Solution Manual for College Mathematics for Business Economics Life Sciences and Social Sciences 13th Edition by Barnett ISBN 03219455149780321945518

Full link download

Solution Manual:

https://testbankpack.com/p/solution-manual-for-college-mathematics-for-business-economics-life-sciences-and-social-sciences-13th-edition-by-barnett-isbn-0321945514-9780321945518/

Test Bank:
https://testbankpack.com/p/test-bank-for-college-mathematics-for-business-economics-life-sciences-and-social-sciences-13th-edition-by-barnett-isbn-0321945514-9780321945518/

2 01.FUNCTIONS AND GRAPHS

EXERCISE 2-1

2.

4.

6.

8.

10. The table specifies a function, since for each domain value there corresponds one and only one range value.
12. The table does not specify a function, since more than one range value corresponds to a given domain Copyright © 2015 Pearson Education, Inc.

2-2 CHAPTER 2 FUNCTIONS AND GRAPHS value.
(Range values 1, 2 correspond to domain value 9.)
14. This is a function.
16. The graph specifies a function; each vertical line in the plane intersects the graph in at most one point.
18. The graph does not specify a function. There are vertical lines which intersect the graph in more than one point. For example, the y-axis intersects the graph in two points.
20. The graph does not specify a function.
22. $y 103 x$ is linear.
26. $y \underline{2 \times 2 x} 2 \times 2 \times 3$

$$
\square \frac{4}{3} \text { which is constant. }
$$

24. $x^{2} y 8$ is neither linear nor constant.
25. $9 x 2 y 60$ is linear.
26.

34.

36.

38. $f(x)=\frac{3 x^{2}}{x^{2} \square 2}$. Since the denominator is bigger than 1 , we note that the values of f are between 0 and 3 .

Furthermore, the function f has the property that $f(-x)=f(x)$. So, adding points $x=3, x=4$,
$x=5$, we have:

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
$F(x)$	2.78	2.67	2.45	2	1	0	1	2	2.45	2.67	2.78

40. $y=f(4)=0$
42. $y=f(-2)=3$
44. $f(x)=3, x<0$ at $x=-4,-2$
48. All real numbers
52. $x>-5$

6
54. Given $6 x-7 y=21$. Solving for y we have: $-7 y=21-6 x$ and $y=\frac{-}{7} x-3$.

This equation specifies a function. The domain is R, the set of real numbers.
56. Given $x(x+y)=4$. Solving for y we have: $\quad x y+x^{2}=4$ and $y=\frac{4-x^{2}}{x}$.

This equation specifies a function. The domain is all real numbers except 0 .
58. Given $x^{2}+y^{2}=9$. Solving for y we have: $y^{2}=9-x^{2}$ and $y= \pm \sqrt{9-x^{2}}$.

This equation does not define y as a function of x. For example, when $x=0, y= \pm 3$.
60. Given $\sqrt{x}-y^{3}=0$. . Solving for y we have: $y^{3}=\sqrt{x}$ and $y=x^{1 / 6}$.

This equation specifies a function. The domain is all nonnegative real numbers, i.e., $\quad x \geq 0$.
62. $f(-5)=(-5)^{2}-4=25-4=21$
64. $f(x-2)=(x-2)^{2}-4=x^{2}-4 x+4-4=x^{2}-4 x$
66. $f(10 x)=(10 x)^{2}-4=100 x^{2}-4$
68. $f(\sqrt{x})=(\sqrt{x})^{2}-4=x-4$
70. $f(-3)+f(h)=(-3)^{2}-4+h^{2}-4=5+h^{2}-4=h^{2}+1$
72. $f(-3+h)=(-3+h)^{2}-4=9-6 h+h^{2}-4=5-6 h+h^{2}$
74. $f(-3+h)-f(-3)=\left[(-3+h)^{2}-4\right\rceil_{\mathrm{J}}-\left\lceil\left[(-3)^{2}-4\right\rceil_{]}=\left(9-6 h+h^{2}-4\right)-(9-4)=-6 h+h^{2}\right.$
76.

Copyright © 2015 Pearson Education, Inc.
(B)

Copyright © 2015 Pearson Education, Inc.
(C)
78. (A)
(B)
(C)
82. Given $A=8 w=81$.

Given $A=2^{w}=81$.
Thus, $w=\frac{l^{2}}{l}$. Now $P=2 l+2 w=2 l+2$
The domain is $l>0$.
84. Given $P=2 l+2 w=160$ or $l+w=80$ and $l=80-w$.

Now $A=l w=(80-w) w$ and $A=80 w-w^{2}$.

The domain is $0<w<80$. [Note: $w<80$ since $w \geq 80$ implies $l \leq 0$.]
86. (A)

(B) $p(11)=1,340$ dollars per computer $p(18)=920$ dollars per computer
88. (A) $R(x)=x p(x)$

$$
=x(2,000-60 x) \text { thousands of dollars }
$$

Domain: $1 \leq x \leq 25$
(B) Table 11 Revenue

$x($ thousands $)$	$R(x)$ (thousands)
1	$\$ 1,940$
5	8,500
10	14,000
15	16,500
20	16,000
25	12,500

(C)

90. (A) $P(x)=R(x)-C(x)$

$$
\begin{aligned}
& =x(2,000-60 x)-(4,000+500 x) \text { thousand dollars } \\
& =1,500 x-60 x^{2}-4,000
\end{aligned}
$$

Domain: $1 \leq x \leq 25$
(B) Table 13 Profit

x (thousands)	$P(x)$ (thousands)
1	$-\$ 2,560$
5	2,000
10	5,000
15	5,000
20	2,000
25	$-4,000$

92.

(A) 1.2 inches
(B) Evaluate the volume function for $x=$ $1.21,1.22, \ldots$, and choose the value of x whose volume is closest to 65 .
(C)

(C) $x=1.23$ to two decimal places

94. (A) $V(x)=x^{2}(108 \square 4 x)$
(B) $0<x<27$
(C) Table 16 Volume

\boldsymbol{x}	$\boldsymbol{V}(\boldsymbol{x})$
5	2,200
10	6,800
15	10,800
20	11,200
25	5,000

(D)(D)

96. (A) Given $5 v-2 s=1.4$. Solving for v, we have:
$v=0.4 s+0.28$.
If $s=0.51$, then $v=0.4(0.51)+0.28=0.484$ or 48.4%.
(B) Solving the equation for s, we have:
$s=2.5 v-0.7$.
If $v=0.51$, then $s=2.5(0.51)-0.7=0.575$ or 57.5%.

EXERCISE 2-2

2. $f(x)=-4 x+12$ Domain: all real numbers; range: all real numbers.
3. $f(x)=3+\sqrt{x}$ Domain: $[0, \infty)$; range: $[3, \infty)$.
4. $\quad f(x)=-5|x|+2$ Domain: all real numbers; range: $(-\infty, 2]$.
5. $f(x)=20-10 \sqrt[3]{x}$ Domain: all real numbers; range: all real numbers.
6.

12.

14.

16.

18.

20.

22.

24.

26. The graph of $h(x)=-|x-5|$ is the graph of $y=|x|$ reflected in the x axis and shifted 5 units to the right.

28. The graph of $m(x)=(x+3)^{2}+4$ is the graph of $y=x^{2}$ shifted 3 units to the left and 4 units up.

30. The graph of $g(x)=-6+\sqrt[3]{x}$ is the graph of $y=\sqrt[3]{x}$ shifted 6 units down.

32. The graph of $m(x)=-0.4 x^{2}$ is the graph of $y=x^{2}$ reflected in the x axis and vertically contracted by a factor of 0.4.

34. The graph of the basic function $y=|x|$ is shifted 3 units to the right and 2 units up. $y=|x-3|+2$
36. The graph of the basic function $y=|x|$ is reflected in the x axis, shifted 2 units to the left and 3 units up. Equation: $y=3-|x+2|$
38. The graph of the basic function $\sqrt[3]{x}$ is reflected in the x axis and shifted up 2 units. Equation: $y=2-\sqrt[3]{x}$
40. The graph of the basic function $y=x^{3}$ is reflected in the x axis, shifted to the right 3 units and up 1 unit.

Equation: $y=1-(x-3)^{3}$
42. $g(x)=\sqrt[3]{x \square 3}+2$

44. $g(x)=-|x-1|$

46. $g(x)=4-(x+2)^{2}$

48. g

52.

Copyright © 2015 Pearson Education, Inc.
54. The graph of the basic function $y=x$ is reflected in the x axis and vertically expanded by a factor of 2 . Equation: $y=-2 x$
56. The graph of the basic function $y=|x|$ is vertically expanded by a factor of 4 . Equation: $y=4|x|$
58. The graph of the basic function $y=x^{3}$ is vertically contracted by a factor of 0.25 . Equation: $y=0.25 x^{3}$.
60. Vertical shift, reflection in y axis.

Reversing the order does not change the result. Consider a point
(a, b) in the plane. A vertical shift of k units followed by a reflection in y axis moves (a, b) to $(a, b+k)$ and then to $(-a, b+k)$. In the reverse order, a reflection in y axis followed by a vertical shift of k units moves (a, b) to $(-a, b)$ and then to $(-a, b+k)$. The results are the same.
62. Vertical shift, vertical expansion.

Reversing the order can change the result. For example, let (a, b) be a point in the plane. A vertical shift of k units followed by a vertical expansion of $h(h>1)$ moves (a, b) to $(a, b+k)$ and then to $(a, b h+k h)$. In the reverse order, a vertical expansion of h followed by a vertical shift of k units moves (a, b) to $(a, b h)$ and then to $(a, b h+k) ;(a, b h+k h) \neq(a, b h+k)$.
64. Horizontal shift, vertical contraction.

Reversing the order does not change the result. Consider a point
(a, b) in the plane. A horizontal shift of k units followed by a vertical contraction of $h(0<h<1)$ moves (a, b) to $(a+k, b)$ and then to $(a+k, b h)$. In the reverse order, a vertical contraction of h followed by a horizontal shift of k units moves (a, b) to $(a, b h)$ and then to $(a+k, b h)$. The results are the same.
66. (A) The graph of the basic function $y=$ \sqrt{x} is vertically expanded by a factor of 4 .
(B)

(B)

70. (A) Let $x=$ number of kwh used in a winter month. For $0 \leq x \leq 700$, the charge is $8.5+.065 x$. At
$x=700$, the charge is $\$ 54$. For $x>$ 700 , the charge is
$54+.053(x-700)=16.9+0.053 x$.
Thus,
(B)

72. (A) Let $x=$ taxable income.

If $0 \leq x \leq 15,000$, the tax due is
$\$.035 x$. At $x=15,000$, the tax due is
$\$ 525$. For $15,000<x \leq 30,000$, the tax due is
$525+.0625(x-15,000)=.0625 x-$
412.5. For $x>30,000$,
the tax due is $1,462.5+.0645(x-30,000)=.0645 x-472.5$.
Thus,
(C) $\quad T(20,000)=\$ 837.50$
$T(35,000)=\$ 1,785$
74. (A) The graph of the basic function $y=x^{3}$ is vertically expanded by a factor of 463 .
(B)

76. (A) The graph of the basic function $y=\sqrt[3]{x}$ is reflected in the x axis and shifted up 10 units.
(B)

EXERCISE 2-3
2. $x^{2}+16 x$ (standard form)
$x^{2}+16 x+64-64$ (completing the square)
$(x+8)^{2}-64$ (vertex form)
4. $x^{2}-12 x-8 \quad$ (standard form)
$\left(x^{2}-12 x\right)-8$
$\left(x^{2}-12 x+36\right)+8-36$ (completing the square)
$(x-6)^{2}-44 \quad$ (vertex form)
6. $3 x^{2}+18 x+21$ (standard form)
$3\left(x^{2}+6 x\right)+21$
$3\left(x^{2}+6 x+9-9\right)+21$ (completing the square)
$3(x+3)^{2}+21-27$
$3(x+3)^{2}-6$ (vertex form)
8. $-5 x^{2}+15 x-11 \quad$ (standard form)
$-5\left(x^{2}-3 x\right)-11$
$-5\left(x^{2}-3 x+\frac{9}{4}-\frac{9}{4}\right)-11$ (completing the square)
$-5\left(x-\frac{3}{2}\right)^{2}-11+\frac{45}{4}$
$-5\left(x-\frac{3}{2}\right)^{2}+\frac{1}{4} \quad($ vertex form $)$
10. The graph of $g(x)$ is the graph of $y=x^{2}$ shifted right 1 unit and down 6 units; $g(x)=(x-1)^{2}-6$.
12. The graph of $n(x)$ is the graph of $y=x^{2}$ reflected in the x axis, then shifted right 4 units and up 7 units; $n(x)=-(x-4)^{2}+7$.
14. (A) $g(\mathrm{~B}) m(\mathrm{C}) n(\mathrm{D}) f$
16. (A) x intercepts: $-5,-1 ; y$ intercept: $-5 \quad$ (B) Vertex: $(-3,4)$
(C) Maximum: 4
(D) Range: $y \leq 4$ or $(-\infty, 4]$
18. (A) x intercepts: 1,$5 ; y$ intercept: 5 (B) Vertex: $(3,-4)$
(C) Minimum: -4 (D) Range: $y \geq-4$ or $[-4, \infty)$
20. $g(x)=-(x+2)^{2}+3$
(A) $\quad x$ intercepts: $\quad-(x+2)^{2}+3=0$

$$
(x+2)^{2}=3
$$

$$
x+2= \pm \sqrt{3}
$$

$$
x=-2-\sqrt{3},-2+\sqrt{3}
$$

y intercept: -1
(B) Vertex: $(-2,3)$ (C) Maximum: 3 (D) Range: $y \leq 3$ or $(-\infty, 3]$
22. $n(x)=(x-4)^{2}-3$
(A) $\quad x$ intercepts:

$$
\begin{aligned}
(x-4)^{2}-3 & =0 \\
(x-4)^{2} & =3 \\
x-4 & = \pm \sqrt{3} \\
x & =4-\sqrt{3}, 4+\sqrt{3}
\end{aligned}
$$

y intercept: 13
(B) Vertex: $(4,-3)$ (C) Minimum: -3 (D) Range: $y \geq-3$ or $[-3, \infty)$
24. $y=-(x-4)^{2}+2$
26. $y=[x-(-3)]^{2}+1$ or $y=(x+3)^{2}+1$
28. $g(x)=x^{2}-6 x+5=x^{2}-6 x+9-4=(x-3)^{2}-4$
(A) $\quad x$ intercepts:

$$
\begin{gathered}
(x-3)^{2}-4=0 \\
(x-3)^{2}=4 \\
x-3= \pm 2 \\
x=1,5
\end{gathered}
$$

y intercept: 5
$\begin{array}{ll}\text { (B) Vertex: } & (3,-4) \\ \text { (C) Minimum: }-4(D) \text { Range: } y \geq-4 \text { or }[-4, \infty)\end{array}$

$$
=-4(x+1)^{2}-\quad=-4(x+1)+1
$$

(A) $\quad x$ intercepts:

$$
\left.\left.-4(x+1)^{2}+1=0 \quad \overline{4}\right\rfloor\right\rfloor
$$

$$
4(x+1)^{2}=1
$$

$$
(x+1)^{2}=\frac{1}{4}
$$

$$
x+1= \pm \frac{1}{2}
$$

$$
x=-\frac{3}{2},-\frac{1}{2}
$$

y intercept: -3
(B) Vertex: $(-1,1)$ (C) Maximum: 1 (D) Range: $y \leq 1$ or $(-\infty, 1]$
32. $v(x)=0.5 x^{2}+4 x+10=0.5\left[x^{2}+8 x+20\right]=0.5\left[x^{2}+8 x+16+4\right]$

$$
\begin{aligned}
& =0.5\left[(x+4)^{2}+4\right] \\
& =0.5(x+4)^{2}+2
\end{aligned}
$$

(A) $\quad x$ intercepts: none
y intercept: 10
(B) Vertex: $(-4,2)$ (C) Minimum: 2 (D) Range: $y \geq 2$ or $[2, \infty)$
34. $g(x)=-0.6 x^{2}+3 x+4$
(A) $g(x)=-2:-0.6 x^{2}+3 x+4=-2$

$$
0.6 x^{2}-3 x-6=0
$$

(B) $g(x)=5:-0.6 x^{2}+3 x+4=5$

$$
-0.6 x^{2}+3 x-1=0
$$

$$
0.6 x^{2}-3 x+1=0
$$

Copyright © 2015 Pearson Education, Inc.

2-16 CHAPTER 2 FUNCTIONS AND GRAPHS
$x=-1.53,6.53$

$$
x=0.36,4.64
$$

Copyright © 2015 Pearson Education, Inc.

$$
\text { (C) } \begin{aligned}
g(x) & =8:-0.6 x^{2}+3 x+4=8 \\
& -0.6 x^{2}+3 x-4=0 \\
& 0.6 x^{2}-3 x+4=0
\end{aligned}
$$

No solution
36. Using a graphing utility with $y=100 x-7 x^{2}-10$ and the calculus option with maximum command, we obtain 347.1429 as the maximum value.
38. $m(x)=0.20 x^{2}-1.6 x-1=0.20\left(x^{2}-8 x-5\right)$

$$
=0.20\left[(x-4)^{2}-21\right]=0.20(x-4)^{2}-4.2
$$

(A) x intercepts:
$0.20(x-4)^{2}-4.2=0$
$(x-4)^{2}=21$
$x-4= \pm 21$
$x=4-\sqrt{21}=-0.6,4+\sqrt{21}=8.6$;
y intercept: -1
(B) Vertex: $(4,-4.2)$
(C) Minimum: -4.2
(D) Range: $y \geq-4.2$ or $[-4.2, \infty)$
40. $n(x)=-0.15 x^{2}-0.90 x+3.3=-0.15\left(x^{2}+6 x-22\right)=-0.15\left[(x+3)^{2}-31\right]=-0.15(x+3)^{2}+4.65$
(A) x intercepts:

$$
\begin{aligned}
& -0.15(x+3)^{2}+4.65=0 \\
& (x+3)^{2}=31 \\
& \quad x+3= \pm \boxed{3} 1 \\
& x=-3-\sqrt{31}=-8.6,-3+\sqrt{31}=2.6
\end{aligned}
$$

y intercept: 3.30
$\begin{array}{ll}\text { (B) Vertex: }(-3,4.65) & \text { (C) Maximum: } 4.65 \text { (D) Range: } x \leq 4.65 \text { or }(-\infty, 4.65]\end{array}$
42.

$x=-1.27,2.77$
44.

$-0.88 \leq x \leq 3.52$
46.

$x<-1$ or $x>2.72$
48. f is a quadratic function and $\max f(x)=f(-3)=-5$

Axis: $x=-3$
Vertex: $(-3,-5)$
Range: $y \leq-5$ or $(-\infty,-5]$
x intercepts: None
50. (A)

(B) $f(x)=g(x):-0.7 x(x-7)=0.5 x+3.5$

$$
\begin{aligned}
& -0.7 x^{2}+4.4 x-3.5=0 \\
& x=\frac{\square 4.4 \square \sqrt{(4.4)^{2} \square 4(0.7)(3.5)}}{\square 1.4}=0.93,5.35
\end{aligned}
$$

(C) $f(x)>g(x)$ for $0.93<x<5.35$
(D) $f(x)<g(x)$ for $0 \leq x<0.93$ or $5.35<x \leq 7$
52. (A)

(B) $f(x)=g(x):-0.7 x^{2}+6.3 x=1.1 x+4.8$

$$
\begin{aligned}
& -0.7 x^{2}+5.2 x-4.8=0 \\
& 0.7 x^{2}-5.2 x+4.8=0 \\
& x=\quad 1.4 \quad=1.08,6.35
\end{aligned}
$$

(D) $f(x)<g(x)$ for $0 \leq x<1.08$ or $6.35<x \leq 9$
(C) $f(x)>g(x)$ for $1.08<x$
54. A quadratic with no real zeros will not intersect the x-axis. <6.35
56. Such an equation will have
60.

$$
k=c-a h^{2}
$$

Copyright © 20

$=\underline{4 a c-b}$

Copyright © 2015 Pearson Education, Inc.
$4 a$
$f(x)=-0.0169 x^{2}+0.47 x+17.1$
(A)

x	Mkt Share	$f(x)$
0	17.2	17.1
5	18.8	19.0
10	20.0	20.1
15	20,7	20.3
20	20.2	19.7
25	17.4	18.3
30	16.4	16.0

(C) For 2020, $x=40$ and $f(40)=-0.0169(30)^{2}+0.47(40)+17.1=8.9 \%$

For 2025, $x=45$ and $f(45)=-0.0169(45)^{2}+0.47(45)+17.1=4.0 \%$
(D) Market share rose from 17.2% in 1980 to a maximum of 20.7% in 1995 and then fell to 16.4% in 2010 .
64. Verify
68. (A)
$=\$ 1,000$
(C) Loss:

Profit

$$
=1,500 x-60 x^{2}-4,000
$$

72. Solve: $f(x)=1,000\left(0.04-x^{2}\right)=30$

$$
\begin{aligned}
& 40-1000 x^{2}=30 \\
& 1000 x^{2}=10
\end{aligned}
$$

$$
x^{2}=0.01
$$

Copyright © 2015 Pearson Education, Inc.

Break-even at 3.035 thousand $(3,035)$ and 21.965 thousand $(21,965)$
(B) and (C) Intercepts and break-even points: 3,035 computers and 21,965 computers
(D) and (E) Maximum profit is $\$ 5,375,000$ when 12,500
computers are produced. This is much smaller
than the maximum revenue of

$$
\operatorname{lel}_{2}
$$

\$16,666,667.
-

EXERCISE 2-4
2. $f(x)=72+12 x$
(A) Degree: 1
(B) $72+12 x=0$

$$
\begin{aligned}
& 12 x=-72 \\
& \quad x=-6 \\
& x \text {-intercept: } x=-6
\end{aligned}
$$

4. $f(x)=x^{3}(x+5)$
(A) Degree: 4
(B) $x^{3}(x+5)=0$
$x=0,-5$
x-intercepts: $0,-5$
(C) $f(0)=0(0+5)=0$
y-intercept: 0
5. $f(x)=x^{2}-4 x-5$
(A) Degree: 2
(B) $(x-5)(x+1)=0$
$x=-1,5$
x-intercepts: $-1,5$
(C) $f(0)=-5$
y-intercept: -5
6. $f(x)=\left(x^{2}-4\right)\left(x^{3}+27\right)$
(A) Degree: 5
(B) $\left(x^{2}-4\right)\left(x^{3}+27\right)=0$
$x=-2,2,-3$
x-intercepts: $x=-2,2,-3$
(C) $f(0)=-4(27)=-108$ y-intercept: - 108
7. $f(x)=(x+3)^{2}(8 x-4)^{6}$
(A) Degree: 8
(B) $(x+3)(8 x-4)=0$
$x=-3, \frac{1}{2}$
x-intercepts: $-3,1 / 2$
(C) $f(0)=3^{2}(-4)^{6}=36,864$
y-intercept: 36,864
8. (A) Minimum degree: 2
(B) Negative - it must have even degree, and positive values in the domain are mapped to negative values in the range.
9. (A) Minimum degree: 3
(B) Negative - it must have odd degree, and positive values in the domain are mapped to negative values in the range.
10. (A) Minimum degree: 4
(B) Positive - it must have even degree, and positive values in the domain are mapped to positive values in the range.
11. (A) Minimum degree: 5
(B) Positive - it must have odd degree, and positive values in the domain are mapped to positive values in the range.
12. A polynomial of degree 7 can have at most $7 x$-intercepts.
13. A polynomial of degree 6 may have no x intercepts. For example, the polynomial $f(x) \square x^{6} \square$ has no x - intercepts.
14. (A) Intercepts:
(B) Domain: all real numbers except $x=-3$
(C) Vertical asymptote at $x=-3$ by case 1 of the vertical asymptote procedure on page 90.

Horizontal asymptote at $y=1$ by case 2 of the horizontal asymptote procedure on page 90.
(D)

(E)

26. (A) Intercepts:
(B) Domain: all real numbers except $x=3$.
(C) Vertical asymptote at $x=3$ by case 1 of the vertical asymptote procedure on page 90.

Horizontal asymptote at $y=2$ by case 2 of the horizontal asymptote procedure on page 90 .
(D)

(E)

28. (A) Intercepts:
(B) Domain: all real numbers except x D2
(C) Vertical asymptote at $x=2$ by case 1 of the vertical asymptote procedure on page 90.

Horizontal asymptote at $y=-3$ by case 2 of the horizontal asymptote procedure on page 90 .
(D)

(E)

30.
(A)

(B)

32.
(A)

(B)

(B)
)

(

52. (A) Intercepts:

x-intercept(s):	y-intercept:
$5 x-10=0$	$f(0)=\frac{-10}{-12}=\frac{5}{6}$
$x=2$	$(0,5 / 6)$
$(2,0)$	

(B) Vertical asymptote
(C)
(B)

(D)

(C) A daily production level of $x=45$ units per day, results in the lowest average cost of \bar{C} (45) \$91.44 per unit.
(D)

62. (A) (B)
(C) A minimum average cost of $\$ 566.84$ is achieved at a production level of $x=8.67$ thousand cases per month.
64. (A)

(B) $y(42)=156$ eggs
66. (A) The horizontal asymptote is $y=55$.
(B) $\quad f(x) \uparrow$

68. (A)

$$
\begin{aligned}
& \text { CubicReg } \\
& ==3 \times 3+6 \times 2+6 \times d \\
& b=4.4444445-5 \\
& 0=2471031746 \\
& 9=2.07380524
\end{aligned}
$$

(B) This model gives an estimate of 2.5 divorces per 1,000 marriages.

EXERCISE 2-5

2. A. graph g
B. graph f
C. graph h
D. graph k
3.

x	y
-3	$\frac{1}{27}$
-1	$\frac{1}{3}$
0	1
1	3
3	27

6.

x	y
-3	27
-1	3
0	1
1	$\frac{1}{3}$
3	$\frac{1}{27}$

8.

x	$g(x)$
-3	-27
-1	-3
0	-1
1	$-\frac{1}{3}$
3	$-\frac{1}{27}$

10.

x	y
-3	$\square \square 0.05$
-1	$\square \square 0.37$
0	-1
1	$\square \square 2.72$
3	$\square \square 20.09$

12. The graph of g is the graph of f shifted 2 units to the right.
14. The graph of g is the graph of f reflected in the x axis.
16. The graph of g is the graph of f shifted 2 units down.
18. The graph of g is the graph of f vertically contracted by a factor of 0.5 and shifted 1 unit to the right.
20. A.

B.

2-24 CHAPTER 2 FUNCTIONS AND GRAPHS
C.

22.

x	$G(t)$
-200	$\frac{1}{9}$
-100	$\frac{1}{3}$
0	1
100	3
200	9

26.

x	$\square y$
-3	$\square 0.05$
-1	0.37
0	$\square 1$
1	$\square 0.37$
3	0.05

30.
31.
32.

3
36. $10 x e^{x}-5 e^{x}=0$
$\mathrm{e}^{x}(10 x-5)=0$ $10 x-5=0\left(\right.$ since $\left.e^{x} \neq 0\right)$
$x=1 / 2$
38. $x^{2} e^{-x}-9 e^{-x}=0$
$e^{-x}\left(x^{2}-9\right)=0$
$\left(x^{2}-9\right)=0\left(\right.$ since $\left.e^{-x} \neq 0\right)$
$x=-3,3$
40. $e^{4 x}+e>0$ for all x;
$e^{4 x}+e=0$ has no solutions.
42. $e^{3 x-1}-e=0$

$$
\begin{aligned}
e^{3 x-1} & =e^{1} \\
3 x-1 & =1 \\
x & =2 / 3
\end{aligned}
$$

44.

x	$m(x)$
0	0
1	1
2	$\frac{2}{9}$
3	1

46. $N=\frac{200 ;[0,5]}{1+3 e^{-t}}$

48.
54. (A) $A=P\left(1+\frac{r}{m}\right)^{m t}$

$$
\begin{aligned}
& A=10,000\left(1+\frac{0.0135}{4}\right)^{(4)(5)} \\
& A=10,000(1.003375)^{20} \\
& A=10,000(1.069709) \\
& A=\$ 10,697.09
\end{aligned}
$$

(C) $A=P\left(1+\frac{r}{m}\right)^{m t}$
$A=10,000\left(1+\frac{0.0125}{365}\right)^{(365)(5)}$
$A=10,000(1.000034247)^{1825}$
$A=10,000(1.06449332)$
$A=\$ 10,644.93$
56. $N=40\left(1-e^{-0.12 t}\right) ;[0,30]$

x	N
0	$\square 0$
10	27.95
20	$\square 36.37$
30	$\square 38.91$

The maximum number of boards an average employee can be expected to produce in 1 day is 40 .
58.

(A) The average salary in 2022: $y(32) \approx \$ 20,186,000$.
(B) The model gives an average salary of $y(7) \approx \$ 1,943,000$ in 1997.
60. (A) $I(50)=I_{o} e^{-0.00942(50)} \approx 62 \%(\mathrm{~B}) I(100)=I_{o} e^{-0.00942(100)} \approx 39 \%$
62. (A) $P=94 e^{0.032 t}$.
(B) Population in 2025: $\quad P(13)=94 e^{0.032(13)} \approx 142,000,000$;

Population in 2035: $P(23)=94 e^{0.032(23)} \approx 196,000,000$.
64.

ExFREG

Life expectancy for a person born in 2025: $y(55) \approx 81.5$ years.

EXERCISE 2-6

2. $\log _{2} 32=5 \Rightarrow 32=2^{5}$
3. $\log _{e} 1=0 \Rightarrow e^{0}=1$
4. $\log _{9} 27=\frac{3}{2} \Rightarrow 27=9^{32}$
5. $36=6^{2} \Rightarrow \log _{6}^{36}=2$
6. $9=27^{23} \Rightarrow \underset{27}{\log 9=} \quad \frac{2}{3}$
7. $M=b^{x} \Rightarrow \underset{b}{\log } M=x$ 14. $\log \underset{10}{100}, 000=\log 10_{10}^{5}=516 . \log \quad{ }_{3}^{1}=\log _{3} 3^{-1}=-1$
8. $\log _{4} 1=\log _{4} 4^{0}=0$
9. $\ln \mathrm{e}^{-5}=-5$
10. $\log _{b} F G \square \log _{b} F \square \log _{b} G$
11. $\log _{b} w^{15} \square 15 \log _{b} w$
12.
13. True; the graph of every function (not necessarily one-to-one) intersects each vertical line exactly once.
14. False; $x \square 1$ is in the domain of f, but cannot be in the range of g.
15. True; since g is the inverse of f, then (a, b) is on the graph of f if and only if (b, a) is on the graph of g. Therefore, f is also the inverse of g.

44

