y & =3 \\
-3 y & =3 \\
y & =-1
\end{aligned}
$$

They-intercept is $(0,-1)$.
Wefind a third point as a check. We let $x=3$ and solve fory.

$$
\begin{aligned}
-3-3 y & =3 \\
-3 y & =6 \\
y & =-2
\end{aligned}
$$

Another point on the graph is $(-3,-2)$. We plot the points and draw the graph.

74.

75. Answers may vary; $f(x)=\frac{1}{x+7}, g(x)=\frac{1}{x-3}$
76. The domain of $h+f, h-f$, and $h f$ consists of all numbers that are in the domain of bothhandf, or $\{-4,0,3\}$.
The domain of h / f consists of all numbers that are in the domain of bothhandf, excluding any for which the value offis 0 , or $\{-4,0\}$.
77. The domain of (x) is $\quad x x=\frac{7}{3}$, and the domain of $g(x)$
is $\{x \mid x=3\}$, so $\frac{7}{3}$ and 3 are not in the domain of $(h / g)(x)$. We must also exclude the value ofxfor which $g(x)=0$.

$$
\begin{aligned}
\frac{x 4-1}{5 x-15} & =0 \\
x 4-1 & =0 \quad \text { Multiplying by } 5 x-15 \\
x 4 & =1 \\
x & = \pm 1
\end{aligned}
$$

Exercise Set 2.3

1. $(f \circ g)(-1)=f(g(-1))=f\left((-1) \quad{ }^{2}-2(-1)-6\right)=$ $f(1+2-6)=f(-3)=3(-3)+1=-9+1=-8$
2. $(g \circ f)(-2)=g(f(-2))=g(3(-2)+1)=g(-5)=$ $(-5)^{2}-2(-5)-6=25+10-6=29$
3. $(h \circ f)(1)=h(f(1))=h(3 \cdot 1+1)=h(3+1)=$ $h(4)=4^{3}=64$
4. $(g \circ h) \quad 1 \quad 1 \quad 1^{3} \quad 1 \begin{array}{ll}2\end{array}$

$$
=g h_{2}=g \quad 2=g_{8}=
$$

$$
\overline{8}^{12}-28^{--6}=\frac{1}{64} 4^{-} 4^{-6=-} \frac{399}{64}
$$

5. $(g \circ f)(5)=g(f(5))=g(3 \cdot 5+1)=g(15+1)=$ $g(16)=16^{2}-2 \cdot 16-6=218$
6. $(f \circ g) \quad{ }_{3}^{1}=f \quad g \frac{1}{3} \quad=f \quad \overline{3}^{2}-23^{-1}=$
$1{ }^{2}{ }_{9}={ }_{3}-6=f-\frac{59}{9}=3-\frac{59}{9}+1=-\frac{56}{3}$.
7. $(f \circ h)(-3)=f(h(-3))=f\left((-3){ }^{3}\right)=f(-27)=$ $3(-27)+1=-81+1=-80$
8. $(h \circ g)(3)=h(g(3))=h\left(3^{2}-2 \cdot 3-6\right)=$
$h(9-6-6)=h(-3)=(-3) \quad 3=-27$
9. $(g \circ g)(-2)=g(g(-2))=g((-2) \quad 2-2(-2)-6)=$ $g(4+4-6)=g(2)=2^{2}-2 \cdot 2-6=4-4-6=-6$
10. $(g \circ g)(3)=g(g(3))=g\left(3^{2}-2 \cdot 3-6\right)=g(9-6-6)=$ $g(-3)=(-3)^{2}-2(-3)-6=9+6-6=9$
11. $(h \circ h)(2)=h(h(2))=h\left(\begin{array}{ll}2 & 3\end{array}\right)=h(8)=8^{3}=512$
12. $(h \circ h)(-1)=h(h(-1))=h\left((-1)^{3}\right)=h(-1)=(-1)^{3}=-1$
13. $(f \circ f)(-4)=f(f(-4))=f(3(-4)+1)=f(-12+1)=$
$f(-11)=3(-11)+1=-33+1=-32$
14. $(f \circ f)(1)=f(f(1))=f(3 \cdot 1+1)=f(3+1)=f(4)=$ $3 \cdot 4+1=12+1=13$
15. $(h \circ h)(x)=h(h(x))=h\left(\begin{array}{ll}x & 3\end{array}\right)=(x 3)^{3}=x 9$
16. $(f \circ f)(x)=f(f(x))=f(3 x+1)=3(3 x+1)+1=$
$9 x+3+1=9 x+4$
17. $(f \circ g)(x)=f(g(x))=f(x-3)=x-3+3=x$
$(g \circ f)(x)=g(f(x))=g(x+3)=x+3-3=x$
The domain offand ofgis $(-\infty, \infty)$, so the domain of
$f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
18. $(f \circ g)(x)=f \quad \overline{4}^{x=} 5^{\circ} 4^{x=x}$

Then the domain of $(h / g)(x)$ is

$$
\begin{array}{ccl}
x x & 7 \text { and } x & \text { 3and } x=-1 \text { and } x
\end{array} \quad 1 \quad \text {, or }
$$

$(g \circ f)(x)=g \quad \begin{array}{ll}4 & 5 \\ 5^{x=}= & 4 \\ 4-5^{\underline{x}=x}\end{array}$
The domain offand ofgis $(-\infty, \infty)$, so the domain of $f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
19. $(f \circ g)(x)=f(g(x))=f\left(3 x_{2}-2 x-1\right)=3 x_{2}-2 x-1+1=$
$3 x 2-2 x$
$(g \circ f)(x)=g(f(x))=g(x+1)=3(x+1) \quad 2-2(x+1)-1=$
$3(x 2+2 x+1)$ $3(x 2+2 x+1) 2(x+1) 1=3 x^{2}+6 x+32 \times 2-1=-$
$3 x 2+4 x$
The domain of afnd of is $g(-\infty, \infty)$, so the domain of
$f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
20. $(f \circ g)(x)=f\left(x^{\circ}+5\right)=3(x 2+5)-2=3 \times 2+15-2=$

$$
\begin{array}{ll}
3 x^{2}+13 & 2 \\
& \\
(g \circ f)(x)=g(3 x-2)=(3 x-2) & +5=9 x-12 x+4+5= \\
9 x 2-12 x+9
\end{array}
$$

The domain offand ofgis $(-\infty, \infty)$, so the domain of $f^{\circ} g$ and of $g \circ f$ is $(-\infty, \infty)$.

$$
\begin{aligned}
& (g \circ f)(x)=g(f(x))=g\left(\begin{array}{ll}
x & -3
\end{array}\right)=4\left(\begin{array}{ll}
x & -3
\end{array}\right)-3= \\
& 4 x 2-12-3=4 x \\
& 2
\end{aligned}
$$

The domain offand ofgis $(-\infty, \infty)$, so the domain of $f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
22. $(f \circ g)(x)=f(2 x-7)=4(2 x-7) \quad 2-(2 x-7)+10=$ $6 x^{2}-1242 x+196-\left(2 x+7+100=16 x_{2}-114 x+213\right.$ $(g \circ f)(x)=g(4 \times 2-x+10)=2\left(4 x_{2}-x+10\right)-7=$

$f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
23. $\left(f^{\circ} g\right)(x)=f(g(x))=f \quad \begin{aligned} & \underline{1} \\ & x\end{aligned}=\frac{4}{1-5 \cdot \underline{1}}=\frac{4}{1-\underline{5}}=$

$$
=\frac{1}{\frac{4}{1-5 x}}=
$$

$$
\text { 1. } 4=4
$$

1

The domain offis $\quad \begin{array}{lll}x & - \\ 5\end{array}$ and the domain ofgis $\{x \mid x \quad 0\}$. Consider the domain of $f \circ g$. Since 0 is not in 1
the domain of $g, 0$ is not in the domain off ${ }^{\circ} g$. Since
is not in the domain of f, we know that $g(x)$ cannot be
24. $(f \circ g)(x)=f \quad \frac{1}{x}=\frac{6}{\underline{2+1}}=6 \cdot \frac{2 x+1}{1}=$
$(g \circ f)(x) \stackrel{6(2 x+1)}{=} \underline{g}_{\underline{6}}$, or $12 x+6^{x}=1 \quad 1=$
$x=\frac{6}{2 \cdot{ }_{x}+1} \quad \frac{12}{\frac{x}{+1}}=\frac{12+}{x^{x}}$ 1. $\underset{ }{\underline{X}} \stackrel{X}{\overline{\overline{2}}+x} \quad 12+x$

The domain of f is $\{x \mid X=0\}$ and the domain of g is $\quad \underline{1}$

$$
1^{x x=-} 2 \quad . \text { Consider the domain of } f \circ g \text {. Since }
$$

 is never 0 , so the domain off ${ }^{\circ} g$ is $\quad \underline{1}_{-}$, or

$$
-\infty,-1 \quad-1, \infty . \quad x x \quad 2
$$

$$
2^{-} \cup 2
$$

Now consider the domain of . Since 0 is not in the domain of $g \circ f$

$$
g \circ f
$$

f, then 0 is not in the domain of $g \circ f$. Also, since- $\frac{1}{2}$ is not in the domain of g, wefind the value(s) of x for which $f(x)=-\quad \begin{gathered}1 \\ \overline{2}\end{gathered}$.

$$
\begin{array}{r}
6=-1 \\
\stackrel{*}{2}=x \\
-12=x
\end{array}
$$

Then the domain of $g \circ \mathrm{fis} \quad x_{x}=-12$ and $x=0 \quad$, or
$(-\infty,-12) \cup(-12,0) \cup(0, \infty)$.
25. $\left(f^{\circ} g\right)(x)=f(g(x))=f \quad \frac{x+7}{3}=$

$$
\begin{gathered}
3 \frac{3+7}{3} \quad-7=x+7-7=x \\
(g \circ f)(x)=g(f(x))=g(3 x-7)= \\
\frac{(3 x 7)+7}{3}=x
\end{gathered}
$$

The domain offand ofgis $(-\infty, \infty)$, so the domain of $f^{\circ} g$ and of $g \circ f$ is $(-\infty, \infty)$.
26. $(f \circ g)(x)=f(1.5 x+1.2)=\frac{2}{3}(1.5 x+1.2)_{-} 5^{4}$
$x+0.8 \quad \underline{4}_{=}=x$
5

Wefind the value(s) ofxfor which $g(x)=\quad \underline{1}$

$$
\begin{aligned}
\frac{1}{x} & =\frac{1}{5} \\
5 & =x \text { Multiplying by } 5 x
\end{aligned}
$$

Thus 5 is also not in the domain off $\circ g$. Then the domain of $f \circ$ gis $\{x \mid x=0$ and $x=5\}$, or $(-\infty, 0) \cup(0,5) \cup(5, \infty)$.
Now consider the domain of $g \circ f$. Recall that $\quad{ }^{1}$ is not in the domain off, so it is not in the domain of $g \circ f$. Now 0
is not in the domain $\operatorname{ofg} \operatorname{but} f(x)$ is never 0 , so the domain

$$
\begin{gathered}
(g \circ f)(x)=g \quad \underline{2}_{x-} \frac{4}{4}=1.5 \underline{2}_{x_{-}} \frac{4}{5}+1.2= \\
3 \quad 3 \quad 3 \\
x-1.2+1.2=x
\end{gathered}
$$

The domain offand ofgis $(-\infty, \infty)$, so the domain of $f_{\circ} g$ and of $g \circ f$ is $(-\infty, \infty)$.
27. $(f \circ g)(x)=f(g(x))=f\left(\quad \vee_{x)=2} \sqrt{x+1}\right.$

$$
(g \circ f)(x)=g(f(x))=g(2 x+1)=\quad V_{2 x+1}
$$

The domain offis $(-\infty, \infty)$ and the domain ofgis $\{x \mid x \geq 0\}$. Thus the domain of $f \circ g i s\{x \mid x \geq 0\}$, or $[0, \infty)$.

Now consider the domain of $g \circ f$. There are no restrictions on the domain of f, but the domain of gis $\{x \mid x \geq 0\}$. Since

$$
\begin{aligned}
& f_{X} Q \text { for } x \geq-\frac{1}{2}, \text { the domain of } g_{g} \rho^{j s} \quad x_{x} \geq-\frac{1}{2}, \\
& \text { or }-\frac{1}{2}, \infty .
\end{aligned}
$$

28. $(f \circ g)(x)=f(2-3 x)=\quad \sqrt{ }^{2-3 x}$ (g ${ }^{\circ} f(x)=g(x)=2-3 \quad x$
The domain of f is $\{x \mid x \geq 0\}$ and the dqmain of $\underline{\underline{s}}$
$(-\infty, \infty)$. Since $g(x) \geq 0$ when $x \leq \quad$, the domain of $f^{\circ} \circ g$ 3
is $-\infty, \frac{2}{3}$.
Now consider the domain ofgof. Since the domain off is $\{x \mid x \geq 0$) and the domain ofgis $(-\infty, \infty)$, the domain
of $g \circ$ fis $\{x \mid x \geq 0\}$, or $[0, \infty)$.
29. $(f \circ g)(x)=f(g(x))=f(0.05)=20$
$(g \circ f)(x)=g(f(x))=g(20)=0.05$
The domain offand ofgis $(-\infty, \infty)$, so the domain of
$f_{\circ} g$ and of $g \circ f$ is $\left.\sqrt{-}-\infty, \infty\right)$.
30. $\left(f^{\circ} g\right)(x)=\left(r^{4} *\right)^{4}=x$

$$
(g \circ f)(x)=\quad y_{\overline{x^{4}}}=|x|
$$

The domain offis $(-\infty, \infty)$ and the domain of g is $\{x \mid x \geq 0\}$, so the domain of $f \circ g i s\{x \mid x \geq 0\}$, or $[0, \infty)$.
Now consider the domain of $g \circ f$. There are no restrictions on the domain offand $f(x) \geq 0$ for all values of x, so the domain is $(-\infty, \infty)$.
31. $\left(f^{\circ} g\right)(x)=f(g(x))=f\left(\begin{array}{ll}x & 2-5\end{array}\right)=$

$$
\begin{gathered}
V^{x^{2}-5+5=} \quad \sqrt{x}^{2}=|x| \\
(g \circ f)(x)=g(f(x))=g\left(\sqrt{\left.V_{\bar{x}}+5\right)}=\right. \\
\sqrt{\overline{x+5})^{2}-5=x+5-5=x}
\end{gathered}
$$

The domain of
The domain of f is $\{x \mid x \geq-5\}$. $\begin{aligned} & \text { and the domain of } g \text { is } \\ & 2 \geq 0 \\ & \text { for }\end{aligned}$
for all values of x and the domain of $g \circ$ is $(-\infty, \infty)$.
Nowconsiderthedomain off $\circ g$. Thereare no restrictions on the domain of g, so the domain off $\circ g$ is the same as the domain of $f\{|x| x \geq-5\}$, or $[-5, \infty)$.
32. $(f \circ g)(x)=\left({ }^{5} x+2\right)^{5}-2=x+2-2=x$

$$
(g \circ f)(x)={ }^{\sqrt{5}} *^{5}-2+2={ }^{\sqrt{5}} *^{5}=x
$$

The domain offand of g is $(-\infty, \infty)$, so the domain of f° gand ofg ${ }^{\circ}$ fis $(-\infty, \infty)$.
33. $(f \circ g)(x)=f(g(x))=f(\quad \sqrt{ } 3-x)=(\sqrt{ } 3-x)^{2}+2=$
$3-x+2=5-x$
$(g \circ f)(x)=g(f(x))=g\left(\begin{array}{ll}x & 2+2\end{array}\right)=3-\left(x^{2}+2\right)=$
34. $(f \circ g)(x)=f\left({ }^{\sqrt{2}} x^{2}-25\right)=1-\left({ }^{\sqrt{2}} x^{2}-25\right)^{2}=$
$1-\left(x_{2}-25\right)=1-x_{2}+25=26-x^{2}$
$(g \circ f)(x)=g(1-x \quad 2)=\left(1-x^{2}\right)^{2}-25=$
$\sqrt{1-2 x^{2}+x^{4}-25}=\sqrt{ } \overline{x^{4}-2 x^{2}-24}$
The domain offis $(-\infty, \infty)$ and the domain of g is $\{x \mid x \leq-5$ or $x \geq 5\}$, so the domain of $f \circ g i s$
$\{x \mid x \leq-5$ or $x \geq 5\}$, or $(-\infty,-5] \cup[5, \infty)$.
Now consider the domain ofg \circ. There are no restrictions on the domain offand the domain of g is $\{x \mid x \leq-5$ or $x \geq 5\}$, so wefind the values of x for which $f(x) \leq-7 \frac{5}{6}$ or $f(x) \geq 5$. We see that $1-x \quad 2 \leq-5$ when $x \leq-\sqrt{6}$ or $x \geq \quad 6$ and $1-x 2 \geqq 5$ has no solution,
 $(-\infty,-6] \cup[6, \infty)$.
35. $(f \circ g)(x)=f(g(x))=f \quad \frac{1}{1+x}=$

$x 1+\underline{x}=x$
$1+x \quad 1$
$(g \circ f)(x)=g(f(x))=g \quad \frac{1-x}{x}=$
$1=-1$

The domain of is $\left\{\left.x\right|_{X} \quad 0\right\}$ and the domain ofgis
$\{x \mid x-1\}$, so we know that-1 is not in the domain off $\circ g$. Since 0 is not in the domain off, values of x for which $g(x)=0$ are not in the domain off $\circ g$. But $g(x)$ is never 0 , so the domain of $f \circ g$ is $\{x \mid x=-1\}$, or $(-\infty,-1) \cup(-1, \infty)$.
Now consider the domain of $g \circ f$. Recall that 0 is not in
the domain of f. Since- 1 is not in the domain of g, we know that $g(x)$ cannot be -1 . Wefind the value(s) of x for $w h i c h f(x)=-1$.

$$
\begin{aligned}
& \frac{1-x}{x}=1- \\
& x \\
& 1-x=-x \text { Multiplying by } x \\
& 1=0 \quad \text { False equation }
\end{aligned}
$$

We see that there are no values ofxfor which $f(x)=-1$,

The domain $\overline{\text { oxfis } \tau^{2}}=\sqrt{ } \overline{1-x^{2}}$
g is
$-\infty, \infty$) and the domain of $\{x \mid x \leq 3\}$, so the domain of $f \circ g i s\{x \mid x \leq 3\}$, or $(-\infty, 3]$.

Now consider the domain of $g \circ f$. There are no restrictions on the domain of f and the domain of $g i s\{x \mid x \leq 3\}$, so wefind the values ofxfor which $f(x) \leq 3$. We see that $x 2+2 \leq 3$ for $-1 \leq x \leq 1$, so the domain of $g^{\circ} f$ is
$\{x \mid-1 \leq x \leq 1\}$, or $[-1,1]$.

36. $(f \circ g)(x)=f \quad x \quad=\underline{x+2}$

$\frac{x+2-2 x}{x} \quad \frac{-x+2}{x}$

$$
=1 \cdot \frac{x}{-x+2}=\frac{x}{-x+2} \text {, or } \frac{x}{2-x}
$$

$$
\begin{aligned}
& ()()=-\underbrace{1}+2 \\
& \begin{array}{ccc}
g \circ f x & & \\
& x-2 & \frac{1}{x-2} \\
& \underline{1+2 x-4} & \underline{2 x-3}
\end{array} \\
& =\frac{x-2}{1}=\frac{x-2}{x-2} \\
& =\underline{2} x-\underline{3} .-^{x-\underline{2}}=2 x-3 \\
& x-2 \quad 1
\end{aligned}
$$

The domain offis $\{x \mid x \quad$ 2\}and the domain ofgis
$\{x \mid x \quad 0\}$, so 0 is not in the domain of $f \circ g$. Wefind the value $\frac{f+x f(2)}{}$ which $g(x)=2$.

$$
=2
$$

x

$$
x+2=2 x
$$

$$
2=x
$$

Then the domain off f gis $(-\infty, 0) \cup(0,2) \cup(2, \infty)$.
Now consider the domain of $g \circ f$. Since the domain of f is $\left\{\left.x\right|_{X}=2\right\}$, we know that 2 is not in the domain of $g \circ f$.

Since the domain ofgis $\{x \mid x \quad 0\}$, wefind the value of x for $\operatorname{which} f(x)=0$.

$$
\begin{array}{r}
\frac{1}{x-2}=0 \\
1=0
\end{array}
$$

We get a false equation, so there are no such values. Then the domain of $g \circ$ fis $(-\infty, 2) \cup(2, \infty)$.
37. $\left(f^{\circ} \circ g\right)(x)=f(g(x))=f(x+1)=$
$(x+1)^{3}-5(x+1)^{2}+3(x+1)+7=$
$x 3+3 x 2+3 x+1-5 x 2-10 x-5+3 x+3+7=$
$x 3-2 x 2-4 x+6$
$(g \circ f)(x)=g(f(x))=g\left(\begin{array}{ll}x & 3-5 x \\ 2 & +3 x+7\end{array}\right)=$
$x 3-5 x_{2}+3 x+7+1=x_{3}-5 x_{2} 2+3 x+8$
The domain offand ofgis $(-\infty, \infty)$, so the domain of
$f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
38. $(g \circ f)(x)=x 3+2 x 2-3 x-9-1=$
$x 3+2 x 2-3 x-10$
$(g \circ f)(x)=(x-1)^{3}+2(x-1)^{2}-3(x-1)-9=$
$x 3-3 x_{2}+3 x-1+2 x_{2}-4 x+2-3 x+3-9=x 3$
$-x 2-4 x-5$
The domain offand of g is $(-\infty, \infty)$, so the domain of $f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
39. $h(x)=(4+3 x)^{5}$

This is $4+3 x$ to the 5th power. The most obvious answer is $f(x)=x 5$ and $g(x)=4+3 x$.
51.a) Use the distance formula, distance $=$ rate $\quad \times$ time. Substitute 3 fortherateand t for time.

$$
r(t)=3 t
$$

b) Use the formula for the area of a circle.
$A(r)=\pi r 2$
c) $(A \circ r)(t)=A(r(t))=A(3 t)=\pi(3 t) \quad{ }^{2}=9 \pi t 2$

This function gives the area of the ripple in terms of timet.
52.a) $=2 r$

$$
S(r)=2 \pi r(2 r)+2 \pi r_{2}
$$

$$
S(r)=4 \pi r_{2}+2 \pi r 2
$$

$$
S(r)=6 \pi r^{2}
$$

b) $r=\underline{h}$

2
$h \quad h^{2}$

$$
\begin{aligned}
& S(h)=2 \pi \quad-2 h+2 \pi \quad \overline{2} \begin{array}{l}
\text { 2 } \\
\pi h 2 \\
S(h)=\pi h 2+\frac{2}{2} \\
S(h)=-\pi h 2 \\
2
\end{array}
\end{aligned}
$$

53.The manufacturer chargesm+2 per drill. The chain store sells each drill for $150 \%(m+2)$, or $1.5(m+2)$, or $1.5 m+3$. Thus, we have $P(m)=1.5 m+3$.
54. $f(x)=\left(t^{\circ} s\right)(x)=t(s(x))=t(x-3)=x-3+4=x+1$

We have $f(x)=x+1$.
55. Equations $(a)-(f)$ are in the form $y=m x+b$, so we can Copyright © 2013 Pearson Education, Inc.

$$
\begin{aligned}
& \text { 42. } f(x)=\frac{1}{V^{\prime}}, g(x)=3 x+7 \\
& \text { 43. } f(x)=\frac{x-1}{x+1}, g(x)=x 3 \\
& \text { 44. } f(x)=|x|, g(x)=9 x \quad 2-4 \\
& \text { 45. (})={ }^{6},(\quad)=\underline{2+x_{3}} \\
& \begin{array}{llll}
f x & x & g x & 2 x^{3}
\end{array} \\
& \text { 46. } f(x)=x \underset{\substack{4, g(x) \\
\sqrt{2} \\
\underline{x-5} \\
\hline}}{\left.\begin{array}{l}
x-3 \\
\end{array}\right)} \\
& \text { 47. } f(x)=V^{\bar{x}, g(x)=x+\sqrt[2]{ }) ~} \\
& \text { 48. } f(x)=\underline{x,}^{1+}(x)=1 \frac{x}{+} \\
& \text { 49. } f(x)=x 3-5 x 2+3 x-1, g(x)=x+2 \\
& \text { 50. } f(x)=2 x \quad 5^{\prime} 3+5 x 2^{\prime} 3, g(x)=x-1 \text {, or } \\
& f(x)=2 x 5+5 x 2, g(x)=(x-1)^{1 / 3}
\end{aligned}
$$

40. $f(x)={\underset{3}{\sqrt{3}}}_{x, g(x)}^{-}=x \quad 2-8$
41. $h(x)=\frac{1}{(x-2)^{4}}$

This is 1 divided by $(x-2)$ to the 4 th power. One obvious answer is $f(x)={ }^{1}$ and $g(x)=x-2$. Another possibility is $f(x)=\frac{1}{x}$ and $g(x)=(x-2)^{4}$.
read they-intercepts directly from the equations. Equa-
tions (g) and (h) can be written in this form asy $=\frac{2}{3} x-2$
and $y=-2 x+3$, respectively. We see that only equa-
tion (c) hasy-intercept (0,1).
56. None (See Exercise 55.)
57. If a line slopes down from left to right, its slope is negative. The equations $y=m x+b$ for which m is negative are (b),
(d), (f), and (h). (See Exercise 55.)
58. The equation for which $|m|$ is greatest is the equation with the steepest slant. This is equation (b). (See Exercise 55.)
59. The only equation that has $(0,0)$ as a solution is (a).
60. Equations (c) and (g) have the same slope. (See Exercise 55.)
61. Only equations (c) and (g) have the same slope and differ-enty-intercepts. They represent parallel lines.
62. The only equations for which the product of the slopes is -1 are (a) and (f).
63. Only the composition $(c \neq)(a)$ makes sense. It represents the cost of the grass seed required to seed a lawn with area a.
64. Answers may vary. One example is $f(x)=2 x+5$ and $g(x)=2$. Other examples are found in Exercises 17, $18,25,26,32$ and 35.

Chapter 2 Mid-Chapter Mixed Review

1. The statement is true. See page 162 in the text.
2. The statement is false. See page 177 in the text.
3.The statement is true. See Example 2 on page 185 in the text, for instance.
4.a) Forx-values from 2 to 4 , they-values increase from 2 to 4 . Thus the function is increasing on the interval $(2,4)$.
b) Forx-values from-5 to-3, they-values decrease from 5 to 1 . Also, for x-values from 4 to 5 , theyvalues decrease from 4 to -3 . Thus the function is decreasing on $(-5,-3)$ and on $(4,5)$.
c) Forx-values from-3 to-1,yis 3 . Thus the function is constant on $(-3,-1)$.
3. From the graph we see that a relative maximum value of
6.30 occurs at $x=-1.29$. We also see that a relative minimum value of -2.30 occurs at $x=1.29$.
The graph starts rising, or increasing, from the left and stops increasing at the relative maximum. From this point it decreases to the relative minimum and then increases again. Thus the function is increasing on $(-\infty,-1.29)$
and on $(1.29, \infty)$. It is decreasing on $(-1.29,1.29)$.
4. Thex-values extend from -5 to -1 and from 2 to 5 , so the domain is $[-5,-1] \cup[2,5]$. They-values extend from -3 to 5 , so the range is $[-3,5]$.
5. $A(h)=\underline{1}\left(h _2\right) h$

$$
\begin{aligned}
& \begin{array}{l}
\\
\text { 8. }()= \\
f x
\end{array} \\
& \begin{array}{l}
x-5, \text { for } x \leq-3 \\
2 x+3, \text { for }-3<x \leq 0,
\end{array} \\
& \sqsubset_{2}^{1} \\
& \\
&
\end{aligned}
$$

Since $-5 \leq-3, f(-5)=-5-5=-10$.
Since $-3 \leq-3, f(-3)=-3-5=-8$.
Since $-3<-1 \leq 0, f(-1)=2(-1)+3=-2+3=1$.
Since $6>0, f(6)=\frac{1}{2} 6=3$.
9. $g(x)=\quad \begin{aligned} & x+2, \text { for } x<-4, \\ & -x, \text { for } x \geq-4\end{aligned}$

We create the graph in two parts. Graphg $(x)=x+2$ for inputs less than -4 . Then graph $g(x)=-x$ for inputs greater than or equal to -4 .

$$
\text { 10. } \begin{aligned}
(f+g)(-1)=f & (-1)+g(-1) \\
& =[3(-1)-1]+\left[(-1)^{2}+4\right] \\
& =-3-1+1+4 \\
& =1
\end{aligned}
$$

11. $(f g)(0)=f(0) \cdot g(0)$

$$
=(3 \cdot 0-1) \cdot(0 \quad 2+4)
$$

$$
=-1 \cdot 4
$$

$$
=-4
$$

12. $(\quad)(3)=(3) \quad(3)$
$\boldsymbol{g}-\boldsymbol{f} \quad \boldsymbol{g} \quad-\boldsymbol{f}$
$=\left(3^{2}+4\right)-(3 \cdot 3-1)$
$=9+4-(9-1)$
$=9+4-9+1$
$=5$
13. $(g / f) \quad \frac{1}{3}=\frac{g \frac{1}{3}}{f \frac{1}{3}}-\frac{1}{3}^{\frac{1}{3}}+4$

$$
A(h)=\frac{1}{=} h 2-h
$$

$$
\begin{align*}
& =\frac{3 \cdot \frac{1}{3}-1}{} \\
& =\frac{9+4}{1-1} \\
& -\quad=\begin{array}{r}
37 \\
\\
=
\end{array}
\end{align*}
$$

```
    Since division by 0 is not defined, \((g / f)_{\overline{3}}^{1}\) does not exist.
14. \(f(x)=2 x+5, g(x)=-x-4\)
    a) The domain offand of \(g\) is the set of all real num-
    bers, or \((-\infty, \infty)\). Then the domain of \(f+g, f-g, f g\),
    and \(f f\) is also \((-\infty, \infty)\).
    Forf/gwe must exclude -4 since \(g(-4)=0\). Then
    the domain of \(f / g\) is \((-\infty,-4) \cup(-4, \infty)\).
    Forg/fwe must exclude- \(\quad \begin{aligned} & 5 \\ & { }_{2}^{2} \\ & \text { sincef }\end{aligned} \begin{array}{r}5 \\ -{ }_{2}^{2}\end{array}=0\).
    Then the domain of \(g / f\) is
        \(-\infty,-\frac{5}{2} \cup-\frac{5}{2}, \infty\).
    b) (
    \(f+g)(x)=f(x)+g(x)=(2 x+5)+(-x-4)=x+1\)
    \((f g)(x)=f(x) g(x)=(2 x+5)(* 4)=\)
    \(2 x+5+x+4=3 x+9\)
    \((f g)(x)=f(x) \cdot g(x)=(2 x+5)(-x-4)=\)
    \(-2 x 2-8 x-5 x-20=-2 x \quad 2-13 x-20\)
    \((f)(x)=f(x) f \cdot(x)=(2 x+5)(\cdot 2 x+5)=\)
    \((f / g)(x)=\stackrel{f(x)}{ }=\underline{2 x+5}\)
    \((g / f \quad)=\begin{array}{ll}g(x) & -x-4 \\ f(x) & -\underline{g(x)} \\ 2 x+5\end{array}\)
15. \(f(x)=x-1, g(x)=\quad V_{\overline{x+2}}\)
a) Any number can be an input forf, so the domain offis the set of all real numbers, or \((-\infty, \infty)\).
The domain of \(g\) consists of all values for which \(x+2\) is nonnegative, so we have \(x+2 \geq 0\), or \(x \geq-2\), or \([-2, \infty)\). Then the domain of \(f+g, f-g\), and \(f g\)
is \([-2, \infty)\).
The domain offfis \((-\infty, \infty)\).
Since \(g(-2)=0\), the domain of \(f / g\) is \((-2, \infty)\).
Since \(f(1)=0\), the domainof \(g / f\) is \([-2,1) \cup(1, \infty)\).
b) \((f+g)(x)=f(x)+g(x)=x-1+\quad x+2\)
\((f-g)(x)=f(x)-g(x)=x-1-\sqrt{\frac{\sqrt{x}}{}}\)
\((f g)(x)=f(x) \cdot g(x)=(x-1) \quad V_{\overline{x+2}}\)
\((f f)(x)=f(x) \cdot f(x)=(x-1)(x-1)=\)
\(x 2-x-x+1=x \quad 2-2 x+1\)
\((f / g)(x)=\frac{f(x)}{g(x)}=\frac{x-1}{\sqrt{x+2}}\)
\((g / f)(x)=\quad=x+2\)
16. \(f(x)=4 x-3\)
\(f(x) \quad x-1\)
\(f(x+h)-f(x)=4(x+h)-3-(4 x-3)=\) \(h\)
\(4 x+4 h-3-4 x+3\)\(\underline{4 h}\)
```

$$
\begin{aligned}
& \text { 17. } f(x)=6-x \quad 2 \\
& f(x+h)-f(x)=6-(x+h)^{2}-(6-x 2)= \\
& h \quad h \\
& \frac{6-\left(x_{2} 2+2 x h+h 2\right)-6+x^{2}}{h}=\frac{6-x^{2}-2 x h-h^{2}-6+x^{2}}{h}= \\
& \frac{-2 x h-h 2}{h}=\frac{h /(-2 x-h)}{h / \cdot 1}=2-x-h
\end{aligned}
$$

18. $(f \circ g)(1)=f(g(1))=f(1 \quad+1)=f(1+1)=f(2)=$ $5 \cdot 2-4=10-4=6$
19. $(g \circ h)(2)=g(h(2))=g\left(2 \quad{ }^{2}-2 \cdot 2+3\right)=g(4-4+3)=$ $g(3)=3^{3}+1=27+1=28$
20. ()$(0)=((0))=(504)=(4)=5(4) 4=$ $f \circ f \quad f f \quad f \cdot-\quad f-\quad-$ $-20-4=-24$
21. $(h \circ f)(-1)=h(f(-1))=h(5(-1)-4)=h(-5-4)=$ $h(-9)=(-9)^{2}-2(-9)+3=81+18+3=102$
22. $(f \circ g)(x)=f(g(x))=f(6 x+4)=\quad(6 x+4)=3 x+2$
$(g \circ f)(x)=g(f(x))=g \quad \frac{1}{2} x=6 \cdot{\stackrel{1^{2}}{x+4}}_{2}^{\overline{2}^{2}}=3 x+4$ The domain offand g is (${ }_{-\infty}{ }^{\infty}$) , so the domain of $f^{\circ} g$ and $g \circ f$ is $(-\infty, \infty)$.

The domain offis $(-\infty, \infty)$ and the domain ofgis $[0, \infty)$.
Consider the domain off $f g$. Since any number can be an input forf, the domain offogis the same as the domain of $g,[0, \infty)$.

Now consider the domain of $g \circ f$. Since the inputs of g must be nonnegative, we must have $3 x+2 \geq 0$, or $x \geq-2 \overline{3}$. Thus the domain of $g \circ f$ is

$$
-\frac{2}{3}, \infty .
$$

24. The graph of $y=(h g)(x)$ will be the same as the graph of $y=h(x)$ moved downbunits.
25. Under the given conditions, $(f+g)(x)$ and $(f / g)(x)$ have different domains if $g(x)=0$ for one or more real numbers x.
26. Iffandgare linear functions, then any real number can be an input for each function. Thus, the domain of $f \circ g=$

188 in the text, for example. Since $(f \circ g)(x)=\frac{4 x}{}, x-5$
an examination of only this composed function would lead to the incorrect conclusion that the domain of $f \circ g$ is $(-\infty, 5) \cup(5, \infty)$. However, we must also exclude from the domain off $f g$ those values of x that are not in the domain

Exercise Set 2.4

1. If the graph were folded on thex-axis, the parts above and below thex-axis would not coincide, so the graph is not symmetric with respect to thex-axis.
If the graph were folded on they-axis, the parts to the left and right of they-axis would coincide, so the graph is symmetric with respect to they-axis.
If the graph were rotated 180°, the resulting graph would not coincide with the original graph, so it is not symmetric with respect to the origin.
2. If the graph were folded on thex-axis, the parts above and below thex-axis would not coincide, so the graph is not symmetric with respect to thex-axis.
If the graph were folded on they-axis, the parts to the left and right of they-axis would coincide, so the graph is symmetric with respect to they-axis.
If the graph were rotated 180°, the resulting graph would not coincide with the original graph, so it is not symmetric with respect to the origin.
3.If the graph were folded on thex-axis, the parts above and below thex-axis would coincide, so the graph is symmetric with respect tothex-axis.
If the graph were folded on they-axis, the parts to the left and right of they-axis would not coincide, so the graph is not symmetric with respect to they-axis.
If the graph were rotated 180°, the resulting graph would not coincide with the original graph, so it is not symmetric with respect to the origin.
4.If the graph were folded on thex-axis, the parts above and below thex-axis would not coincide, so the graph is not symmetric with respect to thex-axis.
If the graph were folded on they-axis, the parts to the left and right of they-axis would not coincide, so the graph is not symmetric with respect to they-axis.
If the graph were rotated 180°, the resulting graph would coincide with the original graph, so it is symmetric with respect to the origin.
3. If the graph were folded on thex-axis, the parts above and below thex-axis would not coincide, so the graph is not symmetric with respect to thex-axis.
If the graph were folded on they-axis, the parts to the left and right of they-axis would not coincide, so the graph is not symmetric with respect to they-axis.
If the graph were rotated 180°, the resulting graph would coincide with the original graph, so it is symmetric with respect to the origin.
4. If the graph were folded on thex-axis, the parts above and below the x-axis would coincide, so the graph is symmetric with respect tothex-axis.
If the graph were folded on they-axis, the parts to the left and right of they-axis would coincide, so the graph is symmetric with respect to they-axis.

If the graph were rotated 180°, the resulting graph would coincide with the original graph, so it is symmetric with respect to the origin.
7.

The graph is symmetric with respect to they-axis. It is not symmetric with respect to thex-axis or the origin.
Test algebraically for symmetry with respect to thex-axis:

$$
\begin{aligned}
y=|x|-2 & \text { Original equation } \\
-y=|x|-2 & \text { Replacingyby-y } \\
y=-|x|+2 & \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Test algebraically for symmetry with respect to they-axis:

$$
\begin{array}{lc}
y=|x|-2 & \text { Original equation } \\
y=|-x|-2 & \text { Replacingxby-x } \\
y=|x|-2 & \text { Simplifying }
\end{array}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.
Test algebraically for symmetry with respect to the origin:

$$
\begin{array}{cc}
y=|x|-2 & \text { Original equation } \\
-y=|-x|-2 & \text { Replacingxby-xand } \\
y b y-y \\
-y=|x|-2 & \text { Simplifying } \\
y=-|x|+2 &
\end{array}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
8.

The graph is not symmetric with respect to the x-axis, the y-axis, or the origin.
Test algebraically for symmetry with respect to thex-axis:

$$
\begin{aligned}
y & =|x+5| \text { Original equation } \\
-y & =|x+5| \text { Replacingyby }-y \\
y & =-|x+5| \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Test algebraically for symmetry with respect to they-axis:

$$
\begin{aligned}
& y=|x+5| \text { Original equation } \\
& y=|-x+5| \text { Replacing } x \text { by }-x
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.
Test algebraically for symmetry with respect to the origin:

$$
\begin{aligned}
y & =|x+5| \text { Original equation } \\
-y & =|-x+5| \text { Replacingxby }-x \text { and } y b y-y \\
y & =-|-x+5| \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
9.

The graph is not symmetric with respect to thex-axis, the y-axis, or the origin.
Test algebraically for symmetry with respect to the x-axis:

$$
\begin{array}{cl}
5 y=4 x+5 & \text { Original equation } \\
5(-y)=4 x+5 & \text { Replacingyby }-y \\
-5 y=4 x+5 & \text { Simplifying } \\
5 y=-4 x-5 &
\end{array}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Test algebraically for symmetry with respect to they-axis:

$$
\begin{aligned}
& 5 y=4 x+5 \quad \text { Original equation } \\
& 5 y=4(-x)+5 \text { Replacing } x \text { by }-x \\
& 5 y=-4 x+5 \quad \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.
Test algebraically for symmetry with respect to the origin:

$$
\begin{array}{cc}
5 y=4 x+5 & \begin{array}{c}
\text { Original equation } \\
5(-y)
\end{array}=4(-x)+5 \begin{array}{l}
\text { Replacing } x \text { by }-x \\
\\
\\
\\
\\
\text { and } \\
y \text { by }-y
\end{array} \\
-5 y=-4 x+5 \quad \text { Simplifying } \\
5 y=4 x-5 &
\end{array}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
10.

The graph is not symmetric with respect to thex-axis, the y-axis, or the origin.
Testalgebraically for symmetry withrespect to the x-axis:

$$
\begin{aligned}
2 x-5 & =3 y \text { Original equation } \\
2 x-5 & =3(-y) \text { Replacing } y \text { by }-y \\
-2 x+5 & =3 y \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Testalgebraically for symmetrywithrespect to they-axis:

$$
\begin{aligned}
2 x-5 & =3 y \text { Original equation } \\
2(-x)-5 & =3 y \text { Replacing } x \text { by }-x \\
-2 x-5 & =3 y \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.
Testalgebraically for symmetry with respect to theorigin:

$$
\begin{aligned}
& 2 x-5=3 y \text { Original equation } \\
& 2(-x)-5=3(-y) \text { Replacing } x \text { by }-x \text { and } \\
& \quad y \text { by }-y \\
&-2 x-5=-3 y \text { Simplifying } \\
& 2 x+5=3 y
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
11.

The graph is symmetric with respect to they-axis. It is not symmetric with respect to thex-axis or the origin.
Test algebraically for symmetry with respect to the x-axis:

$$
\begin{array}{cl}
5 y=2 \times 2-3 & \text { Original equation } \\
5(-y)=2 \times 2-3 & \text { Replacingyby }-y \\
-5 y=2 \times 2-3 & \text { Simplifying } \\
5 y=-2 \times 2+3 &
\end{array}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.

Test algebraically for symmetry with respect to they-axis:

$$
\begin{aligned}
& 5 y=2 x \quad 2-3 \quad \text { Original equation } \\
& 5 y=2(-x)^{2}-3 \text { Replacing } x b y-x \\
& 5 y=2 x 2-3
\end{aligned}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.

Test algebraically for symmetry with respect to the origin:

$$
\begin{gathered}
5 y=2 x \quad 2-3 \quad \text { Original equation } \\
5(-y)=2(-x)^{2}-3 \text { Replacing } x b y-x a n d \\
y b y-y
\end{gathered}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
12.

The graph is symmetric with respect to they-axis. It is not symmetric with respect to thex-axis or the origin.

Test algebraically for symmetry with respect to thex-axis:

$$
\begin{aligned}
x 2+4 & =3 y \text { Original equation } \\
x 2+4 & =3(-y) \text { Replacingyby-y } \\
-x 2-4 & =3 y \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Test algebraically for symmetry with respect to they-axis:

$$
\begin{aligned}
x 2+4 & =3 y \text { Original equation } \\
(-x)^{2}+4 & =3 y \text { Replacingxby }-x \\
x 2+4 & =3 y
\end{aligned}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.
Test algebraically for symmetry with respect to the origin:

$$
x 2+4=3 y \text { Original equation }
$$

$$
(-x)^{2}+4=3(-y) \text { Replacing } x \text { by-xand }
$$

$$
y \mathrm{by}-y
$$

$$
\begin{aligned}
x 2+4 & =-3 y \text { Simplifying } \\
-x 2-4 & =3 y
\end{aligned}
$$

13.

The graph is not symmetric with respect to the -axis or the y-axis. It is symmetric with respect to the origin.

Test algebraically for symmetry with respect to the ${ }_{X}^{-a x i s: ~}$

$$
\begin{array}{rll}
y= & \begin{array}{l}
1 \\
\bar{x}
\end{array} & \text { Original equation } \\
1 & \\
-y= & \\
& \\
& & \text { Replacingyby }-y \\
y & =-\frac{}{x} & \text { Simplifying }
\end{array}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Test algebraically for symmetry with respect to they-axis:

$$
\begin{array}{ll}
y=\frac{1}{x} & \text { Original equation } \\
y=\frac{1}{-x} & \text { Replacingxby-x } \\
y=-\frac{1}{x} & \text { Simplifying }
\end{array}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.
Test algebraically for symmetry with respect to the origin:

$$
\begin{aligned}
& y= \underline{1} \\
& x \text { Original equation } \\
&-y=\begin{array}{cl}
\frac{1}{-x} & \text { Replacing } x \text { by }- \text { xand } y b y-y \\
y= & \text { Simplifying }
\end{array},
\end{aligned}
$$

not symmetric with respect to the origin.

The last equation is not equivalent to the original equation,

14.

Test algebraically for symmetry with respect to thex-axis:

$=-\quad 4$	Original equation
x	
4	
-	Replacingyby-y
4	
$y=\frac{1}{x}$	Simplifying

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Test algebraically for symmetry with respect to they-axis:

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.
Test algebraically for symmetry with respect to the origin:

$$
\begin{aligned}
y=-{ }_{-x}^{4} & \text { Original equation } \\
-y & =-\frac{4}{-x} \\
y & \text { Replacingxby-xand } y b y-y \\
y & \text { Simplifying }
\end{aligned}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.
15. Test for symmetry with respect to the x-axis:

$$
\begin{gathered}
5 x-5 y=0 \text { Original equation } \\
5 x-5(-y)=0 \text { Replacing } y \text { by }-y \\
5 x+5 y=0 \text { Simplifying }
\end{gathered}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Test for symmetry with respect to they-axis:

$$
\begin{aligned}
5 x-5 y & =0 \text { Original equation } \\
5(-x)-5 y & =0 \text { Replacing } x b y-x \\
-5 x-5 y & =0 \text { Simplifying } \\
5 x+5 y & =0
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.
Test for symmetry with respect to the origin:

$$
5 x-5 y=0 \text { Original equation }
$$

$$
5(-x)-5(-y)=0 \text { Replacing } x \text { by }-x \text { and }
$$

$$
y \text { by }-y
$$

$-5 x+5 y=0$ Simplifying

$$
5 x-5 y=0
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.

Test for symmetry with respect to they-axis:
$6 x+7 y=0$ Original equation
$6(-x)+7 y=0$ Replacing x by $-x$
$6 x-7 y=0$ Simplifying

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.
Test for symmetry with respect to the origin:

$$
6 x+7 y=0 \text { Original equation }
$$

$$
\begin{gathered}
6(-x)+7(-y)=0 \text { Replacing } x \text { by }-x \text { and } \\
y \text { by }-y \\
6 x+7 y=0 \text { Simplifying }
\end{gathered}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.
17.Test for symmetry with respect to the x-axis:
$3 x 2-2 y 2=3$ Original equation

$$
\begin{array}{rl}
3 x 2-2(-y)^{2} & =3 \text { Replacingyby }-y \\
3 x 2-2 y & 2=3 \text { Simplifying }
\end{array}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis. Test for symmetry with respect to they-axis:
16. Test for symmetry with respect to the x-axis: $6 x+7 y=0$ Original equation
$6 x+7(-y)=0$ Replacing y by $-y$ $6 x-7 y=0$ Simplifying

$$
\begin{array}{rl}
3 x 2-2 y & 2=3 \text { Original equation } \\
3(-x)^{2}-2 y^{2} & =3 \text { Replacing } x b y-x \\
3 x 2-2 y & 2=3 \text { Simplifying }
\end{array}
$$

The last equation is equivalent to the original equation, sothe graph is symmetric with respect to they-axis.
Test for symmetry with respect to the

$$
\text { origin: } 3 x 2-2 y 2=3 \text { Original }
$$

equation
$3(-x)^{2}-2(-y)^{2}=3$ Replacing $x b y-x$ and y by $-y$
$3 x 2-2 y 2=3$
Simplifying
The last equation is equivalent to the original equation, sothe graph is symmetric with respect to the origin.
18. Test for symmetry with respect to the x -

$$
\begin{gathered}
\text { axis: } 5 y=7 \times 2-2 x \text { Original equation } \\
5(-y)=7 x 2 \\
-2 x \text { Replacingyby }-y \\
5 y=-7 \times 2+2 x \text { Simplifying }
\end{gathered}
$$

The last equation is not equivalent to the original equation,so the graph is not symmetric with respect to thex-axis.
Test for symmetry with respect to they-
axis: $5 y=7 x 2-2 x$ Original equation
$5 y=7(-x)^{2}-2(-x)$
Replacingxby-x5y=7x2+
$2 x$ Simplifying
The last equation is not equivalent to the original equation,so the graph is not symmetric with respect to they-axis.

Test for symmetry with respect to the origin:

$$
5 y=7 x \quad 2-2 x \text { Original equation }
$$

$$
\begin{array}{r}
5(-y)=7(-x)^{2}-2(-x) \text { Replacing } x \text { by }-x \\
\text { andyby }-y
\end{array}
$$

$$
\begin{gathered}
-5 y=7 \times 2+2 x \text { Simplifying } \\
5 y=-7 \times 2-2 x
\end{gathered}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
19. Test for symmetry with respect to the x-axis:

$$
\begin{aligned}
y & =|2 x| \text { Original equation } \\
-y & =|2 x| \text { Replacingyby-y } \\
y & =-|2 x| \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.

Test for symmetry with respect to they-axis:

$$
\begin{aligned}
& y=|2 x| \text { Original equation } \\
& y=|2(-x)| \text { Replacing } x b y-x \\
& y=|-2 x| \text { Simplifying } \\
& y=|2 x|
\end{aligned}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.
Test for symmetry with respect to the origin:

$$
\begin{aligned}
y & =|2 x| \text { Original equation } \\
-y & =|2(-x)| \text { Replacing } x \text { by }-x \text { and } y \text { by }-y \\
-y & =|-2 x| \text { Simplifying } \\
-y & =|2 x| \\
y & =-|2 x|
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
20. Test for symmetry with respect to thex-axis:

$$
\begin{aligned}
y 3 & =2 x 2 & & \text { Original equation } \\
(-y)^{3} & =2 \times 2 & & \text { Replacingyby }-y \\
-y 3 & =2 x 2 & & \text { Simplifying } \\
y 3 & =-2 x_{2} & &
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Test for symmetry with respect to they-axis:

$$
\begin{array}{lr}
y 3=2 x 2 & \text { Original equation } \\
y 3=2(-x)^{2} & \text { Replacing } x \text { by }-x y 3 \\
=2 x 2 & \text { Simplifying }
\end{array}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.
Test for symmetry with respect to the origin:

$$
\begin{aligned}
y 3 & =2 x 2 & \text { Original equation } \\
(-y)^{3} & =2(-x)^{2} & \text { Replacingxby-xand } \\
& & y \text { by }-y \\
-y 3 & =2 x 2 & \text { Simplifying } \\
y_{3} & =-2 x_{2} &
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
21. Test for symmetry with respect to thex-axis:

$$
\begin{array}{ll}
2 x 4+3=y 2 & \text { Original equation } \\
2 x 4+3=(-y)^{2} & \text { Replacingyby }-y \\
2 x 4+3=y 2 & \text { Simplifying }
\end{array}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis.
Test for symmetry with respect to they-axis:
$2 x 4+3=y 2$ Original equation
$2(-x)^{4}+3=y 2$ Replacing x by $-x$
$2 x 4+3=y 2$ Simplifying
The last equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.
Test for symmetry with respect to the origin:

$$
\begin{array}{cc}
2 x_{4}+3=y 2 & \text { Original equation } \\
2(-x)^{4}+3=(-y)^{2} & \text { Replacing } x \text { by }-x \\
& \text { and } y \text { by }-y \\
2 x 4+3=y 2 & \text { Simplifying }
\end{array}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.
22. Test for symmetry with respect to the x-axis:

$$
\begin{aligned}
2 y 2 & =5 x 2+12 \text { Original equation } \\
2(-y)^{2} & =5 x 2+12 \text { Replacingyby }-y \\
2 y 2 & =5 x 2+12 \text { Simplifying }
\end{aligned}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis.
Testfor symmetry with respect to they-axis:

$$
\begin{aligned}
& 2 y_{2}=5 x 2+12 \quad \text { Original equation } \\
& 2 y_{2}=5(-x)^{2}+12 \text { Replacing } x \text { by }-x \\
& 2 y_{2}=5 x 2+12 \quad \text { Simplifying }
\end{aligned}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.
Test for symmetry with respect to the origin:

$$
\begin{aligned}
2 y 2 & =5 x 2+12 & \quad \text { Original equation } \\
2(-y)^{2} & =5(-x)^{2}+12 & \text { Replacing } x \text { by }-x \\
& & \text { and } y \text { by }-y \\
2 y 2 & =5 x 2+12 & \text { Simplifying }
\end{aligned}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.
23. Test for symmetry with respect to the x-axis:

$$
\begin{array}{cc}
3 y 3=4 x 3+2 & \text { Original equation } \\
3(-y)^{3}=4 x 3+2 & \text { Replacing } y \text { by }-y \\
-3 y 3=4 x 3+2 & \text { Simplifying } \\
3 y 3=-4 x 3-2 &
\end{array}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to the x-axis.

Testfor symmetry with respect to they-axis:

$$
\begin{aligned}
& 3 y 3=4 x 3+2 \quad \text { Original equation } \\
& 3 y z=4(-x)^{3}+2 \text { Replacing } x \text { by }-x \\
& 3 y z=-4 x 3+2 \quad \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.
Test for symmetry with respect to the origin:

$$
3 y 3=4 x 3+2 \quad \text { Original equation }
$$

$3(-y)^{3}=4(-x)^{3}+2$ Replacing x by $-x$

$$
\begin{array}{cl}
-3 y 3 & =-4 x_{3}+2 \quad \begin{array}{c}
\text { andyby-y } \\
\text { Simplifying }
\end{array} \\
3 y з=4 \times 3-2
\end{array}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
24. Test for symmetry with respect to the x-axis:

$$
\begin{aligned}
& 3 x=|y| \text { Original equation } \\
& 3 x=|-y| \text { Replacing } y \text { by }-y \\
& 3 x=|y| \text { Simplifying }
\end{aligned}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to thex-axis.
Test for symmetry with respect to they-axis:

$$
\begin{aligned}
3 x & =|y| \text { Original equation } \\
3(-x) & =|y| \text { Replacing } x b y-x \\
-3 x & =|y| \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.
Test for symmetry with respect to the origin:

$$
\begin{aligned}
& 3 x=|y| \text { Original equation } \\
& 3(-x)=|-y| \text { Replacing } x \text { by }-x \text { and } y \text { by }-y \\
& -3 x=|y| \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
25. Test for symmetry with respect to the x-axis:
$x y=12 \quad$ Original equation

$$
\begin{array}{cc}
x(-y)=12 & \text { Replacing } y \text { by }-y \\
-x y=12 & \text { Simplifying }
\end{array}
$$

$x y=-12$
The last equation is not equivalent to the original equation,
so the graph is not symmetric with respect to thex-axis.
Test for symmetry with respect to they-axis:

$$
\begin{aligned}
x y & =12 \quad \text { Original equation } \\
-x y & =12 \quad \text { Replacingxby }-x \\
x y & =-12 \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.

The last equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.
26.Test for symmetry with respect to the x-axis:

$$
\begin{array}{rlrl}
x y-x & 2=3 & \text { Original equation } \\
x(-y)-x & 2 & =3 & \text { Replacingyby }-y \\
x y+x & 2 & =-3 & \text { Simplifying }
\end{array}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis. Test for symmetry with respect to they-axis:

$$
\begin{aligned}
x y-x_{2}^{2} & =3 & \text { Original equation } \\
& =3 \quad & \text { Replacing } x \text { by }-x \\
-x y-(-x) & =-3 & \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.

Test for symmetry with respect to the origin:

$$
\begin{gathered}
x y-x^{2}=3 \text { Original equation } \\
-x(-y)-(-x)^{2}=3 \text { Replacingxby-xand } \\
y \text { by }-y \\
x y-x^{2}=3 \text { Simplifying }
\end{gathered}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.

27•x-axis: Replaceywith-y; ($-5,-6$)
y-axis: Replacexwith- x; $(5,6)$
Origin: Replacexwith-xandywith-y; $(5,-6)$
7
28. x-axis: Replaceywith-y; 0

2
y-axis: Replacexwith-x; $\quad-\frac{7}{2}, 0$
Origin: Replacexwith-xandywith-y; $\quad-{ }_{2}, 0$
29. x-axis: Replaceywith $-y$; $(-10,7)$
y-axis: Replacexwith- x; $(10,-7)$
Origin: Replacexwith-xandywith-y; $(10,7)$
30. x-axis: Replaceywith-y; $1,-\underline{3}$
$\frac{3}{8}$
y-axis: Replacexwith $-x ; \quad-1, \underline{3}$

Test for symmetry with respect to the origin:
$x y=12$ Original equation
Orig
in:
Repl
ace x
with
-xan
dyw ith-
$y ;$
31. x-axis: Replaceywith $-y$; $(0,4)$
y-axis: Replacexwith $-x$; $(0,-4)$
Origin: Replacexwith-xandywith-y; $(0,4)$
32. x-axis: Replaceywith $-y$; $(8,3)$
y-axis: Replacexwith-x; $(-8,-3)$
Origin: Replacexwith-xandywith-y; $(-8,3)$
$-x(-y)=12$ Replacing x by $-x$ and y by $-y$ $x y=12$ Simplifying
33. The graph is symmetric with respect to they-axis, so the function is even.
34. The graph is symmetric with respect to they-axis, so the function is even.
35. The graph is symmetric with respect to the origin, so the function is odd.
36. The graph is not symmetric with respect to either theyaxis or the origin, so the function is neither even nor odd.
37. The graph is not symmetric with respect to either theyaxis or the origin, so the function is neither even nor odd.
38. The graph is not symmetric with respect to either they-
axis or the origin, so the function is neither even nor odd.
39. $f(x)=-3 \times 3+2 x$
$f(-x)=-3(-x)^{3}+2(-x)=3 x 3-2 x$
$-f(x)=-(-3 x 3+2 x)=3 x 3-2 x$
$f(-x)=-f(x)$, sofis odd.
40. $f(x)=7 x 3+4 x-2$
$f(-x)=7(-x)^{3}+4(-x)-2=-7 x$ з $-4 x-2$
$-f(x)=-\left(7 x_{3}+4 x-2\right)=-7 x_{3}-4 x+2$
$f(x) \quad f(-x)$, sofis not even.
$f(-x)-f(x)$, sofis not odd.
Thus, $f(x)=7 x_{3}+4 x-2$ is neither even nor odd.
41. $f(x)=5 x_{2}+2 x_{4}-1$
$f(-x)=5(-x)^{2}+2(-x)^{4}-1=5 \times 2+2 \times 4-1$
$f(x)=f(-x)$, sofis even.
42. $f(x)=x+1$

$$
-f(x)=-\quad x+\frac{\bar{x}}{}=-x-\bar{x}
$$

$f(-x)=-f(x)$, so f is odd.
43. $f(x)=x 17$
$f(-x)=(-x)^{17}=-x 17$
$-f(x)=-x \quad 17$
$f(-x)=-f(x)$, so f is odd.
44. $f(x)=3^{3} *$

$$
\begin{array}{ll}
& \sqrt{ }- \\
f(-x)= & \sqrt{3}^{3}-x=- \\
{ }^{3} x \\
-f(x) & =-{ }^{3} \bar{x}
\end{array}
$$

$f(-x)=-f(x)$, so f is odd.
45. $f(x)=x-|x|$

$$
f(-x)=(-x)-|(-x)|=-x-|x|
$$

46. $f(x)=\frac{1}{x^{2}}{ }_{1} \quad 1$

$$
f(-x)=\frac{}{(-x)^{2}}=\frac{}{x^{2}}
$$

$f(x)=f(-x)$, sofis even.
47. $f(x)=8$
$f(-x)=8$
$f(x)=f(-x)$, , so f is even.
48. $f(x)=x^{2}+1$
$f(-x)=(-x)^{2}+1=x^{2}+1$
$f(x)=f(-x)$, sofis even.
49.

50. . Let $=$ the price of a ticket to the closing Familiarize t
ceremonies. Thent+ $325=$ the price of a ticket to the opening ceremonies. Together, the two tickets cost $t+(t+325)=2 t+325$.
Translate. The total cost of the two tickets is $\$ 1875$, so we have the following equation.

$$
2 t+325=1875
$$

Carry out. We solve the equation.

$$
2 t+325=1875
$$

$$
\begin{aligned}
2 t & =1550 \\
t & =775
\end{aligned}
$$

Thent $+325=775+325=1100$.
Check. $\$ 1100$ is $\$ 325$ more than $\$ 775$ and $\$ 775+\$ 1100=$ $\$ 1875$, so the answer checks.
State. A ticket to the opening ceremonies cost $\$ 1100$, and a ticket to the closing ceremonies cost $\$ 775$.
51. $f(x)=x \frac{\sqrt{ }}{10-x^{2}}$
$f(-x)=-x \sqrt{10-x^{2}} 10(x)^{2}=-x \sqrt{10-x^{2}}$
$-f(x)=-x \quad 10-x^{2}$
Since $f(-x)=-f(x)$, f is odd.
52. $f(x)=\frac{x 2+1}{x^{3}+1}$
$f(-x)=\frac{(-x)^{2}+1}{(-x)^{3}+1}=\frac{x 2+1}{-x^{3}+1}$
$-\boldsymbol{f}(x)=-(x-|x|)=-x+|x|$
$f(x) \quad f(-x)$, sofis not even.
$f(-x) \quad-f(x)$, sofis not odd.
Thus, $f(x)=x-|x|$ is neither even nor odd.
$-f(x)=-\overline{x^{3}+1}$
Since $f(x)=f(-x), f$ is not even.
Since $f(-x)-f(x)$, fis not odd.
Thus, $f(x)=\frac{x 2+1}{x^{3}+1}$ is neither even nor odd.
53. If the graph were folded on thex-axis, the parts above and below thex-axis would coincide, so the graph is symmetric with respect tothex-axis.
If the graph were folded on they-axis, the parts to the left and right of they-axis would not coincide, so the graph is not symmetric with respect to they-axis.
If the graph were rotated 180°, the resulting graph would not coincide with the original graph, so it is not symmetric with respect to the origin.
54. If the graph were folded on thex-axis, the parts above and below thex-axis would not coincide, so the graph is not symmetric with respect to thex-axis.
If the graph were folded on they-axis, the parts to the left and right of they-axis would not coincide, so the graph is not symmetric with respect to they-axis.
If the graph were rotated 180°, the resulting graph would coincide with the original graph, so it is symmetric with respect to the origin.
55. See the answer section in the text.

56.O $(-x)=\frac{f(-x)-f(-(-x))}{2}=\frac{f(-x)-f(x)}{2}$, $-O(x)=-$	$f(x)-f(-x)$	
2	$f(-x)-f(x)$. Thus, $O(-x)=-O(x)$ and O is odd.

57.a), b) See the answer section in the text.
58. Let $f(x)=g(x)=x$. Nowfand g are odd functions, but $(f g)(x)=x^{2}=(f g)(x)$.Thus, the product is even, so the statement is false.
59. Let $f(x)$ and $g(x)$ be even functions. Then by definition,
$f(x)=f(x)$ and $g(x)=g(x)$. Thus, $(f+g)(x)=$
$f(x)+g(x)=f(x)+g(x)=(f+g)(x)$ and $f+g$ is
even. The statement is true.
60. Let $f(x)$ be an even function, and letg(x) be an odd func-
tion. By definition $f(x)=f(x)$ and $g(x)=g(x)$,
$\operatorname{or} g(x)=g(x)$. Then $f g(x)=f(x) g(x)=f(x)-$.
$[-g(-x)]=f(x) g(\cdot x)=f g(-x)$, and $f g$ is odd.
The statement is true.

Exercise Set 2.5

1. Shift the graph of $f(x)=x \quad 2$ right 3 units.

2. Shift the graph of $g(x)=x \quad$ up ${\underset{\overline{2}}{2}}_{1}^{\text {unit. }}$

3. Shift the graph of $g(x)=x$ down 3 units.

4. Reflect the graph of $g(x)=x$ across the x-axis and then shift it down 2 units.

$g(x) \times 2$
5. Reflect the graph of $h(x)=\sqrt{X}_{\overline{x a c r o s s}}$ thex-axis.

$g(x) \quad \sqrt{x} \quad 1$
6. Shift the graph of $g(x)=$

xright 1 unit.
7. Shift the graph ofh $(x)={ }^{1}$ up 4 units.
x

8. Shift the graph of $g(x)={ }_{\bar{X}}^{1}$ right 2 units.

9. First stretch the graph of $h(x)=x v e r t i c a l l y ~ b y ~ m u l t i-~$
plying eachy-coordinate by 3 . Then reflect it across the x axis and shift it up 3 units.

10. First stretch the graph of $f(x)=x v e r t i c a l l y ~ b y ~ m u l t i p l y-~$ ing eachy-coordinate by 2 . Then shift it up 1 unit.

$f(x) 2 x 1$
11. First shrink the graph ofh $(x)=|x|$ vertically by multiply-
ing eachy-coordinate by $\frac{1}{2}$. Then shift it down 2 units.

12. Reflect the graph of $g(x)=x^{\prime}$ across the x-axis and shift it up 2 units.

$g(x) x 2$
13. Shift the graph of $g(x)=x \quad 3$ right 2 units and reflect it across thex-axis.

14. Shift the $\operatorname{graph} \operatorname{of} f(x)=x \quad$ 3left 1 unit.

$f(x)(x 1)^{3}$
15. Shift the graph $\operatorname{of} g(x)=x \quad 2$ left 1 unit and down 1 unit.

16. Reflect the graph $\operatorname{ofh}(x)=x \quad 2$ across the x-axis and down 4 units.

$h(x) x^{2} 4$
17. First shrink the graph of $g(x)=x$ vertically by multiplying eachy-coordinate by ${ }_{3}$. Then shift it up 2 units.

18. Reflect the graph ofh $(x)=x$ з across they-axis.

$h(x)(x)^{3}$
19. Shift the graph of $f(x)=\sqrt{x}_{x \text { Ieft }} 2$ units.

First shift the graph of $f(x)=\sqrt{\overline{x r}}$.ght 1 unit. Shrink it 20.
vertically by multiplying eachy-coordinate by ${ }^{\underline{1}}$ and then reflect it across thex-axis.

21. Shift the graph of $f(x)=\stackrel{V}{3}_{\bar{x}}$ down 2 units.

22. Shift the graph of $h(x)=\stackrel{\vee}{3}_{\bar{x} \text { left } 1 \text { unit. }}$

23. Think of the graph of $f(x)=|x|$. Since
$g(x)=f(3 x)$, the graph of $g(x)=|3 x|$ is the graph of $f(x)=|x|$ shrunk horizontally by dividing each x coordinate by 3 or multiplying each x-coordinate by ${ }_{3}$.
24. Think of the graph $\operatorname{of} g(x)=\stackrel{y}{3}_{\sqrt{ }} x$. Since $f(x)={ }_{z}^{1} g(x)$, the
 vertically by multiplying eachy-coordinate by $\overline{2}$.
25. Think of the graph of $f(x)={ }_{x}^{1}$. Since $\left(h \overline{\bar{x}} 2(), f_{x}\right.$ $2 \quad * \quad 1$
the graph of $h(x)=\underset{X}{\underset{X}{\text { is }}}$ the graph of $f(x)=\underset{X}{\operatorname{stretched}}$ vertically by multiplying eachy-coordinate by 2 .
26. Think of the graph of $g(x)=|x|$. Since $f(x)=g(x-3)-4$, the graph of $f(x)=|x-3|-4$ is the graph of $g(x)=|x|$
shifted right 3 units and down 4 units.
27. Think of the graph og $(\underset{V}{ })={ }^{\sqrt{2}} \bar{x}$ Since $f y=3$ () 5 , the graph off $f(x)=3 \quad 3 \quad x^{-5}$ is the graph of $g(x)=\sqrt{-}$ the graph ortically by multiplying eachy-coordinate by 3^{X} and then shifted down 5 units.
28. Think of the graphof $g(x)=\frac{1}{x}$. Since $f(x)=5-g(x)$, or 1
$f(x)=-g(x)+5$, the graph of $f(x)=5-\quad x$ is the graph
of $g(x)={ }_{x}^{1}$ reflected across thex-axis and then shifted up 5 units.
29. Think of the graph of $f(x)=|x|$. Since $g(x)=$
$f_{3} \stackrel{1}{x-4}$, the graph of $g(x)={ }_{3}{ }^{x-4}$ is the graph of $f(x)=x$ stretched horizontally by multiplying each x coordinate by 3 and then shifted down 4 units.
30. Think of the graph $\operatorname{of} g(x)=x \quad$ 3. Since
$f(x)=\frac{\underline{2}}{3} g(x)-4$, the $\operatorname{graph} \operatorname{of} f(x)=\underline{\underline{2}}_{x 3}-4$ is the graph of $g(x)=x$ s shrunk vertically by multiplying each 2
y-coordinate by $3^{- \text {and then shifted down } 4 \text { units. }}$
31. Think of the graph of $\underset{1}{ } g(x)=x$ 2. Since $f(x)=-\quad \underset{4}{g}(x-5)$,
the graph off $(x)=-{ }_{4}(x-5) 2$ is the graph of $g(x)=x \quad 2$ shifted right 5 units, shrunk vertically by multiplying each 1 y-coordinate by ${ }_{4}$, and reflected across thex-axis.
32. Think of the graph of $g(x)=x \quad$ 3. Since $f(x)=g(-x)$ 5, the graph off $f(x)=(x)^{3} 5$ is the graph of $g(x)=x^{3}$ reflected across they-axis and shifted down 5 units.
33. Think of the graph $\operatorname{of} g(x)=\begin{gathered}1 \\ \bar{x}\end{gathered}$. Since $f(x)=$
$g(x+3)+2$, the graph of $f(x)=\frac{1}{x+3}+2$ is the graph
of $g(x)=\frac{\text { shifted left }}{X} 3$ units and up 2 units.
34. Think of the graph $\varphi f(x)=V_{*}$ Sinceg $(x)=f(-x)+5$,
 -axis and shifted up 5 units.
35. Think of the graph off(x)=x 2. Sinceh(x) $=-f(x-3)+$

5, the graph ofh $(x)=(x-3)^{2}+5$ is the graph of $f(x)=$ $x 2$ shifted right 3 units, reflected across the x-axis, and shifted up 5 units.
36.Think of the graph $\operatorname{of} g(x)=x \quad$ 2. Since $f(x)=3 g(x+4)-$ 3 , the $\operatorname{graph} \operatorname{of} f(x)=3(x+4)^{2}-3$ is the graph of $g(x)=x^{2}$ shifted left 4 units, stretched vertically by multiplying each y-coordinate by 3 , and then shifted down 3 units.
37. The graph of $y=g(x)$ is the graph of $y=f(x)$ shrunk
vertically by a factor of
. Multiply they- coordinate by
40.The graph of $y=g(x)$ is the graph of $y=f(x)$ shrunk horizontally. The x-coordinates of $y=g(x)$ are corresponding x-coordinates of $y=f(x$
41. The graph of $y=g(x)$ is the graph of $y=f(x)$ shifted down 2 units. Subtract 2 from they-coordinate: $(-12,2)$.
42. The graph of $y=g(x)$ is the graph of $y=f(x)$ stretched horizontally. The x-coordinates of $y=g(x)$ are twice the corresponding x-coordinates of $y=f(x)$, so we multiply
thex-coordinate by 2 or divide it by ${ }^{1}(2: 4-4)$.
43. The graph of $y=g(x)$ is the graph of $y=f(x)$ stretched vertically by a factor of 4 . Multiply the y-coordinate by 4 : $(-12,16)$.
44. The graph of $y=g(x)$ is the graph $y=f(x)$ reflected across the x-axis. Reflect the point across the x-axis:
$(-12,-4)$.
45. $g(x)=x_{2}+4$ is the function $f(x)=x \quad 2+3$ shifted up 1 unit, $\operatorname{sog}(x)=f(x)+1$. Answer B is correct.
46. If we substitute $3 x$ forxinf, we get $9 x \quad 2+3$, so $g(x)=f(3 x)$. Answer D is correct.
47. If we substitute $x-2$ for $x i n f$, we get $(x-2) \quad{ }^{3}+3$, so $g(x)=f(x-2)$. Answer A is correct.
48. If we multiplyx $2+3$ by 2 , we get $2 x 2+6$, $\operatorname{sog}(x)=2 f(x)$. Answer C is correct.
49. Shape: $h(x)=x \quad 2$

Turn $h(x)$ upside-down (that is, reflect it across thexaxis): $g(x)=-h(x)=-x \quad 2$
Shift $g(x)$ right 8 units: $f(x)=g(x-8)=-(x-8)$
2
50. Shaper $_{h}()={ }_{x}$

Shifth(x) left 6 units: $g(x)=h(x+6)$

Shift $g(x)$ down 5 units: $f(x)=g(x)-5=\quad x+6-5$
51.Shape: $h(x)=|x|$

Shifth (x) left 7 units: $g(x)=h(x+7)=|x+7|$

Shiftg (x) up 2 units: $f(x)=g(x)+2=|x+7|+2$
52.Shape: $h(x)=x \quad 3$

Turnh(x) upside-down (that is, reflect it across the x axis): $g(x)=-h(x)=-x \quad 3$
Shiftg (x) right 5 units: $f(x)=g(x-5)=-(x-5) \quad 3$
53. Shape: $h(x)=1$

$\frac{1}{:}$ (12,2).
38.The graph of $y=g(x)$ is the graph of $y=f(x)$ shifted right 2 units. Add 2 to thex-coordinate: $(-10,4)$.
39. The graph of $y=g(x)$ is the graph of $y=f(x)$ reflected across they-axis, so we reflect the point across they-axis:
$\begin{array}{lll}\text { Shrink } & x & 1\end{array}$
$h(x)$ vertically by a factor of that is,
multiply each function value by ${ }^{1} 2$
$1 \begin{array}{lllll}1 & 1 & 1 & 1 & \overline{2}:\end{array}$
$g(x)={ }_{2} h(x)=2 \cdot \stackrel{x}{\text { or }} \quad 2 x$
$\operatorname{Shiftg}(x)$ down 3 units: $f(x)=g(x)-3=\quad \begin{aligned} & 1 \\ & 2 x\end{aligned}$
54.Shape: $h(x)=x \quad 2$

Shifth (x) right 6 units: $g(x)=h(x-6)=(x-6) \quad 2$
Shift $g(x)$ up 2 units: $f(x)=g(x)+2=(x-6) \quad 2+2$
55.Shape: $m(x)=x \quad 2$

Turn $m(x)$ upside-down (that is, reflect it across the x axis): $h(x)=-m(x)=-x \quad 2$

Shifth(x) right 3 units: $g(x)=h(x-3)=-(x-3)$

Shiftg (x) up 4 units: $f(x)=g(x)+4=-(x-3) \quad 2+4$
56.Shape: $h(x)=|x|$

Stretch $(x x)$ horizontally by a factor of 2 that is, multiply
each x-value by $\frac{1}{2}: g(x)=h \quad \frac{1}{2} x \quad=2^{-x}$
Shiftg(x) down 5 units: $f(x)=g(x)-5=$ 2^{x-5}
57.Shape: $m(x)={ }_{*}$

Reflectm (x) across they-axis: $h(x)=m(-x)=\sqrt{X}^{X}$
Shifth (x) left 2 units: $g(x)=h(x+2)=\quad \overline{-(x+2)}$
$\operatorname{Shiftg}(x)$ down 1 unit: $f(x)=g(x)-1=$

$$
\overline{-(x+2)}-1
$$

58.Shape: $h(x)=\begin{gathered}1 \\ \bar{x}\end{gathered}$ 1

Reflect $h(x)$ across thex-axis: $g(x)=-h(x)=-$
$\operatorname{Shiftg}(x)$ up 1 unit: $f(x)=g(x)+1=-\quad \begin{gathered}1 \\ \frac{-}{x}\end{gathered}$
59. Eachy-coordinate is multiplied by-2. We plot and connect $(-4,0),(-3,4),(-1,4),(2,-6)$, and $(5,0)$.

60. Eachy-coordinate is multiplied by $\begin{aligned} & 1 \\ & \frac{1}{2}\end{aligned}$. We plot andconnect $(-4,0),(-3,-1),(-1,-1),(2,1.5)$, and $(5,0)$.

61. The graph is reflected across they-axis and stretched horizontally by a factor of 2 . That is, each $1 x$-coordinate is
multipled by 2

- or divided by- - . We plot and connect $(8,0),(6,-2),(2,-2),(-4,3)$, and $(-10,0)$.

62. The graph is shrunk horizontally by a factor of 2 . That is, each x-coordinate is divided by 2 or multiplied by 1 .
We plot and connect ($-2,0$), $(-1.5,-2),(-0.5,-2),(1,3)$, and $(2.5,0)$.

63. The graph is shifted right 1 unit so each x-coordinate is increased by 1 . The graph is also reflected across thexaxis, shrunk vertically by a factor of 2 , and shifted up 3 units. Thus, eachy-coordinate is multiplied by- $-\frac{1}{\text { and }}$ and then increased by 3 . We plot and connect $(-3,3),(\underset{-2}{2}, 4)$,
$(0,4),(3,1.5)$, and $(6,3)$.

64. The graph is shifted left 1 unit so each x-coordinate is decreased by 1 . The graph is also reflected across the x axis, stretched vertically by a factor of 3, and shifted down 4 units. Thus, each y-coordinate is multiplied by- 3 and then decreased by 4 . We plot and connect $(-5,-4),(-4,2)$, $(-2,2),(1,-13)$, and $(4,-4)$.

65. The graph is reflected across they-axis so each x-coordinate is replaced by its opposite.

66. The graph is reflected across thex-axis so each y-coordinate is replaced by its opposite.

67. The graph is shifted left 2 units so each x-coordinate is decreased by 2 . It is also reflected across the x-axis so each y-coordinate is replaced with its opposite. In addition, the graph is shifted up 1 unit, so eachy-coordinate is then increased by 1 .

68. The graph is reflected across they-axis so each ${ }_{1}^{\chi}$-coordinate is replaced with its opposite. It is also shrunk vertically by a factor of _, so eachy-coordinate is multi-

plied by ${ }_{2}$ (or divided by 2).

69.The graph is shrunk horizontally. Thex-coordinates of $y=h(x)$ are one-half the corresponding x-coordinates of $y=g(x)$.

70.The graph is shifted right 1 unit, so each x-coordinate is increased by 1 . It is also stretched vertically by a factor of 2 , so eachy-coordinate is multiplied by 2 or divided 1 by ${ }_{2}$. In addition, the graph is shifted down 3 units, so eachy-coordinate is decreased by 3 .

69. $g(x)=f(-x)+3$

The graph of $g(x)$ is the graph off $f(x)$ reflected across the y-axis and shifted up 3 units. This is graph (f).
72. $g(x)=f(x)+3$

The graph of $g(x)$ is the graph off (x) shifted up 3 units. This is graph (h).
73. $g(x)=-f(x)+3$

The graph of $g(x)$ is the graph off (x) reflected across the x-axis and shifted up 3 units. This is graph (f).

$$
\text { 74. } g(x)=-f(-x)
$$

The graph of $g(x)$ is the graph off $f(x)$ reflected across the x-axis and they-axis. This is graph (a).
75. $g(x)=\frac{1}{3} f(x-2)$

The graph of $g(x)$ is the graph of $f(x)$ shrunk vertically by a factor of 3 that is, eachy-coordinate is multiplied 1 by _and then shifted right 2 units. This is graph (d).
76. $g(x)=\frac{1}{3} f(x)-3$

The graph $\operatorname{of} g(x)$ is the graph off $f(x)$ shrunk vertically by a factor of 3 that is, each y-coordinate is multiplied 1
by $_{3}$ and then shifted down 3 units. This is graph (e).
$77 \cdot g(x)=\begin{aligned} & 1 \\ & 3\end{aligned} f(x+2)$

The graph $\operatorname{of} g(x)$ is the graph of $f(x)$ shrunk vertically by a factor of 3 that is, eachy-coordinate is multiplied by ${ }_{\frac{1}{3}}^{1}$ and then shifted left 2 units. This is graph (c).
78. $g(x)=-f(x+2)$

The graph of $g(x)$ is the $\operatorname{graph} f(x)$ reflected across the x-axis and shifted left 2 units. This is graph (b).
79. $f(-x)=2(-x)^{4}-35(-x)^{3}+3(-x)-5=$ $2 x 4+35 x 3-3 x-5=g(x)$
80. $\left.f(-x \quad \underline{1}-x)_{4} \quad \underline{1}-x\right)^{3} 81(-x)-17=$

$$
)=(+C
$$

$1_{x 4-} \underline{1}_{x 3-81 x_{2}}^{4} \stackrel{5}{2-17} g(x)$
45
81. The graph $\operatorname{of} f(x)=x \quad 3-3 x$ is shifted up 2 units. A formula for the transformed function is $g(x)=f(x)+2$, $\operatorname{org}(x)=x_{3}-3 x_{2}+2$.
82. Eachy-coordinate of the $\operatorname{graph} \operatorname{of} f(x)=x \quad 33 x 2$ is multiplied by $\stackrel{1}{2}$. A formula for the transformed function is $h(x)=\frac{1}{2} f(x)$, orh $(x)=\frac{1}{2}(x 3-3 x 2)$.
83. The graph of $f(x)=x \quad 3-3 x$ 2is shifted left 1 unit. A formulafor the transformed function is $k(x)=f(x+1)$, $\operatorname{ork}(x)=(x+1)^{3}-3(x+1)^{2}$.
84. The graph $\operatorname{of} f(x)=x \quad 33 x 2$ is shifted right 2 units and up 1 unit. A formula for the transformed function is $t(x)=f(x-2)+1$, ort $(x)=(x-2) \quad{ }^{3}-3(x-2)^{2}+1$.
85.Test for symmetry with respect to thex-axis.

$$
\begin{aligned}
& y=3 x 4-3 \quad \text { Original equation } \\
& -y=3 x 4-3 \quad \text { Replacingyby }-y \\
& y=-3 x 4+3 \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Test for symmetry with respect to they-axis.

$$
\begin{aligned}
& y=3 x \quad 4-3 \quad \text { Original equation } \\
& y=3(-x)^{4}-3 \text { Replacing } x \text { by }-x \\
& y=3 x \quad 4-3 \quad \text { Simplifying }
\end{aligned}
$$

The last equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.
Test for symmetry with respect to the origin:

$$
\begin{gathered}
y=3 x 4-3 \\
-y=3(-x)^{4}-3 \text { Replacing } x \text { by }-x \text { and } \\
y \text { by }-y
\end{gathered}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
86.Test for symmetry with respect to the x-axis.

$$
\begin{aligned}
y 2 & =x \text { Original equation } \\
(-y)^{2} & =x \text { Replacing } y b y-y \\
y 2 & =x \text { Simplifying }
\end{aligned}
$$

The last equation is equivalent to the original equation, so
the graph is symmetric with respect to the x-axis.
Test for symmetry with respect to they-axis:

$$
\begin{aligned}
& y 2=x \text { Original equation } \\
& y 2=-x \text { Replacing } x \text { by }-x
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.
Test for symmetry with respect to the origin:

$$
\begin{aligned}
& y 2=x \text { Original equation } \\
&(-y)^{2}=-x \text { Replacing } x \text { by }-x \text { and } \\
& y \text { by }-y \\
& y_{2}=-x \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation,
so the graph is not symmetric with respect to the origin.
87.Test for symmetry with respect to the -axis:

$$
\begin{aligned}
& 2 x-5 y=0 \text { Original equation } \\
& 2 x-5(-y)=0 \text { Replacing } y \text { by }-y \\
& 2 x+5 y=0 \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Test for symmetry with respect to they-axis:
$25=0$ Original equation
$-y=3 \times 4-3$

$$
\begin{aligned}
& x-y \\
& 2(-x)-5 y=0 \text { Replacing } x b y-x \\
&-2 x-5 y=0 \text { Simplifying }
\end{aligned}
$$

The last equation is not equivalent to the original equation,so the graph is not symmetric with respect to they-axis.
Test for symmetry with respect to the origin: $2 x-5 y=0$ Original equation
$2(-x)-5(-y)=0$ Replacingxby-xand $y b y-y$
$-2 x+5 y=0$
$y=-3 x \quad 4+3 \quad$ Simplifying
$2 x-5 y=0$ Simplifying
The last equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.
88. Let $m=$ the number of Madden games sold, in millions.

Then $3 m-1=$ the number of Wii Fit games sold.
Solve: $3 m-1=3.5$
$m=1.5$ million games
89. Familiarize. Letg= the total amount spent on gift cards, in billions ofdollars.

Translate.

$\$ \underline{5}$ billion is 6% of total amount spent

Carry out. We solve the equation.

$$
\begin{aligned}
& 5=0.06 \cdot g \\
& \frac{5}{0.06}=g \\
& 83.3 \approx g
\end{aligned}
$$

Check. 6\% of $\$ 83.3$ billion is 0.06 ($\$ 83.3$ billion) $=$ $\$ 4.998$ billion $\approx \$ 5$ billion. (Remember that we rounded the value of g.) The answer checks.
State. About $\$ 83.3$ billion was spent on gift cards.
90. Letn= the number of tax returns e-filed in 2005, in millions.

Solve: $n+0.439 n=98.3$
$n \approx 68.3$ mllion returns
91. Each point for which $f(x)<0$ is reflected across the x-axis.

92. The graph of $y=f(\not x)$ consists of the points of $y=f(x)$
 axis.

93. The graph of $y=g(x \mid)$ consists of the points of $y=g(x)$ for which x 是along with their reflections across the y axis.

94. Each point for which $g(x)<0$ is reflected across thex-axis.

95. Think of the graph of $g(x)=\operatorname{int}(x)$. Since
$f(x)=g \quad x_{-} \frac{1}{2}$, the graph off $(x)=$ int $\quad x_{-} \frac{1}{2}$ is the
graph of $g(x)=\operatorname{int}(x)$ shifted right 1^{-}unit. The domain is the set of all real numbers; the ra^{2} nge is the set of all integers.

96. This function can be defined piecewise as follows:
$\begin{aligned} f(x)= & \left.\begin{array}{l}\square \\ \square \\ \\ \\ \\ \\ *-1 \\ \\ \\ \\ \end{array}, \text { for } x \geq 1\right),\end{aligned}$
Think of the graph of $g(x)=\sqrt{V}_{x}$. First shift it down 1 unit. Then reflect across the x-axis the portion of the graph for which $0<x<1$. The domain and range are both the set of nonnegative real numbers, or $[0, \infty)$.

97. On the graph of $y=2 f(x)$ each y-coordinate of $y=f(x)$ is multiplied by 2 , so $(3,4 \cdot 2)$, or $(3,8)$ is on the transformed graph.
On the graph of $y=2+f(x)$, each y-coordinate of $y=f(x)$ is increased by 2 (shifted up 2 units), so ($3,4+2$), or $(3,6)$ is on the transformed graph.
On the graph of $y=f(2 x)$, each x-coordinate of $y=$
$f(x)$ is multiplied by $\frac{1}{2}$ (or divided by 2), so $\quad \begin{aligned} & 1 \\ & \frac{2}{2}\end{aligned} 3,4$, or
$\frac{3}{2}, 4$ is on the transformed graph.
98. Using a graphing calculator wefind that the zeros are $-2.582,0$, and 2.582.
The graph of $y=f\left(\begin{array}{ll}x & 3\end{array}\right)$ is the graph of $y=f(x)$ shifted right 3 units. Thus we shift each of the zeros of $f(x) 3$ units right tofind the zeros of $f(x 3)$. They are $2.582+3$, or $0.418 ; 0+3$, or 3 ; and $2.582+3$, or 5.582 .
The graph of $y=f(x+8)$ is the graph of $y=f(x)$ shifted 8 units left. Thus we shift each of the zeros off $f(x) 8$ units left tofind the zeros of $f(x+8)$. They are $-2.582-8$, or -10.582 ; $0-8$, or-8; and $2.582-8$, or -5.418 .

Exercise Set 2.6

1. $y=k x$
$54=k \cdot 12$
$\frac{54}{12}=k$, or $k=\quad \begin{gathered}9 \\ \overline{2}\end{gathered}$
The variation constant is $\frac{9}{2}$, or 4.5. The equation of vari-
ation is $y=\quad \underset{z}{x}$, or $y=4.5 x$.
2. $y=k x$
$0.1=k(0.2)$
$\begin{aligned} & 1 \\ & z\end{aligned}=k$ Variation constant
1
Equation of variation: $y=2^{x \text {, or } y=0.5 x}$.
3. $y=\frac{k}{\bar{x}}$
$3=\begin{aligned} & k \\ & 12\end{aligned}$
$36=k$
The variation constant is 36 . The equation of variation is

$$
y=\begin{gathered}
36 \\
x
\end{gathered}
$$

4. $y={ }_{k}^{k}$
$12=\frac{k}{\overline{5}}$
$60=k$ Variation constant
Equation of variation: $y={ }^{60_{-}}$
5. $\begin{array}{ll}y=k x \\ 1 \\ 1 & =k \cdot \\ 4 & =k\end{array} \quad \overline{4}$

The variation constant is 4 . The equation of variation is $y=4 x$.

$$
k
$$

7. $y={ }^{k}$
$32=\frac{\begin{array}{c}x \\ \underline{k}\end{array}}{\frac{1}{8}}$
$\frac{1}{8} \cdot 32=k$
$4=k$
The variation constant is 4 . The equation of variation is $y=\frac{4}{x}$.
8. $y=k x$
$3=k \cdot 33$
$\frac{1}{11}=k$ Variation constant
1
Equation of variation: $y=11^{x}$
9. $y=k x$
$\underline{3}=k \cdot 2$
$13{ }^{4}$
${ }_{2}{ }_{{ }_{3}^{4}}=k$
The variation constant is $\frac{3}{8}$. The equation of variation is
$y={ }_{8}^{\underline{3}}$
10. $y=\frac{k}{x}$
$\underline{1}=k$
535
$7=k V a r i a t i o n ~ c o n s t a n t ~$
Equation of variation: $y=$
Equation of variation: $y=$
X
11. $y={ }_{x}^{k}$
$1.8=\frac{k}{\overline{0.3}}$
$0.54=k$
The variation constant is 0.54 . The equation of variation is $y=\frac{0.54}{x^{.}}$
12. $y=k x$
$0.9=k(0.4)$
$9=k$ Variation constant

4
Equation of variation: $y={ }_{4}^{9}{ }_{4}$ or $y=2.25 x$
0.5
$0.05=k$ Variation constant
Equation of variation: $y=\frac{0.05}{x}$
13. Let $S=$ the sales tax and $p=$ the purchase price.
$S=k p \quad S v a r i e s ~ d i r e c t l y ~ a s p$.
$17.50=k \cdot 260$ Substituting
$0.067 \approx k$ Variation constant

$S=0.067 p$ Equation of variation
 $S=0.067$ (21) Substituting
 $S \approx 1.41$

The sales tax is $\$ 1.41$.
14. Let $W=$ the weekly allowance and $a=$ the child's age.
$W=k a$
$4.50=k \cdot 6$
$0.75=k$
$W=0.75 a$
$W=0.75(11)$
$W=\$ 8.25$
15.
$W=\quad \bar{L} \quad$ Wvaries inversely as L.
$1200={ }_{k}^{k}$
Substituting
$9600=k V$ ariation constant 9600
$W=$ \qquad Equation of variation
$W=\frac{9600}{14}$
$W \approx 686$
A $14-\mathrm{m}$ beam can support about 686 kg .
16. k

$$
t=\bar{r}
$$

$5=\frac{k}{80}$
$400=r$
$t=\frac{400}{r}$
400
$t=\overline{70}$
$t=\underline{40}^{4}$ or $5{ }_{-}^{5} \mathrm{hr}$

$7 \quad 7$

17. Let $F=$ the number of grams of fat and $w=$ the weight.
$F=k w \quad$ Fvaries directly asw.
$60=k \cdot 120$ Substituting
$60=k$,or Solving for k
120
${ }^{1}=k$ Variation constant
2
1
$F={ }_{2}$ wEquation of variation
1
18. $N=k P$
$29=k \cdot 19,011,000 \quad$ Substituting
$\frac{29}{19,011,000}=k$ Variation constant
29
$N={ }_{19,011,000} P$
29
$N={ }_{19,011,000} \cdot 4,418,000$ Substituting $N \approx 7$
Colorado has 7 representatives.
19. $T=\frac{k}{P} \quad T$ varies inversely as P.
$5=\frac{k}{\overline{7}} \quad$ Substituting
$35=k V$ ariation constant
$T=\begin{gathered}35 \\ - \\ \text { Equation of variation }\end{gathered}$
$T=\begin{array}{cc}P \\ 35 \\ 10\end{array}$ Substituting
$T=3.5$
It will take 10 bricklayers 3.5 hr to complete the job.
20.

$27,000=k$
$t=\underline{27,000}$
$t=\frac{27,000}{1000}$
$t=27 \mathrm{~min}$
21. $d=k m d v a r i e s ~ d i r e c t l y ~ a s m . ~$
$40=k \cdot 3$ Substituting
40
$\overline{3}=k$ Variation constant
40
$d=3$ mEquation of variation

$$
d=\frac{40}{3} \cdot 5=\frac{200}{3} \quad \text { Substituting }
$$

$F={ }_{2} \cdot 180$ Substituting
F
=
9
0

The maximum daily fat intake for a person
weighing 180 lb is 90 g .

$$
\begin{aligned}
& \quad d=66 \frac{2}{3} \\
& \text { A } 5 \text {-kg mass will stretch the spring } 66^{2} \frac{\mathrm{~cm}}{2} \text {. }
\end{aligned}
$$

22. $f=k F$
$6.3=k \cdot 150$
$0.042=k$
$f=0.042 F$
$f=0.042(80)$
$f=3.36$
23. $\begin{aligned} P & =\frac{k}{W} \\ 330 & =\frac{k}{3.2}\end{aligned}$ Substities inversely as W.
$1056=k$ Variation constant
1056
$P=\quad-\quad$ Equation of variation
$550=\frac{1056}{W} \quad$ Substituting
$550 W=1056$ Multiplying by W
$\begin{array}{ll}W= & \begin{array}{l}1056 \\ 550\end{array} \\ W=1.92 & \text { Dividing by } 550 \\ \text { Simplifying }\end{array}$
A tone with a pitch of 550 vibrations per second has a wavelength of 1.92 ft .
24. $M=k E \quad$ Mvaries directly as E.
$38=k \cdot 95 \quad$ Substituting
${ }_{2}$
$\overline{5} \quad 2$
$M=5$ EEquation of variation
$M={ }_{5} \cdot 100$ Substituting
$M=40$
A 100-lb person would weigh 40 lb on Mars.
25.

$$
\begin{aligned}
y & =\frac{k}{\overline{x^{2}}} k \\
0.15 & =\frac{(0.1)^{2}}{} \quad \text { Substituting } \\
0.15 & =\frac{k}{0.01}
\end{aligned}
$$

$0.15(0.01)=k$
$0.0015=k$
The equation of variation is $y=\frac{0.0015}{x^{2}}$.
26. $y=k$
$6=k^{k^{2}}$
$\quad \overline{32}$
$54=k^{2}$
54
$y=x_{2}$
27. $y=k x_{2}$
$0.15=k(0.1)^{2}$ Substituting
28. $y=k x{ }_{2}$
$6=k \cdot 3^{2}$
${ }^{2}=k$
3

$$
y=\frac{2}{3} x 2
$$

29. $y=k x z$
$56=k \cdot 7 \cdot 8$ Substituting
$56=56 k$
$1=k$
The equation of variation is $y=x z$.
30. $y=\frac{k x}{k^{Z}}$
$4=-\frac{12}{15}$
$5=k$
$y=\frac{5 x}{z}$
31. $y=k x z 2$
$105=k \cdot 14 \cdot 5 \quad 2 \quad$ Substituting
$105=350 k$
$\underline{\underline{105}}=k$
350

-

$10=k$
The equation of variation is $y=\frac{3}{10} x z 2$.
32. $y=k \cdot \frac{x z}{w}$
$\underline{3}=k \cdot \frac{2 \cdot 3}{}$
24
$1=k$
$x Z$
$y=\bar{w}$
33. $y=k \frac{x z}{w p}$
$\frac{3}{28}=k \quad \frac{3 \cdot 10}{7 \cdot 8} \quad$ Substituting
$\frac{3}{28}=k \cdot \frac{30}{56}$
3. $\cdot \frac{56}{30}=$
$\begin{array}{cc}28 & \\ & 1 \\ & =k\end{array}$
5
$1 x Z \quad X Z$
The equation of variation is $y=$ \qquad or \qquad wp $X Z$
34. $y=k \cdot \quad \overline{w^{2}}$

35. $\begin{aligned} & I=\frac{k}{q_{2}^{2}} \\ & 90=\frac{5^{2}}{5^{2}} \quad \text { Substituting } \\ & 90=\frac{k}{\overline{25}} \\ & 2250=k\end{aligned}$

The equation of variation is $I=\frac{2250}{d^{2}}$.

Substitute 40 forIandfind d.

$$
\begin{aligned}
40 & =\frac{2250}{} \\
40 d_{2} & =2250 \\
d_{2} & =56.25 \\
d & =7.5
\end{aligned}
$$

The distance from 5 m to 7.5 m is $7.5-5$, or 2.5 m , so it is 2.5 m further to a point where the intensity is $40 \mathrm{~W} / \mathrm{m}^{2}$.
36. $D=k A v$
$222=k \cdot 37.8 \cdot 40$

37
$\overline{252}=k$
$D={ }_{252}^{37} A v$
${ }^{37} 43$ 日
$252^{-51 v}$
$v \approx 57.4 \mathrm{mph}$
37. $d=k r_{2}$
$200=k \cdot 602$ Substituting
$200=3600 k$
200
$3600=k$
1
$\overline{18}=k$
The equation of variation is $d={ }^{1} r 2$.
Substitute 72 fordandfind r.

$$
\begin{aligned}
72 & ={ }^{1} \frac{r_{2}}{18} \\
1296 & =r^{2} \\
36 & =r
\end{aligned}
$$

A car can travel 36 mph and still stop in 72 ft .
38.

$$
\begin{gathered}
W=\frac{k}{d^{2}} k \\
220=\frac{k}{(3978)^{2}} \\
3,481,386,480=k \\
W=\frac{3,481,386,480}{d^{2}} \\
W=3,481,386,480
\end{gathered}
$$

39. $E=\frac{k R}{I}$

Wefirstfind k.

The equation of variation is $E=\quad \dot{\dot{I}}$ Substitute 3.89 for and 238 for I

$$
\begin{array}{rlr}
3.89 & =\frac{9 R}{238} & \text { Iand solve for } R \\
\frac{3.89(238)}{9} & =R \text { Multiplying by } & \frac{238}{9}
\end{array}
$$

Bronson Arroyo would have given up about 103 earned runs if he had pitched 238 innings.
40. $V=\underline{k T}$

$$
\begin{aligned}
& \quad \begin{array}{c}
P \\
231=\frac{k 42}{20} \\
110=k \\
V=\frac{110 T}{P} \\
V=\frac{110 \cdot 30}{15} \\
V=220 \mathrm{~cm}^{3}
\end{array}
\end{aligned}
$$

41.parallel
42.zero
43.relative minimum
44. odd function
45.inverse variation
46.a) $7 x y=14$
$y=\frac{2}{x}$
Inversely
b) $x z y=12$

$$
y=\frac{X}{2^{-6}}
$$

Neither
c) $-2 x+y=0$
$y=2 x$
Directly
3
$(3978+200)^{2}$
$W \approx 199 \mathrm{lb}$
d) $x=\begin{array}{r}\frac{y}{4} \\ 4\end{array}$
$y=3 *$
Directly
e) ${ }_{-}^{x}=2$ $\bar{y} \quad 1$
$y=\overline{2}^{x}$
Directly
47. LetVrepresent the volume andprepresent the price of a jar of peanut butter.

$$
\begin{aligned}
V & =k p \quad V \text { varies directly as } p . \\
\pi \underline{3}^{2} \quad(5) & =k(2.89) \text { Substituting } \\
2 \quad 3.89 \pi & =k V \text { Variation constant } \\
V & =3.89 \pi p \text { Equation of variation } \\
\pi(1.625)^{2}(5.5) & =3.89 \pi p \text { Substituting } \\
3.73 & \approx p
\end{aligned}
$$

If cost is directly proportional to volume, the larger jar should cost $\$ 3.73$.
Now letWrepresent the weight and p represent the price of a jar of peanut butter.
$W=k p$
$18=k$ (2.89) Substituting
$6.23 \approx k$ Variation constant
$W=6.23 p$ Equation of variation
$28=6.23 p$ Substituting
$4.49 \approx p$
If cost is directly proportional to weight, the larger jar should cost $\$ 4.49$. (Answers may vary slightly due to rounding differences.)
$k p^{2}$
48. $Q=\frac{}{q^{3}}$
Q varies directly as the square ofpand inversely as the cube of q.
49. We are told $A=k d \quad 2$, and we know $A=\pi r$ 2 so we have:
$k d_{2}=\pi r 2$
$k d 2=\pi \quad d^{2} \quad r=2^{2}$
$k d 2=\frac{m d 2}{4}$
$k=\quad 4 \quad$ Variation constant

Chapter 2 Review Exercises

1. This statement is true by the definition of the greatest integer function.
2.Thes statement is false. See Example 2(b) in Section 2.3 in the text.
2. The graph of $y=f(x d)$ is the graph of $y=f(x)$ shifted rightdunits, so the statement is true.
5.a) Forx-values from-4 to-2, they-values increase from 1 to 4. Thus the function is increasing on the interval $(-4,-2)$.
b) Forx-values from 2 to 5 , the y-values decrease from 4 to 3 . Thus the function is decreasing on the interval $(2,5)$.
c) For x-values from -2 to $2, y$ is 4 . Thus the function is constant on the interval $(-2,2)$.
6.a) Forx-values from-1 to 0 , they-values increase from 3 to 4 . Also, for x-values from 2 to ∞, they-values increase from 0 to ∞. Thus the function is increasing on the intervals $(-1,0)$, and $(2, \infty)$.
b) For x-values from 0 to 2 , they-values decrease from 4 to 0 . Thus, the function is decreasing on the interval $(0,2)$.
c) Forx-values from- - to -1, yis 3 . Thus the function is constant on the interval $(-\infty,-1)$.
3.

The function is increasing on ($0, \varnothing$ and decreasing on $(-\infty, 0)$. We estimate that the minimum value is 1 at $x=0$. There are no maxima.
8.

The function is increasing on $(-\infty, 0)$ and decreasing on
4. The graph of $y=f(x)$ is the reflection of the graph of $y=f(x)$ across the x-axis, so the statement is true.
$(0, \infty)$. We estimate that the maximum value is 2 at $x=0$. There are no minima.
9.

Wefind that the function is increasing on (2,) aad decreasing on $(-\infty, 2)$. The relative minimum is 4 at $x=2$. There are nomaxima.
10.

Increasing: $(-\infty, 0.5)$
Decreasing: $(0.5, \infty)$
Relative maximum: 6.25 at $x=0.5$
Relative minima: none
11.

Wefind that the function is increasing on $(-\infty,-1.155)$ and on $(1.155, \infty)$ and decreasing on $(-1.155,1.155)$. The relative maximum is 3.079 at $x=-1.155$ and the relative minimum is -3.079 at $x=1.155$.
12.

Wefind that the function is increasing on ($1.155,1.155$) and decreasing on $(-\infty,-1.155)$ and on $(1.155$, łoThe relative maximum is 1.540 at $x=1.155$ and the relative minimum is -1.540 at $x=-1.155$.
13. Ifl= the length of the tablecloth, then the width is
$\frac{20-2 l}{\text { wid }^{2} \text { th. }}$, or $10-l$. We use the formula Area $=$ length \times

$$
\begin{aligned}
& A(l)=l(10-l), \text { or } \\
& A(l)=10 l-l 2
\end{aligned}
$$

14. The length of the rectangle is 2 . The width is the second x
coordinate of the point (x, y) on the circle. The circle has center $(0, \vartheta)$ and radius 2 , so its equation is $x 2+y 2=4$ and $y=4-x)^{2}$. Thus the area of the rectangle is given by $A(x)=2 x 4-x^{2}$.
15.a) If the length of the side parallel to the garage is x feet loges, then the length of each of the other
two sides is ${ }_{2}^{-x}$, or $33 \frac{X}{x}$. We use the formula Area $=$ length $\stackrel{2}{2}{ }_{\times \text {width }}$
b) The length of the side parallel to the garagemust be positive and less than 66 ft , so the domain of the function is $\{x \mid 0<x<66\}$, or $(0,66)$.
c)

d) By observing the graph or using the MAXIMUM feature, we see that the maximum value of the function occurs when $x=33$. When $x=33$, then $33-\frac{X}{2}=33-\frac{33}{2}=33-16.5=16.5$. Thus the dimensions that yield the maximum area are 33 ft by 16.5 ft .
16.a) Leth= the height of the box. Since the volume is 108 in 3, wehave:

$$
\begin{aligned}
& 108=x \cdot x \cdot h \\
& 108=x \quad 2 h \\
& \frac{108}{x^{2}}=h
\end{aligned}
$$

Nowfind the surface area.

$$
\begin{array}{rl}
S=x & 2+4 \cdot x \cdot h \\
S(x)=x & 108 \\
& \\
\cdots & \\
S(x)=x & x^{2}+\frac{432}{x}
\end{array}
$$

b) x must be positive, so the domain is $(0, \infty)$.
c) From the graph, we see that the minimum value of the function occurs when $x=6$ in. For this value ofx,

$$
h=\frac{108}{x^{2}}=\frac{108}{6^{2}}=\frac{108}{36}=3 \mathrm{in} .
$$

$$
\underline{〔}
$$

17. () = $\overline{1}^{\text {xor } \underline{x}-4, ~}$
$f x \quad=-\frac{1}{2} x+1$,for $x>-4$
We create the graph in two parts. $\operatorname{Graph} f(x)=$ xfor inputs less than or equal to -4 . Then $\operatorname{graph} f(x)=\frac{1_{x+1}}{2}$ for inputs greater than-4.

$A(x)=x 33-{ }_{2}$, er
$A(x)=33 x-\frac{x^{2}}{2}$
${ }^{\square} 3$, for $x<-2$,
18. $f(x)=$ \sqsubset
$\sqsubseteq \sqrt{ } \mid$,for $-2 \leq x \leq 2$,
$-\sqrt{x-1, \text { for } x>2}$

We create the graph in three parts. Graph $f(x)=x$ 3 for inputs less than-2. Then $\operatorname{graph} f(x)=\left.\right|_{x} \mid$ for inputs greater than or equal $\forall 0-2$ and less than or equal to 2 . Finally graph $f(x)=\quad x-1$ for inputs greater than 2 .

19. ()$=$
\sqsubset
$\square_{x^{+1}}$, for x
3, for $x=-1$

We create the graph in two parts. Graph $f(x)=\frac{x 2-1}{x+1}$
for all inputs except -1 . Then $\operatorname{graph} f(x)=3$ for $x=-1$.
20.

$f(x)=[[x]]$. See Example 9 on page 166 of the text.

21. $f(x)=[[x-3]]$

This function could be defined by a piecewise function with an infinite number of statements.

$$
\text { 22. } f(x)=\begin{aligned}
& \text { 万. } x 3, \text { for } x<-2, \\
& \\
& |x|, \text { for }-2 \leq x \leq 2, \\
& \\
& \quad \\
& \\
& \sqrt{ } \frac{}{x-1, \text { for } x>2}
\end{aligned}
$$

Since -1 is in the interval $[-2,2], f(-1)=|-1|=1$.
Since $5>2, f(5)=\sqrt{ } \overline{5-1}=\sqrt{ } 4=2$.
Since -2 is in the interval $[-2,2], f(-2)=|-2|=2$.
Since $-3<-2, f(-3)=(-3) \quad 3=-27$.
23. ()$=\begin{aligned} & \sqsupset_{X 2-1} \\ & \sqsubset_{X} \\ & \square_{X^{+1}} \text {,for } x=-1,\end{aligned}$
$\sqsubset 3$,for $x=-1$
Since $\underline{2}=\underline{1},(f-2)=\underline{(-2)^{2}-1}=\underline{4-1} \quad \underline{3}=3 .-$
Since $x=-1$, we have $f\left(\begin{array}{lll}0-21) \\ 0 & -2+1 & -1 \\ =3\end{array}\right.$
Since $0=1,(0)=\quad-1=\frac{-1}{=}=1$.

$$
-f \quad \begin{array}{lll}
-f & 18
\end{array}
$$

Since $4=1,(4)=\frac{}{4+1}=\frac{1}{5}=\frac{15}{5}=3$.
24. $(f-g)(6)=f(6)-g(6)$

$$
=\underline{6}-2-\left(6^{2}-1\right)
$$

\checkmark

$$
=4-(36-1)
$$

$$
=2-35
$$

$$
=-33
$$

25. $(f g)(2)=f(2) \cdot g(2)$

$$
\begin{aligned}
& =2-2 \cdot\left(2^{2}-1\right) \\
& =0 \cdot(4-1)
\end{aligned}
$$

26. $(f+g)(-1)=f(-1)+g(-1)$

$$
\begin{aligned}
& =\sqrt{1-2}+\left((-1)^{2}-1\right) \\
& =-3+(1-1)
\end{aligned}
$$

Since ${ }^{\vee}-3$ is nota realnumber, $(f+g)(-1)$ does not exist.
27. $f(x)=\frac{4}{x^{2}}{ }^{2}(x)=32 x$
a) Division by zero is undefined, so the domain offis $\{x \mid x=0\}$, or $(-\infty, 0) \cup(0, \infty)$. The domain ofgis the set of all real numbers, or $(-\infty, \infty)$.

The domain of $f+g, f-g$ and $f g$ is $\{x \mid x=0\}$,
or $(-\infty, 0) \cup(0, \infty)$. Since $g \quad \underline{3}=0$, the domain 2
off $/$ gis $\quad x x=0$ and $x=3$, or
$(-\infty, 0) \cup \quad 0,-\frac{3 \underline{3}}{2} \cup 2, \infty$.
b) $(-+)()=\frac{4}{x^{2}}+(32 x)=\frac{4}{x^{2}}+32 x$
$(f-g)(x)=\frac{4}{x^{2}}-(3-2 x)=\frac{4}{x^{2}}-3+2 x$
$(f g)(x)=\underset{x^{2}}{\left.\frac{4}{(3}-2 x\right)}=\frac{\underline{12}}{x^{2}}-\frac{8}{x}$
$(f / g)(x)=\frac{x^{2}}{(3-2 x)}=\frac{4}{x^{2}(3-2 x)}$
28.a) The domain of $f, g, f+g, f-g$, and $f g$ is all real numbers, or $(-\infty, \infty)$. Sinceg $\quad_{2}=0$, the domain

$$
\text { of } f / g \text { is } \quad x \times=\frac{1}{2}, \text { or }-\infty, \frac{1}{2} \cup_{2}, \infty
$$

b) $(f+g)(x)=\left(3 x_{2}+4 x\right)+(2 x-1)=3 \times 2+6 x-1$
$(f-g)(x)=(3 x 2+4 x)-(2 x-1)=3 \times 2+2 x+1$
$(f g)(x)=(3 x 2+4 x)(2 x-1)=6 x 3+5 x 2-4 x$ $3 x 2+4 x$
$(f / g)(x)=2 x-1$
29. $P(x)=R(x)-C(x)$

$$
\begin{aligned}
& =(120 x-0.5 x 2)-(15 x+6) \\
& =120 x-0.5 x 2-15 x-6 \\
& =-0.5 x 2+105 x-6
\end{aligned}
$$

30. $f(x)=2 x+7$
$f(x+h)-f(x)=\underline{2(x+h)+7-(2 x+7)}=$
h
h
$\underline{2 x+2 h+7-2 x-7}=2 \underline{h}=2$

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h}= & \left.\frac{3-x}{} \frac{2-2 x h-h 2-(3-x}{} 2\right) \\
& =\frac{3-x 2-2 x h-h 2-3+x^{2} 2}{h} \\
& =\frac{-2 x h-h 2}{h}=\frac{h(-2 x-h)}{h} \\
& =\frac{h}{h} \cdot \frac{-2 x-h}{1}=-2 x-h
\end{aligned}
$$

32. $f(x)=\begin{array}{r}4 \\ *\end{array}$
$\left.\begin{array}{rrrrcc} & 4 & -4 & 4 & x & 4 x+h \\ f(x+h)-f(x) & x+h & x & x+h & x & x\end{array}\right) x+h$

$\frac{-4 h}{x(x+h)} \cdot \frac{1}{h}=\frac{-4 \cdot h /}{x(x+h)} h_{\bar{x}} \overline{7} \frac{-4}{x(x+h)}$ or $\frac{4}{x(x+h)}$
33. $(f \circ g)(1)=f(g(1))=f\left(1^{2}+4\right)=f(1+4)=f(5)=$ $2 \cdot 5-1=10-1=9$
34. $(g \circ f)(1)=g(f(1))=g(2 \cdot 1-1)=g(2-1)=g(1)=$ $1^{2}+4=1+4=5$
35. $(\quad)(2)=\left(\begin{array}{ll}(2)\end{array}\right)=\left(\begin{array}{ll}2 & 1\end{array}\right)=$
$h \circ f-\quad h f-\quad h--$
$h(-4-1)=h(-5)=3-(-5)^{3}=3-(-125)=$ $3+125=128$
36. $(g \circ h)(3)=g(h(3))=g\left(3-33^{3}\right)=g(3-27)=$
$g(-24)=(-24)^{2}+4=576+4=580$
37. $(f \circ h)(-1)=f(h(-1))=f(3-(-1) \quad)=$
$f(3-(-1))=f(3+1)=f(4)=2 \cdot 4-1=8-1=7$
38. $(h \circ g)(2)=h(g(2))=h\left(2^{2}+4\right)=h(4+4)$
$h(8)=3-8^{3}=3-512=-509$
39. $(f \circ f)(x)=f(f(x))=f(2 x-1)=2(2 x-1)-1=$
$4 x-2-1=4 x-3$
40. $(h \circ h)(x)=h(h(x))=h(3-x \quad 3)=3-\left(3-x_{3}\right)^{3}=$ $3-(27-27 x 3+9 x 6-x 9)=3-27+27 x 3-9 x 6+x 9=$ $-24+27 x 3-9 x 6+x 9$
41.a)
\qquad 4
41.a) $f\left(\begin{array}{ll}3 & 2\end{array}\right)=$

$$
{ }^{\circ} \boldsymbol{g} \boldsymbol{x} \quad f-x \quad(3-2 x)^{2}
$$

$\begin{array}{lll}4 & 4 & 8\end{array}$

$$
g \circ f(x)=g \quad \overline{x^{2}} \quad=3-2 \quad-\quad x^{2} \quad=3--
$$

h
31. $f(x)=3-x^{2}$
b) The domain of $\operatorname{is}\left\{\left.x\right|_{X}=0\right\}$ and the domain of g

$$
f(x+h)=3-(x+h) \quad 2=3-\left(\begin{array}{ll}
x^{2} & 2+2 x h+h^{2}
\end{array}\right)=
$$

$3 \quad 2 \quad 2$
$-x-2 x h-h$
is the set of all real numbers. Tofind the domain
off $\circ g$, wefind the values ofxfgr which $g(x)=0$. Since $3-2 x=0$ when $x=\underline{3}$, the domain of $f \circ g$

is	3	3

$x x=2$, or $\quad-\infty,{ }_{2} \cup_{2}, \infty$. Since any
real number can be an input forg, the domain of $g \circ f$ is the same as the domain of $f,\{x \mid x=0\}$, or $(-\infty, 0) \cup(0, \infty)$.
42.a)

$$
\begin{aligned}
f \circ g(x)= & f(2 x-1) \\
& =3(2 x-1)^{2}+4(2 x-1) \\
& =3(4 x 2-4 x+1)+4(2 x-1) \\
& =12 x 2-12 x+3+8 x-4 \\
& =12 x 2-4 x-1
\end{aligned}
$$

$$
\begin{aligned}
(g \circ f)(x)= & g\left(3 x_{2}+4 x\right) \\
& =2(3 x 2+4 x)-1 \\
& =6 x 2+8 x-1
\end{aligned}
$$

b) Domain of $f=$ domain of $g=$ all real numbers, so domain off $\circ g=$ domain of $g \circ f=$ all real numbers, or $(-\infty, \infty)$.
43. $f(x)=x, g(x)=5 x+2$. Answers may vary.
44. $f(x)=4 \times 2+9, g(x)=5 x-1$. Answers may vary.
45. $x^{2}+y_{2}=4$

The graph is symmetric with respect to thex-axis, the y-axis, and the origin.
Replaceywith-yto test algebraically for symmetry with respect to the x-axis.

$$
\begin{array}{r}
x 2+(-y)^{2}=4 \\
x 2+y 2=4
\end{array}
$$

The resulting equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis. Replace with to test algebraically for symmetry with

$$
x \quad-x
$$

respect tothey-axis.

$$
\begin{array}{r}
(-x)^{2}+y 2=4 \\
x 2+y 2=4
\end{array}
$$

The resulting equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.
Replacexand *andywith yto test for symmetry with respect to the origin.

$$
\begin{array}{r}
(-x)^{2}+(-y)^{2}=4 \\
x 2+y^{2}=4
\end{array}
$$

The resulting equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.
46. $y^{2}=x 2+3$

The graph is symmetric with respect to thex-axis, the y-axis, and the origin.
Replaceywith-yto test algebraically for symmetry with respect to the x-axis.

$$
\begin{array}{r}
(-y)^{2}=x_{2} 2+3 \\
y^{2}=x^{2} 2+3
\end{array}
$$

The resulting equation is equivalent to the original equation, so the graph is symmetric with respect to the x-axis.
Replacexwith *to test algebraically for symmetry with respect to they-axis.

$$
\begin{aligned}
& y_{2}=(-x)^{2}+3 \\
& y^{2}=x_{2}+3
\end{aligned}
$$

The resulting equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.
Replacexand *andywith yto test for symmetry
with respect to the origin.

$$
\begin{gathered}
(-y)^{2}=(-x)^{2}+3 \\
y^{2}=x 2+3
\end{gathered}
$$

The resulting equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.
$47 \cdot x+y=3$

The graph is not symmetric with respect to thex-axis, the y-axis, or the origin.
Replaceywith-yto test algebraically for symmetry with respect to the x-axis.

$$
x-y=3
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.

Replacexwith*to test algebraically for symmetry with respect to they-axis.

$$
-x+y=3
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.
Replacexand-xandywith y to test for symmetry with respect to the origin.

$$
\begin{aligned}
-x-y & =3 \\
x+y & =-3
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
48. $y=x_{2}$

The graph is symmetric with respect to they-axis. It is not symmetric with respect to the x-axis or the origin.
Replaceywith y to test algebraically for symmetry with respect to the x-axis.

$$
\begin{aligned}
& -y=x_{2} \\
& y=-x_{2}
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Replacexwith-xto test algebraically for symmetry with respect to they-axis.

$$
\begin{aligned}
& y=(-x)^{2} \\
& y=x_{2}
\end{aligned}
$$

The resulting equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.
Replacexand *andywith yto test for symmetry with respect to the origin.

$$
\begin{gathered}
-y=(-x)^{2} \\
-y=x^{2} \\
y=-x^{2}
\end{gathered}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
49. $y=x 3$

The graph is symmetric with respect to the origin. It is not symmetric with respect to thex-axis or they-axis.
Replaceywithyto test algebraically for symmetry with respect to the x-axis.

$$
\begin{aligned}
-y & =x 3 \\
y & =-x 3
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respect to thex-axis.
Replacexwith -xto test algebraically for symmetry with respect to they-axis.

$$
\begin{aligned}
& y=(-x)^{3} \\
& y=-x_{3}
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respect to they-axis.
Replacexand-xandywith yto test for symmetry with respect to the origin.

$$
\begin{gathered}
-y=(-x)^{3} \\
-y=-x_{3} \\
y=x_{3}
\end{gathered}
$$

The resulting equation is equivalent to the original equation, so the graph is symmetric with respect to the origin.

$$
\text { 50. } y=x_{4}^{4-x^{2}}
$$

The graph is symmetric with respect to they-axis. It is not symmetric with respect to thex-axis or the origin.
Replaceywithyto test algebraically for symmetry with respect to the x-axis.

$$
\begin{aligned}
-y & =x
\end{aligned} 4^{-x} 22
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respect to
thex-axis.
Replacexwith- to test algebraically for symmetry with
respect to the $\quad x$
y-axis.

$$
\begin{aligned}
& y=(-x)^{4}-(-x)^{2} \\
& y=x^{4}-x^{2}
\end{aligned}
$$

The resulting equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.
Replacexand-xandywith-yto test for symmetry with respect to the origin.

$$
\begin{aligned}
& -y=(-x)^{4}-(-x)^{2} \\
& -y=x 4-x 2 \\
& y=-x 4+x 2
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
51. The graph is symmetric with respect to they-axis, so the function is even.
52. The graph is symmetric with respect to they-axis, so the function is even.
53. The graph is symmetric with respect to the origin, so the function is odd.
54. The graph is symmetric with respect to they-axis, so the function is even.
55. $f(x)=9-x^{2}$
$f(-x)=9-\left(-x_{2}\right)=9-x_{2}$
$f(x)=f(-x)$,sofis even.
56. $f(x)=x 3-2 x+4$
$f(-x)=(-x)^{3}-2(-x)+4=-x 3+2 x+4$
$f(x) f(-x)$,sof ${ }_{3}$ is not even.
$-f(x)=-(x-2 x+4)=-x \quad+2 x-4$
$f(-x)-f(x)$,sofis not odd.
Thus, $f(x)=x_{3}-2 x+4$ is neither even or odd.
57. $f(x)=x^{7-x} 5$
$f(-x)=(-x)^{7}-(-x)^{5}=-x 7+x_{5}^{5}$
$f(x) f(-x)$,sofis not even.
$-f(x)=-(x 7-x 5)=-x 7+x 5$
$f(-x)=-f(x)$,sofis odd.
58. $f(x)=|x|$
$f(-x)=|-x|=|x|$
$f(x)=f\left(\bar{J}^{x}\right)$,sofis even.

6o. $f(x)=\frac{10 x}{x^{2}+1}$
$f(-x)=\frac{10(-x)}{(-x)^{2}+1}=-\frac{10 x}{x^{2}+1}$
$f(x) f(-x), \operatorname{sof} f(x)$ is not even. $10 x$
$-f(x)=-\frac{}{x^{2}+1}$
$f(-x)=-f(x)$, sofis odd.
61.Shape: $g(x)=x \quad 2$

Shiftg(x) left 3 units: $f(x)=g(x+3)=(x+3) \quad 2$
62. Shape: $t(x)=\quad x$

Turnt (x) upside down (that is, reflect it across thex-axis):
$h(x)=-t(x)=-\quad V_{x}$.
Shift $h(x)$ right 3 units: $g(x)=h(x-3)=-\vee V_{x-3}$.
Shiftg (x) up 4 units: $f(x)=g(x)+4=-\quad x-3+4$.
63.Shape: $h(x)=|x|$

Stretch $h(x)$ vertically by a factor of 2 (that is, multiply each function value by 2$): g(x)=2 h(x)=2|x|$.
Shiftg (x) right 3 units: $f(x)=g(x-3)=2|x-3|$.
64. The graph is shifted right 1 unit so each x-coordinate is increased by 1 . We plot and connect ($-4,3$), $(-2,0),(1,1)$ and (5,-2).

65. The graph is shrunk horizontally by a factor of 2 . That is, each x-coordinate is divided by 2 . We plot and connect

$$
-\frac{5}{2}, 3, \quad-\frac{3}{2}, 0,(0,1) \text { and }(2,-2)
$$

66. Each -coordinate is multiplied by 2 . We plot and cony
nect $(-5,-6),(-3,0),(0,-2)$ and $(4,4)$.
59. $f(x)=16-x^{2}$
$f(-x)=\overline{16-\left(-x^{2}\right)}=\sqrt{ } 16-x^{2}$
$f(x)=f(-x)$,sofis even.
67. Eachy-coordinate is increased by 3. We plot and connect
$(-5,6),(-3,3),(0,4)$ and $(4,1)$.

68. $y=k x$
$100=25 x$
$4=x$
Equation of variation: $y=4 x$
69. $y=k x$
$6=9 x$
${ }^{2}=x$ Variation constant
Equation of variation: $=\underline{2}$
$y \quad 3^{x}$
70. $\begin{aligned} y & =\frac{k}{x} \\ 100 & =\frac{\frac{k}{25}}{25}\end{aligned}$
$2500=k$
$2500=k$
Equation of variation: $y=\frac{2500}{x}$
71. $y=\underline{k}$
$6=\begin{gathered}\begin{array}{l}X \\ k \\ 9\end{array}\end{gathered}$
$54=k$ Variation constant
Equation of variation: $y=\frac{54}{x}$
72. $\begin{aligned} & y=\frac{k}{x^{2}} \\ & 12=\frac{\bar{k}}{2^{2}} \\ & 48=k \\ & y={ }_{-}^{48} \\ & x^{2}\end{aligned}$
73. $y=\frac{k x z z}{w}$

$$
\begin{aligned}
& 2=\frac{k(16) 1^{2}}{z^{2}} \\
& 2=\frac{k(16) \frac{1}{4}}{0.2}
\end{aligned}
$$

$2=\frac{4 k}{0.2}$
$2=20 k$
${ }^{1}=k$
$\overline{10}$
$y=\frac{1 x Z 2}{10} \frac{}{w}$
$t=\underline{k}$
74.

$$
\begin{aligned}
35 & =\frac{{ }_{k}}{\overline{800}} \\
28,000 & =k \\
t & =\frac{28,000}{}
\end{aligned}
$$

$$
t=\frac{\begin{array}{c}
r \\
28,000
\end{array}}{1400}
$$

$$
t=20 \mathrm{~min}
$$

75. $N=$
ka

$$
\begin{aligned}
87 & =k \cdot 29 \\
3 & =k \\
N & =3 a \\
N & =3 \cdot 25 \\
N & =75
\end{aligned}
$$

Ellen's score would have been 75 if she had answered 25 questions correctly.
76. $P=k C 2$
$180=k \cdot 6^{2}$
$5=k$ Variation constant
$P=5 C 2 \quad$ Variation equation
$P=5 \cdot 10^{2}$
$P=500$ watts
77. $f(x)=x+1, g(x)=\quad x$

The domain offis $(-\infty, \infty)$, and the domain of g is $[0, \infty)$. Tofind the domain of $(g \circ f)(x)$, wefind the values of x for which $f(x) \geq 0$.

$$
\begin{aligned}
& x+1 \geq 0 \\
& x \geq-1
\end{aligned}
$$

Thus the domain of $(g f)(x)$ is [1,)-Arswer A is correct.
78. Forb >0, the graph of $y=\boldsymbol{f}(x)+b$ is the graph of $y=\boldsymbol{f}(x)$ shifted upbunits. Answer C is correct.
79. The graph of $g(x)=-\quad 1 f(x)+1$ is the graph of $y=f(x)$ 2
shrunk vertically by a factor of $\frac{1}{2}$, then reflected across the x-axis, and shifted up 1 unit. The correct graph is B.
80. Letf (x) and $g(x)$ be odd functions. Then by definition,
$f(x)=f(x), \operatorname{or} f(x)=f(x)$, and $g(x)=g(x),-$
$\operatorname{or} g(x)=y(-x)$. Thus $(f+g)(x)=f(x)+g(x)=$
$-f(*)+[g(x)]=[f(*)+g(x)]=(f+g)(-x)$
and $f+g$ is odd.
81. Reflect the graph of $y=f(x)$ across the x-axis and then across they-axis.
82. $f(x)=4 x_{3}-2 x+7$
a) $f(x)+2=4 x_{3}-2 x+7+2=4 x_{3}-2 x+9$
b) $f(x+2)=4(x+2)^{3}-2(x+2)+7$

$$
=4(x 3+6 x 2+12 x+8)-2(x+2)+7
$$

$$
=4 x 3+24 x 2+48 x+32-2 x-4+7
$$

$$
=4 x 3+24 x 2+46 x+35
$$

c) $f(x)+f(2)=4 x_{3}-2 x+7+4 \cdot 2^{3}-2 \cdot 2+7$

$$
\begin{aligned}
& =4 x 3-2 x+7+32-4+7 \\
& =4 x 3-2 x+42
\end{aligned}
$$

$f(x)+2$ adds 2 to each function value; $f(x+2)$ adds 2 to each input before the function value is found; $f(x)+f(2)$ adds the output for 2 to the output forx.
83. In the graph of $y=f(c x)$, the constantcstretches or shrinks the graph of $y=f(x)$ horizontally. The constant $\operatorname{cin} y=c f(x)$ stretches or shrinks the graph of $y=f(x)$ vertically. For $y=f(c x)$, the x-coordinates of $y=f(x)$ are divided by c; for $y=c f(x)$, the y-coordinates of $y=f(x)$ are multiplied byc.
84. The graph of $f(x)=0$ is symmetric with respect to the x axis, they-axis, and the origin. This function is both even and odd.
85. If all of the exponents are even numbers, then $f(x)$ is an even function. If $a=0$ and all of the exponents are odd numbers, then $f(x)$ is an odd function.
86. Lety $(x)=k x$ 2. Then $y(2 x)=k(2 x)^{2}=k \cdot 4 x \quad 2=4 \cdot k x 2=$ $4 \cdot y(x)$. Thus, doubling x causesyto be quadrupled.

$$
\text { 87. Lety }=k \quad \begin{array}{lllll}
& x \operatorname{and} x= & \underline{k 2} . \text { Then } y=k & \underline{k 2} & \underline{k 1} k 2 \\
{ }_{1} & { }_{z} \cdot & { }_{z}, \text { or } y= & z
\end{array},
$$

soyvaries inversely asz.

Chapter 2 Test

1.a) Forx-values from -5 to -2 , they-values increase from -4 to 3 . Thus the function is increasing on the interval $(-5,-2)$.
b) Forx-values from 2 to 5 , the y-values decrease from 2 to -1 . Thus the function is decreasing on the
2.

The function is increasing on $(-\infty, 0)$ and decreasing on $(0, \infty$ The relative maximum is 2 at $x=0$. There are no minima.
3.

Wefind that the function is increasing on $-(\infty,-2.667)$ and on $(0, \infty)$ and decreasing on $(-2.667,0)$. The relative maximum is 9.481 at -2.667 and the relative minimum is 0 at $x=0$.
4. If $=$ the length of the base, in inches, then the height $=$ $4 b-6$. We use the formula for the area of a triangle, $A=2_{2} \quad \mathrm{bh}$.

$$
A(b)=\underline{1} b(4 b 6), \text { or }
$$

$$
A(b)=\stackrel{2}{2}-\frac{-}{2 b_{2}-3 b}
$$

$$
\text { } x 2, \text { for } x<-1 \text {, }
$$

Since $-4<-1, f(-4)=(-4) \quad{ }^{2}=16$.
7. $(f+g)(-6)=f(-6)+g(-6)=$
$(-6)^{2}-4(-6)+3+-(-6)=$
c) Forx-values from-2 to

2 ,yis 2 . Thus the
functionis constant on the interval $(-2,2)$.

$$
36+24+3+\vee_{\overline{3}+6=63+\sqrt{ }}=3=63+3=66
$$

8. $(f-g)(-1)=f(-1)-g(-1)=$
$(-1)^{2}-4(-1)+3-\quad \overline{3-(-1)}=$
$1+4+3-\sqrt{ } 3+1=8-\sqrt{ } \quad-2=6$ \qquad
9. $(f g)(2)=f(2) \cdot g(2)=\left(2^{2}-4 \cdot 2+3\right)(\sqrt{ } \quad 3-2)=$
$(4-8+3)(\stackrel{\vee}{1})=-1 \cdot 1=-1$
10. $(f / g)(1)=\underline{f(1)} \quad \underline{1^{2-4} \cdot 1+3}=\underline{1-4+3}=\underline{0}=0$ $g(1)=\begin{array}{lll}V_{3-1} & V_{2}\end{array}$
11. Any real number can be an input for $f(x)=x \quad 2$, so the domain is the set of real numbers, or $(-\infty, \infty)$.
12. Thedomain of $g(x)=x \overline{-3}$ is the setofrealnumbers for which $x-3 \geq 0$, or $x \geq 3$. Thus the domain is $\{x \mid x \geq 3\}$, or $[3, \infty)$.
13. The domain of $f+g$ is the intersection of the domains of f and g. This is $\{x \mid x \geq 3\}$, or $[3, \infty)$.
14. The domain off-gis the intersection of the domains of f fand g. This is $\{x \mid x \geq 3\}$, or $[3, \infty)$.
15. The domain of $f g$ is the intersection of the domains of f and g. This is $\{x \mid x \geq 3\}$, or $[3, \infty)$.
16. The domain of $/ g$ is the intersection of the domains of and g, excluding those x-values for which $g(x)=0$. Since $x-3=0$ when $x=3$, the domain is $(3, \infty)$.
17. $(f+g)(x)=f(x)+g(x)=x \quad 2+\sqrt{ } \quad x=3$
18. $(f-g)(x)=f(x)-g(x)=x \quad 2-\frac{\sqrt{ }}{x-3}$

$$
\begin{aligned}
& \text { 19. }(f g)(x)=f(x) \cdot g(x)=x \\
& \text { 20. }(f / g)(x)=\frac{f(x)}{g(x)}=\sqrt{V_{x-3}}
\end{aligned}
$$

1

$$
\begin{aligned}
& \text { 21. } f(x)={ }_{2}{ }^{\bar{x}+4} 1 \quad 1 \quad 1 \\
& f(x+h)={ }_{2}(x+h)+4=\quad \overline{2}^{x+} \overline{2}^{h+4} \\
& f(x+h)-f(x)=\quad \begin{array}{l}
1 \\
2^{x+} \\
\frac{1}{2}
\end{array} \\
& h
\end{aligned}
$$

22. $f(x)=2 x^{2}-x+3$
$f(x+h)=2(x+h)^{2}-(x+h)+3=2(x 2+2 x h+h 2)-x-h+3=$
$2 x 2+4 x h+2 h 2-x-h+3$
$f(x+h)-f(x)=2 x 2+4 x h+2 h 2-x-h+3-(2 x 2-x+3)$
h

h

$=\underline{2 x 2+4 x h+2 h 2-x_{\hbar} h+3-2 x_{2}+x-3}$
$4 x h+2 h 2-h$
$=\quad h$
$=\frac{h /(4 x+2 h-1)}{h /}$
$=4 x+2 h-1$
23. $(g \circ h)(2)=g(h(2))=g\left(3 \cdot 2 \quad{ }^{2}+2 \cdot 2+4\right)=$ $g(3 \cdot 4+4+4)=g(12+4+4)=g(20)=4 \cdot 20+3=$ $80+3=83$
24. $(f \circ g)(-1)=f(g(-1))=f(4(-1)+3)=f(-4+3)=$ $f(-1)=(-1)^{2}-1=1-1=0$
25. $(h \circ f)(1)=h(f(1))=h\left(\begin{array}{ll}1 & 2-1)=h(1-1)\end{array} h_{(0)}=\right.$ $3 \cdot 0^{2}+2 \cdot 0+4=0+0+4=4$
26. $(g \circ g)(x)=g(g(x))=g(4 x+3)=4(4 x+3)+3=$
 $f_{\sqrt{\mathcal{V}^{2}} g x} \quad f g x \quad f x \quad x^{2} \quad-$
$(g \circ f)(x)=g(f(x))=g\left(\quad V_{x-5}\right)=\left(V_{x-5}\right)^{2}+1=$ $x-5+1=x-4$
28. The inputs for $f(x)$ must be such that $x-5 \geq 0$, or $x \geq 5$. Then for $\left(f^{\circ} g\right)(x)$ we musthave $g(x) \geq 5$, orx $\quad 2+1 \geq 5$, or
$x 2 \geq 4$. Then the domain of $(f \circ g)(x)$ is $(-\infty,-2] \cup[2, \infty)$. Since we can substitute any real number forxing, the
domain of $(g \circ f)(x)$ is the same as the domain off $f(x)$, $[5, \infty)$.
29. Answers may vary. $f(x)=x \quad 4, g(x)=2 x-7$
30. $y=x_{4}-2 x_{2}$

Replaceywith y to test for symmetry with respect to thex-axis.

$$
\begin{array}{rl}
-y=x^{4} & 4-2 x_{2} \\
y=-x^{4} & 4+2 x_{2}
\end{array}
$$

The resulting equation is not equivalent to the original
equation, so the graph is not symmetric with respect to the x-axis.
Replacexwith-xto test for symmetry with respect to they-axis.

$$
\begin{aligned}
& y=(-x)^{4}-2(-x)^{2} \\
& y=x^{4}-2 x^{2}
\end{aligned}
$$

The resulting equation is equivalent to the original equation, so the graph is symmetric with respect to they-axis.

Replace x with *and y with y to test for symmetry with respect to the origin.

$$
\begin{aligned}
& -y=(-x)^{4}-2(-x)^{2} \\
& -y=x^{4}-2 \times 2 \\
& y=-x 4+2 x 2
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respect to the origin.
31. $f(x)=\frac{2 x}{x^{2}+1}$
$f-x \quad)=\frac{2(-x)}{(-x)^{2}+1}=\frac{2 x}{x^{2}+1}$
$f(x)=f(-x)$, sofis not even.

$$
2 x
$$

$-f(x)=-x^{2}+1$
$f(-x)=-f(x)$, so f is odd.
32.Shape: $h(x)=x \quad 2$

Shifth(x) right 2 units: $g(x)=h(x-2)=(x-2)$
Shift $g(x)$ down 1 unit: $f(x)=(x-2) \quad 2-1$
33.Shape: $h(x)=x \quad 2$

Shifth (x) left 2 units: $g(x)=h(x+2)=(x+2) \quad 2$
Shiftg (x) down 3 units: $f(x)=(x+2){ }^{2}-3$
34. Eachy-coordinate is multiplied by- ${ }_{2}$. We plot and connect $(-5,1),(-3,-2),(1,2)$ and $(4,-1)$.

35. $\begin{aligned} & y= k \\ & \bar{X} \\ & 5=\bar{k}\end{aligned}$
$30=k V$ ariation constant
Equation of variation: $y=\frac{30}{x}$
36. $y=k x$
$60=k \cdot 12$
$5=k$ Variation constant
Equation of variation: $y=5 x$
37. $y=\frac{k x z 2}{w}$
$100=\frac{k(0.1)(10)^{2}}{5}$
$100=2 k$
$50=k$ Variation constant
$y=\frac{50 x z 2}{w}$
Equation of variation

