Solution Manual for College Mathematics for Business Economics Life Sciences and Social Sciences 13th Edition by Barnett ISBN 0321945514 9780321945518

Full link download Solution Manual:

https://testbankpack.com/p/solution-manual-for-college-mathematics-forbusiness-economics-life-sciences-and-social-sciences-13th-edition-by-barnettisbn-0321945514-9780321945518/

Test Bank:

https://testbankpack.com/p/test-bank-for-college-mathematics-forbusiness-economics-life-sciences-and-social-sciences-13th-edition-bybarnett-isbn-0321945514-9780321945518/

2 01.FUNCTIONS AND GRAPHS

EXERCISE 2-1

10. The table specifies a function, since for each domain value there corresponds one and only one range value.

12. The table does not specify a function, since more than one range value corresponds to a given domain Copyright © 2015 Pearson Education, Inc.

2-2 CHAPTER 2 FUNCTIONS AND GRAPHS value.

(Range values 1, 2 correspond to domain value 9.)

- **14.** This is a function.
- 16. The graph specifies a function; each vertical line in the plane intersects the graph in at most one point.
- **18.** The graph does not specify a function. There are vertical lines which intersect the graph in more than one point. For example, the *y*-axis intersects the graph in two points.
- **20.** The graph does not specify a function.

30.

- **24.** $x^2 y 8$ is neither linear nor constant.
- **28.** $9x \ 2y \ 6 \ 0$ is linear.

38. $f(x) = \frac{3x^2}{x^2 \Box 2}$. Since the denominator is bigger than 1, we note that the values of *f* are between 0 and 3.

Furthermore, the function *f* has the property that f(-x) = f(x). So, adding points x = 3, x = 4, x = 5, we have:

10

15

20

25

14,000

16,500

16,000

12,500

25 x

Copyright © 2015 Pearson Education, Inc.

25 1

90. (A) P(x) = R(x) - C(x)= x(2,000 - 60x) - (4,000 + 500x) thousand dollars = $1,500x - 60x^2 - 4,000$

Domain:
$$1 \le x \le 25$$

(B) Table 13 Profit		(C)	5.000	
x (thousands)	P(x) (thousands)		10,000	
1	-\$2,560		Ŧ	4
5	2,000		t,	ſ
10	5,000		1	
15	5,000		1	
20	2,000			
25	-4,000			
92. (A) 1.2 inches		(C) $x =$	= 1.23 to two) Č

(B) Evaluate the volume function for x = 1.21, 1.22, ..., and choose the value of x whose volume is closest to 65.

94. (A)
$$V(x) = x^2 (108 \Box x)$$

(B) 0 < x < 27

(C) Table 16 Volume

x	V(x)		
5	2,200		
10	6,800		
15	10,800		
20	11,200		
25	5,000		
<u> </u>	5 2 14		

x = 1.23 to two decimal places

1.21 1.22 64.847 65.067 1.24 1.25 1.25 1.25 65.313 1.26 85.458 X=1.23

- **96.** (A) Given 5v 2s = 1.4. Solving for *v*, we have: v = 0.4s + 0.28. If s = 0.51, then v = 0.4(0.51) + 0.28 = 0.484 or 48.4%.
 - (B) Solving the equation for *s*, we have: s = 2.5v - 0.7. If v = 0.51, then s = 2.5(0.51) - 0.7 = 0.575 or 57.5%.

EXERCISE 2-2

- 2. f(x) = -4x + 12 Domain: all real numbers; range: all real numbers.
- 4. $f(x) = 3 + \sqrt{x}$ Domain: $[0, \infty)$; range: $[3, \infty)$.
- 6. f(x) = -5|x| + 2 Domain: all real numbers; range: $(-\infty, 2]$.

26. The graph of h(x) = -|x - 5| is the graph of y = |x| reflected in the *x* axis and shifted 5 units to the right.

28. The graph of $m(x) = (x + 3)^2 + 4$ is the graph of $y = x^2$ shifted 3 units to the left and 4 units up.

Copyright © 2015 Pearson Education, Inc.

30. The graph of $g(x) = -6 + \sqrt[3]{x}$ is the graph of $y = \sqrt[3]{x}$ shifted 6 units down.

32. The graph of $m(x) = -0.4x^2$ is the graph of $y = x^2$ reflected in the *x* axis and vertically contracted by a factor of 0.4.

34. The graph of the basic function y = |x| is shifted 3 units to the right and 2 units up. y = |x - 3| + 2

- **36.** The graph of the basic function y = |x| is reflected in the *x* axis, shifted 2 units to the left and 3 units up. Equation: y = 3 |x + 2|
- **38.** The graph of the basic function $\sqrt[3]{x}$ is reflected in the *x* axis and shifted up 2 units. Equation: $y = 2 \sqrt[3]{x}$
- **40.** The graph of the basic function $y = x^3$ is reflected in the *x* axis, shifted to the right 3 units and up 1 unit. Equation: $y = 1 - (x - 3)^3$

Copyright © 2015 Pearson Education, Inc.

2-10 CHAPTER 2 FUNCTIONS AND GRAPHS

52.

- 54. The graph of the basic function y = x is reflected in the x axis and vertically expanded by a factor of 2. Equation: y = -2x
- 56. The graph of the basic function y = |x| is vertically expanded by a factor of 4. Equation: y = 4|x|
- **58.** The graph of the basic function $y = x^3$ is vertically contracted by a factor of 0.25. Equation: $y = 0.25x^3$.
- **60.** Vertical shift, reflection in *y* axis. Reversing the order does not change the result. Consider a point (a, b) in the plane. A vertical shift of *k* units followed by a reflection in *y* axis moves (a, b) to (a, b + k) and then to (-a, b + k). In the reverse order, a reflection in *y* axis followed by a vertical shift of *k* units moves (a, b) to (-a, b) and then to (-a, b + k). In the reverse order, a reflection in *y* axis followed by a vertical shift of *k* units moves (a, b) to (-a, b) and then to (-a, b + k). The results are the same.
- **62.** Vertical shift, vertical expansion.

Reversing the order can change the result. For example, let (a, b) be a point in the plane. A vertical shift of *k* units followed by a vertical expansion of *h* (*h* > 1) moves (a, b) to (a, b + k) and then to (a, bh + kh). In the reverse order, a vertical expansion of *h* followed by a vertical shift of *k* units moves (a, b) to (a, bh)and then to (a, bh + k); $(a, bh + kh) \neq (a, bh + k)$.

64. Horizontal shift, vertical contraction.

Reversing the order does not change the result. Consider a point

(a, b) in the plane. A horizontal shift of *k* units followed by a vertical contraction of h (0 < h < 1) moves (a, b) to (a + k, b) and then to (a + k, bh). In the reverse order, a vertical contraction of *h* followed by a horizontal shift of *k* units moves (a, b) to (a, bh) and then to (a + k, bh). The results are the same.

66. (A) The graph of the basic function $y = \frac{68}{\sqrt{x}}$ is vertically expanded by (A) a factor of 4.

The graph of the basic function $y = x^2$ is reflected in the *x* axis, vertically contracted by a factor of 0.013, and shifted 10 units to the right and 190 units up.

70. (A) Let x = number of kwh used in a (B) winter month. For $0 \le x \le 700$, the charge is 8.5 + .065x. At x = 700, the charge is \$54. For x >700, the charge is 54 + .053(x - 700) = 16.9 + 0.053x. Thus,

- 72. (A) Let x = taxable income. If $0 \le x \le 15,000$, the tax due is \$.035x. At x = 15,000, the tax due is \$525. For $15,000 < x \le 30,000$, the tax due is 525 + .0625(x - 15,000) = .0625x - 412.5. For x > 30,000, the tax due is 1,462.5 + .0645(x - 30,000) = .0645x - 472.5. Thus,
 - (C) T(20,000) = \$837.50T(35,000) = \$1,785
 - 74. (A) The graph of the basic function $y = x^3$ is vertically expanded by a factor of 463.
 - (B) w(x) = 250200 150 100 50 0 0.5 1 x

EXERCISE 2-3

2. $x^2 + 16x$ (standard form) $x^2 + 16x + 64 - 64$ (completing the square) $(x+8)^2 - 64$ (vertex form) **76.** (A) The graph of the basic function $y = \sqrt[3]{x}$ is reflected in the *x* axis and shifted up 10 units.

4. $x^2 - 12x - 8$ (standard form) ($x^2 - 12x$) - 8 ($x^2 - 12x + 36$) + 8 - 36 (completing the square) (x - 6)² - 44 (vertex form)

6. $3x^2 + 18x + 21$ (standard form)

 $3(x^2+6x)+21$

 $3(x^2+6x+9-9)+21$ (completing the square)

$$3(x+3)^2+21-27$$

 $3(x+3)^2 - 6$ (vertex form)

8.
$$-5x^2 + 15x - 11$$
 (standard form)

$$-5(x^2-3x)-11$$

 $-5(x^{2}-3x+\frac{9}{4}-\frac{9}{4}) - 11 \text{ (completing the square)}$ $-5(x-\frac{3}{2})^{2} - 11 + \frac{45}{4}$ $-5(x-\frac{3}{2})^{2} + \frac{1}{4} \text{ (vertex form)}$

- **10.** The graph of g(x) is the graph of $y = x^2$ shifted right 1 unit and down 6 units; $g(x) = (x 1)^2 6$.
- 12. The graph of n(x) is the graph of $y = x^2$ reflected in the x axis, then shifted right 4 units and up 7 units; $n(x) = -(x - 4)^2 + 7$.

14. (A)
$$g$$
 (B) m (C) n (D) f

- **16.** (A) *x* intercepts: -5, -1; y intercept: -5 (B) Vertex: (-3, 4) (C) Maximum: 4 (D) Range: $y \le 4$ or $(-\infty, 4]$
- **18.** (A) *x* intercepts: 1, 5; *y* intercept: 5 (B) Vertex: (3, -4)(C) Minimum: -4 (D) Range: $y \ge -4$ or $[-4, \infty)$
- 20. $g(x) = -(x+2)^2 + 3$ (A) x intercepts: $-(x+2)^2 + 3 = 0$ $(x+2)^2 = 3$ $x+2 = \pm \sqrt{3}$ $x = -2 - \sqrt{3}, -2 + \sqrt{3}$

y intercept: -1

(B) Vertex: (-2, 3) (C) Maximum: 3 (D) Range: $y \le 3$ or (- ∞ , 3]

22.
$$n(x) = (x-4)^2 - 3$$

(A) x intercepts: $(x-4)^2 - 3 = 0$
 $(x-4)^2 = 3$
 $x-4 = \pm \sqrt{5}$

y intercept: 13

Copyright © 2015 Pearson Education, Inc.

 $x = 4 - \sqrt{3}, 4 + \sqrt{3}$

2-14 CHAPTER 2 FUNCTIONS AND GRAPHS

(B) Vertex: (4, -3) (C) Minimum: -3 (D) Range: $y \ge -3$ or $[-3, \infty)$

24.
$$y = -(x-4)^{2} + 2$$

26. $y = [x - (-3)]^{2} + 1$ or $y = (x + 3)^{2} + 1$
28. $g(x) = x^{2} - 6x + 5 = x^{2} - 6x + 9 - 4 = (x - 3)^{2} - 4$
(A) x intercepts: $(x - 3)^{2} - 4 = 0$
 $(x - 3)^{2} = 4$
 $x - 3 = \pm 2$
 $x = 1, 5$
y intercept: 5
(B) Vertex: (3, -4) (C) Minimum: -4 (D) Range: $y \ge -4$ or $[-4, \infty)$
30. $s(x) = -4x^{2} - 8x - 3 = -4 \begin{bmatrix} x^{2} + 2x + 3 \\ 4 \end{bmatrix} = -4 \begin{bmatrix} x^{2} + 2x + 1 - 1 \\ 1 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 2 = -4 (x + 1)^{2} - = -4(x + 1) + 1 = 2 = -4(x + 1)^{2} + 1 = 0$
(A) x intercepts: $-4(x + 1)^{2} + 1 = 0$
 $4(x + 1)^{2} = 1$
 $(x + 1)^{2} = \frac{1}{4}$
 $x + 1 = \pm \frac{1}{2}$
y intercept: -3
(B) Vertex: (-1, 1) (C) Maximum: 1 (D) Range: $y \le 1$ or (- ∞ , 1]
32. $v(x) = 0.5x^{2} + 4x + 10 = 0.5[x^{2} + 8x + 20] = 0.5[x^{2} + 8x + 16 + 4] = 0.5[(x + 4)^{2} + 4] = 0.5[(x + 4)^{2} + 2]$
(A) x intercepts: none

y intercept: 10

(B) Vertex: (–4, 2) (C) Minimum: 2 (D) Range: $y \ge 2$ or $[2, \infty)$

34.
$$g(x) = -0.6x^2 + 3x + 4$$

(A) $g(x) = -2: -0.6x^2 + 3x + 4 = -2$
 $0.6x^2 - 3x - 6 = 0$

(B)
$$g(x) = 5: -0.6x^2 + 3x + 4 = 5$$

 $-0.6x^2 + 3x - 1 = 0$
 $0.6x^2 - 3x + 1 = 0$

Copyright © 2015 Pearson Education, Inc.

2-16 CHAPTER 2 FUNCTIONS AND GRAPHS x = -1.53, 6.53

x = 0.36, 4.64

(C)
$$g(x) = 8: -0.6x^2 + 3x + 4 = 8$$

 $-0.6x^2 + 3x - 4 = 0$
 $0.6x^2 - 3x + 4 = 0$

No solution

36. Using a graphing utility with $y = 100x - 7x^2 - 10$ and the calculus option with maximum command, we obtain 347.1429 as the maximum value.

38.
$$m(x) = 0.20x^2 - 1.6x - 1 = 0.20(x^2 - 8x - 5)$$

= $0.20[(x - 4)^2 - 21] = 0.20(x - 4)^2 - 4.2$

(A) x intercepts:

$$0.20(x-4)^{2} - 4.2 = 0$$

(x-4)² = 21
x-4 = ± $\sqrt{21}$
x = 4 - $\sqrt{21}$ = -0.6, 4 + $\sqrt{21}$ = 8.6;
y intercept: -1

(B) Vertex: (4, -4.2) (C) Minimum: -4.2 (D) Range:
$$y \ge -4.2$$
 or $[-4.2, \infty)$
40. $n(x) = -0.15x^2 - 0.90x + 3.3 = -0.15(x^2 + 6x - 22) = -0.15[(x + 3)^2 - 31] = -0.15(x + 3)^2 + 4.65$

(A) x intercepts:

42.

$$-0.15(x + 3)^{2} + 4.65 = 0$$

$$(x + 3)^{2} = 31$$

$$x + 3 = \pm \sqrt[3]{1}$$

$$x = -3 - \sqrt{31} = -8.6, -3 + \sqrt{31} = 2.6;$$

y intercept: 3.30

(B) Vertex: (-3, 4.65) (C) Maximum: 4.65 (D) Range: $x \le 4.65$ or (- ∞ , 4.65]

48. f is a quadratic function and max f(x) = f(-3) = -5Axis: x = -3Vertex: (-3, -5)Range: $y \le -5$ or $(-\infty, -5]$ x intercepts: None

EXERCISE 2-3 2-19

 $=\frac{4ac-b}{b}$

$$\begin{aligned} & 4a \\ f(x) &= -0.0169x^2 + 0.47x + 17.1 \\ \text{(A)} \end{aligned}$$

x	Mkt Share	f(x)
0	17.2	17.1
5	18.8	19.0
10	20.0	20.1
15	20,7	20.3
20	20.2	19.7
25	17.4	18.3
30	16.4	16.0

(C) For 2020, x = 40 and $f(40) = -0.0169(30)^2 + 0.47(40) + 17.1 = 8.9\%$ For 2025, x = 45 and $f(45) = -0.0169(45)^2 + 0.47(45) + 17.1 = 4.0\%$

(D) Market share rose from 17.2% in 1980 to a maximum of 20.7% in 1995 and then fell to 16.4% in 2010.64. Verify

16,666.667 thousand dollars (\$16,666,667) (C) 2000 - 60(50 / 3) = \$1,00060x - 1,500x + 4,000 = 0

16.667 thousand computers(16,667 computers);

$$6x^2 - 150x + 400 = 0$$

x = 3.035, 21.965
x = 0.10 cm

Break-even at 3.035 thousand (3,035) and 21.965 thousand (21,965)

\$16,666,667.

EXERCISE 2-4

2. f(x) = 72 + 12x

(A) Degree: 1

(B)
$$72 + 12x = 0$$

 $12x = -72$
 $x = -6$
x-intercept: $x = -6$

4.
$$f(x) = x^{3}(x+5)$$

(A) Degree: 4
(B) $x^{3}(x+5) = 0$
 $x = 0, -5$
x-intercepts: 0, -5

(C)
$$f(0) = 0(0+5) = 0$$

y-intercept: 0

6.
$$f(x) = x^2 - 4x - 5$$

(A) Degree: 2

(B)
$$(x-5)(x+1) = 0$$

 $x = -1,5$
x-intercepts: -1, 5

(C) f(0) = -5*y*-intercept: -5

8.
$$f(x) = (x^2 - 4)(x^3 + 27)$$

(A) Degree: 5

(B)
$$(x^2 - 4)(x^3 + 27) = 0$$

 $x = -2, 2, -3$
x-intercepts: $x = -2, 2, -3$

(C) f(0) = -4(27) = -108y-intercept: -108

10.
$$f(x) = (x+3)^2(8x-4)^6$$

(A) Degree: 8

(B)
$$(x+3)(8x-4) = 0$$

 $x = -3, \frac{1}{2}$
x-intercepts: $-3, 1/2$

$$(C) f(0) = 3^2 (-4)^6 = 36,864$$

y-intercept: 36,864

- **12**. (A) Minimum degree: 2
 - (B) Negative it must have even degree, and positive values in the domain are mapped to negative values in the range.
- **14.** (A) Minimum degree: 3
 - (B) Negative it must have odd degree, and positive values in the domain are mapped to negative values in the range.
- **16.** (A) Minimum degree: 4
 - (B) Positive it must have even degree, and positive values in the domain are mapped to positive values in the range.
- **18.** (A) Minimum degree: 5
 - (B) Positive it must have odd degree, and positive values in the domain are mapped to positive values in the range.
- 20. A polynomial of degree 7 can have at most 7 *x*-intercepts.
- 22. A polynomial of degree 6 may have no x intercepts. For example, the polynomial $f(x) \square x^6 \square$ has no x- intercepts.
- **24.** (A) Intercepts:
 - (B) Domain: all real numbers except x = -3
 - (C) Vertical asymptote at x = -3 by case 1 of the vertical asymptote procedure on page 90. Horizontal asymptote at y = 1 by case 2 of the horizontal asymptote procedure on page 90.

- **26**. (A) Intercepts:
 - (B) Domain: all real numbers except x = 3.
 - (C) Vertical asymptote at x = 3 by case 1 of the vertical asymptote procedure on page 90. Horizontal asymptote at y = 2 by case 2 of the horizontal asymptote procedure on page 90.

28. (A) Intercepts:

30.

(B) Domain: all real numbers except $x \square 2$

(C) Vertical asymptote at x = 2 by case 1 of the vertical asymptote procedure on page 90. Horizontal asymptote at y = -3 by case 2 of the horizontal asymptote procedure on page 90.

52. (A) Intercepts:

x-intercept(s): 5x - 10 = 0	y-intercept: $f(0) = \frac{-10}{-10} = \frac{5}{-10}$
x = 2	-12 6
(2,0)	(0,5/6)

(B) Vertical asymptote

(C) A daily production level of x = 45 units per day, results in the lowest average cost of \overline{C} (45) \$91.44 per unit.

62. (A) (B)

(C) A minimum average cost of \$566.84 is achieved at a production level of x = 8.67 thousand cases per month.

64. (A)

_

CubicRe9
9=ax ³ +bx ² +cx+d a=0091111111
b=.5004761905
c=17.655555556 d=269.3571429
d=269.33/1429

- (B) y(42) = 156 eggs
- **66.** (A) The horizontal asymptote is y = 55.

(B) This model gives an estimate of 2.5 divorces per 1,000 marriages.

EXERCISE 2-5

2. A. graph g B. graph f C. graph h D. graph k

12. The graph of g is the graph of f shifted 2 units to the right.

14. The graph of g is the graph of f reflected in the x axis.

16. The graph of g is the graph of f shifted 2 units down.

18. The graph of g is the graph of f vertically contracted by a factor of 0.5 and shifted 1 unit to the right.

20. A.

B.

22.	x	G(t)
	-200	$\frac{1}{9}$
	-100	$\frac{1}{3}$
	0	1
	100	3
	200	9

x	У
-1	□ 2.05
0	□ 2.14
1	□ 2.37
3	□ 4.72
5	□ 22.09

26.

x	□ y
-3	□ 0.05
-1	0.37
0	\Box 1
1	□ 0.37
3	0.05

30. 34. 32. **36.** $10xe^x - 5e^x = 0$ 3 $e^x (10x - 5) = 0$ 10x - 5 = 0 (since $e^x \neq 0$) x = 1/2**38.** $x^2 e^{-x} - 9e^{-x} = 0$ **40.** $e^{4x} + e > 0$ for all *x*; **42.** $e^{3x-1} - e = 0$ $e^{3x-1} = e^1$ $e^{-x}(x^2-9)=0$ $e^{4x} + e = 0$ has no solutions. $(x^2 - 9) = 0$ (since $e^{-x} \neq 0$) 3x - 1 = 1x = 2/3x = -3, 3

48.

The maximum number of boards an average employee can be expected to produce in 1 day is 40.

ExpRe [.]	g	
9=a*	6^x Ro∵o≡r	
	08.958 098151	

58.

(A) The average salary in 2022: y(32) ≈ \$20,186,000.

(B) The model gives an average salary of $y(7) \approx \$1,943,000$ in 1997.

60. (A) $I(50) = I_{e}e^{-0.00942(50)} \approx 62 \%$ (B) $I(100) = I_{e}e^{-0.00942(100)} \approx 39 \%$

62. (A) $P = 94e^{0.032t}$.

(B) Population in 2025: $P(13) = 94e^{0.032(13)} \approx 142,000,000;$ Population in 2035: $P(23) = 94e^{0.032(23)} \approx 196,000,000$.

64.

ExpRe9 9=a*b^x a=71.63144793 b=1.002343596

Life expectancy for a person born in 2025: $y(55) \approx 81.5$ years.

EXERCISE 2-6

2. $\log_{2} 32 = 5 \Rightarrow 32 = 2^{5}$ **4.** $\log_{e} 1 = 0 \Rightarrow e^{0} = 1$ **6.** $\log_{9} 27 = \frac{3}{2} \Rightarrow 27 = 9^{3}$ **8.** $36 = 6^{2} \Rightarrow \log_{6} 36 = 2$ **10.** $9 = 27^{23} \Rightarrow \log_{27} \frac{2}{3}$ **12.** $M = b^{x} \Rightarrow \log_{b} M = x$ **14.** $\log_{10} 000 = \log_{10} 10^{5} = 5$ **16.** $\log_{3} \frac{1}{3} = \log_{3} 3^{-1} = -1$ **18.** $\log_{4} 1 = \log_{4} 4^{0} = 0$ **20.** $\ln e^{-5} = -5$ **22.** $\log_{b} FG \square \log_{b} F \square \log_{b} G$ **24.** $\log_{b} w^{15} \square 15 \log_{b} w$

26.

38. True; the graph of every function (not necessarily one-to-one) intersects each vertical line exactly once.

40. False; $x \square \square 1$ is in the domain of *f*, but cannot be in the range of *g*.

42. True; since g is the inverse of f, then (a, b) is on the graph of f if and only if (b, a) is on the graph of g. Therefore, f is also the inverse of g.

44

EXERCISE 2-3 2-1