Solution Manual for College Algebra and Trigonometry 6th Edition by Lial Hornsby Schneider Daniel ISBN 01341125209780134112527

Full link download
Solution Manual
https://testbankpack.com/p/solution-manual-for-college-algebra-and-trigonometry-
6th-edition-by-lial-hornsby-schneider-daniel-isbn-0134112520-9780134112527/

Test Bank

https://testbankpack.com/p/test-bank-for-college-algebra-and-trigonometry-6th-edition-by-lial-hornsby-schneider-daniel-isbn-0134112520-9780134112527/

Chapter 2

GRAPHS AND FUNCTIONS

Section 2.1 Rectangular Coordinates and Graphs

The point $(-1,3)$ lies in quadrant $\underline{\text { II }}$ in the rectangular coordinate system.

The point $(4, \underline{6})$ lies on the graph of the equation y $=3 x-6$. Find the y-value by letting $x=4$ and solving for y.

3461266

Any point that lies on the x-axis has
y-coordinate equal to $\underline{0}$.

The y-intercept of the graph of $y=-2 x+6$ is $(0,6)$.
The x-intercept of the graph of $2 x+5 y=10$ is $(\underline{5,0})$. Find the x-intercept by letting $y=0$ and solving for x.
$2 \times 50102 \times 10 \times 5$

The distance from the origin to the point (-
$3,4)$ is 5 . Using the distance formula,
we have
$d(P, Q)(30)^{2}(40)^{2}$

True

9. False. The midpoint of the segment joining $(0,0)$ and $(4,4)$ is

$$
\underline{40}, \underline{40} \quad \underline{4} \quad 2,2
$$

$2 \quad 2 \quad 2 \quad 2$
False. The distance between the point $(0,0)$ and $(4,4)$ is

$$
\begin{gathered}
d\left(P, Q \sqrt{(40)^{2}}(40)^{2}\right. \\
\sqrt{616} \sqrt{324} \sqrt{4^{2} 4^{2}}
\end{gathered}
$$

Any three of the following:
2,5,1,7,3,9,5,17,6,21
Any three of the following:
$3,3,5,21,8,18,4,6,0,6$
Any three of the following: $(1999,35),(2001$,
$29),(2003,22),(2005,23),(2007,20),(2009,20)$
Any three of the following:
2002, 86.8 , 2004, 89.8, 2006, 90.7,

2008, 97.4, 2010, 106.5, 2012,111.4,
2014, 111.5
$P(-5,-6), Q(7,-1)$
(a) $d(P, Q)[7-(-5)]^{2}[1-(-6)]^{2}$

$$
\begin{aligned}
& \sqrt{ } \\
& \sqrt{12^{2}} 5^{2} \sqrt{169} 13
\end{aligned}
$$

The midpoint M of the segment joining points P and Q has coordinates

$$
\begin{array}{rlll}
-57 \\
2 & \underline{6(1)} & \underline{2} & \underline{7} \\
& & 2 & 2
\end{array}
$$

$$
1, .2
$$

$$
P(-4,3), Q(2,-5)
$$

$$
\begin{aligned}
& d(P, Q) {[2-(-4)]^{2}(-5-3)^{2} } \\
& 6^{2}(-8)^{2} \\
& \sqrt{100} 10
\end{aligned}
$$

The midpoint M of the segment joining points P and Q has coordinates

$$
-42, \underline{3(-5)} \quad 2, \underline{2}
$$

22
22
1,1 .
$P(8,2), Q(3,5)$

The midpoint M of the segment joining points P and Q has coordinates

83 , 25 11 , 7.
2222
$P(-8,4), Q(3,-5)$

$$
2
$$

The midpoint M of the segment joining points P and Q has coordinates

$$
\frac{-83}{2}, \frac{4(-5)}{2} \quad \underline{5}, \underline{1}
$$

$$
\begin{array}{cc}
2 & 2 \\
\sqrt[1]{2^{2} 15^{2}} & \sqrt{144225}
\end{array}
$$

$$
d(A, B) \sqrt{\left[\frac{0-(-6)]}{2} \sqrt[{[-2-(-4) \sqrt{2}}]{ }\right.}
$$

$\square 3 \sqrt[4]{ }$
The midpoint M of the segment joining points P and Q has coordinates

$$
\underline{-66}, \underline{-5} \underline{10} \underline{0}, \underline{5} \quad \underline{5} .
$$

22
$22 \quad 2$
$P(6,-2), Q(4,6)$
(a) $d(P, Q)$

$464 \quad 682 \sqrt{7}$

The midpoint M of the segment joining points P and Q has coordinates $\begin{array}{rrrr}64 & \underline{2} & \frac{10}{2}, & 5,2 \\ 2 & 2\end{array}$

triangle $A B C$ is a right triangle.

Chapter 2 Graphs and Functions
Label the points $A(-2,-8), B(0,-4)$, and $C(-4,-7)$. Use the distance formula to find the length of each side of the triangle. $d(A$,
B) $[0-(-2)]^{2}[-4-(-8)]^{2}$ $\sqrt[2^{2} 4^{2}]{\sqrt{416} \quad \Downarrow 2}$
$d(B, C)$

$\begin{aligned} d(A, C) & \sqrt{[-4-(-2)]^{2}[-7-(-8)]^{2}} \\ & \sqrt{-2)^{2} 1^{2}} \sqrt{41}\end{aligned}$
Because (5) $)^{2}\left(20 \sqrt{2} 520255^{2}\right.$,
triangle $A B C$ is a right triangle.

Label the points $A(-4,1), B(1,4)$, and
$C(-6,-1)$.
$d(A, B) \begin{aligned} & \sqrt[l]{1-(-4)]^{2}} \sqrt{(4-1)^{2}} \\ & 5^{2} 3^{2}\end{aligned}$

$$
\begin{array}{ll}
d(A, C) & \sqrt{[-6-(-4)]^{2}(-1-1)^{2}} \\
& \sqrt{-2)^{2}(-2)^{2}} \sqrt{44} 8 \sqrt{ }
\end{array}
$$

Because () $)^{2}\left({ }^{2}\left(7 \sqrt{)^{2}}\right.\right.$ because

8344274 , triangle $A B C$ is not a right triangle.
Label the points $A(-2,-5), B(1,7)$, and $C(3,15)$.
$d(A, B)$

$A B C$ is a right triangle.

Label the points $A(-7,4), B(6,-2)$, and $C(0,-15)$.

16936
205
$d(B, C) \sqrt{06^{2}-15--2 \quad 2}$
$\sqrt{{ }^{2} \quad 2^{2}}$

$d(A, C) \quad 0-7$
154
$7^{2} \quad 19 \quad 49361$
410

Because $\sqrt{205}^{2} \sqrt{205}^{2} 41 \sqrt{V}^{2}$,
triangle $A B C$ is a right triangle.
Label the given points $A(0,-7), B(-3,5)$, and $C(2,-15)$. Find the distance between each pair of points.

Copyright © 2017 Pearson Education, Inc. 153317
$d(B, C) \quad(31)^{2}(157)_{2}$

68153221425 , triangle $A B C$ is not a
right triangle.
27. Label the points $A(-4,3), B(2,5)$, and $C(-1,-6)$.
$d(A, B) \begin{array}{lll}\sqrt{2--4} & { }^{2} 53 \\ \sqrt{6^{2} 2^{2}} & \sqrt{364} & 4 \odot\end{array}$

Label the points $A(-1,4), B(-2,-1)$, and $C(1,14)$. Apply the distance formula to each pair of points.

Because $\sqrt{262} \square 32 \square$ he points are collinear.

Label the points $A(0,9), B(-3,-7)$, and $C(2,19)$.

$$
\begin{aligned}
d(A, B) & \sqrt{-3-0)^{2}(-7-9)^{2}} \\
& \sqrt{-3)^{2}(-16)^{2}} \sqrt{9256} \\
& \sqrt{ } 165 \quad 16.279
\end{aligned}
$$

$d(B, C)$

10.198

Because $d(A, B) d(A, C) d(B, C)$
or $\sqrt{265} \sqrt{04} 7 Q \sqrt{ }$

688.2462

Because $d(A, B)+d(A, C) d(B, C)$

$$
\text { or } \sqrt{241} \square \sqrt{565}
$$

15.52428 .246223 .7697
23.7704 23.7697,
the three given points are not collinear. (Note,
however, that these points are very close to lying on a straight line and may appear to lie on a straight line when graphed.)

Label the points $A(-7,4), B(6,-2),{ }^{2}$ and $C(-1,1)$.

$$
\begin{array}{lll}
7 & 2 & 32
\end{array} 499
$$

587.6158

$$
\begin{array}{lll}
58 & 45 & 205
\end{array}
$$

7.61586 .708214 .3178
14.324014 .3178 ,
16.27910 .19826 .476 , 32. Label the points $A(-1,-3), B(-5,12)$, and 26.477 26.476, $C(1,-11)$.
the three given points are not colpyrarghteder Pearson Education, Inc.
however, that these points are very close to
lying on a straight line and may appear to lie
the three given points are not collinear. (Note, however, that these points are very close to lying on a straight line and may appear to lie on a straight line when graphed.) $d(A, B)$

Label the given points $A(-4,3), B(2,5)$, and $C(-1,4)$. Find the distance between each pair of points.

Chapter 2 Graphs and Functions
Midpoint $(5,8)$, endpoint $(13,10)$

The other endpoint has coordinates $(-3,6)$.
Midpoint $(-7,6)$, endpoint $(-9,9)$

$$
\begin{array}{rlrl}
\frac{-9 x}{}-7 & \text { and } & \underline{9 y} & 6 \\
2 & & 2 \\
-9 x-14 & \text { and } & 9 & y 12 \\
x-5 & \text { and } & & y
\end{array}
$$

The other endpoint has coordinates $(-5,3)$.
Midpoint $(12,6)$, endpoint $(19,16)$

$\underline{19 x}$	12 and	$\underline{16 v}$	
		6	6
2		2	
$19 x$	24 and	16 y 12	
	$x 5$ and		$y-4$.

The other endpoint has coordinates $(5,-4)$.

Midpoint $(-9,8)$, endpoint $(-16,9)$

$$
\begin{array}{rlrrr}
\frac{-16 x}{}-9 & \text { and } & & \underline{9 y} & 8 \\
2 & & & 2 \\
-16 x-18 & \text { and } & 9 & y & 16 \\
x-2 & \text { and } & & y & 7
\end{array}
$$

The other endpoint has coordinates $(-2,7)$.
Midpoint (a, b), endpoint (p, q)

$\underline{p x}$	qu	
a	and	b
2		2
px $2 a$	and	q y $2 b$
$x 2 a p$	and	$y 2 b q$

The endpoints are $(2006,7505)$
and (2012, 3335)

```
\(\underline{20062012}, \underline{75053335}\)
22
```

2009, 5420

According to the model, the average national advertising revenue in 2009 was $\$ 5420$ million. This is higher than the actual value of
$\$ 4424$ million.

The points to use are $(2011,23021)$ and (2013, 23834). Their midpoint is
$\underline{20112013} \underline{23,02123,834}$

$$
2 \quad, \quad 2
$$

In 2012, the poverty level cutoff
was approximately $\$ 23,428$.
(a) To estimate the enrollment for 2003, use the points $(2000,11,753)$ and (2006, 13,180)

M| $\frac{20002006}{} \frac{11,753}{,} \frac{13,180}{2}$ |
| :---: |
| $2003,12466.5$ |

The enrollment for 2003 was about $12,466.5$ thousand.

To estimate the enrollment for 2009, use the points $(2006,13,180)$ and $(2012,14,880)$
$\underline{20062012}, \underline{13,18014,880}$
2

2009, 14030

The enrollment for 2009 was about 14,030 thousand.

The midpoint M has
\qquad $x x$ y y
coordinates $\quad 1 \quad 2,212.2$

Midpoint $6 a, 6 b$, endpoint $3 a, 5 b$
Copyright © 2017 Pearson Education, Inc.

$d(P, M)$

$$
3 a \times 12 a \quad \text { and } \quad 5 b \text { y } 12 b
$$

$$
x 9 a \quad \text { and } \quad y 7 b
$$

The other endpoint has coordinates $(9 a, 7 b)$.

The endpoints of the segment are (1990, 21.3) and (2012, 30.1).
$M \underline{19902012}, \underline{21.330 .9}$

$$
2_{2}^{4} \underline{x}^{-2} \underbrace{}_{4} \frac{y}{2}^{2}
$$

(continued on next page)

$$
\begin{aligned}
& \begin{array}{lllll}
\underline{x} \frac{x}{2} & 1 & { }^{2} & \underline{y}_{2}^{2} & \\
2 & & { }^{2} & &
\end{array} \\
& \begin{array}{r}
x^{2} x \\
2-1
\end{array} \quad y^{2} y
\end{aligned}
$$

Copyright © 2017 Pearson Education, Inc.
(continued)
(M, Q)

$\begin{array}{ccccc}\frac{1}{-} & x & x^{2} & y & y^{2} \\ 2 & 2 & 1 & 2 & 1\end{array}$
$d(P, Q) \sqrt{\begin{array}{cc}x & x^{2} \\ 2 & 1\end{array}}$
Because $\frac{1}{2} \sqrt{x} x_{2}^{2} y \quad 1 \quad y^{2}$

$$
\begin{aligned}
& \begin{array}{l}
1 \\
1 \\
1 \\
x x^{2} \quad y \\
y^{2}
\end{array} \\
& \sqrt[2]{2} \begin{array}{ccc}
2 & 2 \\
x x^{2} & y & y^{2}, \\
2 & 1 & 2
\end{array}
\end{aligned}
$$

this shows $\quad d(P, M) d(M, Q) d(P, Q) \quad$ and $d(P, M) d(M, Q)$.

The distance formula,
$d \quad\left(\begin{array}{l}2 \\ \left.x_{2}-x_{1}\right) \quad\left(y_{2}-y_{1}\right), \\ \text { can be written }\end{array}\right.$

$$
\text { as } d\left[\left(x_{2}-x_{1}\right)^{2} \quad\left(y_{2}-y_{1}\right)\right]
$$

In exercises 47-58, other ordered pairs are possible.
47. (a)

(b)

48. (a) $\begin{array}{ll}\boldsymbol{x} & \boldsymbol{y} \\ 0 & 2\end{array}$ y-intercept:
x $y \quad \overline{1} \quad 02 \quad 2$ 2

49. (a)

\boldsymbol{x}	y	
0		y-intercept:
		$\begin{aligned} & x \quad 0 \\ & 203 y 5 \\ & 3 y \quad 5 y \underline{s} \end{aligned}$
$\frac{5}{2}$	0	$\begin{aligned} & x \text {-intercept: } \\ & y \quad 0 \\ & 2 x 305 \\ & 2 x 5 x \underline{5} \end{aligned}$

$\begin{array}{lll}2 & -1 & \text { additional point }\end{array}$
(b)

50. (a)

\boldsymbol{x}	y
0	$\begin{aligned} & -3 y \text {-intercept: } \\ & \quad x 0 \\ & 302 y 6 \\ & 2 y 6 y y \end{aligned}$
2	$\begin{aligned} & 0 x \text {-intercept: } \\ & y<0 \\ & 3 x 206 \\ & 3 x<6 \times 2 \end{aligned}$
4	3 additional point

(b)

51. (a)

\boldsymbol{x}	\boldsymbol{y}	
0	0	x - and y-intercept:
1		00^{2}
-2	1	additional point
4	additional point	

(b)

52. (a)

x	v	
0	2	y-intercept:
		$\begin{array}{ll} x & 0 \\ y & 0^{2} 2 \\ y & 0 \end{array}$
-1	3	additional point
2	6	additional point

no x-intercept:

$$
\begin{array}{lr}
y 00 & x^{2} 2 \\
2 x^{2} & 2 x \sqrt{ }
\end{array}
$$

(b)

53. (a)

no y-intercept:
$\begin{array}{lllll}x & 0 & y & \sqrt{03} y & 3\end{array}$
(b)

54. (a)

\boldsymbol{x}	y
0	
4	$\left.\begin{array}{cc} -1 \quad \text { additional point } \\ 0 & x \text {-intercept: } y \\ & 0 \\ & \\ & \sqrt{4} \\ & x \\ & 3 \\ & \sqrt{9} \end{array}\right]$

(b)

55. (a)
(b)
56. (a)

0
-4 y-intercept:
$x 0$

y	0	$\mid 4$

$y \quad 4|y|$
(b)

57. (a)

(b)

58. (a)

(b)

Points on the x-axis have y-coordinates equal to 0 . The point on the x -axis will have the same x-coordinate as point $(4,3)$. Therefore, the line will intersect the x-axis at $(4,0)$.

Points on the y-axis have x-coordinates equal to 0 . The point on the y-axis will have the same y-coordinate as point $(4,3)$. Therefore, the line will intersect the y-axis at $(0,3)$.
Because (a, b) is in the second quadrant, a is negative and b is positive. Therefore, ($a,-b$) will have a negative x-coordinate and a negative y-coordinate and will lie in quadrant III.
$(-a, b)$ will have a positive x-coordinate and a positive y-coordinateand will lie in quadrant I . $(-a,-b)$ will have a positive x-coordinate and a negative y-coordinate and will lie in quadrant IV.
(b, a) will have a positive x-coordinate and a negative y-coordinate and will lie in quadrant IV.

Chapter 2 Graphs and Functions

62. Label the points $A(2,2), \quad B(13,10)$,
$C(21,5)$, and $D(6,13)$. To determine which points form sides of the quadrilateral (as opposed to diagonals), plot the points.

Use the distance formula to find the length of each side.

Because all sides have equal length, the four points form a rhombus.

To determine which points form sides of the quadrilateral (as opposed to diagonals), plot the points.

$$
\begin{gathered}
d(C, D) \sqrt{13^{2} 34^{2}} \\
\sqrt{4^{2} 1^{2}}
\end{gathered}
$$

Because $d(A, B)=d(C, D)$ and
$d(B, C)=d(D, A)$, the points are the vertices of a parallelogram. Because $d(A, B) \neq d(B, C)$, the points are not the vertices of a rhombus.

For the points $A(4,5)$ and $D(10,14)$, the difference of the x-coordinates is $10-4=6$ and the difference of the
y-coordinates is $14-5=9$. Dividing these differences by 3 , we obtain 2 and 3,
respectively. Adding 2 and 3 to the x and y coordinates of point A, respectively, we obtain $B(4+2,5+3)$ or $B(6,8)$.
Adding 2 and 3 to the x - and y-coordinates of
point B, respectively, we obtain
$C(6+2,8+3)$ or $C(8,11)$. The desired points are $B(6,8)$ and $C(8,11)$.

We check these by showing that
$d(A, B)=d(B, C)=d(C, D)$ and that

$2^{2} 3^{2}$
4913
$d(C, D)$

$d(A, D) \quad 104^{2} 145^{2}$

$$
\left.\begin{array}{c}
\sqrt{ } \sqrt{6^{2} 9_{2} \sqrt{681}} \\
\sqrt{1} 17 \sqrt{9(13)} 3 \sqrt{\beta} \\
d(A, B), d(B, C), \text { and } d(C, D) \text { all have the } \\
\text { same measure and } \\
d(A, D)=d(A, B)+d
\end{array}\right)+d(C, D)
$$

Use the distance formula to find the length of each side.

Section 2.2 Circles

The circle with equation $x^{2} y^{2} 49$ has center with coordinates $(0,0)$ and radius equal to 7 .
The circle with center $(3,6)$ and radius 4 has equation $x 3^{2}$ y 616 .

The graph of $x 4^{2} y 7^{2} 9$ has center with
coordinates $(4,-7)$.
The graph of x^{2} y $5^{2} 9$ has center with
coordinates $(0,5)$.
This circle has center $(3,2)$ and radius 5. This is graph B.
This circle has center $(3,-2)$ and radius 5 . This is graph C.
This circle has center $(-3,2)$ and radius 5 . This is graph D.
This circle has center $(-3,-2)$ and radius 5. This is graph A.

The graph of $x^{2} y^{2} 0$ has center $(0,0)$ and radius 0 . This is the point $(0,0)$. Therefore,
there is one point on the graph.
10. $\sqrt{100}$ is not a real number, so there are no points on the graph of $x^{2} y^{2} 100$.
(a) Center $(0,0)$, radius 6
$\sqrt{0^{2} y 0^{2}} 6$ $0^{2} y 0^{2} 6^{2} \quad x^{2} \quad y^{2} 36$

(b)

$$
x^{2}+y^{2}=36
$$

(a) Center $(0,0)$, radius 9

$$
\sqrt{\begin{array}{lllll}
0^{2} y 0^{2} & 9 \\
0^{2} & y 0^{2} & 9^{2} & x^{2} & y^{2}
\end{array} 81} \begin{aligned}
& 8
\end{aligned}
$$

(a) Center (2, 0), radius 6

$\sqrt{2^{2} y 0^{2}}$| 2 | | |
| :---: | :---: | :---: |
| 2 | | 2 |
| $x 2$ | $y 0$ | 6 |

$(x-2)^{2}$
$y^{2} 36$

(b) $\quad(x-2)^{2}+y^{2}=36$
(a) Center $(3,0)$, radius 3 $\sqrt{x 3 \quad 2 \quad y 0{ }_{2}^{2}}$
$3 \quad y \quad 9$

(b) $(x-3)^{2}+y^{2}=9$
(a) Center (0,4), radius 4

$\sqrt{0^{2} y 4^{2}}$| | 4 | |
| :--- | :--- | :--- |
| 2 | $y 4^{2}$ | 16 |

(b)

$x^{2}+(y-4)^{2}=16$

Chapter 2 Graphs and Functions
16. (a) Center $(0,-3)$, radius 7

$$
\begin{gathered}
\sqrt{x 0^{2}} \quad \begin{array}{cc}
& y 3 \\
& \\
20 & 7_{2}^{2} \\
x 0 & y 3 \\
& x^{2}(y 3)^{2} 49
\end{array}
\end{gathered}
$$

(b)

17. (a) Center $(-2,5)$, radius 4

(b)

$(x+2)^{2}+(y-5)^{2}=16$
18. (a) Center $(4,3)$, radius 5

$$
\begin{gathered}
\sqrt{x 4^{2} y 3^{2}} \begin{array}{c}
5 \\
4^{2} y 3^{2}
\end{array} 5^{2} \\
4^{2} y 3^{2}
\end{gathered}
$$

(b)

(b)

20. (a) Center $(-3,-2)$, radius 6

$$
\begin{gathered}
x 3^{2} \text { y2 } 6 \quad 2 \\
x 3^{2} y 2 \quad 6^{2} \\
(x 3)^{2} \quad(y 2)^{2} 36
\end{gathered}
$$

(b)

$(x+3)^{2}+(y+2)^{2}=36$
21. (a) Center $\sqrt[2]{2}$, radius $\sqrt{ }^{-}$

(b)

22. (a) Center $3 \sqrt{3}$, radius $\sqrt{3}$

$$
\begin{array}{ccccc}
x 3^{2} & y & \sqrt{3}^{3} & 2 & 3 \\
x \sqrt{3} & { }^{2} y & \sqrt{3} & 2 & \\
& \sqrt{2} & & & \sqrt{2}
\end{array}
$$

19. (a) Center $(5,-4)$, radius 7
$x \quad 3^{2} y \quad \beta^{-2} 3$

$$
\begin{aligned}
& \sqrt{x 5^{2}} y 4 \quad 7^{2} \\
& (x-5)^{2}[y-(-4)]^{2} \\
& 72 \\
& (x-5)^{2}(y 4)^{2}
\end{aligned}
$$

(b)

$(x+\sqrt{3})^{2}+(y+\sqrt{3})^{2}=3$
(a) The center of the circle is located at the midpoint of the diameter determined by the points $(1,1)$ and $(5,1)$. Using the midpoint formula, we have

$C \xrightarrow{15}, 3,1$. The radius is

22
one-half the length of the diameter:

$$
r \sqrt[1]{51^{2} 11^{2} 2}
$$

2

The equation of the circle is

$$
\begin{array}{lll}
x 3 & y 1 & 4
\end{array}
$$

Expand $x 3^{2} y 1^{2} 4$ to find the
equation of the circle in general form:

$$
\begin{gathered}
x 3^{2} y 1^{2} 4 \\
x^{2} 6 x 9 y^{2} 2 y 14 \\
x^{2} y^{2} 6 x 2 y 60
\end{gathered}
$$

(a) The center of the circle is located at the midpoint of the diameter determined by
the points $(-1,1)$ and $(-1,-5)$. Using the midpoint formula, we have

$$
C \xrightarrow{1(1)}, \frac{1(5)}{} 1,2 .
$$

2

2

The radius is one-half the length of the diameter:

2
The equation of the circle is

$$
x 1^{2} \quad y 2^{2} 9
$$

(b) Expand $x 1^{2} \quad y 2^{2} 9$ to find the equation
(a) The center of the circle is located at the midpoint of the diameter determined by the points $(-2,4)$ and $(-2,0)$. Using the midpoint formula, we have

$$
C \frac{2(2)}{}, \frac{40}{2} \quad 2,2
$$

The radius is one-half the length of the diameter:
$\frac{1}{2} \sqrt{22}$
${ }^{2} 40 \quad 22$
$r 2$

The equation of the circle is

$$
2^{2} y 2^{2} 4
$$

Expand $x 2^{2} y 2^{2} 4$ to find the
equation of the circle in general form:

\[

\]

$$
x^{2} y^{2} 4 x 4 y 40
$$

(a) The center of the circle is located at the midpoint of the diameter determined by the points $(0,-3)$ and $(6,-3)$. Using the midpoint formula, we have

		3(3)	
C	2	2	3,3

The radius is one-half the length of the diameter:

$$
r 1_{2}^{1} \sqrt{60^{2} 33^{2} 3}
$$

The equation of the circle is

$$
\begin{array}{lll}
x 3 & y 3 & 9
\end{array}
$$

Expand $x 3^{2}$ y $3^{2} 9$ to find the equation of the circle in general form:

$$
\begin{array}{ll}
2 & 2
\end{array}
$$

$$
\begin{aligned}
& x 3 \quad y 39 \\
& x^{2} 6 x 9 y^{2} 6 y 99 \\
& x^{2} y^{2} 6 x 6 y 90 \\
& x \quad 29 \\
& 1 \\
& \text { y }
\end{aligned}
$$

Copyright © 2017 Pearson Education, Inc.
27.

x
2

6
x
y
2

8
y
$x^{2} 2 x 1 y^{2} 4 y 49$

$$
x^{2} y^{2} 2 x 4 y 40
$$

Yes, it is a circle. The circle has its center at $(-3,-4)$ and radius 4 .
$x^{2} y^{2} 8 x-6 y 160$ Complete the square on x and y separately.

$$
\begin{gathered}
x^{2} 8 x y^{2}-6 y 16 \\
x^{2} 8 x 16 y^{2}-6 y 9-16169
\end{gathered}
$$

$$
4^{2} y-3^{2} 9
$$

Yes, it is a circle. The circle has its center at $(-4,3)$ and radius 3 .
$x^{2} y^{2} 4 x 12 y 4$
Complete the square on x and y separately.

$$
\begin{gathered}
x^{2}-4 x y^{2} 12 y-4 \\
x^{2}-4 x 4 y^{2} 12 y 36-4436 \\
x-2^{2} y 6^{2} 36
\end{gathered}
$$

Yes, it is a circle. The circle has its center at $(2,-6)$ and radius 6 .
$x^{2} y^{2}-12 x 10 y-25$
Complete the square on x and y separately.

$$
\begin{gathered}
x^{2}-12 x y^{2} 10 y-25 \\
x^{2}-12 x 36 y^{2} 10 y 25 \\
x-6^{2} y 5^{2} 36
\end{gathered}
$$

Yes, it is a circle. The circle has its center at $(6,-5)$ and radius 6 .
$4 x^{2} 4 y^{2} 4 x-16 y-190$

Complete the square on x and y separately.
$4 x^{2} x^{x} 4 y^{2}-4 y 19$
$4 x^{2} x^{1} 4 y_{4}^{2}-4 y 4$
$194^{1} 444$
$4 x^{12} 4 y-2^{2} 36$
2

$$
x_{1}^{2} y-2^{2} 9
$$

2
Yes, it is a circle with center $\stackrel{2}{\perp}, 2$ and radius 3 .

$$
\begin{array}{rlll}
9 x^{22} 9 y-1^{2} & 36 & & \\
& \underline{2}^{2} & & 2 \\
x & 3 & y-1 & 4_{3}
\end{array}
$$

3
Yes, it is a circle with center $\quad \stackrel{2}{,}, 1$ and
radius 2 .

$$
x^{2} y^{2} 2 x-6 y 140
$$

Complete the square on x and y separately.

$$
x^{2} 2 x y^{2}-6 y-14
$$

$$
\begin{array}{r}
x^{2} 2 x 1 y^{2}-6 y_{2} 9-1419 \\
x
\end{array} \begin{array}{r}
y-3-4
\end{array}
$$

The graph is nonexistent.
$x^{2} y^{2} 4 x-8$ y 320
Complete the square on x and y separately.

$$
\begin{array}{cc}
x^{2} 4 x y^{2}-8 y-32 \\
x^{2} 4 x 4 y^{2}-8 y 16 & -32416 \\
x 2 & 2 \\
2 & \\
x-4 & -12
\end{array}
$$

The graph is nonexistent.
$x^{2} y^{2} 6 x 6 y 180$
Complete the square on x and y separately.

$$
\begin{array}{llll}
& x^{2} & 6 x y^{2} & 6 y 18 \\
x^{2} 6 x 9 & y^{2} & 6 y 9 & 1899
\end{array}
$$

$$
x 3 \quad y 3 \quad 0
$$

The graph is the point $(3,3)$.

$$
x^{2} y^{2} 4 x 4 y 80
$$

Complete the square on x and y separately.

$$
x^{2} 4 x y^{2} 4 y 8
$$

$$
\begin{array}{cccc}
2 & & 2 & 844 \\
x & 4 x 4 & y_{2} 4 y 4 & 2
\end{array}
$$

The graph is the point $(-2,-2)$.
37. $9 x^{2} 9 y^{2} 6 x 6 y 230$
32. $9 x^{2} 9 y^{2} 12 x-18 y-230$

Complete the square on x and y separately.

Complete the square on x and y separately.
$9 x^{2} 6 x 9 y^{2} 6 y 23$

Copyright © 2017 Pearson Education, Inc.

$$
\begin{aligned}
& 9 x^{2} \underline{4}_{x 3} 9 y^{2}-2 y 23 \\
& 9 x^{2} \underline{4} x^{4}-9 y^{2}-2 y 1 \\
& 9
\end{aligned}
$$

$$
\begin{aligned}
& 9 x^{2-x} \quad 9 \quad y^{2} \quad \frac{2}{y} y 23
\end{aligned}
$$

Yes, it is a circle with center $1, \frac{1}{3}$ and radius ${\underset{3}{5} \text {. }}^{5}$
$4 x^{2} 4 y^{2} 4 x 4 y 70$
Complete the square on x and y separately.

$$
\begin{aligned}
& 4 x^{2} x 4 y^{2} \text { y } 7 \\
& 4 x^{2} x \leq 4 y^{2}-y \underline{1}
\end{aligned}
$$

$$
\begin{aligned}
& 44 \frac{4}{4} 4 \frac{1}{4} \\
& 4 x_{2}^{1}-24 y-1_{2}^{2} 9 \\
& x_{2} 1^{2} y-1_{2}^{2}
\end{aligned}
$$

Yes, it is a circle with center $\frac{2}{2}, \frac{4}{2}$ and
radius ${ }^{3}$.
2
The equations of the three circles are (

$$
x 7)^{2}(y 4)^{2} 25
$$

$(x 9)^{2}(y 4)^{2} 169$, and
$(x 3)^{2}(y 9)^{2} 100$. From the graph of the three circles, it appears that the epicenter is located at $(3,1)$.

Check algebraically:
$(x 7)^{2}(y 4)^{2} 25(3$

$$
7)^{2}(14)^{2} 25
$$

$$
4^{2} 3^{2} 252525
$$

$(x 9)^{2}(y 4)^{2} 169$
$(39)^{2}(14)^{2} 169$
$12^{2} 5^{2} 169169169$
$(x 3)^{2}(y 9)^{2} 100$
$(33)^{2}(19)^{2} 100$
$6^{2}(8)^{2} 100100100$
$(3,1)$ satisfies all three equations, so the
epicenter is at $(3,1)$.

Check algebraically:
$(x 3)^{2}(y 1)^{2} 5$
(5 3) ${ }^{2}(21) \stackrel{2}{5}$

$$
\begin{gathered}
(y 4)^{2} \int_{26} 2^{2} 1^{2} 555(x 5)^{2} \\
(55) \quad(24) \quad 36 \\
6^{2} 363636 \\
(x 1)^{2}(y 4)^{2} 40(5 \\
1)^{2}(24)^{2} 40 \\
6^{2}(2)^{2} 404040
\end{gathered}
$$

$(5,2)$ satisfies all three equations, so the epicenter is at $(5,2)$.
From the graph of the three circles, it appears that the epicenter is located at $(-2,-2)$.

Check algebraically:

$$
(x 2) \quad(y 1) \quad 25
$$

$$
\left.(2) \quad 2)_{2}^{(2} 1\right)^{2}{ }_{2}^{25}
$$

(4) (3) 25

\[

\]

$$
(22)^{2}(2)_{2}^{2} 16
$$

0 (4) 16

The three equations are $(x 3)^{2}(y 1)^{2} 5,(x 5)_{2}(y 4)_{2} 36$, and Copyright © 2017 Pearson Education, Inc.
$(x 1)^{2}(y 4)^{2} 40$. From the graph of the three circles, it appears that the epicenter is located at $(5,2)$.

$$
1)^{2} \begin{array}{r}
(x 1)^{2}(y 2)^{2} \\
\hline
\end{array} \quad 9(3)^{2} \quad 0^{2} 99
$$

$(-2,-2)$ satisfies all three equations, so the epicenter is at $(-2,-2)$.

Chapter 2 Graphs and Functions

From the graph of the three circles, it appears that the epicenter is located at $(5,0)$.

Check algebraically:

$$
\begin{array}{lr}
& (x 2)^{2}(y 4)^{2} \\
& 25(5 \\
2)^{2}(04)^{2} & 25 \\
3^{2}(4)^{2} & 25 \\
& 25
\end{array}
$$

$$
(x 1)^{2}(y 3)^{2} 25
$$

$(51)^{2}(03)^{2} 25$ $4^{2} \quad 3^{2} 25$

25
$(x 3)^{2}(y 6)^{2} 100$
$(53)^{2}(06)^{2} \quad 100$

$$
8^{2} 6^{2} 100
$$

100100
$(5,0)$ satisfies all three equations, so the
epicenter is at $(5,0)$.

The radius of this circle is the distance from the center $C(3,2)$ to the x-axis. This distance
is 2 , so $r=2$.

$$
\begin{aligned}
& (x-3)^{2}(y-2)^{2} 2^{2} \\
& (x-3)^{2}(y-2)^{2}
\end{aligned}
$$

The radius is the distance from the center $C(-4,3)$ to the point $P(5,8)$.

$$
[5-(-4)]^{2}(8-3)^{2}
$$

The equation of the circle is

$$
\begin{aligned}
& {[x-(-4)]^{2}(y-3)^{2}} \\
& (x 4)^{2}(y-3)^{3} 106
\end{aligned}
$$

$$
\left.\begin{array}{c}
1 x^{2} 3 x^{2} 16 \\
12 x x^{2} 96 x x^{2} 16 \\
2 x^{2} 8 x
\end{array}\right) 1016
$$

To solve this equation, we can use the quadratic formula with $a=1, b=-4$, and $=-3$.

41612428
2
42. $\frac{7}{2} \sqrt{2} \quad 7 \quad \sqrt{ }$

Because $x=y$, the points are

Let $P(-2,3)$ be a point which is 8 units from $Q(x, y)$. We have

$$
d\left(P, \sqrt{Q) 2 x^{2} \quad 3 y^{2} 8}\right.
$$

$2 x^{2} 3 y^{2} 64$.
Because $x+y=0, x=-y$. We can either
substitute x for y or $y \quad$ for x. Substituting

$$
\begin{aligned}
& \text { for } y \text { we solve the following: } \\
& 2 x^{2} \quad 3 x \quad 264 \\
& \underset{2}{2} x^{2} 3 x^{2} \quad 64 \\
& \begin{array}{ccc}
44 x x & 96 x x & 64 \\
& 2 x 10 \times 1364 \\
& 2 x^{2} 10 \times 510
\end{array}
\end{aligned}
$$

To solve this equation, use the quadratic formula with $a=2, b=10$, and $c=-51$.

$$
10 \sqrt{10^{2} 42 \quad 51}
$$

x

$$
\frac{2}{\frac{101 \sqrt{0408}}{4}}
$$

Copyright © 2017 Pearson Education, Inc10.

Label the points $P(x, y)$ and $Q(1,3)$.

If $d(P, Q) 4, \sqrt[1]{x^{2} 3 y^{2} 4}$
$1 x^{2} 3 y^{2} 16$.
If $x=y$, then we can either substitute x for y or
y for x. Substituting x for y we solve the following:

4
2
Because $y x$ the points are
$5127, \sqrt{5127}$ and
22
$\frac{-5 \underline{12}}{2}, \frac{127}{2} \sqrt{2}$

Let $P(x, y)$ be a point whose distance from $A(1,0)$ is $1 \sqrt{0}$ and whose distance from $B(5,4)$ is $1 \sqrt{0} d(P, A)=10 \sqrt{\text { so }}$
$\sqrt{(1 x)^{2}(0 y)^{2}} \quad \sqrt{10}$
$(1 x)^{2} y^{2} 10 . \quad d(P, B) \quad 1 \sqrt{0}$, so
$\begin{array}{lll} & & \\ (0 x) & (4 y) & \sqrt{10}\end{array}$
$(5 x)^{2}(4 y)^{2}$ 10. Thus,
$(1 x)^{2} y^{2}(5 x)^{2}(4 y)^{2}$
$12 x x^{2} y^{2}$
$2510 x x^{2} 168 y y^{2}$
$12 x 4110 x 8 y$
$8 y 408 x$

$$
y 5 x
$$

Substitute $5-x$ for y in the equation $(1 x)^{2} y^{2} 10$ and solve for x.
$(1 x)^{2}(5 x)^{2} 10$
$12 x x^{2} 2510 x x^{2} 10$
$2 x^{2} 12 x 26102 x^{2} 12 x 160$
$x^{2} 6 x 80(x 2)(x 4) 0$
$x 20$ or $x 40$
$x 2$ or $\quad x 4$
To find the corresponding values of y use the equation $y=5-x$. If $x=2$, then $y=5-2=3$.

If $x=4$, then $y=5-4=1$. The points
satisfying the conditions are $(2,3)$ and $(4,1)$.
The circle of smallest radius that contains the
points $A(1,4)$ and $B(-3,2)$ within or on its boundary will be the circle having points A and B as endpoints of a diameter. The center will be M, the midpoint:

The radius will be the distance from M to either A or B :

$$
d(M, A) \quad[1(1)]^{2} \quad(43) \quad 2
$$

Label the points $A(3, y)$ and $B(-2,9)$.
If $d(A, B)=12$, then
$\sqrt{23^{2} 9 y^{2} 12}$
$\sqrt{5^{2} 9 y^{2} 12}$

$$
5^{2} 9 y^{2} 12^{2}
$$

258118 y y 144

$$
y^{2} 18 y 380
$$

Solve this equation by using the quadratic formula with $a=1, b=-18$, and $c=-38$:

21
2

The values of y are $9 \quad \sqrt{119}$ and $9 \quad \sqrt{119}$.

Because the center is in the third quadrant, the radius is $2 \sqrt{ }$ and the circle is tangent to both axes, the center must be at $\left(\begin{array}{cc}\sqrt{ } \\ 2, & 2)\end{array}\right.$

Using the center-radius of the equation of a circle, we have $\sqrt{ }$

Let $P(x, y)$ be the point on the circle whose distance from the origin is the shortest. Complete the square on x and y separately to write the equation in center-radius form:

$$
\begin{gathered}
x 16 x y \quad 14 y 880 \\
x^{2} 16 x 64 y^{2} 14 y 49
\end{gathered}
$$

886449

Copyright © 2017 Pearson
Education, Inc.

The equation of the circle is
$x 1 \quad 2 y 3^{2} \quad \sigma^{2}$
$x 1^{2}$ y $3^{2} \quad 5$.
$d(C, O) \| \square \sqrt{113}$. Because the length of the radius is $5, d(P, O) \sqrt{1135}$.

Chapter 2 Graphs and Functions

Using compasses, draw circles centered at Wickenburg, Kingman, Phoenix, and Las Vegas with scaled radii of $50,75,105$, and 180 miles respectively. The four circles should intersect at the location of Nothing.

The midpoint M has coordinates

$$
\underline{-1+5} \quad \underline{3-9}
$$

$$
4 \underline{6}
$$

$$
2 \quad 2
$$

$$
\begin{aligned}
& 3 \\
& 2
\end{aligned}
$$

Use points $C(2,-3)$ and $P(-1,3)$.

$$
\begin{array}{lll}
d(C, P) & \sqrt{-1-2} \quad 3-3 \\
& \sqrt{3^{2} 6^{2}} & \sqrt{936} \\
& \sqrt{5} \quad \sqrt{ } & \\
& 45 & 3
\end{array} 5
$$

The radius is 3
55. Use points $C(2,-3)$ and $Q(5,-9)$.

The radius is 3
56. Use the points $P(-1,3)$ and $Q(\sqrt[5]{-9})$.

Label the endpoints of the diameter $P(3,-5)$ and $Q(-7,3)$. The midpoint M of the segment joining P and Q has coordinates

$$
\underline{3(-7)} \underline{-53} \quad 4 \underline{-2}
$$

$$
2 \quad, 2 \quad 2,2(-2,-1)
$$

The center is $C(-2,-1)$. To find the radius, we can use points $C(-2,-1)$ and $P(3,-5)$

We could also use points $C(-2$, $1)$. and $Q(-7,3)$.

We could also use points $P(3,-5)$ and $Q(-7,3)$ to find the length of the diameter. The length of the radius is one-half the length of the diameter.

164241
$\frac{1}{2} d(P, Q){\underset{2}{2}}_{2}^{\square}$
The center-radius form of the equation of the circle is

$$
\begin{gathered}
{[x-(-2)]^{2}[y-(-1)]^{2} \quad\left(\square{ }^{2}\right.} \\
(x 2)^{2}(y 1)^{2} 41
\end{gathered}
$$

59. Label the endpoints of the diameter
$P(-1,2)$ and $Q(11,7)$. The midpoint M of the segment joining P and Q has coordinates

$$
\frac{1}{2} \underline{11} \quad \frac{27}{2} \quad \frac{9}{-5}, \quad \dot{9}
$$

The center is $C 5,2$. To find the radius, we Copyright © 2017 Pearson Education, Inc. - $_{2}$

$$
\sqrt{\text {,the radius is }} \frac{1}{d(P, Q) . \text { Thus } 2}
$$

\[

\]

The center-radius form for this circle is (
$x-2)^{2}(y 3)^{2}(35)^{2} \sqrt{ }$
$(x-2)^{2}(y 3)^{2} 45$.
can use points $C 5,-\frac{9}{}$ and $P(-1,2)$.

($\quad 2 \quad \sqrt{\frac{169}{4}} \quad \frac{13}{2}$.
We could also use points $C 5, \underline{9}$ and $Q(11,7)$.

(continued on next page)

(continued)

Using the points P and Q to find the length of the diameter, we have

$$
\begin{gathered}
d P, Q \sqrt{111^{2} 27^{2}} \\
\sqrt{\sqrt{169} 13_{12^{2}} 5^{2}} \\
d P, Q^{1_{13} \frac{13}{}}
\end{gathered}
$$

22
The center-radius form of the equation of the circle is

$$
\begin{array}{rlr}
x 5^{2} \quad y^{9}{ }_{2} \underline{13}_{2} & \\
& & 2 \\
& x 5^{2} \quad y \underline{9} & 2 \frac{169}{4} \\
& & 4
\end{array}
$$

60. Label the endpoints of the diameter $P(5,4)$ and $Q(-3,-2)$. The midpoint M of the segment joining P and Q has coordinates 5(3), 4(2) 1,1.

2

$$
2
$$

The center is $C(1,1)$. To find the radius, we can use points $C(1,1)$ and $P(5,4)$.

We could also use points $C(1,1)$ and $Q(-3,-2)$.

$$
\begin{array}{cc}
d(C, Q) \sqrt{13} & 1-2 \\
\sqrt{4^{2} 3^{2}} & \sqrt{25} 5
\end{array}
$$

Using the points P and Q to find the length of the diameter, we have 2

$$
\begin{array}{cc}
d P, Q \sqrt{53} & 42 \\
\sqrt{8^{2} 6^{2}} & \sqrt{100} 10
\end{array}
$$

$$
\underline{1}_{d(P, Q)}^{\underline{1}} 105
$$

The length of the diameter $P Q$ is

The length of the radius is $2^{\underline{1}} 5 \underline{5} .2$
The center-radius form of the equation of the circle is
$x 3^{2} \quad y \underline{5}_{2} \quad \underline{5}_{2}$

| $x 3$ | $2 y-2$ | 2 |
| :--- | :--- | ---: | ---: |

Label the endpoints of the diameter $P(-3,10)$ and $Q(5,-5)$. The midpoint M of the segment joining P and Q has coordinates $3510(5)$

$$
1,5 \cdot{ }_{2}
$$

22
The center C is $1,{ }^{5} 2$. The length of the diameter $P Q$ is
$\sqrt{ }$ $35^{2} 105^{2}$ $8^{2} 15^{2}$

$$
\sqrt{\ldots} 17
$$

The length of the radius is $2 \underline{17} \underline{17} .2$
The center-radius form of the equation of the circle is
$2 \underline{5}^{2} \quad \underline{17}^{2}$
$\begin{array}{lllll}x 1 & y & 2 & 2\end{array}$
$x 1^{2} y^{72} \underline{289}$

Section 2.3 Functions

1. The domain of the relation
$3,5,4,9,10,13$ is $3,4,10$.
2. The range of the relation in Exercise 1 is 5, 9,13.
3. The equation $y=4 x-6$ defines a function with $x 1^{2} y 1^{2} 5^{2}$

The center-radius form of the equation of the circle is

Copyright © 2017 Pearson Education, Inc.
independent variable \underline{x} and dependent variable y.

$$
x 1^{2} y 1^{2} 25
$$

Label the endpoints of the diameter $P(1,4)$ and $Q(5,1)$. The midpoint M of the segment joining P and Q has coordinates
$15,413,-$ 222

The center is $C 3, \underline{5}$.

The function in Exercise 3 includes the ordered pair $(6, \underline{18})$.
5. For the function $f x 4 \times 2$,
$f 242282 \underline{10}$.
6. For the function $g x \quad x, g 9 \quad 93$.
7. The function in Exercise 6, gx $\quad \sqrt{ }$, has domain 0 ,

Chapter 2 Graphs and Functions

8. The function in Exercise 6, $g x \quad x$, has range $\underline{0,}$.

For exercises 9 and 10, use this graph.

The largest open interval over which the
function graphed here increases is , 3 .
The largest open interval over which the function graphed here decreases is 3 , \qquad
The relation is a function because for each
different x-value there is exactly one y-value.
This correspondence can be shown as follows.
$\{5,3,4,7\} x$-values
$\{1,2,9,8\} \quad y$-values
The relation is a function because for each different x-value there is exactly one y-value. This correspondence can be shown as follows.
$\{8,5,9,3\} x$-values
$\{0,7,3,8\} \quad y$-values
Two ordered pairs, namely $(2,4)$ and $(2,6)$, have the same x-value paired with different y-values, so the relation is not a function.

Two ordered pairs, namely $(9,-2)$ and $(9,1)$, have the same x-value paired with different y values, so the relation is not a function.

The relation is a function because for each different x-value there is exactly one y-value. This correspondence can be shown as follows.
$\{-3,4,-2\} \quad x$-values

The relation is a function because for each different x-value there is exactly one y-value. This correspondence can be shown as follows.

The relation is a function because for each different x-value there is exactly one y-value. This correspondence can be shown as follows.
$\{3,7,10\} x$-values

The relation is a function because for each different x-value there is exactly one y-value. This correspondence can be shown as follows.

Two sets of ordered pairs, namely $(1,1)$ and $(1,-1)$ as well as $(2,4)$ and $(2,-4)$, have the same x-value paired with different y-values, so the relation is not a function. domain: $\{0,1,2\}$; range: $\{-4,-1,0,1,4\}$

The relation is not a function because the x-value 3 corresponds to two y-values, 7 and 9 . This correspondence can be shown as follows.

domain: $\{2,3,5\}$; range: $\{5,7,9,11\}$
The relation is a function because for each different x-value there is exactly one y value.
domain: $\{2,3,5,11,17\}$; range: $\{1,7,20\}$
The relation is a function because for each different x-value there is exactly one y value. domain: $\{1,2,3,5\}$; range: $\{10,15,19,27\}$

The relation is a function because for each different x-value there is exactly one y-value. This correspondence can be shown as follows.

Domain: $\{0,-1,-2\}$; range: $\{0,1,2\}$

The relation is a function because for each different x-value there is exactly one y-value. This correspondence can be shown as follows.

Domain: $\{0,1,2\}$; range: $\{0,-1,-2\}$ The
relation is a function because for each different year, there is exactly one number for visitors.
domain: $\{2010,2011,2012,2013\}$
range: $\{64.9,63.0,65.1,63.5\}$
The relation is a function because for each basketball season, there is only one number for attendance.
domain: $\{2011,2012,2013,2014\}$
range: $\{11,159,999,11,210,832$, $11,339,285,11,181,735\}$

This graph represents a function. If you pass a vertical line through the graph, one x-value corresponds to only one y-value.
domain: , ; range: ,
This graph represents a function. If you pass a vertical line through the graph, one x-value corresponds to only one y-value.
domain: , ; range: , 4
This graph does not represent a function. If you pass a vertical line through the graph, there are places where one value of x corresponds to two values of y.
domain: 3, ; range: ,

This graph does not represent a function. If
you pass a vertical line through the graph, there are places where one value of x corresponds to two values of y. domain: $[-4,4]$; range: $[-3,3]$
This graph represents a function. If you pass a vertical line through the graph, one x-value corresponds to only one y-value.
domain: , ; range: ,
This graph represents a function. If you pass a vertical line through the graph, one x-value corresponds to only one y-value.
domain: $[-2,2]$; range: $[0,4]$
$y x^{2}$ represents a function because y is always found by squaring x. Thus, each value of x corresponds to just one value of $y . x$ can be any real number. Because the square of any real number is not negative, the range would be zero or greater.

x^{3} represents a function because y is always found by cubing x. Thus, each value of x corresponds to just one value of $y . x$ can be any real number. Because the cube of any real number could be negative, positive, or zero, the range would be any real number.

domain: , ; range: ,

The ordered pairs $(1,1)$ and $(1,-1)$ both
6
satisfy $x \quad y$. This equation does not
represent a function. Because x is equal to the sixth power of y, the values of x are nonnegative. Any real number can be raised to the sixth power, so the range of the relation is all real numbers.

Chapter 2 Graphs and Functions

The ordered pairs $(1,1)$ and $(1,-1)$ both
satisfy $x \quad y^{4}$. This equation does not represent a function. Because x is equal to the fourth power of y, the values of x are nonnegative. Any real number can be raised to the fourth power, so the range of the relation is all real numbers.

$y 2 x 5$ represents a function because y is found by multiplying x by 2 and subtracting 5. Each value of x corresponds to just one value of $y . x$ can be any real number, so the domain is all real numbers. Because y is twice x, less 5, y also may be any real number, and so the range is also all real numbers.

domain: , ; range: ,
$6 x 4$ represents a function because y is found by multiplying x by -6 and adding 4 . Each value of x corresponds to just one value of $y . x$ can be any real number, so the domain is all real numbers. Because y is -6 times x, plus 4 , y also may be any real number, and so the range is also all real numbers.

domain: , ; range: ,

By definition, y is a function of x if every value of x leads to exactly one value of y. Substituting a particular value of x, say 1 , into $x+y<3$ corresponds to many values of y. The ordered pairs $(1,-2),(1,1),(1,0),(1$, -1), and so on, all satisfy the inequality. Note that the points on the graphed line do not satisfy the inequality and only indicate the boundary of the solution set. This does not represent a function. Any number can be used for x or for y, so the domain and range of this relation are both all real numbers.

By definition, y is a function of x if every value of x leads to exactly one value of y. Substituting a particular value of x, say 1 , into $x-y<4$ corresponds to many values of y. The ordered pairs $(1,-1),(1,0),(1,1),(1,2)$, and so on, all satisfy the inequality. Note that the points on the graphed line do not satisfy the inequality and only indicate the boundary of the solution set. This does not represent a function. Any number can be used for x or for y, so the domain and range of this relation are both all real numbers.

41. For any choice of x in the domain of $y \quad \sqrt[x]{,}$ there is exactly one corresponding value of y, so this equation defines a function. Because the quantity under the square root cannot be negative, we have $x 0$. Because the radical is nonnegative, the range is also zero or greater y

For any choice of x in the domain of $x \sqrt{\text { there }}$ is exactly one corresponding value of y, so this equation defines a function. Because the quantity under the square root cannot be negative, we have $x 0$. The outcome of the radical is nonnegative, when you change the sign (by multiplying by -1), the range becomes nonpositive. Thus the range is zero or less.

domain: 0, ; range: , 0
43. Because $x y 2$ can be rewritten as $y^{\frac{2}{,}} x$
we can see that y can be found by dividing x into 2 . This process produces one value of y
for each value of x in the domain, so this equation is a function. The domain includes all real numbers except those that make the denominator equal to zero, namely $x=0$. Values of y can be negative or positive, but never zero. Therefore, the range will be all real numbers except zero.

domain: , $0_{\square} 0$, ;
range: , 0 ,
Because $x y=-6$ can be rewritten as $y \underline{6}, x$ we can see that y can be found by dividing x into -6 . This process produces one value of y for each value of x in the domain, so this equation is a function. The domain includes all real numbers except those that make the denominator equal to zero, namely $x=0$. Values of y can be negative or positive, but never zero. Therefore, the range will be all real numbers except zero.

range: , 0 ,
For any choice of x in the domain of $y \sqrt[4 x]{ }$ there is exactly one
corresponding value of y, so this equation defines a function. Because the quantity under
the square root cannot be negative, we have 4 $x 104 \times 1 x^{1}$. Because the radical is

4
nonnegative, the range is also zero or greater.

domain: $\mathbb{1}_{,}$;4_range: 0 ,

For any choice of x in the domain of
$\sqrt{2 x \text { there }}$ is exactly one corresponding value of y, so this equation defines a function. Because the quantity under the square root cannot be negative, we have

$$
72 \times 02 \times 7 \times \quad 7 \quad \text { or } x \mathbf{m}^{7}
$$

Because the radical is nonnegative, the range is also zero or greater.

47. Given any value in the domain of $y^{\frac{2}{x}} 3$, we
find y by subtracting 3 , then dividing into 2 . This process produces one value of y for each
value of x in the domain, so this equation is a function. The domain includes all real
numbers except those that make the
denominator equal to zero, namely $x=3$.
Values of y can be negative or positive, but
never zero. Therefore, the range will be all real numbers except zero.

domain: , 3 3,;
range: , 0 ,
48. Given any value in the domain of

$$
y-1 \text {, we }
$$

$x 5$
find y by subtracting 5 , then dividing into -7 . This process produces one value of y for each value of x in the domain, so this equation is a function. The domain includes all real numbers except those that make the denominator equal to zero, namely $x=5$.
Values of y can be negative or positive, but never zero. Therefore, the range will be all real numbers except zero.

B. The notation $f(3)$ means the value of the dependent variable when the independent variable is 3 .

Answers will vary. An example is: The cost of gasoline depends on the number of gallons used; so cost is a function of number of gallons.
fx $3 x 4$
51.
$f 0 \quad 304 \quad 044$
fx $3 x 4$
52.
f 33349413
$g x x^{2} 4 x 1$
53.

$g 2 \quad 2$	421

54. $g x x^{2} 4 x 1$
$g 1010^{2} 4101$
10040159
fx $3 x 4$
55. $f \underset{3}{1} 3 \leq 4 \underbrace{143}_{3}$
fx $3 x 4$
56. f - 3 ㄱ 47411
$g x x^{2} 4 x 1$
57.

$$
\begin{array}{lll}
g \underline{1}^{\frac{1}{-}} 2 & 4 \frac{1}{1} & \\
& 4^{\frac{1}{2}} 21 \frac{11}{-} & 4
\end{array}
$$

58. $\quad g x x^{2} 4 x 1$
$g \perp \frac{1-2}{4} \quad 4 \pm 1_{4} \quad 4$
$\mathbb{1}_{16}^{11} \quad 1 \quad 16$
$f x 3 x 4$
59. $f p 3 p 4$

$$
\begin{aligned}
& g x x^{2} 4 x 1 g k k^{2} \\
& \text { fx } 3 \times 4{ }_{4}^{4 k} \\
& x 3 \times 43 x 4 \\
& g x x^{2} 4 x 1
\end{aligned}
$$

2	
$\begin{array}{llll}\text { g } & x & 4 & \end{array}$	
fx $3 x 4$	
$f x 23 \times 24$	
fx $3 \times 4 \quad 3 x 643 x 2$	
$\begin{array}{rl}f a 4 & 3 a 44 \\ 3 a 1243 a 8\end{array}$	

$f x 3 x 4$
2m332m34
$6 m 946 m 13$
$f 3 t 233 t 24 x 4 x 4$
$9 t 649 t 10$
67. (a) $f 22$
(b) $f 13$
68. (a) $f 25$
(b) $f 111 f 1$
69. (a) $f 215$
$f 21$
70. (a) $f 23$
(b) $f 12$
71. (a) $f 23 f 20$
(b) $f 04 f 4$
72. (a) $f 12$
$f 25$
(b)
$f 44$
73. (a) $f 12$
(b) $f 02$
(c) $f 23$
(d)
74. (a)
(b)
(c)
(d)
75. (a)
(b)
77. (a) $x 3 y 12$

$$
\begin{aligned}
& 3 y \times 12 \\
& \frac{x 12}{3} \\
& y \quad 3 x^{\frac{1}{4}} f \times 3 \times 4
\end{aligned}
$$

(b) 1

$$
f 3 \quad 334143
$$

(a) $x 4 y 8$

$$
\begin{aligned}
& 4^{84 y x} \\
& 8^{8} \\
& y
\end{aligned}
$$

$$
\begin{array}{lllll}
y & x_{4} & 2 f x^{1} & x & \\
\end{array}
$$

(b) $f 3 \leq 1 \leq 2^{\overline{3}} 2^{\overline{3} \overline{8}} 5$
\qquad
79. (a) $y 2 x^{2} \quad 3 x \quad 2$

$$
y 2 x \quad x 3
$$

$$
f x 2 x^{2} x 3
$$

(b) $\begin{array}{r}f 323^{2} 333 \\ 293318\end{array}$
80. (a) $y 3 x^{2} 2 x$

$$
y 3 x^{2} \times 2
$$

$$
f x 3 x^{2} \times 2
$$

(b) $\quad f 333^{2} 32$

393232
81. (a)

(b) $2 x 5 y 9$
82. (a) $5 y \quad 2 x 9$ 2×9
5

$\begin{array}{ll}\text { (c) } f 10 & \text { (d) } f 42\end{array}$
(b)

$$
\begin{array}{llllllll}
f 3 & & & \\
& & & 5 & 5 & 5 & 5
\end{array}
$$

Copyright © 2017 Pearson Education, Inc.
76. (a) $f 23$
(b) $\quad f 0 \quad 3$
83. $f 34$
(c) $f 13$
(d) $f 4 \quad 3$

Because $f 0.20 .2^{2} 30.21$
$=0.04+0.6+1=1.64$, the height of the rectangle is 1.64 units. The base measures $0.3-0.2=0.1$ unit. Because the area of a rectangle is base times height, the area of this rectangle is $0.1(1.64)=0.164$ square unit.
$f 3$ is the y-component of the coordinate, which is -4 .

2 is the y-component of the coordinate, which is -3 .
87. (a) 2,0
(b) , 2

0,
88. (a) 3,1
(b) 1 ,
(c) , 3
89. (a) , 2;2,
(b) 2, 2
(c) none
90. (a) 3,3
(b), $3 ; 3$,
none
(a) 1,$0 ; 1$,
,1;0,1
none
(a) , 2; 0, 2 (b) 2, 0; 2,
(c) none
(a) Yes, it is the graph of a function.
[0, 24]
When $t=8, y=1200$ from the graph. At 8 A.M., approximately 1200 megawatts is being used.
The most electricity was used at 17 hr or 5 P.M. The least electricity was used at 4 A.M.
$f 121900$
At 12 noon, electricity use is about 1900 megawatts.
increasing from 4 A.M. to 5 P.M.;
decreasing from midnight to 4 A.M.
and from 5 P.M. to midnight
(a) At $t=2, y=240$ from the graph. Therefore, at 2 seconds, the ball is 240 feet high.
At $y=192, x=1$ and $x=5$ from the graph. Therefore, the height will be 192 feet at 1 second and at 5 seconds.
The ball is going up from 0 to 3
seconds and down from 3 to 7 seconds.
The coordinate of the highest point is (3, 256). Therefore, it reaches a maximum height of 256 feet at 3 seconds.

At $x=7, y=0$. Therefore, at 7 seconds, the ball hits the ground.
(a) At $t=12$ and $t=20, y=55$ from the graph. Therefore, after about 12 noon until about 8 P.M. the temperature was over 55°.

At $t=6$ and $t=22, y=40$ from the graph. Therefore, until about 6 A.M. and after 10 P.M. the temperature was below 40°.

The temperature at noon in Bratenahl, Ohio was 55°. Because the temperature in Greenville is 7° higher, we are looking for the time at which Bratenahl, Ohio was at or above 48°. This occurred at approximately 10 A.M and 8:30 P.M.
The temperature is just below 40° from midnight to 6 A.M., when it begins to rise until it reaches a maximum of just below 65° at 4 P.M. It then begins to fall util it reaches just under 40° again at midnight.
(a) At $\mathrm{t}=8, \mathrm{y}=24$ from the graph.

Therefore, there are 24 units of the drug in the bloodstream at 8 hours.

The level increases between 0 and 2 hours after the drug is taken and decreases between 2 and 12 hours after the drug is taken.

The coordinates of the highest point are $(2,64)$. Therefore, at 2 hours, the level of the drug in the bloodstream reaches its greatest value of 64 units.

After the peak, $y=16$ at $t=10$.
10 hours -2 hours $=8$ hours after the peak. 8 additional hours are required for the level to drop to 16 units.

When the drug is administered, the level is 0 units. The level begins to rise quickly for 2 hours until it reaches a maximum of 64 units. The level then begins to decrease gradually until it reaches a level of 12 units, 12 hours after it was administered.

Section 2.4 Linear Functions

$\mathrm{B} ; f(x)=3 x+6$ is a linear function with
y-intercept $(0,6)$.
$\mathrm{H} ; x=9$ is a vertical line.
C; $f(x)=-8$ is a constant function.
G; $2 x-y=-4$ or $y=2 x+4$ is a linear equation with x-intercept $(-2,0)$ and y-intercept $(0,4)$.
$\mathrm{A} ; f(x)=5 x$ is a linear function whose graph
passes through the origin, $(0,0)$.
$f(0)=5(0)=0$.
6. $\mathrm{D} ; f(x) x^{2}$ is a function that is not linear.
$m-3$ matches graph C because the line falls rapidly as x increases.
$m=0$ matches graph A because horizontal lines have slopes of 0 .
$m=3$ matches graph D because the line rises rapidly as x increases.
m is undefined for graph B because vertical lines have undefined slopes.

$f(x) x-4$

Use the intercepts. $f(0) 0-4-4: y$-intercept $0 x-4 \times 4: x$-intercept Graph the line through $(0,-4)$ and $(4,0)$.

The domain and range are both, .
$f(x)-x 4$
Use the intercepts.
$f(0)-044: y$-intercept
$0-x 4 \times 4: x$-intercept
Graph the line through $(0,4)$ and $(4,0)$.

The domain and range are both, .
13. $f(x) \stackrel{1}{2} x-6$

Use the intercepts.
1

$$
f(0) 20-6-6: y \text {-intercept }
$$

$$
1^{2} x-66^{1} x x^{2} 12: x \text {-intercept }
$$

Graph the line through $(0,-6)$ and $(12,0)$.

The domain and range are both, .
14. $f(x) \stackrel{2}{-} \underset{3}{ } 2$

Use the intercepts.
$f(0){ }_{3}^{2} 2$ 2: y-intercept

$$
0 \underline{2} \times 2-2 \quad 2 \times x \times 3: x \text {-intercept }
$$

Graph the line through $(0,2)$ and $(-3,0)$.

The domain and range are both, .
$f(x) 3 x$
The x-intercept and the y-intercept are both zero.
This gives us only one point, $(0,0)$. If $x=1$,
$y=3(1)=3$. Another point is $(1,3)$. Graph
the line through $(0,0)$ and $(1,3)$.

The domain and range are both , .

$$
x-2 x
$$

The x-intercept and the y-intercept are both zero. This gives us only one point, $(0,0)$. If $x=3$,
$y=-2(3)=-6$, so another point is $(3,-6)$.
Graph the line through $(0,0)$ and $(3,-6)$.

The domain and range are both, .
$f(x)-4$ is a constant function.
17.

The graph of $f(x) 4$ is a horizontal line with a y-intercept of -4 .

domain: , ; range: $\{-4\}$
$f(x) 3$ is a constant function whose graph is a horizontal line with y-intercept of 3 .

domain: , ; range: $\{3\}$
$f(x) 0$ is a constant function whose graph is the x-axis.

domain: , ; range: $\{0\}$
fx $9 x$
The domain and range are both, .
4×3 y 12
Use the intercepts.
$403 y 123 y 12$
4:y-intercept
$4 x 30124 x 12$
$x 3$: x-intercept
Graph the line through $(0,4)$ and $(-3,0)$.

The domain and range are both, .
$2 x 5$ y 10; Use the intercepts.
205 y 105 y 10
2: y-intercept
$2 \times 50102 \times 10$
$x 5$: x-intercept
Graph the line through $(0,2)$ and $(5,0)$:

The domain and range are both, .
$3 y 4 x 0$
Use the intercepts.
$3 y 4003 y 0 y 0: y$-intercept $304 x 04 x 0 x 0: x$-intercept The graph has just one intercept. Choose an additional value, say 3 , for x.
$3 y 4303 y 120$
$3 y 12 y 4$
Graph the ${ }^{y}$ line through $(0,0)$ and $(3,4)$:

The domain and range are both, .
$3 x 2 y 0$
Use the intercepts.

$$
302 y 02 y 0 y 0: y \text {-intercept }
$$

$3 x 2003 x 0 \times 0: x$-intercept
The graph has just one intercept. Choose an additional value, say 2 , for x.
$322 y 062 y 0$
$2 y 6 y 3$
Graph the line through $(0,0)$ and $(2,-3)$:

The domain and range are both, .
$x=3$ is a vertical line, intersecting the x axis at $(3,0)$.

domain: $\{3\}$; range: ,
$x=-4$ is a vertical line intersecting the x-axis at $(-4,0)$.

domain: $\{-4\}$; range: ,
$2 x+4=02 x 4 x 2$ is a vertical line intersecting, the x-axis at $(-2,0)$.

28.
$3 \times 60-3 x 6 \times 2$
line intersecting the x-axis at $(2,0)$.

domain: $\{2\}$; range: ,
29. $x 50 \times 5$ is a vertical line
intersecting the x-axis at $(5,0)$.

Chapter 2 Graphs and Functions
$3 \times 0 \times 3$ is a vertical line
intersecting the x-axis at 3,0 .

domain: $\{-3\}$; range: ,
$y=5$ is a horizontal line with y-intercept 5 .
Choice A resembles this.
$y=-5$ is a horizontal line with y-intercept -5 .
Choice C resembles this.
$x=5$ is a vertical line with x-intercept 5 .
Choice D resembles this.
$x=-5$ is a vertical line with x-intercept -5 . Choice B resembles this.
35.

36.

37.

38.

40. The pitch or slope is $\frac{1}{4}$. If the rise is 4 feet then $\frac{1}{4} \underset{\text { run }}{\text { rise }} \underset{x}{\operatorname{rr} x}=16$ feet. So 16 feet in the horizontal direction corresponds to a rise of 4 feet.
Through $(2,-1)$ and $(-3,-3)$
Let $x_{1} 2, y_{1}-1, x_{2}-3$, and $y_{2}-3$.
Then rise $y-3-(-1)-2$ and run $x-3-2-5$.
$\underline{\text { rise }} \underline{\underline{y} \quad \underline{-2} \quad \underline{2}}$
The slope is $m \quad$ run $\quad x \quad-5^{\circ} 5$
Through $(-3,4)$ and $(2,-8)$
Let $x_{1} 3, y_{1} 4, \quad x_{2} 2$, and $y_{2}-8$.

Then rise $y-8-4 \quad-12$ and
run $x 2-(3) \quad 5$.
rise $\begin{array}{llll}y & & \underline{-12} & \underline{12} \\ \text { run } & x & 5 & .5\end{array}, ~$

Through $(5,8)$ and $(3,12)$

Let $x_{1} 5, y_{1} 8, \quad x_{2} 3$, and $y_{2} 12$.

Then rise y 1284 and run $x 352$.
The slope is m rise $\underline{4} 2$. run $\quad x \quad 2$

Through (5, -3) and (1, -7)
Let $x_{1} 5, y_{1}-3, x_{2} \quad 1$, and $\quad y_{2}-7$.
Then rise $y-7-(-3) \quad-4$ and run $x 1-5-4$.
The slope is $m \begin{array}{cc}\underline{y} & \underline{4} \\ & 1 .\end{array}$
45. Through $(5,9)$ and $(-2,9)$
$m \underline{y 2 y 1} \quad 9-9 \quad 0 \quad 0$

46. Through $(-2,4)$ and $(6,4)$
$m \underline{y 2} \underline{1} \xrightarrow{44} \quad 0$
$\begin{array}{llll}x_{2} x_{1} & 6(-2) & 8\end{array}$

Copyright © 2017 Pearson Education, Inc.

The rise is 2.5 feet while the run is 10 feet so the slope is $\frac{2.5}{10} \quad 0.2525 \% 1$. So A $_{4}=$
$0.25, \mathrm{C} \stackrel{2.5}{-}, \mathrm{D}=25 \%$, and E^{1} are all 10

4
expressions of the slope.

Horizontal, through $(5,1)$
The slope of every horizontal line is zero, so $m=0$.

Horizontal, through $(3,5)$
The slope of every horizontal line is zero, so $m=0$.
Vertical, through $(4,-7)$
The slope of every vertical line is undefined; m is undefined.

Vertical, through $(-8,5)$
The slope of every vertical line is undefined; m is undefined.
51. (a) $y 3 x 5$

Find two ordered pairs that are solutions to the equation. If $x=0$, then $y 305 y 5$.

If $x=-1$, then
$y 315 y 35$ y 2 .
Thus two ordered pairs are $(0,5)$ and $(-1,2)$ rise $\underline{2} \underline{y} 1 \underline{25} \underline{3}$
m
3. run $\begin{array}{ll}x_{2} & x_{1}\end{array}$

101
(b)

y $2 x 4$
Equaterman. offered paiterethatyare solutions to the

$$
y 4 . \text { If } x 1, \quad \text { then }^{y} 214
$$

$24 y 2$. Thus two ordered pairs
are 0,4 and 1,2 .
rise y y $\underline{242}$

$$
-\underline{2}-1 \quad 2 .
$$

run $x_{2} \quad x_{1}$
$10 \quad 1$
(b)

2y $3 x$
Find two ordered pairs that are solutions to the equation. If $x 0$, then $2 y 0 y 0$.
If $y 3$, then $233 x 63 x$
(b)

$4 y 5 x$
Find two ordered pairs that are solutions to the equation. If $x 0$, then 4 y $0 y 0$.
If $x 4$, then $4 y 544 y 20$
5. Thus two ordered pairs are 0,0 and 4, 5 .

$5 x 2$ y 10
Find two ordered pairs that are solutions to the equation. If $x 0$, then $502 y 10$

$$
y \text { 5. If } \quad y 0 \text {, then } 5 x 2010
$$

$5 \times 10 \times 2$.
Thus two ordered pairs are 0,5 and 2,0 .

x 2. Thus two ordered pairs are 0,0 and
2, 3 .
Copyright © 2017 Pearson Education, Inc.

$$
m \begin{array}{rlllll}
\text { rise } & y_{2} y_{1} & \underline{30} & \underline{3} & \\
\quad \text { run } & x_{2} & x_{1} & 2_{20} & 2
\end{array}
$$

$4 x 3$ y 12

Find two ordered pairs that are solutions to the
equation. If $x 0, \quad$ then $403 y 12$
$3 y 12 y$ 4. If $\quad y 0$, then
$4 \times 30124 \times 12 \times 3$. Thus two ordered pairs are 0,4 and 3,0 .
rise y y $\underline{044}$

(b)

Through (-1, 3), $m \stackrel{3}{3}_{2}$
First locate the point $(-1,3)$. Because the slope is $2^{\frac{3}{3}}$, a change of 2 units horizontally (2 units to the right) produces a change of 3 units vertically (3 units up). This gives a second point, $(1,6)$, which can be used to complete the graph.

58. Through $(-2,8), m^{2}$. Because the slope is
$\underline{2}_{5}$, a change of 5 units horizontally (to the right) produces a change of 2 units vertically (2 units up). This gives a second point (3, 10), which can be used to complete the graph. Alternatively, a change of 5 units to the left produces a change of 2 units down. This gives the point $(-7,6)$.

Exercise 62

Through ${ }^{3}-2, m=0$.
The graph ${ }^{2}$ is the horizontal line through $2, \xi^{3} 2$.
63. Through $\underset{2}{5}, 3$, undefined slope. The slope
is undefined, so the line is vertical, intersecting the x-axis at ${ }^{5}$, 0 .

2

Through ${ }^{9}, 2$, undefined slope. The slope is undefined, ${ }^{4}$ so the line is vertical, intersecting the x-axis at ${ }^{9} 4,0$.

The average rate of change is

$\frac{204}{04} \frac{16}{\$ 4} 4$ (thousand) per year. The value of the machine is decreasing $\$ 4000$ each year during these years.
The average rate of change is $f b f$

$\underline{2000} \underline{200}$
$40 \quad 4 \$ 50$ per month. The amount saved is increasing $\$ 50$ each month during these months.
67. The graph is a horizontal line, so the average rate of change (slope) is 0 . The percent of pay raise is not changing-it is 3\% each year.
68. The graph is a horizontal line, so the average rate of change (slope) is 0 . That means that the number of named hurricanes remained the same, 10 , for the four consecutive years
69. m
$b a \longdiv { 2 0 1 2 } 1 9 8 0$
78.8 thousand per year

The number of high school dropouts decreased by an average of 78.8 thousand per year from 1980 to 2012.
70. $m \quad \underline{f b f a} 17095302$

$$
b a \quad 20132006
$$

$\underline{3593}_{7} \$ 513.29$
Sales of plasma flat-panel TVs decreased by an average of $\$ 513.29$ million per year from 2006 to 2013 .
(a) The slope of -0.0167 indicates that the average rate of change of the winning time for the 5000 m run is 0.0167 min less. It is negative because the times are generally decreasing as time progresses.
The Olympics were not held during World Wars I (1914-1919) and II (1939-1945). $y 0.0167200046 .4513 .05 \mathrm{~min}$
The model predicts a winning time of 13.05 minutes. The times differ by $13.35-13.05=0.30 \mathrm{~min}$.
(a) From the equation, the slope is 200.02 . This means that the number of radio stations increased by an average of
200.02 per year.

The year 2018 is represented by $x=$ 68. y 200.02682727 .7 16, 329.06

According to the model, there will be about 16,329 radio stations in 2018.
73. $\underline{f 2013 f 2008} \quad \underline{335,652270,334}$

20132008
20132008

$$
65,318
$$

$$
5^{13,063.6}
$$

The average annual rate of change from 2008 through 2013 is about 13,064 thousand.
74. $\frac{f 2014 f 2006}{20142006} \quad 3.74 .52$
$20142006 \quad 20142006$ 0.79 8
0.099

The average annual rate of change from 2006 through 2014 is about -0.099 .

$$
\text { fbfa } \quad 56.3 \underline{138}
$$

$$
P x R x C x
$$

The average rate of change was -8.17 thousand mobile homes per year.

The negative slope means that the number of mobile homes decreased by an average of 8.17 thousand each year from 2003 to 2013.
76. $\quad \begin{aligned} & \text { 2013f } 1991 \quad 26.661 .8 \\ & \end{aligned}$

20131991
20131991
35.2
1.6

22
There was an average decrease of 1.6 births per thousand per year from 1991 through
2013.
(a) $C \times 10 \times 500$
$R \times 35 x$
$P x R x C x$ 35x 10×500 $35 \times 10 \times 50025 \times 500$

$$
C x R x
$$

$10 \times 50035 x$ $50025 x$
x
20 units; do not produce
C $x 150 \times 2700$
$R x 280 x$
(a)

PxRxCx
(b)

$$
280 \times 150 \times 2700
$$

$$
280 \times 150 \times 2700
$$

(c)

$$
130 \times 2700
$$

$C x R x$
$150 \times 2700280 x$ $2700130 x$
(d) $\quad 20.77 x$ or 21 units 21 units; produce
79. (a) C $x 400 \times 1650$
$R \times 305 x$
(b)

305x 400x 1650
$305 \times 400 \times 1650$
95×1650
$C x R x$
$400 x 1650305 x$
$95 x 16500$
$95 x 1650$ 17.37 units

This result indicates a negative "breakeven point," but the number of units
produced must be a positive number. A calculator graph of the lines
$y_{1}{ } \times x 400 \times 1650$ and
$y 2 R x 305 x \quad$ in the window
$[0,70] \times[0,20000]$ or solving the inequality $305 \times 400 \times 1650$ will show that $R x C x$ for all positive values of x (in fact whenever x is greater than -17.4).
Do not produce the product because it is impossible to make a profit.

(a) $R \times 20 x$

$$
P x R x C x
$$

20x 11×180
20x 11x 1809×180
$C x R x$
11x $18020 x$
$9 x$
$20 x$
20 units; produce
$C \times R \times 200 x 1000240 x$
$100040 x 25 x$
The break-even point is 25 units.
$C(25) 200251000 \$ 6000$ which is the same as $R(25) 24025 \$ 6000$
$C \times R \times 220 x 1000240 x$
$100020 x 50 x$
The break-even point is 50 units instead of 25
units. The manager is not better off because
twice as many units must be sold before beginning to show a profit.

The first two points are $A(0,-6)$ and $B(1,-3)$.

$$
m \frac{3-(-6)}{1-0}{ }^{3}{ }_{1}
$$

The second and third points are $B(1,-3)$ and $\mathrm{C}(2,0)$.

$$
\underline{0-(-3)} 33
$$

$$
2-11
$$

If we use any two points on a line to find its slope, we find that the slope is the same in all cases.
The first two points are $A(0,-6)$ and $B(1,-3)$.

The second and fourth points are $B(1,-3)$ and $D(3,3)$.

The first and fourth points are $A(0,-6)$ and $D(3,3)$.

If points A, B, and C lie on a line in that order, then the distance between A and B added to the distance between \underline{B} and \underline{C} is equal to the distance between \underline{A} and \underline{C}.
91. The midpoint of the segment joining $A(0,-6)$ and $G(6,12)$ has coordinates

$$
\frac{06}{2}, \frac{612}{2} \quad \underline{6}_{2}^{2}-2 \quad 3,3 \text {. The midpoint is }
$$

$M(3,3)$, which is the same as the middle entry in the table.

Chapter 2 Quiz
(Sections 2.1-2.4)

1. $d(A, B)$

To find an estimate for 2006, find the midpoint of $(2004,6.55)$ and (2008, 6.97:

20042008	6.556 .97
M	2

The estimated enrollment for 2006 was 6.76 million.

To find an estimate for 2010, find the midpoint of $(2008,6.97)$ and $(2012,7.50)$:

$$
\underline{20082012}, \frac{6.977 .50}{2}
$$

$$
2010,7.235
$$

The estimated enrollment for 2006 was about 7.24 million.
3.

4.

5. $\left.x^{2} \quad y^{2} \begin{array}{r}x^{2}+y^{2}=16 \\ 4 \\ x\end{array}\right)=30$

Complete the square on x and y separately.

$$
\begin{aligned}
& \left(x^{2} 4 x 4\right)\left(y^{2} 8 y 16\right) 3416 \\
& (x 2)^{2}(y 4)^{2}
\end{aligned}
$$

92. The midpoint of the segment joining $E(4,6)$ and $F(5,9)$ has coordinates 4569 15

$$
2, \quad 2 \quad 2,2=(4.5,7.5) \text {. If the }
$$

x-value 4.5 were in the table, the corresponding y-value would be 7.5 .

The radius is 17 and the midpoint of the circle is $(2,-4)$.

From the graph, $f(-1)$ is 2 .

Domain: (,); range: [0,)

204 Chapter 2 Graphs and Functions
8. (a) The largest open interval over which f is decreasing is $(, 3)$.
(b) The largest open interval over which f is increasing is 3 ,
(c) There is no interval over which the
function is constant.
9. (a) $m \underline{115} \frac{6}{5} \frac{3}{4} \quad 2$
(b) $\quad m--\frac{44}{1(7)}-\frac{0}{6} \quad 0$
(c) $m 4 \frac{4}{6} \frac{16}{6}$ the slope is undefined.

The points to use are $(2009,10,602)$ and $(2013$,
$15,884)$. The average rate of change is $15,884 \underline{10,602} \underline{5282}$
1320.5

$$
2009
$$

4
The average rate of change was 1320.5 thousand cars per year. This means that the number of new motor vehicles sold in the United States increased by an average of 1320.5 thousand per year from 2009 to 2013.

Section 2.5 Equations of Lines and Linear Models

The graph of the line $y 34 \times 8$ has
slope $\underline{4}$ and passes through the point $(8, \underline{3})$.
2. The graph of the line $y 2 x 7$ has slope $-\underline{2}$ and y-intercept $(0,7)$.
3. The vertical line through the point $(-4,8)$ has equation $\underline{x}=-4$.

The horizontal line through the point $(-4,8)$ has equation $y=8$.

For exercises 5 and 6,
$6 x 7 y 07 y 6 x y 7^{x}$
Any line parallel to the graph of $6 x 7 y 0$
Copyright © 2017 Pearson Education, Inc.
must have slope $\underline{6} .7$
Any line perpendicular to the graph of
6×7 y 0 must have slope $-\underline{\square}$ 。

Change to standard form.

```
    4y33x4
    4y123x12
3x4y24 or 3x4y24
```

Through ($-8,4$), undefined slope Because undefined slope indicates a vertical line, the equation will have the form $x=a$.

1

The slope is 4 and the y-intercept is $(0,2)$.

The equation of the line is $x=-8$.
Through (5, 1), undefined slope
This is a vertical line through $(5,1)$, so the equation is $x=5$.

Through (5, -8), $m=0$
This is a horizontal line through $(5,-8)$, so the equation is $y=-8$.
Through ($-3,12$), $m=0$

This is a horizontal line through $(-3,12)$, so the equation is $y=12$.

Through $(-1,3)$ and $(3,4)$
First find m.
$m \frac{4-3 \quad 1}{3-(-1)} 4$
Use either point and the point-slope form.

$$
y-4 \frac{1}{x-3}
$$

$4 y 13$

$$
4 y 13
$$

Through $(2,3)$ and $(-1,2)$
First find m.
$m \quad 23 \quad 11$

1233
Use either point and the point-slope form.

$$
\begin{aligned}
& \quad 31_{3 x-2} \\
& 3 y-9 x 2 \\
& 3 y 7 \\
& x 3 y 7
\end{aligned}
$$

x-intercept $(3,0), y$-intercept $(0,-2)$
The line passes through $(3,0)$ and $(0,-2)$.
Use these points to find m.

$$
m \frac{-2-0}{0-3} \underline{2}_{3}
$$

Using slope-intercept form we
have $y=x-2$.
x-intercept $(-4,0), y$-intercept $(0,3)$
The line passes through the points $(-4,0)$
and $(0,3)$. Use these points to find m.
$m \frac{3-0 \quad 3}{U-(-4)} 4$
Using slope-intercept form we have

$$
4-\frac{3}{x} 3
$$

Vertical, through $(-6,4)$
The equation of a vertical line has an equation of the form $x=a$. Because the line passes through $(-6,4)$, the equation is
$x=-6$. (Because the slope of a vertical line is undefined, this equation cannot be written in slope-intercept form.)

Vertical, through $(2,7)$
The equation of a vertical line has an equation of the form $x=a$. Because the line passes through $(2,7)$, the equation is $x=2$. (Because the slope of a vertical line is undefined, this equation cannot be written in slope-intercept form.)

Horizontal, through $(-7,4)$
The equation of a horizontal line has an equation of the form $y=b$. Because the line passes through $(-7,4)$, the equation is $y=4$.
Horizontal, through $(-8,-2)$
The equation of a horizontal line has an equation of the form $y=b$. Because the line passes through $(-8,-2)$, the equation is $y=-2$.
$m=5, b=15$
Using slope-intercept form, we have 5×15.
$m=-2, b=12$
Using slope-intercept form, we have 2×12.

Through $(-2,5)$, slope $=-4$
54×2
54×2
54×8

$$
y 4 x 3
$$

Through $(4,-7)$, slope $=-2$
72×4
72×8
y $2 x 1$
slope $0, y$-intercept $0, \underline{3}$

These represent $m 0$ and $b^{3} \cdot{ }_{2}$ Using
slope-intercept form, we have $y 0 x-y \frac{3}{2}$.

2
32. slope $0, y$-intercept $0, \stackrel{5}{-}$

These represent $m 0$ and ${ }^{4} b^{-5}$. 4
Using slope-intercept form, we have
5 -5
$0 x 4 y 4$.

The line $x+2=0$ has x-intercept $(-2,0)$. It does not have a y-intercept. The slope of his line is undefined. The line $4 y=2$ has y-intercept $\underline{0,}^{\underline{1}}{ }_{2}$. It -does not have an x intercept. The slope of this line is $\underline{0}$.
(a) The graph of $y=3 x+2$ has a positive slope and a positive y-intercept. These conditions match graph D.

Chapter 2 Graphs and Functions

The graph of $y=-3 x+2$ has a negative slope and a positive y-intercept. These conditions match graph B.
The graph of $y=3 x-2$ has a positive slope and a negative y-intercept.
These conditions match graph A.
The graph of $y=-3 x-2$ has a negative slope and a negative y-intercept. These conditions match graph C .
$y=3 x-1$
This equation is in
the slope-intercept
form, $y=m x+b$.
slope: 3; y -
intercept: $(0,-1)$

$y=-2 x+7$ slope: -
2; y-intercept: (0 ,
7)

$4 x-y=7$
Solve for y to write the equation in slope-intercept form.
$-y-4 x 7$ y $4 x-7$ slope:
4; y-intercept: $(0,-7)$

$2 x+3 y=16$
Solve the equation for y to write the equation in slope-intercept form.
$3 y-2 x 16 y-3 x 3^{\frac{2}{2}} \quad \underline{16}$
slope: $-\frac{2}{3} ; y$-intercept: $0, \underline{16}_{3}$

39. $4 y-3 x y-3 x$ or $y-3 x 0$ slope: $\quad \frac{3}{4} ; y$-intercept $(0,0)$

40. $2 y x \quad y \frac{1}{x} x$ or $^{2} y{ }^{1} x 0{ }^{2}$ slope is $2^{\frac{1}{2}} ; y$-intercept: $(0,0)$

Solve the equation for y to write the equation in slope-intercept form.
$2 y-x 4 y-\frac{1}{x} 22$
slope: $-2^{\frac{1}{2}} ; y$-intercept: $(0,-2)$

$x 3 y 9$
Solve the equation for y to write the equation in slope-intercept form. $3 y-x 9 y--x 3$ slope: $-\frac{1}{3}$
; y-intercept: $(0,-3)$
43. $y-\frac{x^{x} \text { changes } 3}{} x 10$

2

Solve the equation for y to write the equation in slope-intercept form.

$$
\begin{aligned}
& y{ }_{2}^{\frac{3}{x}} 10 \begin{array}{llll}
& y & 2 \times 1 & -\frac{3}{-} \\
\text { slope: } & -3 & ; y \text {-intercept: } & (0,1)
\end{array}
\end{aligned}
$$

(a) Use the first two points in the table,
$A(-2,-11)$ and $B(-1,-8)$.

$$
\frac{-8-(-11)}{-1-(-2)} \frac{3}{3}
$$

When $x=0, y=-5$. The y intercept is $(0,-5)$.
Substitute 3 for m and -5 for b in the slope-intercept form.
$y m x b$ y $3 x-5$
(a) The line falls 2 units each time the x value increases by 1 unit. Therefore the slope is -2 . The graph intersects the y-axis at the point $(0,1)$ and intersects the
x-axis at ${ }^{1}-2,0$, so the y-intercept is $(0,1)$ and the x-intercept is ${ }^{1}, 0$.

An equation defining f is $y=-2 x+1$.
(a) The line rises 2 units each time the x value increase by 1 unit. Therefore the slope is 2. The graph intersects the y-axis at the point $(0,-1)$ and intersects the x-axis at ${ }^{1}-2,0$, so the y-intercept is $(0,-1)$ and the x-intercept is $\frac{1}{2}, 0$.

An equation defining f is $y=2 x-1$.
(a) The line falls 1 unit each time the x value increases by 3 units. Therefore the slope is $\frac{1}{3}$. The graph intersects the y-axis at
the point $(0,2)$, so the y-intercept is $(0,2)$. The graph passes through $(3,1)$ and will fall 1 unit when the x value increases by 3 , so the x-intercept is $(6,0)$.
(b) An equation defining f is $y \quad \underline{1}_{x_{-} 3_{-}}$.
(a) The line rises 3 units each time the x value increases by 4 units. Therefore the 3
slope is 4 . The graph intersects the
y-axis at the point $(0,-3)$ and intersects the x-axis at $(4,0)$, so the y-intercept is $(0,-3)$ and the x-intercept is 4 .
(b) An equation defining f is $y_{-}^{3} x 3$.
(a) The line falls 200 units each time the x value increases by 1 unit. Therefore the slope is -200 . The graph intersects the y axis at the point $(0,300)$ and intersects the x-axis at $\frac{3}{3}, 0$, so the y-intercept is $(0$, 300) and the x - ${ }^{2}$ intercept is ${ }^{-3}, 0$.
(b) An equation defining f is 2 $y=-200 x+300$.
(a) The line rises 100 units each time the x value increases by 5 units. Therefore the slope is 20 . The graph intersects the y axis at the point $(0,-50)$ and intersects the x-axis at $\frac{5}{2}, 0$, so the y-intercept is $(0,-50)$ and the x-intercept is 5,0 .

An equation defining f is $y=20 x-50$.
51.
(a) through $(-1,4)$, parallel to $x+3 y=5$ Find the slope of the line $x+3 y=5$ by writing this equation in slope-intercept form.

$$
\begin{aligned}
& \begin{array}{l}
x 3 y 53 y \\
y-1 \\
y \leq 5
\end{array} \\
& \begin{array}{c}
3 \\
\text { The slope is }{ }^{3}-x \\
3
\end{array}
\end{aligned}
$$

Because the lines are parallel, $\underline{-}_{3}$ is also
the slope of the line whose equation is to be found. Substitute $m \quad 1 \quad, x-1$,
and $y 14$ into the point-slope form.

$$
\begin{aligned}
& \begin{array}{lll}
y-y_{1} & m x-x_{1} \\
y 4 \quad 1 & x-3 \\
y-4 \quad-x
\end{array} \\
& \\
& 3 y-12-x-1
\end{aligned}
$$

Solve for y.

$$
3 y-x 11 y-x
$$

$$
33
$$

(a) through $(3,-2)$, parallel to $2 x-y=5$ Find the slope of the line $2 x-y=5$ by writing this equation in slopeintercept form.

$$
\begin{aligned}
& 2 x-y 5-y-2 x 5 \\
& \quad 2 x-5
\end{aligned}
$$

The slope is 2 . Because the lines are parallel, the slope of the line whose equation is to be found is also 2 .

Substitute $m=2, x_{1} 3$, and $y_{1} 2$ into the point-slope form.

$$
y-y_{1} m x-x_{1}
$$

$$
y 22 x-3 y 22 x-6
$$

$$
-2 x y-8 \text { or } 2 x-y 8
$$

(b) Solve for $y . y=2 x-8$
53. (a) through $(1,6)$, perpendicular to

$$
3 x+5 y=1
$$

Find the slope of the line $3 x+5 y=1$ by writing this equation in slope-intercept form.

$$
\begin{aligned}
& 3 x 5 y 15 y-3 x 1 \\
& y-\frac{3}{5}-\frac{1}{5}
\end{aligned}
$$

This line has a slope of -3 . The slope of

$$
\begin{aligned}
& y-6 \frac{5}{3}(x-1) \\
& 3(y-6) 5(x-1) \\
& 3 y-185 x-5 \\
& \quad-135 x-3 y \text { or } 5 x-3 y-13
\end{aligned}
$$

(b) Solve for y.

$$
3 y 5 x 13 y^{-5} x \underline{13}_{3}
$$

(a) through $(-2,0)$, perpendicular to
$8 x-3 y=7$
Find the slope of the line $8 x-3 y=7$ by writing the equation in slope-intercept
form.
$8 x-3 y 7-3 y-8 x 7$

$$
\underline{8}_{x-7}^{7}
$$

$$
33
$$

This line has a slope of $\underline{8}_{3}$. The slope of

any line perpendicular to this line is ${ }^{-}$,

Substitute $m \quad \underline{3}, \underline{x} \quad 2$, and into $\quad y_{1} 0$ the point-slope form.

$$
\begin{aligned}
& y-0-\frac{3}{8}(x 2) \\
& 8 y-3(x 2) \\
& 8 y-3 x-63 x 8 y-6
\end{aligned}
$$

Solve for y.
$8 y-3 x-6$ y $\quad \frac{3}{x_{-}-}{ }^{6} 8$
$y \underline{3}_{x_{-} 8_{-}^{-}}{ }_{8} 4$
(a) through $(4,1)$, parallel to $y=-5$ Because y $=-5$ is a horizontal line, any line parallel to this line will be horizontal
and have an equation of the form $y=b$. Because the line passes through $(4,1)$, the equation is $y=1$.
(b) The slope-intercept form is $y=1$.
56. (a) through 2, 2, parallel to $y=3$.

Because $y=3$ is a horizontal line, any line parallel to this line will be horizontal and have an equation of the form $y=b$. Because the line passes through 2, 2 , the equation is $y=-2$.
(b) The slope-intercept form is $y=-2$

5
any line perpendicular to this line is 5_{3}, because $\underline{3}^{5}$ 1. Substitute $m \quad 5$

53
57. (a) through $(-5,6)$, perpendicular to $x=-2$.
Because $x=-2$ is a vertical line, any line perpendicular to this line will be
$x 11$, and $y 16$ into the point-slope form.
horizontal and have an equation of the torm $y=b$. Because the line passes through $(-5,6)$, the equation is $y=6$.

The slope-intercept form is $y=6$.
Through $(4,-4)$, perpendicular to $x=4$

Because $x=4$ is a vertical line, any line perpendicular to this line will be horizontal and have an equation of the form $y=b$. Because the line passes through $(4,-4)$, the equation is $y=-4$.
(a)

The slope-intercept form is $y=-4$.
(a) Find the slope of the line $3 y+2 x=6$.

$$
\begin{gathered}
3 y 2 x 63 y-2 x 6 \\
-\frac{2}{x} 2 \\
3
\end{gathered}
$$

Thus, $m-\underline{2}_{3}$. A line parallel to
$3 y+2 x=6$ also has slope $-\frac{2}{3}$.

$$
\begin{aligned}
& \underline{2} \underline{1} \underline{2} \\
& \begin{array}{lr}
k 4 & 3 \\
\frac{3}{k}-4 & -\frac{2}{3}
\end{array} \\
& 3 k 4 \xrightarrow{3} 3 k 4-\frac{2}{2} \\
& k^{4} \begin{array}{l}
\\
\\
\\
\\
92
\end{array} 2 k 4 \\
& \text { 2k } 8 \\
& 2 k 1 k \xrightarrow{1} \quad 2
\end{aligned}
$$

Find the slope of the line $2 y-5 x=1$.
$2 y 5 x 12 y 5 x 1$

$$
y \underset{2}{5} \leq
$$

Thus, $m \stackrel{5}{5} .2 \mathrm{~A}$ line perpendicular to $2 y$ $\underline{2}$
$-5 x=1$ will have slope -5 , because

$$
\underline{5}_{2}-5^{\underline{2}}-1 .
$$

Solve this equation for k.

3	2
k 4	5
$5 k 4$ - 3 .	$5 k \quad 4^{2}$
k 4	
	$2 k 4$
	$2 k 8$
	$7 k^{7}$

60. (a) Find the slope of the line $2 x-3 y \quad 4$.

$$
\begin{aligned}
& 2 x-3 y 4-3 y-2 x 4 \\
& y \underline{2} x-4
\end{aligned}
$$

Thus, $m \stackrel{3}{2}^{3} .3$ A line parallel to
$2 x-3 y=4$ also has slope $3^{\underline{2}}$. Solve for r using the slope formula.

Find the slope of the line $x+2 y=1$.

$$
\begin{array}{ccc}
x 2 y 12 y & -x 1 \\
y-1 & x \underline{1} & \\
& 2 & \\
& & 2
\end{array}
$$

Thus, $m \quad \stackrel{1}{-}$ A line perpendicular to
the line $x+2 y=1$ has slope 2, because $-2^{\frac{1}{2}}(2)-1$. Solve for r using the slope formula.

| $r-6$
 2 $\frac{r-6}{2}$
 $-4-2$ -6
 $r-6$ $-12 r$ | -6 |
| :--- | :---: | :---: |

(a) First find the slope using the points $(0,6312)$ and $(3,7703)$.
$77036312 \quad 1391$
m
$30 \quad 3463.67$

The y-intercept is $(0,6312)$, so the equation of the line is
463.67×6312.

The value $x=4$ corresponds to the year 2013.
463.67463128166 .68

The model predicts that average tuition and fees were $\$ 8166.68$ in 2013 . This is $\$ 96.68$ more than the actual amount.
(a) First find the slope using the points

$$
\begin{aligned}
& (0,6312) \text { and }(2,7136) \\
& m \frac{71366312}{20} \frac{824}{212} \\
& \text { The } y \text {-intercept is }(0,6
\end{aligned}
$$

Copyright © 2017 Pearson
Education, Inc.

The value $x=4$ corresponds to the year 2013.
y 412463127960
The model predicts that average tuition and fees were $\$ 7960$ in 2013. This is \$110 less than the actual amount.

Chapter 2 Graphs and Functions

(a) First find the slope using the points (0 ,

$22036)$ and $(4,24525)$.
 $\frac{24525220362489}{404} 622.25$

The y-intercept is $(0,22036)$, so the equation of the line is $y 622.25 x 22,036$.

$$
f(x)=622.25 x+22,036
$$

THe日lope of the line indicates that the average tuition increase is about $\$ 622$ per year from 2009 through 2013.
(b) The year 2012 corresponds to $x=3$.
$y 622.25322,03623,902.75$
According to the model, average tuition and fees were $\$ 23,903$ in 2012. This is $\$ 443$ more than the actual amount
\$23,460.
(c) Using the linear regression feature, the
equation of the line of best fit is $y 653 x 21,634$.

64. (a) See the graph in the answer to part (b).There appears to be a linear
relationship between the data. The farther the galaxy is from Earth, the faster it is receding.
(b) Using the points $(520,40,000)$ and $(0,0)$, we obtain

$$
m \xrightarrow{40,000-0} \underline{40,000} 76.9 .
$$

520-0 520
The equation of the line through these two points is $y=76.9 x$.

(c) $76.9 x \quad 60,000$

$$
\begin{aligned}
& x \underline{60}, \underline{0} \underline{0} \underline{0} \times 780 \\
& 76.9
\end{aligned}
$$

According to the model, the galaxy Hydra is approximately 780 megaparsecs away.
(d) $A \quad \underline{9.5} \frac{10}{m}^{11}$
$A \frac{9.510^{11}}{76.9} \quad 1.23510{ }^{10} 12.3510{ }^{9}$
Using $m=76.9$, we estimate that the age of the universe is approximately 12.35 billion years.
(e) $\quad A \stackrel{9.510^{11}}{ } 1.910 \quad$ or $1910 \quad 9$
$A^{--9 . \frac{50}{10}}{ }^{11}{ }^{11} 9.5 \quad 10^{9}$

The range for the age of the universe is between 9.5 billion and 19 billion years.
65. (a) The ordered pairs are $(0,32)$ and (100, 212).
The slope is $m \frac{212=-32}{100-0 \quad 100} .5$

$$
\text { Use }(x, y)_{1}(0,32) \text { and } m{\underset{5}{2}}_{2} \text { in the }
$$

point-slope form.
$y-y_{1} m\left(x-x_{1}\right)$
$y-32^{2}(x-0)$
$y-329^{5} x$

$$
\begin{gathered}
5_{5}^{y}-\mathrm{g} \times 32 F \\
5
\end{gathered}
$$

(b) $F \underline{9} C 32$

5F 9C 32
5F 9C $1609 C 5 F-160$
$9 C 5(F-32) \quad C \leq(F-32)$
9
(c) $F C F \quad \underline{5}(F-32)$
$9 F 5(F-32) 9 F 5 F-160$
$4 F-160 F-40$
$F=C$ when F is -40°.
(a) The ordered pairs are $(0,1)$ and (100, 3.92).
The slope is
$m \frac{3.92}{100-1}-\frac{2.92}{} \quad 0.0292 \quad$ and $b 1$.
Using slope-intercept form we have $y \quad 0.0292 x 1$ or $p(x) 0.0292 x 1$.

Let $x=60$.
$P(60)=0.0292(60)+1=2.752$
The pressure at 60 feet is approximately 2.75 atmospheres.
(a) Because we want to find C as a function of I, use the points $(12026,10089)$ and $(14167$, 11484), where the first component represents the independent variable, I. First find the slope of the line.

$$
m \frac{1148410089}{14167120262141} \frac{1395}{} 0.6516
$$

Now use either point, say (12026, 10089), and the point-slope form to find the equation.

$$
\begin{gathered}
C-100890.6516(I-12026) \\
C-100890.6516 I-7836 \\
0.6516 I 2253
\end{gathered}
$$

Because the slope is 0.6516 , the marginal propensity to consume is 0.6516 .

D is the only possible answer, because the x intercept occurs when $y=0$. We can see from the graph that the value of the x-intercept exceeds 10 .
Write the equation as an equivalent equation with 0 on one side: $2 \times 7 \times 4 \times 2$
$2 \times 7 \times 4 \times 20$. Now graph
$y 2 x 7 \times 4 \times 2$ in the window
$[-5,5] \times[-5,5]$ to find the x-intercept:

Write the equation as an equivalent equation with 0 on one side: $7 \times 2 \times 453 x 1$ $7 \times 2 \times 453 \times 10$. Now graph $7 \times 2 \times 453 x 1$ in the window $[-5,5] \times[-5,5]$ to find the x-intercept:

Write the equation as an equivalent equation with 0 on one side: $32 \times 12 \times 25$

$$
\begin{aligned}
& 32 \times 12 \times 250 \text {. Now graph } \\
& 32 \times 12 \times 25 \text { in the window }
\end{aligned}
$$

$[-5,5] \times[-5,5]$ to find the x-intercept:

$Y_{1}=3(2 X+1)-2(X-2)-5$

Solution set: $\quad 2^{\underline{1}}$ or 0.5

Write the equation as an equivalent equation with 0 on one side:
$4 \times 342 \times 2 \times 36 \times 2$
$4 x 342 \times 2 \times 36 \times 20$. Now graph
$4 \times 342 \times 2 \times 36 \times 2$ in the
window $[-2,8] \times[-5,5]$ to find the x-intercept:

Solution set: $\{4\}$
73. (a)

$$
\begin{gathered}
2 \times 5 \times 2 \\
2 \times 10 \quad x 2 \\
x 2^{2} \\
12 x
\end{gathered}
$$

Solution set: $\{12\}$

Chapter 2 Graphs and Functions
Answers will vary. Sample answer: The solution does not appear in the standard viewing window x-interval $[10,-10]$. The minimum and maximum values must include 12.

Rewrite the equation as an equivalent equation with 0 on one side.

$$
32 x 64 x 82 x
$$

$6 x 184 x 82 x 0$
Now graph $y=-6 x-18-(-4 x+8-2 x)$
in the window $[-10,10] \times[-30,10]$.

The graph is a horizontal line that does not intersect the x-axis. Therefore, the solution set
is . We can verify this algebraically.

$32 x 64 x 82 x$

 $6 x 186 x 8026$Because this is a false statement, the solution set is .
$A(-1,4), B(-2,-1), C(1,14)$

For A and $B, m \quad \underline{14} 5$

$$
2(1) \quad 1
$$

For B and $C, m \quad 14(1) 15 \quad 5$

$$
1(2) \quad 3
$$

For A and $C, m \quad 144-\frac{10}{} 5$
1 (1) 2

Since all three slopes are the same, the points are collinear.

$$
A(0,-7), B(-3,5), C(2,-15)
$$

For A and $B, m \underline{5(7)} \underline{12}_{4}$
$A(-1,-3), B(-5,12), C(1,-11)$
For A and $B, m \quad 12 \frac{(3)}{5(1)} \frac{15}{4}$
For B and $C, m \frac{11, \frac{12}{1(5)}}{} \quad 23$
For A and $C, m \underline{11(3)}_{1(1)}^{(3)} \underline{8}_{2}$
Since all three slopes are not the same, the points are not collinear.
$A(0,9), B(-3,-7), C(2,19)$

For B and $C, m \frac{19(7)}{2(3)} 5$
For A and $C, m \begin{array}{rrr}199 & 10 & 5 \\ 20 & 2\end{array}$
Because all three slopes are not the same, the points are not collinear.
79. $d(O, P) \quad(x-0)^{2}$

$\sqrt{2_{1 m^{2} x_{1}}{ }^{2}} 1$
$d(O, Q) \quad \begin{gathered}\left(\sqrt{2-0)^{2}\left(m_{2} x_{2}-0\right)^{2}}\right. \\ \sqrt{22}\end{gathered}$
$x_{2}{ }^{2} m^{2} x_{2}$

$$
x^{2} m^{2} x^{2} x^{2} m^{2} x^{2}
$$

2	1	2	2
x	$-x$	$m x$	$-m x$

| 2 | 2 | 2 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
\text { 155 20 } 4 \text { Copyright © 2017 Pearson Education, Inc. }{ }^{1} \begin{array}{ccccccc}
1 & x_{2} & 2 & x_{2} & 2_{2} & x_{1} & x_{1} \\
& m_{2} & x_{2}^{2}
\end{array}
$$

If two nonvertical lines are perpendicular, then the product of the slopes of these lines is -1 .

Summary Exercises on Graphs, Circles,

Functions, and Equations

$P(3,5), Q(2,3)$

$$
\begin{gathered}
d(P, Q) \sqrt{(23)^{2}(35)^{2}} \\
\sqrt{1^{2} 8^{2}} \\
\sqrt{6465 \sqrt{ }}
\end{gathered}
$$

The midpoint M of the segment joining points P and Q has coordinates

2-3 $\quad 1$
Use either point and the point-slope form.

$$
-58 x-3
$$

Change to slope-intercept form.
$58 x 24$ y $8 x 19$
$P(-1,0), Q(4,-2)$
(a) $\begin{aligned} d(P, Q) & \sqrt{[4-(-1)]^{2}(-2-0)^{2}} \\ & \sqrt[2^{2(-2)^{2}}]{ } \\ & 254 \quad{ }_{29} \sqrt{ }\end{aligned}$

The midpoint M of the segment joining points P and Q has coordinates
$-14, \underline{0(-2)} \quad \underline{3}, \underline{2}$

2
(c) First find $m: m \underline{2-0} \quad \underline{2}$

The midpoint M of the segment joining points P and Q has coordinates

$$
\frac{-23}{2}, \frac{22}{2}, \frac{1}{2} \quad \frac{1}{2}, 2
$$

(c) First find $m: m \frac{2-2}{3} \cdot \frac{2}{0}-{ }_{5}^{0} \theta$

All lines that have a slope of 0 are horizontal lines. The equation of a horizontal line has an equation of the form $y=b$. Because the line passes through $(3,2)$, the equation is $y=2$.
4. $P 22,2, Q$
2, $3 \quad 2$
(a) $d(P, Q)$

$28 \quad 10$

The midpoint M of the segment joining points P and Q has coordinates
$\frac{2 \downarrow}{2}-\frac{\sqrt{2} 3 \sqrt{2}}{2}$

$$
\begin{array}{lll}
\sqrt{32} \\
2 & , 2 & \sqrt{4} 2 \\
2
\end{array}, 22 .
$$

(c) First find $m: m \frac{3 \sqrt{2} 2}{\sqrt{2}} \frac{\sqrt{2} 2}{\sqrt{2}} \frac{\sqrt{2}}{2} 2_{2}$

Use either point and the point-slope form.
$\sqrt{ }$

$$
y-\sqrt{2} 2 \quad x-22
$$

Change to slope-intercept form.

$$
y-\sqrt{2} 2 x 42 y \sqrt{2} \times 52
$$

5. $P(5,-1), Q(5,1)$
(a) $d(P, Q)(5-5)^{2}[1-(-1)]^{2}$
[^0]Use either point and the point-slope form.
$y-0{ }_{x=-1}^{5}$
Change to slope-intercept form.
$5 y 2 x 1$
$5 y 2 x 2$
$y \quad 2 x^{2}$
$5 \quad 5$
3. $P(-2,2), Q(3,2)$
(a) $d(P, Q) \sqrt{[3-(-2)]^{2} 22^{2}}$

$$
\sqrt{20^{2}} \quad \sqrt{250} \quad \sqrt{25} 5
$$

The midpoint M of the segment joining points P and Q has coordinates
$\underline{55}-11 \quad \underline{10}$

2,2
$225,0$.
(c) First find m.

$$
1-1 \quad 2
$$

m

$$
\begin{array}{cc}
5-5 & u^{u}
\end{array}
$$

All lines that have an undefined slope are vertical lines. The equation of a vertical line has an equation of the form x $=a$. The line passes through $(5,1)$, so the equation is $x=5$. (Because the slope of a vertical line is undefined, this equation cannot be written in slopeintercept form.)
$P(1,1), Q(3,3)$
$d(P, Q)$

The midpoint M of the segment joining points P and Q has coordinates

$2 \quad 2 \quad 2 \quad 2$
$1,1$.

$$
\underline{3}-14
$$

First find $m: m$

$$
\begin{array}{ll}
3-1 & 4
\end{array}
$$

Use either point and the point-slope form.

$$
-11 x-1
$$

Change to slope-intercept form.
$y 1 x 1 y x$
7. $P 2$

$$
2
$$

2
(a) $d(P, Q)$

The midpoint M of the segment joining points P and Q has coordinates

$$
\frac{\sqrt{2} 63}{2}, \frac{3 \sqrt{535}}{2} \sqrt{ }
$$

(c) First find $m: m^{3} \frac{\sqrt{5} 3}{\sqrt{5}} \frac{0}{\sqrt{ }}$
$6 \quad \begin{array}{llll}2 & 3 & 4 & 3\end{array}$

All lines that have a slope of 0 are horizontal lines. The equation of a horizontal line has an equation of the form $y=b$. Because the line passes through $2 \sqrt{,} 3 \square$ the equation is

$$
y 3 \sqrt[5]{.}
$$

$$
P(0,-4), Q(3,1)
$$

$$
\begin{aligned}
& d(P, Q) \quad\left(3-0 \rho^{2}[1-(-4)]^{2}\right. \\
& \sqrt{25^{2}} \sqrt{925} \sqrt[34]{ }
\end{aligned}
$$

The midpoint M of the segment joining points P and Q has coordinates

$$
\begin{equation*}
\underline{03}, \frac{-41}{2} \quad 2 \quad \frac{3}{2}, \frac{3}{2}, \underline{3} . \tag{22}
\end{equation*}
$$

(c) First find $m: m$ 1-4 $\underline{5}$

303

Using slope-intercept form we have $y^{5} \begin{gathered}x-4 \text {. } \\ 3\end{gathered}$
9. Through 2,1 and 4,1

$$
\underline{1-1} \quad 2 \quad 1
$$

First find $m: m$ - $\quad 4$-2) 6
Use either point and the point-slope form.

$$
y-1^{\underline{1}} 3 x-4
$$

Change to slope-intercept form.
$3 y 1 x 43 y 3 x 4$

8 $\sqrt[65]{5}$ Copyright © 2017 Pearson Education, Inc. $2,243,5$.
the horizontal line through $(2,3)$

The equation of a horizontal line has an equation of the form $y=b$. Because the line passes through $(2,3)$, the equation is $y=3$.

the circle with center $(2,-1)$ and radius 3 (

$$
\begin{aligned}
& x-2)^{2} y-(-1)^{2} 3^{2} \\
& (x-2)^{2}(y 1)^{2} 9
\end{aligned}
$$

the circle with center $(0,2)$ and tangent to the

x-axis

The distance from the center of the circle to the x-axis is 2 , so $r=2$.

$$
(x-0)^{2}(y-2)^{2} 2^{2} x^{2}(y-2)^{2} 4
$$

13. the line through $(3,5)$ with slope 5

Write the equation in point-slope form. $y-5 \underline{5}_{x-3} 6$

Change to standard form.
$6 y 55 \times 36 y 305 \times 15$

 the line $3 x 4$ y 2
First, find the slope of the line $3 x 4 y 2$ by writing this equation in slope-intercept form. $3 x 4 y 24 y-3 x 2$

			2			$\underline{3}$	$\underline{1}$	
4	4	4	y	4	x	2		
3								

This line has a slope of 4 .The slope of any line perpendicular to this line is $\quad \underline{4}$, because

\quad| $\frac{43}{4}$ |
| :--- |
| 1. Using slope-intercept form we |
| have y |$\quad \underset{3}{ } 0$ or $y^{4} x$.

$x^{2} 4 x y^{2} 2 y 4$
Complete the square on x and y separately.

$$
\begin{gathered}
x^{2} 4 x y^{2} 2 y 4 \\
x^{2} 4 x 4 y^{2} 2 y 1441 \\
x 2^{2} \quad y 1^{2} 9
\end{gathered}
$$

Yes, it is a circle. The circle has its center at
$(2,-1)$ and radius 3 .
$x^{2} 6 x y^{2} 10$ y 360
Complete the square on x and y separately.

$$
x^{2} 6 x y^{2} 10 y 36
$$

$$
x^{2} 6 x 9 y^{2} 10 y 25-36925
$$

$$
x 3^{2} y 5^{2} 2
$$

No, it is not a circle.
19. $x^{2} 12 x y^{2} 200$

Complete the square on x and y separately.

$$
x^{2} 12 x y^{2} \quad 20
$$

$$
\begin{gathered}
x^{2} 12 x 36 y^{2}-2036 \\
x 6^{2} y^{2} 16
\end{gathered}
$$

Yes, it is a circle. The circle has its center at $(6,0)$ and radius 4.
20. $x^{2} 2 x y^{2} 16 y 61$

Complete the square on x and y separately.

$$
x^{2} 2 x y^{2} 16 y 61
$$

$x^{2} 2 x y^{2} 100$
Complete the square on x and y separately.

$$
\begin{gathered}
x^{2} 2 x y^{2} 10 \\
x^{2} 2 x 1 y^{2}-101 \\
x 1^{2} y^{2} 9
\end{gathered}
$$

No, it is not a circle.
$x^{2} y^{2}-8 y 90$
Complete the square on x and y separately.

$$
x^{2} y^{2}-8 y 9
$$

$$
x^{2} y^{2}-8 y 16916
$$

$$
x^{2} y-4^{2} \quad 25
$$

Yes, it is a circle. The circle has its center at $(0,4)$ and radius 5.
The equation of the circle is
$(x 4)^{2}(y 5)^{2} 4^{2}$.
Let $y=2$ and solve for x :
$(x 4)^{2}(25)^{2} 4^{2}$
$\begin{array}{llll}(x 4) & { }^{2}(3) & 2 & 2 \\ 4 & (x 4) & 7\end{array}$
$\begin{array}{llllll}x 4 & \sqrt{7} & x & 4 & 7 & \sqrt{r}\end{array}$
The points of intersection are $4 \quad \sqrt{7}, 2$ and $4 \begin{aligned} & \sqrt{7} \\ & 7,2\end{aligned}$
24. Write the equation in center-radius form by completing the square on x and y separately:

$$
\begin{aligned}
& x^{2} y^{2} 10 x 24 y 1440 \\
& x^{2} 10 x \quad y^{2} 24 y 1440 \\
& \left(x^{2} 10 x 25\right)\left(y^{2} 24 y 144\right) 25(x 5)^{2}
\end{aligned}
$$

$$
(y 12)^{2} 25
$$

The center of the circle is $(5,12)$ and the
distance from the center $(5,12)$ to the origin:

$$
\begin{gathered}
x^{2} 2 x 1 y^{2} 16 y 64-61164 \\
x 1^{2} y 8^{2} 4
\end{gathered}
$$

Yes, it is a circle. The circle has its center at $(-1,-8)$ and radius 2.

The radius is 5 , so the shortest distance from the origin to the graph of the circle is $13-5=8$.

(continued)

(a) The equation can be rewritten as
$\underline{1} \quad \underline{6} \quad \underline{1} \quad \underline{3}$

x can be any real number, so the domain is all real numbers and the range is also all real numbers.
domain: , ; range: ,

Each value of x corresponds to just one value of y. $x 4 y 6$ represents a function.

(a) The equation can be rewritten as

$$
y^{2} 5 x . \quad y \text { can be any real number. }
$$

Because the square of any real number is not negative, y^{2} is never negative.

Taking the constant term into consideration, domain would be 5 , . domain: 5, ; range: ,

Because $(-4,1)$ and $(-4,-1)$ both satisfy the relation, $y^{2} x 5$ does not represent a function.
27. (a) $x 2^{2} y^{2} 25$ is a circle centered at
(a) The equation can be rewritten as

$$
2 y x^{2} 3 y \leq x \quad 2 \frac{1}{2}_{2} x \text { can be }
$$

any real number. Because the square of any real number is not negative, $2 \frac{1}{x}$ is never negative. Taking the constant term into consideration, range would be

$$
\begin{aligned}
& \stackrel{3}{2} \\
& \text { domain: , ; range: } \underline{3}^{3} \text {, }
\end{aligned}
$$

Each value of x corresponds to just one value of $y . x^{2} 2 y 3$ represents a

$$
\begin{aligned}
& \text { function. } \\
& y-\frac{x^{2}}{2}-f_{2} x-x^{2}-3 \\
& f 2+2^{2-1} 4-4 \leq 1 \\
& \begin{array}{lllllll}
2 & 2 & 2 & 2 & 2
\end{array}
\end{aligned}
$$

Section 2.6 Graphs of Basic Functions

1. The equation $f x x^{2} \quad$ matches graph E .

The domain is , $\quad \mid$
2. The equation of $f x x$ matches graph G .

The function is increasing on 0 , .
3. The equation $f x \quad x^{3}$ matches graph A .

The range is ,

Graph C is not the graph of a
function. Its equation is $x y^{2}$.
Graph F is the graph of the identity function. Its equation is $f x x$.

The equation $f x \quad x]$ matches graph B .
$f \llbracket .5 \square 1$
$(-2,0)$ with a radius of 5 . The domain will start 5 units to the left of -2 and end
7. The equation $f x_{3} x^{\sqrt{ }}$ matches graph H .

5 units to the right of -2 . The domain will be $[-2-5,2+5]=[-7,3]$. The range
will start 5 units below 0 and end 5 units
above 0 . The range will be $[0-5,0+5]$ $[-5,5]$.
Because $(-2,5)$ and $(-2,-5)$ both satisfy the relation, $x 2^{2} y^{2} 25$ does not represent a function.

No, there is no interval over which the function is decreasing.
8. The equation of $f x \quad \sqrt{x}$ matches graph D .

The domain is 0 , .
The graph in B is discontinuous at many points. Assuming the graph continues, the range would be $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

Chapter 2 Graphs and Functions

The graphs in E and G decrease over part of
the domain and increase over part of the domain. They both increase over 0 , and
decrease over, 0 .
The function is continuous over the entire domain of real numbers, .

The function is continuous over the entire domain of real numbers , .

The function is continuous over the interval 0 ,

The function is continuous over the interval 0.

The function has a point of discontinuity at $(3,1)$. It is continuous over the interval 3 and the interval 3, .

The function has a point of discontinuity at x $=1$. It is continuous over the interval , 1 and the interval 1 ,

17.

$$
x-1 \text { if } x-1(-
$$

$$
\text { 5) } 2(-5)-10
$$

(b)
$(-1) 2(-1)-2$

$$
\begin{gathered}
f(0)=0-1=-1 \\
f(3)=3-1=2 \\
\left.f(x) \begin{array}{c}
x-2 \text { if } x 3 \\
x \text { if } x 3 \\
f(-5)=-5-2=-7 \\
f(-1)=-1-2=-3 \\
f(0)=0-2=-2 \\
f(3)=5-3=2 \\
2 x
\end{array}\right) \text { if } x-4
\end{gathered}
$$

19. $f(x)-x \quad$ if $-4 x 2$ if
$3 x \quad x \quad 2$

$$
f x 3 x-1 \text { if }-3 \times 2
$$

$$
-4 x \text { if } x 2
$$

$$
\begin{gathered}
f(-5)=-2(-5)=10 \\
f(-1)=3(-1)-1=-3-1=-4 \\
f(0)=3(0)-1=0-1=-1 \\
f(3)=-4(3)=-12 \\
x-1 \text { if } x 3 \\
\text { 21. } f(x) \quad \text { if } x 3
\end{gathered}
$$

Draw the graph of $y=x-1$ to the left of $x=$ 3 , including the endpoint at $x=3$. Draw the graph of $y=2$ to the right of $x=3$, and note that the endpoint at $x=3$ coincides with the endpoint of the other ray.

$$
3 \text { if } x 3
$$

22. $f(x) 6-x$ if $x 3$

Graph the line $y=6-x$ to the left of $x=3$, including the endpoint. Draw $y=3$ to the right of $x=3$. Note that the endpoint at $x=3$ coincides with the endpoint of the other ray.

23. $f(x)$
$12 x$ if $x 2$
Draw the graph of $y=4-x$ to the left of $x=2$, but do not include the endpoint. Draw the graph of $y=1+2 x$ to the right of $x=2$, including the endpoint.

$$
\begin{aligned}
& f(-5)=2+(-5)=-3 \\
& f(-1)=-(-1)=1 \\
& f(0)=-0=0 \\
& f(3) 339
\end{aligned}
$$

${ }_{f(x)} 2 x 1$ if $x 0$

$$
\text { if } x 0
$$

Graph the line $y=2 x+1$ to the right of $x=$ 0 , including the endpoint. Draw $y=x$ to the left of $x=0$, but do not include the endpoint.

Graph the line $y=-3$ to the left of $x=1$, including the endpoint. Draw $y=-1$ to the right of $x=1$, but do not include the endpoint.

26. $f(x)^{2}$ if $x 1$

Graph the line $y=-2$ to the left of $x=1$, including the endpoint. Draw $y=2$ to the right of $x=1$, but do not include the endpoint.

$$
2 x \text { if } x-4
$$

27. $f(x)-x \quad$ if $-4 x 5$ if

Draw the graph of $y=2+x$ to the left of -4 , but do not include the endpoint at $x=4$.
Draw the graph of $y=-x$ between -4 and 5, including both endpoints. Draw the graph of

$$
-2 x \text { if } x-3
$$

$$
f(x) 3 x-1 \text { if }-3 x 2
$$

Graph the line $y=-2 x$ to the left of $x=-3$, but do not include the endpoint. Draw $y=3 x-1$ between $x=-3$ and $x=2$, and include both endpoints. Draw $y=-4 x$ to the right of $x=2$, but do not include the endpoint. Notice that the endpoints of the pieces do not coincide.

Graph the curve $y \underline{1}^{2}{ }^{2}{ }_{2} _2$ to the left of
$x=2$, including the endpoint at $(2,0)$. Graph the line $y^{1} x$ to the right of $x=2$, but do 2
not include the endpoint at $(2,1)$. Notice that the endpoints of the pieces do not coincide.

$x=0$, including the endpoint at $(0,5)$. Graph the line $y x^{2}$ to the right of $x=0$, but do
not include the endpoint at $(0,0)$. Notice that $\stackrel{y}{\text { the endpoints of the pieces do not coincide. }}$

$$
f(x)=\left\{\begin{array} { l l }
{ x ^ { 3 } + 5 \text { if } x \leq 0 } \\
{ - x ^ { 2 } } & { \text { if } x > 0 }
\end{array} ~ \left(\begin{array}{ll}
0,5)
\end{array}\right.\right.
$$

$y=3 x$ to the right of 5 , but do not include the endpoint at $x=5$.

$$
2 \text { xif } 5 x 1
$$

31. $f(x) 2$ if $1 x 0$

$$
x^{2} 2 \text { if } 0 \times 2
$$

Graph the line $y 2 x$ between $x=-5$ and
$x=-1$, including the left endpoint at $(-5,-10)$, but not including the right endpoint at $(-1,-2)$. Graph the line $y=-2$ between $x=-1$ and $x=0$, including the left endpoint at $(-1,-2)$ and not including the right endpoint at $(0,-2)$. Note that $(-1,-2)$ coincides with the first two sections, so it is included. Graph
the curve $y x^{2} 2$ from $x=0$ to $x=2$,
including the endpoints at $(0,-2)$ and $(2,2)$. Note that $(0,-2)$ coincides with the second two sections, so it is included. The graph ends at $x=-5$ and $x=2$.

$f(x)= \begin{cases}2 x & \text { if }-5 \leq x<-1 \\ -2 & \text { if }-1 \leq x<0 \\ x^{2}-2 & \text { if } 0 \leq x \leq 2\end{cases}$
32. $f(x) x^{0.5 x^{2}} \begin{array}{lll}\text { if } & 4 x & \text { if } 2 \\ x & 2\end{array}$

$$
x^{2} 4 \text { if } 2 \times 4
$$

Graph the curve $y 0.5 x^{2} \quad$ between $x=-4$
and $x=-2$, including the endpoints at
$(-4,8)$ and $(-2,2)$. Graph the line $y x$ between $x=-2$ and $x=2$, but do not include the endpoints at $(-2,-2)$ and $(2,2)$. Graph the
curve $y x^{2} 4$ from $x=2$ to $x=4$,
including the endpoints at $(2,0)$ and $(4,12)$. The graph ends at $x=-4$ and $x=4$.

$$
x^{3} 3 \quad \text { if } 2 x 0
$$

33. $f(x) \times 3$ if 0×1

$$
4 x x^{2} \quad \text { if } 1 \times 3
$$

Graph the curve $y x^{3} 3$ between $x=-2$
and $x=0$, including the endpoints at $(-2,-5)$ and $(0,3)$. Graph the line $y=x+3$ between $x=0$ and $x=1$, but do not include the endpoints at $(0,3)$ and $(1,4)$. Graph the curve
$4 x x^{2}$ from $x=1$ to $x=3$, including the endpoints at $(1,4)$ and $(3,-2)$. The graph ends at $x \overline{\bar{y}}-2$ and $x=3$.

$f(x)=\left\{\begin{array}{lll}x^{3}+3 & \text { if }-2 \leq x \leq 0 \\ x+3 & \text { if } & 0<x<1 \\ 4+x-x^{2} & \text { if } & 1 \leq x \leq 3\end{array}\right.$

$$
2 x \quad \text { if } 3 x 1
$$

34. $f(x) x^{2} 1$ if $1 x 2$

$$
2{ }^{1} x^{3} 1 \text { if } 2 \times 3
$$

Graph the curve $y=-2 x$ to from $x=-3$ to $=-1$, including the endpoint $(-3,6)$, but not including the endpoint $(-1,2)$. Graph the curve $y x^{2} 1$ from $x=-1$ to $x=2$,
including the endpoints ${ }^{2}(-1,2)$ and $(2,5)$.

Graph the curve $y{ }^{1} x^{3} \quad 1$ from $x=2$ to
$x=3$, including the endpoint $(3,14.5)$ but not including the endpoint $(2,5)$. Because the endpoints that are not included coincide with endpoints that are included, we use closed dots on the graph.

Copyright © 2017 Pearson Educ $f(x)= \begin{cases}-2 x & \text { if }-3 \leq x<-1 \\ x^{2}+1 & \text { if }-1 \leq x \leq 2 \\ \frac{1}{2} x^{3}+1 & \text { if } 2<x \leq 3\end{cases}$

(continued)

(a) The equation can be rewritten as
$\underline{1} \quad \underline{6} \quad \underline{1} \quad \underline{3}$

x can be any real number, so the domain is all real numbers and the range is also all real numbers.
domain: , ; range: ,

Each value of x corresponds to just one value of y. $x 4 y 6$ represents a function.

f	2	$\frac{1}{4}$		2	2	2	2	2	1		

(a) The equation can be rewritten as

$$
y^{2} 5 x . \quad y \text { can be any real number. }
$$

Because the square of any real number is not negative, y^{2} is never negative.

Taking the constant term into consideration, domain would be 5 , . domain: 5, ; range: ,

Because $(-4,1)$ and $(-4,-1)$ both satisfy the relation, $y^{2} x 5$ does not represent a function.
27. (a) $x 2^{2} y^{2} 25$ is a circle centered at
(a) The equation can be rewritten as

$$
2 y x^{2} 3 y \leq x \quad 2 \frac{1}{2}_{2} x \text { can be }
$$

any real number. Because the square of any real number is not negative, $2 \frac{1}{x}$ is never negative. Taking the constant term into consideration, range would be

$$
\begin{aligned}
& \stackrel{3}{2} \\
& \text { domain: , ; range: } \underline{3}^{3} \text {, }
\end{aligned}
$$

Each value of x corresponds to just one value of $y . x^{2} 2 y 3$ represents a

$$
\begin{aligned}
& \text { function. } \\
& y-\frac{x^{2}}{2}-f_{2} x-x^{2}-3 \\
& f 2+2^{2-1} 4-4 \leq-1 \\
& \begin{array}{lllllll}
2 & 2 & 2 & 2 & 2
\end{array}
\end{aligned}
$$

Section 2.6 Graphs of Basic Functions

1. The equation $f^{f x}{ }^{2} \quad$ matches graph E.

The domain is , $\quad \mid$
2. The equation of $f x x$ matches graph G .

The function is increasing on 0 , .
3. The equation $f x \quad x^{3}$ matches graph A .

The range is ,

Graph C is not the graph of a
function. Its equation is $x y^{2}$.
Graph F is the graph of the identity function. Its equation is $f x x$.

The equation $f x \quad x]$ matches graph B .
$f \llbracket .5 \square 1$
$(-2,0)$ with a radius of 5 . The domain will start 5 units to the left of -2 and end
7. The equation $f x_{3} x^{\sqrt{ }}$ matches graph H .

5 units to the right of -2 . The domain will be $[-2-5,2+5]=[-7,3]$. The range
will start 5 units below 0 and end 5 units
above 0 . The range will be $[0-5,0+5]$ $[-5,5]$.
Because $(-2,5)$ and $(-2,-5)$ both satisfy the relation, $x 2^{2} y^{2} 25$ does not represent a function.

No, there is no interval over which the function is decreasing.
8. The equation of $f x \quad \sqrt{x}$ matches graph D .

The domain is 0 , .
The graph in B is discontinuous at many points. Assuming the graph continues, the range would be $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

Chapter 2 Graphs and Functions

The graphs in E and G decrease over part of
the domain and increase over part of the domain. They both increase over 0 , and
decrease over, 0 .
The function is continuous over the entire domain of real numbers, .

The function is continuous over the entire domain of real numbers , .

The function is continuous over the interval 0 ,

The function is continuous over the interval 0.

The function has a point of discontinuity at $(3,1)$. It is continuous over the interval 3 and the interval 3, .

The function has a point of discontinuity at x $=1$. It is continuous over the interval , 1 and the interval 1 ,

17.

$$
x-1 \text { if } x-1(-
$$

$$
\text { 5) } 2(-5)-10
$$

(b)
$(-1) 2(-1)-2$

$$
\begin{gathered}
f(0)=0-1=-1 \\
f(3)=3-1=2 \\
\left.f(x) \begin{array}{c}
x-2 \text { if } x 3 \\
x \text { if } x 3 \\
f(-5)=-5-2=-7 \\
f(-1)=-1-2=-3 \\
f(0)=0-2=-2 \\
f(3)=5-3=2 \\
2 x
\end{array}\right) \text { if } x-4
\end{gathered}
$$

19. $f(x)-x \quad$ if $-4 x 2$ if
$3 x \quad x \quad 2$

$$
f x 3 x-1 \text { if }-3 \times 2
$$

$$
-4 x \text { if } x 2
$$

$$
\begin{gathered}
f(-5)=-2(-5)=10 \\
f(-1)=3(-1)-1=-3-1=-4 \\
f(0)=3(0)-1=0-1=-1 \\
f(3)=-4(3)=-12 \\
x-1 \text { if } x 3 \\
\text { 21. } f(x) \quad \text { if } x 3
\end{gathered}
$$

Draw the graph of $y=x-1$ to the left of $x=$ 3 , including the endpoint at $x=3$. Draw the graph of $y=2$ to the right of $x=3$, and note that the endpoint at $x=3$ coincides with the endpoint of the other ray.

$$
3 \text { if } x 3
$$

22. $f(x) 6-x$ if $x 3$

Graph the line $y=6-x$ to the left of $x=3$, including the endpoint. Draw $y=3$ to the right of $x=3$. Note that the endpoint at $x=3$ coincides with the endpoint of the other ray.

23. $f(x)$
$12 x$ if $x 2$
Draw the graph of $y=4-x$ to the left of $x=2$, but do not include the endpoint. Draw the graph of $y=1+2 x$ to the right of $x=2$, including the endpoint.

$$
\begin{aligned}
& f(-5)=2+(-5)=-3 \\
& f(-1)=-(-1)=1 \\
& f(0)=-0=0 \\
& f(3) 339
\end{aligned}
$$

${ }_{f(x)} 2 x 1$ if $x 0$

$$
\text { if } x 0
$$

Graph the line $y=2 x+1$ to the right of $x=$ 0 , including the endpoint. Draw $y=x$ to the left of $x=0$, but do not include the endpoint.

Graph the line $y=-3$ to the left of $x=1$, including the endpoint. Draw $y=-1$ to the right of $x=1$, but do not include the endpoint.

26. $f(x)^{2}$ if $x 1$

Graph the line $y=-2$ to the left of $x=1$, including the endpoint. Draw $y=2$ to the right of $x=1$, but do not include the endpoint.

$$
2 x \text { if } x-4
$$

27. $f(x)-x \quad$ if $-4 x 5$ if

Draw the graph of $y=2+x$ to the left of -4 , but do not include the endpoint at $x=4$.
Draw the graph of $y=-x$ between -4 and 5, including both endpoints. Draw the graph of

$$
-2 x \text { if } x-3
$$

$$
f(x) 3 x-1 \text { if }-3 x 2
$$

Graph the line $y=-2 x$ to the left of $x=-3$, but do not include the endpoint. Draw $y=3 x-1$ between $x=-3$ and $x=2$, and include both endpoints. Draw $y=-4 x$ to the right of $x=2$, but do not include the endpoint. Notice that the endpoints of the pieces do not coincide.

Graph the curve $y \underline{1}^{2}{ }^{2}{ }_{2} _2$ to the left of
$x=2$, including the endpoint at $(2,0)$. Graph the line $y^{1} x$ to the right of $x=2$, but do 2
not include the endpoint at $(2,1)$. Notice that the endpoints of the pieces do not coincide.

$x=0$, including the endpoint at $(0,5)$. Graph the line $y x^{2}$ to the right of $x=0$, but do
not include the endpoint at $(0,0)$. Notice that $\stackrel{y}{\text { the endpoints of the pieces do not coincide. }}$

$$
f(x)=\left\{\begin{array} { l l }
{ x ^ { 3 } + 5 \text { if } x \leq 0 } \\
{ - x ^ { 2 } } & { \text { if } x > 0 }
\end{array} ~ \left(\begin{array}{ll}
0,5)
\end{array}\right.\right.
$$

$y=3 x$ to the right of 5 , but do not include the endpoint at $x=5$.

$$
2 \text { xif } 5 x 1
$$

31. $f(x) 2$ if $1 x 0$

$$
x^{2} 2 \text { if } 0 \times 2
$$

Graph the line $y 2 x$ between $x=-5$ and
$x=-1$, including the left endpoint at $(-5,-10)$, but not including the right endpoint at $(-1,-2)$. Graph the line $y=-2$ between $x=-1$ and $x=0$, including the left endpoint at $(-1,-2)$ and not including the right endpoint at $(0,-2)$. Note that $(-1,-2)$ coincides with the first two sections, so it is included. Graph
the curve $y x^{2} 2$ from $x=0$ to $x=2$,
including the endpoints at $(0,-2)$ and $(2,2)$. Note that $(0,-2)$ coincides with the second two sections, so it is included. The graph ends at $x=-5$ and $x=2$.

$f(x)= \begin{cases}2 x & \text { if }-5 \leq x<-1 \\ -2 & \text { if }-1 \leq x<0 \\ x^{2}-2 & \text { if } 0 \leq x \leq 2\end{cases}$
32. $f(x) x^{0.5 x^{2}} \begin{array}{lll}\text { if } & 4 x & \text { if } 2 \\ x & 2\end{array}$

$$
x^{2} 4 \text { if } 2 \times 4
$$

Graph the curve $y 0.5 x^{2} \quad$ between $x=-4$
and $x=-2$, including the endpoints at
$(-4,8)$ and $(-2,2)$. Graph the line $y x$ between $x=-2$ and $x=2$, but do not include the endpoints at $(-2,-2)$ and $(2,2)$. Graph the
curve $y x^{2} 4$ from $x=2$ to $x=4$,
including the endpoints at $(2,0)$ and $(4,12)$. The graph ends at $x=-4$ and $x=4$.

$$
x^{3} 3 \quad \text { if } 2 x 0
$$

33. $f(x) \times 3$ if 0×1

$$
4 x x^{2} \quad \text { if } 1 \times 3
$$

Graph the curve $y x^{3} 3$ between $x=-2$
and $x=0$, including the endpoints at $(-2,-5)$ and $(0,3)$. Graph the line $y=x+3$ between $x=0$ and $x=1$, but do not include the endpoints at $(0,3)$ and $(1,4)$. Graph the curve
$4 x x^{2}$ from $x=1$ to $x=3$, including the endpoints at $(1,4)$ and $(3,-2)$. The graph ends at $x \overline{\bar{y}}-2$ and $x=3$.

$f(x)=\left\{\begin{array}{lll}x^{3}+3 & \text { if }-2 \leq x \leq 0 \\ x+3 & \text { if } & 0<x<1 \\ 4+x-x^{2} & \text { if } & 1 \leq x \leq 3\end{array}\right.$

$$
2 x \quad \text { if } 3 x 1
$$

34. $f(x) x^{2} 1$ if $1 x 2$

$$
2{ }^{1} x^{3} 1 \text { if } 2 \times 3
$$

Graph the curve $y=-2 x$ to from $x=-3$ to $=-1$, including the endpoint $(-3,6)$, but not including the endpoint $(-1,2)$. Graph the curve $y x^{2} 1$ from $x=-1$ to $x=2$,
including the endpoints ${ }^{2}(-1,2)$ and $(2,5)$.

Graph the curve $y{ }^{1} x^{3} \quad 1$ from $x=2$ to
$x=3$, including the endpoint $(3,14.5)$ but not including the endpoint $(2,5)$. Because the endpoints that are not included coincide with endpoints that are included, we use closed dots on the graph.

Copyright © 2017 Pearson Educ $f(x)= \begin{cases}-2 x & \text { if }-3 \leq x<-1 \\ x^{2}+1 & \text { if }-1 \leq x \leq 2 \\ \frac{1}{2} x^{3}+1 & \text { if } 2<x \leq 3\end{cases}$

The solid circle on the graph shows that the endpoint $(0,-1)$ is part of the graph, while the
open circle shows that the endpoint $(0,1)$ is not part of the graph. The graph is made up of
parts of two horizontal lines. The function which fits this graph is

$$
\begin{aligned}
& f(x)-1 \text { if } x 0 \\
& \text { if } x 0 \\
& \text { domain: , ; range: }\{-1,1\}
\end{aligned}
$$

36. We see that $y=1$ for every value of x except $x=0$, and that when $x=0, y=0$. We can write the function as
$f(x) 1$ if $x 0$ 0 if x.
domain: , ; range: $\{0,1\}$

The graph is made up of parts of two
horizontal lines. The solid circle shows that the endpoint $(0,2)$ of the one on the left belongs to the graph, while the open circle
the right does not belong to the graph. The function that fits this graph is $f(x) \quad{ }^{2}-1 \mathrm{if}_{\mathrm{if}} \mathrm{f}^{x} x^{0}{ }^{0}$.

We see that $y=1$ when $x \quad 1$ and that $y=-1$
$f(x) \quad 1$ if $x-1$
domain: -1 if $x 2$.

$$
(-,-1](2,) \text {; range: }\{-1,1\}
$$

through the points $(-1,-1)$ and $(0,0)$. The slope is 1 , so the equation of this piece is $y=$ x. For $x>0$, that piece of the graph is a horizontal line passing through (2,2), so its
equation is $y=2$. We can write the function as
$f(x) \begin{gathered}x \text { if } x \quad 0 \\ 2 \text { if } x \quad 0\end{gathered}$.
domain: $(-$,$) range: (, 0]$
For $x<0$, that piece of the graph is a horizontal line passing though $(-3,-3)$, so the equation of this piece is $y=-3$. For $x 0$, the curve passes through $(1,1)$ and $(4,2)$, so the
equation of this piece is $y \quad \sqrt{x}$. We can

Follow $\stackrel{y}{y}$ this pattern to graph the step function.

$f(x)=x$
Plot points.
$f(x)=x$
Plot points.

	$-x f(x)=x$	
-2	2	2
-1.5	1.5	1
-1	1	1
-0.5	0.5	0
0	0	0
0.5	-0.5	-1
1	-1	-1
1.5	-1.5	-2
2	-2	-2
More generally, to gett $y=0$, we		
need $0-x$ 1 $0 \times 111 x 0$.		

To get $y=1$, we need $1-x \quad 2$
$\begin{array}{lll}1 \times 2 & -2 \times 1 .\end{array}$

3 if $x 2$
2×3 if $x 2$
domain: $(-$,$) range: (, 1) \square(1$,
write the function as $f(x) \quad \sqrt{ }$ if $x 0$ domain:, ; range: $\{\ldots,-2,-1,0,1,2, \ldots\}$
domain: (- ,) range: $\{3\} \square[0$,)

Chapter 2 Graphs and Functions
$f(x)=x$
Plot points.

x	$\square]$	$f(x)=\bar{x}$
-2	-2	2
-1.5	-2	2
-1	-1	1
-0.5	-1	1
0	0	0
0.5	0	-1
1	1	-1
1.5	1	-2

Follow this pattern to graph the step function.

domain: , ; range: $\{\ldots,-2,-1,0,1,2, \ldots\}$
$f(x)=2 x]$

To get $y=0$, we need $02 x 10 \times \underset{1}{1}$. 2
To get $y=1$, we need $12 x \quad 2 \underline{1} \quad x$.
To get $y=2$, we need $22 x 31 x-$.
Follow this pattern to graph the step function.

domain: , ; range: $\{\ldots,-2,-1,0,1,2, \ldots\}$
$g(x)=2 \times 1$
To get $y=0$, we need
$02 \times 1112 \times 2 \xrightarrow{\frac{1}{-}} \times 1$.
To get $y=1$, we need
$12 x-1222 x 31 x \quad 2$.
$\underline{3}$
Follow this pattern to graph the step function.

The cost of mailing a letter that weighs more
same as the cost of a 2-ounce letter, and the cost of mailing a letter that weighs more than 2 ounces and less than 3 ounces is the same as the cost of a 3-ounce letter, etc.

The cost is the same for all cars parking between ${ }^{21}$ hour and 1-hour, between 1 hour and $1 \underline{1}$ hours, etc.

Time (in minutes)
50.

51. (a) For $0 x 8, \quad m \frac{49.8}{\frac{34}{8} \frac{2}{2}} 1.95$,
so $y 1.95 \times 34.2$. For 8×13, 52.249 .8
0.48 , so the equation

138
is $y 52.20 .48(x 13)$
$0.48 x 45.96$
(b) $f(x) \begin{aligned} & 1.95 x 34.2 \text { if } 0 \quad x 8 \\ & 0.48 x 40.90 \text { it } \mathrm{x} \quad\end{aligned} \quad x 15$

When 0×3, the slope is 5 , which means that the inlet pipe is open, and the outlet pipe is closed. When 3×5, the slope is 2 , which means that both pipes are open. When 5×8, the slope is 0 , which means that both pipes are closed. When 8×10, the slope is -3 , which means that the inlet pipe is closed, and the outlet pipe is open.
(a) The initial amount is 50,000 gallons. The final amount is 30,000 gallons.
The amount of water in the pool remained constant during the first and fourth days.

$$
f(2) 45,000 ; f(4) 40,000
$$

The slope of the segment between $(1,50000)$ and $(3,40000)$ is -5000 , so the
water was being drained at 5000 gallons per day.
(a) There were 20 gallons of gas in the tank at $x=3$.

The slope is steepest between $t=1$ and
$t \approx 2.9$, so that is when the car burned gasoline at the fastest rate.
55. (a) There is no charge for additional length, so we use the greatest integer function.

$$
6.5 x \quad \text { if } 0 \times 4
$$

56. (a) $f(x) 5.5 x 48$ if 4×6

$$
-30 \times 195 \text { if } 6 \times 6.5
$$

Draw a graph of $y=6.5 x$ between 0 and 4 , including the endpoints. Draw the graph of $y=-5.5 x+48$ between 4 and 6 , including the endpoint at 6 but not the one at 4 . Draw the graph of $y=-30 x+195$, including the endpoint at 6.5 but not the one at 6 . Notice that the endpoints of the three pieces coincide.

From the graph, observe that the snow depth, y, reaches its deepest level (26 in.) when $x=4, x=4$ represents 4 months after the beginning of October, which is the beginning of February.

From the graph, the snow depth y is nonzero when x is between 0 and 6.5. Snow begins at the beginning of October and ends 6.5 months later, in the middle of April.

Section 2.7 Graphing Techniques

To graph the function $f x x^{2} 3$, shift the
graph of $y x^{2}$ down $\underline{3}$ units.

To graph the function $f x x_{2} 5$, shift the
graph of $y x^{2}$ up $\underline{5}$ units.

$$
f x x_{4}{ }^{2} \text { is obtained by }
$$

The graph of shifting the graph of $y x^{2}$ to the left 4 units.
4. The graph of $f x \times 7^{2}$ is obtained by
shifting the graph of $y \sqrt{x^{2}}$ to the right 7 units.

(b)

$f(8.5)$	0.8^{2}	$0.8(4) \$ 3.20$
$f(15.2)$	$0.8 \frac{15.2}{2}$	$0.8(7) \$ 5.60$

5. The graph of $f x \quad x$ is a reflection of the graph of $f x \quad x$ across the \underline{x}-axis.

> 6. The graph of $f x \quad x \quad$ is a reflection of the graph of $f x \quad x$ across the \underline{y}-axis.

Chapter 2 Graphs and Functions

To obtain the graph of $f x \times 2^{3} 3$, shift the graph of $y x^{3} \underline{2}$ units to the left and $\underline{3}$ units down.

To obtain the graph of $f x \times 3^{3} 6$, shift the graph of $y x^{3} \underline{3}$ units to the right and $\underline{6}$ units up.
9. The graph of $f x \quad x \quad \mid$ is the same as the graph of $y \quad x \mid$ because reflecting it across the y-axis yields the same ordered pairs.

The graph of $x y^{2}$ is the same as the graph of $x y^{2}$ because reflecting it across the \underline{x}-axis yields the same ordered pairs.
11. (a) $\mathrm{B} ; y(x 7)^{2}$ is a shift of $y x^{2}$, 7 units to the right.
(b) $\mathrm{D} ; y x^{2} 7$ is a shift of $y x^{2}$, 7 units downward.

E; y $7 x^{2}$ is a vertical stretch of $y x^{2}$, by a factor of 7 .
(d) $\mathrm{A} ; y(x 7)^{2}$ is a shift of $y x^{2}$, 7 units to the left.
(e) $\mathrm{C} ; y x^{2} 7$ is a shift of $y x^{2}$, 7 units upward.
12. (a) E; y $4 \sqrt[3]{x}$ is a vertical stretch of $y^{3} \sqrt{x}$, by a factor of $4 . \quad \sqrt{ }$
(b) C; $y{ }^{3} x \sqrt{ }$ is a reflection of $y^{3}{ }_{x}^{\sqrt{x}}$,
(c) $\mathrm{G} ; y(x 2)^{2}$ is a shift of $y x^{2}$, 2 units to the left.
(d) $\mathrm{C} ; y(x 2)^{2}$ is a shift of $y x^{2}$, 2 units to the right.

2
F; $y 2 x$ is a vertical stretch of $y x$, by a factor of 2 .
D; y xis a reflection of $y x$, across ${ }^{2}$ the x-axis.
(g) $\mathrm{H} ; y(x 2)^{2} 1$ is a shift of $y x^{2}$, 2 units to the right and 1 unit upward.
(h) E; $y(x 2)^{2} \quad 1$ is a shift of $y x^{2}$, 2 units to the left and 1 unit upward.
(i) I; $y(x 2)^{2} 1$ is a shift of $y x^{2}$, 2 units to the left and 1 unit down.
14. (a) G; y $\quad \begin{array}{ll}x 3 & \text { is a shift of } y \quad \sqrt{ } \text {, }\end{array}$ 3 units to the left.
(b) $\mathrm{D} ; y \quad \sqrt{\sqrt{2}} 3$ is a shift of $y \quad x$, 3 units downward.
(c) $\mathrm{E} ; y \sqrt{x} 3$ is a shift of $y \quad x \sqrt{ }$ 3 units upward.

B; y $3 x$ is $\sqrt{\text { a }}$ vertical stretch of $y x$, by $\sqrt{ }$ factor of 3 .
(e) $\mathrm{C} ; y \quad{ }_{x} \sqrt{ }$ is a reflection of $y \quad \sqrt[x]{ }$ across the x-axis.
(f) $\mathrm{A} ; y x \sqrt{3}$ is a shift of $y \quad x, \sqrt{ }$ 3 units to the right.
over the x-axis.
D; $y^{3} x \sqrt{\text { s a reflection of } y^{3} x, \text { over }}$ the y-axis.
(d) A; $y^{3} \sqrt{4}$ is a shift of $y^{3} x$, 4 units to the right.
(e) $\mathrm{B} ; y^{3} \sqrt{4}$ is a shift of $y^{3} \sqrt[x]{ }$ 4 units down.
13. (a) $\mathrm{B} ; y x^{2} 2$ is a shift of $y x^{2}$, 2 units upward.
(b) $\mathrm{A} ; y x^{2} 2$ is a shift of $y x^{2}$, 2 units downward.
(g) $\mathrm{H} ; y \sqrt{x 32}$ is a shift of $y \quad x \sqrt{ }$ 3 units to the right and 2 units upward.
(h) $\mathrm{F} ; y \sqrt{x 3} 2$ is a shift of $y x \sqrt{5}$ 3 units to the left and 2 units upward.
(i) I; y $\sqrt{x 3}$ 2is a shift of $y \quad x, \sqrt{ }$ 3 units to the right and 2 units downward.
15. (a) F; $\begin{array}{lll}y & x \mid 2 & \mid \text { is a shift of } y \quad x|\mid 2 \text { units }\end{array}$ to the right.
(b) C; $y \quad x|\mid 2$ is a shift of $y \quad x \quad| \mid 2$ units downward.
(c) $\mathrm{H} ; y x \mid \boldsymbol{2}$ is a shift of $y x \quad x \quad \mid 2$ units upward.

D; $y 2 x$ is a vertical stretch of $y x$ by a factor of 2 .

G; $y x \mid$ is a reflection of
χ d cross the x-axis.
(f) A; $y x \mid$ is a reflection of $y x$ across the y-axis.
E; $y 2 x \mid$ is a reflection of $y 2 x|\mid$
across the x-axis. $y 2 x$ is a vertical
stretch of $y x$ by a factor of 2 .
I; $y x \geq 2$ is d shift of $y x 2$ units to the right and 2 units upward.

B; y x|2 2 is a shift of $y<x \quad 2 \mid$ units to the left and 2 units downward.
16. The graph of $f x 2 \times 1^{3} 6 \quad$ is the graph
of $f x x^{3}$ stretched vertically by a factor of 2, shifted left 1 unit and down 6 units. fx $3 x$ ||

x	$h x x\|\mid$	$f x 3 x\|\mid$
-2	2	6
-1	1	3
0	0	0
1	1	3
2	\boldsymbol{y}	2

18.

x	$h \times x$	$f x 4 x$
-2	2	8
-1	1	4
0	0	0
1	1	4
2	2	8

0	0	0
1	1	$\frac{3}{4}$
2	2	$\frac{3}{2}$
3	3	9 4
4	4	3 (continued on next page)
2		

(continued)

$f x 2 x^{2}$

x	$h x x^{2}$	$f x 2 x^{2}$
-2	4	8
-1	1	2
0	0	0
1	1	2
2	y	8

fx $3 x^{2}$

x	$h x x^{2}$	$f x 3 x^{2}$
-2	4	12
-1	1	3
0	0	0
1	1	3
2	4	12

+

$$
f x \quad 1 x^{2}
$$

x	$h x x^{2}$	$f x^{-1} x^{2} 2$
-2	4	2
-1	1	$\frac{1}{2}$
0	0	0
1	1	$\frac{1}{2}$
2	4	2

f $x{ }^{1} x^{2} 3$

x	$h x x^{2}$	$f x^{-1} x^{2} 3$
-3	9	3
-2	4	$\frac{4}{3}$
-1	1	3 3
0	0	0
1	1	$\frac{3}{3}$ 2
3	9	$\frac{4}{3}$

fx $3 x$

x	$h x x\|\mid$	$f x 3 x\|\mid$
-2	2	-6
-1	1	-3
0	0	0
1	1	-3
2	2	-6

28. $f x 2 x|\mid$

x	$h x \times\\| \\|$	$f x 2 x\|\mid$
-2	2	-4
-1	1	-2
0	0	0
1	1	-2
2	2	-4

29. $h x^{1} x^{2} \mid$

(continued on next page)
(continued)

30.

x -3	$f x^{-1} x \mid 3$ 3	
-2	2	$\frac{2}{3}$
-1	1	$\frac{1}{3}$
0	0	0
1	1	$\frac{1}{3}$
2	2	$\frac{2}{3}$
3	3	1

31. $h x \quad \sqrt[4]{ }$

x	$f x \times \sqrt{\text { a }}$	hx
0	0	0
1	$\sqrt{ } 1$	Γ^{2}
2	2	$2^{\sqrt{2}}$

32. $h x \sqrt[9]{x}$

x	$f x \quad x \sqrt{5}$	$h x \sqrt[9]{ }-3 x$
0	0	0
1	1	3
2	$\sqrt{2}$	3
3	$\sqrt{ } 3$	3
4	2	6

33. $f x \sqrt[x]{ }$

x	$\begin{array}{cc} h x & x \\ & \sqrt{ } \\ \hline \end{array}$	$\begin{array}{cc} f x & x \\ & \sqrt{ } \end{array}$
-4	2	-2
-3	$\sqrt{3}$	${ }^{3}$
-2	$\sqrt{2}$	${ }^{2}$
-1	1	-1
0	0	0

34. $f x x \mid$

x	$h x x\|\mid$	$f x x\|\mid$
-3	3	-3
-2	2	$-\infty$
-1	1	-2
0	0	-1
1	1	0
2	2	-1
3	3	-2

35. (a) $y f x 4$ is a horizontal translation of f, 4 units to the left. The point that corresponds to $(8,12)$ on this translated function would be $84,124,12$.
$f x 4$ is a vertical translation of f, 4 units up. The point that corresponds to (8, 12) on this translated function would be 8,12 48,16 .
$\underline{1}_{4} f x$ is a vertical shrinking of f, by a factor of $\quad \frac{1}{}$. The point that corresponds
36. (a)
to
$(8,12)$ on this translated
function woūld be $8,{ }^{1} 4128,3$.
$4 f x$ is a vertical stretching of f, by a factor of 4 . The point that corresponds to $(8,12)$ on this translated function would be $8,4128,48$.
$y f(4 x) \quad$ "
by a factor of 4 . The point that corresponds to $(8,12)$ on this translated function is $8 \frac{1}{4}, 122,12$.
$f^{1} x$ is a horizontal stretching of f, by a factor 40 f 4 . The point that corresponds to $(8,12)$ on this translated function is $84,1232,12$.
(a) The point that corresponds to $(8,12)$ when reflected across the x -axis would be (8 , -12).

The point that corresponds to $(8,12)$ when reflected across the y-axis would be $(-8,12)$.
(a) The point that is symmetric to $(5,-3)$ with respect to the x-axis is $(5,3)$.
The point that is symmetric to $(5,-3)$ with respect to the y-axis is $(-5,-3)$.
The point that is symmetric to $(5,-3)$ with respect to the origin is $(-5,3)$.

(a) The point that is symmetric to $(-6,1)$ with respect to the x-axis is $(-6,-1)$.
The point that is symmetric to $(-6$,
$1)$ with respect to the y-axis is $(6,1)$.
The point that is symmetric to $(-6,1)$ with respect to the origin is $(6,-1)$.

(a) The point that is symmetric to $(-4,-2)$ with respect to the x-axis is $(-4,2)$.
The point that is symmetric to $(-4,-2)$ with respect to the y-axis is $(4,-2)$.
The point that is symmetric to $(-4,-$ $2)$ with respect to the origin is $(4,2)$.

Chapter 2 Graphs and Functions

(a) The point that is symmetric to $(-8,0)$
with respect to the x-axis is $(-8,0)$
because this point lies on the x-axis.
The point that is symmetric to the point
$(-8,0)$ with respect to the y-axis is $(8,0)$.
The point that is symmetric to the point ($8,0)$ with respect to the origin is $(8,0)$.

The graph of $y=|x-2|$ is symmetric with respect to the line $x=2$.

The graph of $y=-|x+1|$ is symmetric with respect to the line $x=-1$.
$y x^{2} 5$
Replace x with $-x$ to obtain
$(x)^{2} 5 x^{2} 5$. The result is the same as the original equation, so the graph is symmetric with respect to the y-axis. Because y is a function of x, the graph cannot be symmetric with respect to the x-axis. Replace with $-x$ and y with $-y$ to
obtain $y(x)^{2} 2 y x^{2} 2 y x^{2} 2$.
The result is not the same as the original equation, so the graph is not symmetric with
respect to the origin. Therefore, the graph is symmetric with respect to the y-axis only.
$y 2 x^{4} 3$

Replace x with $-x$ to obtain

$$
2(x)^{4} 32 x^{4} 3
$$

The result is the same as the original equation, so the graph is symmetric with respect to the y -
axis. Because y is a function of x, the graph cannot be symmetric with respect to the
x-axis. Replace x with $-x$ and y with $-y$ to
obtain - $y 2(x)^{4} 3$ y $2 x^{4} 3 y 2 x^{4} 3$. The result is not the same as the original
$x^{2} \quad y^{2} \quad 12$
Replace x with $-x$ to obtain
$(x)^{2} y^{2} 12 x^{2} y^{2} 12$.
The result is the same as the original equation, so the graph is symmetric with respect to the y axis. Replace y with $-y$ to obtain $x^{2}(y)^{2} 12 x^{2} y^{2} 12$
The result is the same as the original equation, so the graph is symmetric with respect to the x axis. Because the graph is symmetric with respect to the x-axis and y-axis, it is also symmetric with respect to the origin.
$y^{2} x^{2} 6$
Replace x with $-x$ to obtain
$y^{2} x^{2} 6 y^{2} x^{2} 6$
The result is the same as the original equation, so the graph is symmetric with respect to the y axis. Replace y with $-y$ to obtain
$(y)^{2} x^{2} 6 y^{2} x^{2} 6$
The result is the same as the original equation, so the graph is symmetric with respect to the x axis. Because the graph is symmetric with respect to the x-axis and y-axis, it is also symmetric with respect to the origin. Therefore, the graph is symmetric with respect to the x axis, the y-axis, and the origin.
$y 4 x^{3} x$
Replace x with $-x$ to obtain
3 3
$y 4(x) \quad(x) y 4(x) x$
$y 4 x^{3} x$.
The result is not the same as the original equation, so the graph is not symmetric with respect to the y-axis. Replace y with $-y$ to
obtain $y 4 x \quad x \quad y \quad 4 x \quad x$.
The result is not the same as the original equation, so the graph is not symmetric with respect to the x-axis. Replace x with $-x$ and y with $-y$ to obtain

$$
y 4(x)^{3}(x) y 4\left(x^{3}\right) x
$$

equation, so the graph is not symmetric with respect to the origin. Therefore, the graph is symmetric with respect to the y-axis only.

$y 4 x$		3		
	x	y	3	

The result is the same as the original equation, so the graph is symmetric with respect to the origin. Therefore, the graph is symmetric with respect to the origin only.
$y x^{3} x$
Replace x with $-x$ to obtain

$$
(x)^{3}(x) y x^{3} x
$$

The result is not the same as the original
equation, so the graph is not symmetric with respect to the y-axis. Replace y with $-y$ to
obtain $\begin{array}{lllllll}y & x & 3 & x & y & x & 3\end{array} x_{\text {. The result }}$
is not the same as the original equation, so the graph is not symmetric with respect to the x-axis. Replace x with $-x$ and y with $-y$ to obtain $y(x)^{3}(x) y x^{3} x y x^{3} x$. The
result is the same as the original equation, so
the graph is symmetric
with respect to the origin. Therefore, the graph is symmetric with respect to the origin only.
51. $y x^{2} x 8$

Replace x with $-x$ to obtain

$$
y(x)^{2}(x) 8 y x^{2} x 8
$$

The result is not the same as the original equation, so the graph is not symmetric with
respect to the y-axis. Because y is a function of x, the graph cannot be symmetric with respect to the x-axis. Replace x with $-x$ and y with $-y$
to obtain $y(x)^{2}(x) 8$
$y x^{2} x 8$ y $x^{2} x 8$.
The result is not the same as the original equation, so the graph is not symmetric with respect to the origin. Therefore, the graph has none of the listed symmetries.
52. $y=x+15$

Replace x with $-x$ to obtain $(x) 15$ y $x 15$.
The result is not the same as the original equation, so the graph is not symmetric with respect to the y-axis. Because y is a function of x, the graph cannot be symmetric with respect to the x-axis. Replace x with $-x$ and y with $-y$ to obtain $y(x) 15$ y x 15. The
result is not the same as the original equation,
so the graph is not symmetric with respect to the origin. Therefore, the graph has none of the listed symmetries.
fx $x^{5} 2 x^{3}$
$5 \quad 3$

$$
f x x \quad 2 x
$$

$$
\begin{array}{lllll}
x & 2 x & x & 2 x & f x
\end{array}
$$

The function is odd.
55. $f x \quad 0.5 x^{4} 2 x^{2} 6$

$$
\begin{array}{ll}
f x & 0.5 x^{4} 2 x^{2}{ }^{6} \\
0.5 x^{4} 2 x^{2} 6 & f x
\end{array}
$$

The function is even.
56. $f x 0.75 x^{2} \quad x 4$

The function is even.
$f x x^{3} x 9$
57.

$$
\begin{array}{rrrrr}
f x x^{3} x 9 & & \\
& & & \\
& & & \\
& & x 9 x & x 9 f x
\end{array}
$$

The function is neither.
58. $f x x^{4} 5 x 8$
fx $\begin{array}{ll}x^{4} 5 x 8\end{array}$

$$
x^{4} 5 x 8 f x
$$

The function is neither.
$f x x^{2} 1$
59.

This graph may be obtained by translating the
graph of $y y x^{2} \quad 1$ unit downward.

60.


```
y2
unit
dow
nwa
rd.
```

Chapter 2 Graphs and Functions
fx $x^{2} 2$
This graph may be obtained by translating the graph of $y x^{2} 2$ units upward.

fx $x^{2} 3$
This graph may be obtained by translating the graph of $y x^{2} 3$ units upward.

$g x x 4^{2}$
This graph may be obtained by translating the graph of $y x^{2} 4$ units to the right.

$g \times x 2^{2}$
This graph may be obtained by translating the graph of $y x^{2} 2$ units to the right.

$$
g \times x 2^{2}
$$

This graph may be obtained by translating the graph of $y x^{2} 2$ units to the left.

66. $g x x \quad 3^{2}$

This graph may be obtained by translating the graph of $y x^{2} 3$ units to the left.

The graph is obtained by translating the graph of $y x 1$ unit downward.

$\left.\begin{array}{lll}g & x & x\end{array}\right|^{2}$
This graph may be obtained by translating the graph of $y \times 3$ units to the left and 2 units upward.

$h x(x 1)^{3}$
This graph may be obtained by translating the graph of $y x^{3} 1$ unit to the left. It is then reflected across the x-axis.

$h x(x 1)^{3}$
This graph can be obtained by translating the graph of $y x^{3} 1$ unit to the right. It is then
reflected across the x-axis. (We may also reflect the graph about the x-axis first and then translate it 1 unit to the right.)

$h x 2 x^{2} 1$
This graph may be obtained by translating the graph of $y x^{2} 1$ unit down. It is then stretched vertically by a factor of 2 .

$h \times 3 x^{2} 2$
This graph may be obtained by stretching the graph of $y x^{2}$ vertically by a factor of 3 , then shifting the resulting graph down 2 units.

fx $2(x 2)^{2} 4$
This graph may be obtained by translating the
graph of $y x^{2} 2$ units to the right and 4 units down. It is then stretched vertically by a factor
of 2 .

fx $3(x 2)^{2} 1$
This graph may be obtained by translating the graph of $y x^{2} 2$ units to the right and 1 unit
up. It is then stretched vertically by a factor of

3 and reflected over the x-axis.

75. $f x$

This graph may be obtained by translating the graph $\mathrm{of} \sqrt{y} x$ two units to the left.

76. $f x \quad x 3$

This gra y be obtained by translating the graph of $y \sqrt{x}$ three units to the right.

77. $f x \quad x$

This graph may be obtained by reflecting the graph of $y \quad x$ cross the x-axis.

78. $f x$

This graph may be obtained by translating the graph of $y \sqrt{x}$ two units down.

79. $f x 2 \sqrt{x} 1$

This graph may be obtained by stretching the graph of $y \quad x \sqrt[{\sqrt{e r} t i c a l l y ~ b y ~ a ~ f a c t o r ~ o f ~ t w o} ~]{\text { a }}$
and then translating the resulting graph one unit up.
80. $f x 3 \quad x 2$

This graph-may be obtained by stretching the graph of $y \quad \begin{aligned} & x \\ & \text { vertically by a factor of }\end{aligned}$
three and then translating the resulting graph two units down.

$g x{ }^{\underline{1}} x^{3} 4$
This graph may be obtained by stretching the graph of $y x^{3}$ vertically by a factor of $\frac{1}{2}$,
then shifting the resulting graph down four units.

82. $g x^{1} x^{3} 2$

This graph may be obtained by stretching the graph of $y x^{3}$ vertically by a factor of 1 ,
then shifting the resulting graph up two units.

$g \times x 3^{3}$
This graph may be obtained by shifting the
graph of $y x^{3}$ three units left.

$f x \times 2^{3}$
This graph may be obtained by shifting the
graph of $y x^{3}$ two units right.

85. $f x \quad 2=2^{2}$

This graph may be obtained by translating the
graph of $y x^{2}$ two units to the right, then
stretching the resulting graph vertically by a factor of $\underline{2}$.

Because $g(x) x x f(x)$, the graphs are the same.
87. (a) $y=g(-x)$

The graph of $g(x)$ is reflected across the y-axis.

$y=g(x-2)$
The graph of $g(x)$ is translated to the right 2 units.

$y=-g(x)$
The graph of $g(x)$ is reflected across the x-axis.

$y=-g(x)+2$
The graph of $g(x)$ is reflected across the x-axis and translated 2 units up.

88. (a) $y f x$

The graph of $f(x)$ is reflected across the x-axis.

$$
y 2 f x
$$

The graph of $f(x)$ is stretched vertically by a factor of 2 .

$$
y f x
$$

The graph of $f(x)$ is reflected across
the y-axis.

$y_{-}^{1} f x$
The graph of $f(x)$ is compressed vertically by a factor of $\frac{1}{2}$.

It is the graph of $f x x$ translated 1 unit to
90. It is the graph of $g x$
x translated 4 units
to the left, reflected across the x-axis, and translated two units up. The equation is

$$
y \sqrt{x 42}
$$

91. It is the graph of $f x \quad \sqrt{x}$ translated one
unit right and then three units down. The equation is $y \sqrt{x 13}$.
92. It is the graph of $f x \quad x|\mid$ translated 2 units to the right, shrunken vertically by a factor of $\frac{1}{2}$, and translated one unit down. The
equation is $y \underset{2}{1} x|21$.
It is the graph of $g x \|$ translated 4 units
to the left, stretched vertically by a factor of 2 , and translated four units down. The equation is $y 2 \sqrt{x 44}$.

It is the graph of $\left.f x \quad x\right|_{\text {reflected across }}$
the x-axis and then shifted two units down. The equation is $y \quad x 2$.

Because $f(3)=6$, the point $(3,6)$ is on the graph. Because the graph is symmetric with respect to the origin, the point $(-3,-6)$ is on the graph. Therefore, $f(-3)=-6$.
Because $f(3)=6,(3,6)$ is a point on the graph. The graph is symmetric with respect to the y axis, so $(-3,6)$ is on the graph. Therefore, $f(-3)=6$.
97. Because $f(3)=6$, the point $(3,6)$ is on the graph. The graph is symmetric with respect to the line $x=6$ and the point $(3,6)$ is 3 units to
the left of the line $x=6$, so the image point of $(3,6), 3$ units to the right of the line $x=6$ is $(9,6)$. Therefore, $f(9)=6$.
98. Because $f(3)=6$ and $f(-x)=f(x), f(-3)=f(3)$. Therefore, $f(-3)=6$.
99. Because $(3,6)$ is on the graph, $(-3,-6)$ must also be on the graph. Therefore, $f(-3)=-6$.
100. If f is an odd function, $f(-x)=-f(x)$. Because $f(3)=6$ and $f(-x)=-f(x), f(-3)=-f(3)$. Therefore, $f(-3)=-6$.
the left, reflected across the x-axis, and translated 3 units up. The equation is $y \quad x \| 3$.
$f(x)=2 x+5$
Translate the graph of $f(x)$ up 2 units to obtain the graph of
$t(x)(2 \times 5) 22 \times 7$.
Now translate the graph of $t(x)=2 x+7$ left 3 units to obtain the graph of $g(x) 2(x 3) 72 x 672 x 13$.
(Note that if the original graph is first translated to the left 3 units and then up 2 units, the final result will be the same.)
$f(x)=3-x$
Translate the graph of $f(x)$ down 2 units to
obtain the graph of $t(x)(3 x) 2 x 1$.
Now translate the graph of $t x x 1$ right 3 units to obtain the graph of

$$
g(x)(x 3) 1 x 31 x 4
$$

(Note that if the original graph is first translated to the right 3 units and then down 2 units, the final result will be the same.)
(a) Because $f(-x)=f(x)$, the graph is
symmetric with respect to the y-axis.

Because $f(-x)=-f(x)$, the graph is symmetric with respect to the origin.

104. (a) $f(x)$ is odd. An odd function has a graph symmetric with respect to the origin. Reflect the left half of the graph in the origin.

$f(x)$ is even. An even function has a graph symmetric with respect to the y-axis.
Reflect the left half of the graph in the y axis. y

Chapter 2 Quiz
 (Sections 2.5-2.7)

1. (a) First, find the slope: $m \quad \frac{95}{1(3)} 2$

Choose either point, say, $(-3,5)$, to find the equation of the line:

$$
y 52(x(3)) y 2(x 3) 5
$$

2×11.
To find the x-intercept, let $y=0$ and solve for x : $02 \times 11 x \underline{11}$. The $2 x$-intercept is $\underline{11}, 20$.

Write $3 x-2 y=6$ in slope-intercept form to find its slope: $3 x 2 y 6 \quad y \quad-3 x$.
Then, the slope of the line perpendicular to this graph is $\underline{2}_{3} \cdot y 4^{\underline{2}}(x 3(6))$

$$
\begin{array}{lll}
y & \left.\underline{2}\binom{x}{3}\right) 4 & y
\end{array}
$$

3. (a) $x 8$
(b) $y 5$
4. (a) Cubing function; domain: (,) ; range: (,) ; increasing over (,) .
(b) Absolute value function; domain: (,) ; range: [0,) ; decreasing over $(, 0)$; increasing over $(0$,

Cube root function: domain: (,) ;
range: (,) ; increasing over (,) .

$$
f x \quad 0.40 x] 0.75
$$

$$
\begin{aligned}
& f 5.50 .405 .5] 0.75 \\
& 0.4050 .75 \quad 2.75
\end{aligned}
$$

A 5.5-minute call costs $\$ 2.75$.
6. $f(x)$

$$
\begin{array}{lrl}
x \sqrt{ } & \text { if } x & 0 \\
2 x 3 & \text { if } x & 0
\end{array}
$$

For values of $x<0$, the graph is the line $y=2 x+3$. Do not include the right endpoint
$(0,3)$. Graph the line $y \quad x$ f® $\sqrt{\text { values of }}$ $x \geq 0$, including the left endpoint $(0,0)$.

$f(x) x^{3} 1$
Reflect the graph of $f(x) x^{3}$ across the
x-axis, and then translate the resulting graph one unit up.

8. $f(x) 2 x|13|$

Shift the graph of $f(x) x|\mid$ one unit right,
stretch the resulting graph vertically by a factor of 2, then shift this graph three units up.

$f(x)=2|x-1|+3$
9. This is the graph of $g(x) \quad x$, translated
four units to the left, reflected across the x axis, and then translated two units down.
The equation is $y \quad \sqrt{x 42}$.
10. (a) $f x x^{2} 7$

Replace x with $-x$ to obtain
$x(x)^{2} 7 f$
$x x^{2} 7 f x$
The result is the same as the original function, so the function is even.
$f x x^{3} \quad x 1$
Replace x with $-x$ to obtain

$$
\begin{array}{rlrl}
f x & x^{3} & x & \\
& & \\
& x^{3} & x & 1 f x
\end{array}
$$

The result is not the same as the original equation, so the function is not even. Because $f x f x$, the function is
not odd. Therefore, the function is neither even nor odd.
$f x x^{101} x^{99}$
Replace x with $-x$ to obtain
$101 \quad 99$
$f x x$
x

X 101 X99

X 101 X99
$f x$
Because $f(-x)=-f(x)$, the function is odd.

Section 2.8 Function Operations and Composition

In exercises $1-10, f x \quad x 1$ and $g x x^{2}$.

1. $f g 2 f 2 g 2$

2
2127
2. $f g 2 f 2 g 2$
$212^{2} \quad 1$
3. $f g 2 f 2 g 2$
$212^{2} \quad 12$
Copyright © 2017 Pearson Education, Inc.

$$
\begin{aligned}
& \underline{f}_{2} \frac{f 2}{2} \frac{1}{g 2}-\frac{3}{2^{2}} 4 \\
& \text { 5. } f g 2 f g 2 f 2^{2} 2^{2} 15
\end{aligned}
$$

6. $g \square f 2 f 2 g 2121^{2} 9$
f is defined for all real numbers, so its domain is, .
g is defined for all real numbers, so its domain is, .
$f+g$ is defined for all real numbers, so its domain is , .
f
7. g is defined for all real numbers except those
values that make $g x 0$, so its domain is , $0 \square 0$,

In Exercises 11-18, $f(x) x^{2} 3$ and $g(x) 2 x 6$.
$(f g)(3) f(3) g(3)$
$232(3) 6$
12012
$(f g)(5) f(5) g(5)$
$\left[\begin{array}{ll}(5)^{2} & 3][2(5) 6]\end{array}\right.$
281644
$(f g)(1) f(1) g(1)$
$\left[\begin{array}{ll}(1)^{2} & 3][2(1)\end{array}\right]$
484
$(f g)(4) f(4) g(4)$
$\left[\begin{array}{ll}(4)^{2} & 3][2(4) 6]\end{array}\right.$
19 (2) 21
$(f g)(4) f(4) g(4)$
$\left[\begin{array}{ll}4^{2} & 3\end{array}\right][2(4) 6]$
19 (2) 38
$(f g)(3) f(3) g(3)$
$\left[\begin{array}{ll}(3)^{2} & 3][2(3) 6]\end{array}\right.$
1212144

17.
g
$g(1)$
2(1) 6
82
f Copyright © 2017 Pearson Education, Inc.

18. (5) 7
g $g(5) \quad 2(5) 6 \quad 4$
19. $f(x) 3 x 4, g(x) \quad 2 \times 5$ $\begin{aligned}(f g)(x) f(x) g(x) & \\ (3 x 4)(2 x 5) & 5 x 1\end{aligned}$

$$
2 x^{2} 3 x x^{2} x 3
$$

$$
x^{2} 2 \times 3
$$

Chapter 2 Graphs and Functions
(continued)
$(f g)(x) f(x) g(x)$
(x)

The domains of both f and g are the set of all real numbers, so the domains of $f+g$, $f-g$, and $f g$ are all, . The domain of
${ }_{g} f$ is the set of all real numbers for which
$g x 0$. If $x^{2} \times 30$, then by the quadratic formula $x^{1 i 11}$. The equadtion
has no real solutions. There are no real numbers which make the denominator zero.

Thus, the domain of f is also , . g

$$
g \quad g(x) \quad x^{2} 3 x 2
$$

The domains of both f and g are the set of all

$$
\begin{aligned}
& f(x) 4 x^{2} 2 x, g(x) x^{2} 3 x 2(f \\
& g)(x) f(x) g(x) \\
& \left(4 x^{2} 2 x\right)\left(\begin{array}{ll}
x^{2} & 3 x
\end{array}\right) \\
& 5 x^{2} \times 2 \\
& (f g)(x) f(x) g(x) \\
& \left(4 x^{2} 2 x\right)\left(\begin{array}{ll}
x^{2} & 3 x
\end{array}\right) \\
& 4 x^{2} 2 x x^{2} 3 x 2 \\
& 3 x^{2} 5 x 2 \\
& (f g)(x) f(x) g(x) \\
& \left(4 x^{2} 2 x\right)\left(x^{2} 3 x 2\right) \\
& 4 x^{4} 12 x^{3} 8 x^{2} 2 x^{3} 6 x^{2} 4 x \\
& 4 x^{4} 10 x^{3} 2 x^{2} 4 x \\
& \underline{f}_{(x)} \underline{f(x)} \quad \underline{4 x} \underline{22 x}
\end{aligned}
$$

$$
\begin{aligned}
& \left(2 x^{2} 3 x\right)\left(x^{2} x 3\right) \\
& 2 x^{4} 2 x^{3} 6 x^{2} 3 x^{3} 3 x^{2} 9 x \\
& 2 x^{4} 5 x^{3} 9 x^{2} 9 x \\
& g(x) \quad x_{2} \quad x 3
\end{aligned}
$$

23. $f(x) \sqrt{4 x 1, g}(x) \quad{ }^{1} \frac{}{x}$
$(f g)(x) f(x) g(x) \quad \sqrt{4}^{\frac{1}{1}} x$
$(f g)(x) f(x) g(x) \quad \sqrt{4 x 1}^{-1} x$
$(f g)(x) f(x) g(x)$

$g \quad g(x) \quad x^{-}$

Because $4 x 104 x \sqrt{x 4}$, the domain of f is ${ }^{1} 4$, . Thedomain of g is
00 , Considering the intersection of the domains of f and g, the domains of $f+g$,
$f-g$, and $f g$ are all $\perp \quad \perp$ 4, Because x 0
for any value of x, the domain of $\frac{f}{g}$ is also
$\perp_{4} \quad,$.
24. $f(x) \quad 5 \sqrt{x 4, g}(x) \stackrel{1}{-} x$

x
x
$(f g)(x) f(x) g(x)$

$(f g)(x) f(x) g(x)$

$$
\sqrt{5 x 4 \frac{1}{1}}-\underline{5 x 4}
$$

$x \quad x$

$$
f_{(x)} \stackrel{f(x)}{5 x}_{x}
$$

re
mbers, so the domains of $f+g, f-g$, $x^{2} 3 x 20$. Because and $f g$ are all, The domain of $\mathcal{L}_{\text {is the set of }}$
all real numbers x such that Copyright © 2017 Pearson Education, Inc.
$x^{2} 3 x 2(x 1)(x 2)$, the numbers which give this denominator a value of 0 are
$x=1$ and $x=2$. Therefore, the domain of ${ }^{f}$ is
the set of all real numbers except 1 and 2 , which is written in interval notation as
$(-, 1) \square(1,2) \square(2).$,
$g \quad g(x) \sqrt{x^{-}}$
Because $5 x 405 x 4 x \quad 4$, the domain of
f is ${ }^{4}$, . The domain of g is , 00 , Considering the intersection
of the domains of f and g, the domains of $f+g$,
$f-g$, and $f g$ are all $\stackrel{4}{4}$

$$
5, \ldots 0 \text { for any }
$$

$\underline{4}$

$$
5,
$$

$M 2008280$ and $F 2008$ 470, thus
T2008 M 2008 F 2008 280470750 (thousand).
$M 2012390$ and $F 2012$ 630, thus T
2012 M 2012 F 2012
3906301020 (thousand).

Looking at the graphs of the functions, the slopes of the line segments for the period 2008-2012 are much steeper than the slopes of the corresponding line segments for the period 2004-2008. Thus, the number of associate's degrees increased more rapidly during the period 2008-2012.

If $2004 k 2012, T(k) r$, and $F(k)=s$, then $M(k)=\underline{r}=\underline{s}$.
$T S 2000 T 2000 S 2000$
19136
It represents the dollars in billions spent for general science in 2000.
$T G 2010 T 2010 G 2010$
291118
It represents the dollars in billions spent on space and other technologies in 2010.

Spending for space and other technologies
spending decreased in the years 1995-2000 and 2010-2015.

Total spending increased the most during the years 2005-2010.
33. (a) $f g 2 f 2 g 2$

$$
422
$$

$(f g)(1) f(1) g(1) 1(3) 4$
$(f g)(0) f(0) g(0) 0(4) 0$
(d) $f_{(1)}^{\underline{f(1)}-1}$
$g \quad g(1) \quad 3 \quad 3$
(a) $(f g)(0) f(0) g(0) 022$
(b) $(f \quad g)(1) f(1) g(1)$ 213
(c) $(f g)(1) f(1) g(1) 212$
(d) $f_{(2)} \xrightarrow{f(2)}-4 \quad 2$

$$
g(2) \quad 2
$$

35. (a) $(f g)(1) f(1) g(1) 03 \quad 3$
(b) $\quad(f g)(2) f(2) g(2)$

145
(c) $(f g)(0) \quad f(0) g(0) 122$
(d) $\frac{f}{g}$ (2) $\frac{f(2)}{g(2)}_{3}^{3}$ undefined
36. (a) $(f g)(1) f(1) g(1) 31 \quad 2$
$(f g)(0) f(0) g(0) 202$
(c) $(f g)(1) f(1) g(1) 3(1) 3$
(d)
$\begin{array}{lll}f & \underline{f(1)} & \frac{3}{3} \\ (1) & & \\ g & g(1) & 1\end{array}$
(a) $f g 2 f 2 g 2725$
$(f g)(4) f(4) g(4) 1055$
$(f g)(2) f(2) g(2) 060$
(d) $f_{(0)} f(0) \underline{5}_{\text {undefined }}$

$$
g(0) \quad 0
$$

(a) $f g 2 f 2 g 2549$
$(f g)(4) f(4) g(4) 000$
$(f g)(2) f(2) g(2) 428$
(d) $\quad f \quad \underset{(0)}{\underline{f(0)} \underline{8}} 8$
$g \quad g(0) \quad 1$
39.

x	$f x$	$g x$	f	$f \quad g x$	$f g x$	
-2	0	6	066	066	060	$6_{6}^{0} 0$
0	5	0	505	505	500	$\frac{5}{0} \text { undefined }$
2	7	-2	725	729	$72 \overline{14}$	$\begin{array}{ll}7 & \\ \frac{7}{2} & 3.5\end{array}$
4	10	5	10515	1055	10550	$\frac{10}{5}^{0} 2$
x	$f x$	$g x$	$f g x$	$f \quad g x$	$f g x$	$\begin{aligned} & f_{x} \\ & g \end{aligned}$
-2	-4	2	422	426	428	${ }_{2}^{4} 2$
0	8	-1	817	819	818	$\begin{array}{cc} \hline \overline{8} & 8 \\ 1 & \\ \hline \end{array}$
2	5	4	549	541	5420	$\frac{5}{4} \quad 1.25$
4	0	0	000	000	000	$\frac{0}{0}$ undefined
Answers may vary. Sample answer: Both the slope formula and the difference quotient						

represent the ratio of the vertical change to the horizontal change. The slope formula is stated for a line while the difference quotient is stated for a function f.
42. Answers may vary. Sample answer: As h approaches 0 , the slope of the secant line $P Q$ approaches the slope of the line tangent of the curve at P.
(a) $f(x h) 6(x h) 26 x 6 h 2$
(b) $f(x h) f(x)$ (6x6h2) (6x2)
$6 x 6 h 26 x 26 h$
(c) $\frac{f(x h)}{h} \cdot f(x)-6$
43. $f x 2 x$
(a) $f(x h) 2(x h) 2 x h$
(b) $f(x h) f(x)(2 x h)(2 x)$
$2 x h 2 x h$

$f(x h) f(x) \underline{h}$

(c)

1
$h \quad h$
44. $f x \quad 1 x$
$f(x h) 1(x h) 1 x h$
$f(x h) f(x)(1 x h)(1 x) 1 x$ $h 1 x h$

$f(x h) f(x) \underline{h}$

(c)
$h \quad 1_{h}$
46. $f x 4 x 11$
(a) $f(x h)$ 4($x h) 114 x 4 h 11$
(b) $f(x h) f(x)$

$$
(4 x 4 h 11)(4 x 11)
$$

$$
4 x 4 h 114 x 114 h
$$

$$
\text { (c) } \frac{f(x h) f(x) 4 h}{h} 4_{h}
$$

47. $f x 2 x 5$

$$
\begin{gathered}
f(x h) 2(x h) 52 x \\
2 h 5 \\
f(x h) f(x)
\end{gathered}
$$

$$
(2 \times 2 h 5)(2 \times 5)
$$

$$
2 x 2 h 52 x 52 h
$$

(c) $\quad h \quad 2 h$
$f(x) 4 x 2$

$$
\begin{gathered}
f(x h) 4(x h) 2 \\
4 x 4 h 2 \\
f(x h) f(x)
\end{gathered}
$$

$$
4 x 4 h 24 x 2
$$

$$
4 x 4 h 24 \times 2
$$

$$
4 h
$$

(c) $-\frac{f(x h) f(x)}{h} \frac{4 h}{h} 4$

1
49. $f(x) x$
(a) $f(x h) \frac{1}{x h}$

$$
f(x h) f(x)
$$

$$
]_{h} x^{1}
$$

\qquad
$x \times h$

(c)

$$
\frac{f(x h) f(x) \frac{x x h}{h} \frac{h}{h x x h}}{\frac{1}{x h}}
$$

50. $f(x)$
-1

$$
x^{2}
$$

(a) $f(x h)$

(b) $f(x h) f(x)$

$$
\begin{aligned}
& -1-\frac{1}{1} \underline{x}^{2} x h^{2} \\
& x h^{2} x^{2} \quad x^{2} x h^{2} \\
& \underline{\underline{x^{2}} x^{2}} \underline{x^{2} x h^{2}} \underline{h^{2}} \quad \underline{2 x h h^{2}} \\
& x^{2} x h^{2}
\end{aligned}
$$

$$
f(x h) \underline{f(x)} \underline{x} \underline{x h} \frac{2 x h h^{2}}{2 \underline{2} x h h^{2}}---\underbrace{}_{2}
$$

$$
\begin{aligned}
& f(x h)(x h)^{2} \quad x^{2} \quad 2 x h h^{2} \\
& f(x h) f(x) x^{2} 2 x h h^{2} x_{2}^{2}
\end{aligned}
$$

$2 x h h$
(c) $\frac{f(x h) f(x) \quad 2 x h h-\frac{2}{2}}{h}$ $\frac{h(2 x h)}{h}$ $2 x h$
52. $f(x) x^{2}$

$$
\begin{aligned}
f(x h)(x h) & \\
& 2 x h h^{2} \\
& 22 x h h^{2}
\end{aligned}
$$

(b) $f(x h) f(x) x$
$22 x h h^{2} x$
$x^{2} 2 x h h^{2} x^{2}$ $2 x h h^{2}$
(c) $\underline{f(x h) f(x) \quad \underline{2 x h h^{2}}}$

53. $f(x) 1 x$

$$
\begin{aligned}
& f(x h) 1(x h) \\
& 1\left(x^{2} 2 x h h^{2}\right)
\end{aligned}
$$

$1 x{ }^{2} 2 x h h^{2}$
$f(x h) f(x)$

$$
\begin{aligned}
& \left(1 x^{2} \underset{2}{2} x h h^{2}\right)\left(\underset{2}{2}\left(1 x^{2}\right)\right. \\
& 1 x \quad 2 x h h \quad 1 x
\end{aligned}
$$

$2 x h h^{2}$
(c) $\frac{f(x h)}{h} \cdot \frac{f(x)}{h} \frac{2 x h h^{2}}{h}$ $\underline{h(2 x h)}$
(c) $\begin{array}{lll}h & h-\overline{2}{ }^{2} & f(x) 12 x^{2}\end{array}$

$$
\begin{gathered}
h x^{2} x h^{2} \\
\frac{2 x h}{x}=- \\
=x h^{2}
\end{gathered}
$$

(a) $f(x h) 12(x h)^{2}$
$12(x \quad 2 x h h)$
$12 x^{2} 4 x h 2 h^{2}$
(b) $f(x h) f(x)$

$$
\begin{aligned}
& 12 x^{2} 4 x h 2 h^{2} 12 x^{2} \\
& 12 x^{2} 4 x h 2 h^{2} 12 x^{2} \\
& 4 x h 2 h^{2}
\end{aligned}
$$

$$
f(x h) f(x) \quad 4 x h 2 h^{2}
$$

(c) \qquad

$$
4 \times 2 h
$$

$$
f(x) x^{2} 3 x 1
$$

$$
f(x h) x h^{2} 3 x h 1
$$

$$
22 x h h^{2} 3 x 3 h 1
$$

$$
f(x h) f(x)
$$

$$
22 x h h^{2} 3 x 3 h 1
$$

$$
22 x h h^{2} 3 x 3 h 1 x^{2} 3 x 12
$$

$x h h^{2} 3 h$ $f(x h) f(x) \quad 2 x h h^{2} 3 h$
(c) $\frac{f}{h} \frac{}{h}$

$$
\begin{aligned}
& \frac{h(2 x h 3)}{h} \\
& 2 \times h 3
\end{aligned}
$$

58. $g x \times 3 g 2231$

$$
f \square g 2 f g 2 f 1
$$

$$
213231
$$

59. $g x \times 3 \ln 235$

$$
f \square g 2 f g 2 \quad f 5
$$

2531037
60. $f x 2 x 3 \quad f 3233633$

$$
g \square 3 g \quad f 3 \quad g 3330
$$

61. $f x 2 x 3 f 0203033$

$$
g \square f 0 g \quad f 0 \quad g 3
$$

33336
62. $f x 2 \times 3 f 22237$

$$
\begin{array}{r}
g \square f 2 g f 2 g 7 \\
737310
\end{array}
$$

63. $f x 2 x 3 f 2223431$
$f \square f 2 f \quad f 2 \quad f 12131$
64. $g x x 3 \operatorname{g} 2235$
$g \square 2 g g 2 \quad g 5532$
65. $f(x) x^{2} 4 \times 2$
(a) $\quad f(x h) x h^{2} 4 x h 2$ $x^{2} 2 x h h^{2} 4 x 4 h 2$

$$
f(x h) f(x)
$$

$$
2 x h h^{2} 4 x 4 h 2
$$

$$
24 \times 2
$$

$$
22 x h h^{2} 4 x 4 h 2 x^{2} 4 x 2
$$

$$
2 x h h^{2} 4 h
$$

(c) $\frac{f(x h) f(x)}{h} \frac{2 x h h^{2} 4 h}{h}$
65. $(f \square g)(2) f[g(2)] f(3) 1$
66. $(f \square g)(7) f[g(7)] f(6) \quad 9$
67. $(g] f)(3) g[f(3)] g(1) \quad 9$ $2 x h 4$

Copyright
68. $(g])(6) g[f(6)] \quad g$ (9) 12
69. $(f \square f)(4) f[f(4)] f$
(3) 1
70. $(g$ g)(1) $g[g(1)] g(9)$

12
71. $(f \square g)(1) f[g(1)] f(9)$ However, $f(9)$ cannot be determined from the table given.
72. $(g)(f \quad g))(7) \quad g(f(g$
(7)))
$g(f(6))$
$g(9) 12$
73. (a) $(f g)(x) f(g(x))$ $f(5 \times 7)$
© 2017 Pearson Education, Inc.
57. $g x \times 3 g 4431$

The domain and range of both f and g are $($,$) , so the domain of f g$ is (,) .
$(g \square f)(x) g(f(x)) g(6 x 9)$

$$
\begin{aligned}
& 5(6 x 9) 7 \\
& 30 \times 45730 x 52
\end{aligned}
$$

The domain of $g \square f$ is (,).
74. (a) $(f \square g)(x) \quad f(g(x)) \quad f(3 x 1)$ $8(3 x 1) 12$
$24 x 81224 x 4$

The domain and range of both f and g are $($,$) , so the domain of f g$ is
(,) .
$(g \square f)(x) g(f(x)) g(8 x$
12) $3(8 x 12) 1$
$24 \times 36124 \times 35$

The domain of $g \rrbracket f$ is (,).
75. (a) $(f g)(x) f(g(x)) f(x 3) \quad \sqrt{x 3}$

The domain and range of g are (,), however, the domain and range of f are $[0$,$) . So, x 30 \times 3$.

Therefore, the domain of $f \square g$ is
[3,).
(b) $(g f)(x) g(f(x)) g \quad \sqrt{x} \quad \sqrt{x} 3$

The domain and range of g are (,), however, the domain and range of f are $[0$,$) .Therefore, the domain of g \square f$ is $[0$,$) .$
76. (a) $(f g)(x) f(g(x)) f(x 1)$

The domain and range of g are (,),
however, the domain and range of f are $[0$,$) . So, x 10 \times 1$. Therefore,
the domain of $f \square \quad$ is $[1$,$) .$
(b) $\begin{aligned} & (g f)(x) g(f(x)) g \quad \sqrt{x} \quad \sqrt{x} 1\end{aligned}$

The domain and range of g are (,),
however, the domain and range of f are

$$
\begin{gathered}
(g f)(x) g(f(x)) g\left(x^{3}\right) \\
x^{3} \quad 3 x^{3} \quad 1 \\
x^{6} 3 x^{3} 1
\end{gathered}
$$

The domain and range of f and g are $($,$) , so the domain of g f$ is
(,).
78. (a) $(f)(x) f(g(x)) f\left(\begin{array}{ll}x^{4} & \left.x^{2} 4\right)\end{array}\right.$

$$
\begin{array}{cc}
x^{4} \quad x^{2} 42 \\
x^{4} & x^{2} 2
\end{array}
$$

The domain of f and g is (,), while the range of f is $($,$) \quad and the range of$ g is 4 , , so the domain of $f \square g$ is
(,).
(b) $(g \square f)(x) g(f(x)) g(x 2)$

$$
(x 2)^{4}(x 2)^{2} 4
$$

The domain of f and g is (,), while
the range of f is $($,$) \quad and the range of$
g is 4 , , so the domain of g is (,).
79. (a) $(f g)(x) f(g(x)) f(3 x) \quad \sqrt{3 x 1}$

The domain and range of g are (,), however, the domain of f is $[1$,$) , while$ the range of f is $[0$,). So, $3 \times 10 \times \stackrel{1}{3}$. Therefore, the
domain of $\quad f \square \quad g$ is ${ }^{1}$
(b)

$$
3, .
$$

$$
\begin{gathered}
\left(g^{\square} f\right)(x) g(f(x)) g \sqrt{x 1} \\
\sqrt{1}
\end{gathered}
$$

The domain and range of g are (,), however, the range of f is $[0$,$) . So$
$x 10 \times 1$. Therefore, the domain of $g \square$ is [1,).
$[0$,$) . Therefore, the domainCopyrif g$ ht f ©is2017 Pearson Education, Inc.
80. (a) $(f g)(x) f(g(x)) f(2 x) \quad 2 \times 2$

The domain and range of g are (,), however, the domain of f is $[2$,$) .$ So, $2 \times 20 \times 1$. Therefore, the domain of $f \square g$ is 1 , .
(b) $(g \square f)(x) g(f(x)) g \quad x 2$

The domain and range of g are (,), however, the range of f is $[0$,$) . So$
$x 20 x 2$. Therefore, the domain
of $g \square f$ is [2,).
(a) $(f g)(x) f(g(x)) f(x 1)^{2}$ \qquad
The domain and range of g are (,), however, the domain of f is $(, 0) \square(0,) . S o, x 10 x 1$.

Therefore, the domain of $f g$ is
$(, 1)(1$,$) .$
(b) $(g \square f)(x) g(f(x)) g^{2}-\quad{ }^{2} 1$

The domain and range of f is $(, 0)(0$,$) , however, the domain$ and range of g are $($,$) . So x 0$.

Therefore, the domain of $g \square f$ is $(, 0)(0$,$) .$
82. (a) $\quad(f \square g)(x) f(g(x)) f(x 4) \xrightarrow{4}$

The domain and range of g are (,), however, the domain of f is
$(, 0)(0$,$) . So, x 40 \times 4$. Therefore, the domain of $f g$ is (, 4) $\square(4$,$) .$
(b) $(g \square f)(x) g(f(x)) g^{4} \underline{4}_{x} 4_{x}$

The domain and range of f is $(, 0)(0$,$) , however, the domain$ and range of g are (,). So $x 0$.
(b) $(g f)(x) g(f(x)) g \quad x 2 \quad \frac{1}{\sqrt{x^{2}}}$

The domain of f is [2,) and its range is $[0$,$) . The domain and range of g$ are $(, 0) \square(0$,$) . So x 20 \quad x 2$.

Therefore, the domain of $g \square f$ is $(2$,$) .$
84. (a) $\quad(f \square g)(x) f(g(x)) f^{\underline{2} \quad \underline{2} 4}$

The domain and range of g are $(, 0) \square(0$,$) , however, the domain of f$ is $[4).$, So, $\stackrel{2}{-} 40 x$

1
$x 0$ or $x 2$ (using test intervals).

Therefore, the domain of $f \square g$ is

(b) $(g f)(x) g(f(x)) g \quad x 4 \quad-\frac{2}{\sqrt{x 4}}$ The domain of f is [4,) and its range is $[0$,$) . The domain and range \square \square$
are $(, 0)(0).$, So $x 40 \times 4$.

Therefore, the domain of $g \square$ is (4,).

85. (a) $(f \quad g)(x) f(g(x)) f x 5 \quad x 5$

The domain of g is $(, 5) \quad(5$,$) ,$ and the range of g is $(, 0)(0$,$) . The$ domain of f is $[0$,$) . Therefore, the$ domain of $f g$ is 5, .
(b) $(g f)(x) g(f(x)) g \quad x \quad \frac{1}{x 5}$

The domain $\sqrt{ }$ and range of f is $[0$,$) . The$ domain of g is $(, 5) \quad(5$,$) .$

Therefore, the domain of $g \quad f$ is $[0$,).
domain of $g \square f$ is
$(, 0)(0$,$) .$
_-3
83. (a) $(f \square g)(x) f(g(x)) f^{\perp} \quad \underline{1} \quad 2$

The domain and range of g are $(, 0) \square(0$,$) , however, the domain of f$
is $[2,) . S o, 120$
$x 0$ or $x{ }_{2} \frac{1}{-}$ (using test intervals).

Therefore, the domain of $f \square g$ is

$$
, 0 \quad \frac{1}{2}, .
$$

$$
(f \square g)(x) f(g(x)) f x_{6} \quad \sqrt{x 6}
$$

The domain of g is $(, 6) \square(6$,$) , and the$ range of g is $(, 0)(0$,$) . The domain of f$ is $[0$,$) . Therefore, the$
domain of $f \curvearrowleft g$ is 6 , .
(b) $(g f)(x) g(f(x)) g$

The domain and range of f is $[0$,$) . The$ domain of g is $(, 6) \square(6$,$) .$

Therefore, the domain of $g \square f$ is $[0$,).
87. (a) $(f \square g)(x) f(g(x)) f^{1}-\frac{1}{-}$

```
    1/x212x
```

The domain and range of g are $(, 0) \square(0$,$) . The domain of f$ is
$(, 2) \square(2$,$) , and the range of f$ is
(, 0) (0,). So, $12 x \quad \theta \quad x 0$ or
$0 x^{1} \overline{2}$ or $x^{1} \frac{1}{2}$ (using test intervals).
Thus, $\quad x 0$ and $x \leq$. Therefore, the domain of $f \square g$ is

$$
, 0 \quad \stackrel{1}{2}_{\square_{2}}^{\underline{1}} 2,
$$

(b) $\quad(g \square f)(x) g(f(x)) g$ -.

$$
x 2 \quad 1(x 2)
$$

2
The domain and range of g are
$(, 0)(0$,$) . The domain of f$ is $(, 2)(2$,$) ,$ and the range of f is $(, 0)(0$,$) . Therefore,$ the domain of

$$
g \square f \text { is }(, 2) \square(2,) .
$$

88. (a) $(f \square g)(x) f(g(x)) f^{1}-1$

$$
-\frac{x}{14} \bar{x} \quad x \quad 1 x 4
$$

The domain and range of g are $(, 0) \square(0$,$) . The domain of f$ is
$(, 4) \square(4$,$) , and the range of f$ is

$$
(, 0)^{-\underline{x}_{-}}(0,) . \text { So, } \quad 14 x \quad 0 \times 0
$$

or $0 x \underline{1}_{4}$ or $14 x 0 \times \xrightarrow{1}$
(using test intervals). Thus, $x \neq 0$ and $x \neq{ }_{4}^{1}$. Therefore, the domain of $f_{\square} g$ is

$$
, 0 \square \quad 0, \frac{1}{4} \square^{\frac{1}{4}} 4,
$$

$$
x 4 \quad 1((x 4)
$$

(b)
$(g \square f)(x) g(f(x)) g \longrightarrow$
$f(x)$ is odd, so $f(1) f(1)(2) 2$.

Because $g(x)$ is even, $g(1) g(1) 2$ and
$g(2) g(2) \quad 0 . \quad(f \square g)(1) 1$, so
$f g(1) 1$ and $\quad f(2) 1 . f(x)$ is odd, so
$f(2) f(2) \quad$. Thus,
$(f \square g)(2) f g(2) f(0) \quad 0$ and
$(f \square g)(1) \quad f g(1) f(2) 1$ and
$(f \square g)(2) f g \underline{(2)} f(0) \quad 0$.

	x	-2	-1	0	1
2					
$f x$	$\mathbf{- 1}$	$\mathbf{2}$	0	-2	$\mathbf{1}$
$g x$	0	2	1	$\mathbf{2}$	$\mathbf{0}$
$f g x$	$\mathbf{0}$	1	-2	$\mathbf{1}$	$\mathbf{0}$

Answers will vary. In general, composition of functions is not commutative. Sample answer:

$$
g x f 2 x 332 x 32
$$

$$
6 \times 926 \times 11
$$

$\square g x \quad g 3 x 2 \quad 23 x 23$

$$
6 x 436 \times 7
$$

Thus, $f g x$ is not equivalent to $g \square f x$.
92. $f g x g x f^{3} x 7$

$$
\begin{align*}
& x 77 x \\
& g \square x \text { gfx } g x^{3} \tag{7}
\end{align*}
$$

93. $f g x f g x$
$x 4$
The domain and range of g are $(, 0)(0$,$) . The domain of f$ is
$(, 4)(4$,$) , and the range of f$ is

$$
\begin{gathered}
4 \underline{1}-x 422 \\
x 22 x 22 \\
g \text { frxgfx } \\
-4 x 22
\end{gathered}
$$

$$
{\underset{4}{1}}_{4} \times 22 \quad 4 x \quad x \quad 4
$$

94. f gfgx 3

$$
\begin{aligned}
& 3 \underline{1} x x \\
& g^{\square} f x \operatorname{gfx}{ }^{1} 3_{3} \underline{3} x
\end{aligned}
$$

$$
33 x^{1} x
$$

Chapter 2 Graphs and Functions

95. $f g x f g x 5 ^ { 1 } x ^ { 3 } - 4 \longdiv { 5 }$
${ }^{3} x^{3} 44{ }^{3} x^{3} \quad x$

$f x 3 x, g x 1760 x$

$$
f g x \quad f g x \quad f 1760 x
$$

$31760 x 5280 x$
g x compute the number of feet in x
miles.

$$
\begin{aligned}
& \quad 3 \quad \sqrt{ } \\
& (x) \quad x^{2} 4
\end{aligned}
$$

96. $f g x f g x$

$$
\begin{array}{llllll}
3 & x^{3} & 1 & 1 & 3 & x^{3}
\end{array} \quad x
$$

$\begin{array}{llllll}g & f x g & f x & 3 & x & 1\end{array}$

$$
x 11 x
$$

In Exercises 97-102, we give only one of many possible answers.

$$
\begin{aligned}
& h(x)(6 x 2)^{2} \\
& \text { Let } g(x)=6 x-2 \text { and } \\
& \qquad f(x) x^{2} . \\
& \quad(f \square g)(x) f(6 x 2)(6 x 2)^{2} h(x)
\end{aligned}
$$

$$
h(x)\left(11 x^{2} 12 x\right)^{2}
$$

Let $g(x) 11 x^{2} \quad 12 x$ and $f(x) x^{2}$.
$(f \square g)(x) f\left(11 x^{2} \quad 12 x\right)$ $\left(11 x^{2} 12 x\right)^{2} h(x)$
$h(x) \quad x^{2} \sqrt{1}$
Let $g(x) x^{2} 1$ and $f(x) x \cdot \sqrt{ }$
$(f g)(x)$
$\sqrt{f\left(x^{2} 1\right)} x^{2} 1 h($
$x)$.

Let $g(x) 2 x 3$ and $f(x) x^{3}$. $(f \square g)(x) f(2 \times 3)(2 \times 3)^{3} h(x)$
$h(x)(2 x 3)^{3}$
($\quad r)(t)$ defines the area of the leak in terms of the time t, in minutes.
(3) $16(3)^{2} 144 \mathrm{ft}^{2}$

It defines the area of the circular layer in terms of the time t, in hours.
(c) $(\square \square r)(4) 4(4)^{2} 64 \mathrm{mi}^{2}$
(a) $(\square \quad r)(t) \quad[r(t)]$
101. $h(x) \quad\left(\begin{array}{l}(2 t)(2 t) \quad \\ \sqrt{6 x} 12\end{array}\right.$

Let $x=$ the number of people less than 100 people that attend.
x people fewer than 100 attend, so $100-x$ people do attend $N(x)=100-x$ The cost per person starts at $\$ 20$ and increases by $\$ 5$ for each of the x people that do not attend. The total increase is $\$ 5 x$, and the cost per person increases to $\$ 20+\$ 5 x$. Thus, $G(x)=20+5 x$. $C(x) N(x) G(x)(100 x)(205 x)$
(d) If 80 people attend, $x=100-80=20$.

C201002020520
8020100
$80120 \$ 9600$
110. (a) $y_{1} 0.02 x$
$y 20.015(x 500)$
$y_{1} y 2$ represents the total annual interest.
$\left(\begin{array}{ll}y_{1} & y_{2}\end{array}\right)(250)$
$y_{1}(250) y_{2}(250)$
0.02(250) 0.015(250500)
$50.015(750) 1511.25$
$\$ 16.25$
$\underline{1}$
111. (a) $g x \quad x_{2}$
$f x \times 1$

$$
\begin{aligned}
& f \square g x f g x f^{1_{x}} \underline{1}_{x 1} \\
& \underline{1} \\
& f \square g 60 \quad 6012 \$ 31
\end{aligned}
$$

If the area of a square is x^{2} square inches, each side must have a length of x inches. If 3 inches is added to one dimension and 1 inch is subtracted from the other, the new dimensions will be $x+3$ and $x-1$. Thus, the area of the resulting rectangle is $\square(x)=(x+3)(x-1)$.

Chapter 2 Review Exercises

$$
\begin{aligned}
& P(3,-1), Q(-4,5) \\
& d(P, Q) \quad \sqrt{(43)^{2}[5(1)]^{2}} \\
& \\
& \sqrt{(7)^{2} 6^{2}} \sqrt{4936} 85 \sqrt{ }
\end{aligned}
$$

3. $A(-6,3), B(-6,8)$

$$
\begin{aligned}
& d(A, B) \quad \sqrt{[6(6)]^{2}(83)^{2}} \\
& \sqrt{05^{2}} \sqrt{25} 5 \\
& \text { Midpoint: } \\
& 6(6), \underline{38} \quad 12 \quad 6,11
\end{aligned}
$$

$$
\begin{array}{lll}
2 & 22 & 2
\end{array}
$$

2

Label the points $A(5,7), B(3,9)$, and $C(6,8)$.

Because $\quad 8^{2} \quad \sqrt{2}_{2}{ }^{2} \quad 10^{2}$, triangle
$A B C$ is a right triangle with right angle at $(5,7)$.

Let B have coordinates (x, y). Using the midpoint formula, we have

$$
8,2 \underline{6 x} \underset{2}{\underline{10 y}}
$$

$\underline{6 x} \quad 8 \quad \underline{10 y} 2$

Midpoint:
$\frac{3(4)}{\text { Inc. }} \underset{15}{1} \quad \underset{, 2}{1}$ Copyright © 2017 Pearson Education, Inc. , , , 2

The coordinates of B are $(22,-6)$.

28464

(continued on next page)

Chapter 2 Graphs and Functions (continued)
$d(P, Q) d(Q, R) 31 \square 17 \sqrt{ }$
$\square d(P, R)$, so these three points are
collinear.

Center $(-2,3)$, radius 15

$$
\begin{gathered}
(x h)^{2}(y k)^{2} r^{2} \\
{[x(2)]^{2}(y 3)^{2} 15^{2}} \\
(x 2)^{2}(y 3)^{2} 225
\end{gathered}
$$

$$
\begin{array}{rcc}
x \sqrt{5}^{2} y & \sqrt{7}^{2} & \sqrt{2} \\
& \sqrt{2}^{2} & \\
x & y & 7
\end{array}
$$

Center $(-8,1)$, passing through $(0,16)$
The radius is the distance from the center to any point on the circle. The distance
between $(-8,1)$ and $(0,16)$ is

$$
\begin{aligned}
r\left(8 \sqrt{(8))^{2}(16} 1\right)^{2} & \sqrt{8^{2} 15^{2}} \\
\quad \sqrt{64225} & \sqrt{289} 17
\end{aligned}
$$

The equation of the circle is

$$
\begin{aligned}
& {[x(8)]^{2}(y 1)^{2} 17^{2}} \\
& \quad(x 8)^{2}(y 1)^{2} 289
\end{aligned}
$$

Center $(3,-6)$, tangent to the x-axis

The point $(3,-6)$ is 6 units directly below the x-axis. Any segment joining a circle's center to a point on the circle must be a radius, so in this case the length of the radius is 6 units.

$$
\begin{gathered}
(x h)^{2}(y k)^{2} r^{2} \\
(x 3)^{2}[y(6)]^{2} 6^{2}
\end{gathered}
$$

The center of the circle is $(5,6)$. Use the distance formula to find the radius:

$$
r^{2} \quad(45)^{2}(96)^{2} 1910
$$

The equation is $(x 5)^{2}(y 6)^{2} 10$.

$$
x^{2} 4 x y^{2} 6 y 120
$$

Complete the square on x and y to put the equation in center-radius form.

$$
x^{2} 4 x y^{2} \quad 6 y 12
$$

$$
\begin{array}{r}
x^{2} 4 x 4 y^{2} 6 y 91249 \\
\\
x 2
\end{array} \quad \begin{array}{lll}
2 & & \\
& y 3 & 1
\end{array}
$$

The circle has center $(2,-3)$ and radius 1 .
$x^{2} 6 x y^{2} 10 y 300$

Complete the square on x and y to put the equation in center-radius form.

$$
\begin{gathered}
\left(\begin{array}{ll}
x^{2} & 6 x 9
\end{array}\right)\left(y^{2} 10 y 25\right) 30925 \\
(x 3) \quad(y 5)
\end{gathered}
$$

The circle has center $(3,5)$ and radius 2 .

$$
\begin{aligned}
& 2 x^{2} 14 x 2 y^{2} 6 y 20 \\
& 27 x y^{2} 3 y 10 \\
& \begin{array}{rcc}
x^{2} 7 x y^{2} & 3 y & 1 \\
2 & - & 2
\end{array} \\
& x 7 x \\
& y_{2} \quad 3 y 4_{2} 1 \quad 44 \\
& \begin{array}{llllll}
49 & & 9 & - & -49 & \rightarrow \\
4 & y \underline{3} \mathbf{Z}^{2} & & 4 & \frac{49}{4} & \frac{9}{4}
\end{array}
\end{aligned}
$$

$$
\begin{array}{lll}
x \\
2
\end{array} \underbrace{}_{2} y \underline{3}_{2} \underline{54}
$$

The circle has center $\frac{7}{2},-\frac{3}{2}$ and radius

$$
\begin{array}{cccc}
\sqrt{\frac{54}{4}} & \frac{\sqrt{54}}{\sqrt{2}} & \frac{\sqrt{96}}{\sqrt{2}} & \underline{3} \sqrt{6} \\
4 & 4 & 4 & 2
\end{array} .
$$

$(x 3)^{2}(y 6)^{2} 36$
18. $3 x \quad 33 x 3 y$

Copyright © 2017 Pearson Education, Inc.

The center of the circle is $(0,0)$. Use the distance formula to find the radius:

$$
r^{2}(30)^{2}(50)^{2} 92534
$$

The equation is $x^{2} y^{2} 34$.

The center of the circle is $(0,0)$. Use the distance formula to find the radius:

$$
r^{2}(20)^{2}(30)^{2} 4913
$$

The equation is $x^{2} y^{2} 13$.
The center of the circle is $(0,3)$. Use the distance formula to find the radius:

$$
r^{2}(20)^{2}(63)^{2} 4913
$$

The equation is $x^{2}(y 3)^{2} 13$.

$$
\begin{aligned}
& x^{2} 11 x y^{2} 5 y \quad 0 \\
& 2 \\
& x_{2} 11 x \text { y } 5 y 0 \\
& x^{2} 11 x \quad 121 y_{4}^{2} \quad 5 y \underline{25} \quad 0 \underline{121} \frac{25}{4} \quad 4 \\
& x \not 1^{2} y=2 \underline{146} \\
& \text { The circle has center } \frac{11}{,} \frac{5}{2} \text { and radius } \\
& \sqrt{146}_{2} .
\end{aligned}
$$

This is not the graph of a function because a vertical line can intersect it in two points. domain: $[-6,6]$; range: $[-6,6]$
This is not the graph of a function because a vertical line can intersect it in two points. domain: , ; range: 0,

This is not the graph of a function because a vertical line can intersect it in two points. domain: , ; range: (, 1] [1,)

This is the graph of a function. No vertical line will intersect the graph in more than one point. domain: , ; range: 0 ,

This is not the graph of a function because a vertical line can intersect it in two points.
domain: 0 , ; range: ,
This is the graph of a function. No vertical line will intersect the graph in more than one point. domain: , ; range: ,
$y 6 x^{2}$
Each value of x corresponds to exactly one value of y, so this equation defines a function.
26. The equation $x \frac{1}{3} y^{2}$ does not define y as a function of x. For some values of x, there will
be more than one value of y. For example, ordered pairs $(3,3)$ and $(3,-3)$ satisfy the
relation. Thus, the relation would not be a function.
27. The equation $y x 2$ d $\sqrt{\operatorname{es} \text { not }}$ define y as a function of x. For some values of x, there will be more than one value of y. For example, ordered pairs $(3,1)$ and $(3,-1)$ satisfy the relation.

The equation $y \underline{4}_{x}$ defines y as a function
of x because for every x in the domain, which is $(-, 0)(0$,$) , there will be exactly one$ value of y.
29. In the function $f(x) 4 x$, we may use any real number for x. The domain is, .
30. $f(x) \underline{8} \underline{x}$
$8 x$
x can be any real number except 8 because this will give a denominator of zero. Thus, the domain is $(-, 8)(8$,$) .$

Chapter 2 Review Exercises
(a) As x is getting larger on the interval 2, , the value of y is increasing.

As x is getting larger on the interval, 2 , the value of y is decreasing.
$f(x)$ is constant on $(-2,2)$.
In exercises 33-36, $f x 2 x^{2} 3 x 6$.

$$
f 323^{2} 336
$$

$$
29336
$$

189615
$f 0.520 .5^{2} 30.56$
20.2530 .56
0.51 .568
35. $f 020^{2} \quad 3066$
36. $f k 2 k^{2} 3 k 6$
$\underline{2}$
37. $2 x 5 y 55 y \quad 2 x 5 y \quad x 1 \quad 5$ The graph is the line with slope $\stackrel{5}{2}$ and y-intercept $(0,-) 1$. It may also be graphed using intercepts. To do this, locate the

\digamma
31. $f x \quad 63 x$
38. $3 x 7$ y 147 y $3 x 14$ y $\quad \underline{3}_{x} 2$

The graph is the line with slope of ${ }^{3}{ }_{7}$ and
y-intercept $(0,2)$. It may also be graphed using intercepts. To do this, locate the x-intercept by setting $y=0$:
$3 \times 70143 \times 14 \times \underline{14}$

In the function $y \quad \sqrt{63 x}$, we must have $63 x 0$.
$63 x 063 x 2 \times x 2$
Thus, the domain is, 2 .
39. $2 x 5$ y $205 y \quad 2 x 20$ y $\underline{2}_{x} 4$

The graph is the line with slope of $\underline{2}_{5}$ and y-intercept $(0,4)$. It may also be graphed using intercepts. To do this, locate the x intercept: x-intercept: $y 0$
$2 \times 50202 \times 20 \times 10$ through the origin. Use another point such as $(6,2)$ to complete the graph.

$f(x)=x$
The graph is the line with slope 1 and y intercept $(0,0)$, which means that it passes through the origin. Use another point such as $(1,1)$ to complete the graph.

$x 4 y 84 y x$
8

$$
\overline{1}^{1} \times 2
$$

The graph is the line with slope $\frac{1}{4}_{4}$ and
y-intercept $(0,-2)$. It may also be graphed using intercepts. To do this, locate the x intercept:
$y 0 x 408 x 8$

$x=-5$
The graph is the vertical line through $(-5,0)$.

The graph is the horizontal line through $(0,3)$.

$y 20 y 2$
The graph is the horizontal line through ($0,-2$).

The equation of the line that lies along the x-axis is $y=0$.

Line through $(0,5), m^{2} 3^{-}$
Note that $m \quad \underline{2}_{\mathbf{2}}{ }^{2}$.

Begin by locating the point $(0,5)$. Because the , a change of 3 units horizontally
slope is 3
(3 units to the right) produces a change of 2 units vertically (2 units down). This gives a second point, $(3,3)$, which can be used to complete the graph.
(continued)

Line through $(2,-4), m \underline{3}_{4}$
First locate the point $(2,-4)$.
Because the slope is $4^{\underline{3}}$, a change of 4 units
horizontally (4 units to the right) produces a change of 3 units vertically (3 units up). This gives a second point, $(6,-1)$, which can be used to complete the graph.

through $(2,-2)$ and $(3,-4)$

$$
y_{2} y_{1}+22
$$

$$
\begin{array}{llll}
x_{2} & x_{1} & 32 & 1
\end{array}
$$

through $(8,7)$ and ${ }^{1} 2,2$
through $(0,-7)$ and $(3,-7)$

$$
m \underset{30}{ } \begin{array}{lll}
77 & 0 \\
3
\end{array}
$$

through $(5,6)$ and $(5,-2)$

$$
\begin{aligned}
& m_{\underline{y_{2}} y_{1} \underline{2} 68} \\
& \\
& \quad x_{2} x_{1} \quad 55
\end{aligned}
$$

The slope is undefined.
Solve for y to put the equation in slopeintercept form.
$11 x 2 y 3$

$$
\begin{aligned}
& m \underset{\sim}{\underset{z}{y}} \underset{\sim}{y} \underline{279} \\
& \begin{array}{llllll}
x & x & \underline{1} & 8 & \\
\underline{15} & & & & \\
9 & \frac{1}{2} & \frac{18}{15} & \underline{6}^{2} & & \\
& & 15 & 5 & 2
\end{array}
\end{aligned}
$$

$9 x-4 y=2$.
Solve for y to put the equation in slope-intercept form.

$$
4 y 9 x 2 \quad y^{9} x \frac{1}{-} \quad 4 \quad 2
$$

Thus, the slope is $\frac{9}{4}$.
55. $x 20 x 2$

The graph is a vertical line, through $(2,0)$.
The slope is undefined.
$x-5 y=0$.
Solve for y to put the equation in
slope-intercept form.
$5 y x \quad y \stackrel{1}{-} x$
Thus, the slope is $\begin{array}{r}5 \\ \frac{1}{5}\end{array}$
Initially, the car is at home. After traveling for 30 mph for 1 hr , the car is 30 mi away from home. During the second hour the car travels 20 mph until it is 50 mi away. During the third hour the car travels toward home at 30 mph until it is 20 mi away. During the fourth hour the car travels away from home at 40 mph until it is 60 mi away from home. During the last hour, the car travels 60 mi at 60 mph until it arrived home.
(a) This is the graph of a function because no vertical line intersects the graph in more than one point.

The lowest point on the graph occurs in December, so the most jobs lost occurred in December. The highest point on the graph occurs in January, so the most jobs
gained occurred in January.

The number of jobs lost in December is approximately 6000 . The number of jobs gained in January is approximately 2000.
It shows a slight downward trend.
(a) We need to first find the slope of a line that passes between points $(0,30.7)$ and (12, 82.9)
$m \underline{y_{2} y_{1}} \underline{82.930 .7} \underline{52.2} 4.35$
$\begin{array}{llll}x_{2} & x_{1} & 120 & 12\end{array}$

Now use the point-intercept form with $b=30.7$ and $m=4.35$.

$$
y=4.35 x+30.7
$$

The slope, 4.35 , indicates that the number of e-filing taxpayers increased by 4.35% elach year from zUOI to 2013 .

For 2009, we
evaluate the function
for $x=8 . y=4.35$ (8)
$+30.7=65.5$
65.5% of the tax returns
are predicted to have been filed electronically.

Copyright © 2017
Pearson Education, Inc.

254 Chapter 2 Graphs and Functions
We need to find the slope of a line that passes between points $(1980,21000)$ and $(2013,63800)$
m y2 y1 63, 800 21, 000
$x_{2} \quad x_{1} \quad 20131980$
$\underline{42,800} \$ 1297$ per year
33
The average rate of change was about \$1297
per year.
(a) through $(3,-5)$ with slope -2

Use the point-slope form.

$$
\begin{gathered}
y_{1} m\left(x x_{1}\right) y \\
2(x 3) y 52(x \\
52 \times 6 \\
2 x 1
\end{gathered}
$$

Standard form: y $2 x 12 x$ y 1
(a) through $(-2,4)$ and $(1,3)$

First find the slope.
$m \frac{34}{1(2)} \quad 3$
Now use the point-slope form with

$$
\begin{aligned}
& (x, y \underset{1}{y})(1,3) \text { and } m \stackrel{1}{-} . \\
& \text { y } y 1 m(x \times 1) \\
& \left.y 31 \begin{array}{l}
-1 \\
3
\end{array}\right) \\
& \text { 3(y3) 1 (x1) } \\
& 3 y 9 \times 1 \\
& 3 y \times 10 y-x{ }^{10} 3
\end{aligned}
$$

> Standard form: $\begin{aligned} 3 x-\frac{1}{3} 3 \underline{10} y \times 10 \\ x 3 y 10\end{aligned}$
(a) through $(2,-1)$ parallel to $3 x-y=1$

Find the slope of $3 x-y=1$.
$3 x$ y 1 y $3 x 1$ y $3 x 1$
The slope of this line is 3 . Because parallel lines have the same slope, 3 is also the slope of the line whose equation is to be found. Now use the point-slope form with $\left(x_{1}, y_{1}\right)(2,1)$ and $m 3$.
$y_{1} m\left(x_{1}\right)$
$y(1) 3(x 2)$
$y 13 x 6$ y $3 x 7$
(b) Standard form:
$\begin{array}{llllllll}y & 3 x & 7 & 3 x & y & 7 & x & y \\ 7\end{array}$
(a) x-intercept $(-3,0), y$-intercept $(0,5)$

Two points of the line are $(-3,0)$ and $(0,5)$. First, find the slope.
m 505
03 3
The slope is $\frac{5}{}$ and the y-intercept is $(0,5)$. Write the equation in slope-
intercept form: $y \stackrel{5}{3}^{3} x 5$
Standard form:

$$
\begin{aligned}
& y \leq x 53 y 5 x 15 \\
& 5 x 3 y 155 x 3 y 15
\end{aligned}
$$

(a) through $(2,-10)$, perpendicular to a line with an undefined slope
A line with an undefined slope is a vertical line. Any line perpendicular to a vertical line is a horizontal line, with an equation of the form $y=b$. The line passes through $(2,-10)$, so the equation of the line is $y=-10$.
Standard form: $y=-10$
(a) through $(0,5)$, perpendicular to
$8 x+5 y=3$
Find the slope of $8 x+5 y=3$.
$8 x 5 y 35 y 8 x 3$
$y \stackrel{8}{-} x 5^{\frac{3}{-}} \quad 5$

The slope of this line is ${ }^{\underline{8} 5}$. The slope
of any line perpendicular to this line is
8^{5}, because $5^{\frac{8}{2}} 8^{\frac{5}{1}} 1$.
The equation in slope-intercept form with slope $\frac{3}{8}$ and y-intercept $(0,5)$ is

$$
\stackrel{5}{8}_{x} 5
$$

Standard form:
$y-\underset{8}{5} 58$ y $5 x 40$
$5 x 8$ y $405 x 8$ y 40
(a) through $(-7,4)$, perpendicular to $y=8$ The line $y=8$ is a horizontal line, so any line perpendicular to it will be a vertical line. Because x has the same value at all points on the line, the equation is $x=-7$. It is not possible to write this in slope-intercept form.
(b) Standard form: $x=-7$
68. (a) through $(3,-5)$, parallel to $y=4$

Copyright © 2017 Pearson Education, Inc.

This will be a horizontal line through
$(3,-5)$. Because y has the same value at all points on the line, the equation is $=-5$.

Standard form: $y=-5$
$f(x) x 3 \mid$
The graph is the same as that of $y x|$,
except that it is translated 3 units downward.

The graph of $f(x) \quad x \mid$ is the reflection of the graph of $y x$ about the x-axis.

$f(x) x 1^{2} 3$
The graph of $f(x) x 1^{2} 3$ is a
translation of the graph of $y x^{2}$ to the left 1 unit, reflected over the x-axis and translated up 3 units.

The graph of $f(x) \quad x 2$ is the reflection of the graph of $y \quad x$ about the x-axis, translated down 2 units.

To get $y=0$, we need 0×31

$$
x 4 . \text { To get } y=1 \text {, we need } 1
$$

$$
324 \times 5 .
$$

Follow this pattern to graph the step function.
$f(x) 2^{3} x \sqrt{2}$
The graph of $f(x) 2^{3} x 12$ is a
translation of the graph of $y{ }^{3} \sqrt{ }$ to the left 1 unit, stretched vertically by a factor of 2 , and translated down 2 units.

75. $f(x)$

$$
3 x 5 \text { if } x 1
$$

Draw the graph of $y=-4 x+2$ to the left of x $=1$, including the endpoint at $x=1$. Draw the graph of $y=3 x-5$ to the right of $x=1$, but do not include the endpoint at $x=1$.
Observe that the endpoints of the two pieces coincide.

76. $f(x) \quad x^{2} 3$ if $x 2$ $x 4$ if $x 2$

Graph the curve $y x^{2} 3$ to the left of $x=2$,
and graph the line $y=-x+4$ to the right of x $=2$. The graph has an open circle at $(2,7)$
and a closed circle at (2,2).

x
77. $\left.\left.f(x)\right|_{6} ^{\mid}\right|_{x \text { if } x 3} \operatorname{if}^{x} 3$

Draw the graph of $y x \mid$ to the left of $x=3$,
but do not include the endpoint. Draw the graph of $y=6-x$ to the right of $x=$ 3 , including the endpoint. Observe that the endpoints of the two pieces coincide.

78. Because x represents an integer, x.

$$
\text { Therefore, } \square \begin{array}{lllll}
x & x & x & x & 2
\end{array}
$$

True. The graph of an even function is symmetric with respect to the y-axis.
True. The graph of a nonzero function cannot be symmetric with respect to the x-axis. Such a graph would fail the vertical line test
81. False. For example, $f(x) x^{2}$ is even and $(2,4)$ is on the graph but $(2,-4)$ is not.
True. The graph of an odd function is symmetric with respect to the origin.

True. The constant function $f x 0$ is both

False. For example, $f(x) x^{3}$ is odd, and
$(2,8)$ is on the graph but $(-2,8)$ is not.
$x y^{2} 10$
Replace x with $-x$ to obtain $(x) y^{2}$
The result is not the same as the original equation, so the graph is not symmetric with respect to the y-axis. Replace y with $-y$ to obtain $x(y)^{2} 10 x y^{2} 10$. The result is the same as the original equation, so the graph is symmetric with respect to the x-axis. Replace x with $-x$ and y with y to obtain $(x)(y)^{2} 10(x) y^{2} 10$.
The result is not the same as the original equation, so the graph is not symmetric with
respect to the origin. The graph is symmetric with respect to the x-axis only.
$5 y^{2} 5 x^{2} 30$
Replace x with $-x$ to obtain $5 y^{2} 5(x)^{2} 305 y^{2} 5 x^{2} 30$.
The result is the same as the original equation, so the graph is symmetric with respect to the y axis. Replace y with $-y$ to obtain $5(y)^{2} 5 x^{2} 305 y^{2} 5 x^{2} 30$.
The result is the same as the original equation, so the graph is symmetric with respect to the x-axis. The graph is symmetric with respect to the y-axis and x-axis, so it must also be symmetric with respect to the origin. Note that this equation is the same as $y^{2} x^{2} 6$,
which is a circle centered at the origin.
$x^{2} \quad y^{3}$
Replace x with $-x$ to obtain
$(x)^{2} y^{3} \quad x^{2} \quad y^{3}$. The result is the same as the original equation, so the graph is symmetric with respect to the y-axis. Replace y with $-y$ to obtain $x^{2}(y)^{3} x^{2} y^{3}$.
The result is not the same as the original
equation, so the graph is not symmetric with respect to the x-axis. Replace x with $-x$ and y
with $-y$ to obtain $(x)^{2}(y)^{3} x^{2} \quad y^{3}$. The result is not the same as the original equation, so the graph is not symmetric with
respect to the origin. Therefore, the graph is symmetric with respect to the y-axis only.
even and odd. Because $f x 0 f x$,
the function is even. Also
$f x 00 f x$, so the function is odd.
$y^{3} \quad x 4$
Replace x with $-x$ to obtain $y^{3} x 4$.
The result is not the same as the original equation, so the graph is not symmetric with respect to the y-axis. Replace y with $-y$ to obtain

$$
(y)^{3} x 4 y^{3} x 4 \quad y^{3} x 4
$$

The result is not the same as the original
equation, so the graph is not symmetric with respect to the x-axis. Replace x with $-x$ and y with $-y$ to obtain
$(y)^{3}(x) 4 y^{3} \quad x 4 \quad y^{3} \quad x 4$.
The result is not the same as the original equation, so the graph is not symmetric with respect to the origin. Therefore, the graph has none of the listed symmetries.
$6 x y 4$
Replace x with $-x$ to obtain 6(x) y 4
$6 x y 4$. The result is not the same as the original equation, so the graph is not symmetric with respect to the y-axis. Replace with $-y$ to obtain
$6 x(y) 46 x y 4$. The result is not the same as the original equation, so the graph is not symmetric with respect to the x-axis.
Replace x with $-x$ and y with $-y$ to obtain 6($x)(y) 46 x y 4$. This equation is not equivalent to the original one, so the graph is not symmetric with respect to the origin. Therefore, the graph has none of the listed symmetries.
$y \nmid=$
Replace x with $-x$ to obtain

$$
|y|(x) \quad|y| x \text {. The result is not the }
$$

same as the original equation, so the graph is not symmetric with respect to the y-axis.

Replace y with $-y$ to obtain
$|y| x \quad|y| x$. The result is the same as
the original equation, so the graph is symmetric with respect to the x-axis. Replace x with $-x$ and y with $-y$ to obtain
$|y|(x) \quad|y| x$. The result is not the
same as the original equation, so the graph is
not symmetric with respect to the origin. Therefore, the graph is symmetric with respect
$x \quad y$
Replace x with $-x$ to obtain
$\left.\left.\left.\left.\right|_{x}\right|_{y}\right|_{y}\right|_{y} \mid$
The result is the same as the original equation, so thy graph is symmetric with respect to the
y-axis. Replace y with $-y$ to obtain
$\begin{array}{lll}x & y & x\end{array}\left|\left|\begin{array}{ll}y\end{array}\right|\right.$. The result is the same as
the original equation, so the graph is symmetric with respect to the x-axis. Because the graph is symmetric with respect to the x axis and with respect to the y-axis, it must also by symmetric with respect to the origin.
$x^{2} y^{2} 0$
Replace x with $-x$ to obtain
$x^{2} y^{2} 0 x^{2} y^{2} 0$. The result is the same as the original equation, so the graph is
symmetric with respect to the y-axis.
Replace y with $-y$ to obtain $x^{2} y^{2} 0 x^{2} y^{2} 0$. The result is the same as the original equation, so the graph is symmetric with respect to the x-axis. Because the graph is symmetric with respect to the x-axis and with respect to the y-axis, it must also by symmetric with respect to the origin.
$x^{2} y 2^{2} 4$
Replace x with $-x$ to obtain
x^{2} y $2^{2} 4 x^{2}$ y $2^{2} 4$.
The result is the same as the original equation, so the graph is symmetric with respect to the y axis. Replace y with $-y$ to obtain
x^{2} y 2^{2}. The result is not the same
as the original equation, so the graph is not symmetric with respect to the x-axis. Replace
x with $-x$ and y with $-y$ to obtain
x^{2} y $2^{2} 4 x^{2}$ y $2^{2} 4$,
which is not equivalent to the original equation. Therefore, the graph is not
symmetric with respect to the origin.

| |

95. To obtain the graph \mid of $g(x) x$, reflect the graph of $f(x) \quad x$ across the $\mid \downarrow$-axis.

Copyright © 2017 Pearson Education, Inc.
to the x-axis only.
$y=1$
This is the graph of a horizontal line through $(0,1)$. It is symmetric with respect to the y-axis, but not symmetric with respect to the x-axis and the origin.
96. To obtain the graph of $h(x) \times 2$, translate
the graph of $f(x) x$ down 2 units.

Chapter 2 Graphs and Functions

To obtain the graph of $k(x) 2 x 4$, translate the graph of $f(x) \lambda$ to the right 4 units and stretch vertically by a factor of 2 .

If the graph of $f(x) 3 x 4$ is reflected
about the x-axis, we obtain a graph whose equation is $y(3 x 4) 3 x 4$.

If the graph of $f(x) 3 x 4$ is reflected about the y-axis, we obtain a graph whose equation is $y f(x) 3(x) 43 x 4$.

If the graph of $f(x) 3 x 4$ is reflected about
the origin, every point (x, y) will be replaced by the point $(-x,-y)$. The equation for the
graph will change from $y 3 x 4$ to
$y 3(x) 4$ y $3 x 4$
3×4.
(a) To graph $y f(x) 3$, translate the graph of $y=f(x), 3$ units up.

To graph $y f(x 2)$, translate the graph of $y=f(x), 2$ units to the right.

(c) To graph $y f(x 3) 2$, translate the

Copyright © 2017 Pearson Education, Inc. 442468
graph of $y=f(x), 3$ units to the left and 2 units down.


```
(fg)(2k)f(2k)g(2k)
    [3(2k) 2 4][(2k) 2 3(2k) 4]
    [3(4)\mp@subsup{k}{}{2}4][4\mp@subsup{k}{}{2}}3(2k)4
    (12k 2 4) (4k 2 6k 4)
    16k 2}6k
```

$f \quad f(3) \quad 33^{2} 4 \quad 394$
107.

$994 \quad 4 \quad 4$

108. $g(1) \quad 1^{2} 314$

1314 $34-1$ undefined

1340
109. The domain of $(f g)(x)$ is the intersection of the domain of $f(x)$ and the domain of $g(x)$. Both have domain, , so the domain of
$(f g)(x)$ is , .

110. $g(x) x^{2} 3 x 4 \quad(x 1)(x 4)$

Because both $f x$ and $g x$ have domain
,, we are concerned about values of x
that make $g x 0$. Thus, the expression is undefined if $(x+1)(x-4)=0$, that is, if $x=-1$ or $x=4$. Thus, the domain is the set of all real numbers except $x=-1$ and $x=4$, or

$$
(-,-1) \quad(-1,4) \quad(4,) .
$$

111. $f x 2 x \quad 9$
$f(x h) 2(x h) 9 \quad 2 x 2 h 9$
$f(x h) f(x)(2 x 2 h 9)(2 x 9)$
Thus, $\begin{gathered}\quad \begin{array}{rl}2 & x 2 h 92 x 9 \quad 2 h\end{array} \\ h(x h) f(x) \underline{2 h} 2 . \\ h\end{gathered}$
112. $f(x) x^{2} 5 x 3$
$f(x h)(x h)^{2} 5(x h) 3$ $x^{2} 2 x h h{ }^{2} 5 x 5 h 3$
$\left.f\binom{x h) f(x)}{\left(x^{2} 2 x h h^{2}\right.} 5 x 53\right)\left(x^{2} 5 x 3\right)$

For Exercises 113-118,
$f(x) \quad x 2$ and $g(x) x^{2}$.
113. $(g \square f)(x) g[f(x)] g \quad x 2$

$$
x 2 \quad 2 \times 2
$$

114. $(f \quad g)(x) f[g(x)] f(x) \quad x 2$
115. $f x \quad x 2$, $\operatorname{sof} 3 \quad 32 \quad 11$.

Therefore,
$\begin{array}{llllll} \\ g \quad f 3 & g & f 3 & g 11 & & 1 .\end{array}$
116. $g x x^{2}$, so $g 66^{2} 36$.

Therefore, $f{ }^{\sqrt{2}} 6 f$ g6 $\quad f 36$

36234 .
117. $g f 1 g f 1 g$ $12 g$

3

Because $\quad 3$ is not a real number, $g \quad f 1$
is not defined.
118. To find the domain of $f \sqrt{g \text {, we must }}$ consider the domain of g as well as the composed function, $f \quad g$. Because

$$
f g x f g x \quad x^{2} \quad 2 \text { we need to }
$$

determine when $x^{2} 20$.
Step 1: Find the vatues of x that satisfy
$x^{2} 20$.
$x^{2} 2 x \quad 2$
$x^{2} 2 x h h^{2} 5 x 5 h 3 x \quad 25 x 3$
$\overline{2 x h} h^{2} \dot{5} h \quad$ -
$f(x h) \underline{f(x)} \underline{2 x h} \underline{2}^{\underline{2}} 5 h$
$h \quad h$
$\sqrt{h^{h} \quad \frac{h(2 x h 5)^{h}}{h^{h}} 2 x h 5}$

Copyright © 2017 Pearson Education, Inc.
e two numbers divide a number line into three regions.
p
2
:
T
h

Step 3 Choose a test value to see if it
satisfies the inequality, $x^{2} 20$.

$f g 1 f 1 g 1718$
$(f g)(3) f(3) g(3) 990$
$(f g)(1) f(1) g(1) 326$
122. $f_{(0)} f(0) \underline{5}_{\text {undefined }}$

$$
g(0) \quad 0
$$

$(g \square f)(2) g[f(2)] g(1) 2$
124. $(f \square g)(3) f[g(3)] f(2) 1$
125. $(f \square g)(2) f[g(2)] f(2) 1$
$(g \square f)(3) g[f(3)] g(4) 8$
Let $x=$ number of yards.
$f(x)=36 x$, where $f(x)$ is the number of inches. $g(x)=1760 x$, where $g(x)$ is the number of yards. Then
$(g] f)(x) g f(x) 1760(36 x) 63,360 x$.

There are 63,360x inches in x miles
Use the definition for the perimeter of a rectangle.
$P=$ length + width + length + width
$P(x) 2 x x 2 x x 6 x$
This is a linear function.
129. If $V(r)^{4}-r^{3}$ and if the radius is increased by 3 inches, then the amount of volume gained is given by
$V g(r) V(r 3) V(r) 3\left(\begin{array}{ll}r & 3\end{array}\right) \quad 3^{-} r$.
130. (a) $V r^{2} h$

If d is the diameter of its top, then $h=d$
\underline{d}
and r 2. So,

(b) The range of $f x \quad x 3$ is all real numbers greater than al to 0 . In interval notation, this correlates to the interval in $\mathrm{D}, 0$, .

The domain of $f x x^{2} 3$ is all real
numbers. In interval notation, this correlates to the interval in C , , .

The range of $f x x^{2} 3$ is all real numbers greater than or equal to 3 . In interval notation, this correlates to the interval in $\mathrm{B}, 3$, .

The domain of $f x^{3} x 3^{3} \sqrt{\text { is all real }}$ numbers. In interval notation, this correlates to the interval in C, , .

The range of $f x^{3} x 3$ is all real
numbers. In interval notation, this correlates to the interval in C , , .

The domain of $f x \times 3$ is all real numbers. In interval notation, this correlates to the interval in C, , .
(h) The range of $f x \times 3, \quad$ is all real numbers greater than or equal to 0 . In interval notation, this correlates to the interval in $\mathrm{D}, 0$, .

The domain of $x y^{2}$ is $x 0$ because when you square any value of y, the outcome will be nonnegative. In interval notation, this correlates to the interval in

D, 0,
2
(b) $S 2 r^{2} 2 r h$
(j) The range of x y is all real numbers.

$$
\begin{aligned}
S(d) & 2 \mathbb{d}^{2} 2 d(d) \frac{d^{2}}{2} d^{2} \\
& -2_{2}^{2} \frac{2}{2}^{2}-2
\end{aligned}
$$

Chapter 2 Test

1. (a) The domain of $f x \quad \sqrt{x} 3$ occurs when $x 0$. In interval notation, this correlates to the interval in $\mathrm{D}, 0$,

In interval notation, this correlates to the interval in C, , .
Consider the points 2,1 and 3,4 .
$m \underset{3(2)}{4}-\frac{1}{5}$

We label the points $A 2,1$ and $B 3,4$.

The midpoint has coordinates

$$
\begin{array}{ccc}
\underline{23}, \underline{14} & \underline{1}, \underline{5} . \\
2 & 2 & 2
\end{array}
$$

Use the point-slope form with (

$$
\begin{aligned}
& \left.x_{1}, y_{1}\right)(2,1) \text { and } m^{\underline{3}} .5 \\
& \text { y } y_{1} m\left(x x_{1}\right) \\
& \text { y } 1 \frac{3}{3} \text { [x5 (2)] } \\
& y 1 \frac{3}{(x 2)} 5 y 13(x 2) \\
& 5 y 53 x^{5} 65 \text { y } 3 x 11 \\
& 3 x 5 \text { y } 113 x 5 \text { y } 11
\end{aligned}
$$

Solve $3 x-5 y=-11$ for y.

$$
3 x 5 y 11
$$

5 y 3×11 ${ }_{55}^{3 \times 11}$

Therefore, the linear function is

$$
f(x) 5 x 5 .
$$

(a) The center is at $(0,0)$ and the radius is 2 , so the equation of the circle is

$$
2 y^{2} 4
$$

The center is at $(1,4)$ and the radius is 1 , so the equation of the circle is

$$
(x 1)^{2}(y 4)^{2} 1
$$

$x^{2} y^{2} 4 x 10 y 130$
Complete the square on x and y to write the equation in standard form:

$$
\begin{aligned}
& x^{2} y^{2} 4 x 10 y 130 \\
& x^{2} 4 x \quad y^{2} 10 y \\
& x^{2} 4 x 4 y^{2} 10 y 2513425
\end{aligned}
$$

$$
2^{2} y 5^{2} 16
$$

The circle has center $(-2,5)$ and radius 4 .

$x^{2}+y^{2}+4 x-10 y+13=0$

This is the graph of a function because no vertical line intersects the graph in more
than one point. The domain of the function is $(-,-1)(-1$,$) . The$
range is $(-, 0)(0$,$) . As x$ is getting larger on the intervals, 1 and
1 , , the value of y is decreasing, so the function is decreasing on these intervals. (The function is never increasing or constant.)
Point A has coordinates (5, -3).
The equation of a vertical line through A is $x=5$.
The equation of a horizontal line through A is $y=-3$.

The slope of the graph of $y 3 x 2$ is -3 .

A line parallel to the graph of $3 x 2$ has a slope of -3 .
Use the point-slope form with

$$
\begin{aligned}
& \left(x_{1}, y 1\right)(2,3) \text { and } m 3 . \\
& y_{1} m\left(x x_{1}\right) \\
& y 33(x 2) \\
& y 33 x 6 y 3 x 9
\end{aligned}
$$

A line perpendicular to the graph of

$$
\begin{aligned}
& 3 \times 2 \text { has a slope of }{ }^{1} \quad 3 \text { because } \\
& 3 \\
& \text { 3-1. } \\
& y 3-(x 2) \\
& 3 \\
& 3 y 3 x 23 y 9 x 2 \\
& \begin{array}{llllll}
3 y & x & 3^{-1} & -1
\end{array}
\end{aligned}
$$

12. (a) 2 ,
(b) 0,2
(c), 0
(d) ,
(e) ,
(f) 1 ,

To graph $f \times x<1$, we translate the graph of $y x, 2$ units to the right and 1 unit down.

(a) This is not the graph of a function because some vertical lines intersect it in more than one point. The domain of the relation is $[0,4]$. The range is $[-4,4]$.

Chapter 2 Graphs and Functions
$f(x) \quad x 1]$
To get $y=0$, we need 0×11
$1 x 0$. To get $y=1$, we need $x 120 x$. Follow this pattern to graph the step function.

$f(x) 21 x$ if $x 2$
2

For values of x with $x<-2$, we graph the horizontal line $y=3$. For values of x with $x 2$, we graph the line with a slope of $-\frac{1}{2}$
and a y-intercept of $(0,2)$. Two points on this line are $(-2,3)$ and $(0,2)$.

$$
f(x)=\left\{\begin{array}{lr}
3 & \text { if } x<-2 \\
2-\frac{1}{2} x & \text { if } x \geq-2
\end{array}\right.
$$

(a) Shift $f(x), 2$ units vertically upward.

Shift $f(x), 2$ units horizontally to the left.

Reflect $f(x)$, across the x-axis.

Reflect $f(x)$, across the y-axis.

Stretch $f(x)$, vertically by a factor of 2 .

Starting with $y \|$, we shift it to the left 2
units and stretch it vertically by a factor of 2 . The graph is then reflected over the x-axis and then shifted down 3 units.
$3 x^{2} 2 y^{2} 3$
Replace y with $-y$ to obtain
$3 x^{2} 2(y)^{2} 33 x^{2} 2 y^{2} 3$.
The result is the same as the original equation, so the graph is symmetric with respect to the x-axis.
Replace x with $-x$ to obtain $3(x)^{2} 2 y^{2} 33 x^{2} 2 y^{2} 3$.
The result is the same as the original equation, so the graph is symmetric with respect to the y-axis.
The graph is symmetric with respect to the x-axis and with respect to the y-axis, so it must also be symmetric with respect to the origin.

We must determine which values solve the equation 2×10.
$2 x 102 x 1 x \quad 2$
Thus, $\quad 1$ is excluded from the domain,
and the domain is,$\stackrel{1}{-} \stackrel{2}{-}$, . ${ }^{2}$
$f(x) 2 x^{2} 3 x 2$
(d)
$f x h 2 x h^{2} 3 x h 2$
$2 x^{2} 2 x h h^{2} 3 x 3 h 2$
$2 x^{2} 4 x h 2 h^{2} 3 x 3 h 2$
$f(x h) f(x)$
($2 x^{2} 4 x h 2 h^{2} 3 x 3 h 2$)
($2 x^{2} 3 x 2$)

$$
2 x^{2} 4 x h 2 h^{2} 3 x
$$

$$
3 h 22 x^{2} 3 x 2
$$

$4 x h 2 h^{2} 3 h$
$\frac{f(x h) f(x)}{h} \quad 4 x h 2 h^{2} \frac{3 h}{h}$
$\underline{h(4 \times 2 h 3)}$

$$
4 \times 2 h 3
$$

$(f g)(1) f(1) g(1)$ $\left(21^{2} 312\right)(211)$
(21 31 2) (21 1)
(232)(21)

1(1) 0
(f) $\quad(f g)(2) f(2) g(2)$
$\left(22^{2} \quad 322\right)(221)$
(2432 2)(221)
(862)(41)

$$
\begin{aligned}
& f(x) 2 x^{2} 3 x 2, g(x) 2 x 1 \\
& (f g)(x) f(x) g(x) \\
& 2 x^{2} 3 x 22 x 1 \\
& 2 x^{2} 3 x 22 x 1 \\
& 2 x^{2} \times 1 \\
& \begin{array}{ccc}
-f & \underline{f}(x) & 2 x^{2} 3 x 2 \\
g & g(x) & 2 \times 1
\end{array}
\end{aligned}
$$

gx $2 x 1 \operatorname{g} 0201$

011 . Therefore,
$f \square g 0 f g 0$
$f 121^{2} 312$
21312
2321

For exercises 20 and 21, $f x \quad x 1$ and g $x 2 \times 7$.
20. $g f g x f 2 x 7$

The domain and range of g are (,), while
the domain of f is $[0$,$) . We need to find$ the values of x which fit the domain of f : $2 x 60 \times 3$. So, the domain of $f g$ is $[3$,$) .$
21. g ffxg $\sqrt{ } \quad \sqrt{x 1}$ 2×17

The domain and range of g are (, , , while the domain of f is $[0$,$) . We need to find the$ values of x which fit the domain of f : $x 10 x 1$. So, the domain of $g \square f$ is $[1$,).
(a) $C(x)=3300+4.50 x$
$R(x)=10.50 x$
$P(x) R(x) C(x)$
$10.50 x$
(3300 $4.50 x$)
6.00×3300
$P(x) 0$
6.00×33000
6.00×3300
5
5
0
She must produce and sell 551 items before she earns a profit.

Chapter 2

Graphs and Functions

Section 2.1 Rectangular Coordinates and Graphs

Classroom Example 1 (page 184)

(transportation, \$12,153)
(health care, \$4917)

Classroom Example 2 (page 186)

Classroom Example 3 (page 186)

$$
\begin{gathered}
d(R, S) \sqrt{50^{2}} \begin{array}{c}
12 \\
\sqrt{259} \\
\sqrt{34} \\
d\left(R, T \sqrt{40^{2}} \quad 32\right. \\
\sqrt{1625} \\
\sqrt{44} \\
d(S, T) \\
\sqrt{45^{2} 31^{2}} \\
\sqrt{814}
\end{array} \sqrt[85]{2}
\end{gathered}
$$

The longest side has length $\sqrt{85}$

$$
\begin{gathered}
\sqrt{ } 34^{2} \sqrt{41} 2 ? \sqrt{85}{ }^{2} \\
344185
\end{gathered}
$$

The triangle formed by the three points is not a right triangle.

Classroom Example 4 (page 187)

The distance between $P(2,5)$ and $Q(0,3)$ is

The distance between $Q(0,3)$ and $R(8,5)$

Classroom Example 5 (page 188)

The coordinates of M are

$$
\begin{array}{ccc}
\frac{7(2)}{,}, \underline{5} \underline{9}, 4 & \\
2 & 2 & 2
\end{array}
$$

Let (x, y) be the coordinates of Q. Use the midpoint formula to find the coordinates:

$$
\begin{array}{ccc}
\underline{8 x} & \underline{20 y} & 4,4 \\
2 & 2
\end{array}
$$

The coordinates of Q are $(0,12)$.

Classroom Example 6 (page 188)

The year 2011 lies halfway between 2009 and 2013, so we must find the coordinates of the midpoint of the segment that has endpoints (2009, $124.0)$ and $(2013,137.4)$

$$
\begin{aligned}
& \frac{20092013}{2}, \frac{124.0137 .4}{2} \\
& 2011,130.7
\end{aligned}
$$

The estimate of $\$ 130.7$ billion is $\$ 0.1$ billion more than the actual amount.

Classroom Example 7 (page 189)

Choose any real number for x, substitute the value in the equation and then solve for y. Note that additional answers are possible.
(a)

-1	$\boldsymbol{y}=\mathbf{- 2 x + 5}$	
	y	$2(1) 57$
0	y	$2(0) 55$
3	y	$2(3) 51$

Three ordered pairs that are solutions are $(-1,7)$, $(0,5)$, and $(3,-1)$. Other answers are possible.

The distance between $P(2,5)$ and $R(8,5)$ is
$\sqrt{28^{\sim}} \quad \stackrel{55}{ } \quad \frac{\sqrt{100} 100}{} \quad \sqrt{200102}$
Because $2 \square 8 \quad 2 \sqrt{10} \quad 2 \sqrt{\text { the }}$ points are collinear.
(b)

y	$x \sqrt[3]{y} 1$
-9	$x \sqrt[3]{91^{3} 8} 2 \sqrt{ }$
-2	$x \underline{3}{ }^{21^{3}} 11 \sqrt{ }$
-1	$x 3 \sqrt{1} \frac{30}{0} 0$
0	$x 30 \sqrt{1} 14$
7	$x 3 \sqrt{13} 8 \sqrt{2}$

Ordered pairs that are solutions are $(-2$, $-9),(-1,-2),(0,-1),(1,0)$ and $(2,7)$.
Other answers are possible.
(c)

\boldsymbol{x}	$\boldsymbol{y} \boldsymbol{x}^{\mathbf{2}} \mathbf{1}$	
-2	$y(2)^{2}$	13
-1	$y(1)^{2}$	10
0	y	0^{2}
	11	
1	y	1^{2}
	10	
2	y	22

Ordered pairs that are solutions are $(-2,-3),(-1,0),(0,1),(1,0)$ and $(2,-3)$.
Other answers are possible.

Classroom Example 8 (page 190)

Let $y=0$ to find the x-intercept, and then let x $=0$ to find the y-intercept:
$02 \times 5 x^{\underline{5}}$
$y 2(0) 5$ y 5
Find a third point on the graph by letting
$x=-1$ and solving for $y: y 2157$.
The three points are ${ }^{5} 2,0,(0,5)$, and $(-1,7)$.
Note that $(3,-1)$ is also on the graph.

Let $y=0$ to the x-intercept, and then let x $=0$ to find the y-intercept:

$$
\begin{aligned}
& \sqrt{3}_{6}^{1^{3} 1} 1 \sqrt{\sqrt{10}} \text { y } 1 \text { y } 1
\end{aligned}
$$

Find a fourth point by letting $x=-2$ and solving for y :
$2^{3} \sqrt{12^{3}}$ y $19 y$
The points to be plotted are $(0,-1),(1,0),(2$, 7), and ($-2,-9$). Note that $(-1,-2)$ is also on the graph.

Let $y=0$ to find the x-intercept, and then let x $=0$ to find the y-intercept:

$$
\begin{aligned}
& x^{2} 11 x^{2} 1 x^{2} 1 x y \\
& 0^{2} 11
\end{aligned}
$$

Find a third point by letting $x=2$ and solving for y : $y 2^{2} 13$. Find a fourth point by letting $x=-2$ and solving for y :

$$
2^{2} 13
$$

The points to be plotted are $(-1,0),(1,0)$, $(0,1),(2,-3)$, and $(-2,-3)$

Section 2.2 Circles

Classroom Example 1 (page 195)

$$
\begin{aligned}
& (h, k)=(1,-2) \text { and } r=3 \\
& x h^{2} y k^{2} r^{2} \\
& x 1^{2} \quad y 2 \quad 2 \quad 32
\end{aligned}
$$

Find a third point by letting $x=2$ and solving for y : $2^{3} y 12^{3} y 17 y$.

$$
\begin{gathered}
x 1^{2} y 2^{2} 9 \\
(h, k)=(0,0) \text { and } r=2 \\
x h^{2} y k^{2} r^{2} \\
0^{2} y 0^{2} 2^{2} \\
2 y^{2} 4
\end{gathered}
$$

Chapter 2 Graphs and Functions
Classroom Example 2 (page 196)
$x 1^{2} y 2^{2} 9$
This is a circle with center $(1,-2)$ and radius
3.

$(x-1)^{2}+(y+2)^{2}=9$
$x^{2} y^{2} 4$
This is a circle with center $(0,0)$ and radius 2 .

Classroom Example 3 (page 197)

Complete the square twice, once for x and once for y :

$$
\begin{gathered}
x^{2} 4 x y^{2} 8 y 440 \\
x^{2} 4 x 4 y^{2} 8 y 1644416
\end{gathered}
$$

$$
2^{2} y 4^{2} 64
$$

Because $c=64$ and $64>0$, the graph is a circle. The center is $(-2,4)$ and the radius is 8 .

Classroom Example 4 (page 198)

$2 x^{2} 2 y^{2} 2 x 6 y 45$
Group the terms, factor out 2, and then complete the square:
$2 x^{2} x^{1} 2 y^{2} 3 y^{9}$
4

$$
2 x^{2} \underset{50}{\perp} 2 y^{\stackrel{3}{2}^{2}}
$$

2

$$
x_{2}^{\frac{1}{2}} \stackrel{2}{y}^{2} \underline{3} \quad{ }_{2}^{2} 25
$$

Because $c=25$ and $25>0$, the graph is a circle. The

$$
\text { center is } \frac{1}{,} \underline{3} \text { and the radius is } 5 \text {. }
$$

22

Classroom Example 5 (page 198)

Complete the square twice, once for x and once for y :

$$
\begin{array}{r}
x^{2} 6 x y^{2} 2 y 120 \\
x^{2} 6 x 9 y^{2} 2 y 11291 \\
x 3^{2} y 1^{2} 2
\end{array}
$$

Because $c=-2$ and $-2<0$, the graph is nonexistent. Classroom Example 6 (page 199)
Determine the equation for each circle and then substitute $x=-3$ and $y=4$.

Station A:

Station B:

$$
\begin{array}{lll}
x 6 & \left.\begin{array}{ll}
y & 0 \\
2 & 2 \\
&
\end{array}\right]
\end{array}
$$

$$
\begin{array}{lll}
x 6 & y & 25
\end{array}
$$

$$
36 \quad 242 \quad 25
$$

$3^{2} 4^{2}$ 25
91625
2525

Station C:

$$
35^{2} 42^{2} 100
$$

$$
\begin{array}{lll}
8 & 6 & 100
\end{array}
$$

6436100 100100
Because ($-3,4$) satisfies all three equations, we can conclude that the epicenter is $(-3,4)$.

$$
\begin{aligned}
& x 1^{2} \text { y } 4^{2} 4^{2} \\
& 31^{2} 44^{2} 4^{2} \\
& 4^{2} \quad 4^{2} \\
& 1616
\end{aligned}
$$

Section 2.3 Functions
 Classroom Example 1 (page 204)

4, $0,3,1,3,1$
M is a function because each distinct x value has exactly one y value.

2,3,3,2,4,5,5,4
N is a function because each distinct x value has exactly one y value.

$$
4,3,0,6,2,8,4,3
$$

P is not a function because there are two y-values for $x=-4$.

Classroom Example 2 (page 205)

Domain: $\{-4,-1,1,3\}$
Range: $\{-2,0,2,5\}$
The relation is a function.
Domain: $\{1,2,3\}$
Range: $\{4,5,6,7\}$
The relation is not a function because 2 maps to 5 and 6.

Domain: $\{-3,0,3,5\}$
Range: $\{5\}$
The relation is a function.

Classroom Example 3 (page 206)

Domain: $\{-2,4\}$; range: $\{0,3\}$
Domain: (,) ; range: (,)
Domain: $[-5,5]$; range: $[-3,3]$
Domain: (,) ; range: (, 4]

Classroom Example 4 (page 207)

(a)

Not a function
(b)

Function
(c)

Not a function
(d)

Function

Classroom Example 5 (page 208)

$y 2 x 5$ represents a function because y is always found by multiplying x by 2 and subtracting 5 . Each value of x corresponds to just one value of $y . x$ can be any real number, so the domain is all real numbers or (,) .
Because y is twice x, less 5, y also may be any real number, and so the range is also all real numbers, (,) .

Chapter 2 Graphs and Functions
For any choice of x in the domain of $x^{2} 3$, there is exactly one corresponding
value for y, so the equation defines a function. The function is defined for all values of x, so the domain is (,) . The square of any number is always positive, so the range is [3,) .

(c) For any choice of x in the domain of $x \quad y|$, there are two possible values for y. Thus, the equation does not define a function. The domain is $[0$,$) while the range is ($,$) .$

By definition, y is a function of x if every value of x leads to exactly one value of y.
Substituting a particular value of x, say 1 , into $y x$ corresponds to many values of y. The ordered pairs $(0,2)(1,1)(1,0)(3,-1)$ and so on, all satisfy the inequality. This does not represent a function. Any number can be used
for x or for y, so the domain and range of this relation are both all real numbers, (,) .

(e) For $y \frac{3}{x 2}$, we see that y can be found by
dividing $x+2$ into 3 . This process produces one value of y for each value of x in the domain. The domain includes all real numbers except those that make the denominator equal to zero, namely $x=-2$. Therefore, the domain is $(, 2)(2$,$) . Values of y$ can be
negative or positive, but never zero. Therefore the range is $(, 0)(0$,$) .$

Classroom Example 6 (page 210)

$$
\begin{aligned}
& f(3)(3)^{2} 6(3) 413 \\
& f(r) r^{2} 6 r 4 \\
& g(r 2) 3(r 2) 13 r 7
\end{aligned}
$$

Classroom Example 7 (page 210)

$f(1) 2(1)^{2} 97$
$f(1) 6 f$
(1) $5 f(1)$

0

Classroom Example 8 (page 211)

$$
\begin{aligned}
& f(x) x^{2} 2 x 3 \\
& \quad f(5)(5)^{2} \quad 2(5) 312 \\
& \quad f(t) t^{2} 2 t 3
\end{aligned}
$$

(b) $2 x 3 y 6 y^{\underline{2}} x 2 \quad 3$
$f(x){\underset{3}{2}}_{\frac{2}{2}} \quad 2$
$f(5) \stackrel{2}{-} \underset{3}{(5)} 2 \underline{16} \quad 3$
$f(t)^{2}{ }_{t}{ }^{2}$
3

Classroom Example 9 (page 213)

The function is increasing on $(, 1)$, decreasing on $(-1,1)$ and constant on (1,).

Classroom Example 10 (page 213)

The example refers to the following figure.
$\underset{\text { Water Level }}{\text { Swimming Pool }}$

The water level is changing most rapidly from 0 to 25 hours.

The water level starts to decrease after 50 hours.
After 75 hours, there are 2000 gallons of water in the pool.

Section 2.4 Linear Functions

Classroom Example 1 (page 220)

$f(x) \underset{2}{3} x 6$; Use the intercepts to graph the
function. $f(0){ }^{2} 066: y$-intercept

$$
0 \underset{2}{3} x 66 \quad \underline{3} \times x \times 4: \underset{2}{x} \text {-intercept }
$$

$$
f(x)=\frac{3}{2} x+6
$$

Domain: (,), range: (,)

Classroom Example 2 (page 220)
$f(x) 2$ is a constant function. Its graph is a horizontal line with a y-intercept of 2 .

Domain: (,), range: $\{2\}$
Classroom Example 3 (page 221)
$x=5$ is a vertical line intersecting the x-axis at $(5,0)$.

Domain: $\{5\}$, range: (,)

Classroom Example 4 (page 221)

$3 x 4 y 0$; Use the intercepts.
$304 y 04 y 0 y 0: y$-intercept
$3 x 4003 x \quad 0 x 0: x$-intercept The graph has just one intercept. Choose an additional value, say 4 , for x.
$344 y 0124 y 0$
$4 y 12$ y 3
Graph the line through $(0,0)$ and $(4,-3)$.

Domain: (,), range: (,)

Classroom Example 5 (page 223)

(a) $\quad m \underline{4(6)} \underline{10} \underline{5}$

$m \xrightarrow{1010_{20}}$ the slope is

4(4) 0
undefined.

Classroom Example 6 (page 224)

$2 x-5 y=10$
Solve the equation for y.
$2 x 5$ y 10
$5 y 2 \times 10$
$\underline{2}$
5×2
The slope is $\underline{2}^{2}$, the coefficient of x.

Classroom Example 7 (page 224)

First locate the point $(-2,-3)$. Because the slope is 4_{3}, a change of 3 units horizontally (3 units to the right) produces a change of 4 units vertically (4 units up). This gives a second point, (1,1), which can be used to complete the graph.

Classroom Example 8 (page 225) The average rate of change per year is

$$
\frac{86589547}{20132010} \frac{889}{296.33 \text { million }}
$$

The graph confirms that the line through the ordered pairs fall from left to right, and therefore has negative slope. Thus, the amount spent by the federal government on R\&D for general science decreased by an average of $\$ 296.33$ million (or $\$ 296,330,000$) each year from 2010 to 2013.

Classroom Example 9 (page 226)
(a) $\quad C(x) 120 \times 2400$
(b) $\quad R(x) 150 x$
(c) $\quad P(x) R(x) C(x)$
$150 \times(120 \times 2400)$
30×2400
(d) $\quad P(x) 030 \times 24000 \times 80$

At least 81 items must be sold to make a profit.

Section 2.5 Equations of Lines and Linear Models

Classroom Example 1 (page 234)
(5) $2(x 3)$
52×6

$$
y 2 x 1
$$

Classroom Example 2 (page 234)

First find the slope: $m \frac{3(1)}{45} \quad 4$
Now use either point for $\left(x_{1}, y_{1}\right)$:

$$
\begin{aligned}
& y 34[x(4)] \\
& 9(y 3) 4(x 4) \\
& 9 y 27 \quad 4 x 16 \\
& 9 y 4 x 11 \\
& 4 x 9 \text { y } 11
\end{aligned}
$$

Classroom Example 3 (page 235)

Write the equation in slope-intercept form: $3 x 4 y 124 y 3 x 12 y^{3} x$ 3

The slope is $4^{\underline{3}}$, and the y-intercept is $(0,-3)$.

Section 2.6 Graphs of Basic Functions

Classroom Example 4 (page 236)

$$
421
$$

First find the slope: $m 2 \quad 2 \quad 2$

Now, substitute $\quad \underset{2}{ }$ for m and the coordinates of one
of the points (say, $(2,2)$) for x and y into the slope-intercept form $y=m x+b$, then solve for b : 1
$22 b 3 b$. The equation is
$y^{1} x_{2} 3$.

Classroom Example 5 (page 236)
The example refers to the following figure:

The line rises 5 units each time the x-value increases by 2 units. So the slope is $2 \frac{5}{}$. The y-intercept is $(0,5)$, and the x-intercept is $(-2,0)$.
(b) An equation defining f is $f(x) \underset{2}{5} \underset{2}{ } 5$.

Classroom Example 6 (page 238)

Rewrite the equation $3 x 2$ y 5 in slopeintercept form to find the slope:
$3 x 2 y 5 y{ }_{2} x_{2} \quad \frac{5}{5}$ The slope is ${ }_{2}$.

The line parallel to the equation also has slope 3_{2}. An equation of the line through $(2,-4)$ that is parallel to $3 x 2 y 5$ is
$y(4) 2\left(x^{\frac{3}{2}}\right) y 42 x 3$
y $2 \underline{3}^{-} x 7$ or $3 x-2 y=14$.

The line perpendicular to the equation has
slope ${ }^{2}$. An equation of the line through
$(2,-4)$ that is perpendicular to $3 x 2 y 5$ is

$$
y(4) \stackrel{2}{-}(x \stackrel{3}{2}) y 4 \stackrel{2}{-} x \stackrel{4}{-}
$$

$$
y \stackrel{2}{-} x_{3} \stackrel{\&}{ } \quad \text { or } 2 x+3 y=-8 \text {. }
$$

Classroom Example 7 (page 240)

First find the slope: $m \frac{77036695}{1} 5043$
Now use either point for $\left(x_{1}, y_{1}\right)$:

$$
\begin{aligned}
& 6695504(x 1) \\
& 6695504 \times 504 \\
& y 504 \times 6191
\end{aligned}
$$

The year 2015 is represented by $x=6$. 504(6) 61919215
According to the model, average tuition and fees for 4 -year colleges in 2015 will be about $\$ 9215$.

Classroom Example 8 (page 242)

Write the equation as an equivalent equation with 0 on one side.

$$
3 x 2(5 x) 2 x 38
$$

$$
3 x 2(5 x) 2 x 380
$$

Now graph the equation to find the x-intercept.

The solution set is $\{-4\}$.

Section 2.6 Graphs of Basic Functions

Classroom Example 1 (page 249)

The function is continuous over (,
0) (0 ,)

The function is continuous over its entire domain (,).

Chapter 2 Graphs and Functions

Classroom Example 2 (page 252)

Graph each interval of the domain separately. If x <1, the graph of $f(x)=2 x+4$ has an endpoint at $(1,6)$, which is not included as part of the graph. To find another point on this part of the graph, choose $x=0$, so $y=4$. Draw the ray starting at $(1,6)$ and extending through $(0,4)$. Graph the function for $x \geq 1, f(x)=4-x$ similarly. This part of the graph has an endpoint at $(1,3)$, which is included as part of the graph. Find another point, say $(4,0)$, and draw the ray starting at $(1,3)$ which extends through $(4,0)$.

Graph each interval of the domain separately. If x ≤ 0, the graph of $f(x)=-x-2$ has an endpoint at $(0,-2)$, which is included as part of the graph. To find another point on this part of the graph, choose $x=-2$, so $y=0$. Draw the ray starting at $(0,-2)$ and extending through $(-2$, $0)$. Graph the function for $x>0$,
$f(x) x^{2} 2$ similarly. This part of the graph has an endpoint at $(0,-2)$, which is not included as part of the graph. Find another point, say $(2,2)$, and draw the curve starting at $(0,-2)$ which extends through $(2,2)$. Note that the two endpoints coincide, so $(0,-2)$ is included as part of the graph.

$$
f(x)=\left\{\begin{array}{l}
-x-2 \text { if } x \leq 0 \\
x^{2}-2 \text { if } x>0
\end{array}\right.
$$

Classroom Example 3 (page 254)

Create a table of sample ordered pairs:

Classroom Example 4 (page 254)

For x in the interval (0,2], $y=20$. For x in (2, 3], $y=20+2=22$. For x in (3, 4], $y=22+2=24$. For x in (4,5], $y=24+2=26$. For x in (5, 6], $y=26+2$ $=28$.

Section 2.7 Graphing Techniques

Classroom Example 1 (page 260)

Use this table of values for parts (a)-(c)

x	$g(x) 2 x^{2}$	-2^{2}	1
-2	8	$h(x) 22 x$	$k(x)_{2}^{1 x}$
-1	2	$\frac{1}{2}$	$\frac{1}{4}$
0	0	0	0
1	2	$\frac{1}{2}$	$\frac{1}{4}$
2	8	2	1

(a) $g(x) 2 x^{2}$

(b) $\quad h(x) \underline{1} x^{2}$

$$
\text { (n) } k(x){ }_{x}^{1}
$$

Classroom Example 2 (page 262)
Use this table of values for parts (a) and (b)

Classroom Example 3 (page 263)
x y
Replace x with $-x$ to obtain
$x|y|$. The result is not the same as the
original equation, so the graph is not symmetric with respect to the y-axis. Replace y with $-y$ to obtain $x \quad y|x| y \mid$ The
result is the same as the original equation, so the graph is symmetric with respect to the x axis. The graph is symmetric with respect to
the x-axis only.
$\left.\begin{array}{lll}y & x & 3\end{array} \right\rvert\,$
Replace x with $-x$ to obtain $y \quad x|3|$
${ }_{x} \mid 3$
3. The result is the same as the original equation, so the graph is symmetric with respect to the y-axis. Replace y with $-y$ to obtain $y \times 3$. The result is not the same as the original equation, so the graph is not symmetric with respect to the x-axis. Therefore, the graph is symmetric with respect to the y-axis only.
$2 x y 6$
Replace x with $-x$ to obtain 2(x) y 6 $2 x y 6$. The result is not the same as the original equation, so the graph is not symmetric with respect to the y-axis. Replace y with $-y$ to obtain $2 x(y) 6$
$2 x y 6$. The result is not the same as the original equation, so the graph is not symmetric with respect to the x-axis. Therefore, the graph is not symmetric with respect to either axis.
$x^{2} y^{2} 25$
Replace x with $-x$ to obtain

$$
(x)^{2} y^{2} 25 \quad x^{2} y^{2} 25 . \text { The result is }
$$

the same as the original equation, so the graph is symmetric with respect to the y-axis. Replace y with $-y$ to obtain

$$
x^{2}(y)^{2} 25 x^{2} y^{2} 25 . \text { The result is }
$$

the same as the original equation, so the graph is symmetric with respect to the x-axis. Therefore, the graph is symmetric with respect to both axes. Note that the graph is a circle of radius 5 , centered at the origin.

Classroom Example 4 (page 265)

y $2 x^{3}$
Replace x with $-x$ and y with $-y$ to obtain (y) $2(x)^{3} y 2 x^{3}$ y $2 x^{3}$. The result is the same as the original equation, so the graph is symmetric with respect to the origin.
$y 2 x^{2}$
Replace x with $-x$ and y with $-y$ to obtain
(y) $2(x)^{2}$ y $2 x^{2} y 2 x^{2}$. The result is not the same as the original equation, so the graph is not symmetric with respect to the origin.

Classroom Example 5 (page 266)

$g(x) x^{5} 2 x^{3} 3 x$
Replace x with $-x$ to obtain

$$
\begin{aligned}
& g(x)(x)^{5} 2(x)^{3} 3(x) \\
& x^{5} 2 x^{3} 3 x \\
& \left(x^{5} 2 x^{3} 3 x\right) g(x)
\end{aligned}
$$

$g(x)$ is an odd function.
$h(x) 2 x^{2} 3$
Replace x with $-x$ to obtain
$h(x) 2(x)^{2} 32 x^{2} 3 h(x) h(x)$ is an even function.
$k(x) x^{2} 6 x 9$
Replace x with $-x$ to obtain

$$
k(x)(x)^{2} 6(x) 9
$$

$$
x^{2} 6 x 9 k(x) \text { and } \quad k(x)
$$

$k(x)$ is neither even nor odd.

Classroom Example 6 (page 267)

Compare a table of values for $g(x) x^{2}$ with $f(x) x^{2} 2$. The graph of $f(x)$ is the same as the graph of $g(x)$ translated 2 units up.

x	$g(x) x^{2}$	$f(x) x^{2} 2$
-2	4	6
-1	1	3
0	0	2
1	1	3
2	4	6

Classroom Example 7 (page 268)

Compare a table of values for $g(x) x$ with
$f(x)(x 4)^{2}$. The graph of $f(x)$ is the same as the graph of $g(x)$ translated 4 units left.

x	$g(x) x^{2}$	$f(x)(x 4)^{2}$
-7	49	9
-6	36	4
-5	25	1
-4	16	0
-3	9	1
-2	4	4
-1	1	9

Classroom Example 8 (page 269)

$f(x)(x 1)^{2} 4$
This is the graph of $g(x) x^{2}$, translated one unit to the right, reflected across the x-axis, and then translated four units up.

x	$g(x) x^{2}$	$f(x)(x 1)^{2} 4$
-2	4	-5
-1	1	0
0	0	3
1	1	4
2	4	3
3	9	0
4	16	-5

(continued)

(b) $f(x)=-(x-1)^{2}+4$

This is the graph of $g(x) x \mid$, translated three units to the left, reflected across the x-axis, and then stretched vertically by a factor of two.

x	$g(x) x \mid$	$f(x) 2 x\|3\|$
-6	6	-6
-5	5	-4
-4	4	
-3	3	
-2	2	-2
-1	1	0
0	0	-2
-4		
-6		

(c) $\quad h(x)^{\frac{1}{2}}{ }_{2} \sqrt{x 23}$

This is the graph of $g(x) \quad \sqrt{x}$, translated two units to the left, shrunk vertically by a factor of 2, and then tyanslated 3 units down.

x	$g(x) \quad x$	$h(x)^{\overline{1}}{ }_{2} \times 23$
-2	undefined	-3
-1	undefined	$\sqrt{-2.5}$
0	Γ^{0}	$\begin{array}{llll}1 & 2 & 3 & 2.3\end{array}$
2	\% 1.4	$\left\ulcorner^{-2}\right.$
6	62.4	$\begin{array}{llll}\frac{1}{2} & 8 & 3 & 1.6\end{array}$
7	$\sqrt{7} 2.6$	-1.5

The graphs in the exercises are based on the following graph.

$g(x) f(x) 2$
This is the graph of $f(x)$ translated two units down.

$h(x) f(x 2)$
This is the graph of $f(x)$ translated two units right.

$k(x) f(x 1) 2$
This is the graph of $f(x)$ translated one unit left, and then translated two units up.

$$
k(x)=f(x+1)+2
$$

$F(x) f(x)$

This is the graph of $f(x)$ reflected across the y-axis.

Section 2.8 Function Operations and Composition

Classroom Example 1 (page 278)

For parts (a)-(d), $f(x) 3 x 4$ and $g(x) 2 x^{2} 1$

$$
f(0) 3(0) 44 \text { and }
$$

$g(0) 2(0)^{2} 11$, so
$(f g)(0) 415$
(b) $\quad f(4) 3(4) 48$ and $g(4) 2(4)^{2} 131$, so $(f$ g)(4) 83123
$f(2) 3(2) 410$ and
$g(2) 2(2)^{2} 17$, so
$(f g)(2)(10)(7) 70$
(d)
$f(3) 3(3) 45$ and $g(3) 2(3)^{2} 117$, so f (3) $\frac{5}{-}$

17

Classroom Example 2 (page 279)

For parts (a)-(e), $f(x) x^{2} 3 x$ and $g(x) 4 x 5$
(a) (b)
$(f g)(x)\left(\begin{array}{ll}x^{2} & 3 x)(4 x 5)\end{array}\right.$
$4 x^{3} 5 x^{2} 12 x^{2} 15 x$ $4 x^{3} 7 x^{2} 15 x$
(x) $\underline{x}_{2} 3 x$
$g 4 x 5$

The domains of f and g are both (,). So, the domains of $f+g, f-g$, and $f g$ are the intersection of the domains of f and g,
(,) . The domain of $f \quad$ includes those g
real numbers in the intersection of the domains of f and g for which $g(x) 4 x 50$

$$
\begin{aligned}
& x \underline{5}_{4-} \text { So the domain of }-\frac{f}{g} \text { is } \\
& {\underset{-}{4}}_{4}^{\square} \underline{5}_{4}, .
\end{aligned}
$$

Classroom Example 3 (page 280)

(a)

From the figure, we have $f(1)=3$ and $g(1)=1$, so $(f+g)(1)=3+1=4$.
$f(0)=4$ and $g(0)=0$, so $(f-g)(0)=4-0=4$.
$f(-1)=3$ and $g(-1)=1$, so
$(f g)(-1)=(3)(1)=3$
$f(-2)=0$ and $g(-2)=2, \mathrm{so}^{\underline{f}(2) \underline{0} \quad 0 .}$
(b)

x	$f(x)$	$g(x)$
-2	-5	0
-1	-3	2
0	-1	4
1	1	6

From the table, we have $f(1)=1$ and
$g(1)=6$, so $(f+g)(1)=1+6=7$.
$f(0)=-1$ and $g(0)=4$, so
$(f-g)(1)=-1-4=-5$.
$f(-1)=-3$ and $g(-1)=2$,
so $(f g)(-1)=(-3)(2)=-6$
$f(-2)=-5$ and $g(-f 2)=0$, so

(f	f	
$\begin{aligned} & g)(\\ & x) \\ & 2 \end{aligned}$		5 undefined.
$\begin{aligned} & 3 x) \\ & (4 x \\ & 5) \\ & 2 \end{aligned}$		
5		
$(\underset{x(x)}{f}$		
$\left(x^{2}\right.$		
$\begin{aligned} & 3 x) \\ & (4 x \\ & 5) \\ & x^{2} 7 \end{aligned}$		

(c) $\quad f(x) 3 x 4, g(x) x \mid$ From
the formulas, we have

$$
\begin{aligned}
& f(1) 3(1) 47 \text { and } g(1) \quad 1 \quad 1, \text { sф } \mid \\
& (f+g)(1)=7+(-1)=6 . \\
& f(0) 3(0) 44 \text { and } g(0) \quad 0 \quad 0, \text { sp } \mid \\
& (f-g)(1)=4-0=4 . \\
& f(1) 3(1) 41 \text { and } g(1) \quad 1 \quad 1, \text { so }(f \phi)(+1) \\
& =(1)(-1)=-1 . \\
& f(2) 3(2) 42 \text { and } \\
& g(2) 22, \text { so } f^{f}(2) \underline{2}
\end{aligned} .
$$

$g \quad 2$

Classroom Example 4 (page 281)

Step 1: Find $f(x h)$:

$$
\begin{aligned}
& f(x h) 3(x h)^{2} 2(x h) 4 \\
& 3\left(x^{2} 2 x h h^{2}\right) 2 \times 2 h 4 \\
& 3 x^{2} 6 x h 3 h^{2} 2 x 2 h 4
\end{aligned}
$$

Step 2: Find $f(x h) f(x)$:

$$
\begin{aligned}
& f(x h) f(x) \\
& \left(3 x^{2} 6 x h 3 h^{2} 2 x 2 h 4\right)\left(3 x^{2} 2 x 4\right) \\
& 6 x h 3 h^{2} 2 h
\end{aligned}
$$

Step 3: Find the difference quotient:

$$
\frac{f(x h) f(x)}{h} \quad \frac{6 x h 3 h^{\frac{2}{2}}}{h} \quad 6 \times 3 h 2
$$

Classroom Example 5 (page 283)

For parts (a) and (b), $f(x) \quad x \sqrt{4}$ and $g(x) \frac{2}{x}$ 2
First find $g(2): g(2) \quad 21$. Now find

$$
\begin{array}{ccc}
(f \square g)(2) & f(g(2)) f(1) & \sqrt{14} \\
5
\end{array}
$$

(b) First find $f(5): f(5) \quad 54 \quad 9$ 3. Now

The screens show how a graphing calculator evaluates the expressions in this classroom example.

Classroom Example 6 (page 283)

For parts (a) and (b), $f(x) \quad \sqrt{x 1}$ and $g(x) 2 x 5$
(a) $(f g)(x) f(g(x))$

The domain and range of g are both (,).
However, the domain of f is $[1$,$) . Therefore,$
$g(x)$ must be greater than or equal to 1 :
$2 x 51 \times 2$. So, the domain of $f g$ is $[2$,).
(b) $\quad(g] f)(x) g(f(x)) 2 \quad x 15$

The domain of f is $[1$,$) , while the range of f$ is $[0$,$) . The domain of g$ is $($,$) . Therefore,$ the domain of $(g \square f)$ is restricted to that portion of the domain of g that intersects with the domain of f, that is $[1$,$) .$

Classroom Example 7 (page 284)

For parts (a) and (b), $f(x) \frac{5}{x 4}$ and $g(x) \quad x$
(a)

The domain and range of g are both all real numbers except 0 . The domain of f is all real numbers except -4 . Therefore, the expression for $g(x)$ cannot equal -4 . So,

$$
\frac{2}{x} 4 x \quad \text {. So, } \quad \frac{1}{\text { the domain of } f g}
$$

is the set of all real numbers except for $\frac{1}{2}$, and 0 . This is written
$\underline{1}$
22,00,

Chapter 2 Graphs and Functions
(b) $\quad(g] f(x) g(f(x)) \quad \begin{aligned} & 5 /(x 4)\end{aligned} \frac{2 \times 8}{} 5$

The domain of f is all real numbers except -4 , while the range of f is all real numbers except The domain and range of g are both all real numbers except 0 , which is not in the range of f. So, the domain of $g \square f$ is the set of all real
numbers except for -4 . This is written

$$
, 4 \square 4,
$$

Classroom Example 8 (page 285)

```
f(x)2 x 5 and g(x) 3x2 x
(g f)(x)g(2 x5) 3(2 x5)2 (2 < 5)
    3(4x2 20 x 25) 2 x 5
        12x2 58x 70
(fg)(x) f(3x2 x) 2(3x2x)5
```

 \(6 x_{2} 2 x 5\)
 In general, $12 x_{2} 58 \times 706 x_{2} 2 \times 5$, so $(g \square f)(x)(f \rrbracket g)(x)$.
Classroom Example 9 (page 286)
$(f \square g)(x) 4(3 x 2)^{2} 5(3 x 2) 8$
Answers may vary. Sample answer:
$f(x) 4 x^{2} 5 x 8$ and $g(x) 3 x 2$.

[^0]:

 $$
 \sqrt{2^{2} 2^{2}} \quad \sqrt{04} \quad \sqrt{4} 2
 $$

