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Chapter 2: Computer Arithmetic and Digital Logic 

1. Why is binary arithmetic employed by digital computers? 

 

SOLUTION 
 

Binary arithmetic is used entirely because digital systems are constructed with two‐state logic elements. If 
semiconductor manufacturing processes changed and allowed logic elements with five states, then base‐5 
arithmetic would be used. 

 
2. We said that binary values have no intrinsic information (that is true of all other number representations). The 

Voyager I spacecraft, containing samples of human music and other messages, was the first human artifact to 
leave the solar system to travel to the stars. How is it possible to communicate with aliens in binary form if 
there is no intrinsic meaning to the data? 

 

SOLUTION 
 

It is, of course, true that binary data has no intrinsic information, and a pattern of 1s and 0s has no intrinsic 
meaning other than that given to it by the programmer; for example, we agree that the binary code 01000001 
represents the letter ‘A’ in ASCII and represents 65 as an 8421‐weighted, unsigned binary, integer. 

 
Science Fiction writers have long thought about how communication might take place between different 
civilizations. One possible solution is to construct a language using information that can be shared. For example, 
there are universal constants such as the speed of light, the spectral lines of the hydrogen spectrum, the periodic 
table and the number of protons in each element. Similarly, there are mathematical concepts such as prime 
numbers, constants such as π and e, and so on. So, by transmitting, say, a series of prime numbers or the atomic 
numbers of members of the periodic table, an alien intelligence would be able to guess the sequence and then 
work out how the numbers have been encoded. 

 
An interesting case of decoding in the face of little information took place in WW2. The British had German Enigma 
machines but needed to see a translation of known data before they could perform general decoding. So, they 
arranged for bombs to be dropped onto empty sea near a German submarine. The German submarine observed 
the bombs and transmitted their position back to base. The message was intercepted and the decoding 
performed by looking for the encoded position of the bombs using the known actual position. 

 

3. How much more inaccurate is binary integer arithmetic than decimal integer arithmetic? Can the accuracy of 
binary computers be improved to make them as accurate as decimal computers? 

 

SOLUTION 
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This is a trick question. In the absence of actual errors (faulty hardware or software), any digital logic system is 
perfectly accurate; that is, a calculation in one base yields the same result as a calculation in another base. Any 
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so‐called inaccuracies result from finite word‐lengths (e.g., a 10‐bit binary value represents a number to one part 
in 210 (one in in 1,000) whereas a 10‐bit decimal number allows a representation of 1 part in 10,000,000,000). 
Inaccuracies arise in fractional calculations (remember that a number like π cannot be represented in a finite 
number of digits). Similarly, not all decimal fractions can always be represented exactly in binary by a finite 
number of bits. 

 

4. Why are computers byte‐oriented? 
 

SOLUTION 
 

There is no logical reason – it is a matter of custom and historical development. During the development of 
computers many different wordlengths were used. Some early computers actually had a 6‐bit byte. First‐ 
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generation microprocessors had 8‐bit data registers. 8 bits were called bytes. By using the byte as a basic unit of 
data it means that 16, 32, and 64‐bit addresses fit exactly in an integer number of bytes (which is, of course, why 
we choose these address widths). If an address were 34 bits wide in a byte‐oriented world, then it would require 
a 40‐bit word of 5 bytes to store the address with 6 bits unused. 

 

More importantly, a byte is 8, bits which is 23 and that fits well in a binary word. Another reason for employing 
an 8‐bit byte is that it allows 28 = 256 different characters which fit in well with the extended ASCII character set. 

 
I sometime wonder whether the basic unit of data in a computer should have been 12 bits. That would permit a 
wider range of representation using the basic unit (1 in 212 = 4,096) which would have provided for (a) greater 
precision in simple calculations and (b) a greater ability to encode alphabets. Moreover, a 12‐bit unit would allow 
a feasible address in simple control applications (4K locations), whereas an 8‐bit unit has to be used to create a 
16‐bit address. 

 

5. Calculations are to be performed to a precision of 0.001%. How many bits does this require? 
 

SOLUTION 
 

A precision of 0.001% is one part in 100,000. The nearest power of two above this value is 217. Therefore, 17 bits 
are required. 

 
6. What are the decimal equivalents of the following values (assume positional notation and unsigned integer 

formats): 

 
a. 110011002 

b. 110011003 

c. 110011004 

d. 11001100‐2 

 

SOLUTION 
 

a. 110011002 1 × 22 + 1 × 23 +1 × 26 + 1 × 27 = 4 + 8 + 64 + 128 = 204 
b. 110011003 1 × 32 + 1 × 33 +1 × 36 + 1 × 37 = 2,952 
c. 110011004 1 × 42 + 1 × 43 +1 × 46 + 1 × 47 = 20,560 
d. 11001100‐2 1 × (‐2)2 + 1 × (‐2)3 +1 × (‐2)6 + 1 × (‐2)7 = 4 – 8 + 64 – 128 =‐68 

 

7. Why do we have octal and hexadecimal arithmetic? 

 

SOLUTION 
 

Computers operate with base 2 arithmetic. However, it is difficult for people to handle binary numbers (for 
example 29810 is 1001010102) because binary numbers involve long strings of bits and we are not good at 
remembering long sequences. Hexadecimal arithmetic has 16 digits from 0 to F representing 4 binary bits. 
Therefore, a binary number can be easily represented in hexadecimal form by replacing each four bits by a 
hexadecimal character. For example, 29810 is 12A16 (easier for people to remember than 000100101010). 

 
Octal arithmetic uses base 8 with the digits 0 to 7. Each octal digit replaces three bits. It has the same advantage 
as hexadecimal numbers; for example the binary number 111101011 is 753 in octal. However, octal arithmetic 
is hardly used today. 
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8. Convert the following decimal numbers into (a) binary and (b) hexadecimal forms 

a. 25 
b. 250 
c. 2500 
d. 25555 

SOLUTION 

 
a. 25 11001 19 
b. 250 11111010 FA 
c. 2500 100111000100 9C4 
d. 25555 110001111010011 63D3 

 
9. Convert the following unsigned binary numbers into decimal form 

a. 11 
b. 1001 
c. 10001 
d. 10011001 

SOLUTION 

a. 11 3 

b. 1001 9 
c. 10001 17 
d. 10011001 153 

 

10. Convert the following hexadecimal numbers into decimal form 
 

a. AB 

b. A0B 
c. 10A01 
d. FFAAFF 

 

SOLUTION 

 
a. AB 10101011 171 
b. A0B 101000001011 2571 
c. 10A01 10000101000000001 68097 
d. FFAAFF 111111111010101011111111 16755455 

 
11. Convert the following hexadecimal numbers into binary format 

 

a. AC 
b. DF0B 
c. 10B11 
d. FDEAF1 

 

SOLUTION 

 
a. AC 10101100 
b. DF0B 1101111100001011 
c. 10B11 10000101100010001 
d. FDEAF1 111111011110101011110001 
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12. Convert the following fractional decimal numbers into 16‐bit unsigned binary form. Use eight bits of precision. 

a. 0.2 

b. 0.046875 
c. 0.1111 
d. 0.1234 

SOLUTION 

 
a. 0.2 0.0011001100110011 0.00110011 
b. 0.046875 0.0000110000000000 0.00001100 
c. 0.1111 0.0001110001110001 0.00011100 
d. 0.1234 0.0001111110010111 0.00100000 

13. Perform the following calculations in the stated bases 

a. 001101112 

+010110112 

b. 001111112 

+010010012 

c. 0012012116 

+0A01503116 

d. 00ABCD1F16 

+ 0F00800F16 

 

SOLUTION 
 

a. 001101112 

+010110112 

100100102 

 

b. 001111112 

+010010012 

100010002 

 

c. 0012012116 

+0A01503116 

0A13515216 

 
d. 00ABCD1F16 

+0F00800F16 

0FAC4D2E16 

 

14. What is arithmetic overflow? When does it occur and how can it be detected? 
 

SOLUTION 
 

Arithmetic overflow takes place when one or more two’s complement numbers take part in an arithmetic 
operation and the sign‐bit of the result is incorrect. For example, arithmetic overflow takes place when two  
positive integers are added and the result (when interpreted as a two’s complement value) is negative, or when 
two negative numbers are added and the result is positive. In 4‐bit arithmetic, the signed two’s complement 
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values 1100 and 1000 are added to give 1 0100, where the most‐significant bit is a carry out. The sign of the result, 
0100, is 0 indicating a positive value. Since the numbers we added were both negative, arithmetic overflow has 
occurred. 

 

In two’s complement addition, arithmetic overflow can be detected by saying, “If the sign bits of the two source 
operands are the same, and differ from the sign bit of the result operand, then arithmetic overflow occurred.” 

 

15. The n‐bit two’s complement integer N is written an‐1, an‐2, . . . a1, a0. Prove that (in two's complement notation) 
the representation of a signed binary number in n + 1 bits may be derived from its representation in n bits by 
repeating the leftmost bit. For example, if n = ‐12 = 10100 in five bits, n = ‐12 = 110100 in sixbits. 

 

SOLUTION 
 

In n bits the positive number N is represented by an‐1, an‐2, . . . a 1, a0. We can extend this to n+1 bits by appending 
a 0 to the left without changing its value; that is 0, an‐1, an‐2, . . . a 1, a0. 

 
Now consider the value ‐N in n bits. This is represented as 2n ‐ N. If we extend this to n + 1 bits, it becomes 2n+1 ‐ 
N or 2n + 2n ‐ N. This is, of course, the original negative representation with a leading 1 to the left. Consequently, 
a positive number is extended by appending a 0, and a negative number by adding a 1; that is, by extending the 
sign bit. 

 
16. Convert 1234.125 into 32‐bit IEEE floating‐point format. 

 

SOLUTION 
 

1234 = 100110100102 0.125 = 0.0012 Therefore, 1234.125 = 10011010010.0012 

 

This is 1.0011010010001 × 210 (normalized binary) 

The IEEE floating point sign is 0 (positive) 

The fractional mantissa in 23 bits (with suppressed leading 1) is 00110100100010000000000 

The biased exponent is 10 + 127 = 137 or 100010012 

The floating point number is 0 10001001 00110100100010000000000 or 449A420016 

 

17. What is the decimal equivalent of the 32‐bit IEEE floating‐point value CC4C0000? 
 

SOLUTION 
 

The binary equivalent of CC4C0000 is 11001100010011000000000000000000 

This can be split into sign, biased exponent, and fractional mantissa. That is 

S = 1, E = 10011000, F = 10011000000000000000000 
 

The sign is negative, and the exponent is 100110002 ‐ 127 = 110012 = 25 (remember the stored exponent is 
biased by 127, which has to be subtracted) 

The mantissa, after the insertion of the leading 1, is 1.10011000000000000000000 

Combining mantissa and exponent we get 

1.10011000000000000000000 × 225 = 11001100000000000000000000.0 = 53,477,37610 
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18. What is the difference between overflow in the context of two’s complement numbers and overflow in the 
context of floating‐point numbers? 

 

SOLUTION 
 

In two’s complement arithmetic, arithmetic overflow occurs when a result goes out of range (that is, more 
positive than 2n‐1‐1 or more negative than ‐2n‐1. When arithmetic overflow occurs, the sign of the computed result 
is different to the correct result. 

 
In floating‐point arithmetic, overflow occurs when the exponent of a floating‐point number becomes too large to 
be represented in the format in use. The number is now too big to be stored and, usually, an exception is 
generated. 

 
19. In the negabinary system an i‐bit binary integer, N, is expressed using positional notation as: 

N = a0 × (‐1)0 × 20 + a1 × (‐1)1 × 21 + … + ai‐1 × (‐1)i‐1 × 2i‐1 

This is the same as conventional natural 8421 binary weighted numbers, except that alternate positions have 
the additional weighting +1 and ‐1. For example, 1101 = (‐1 × 1 × 8) + (+1 × 1 × 4) + (‐1 × 0 × 2) + (+1 × 1 × 1) = ‐8 
+ 4 + 1 = ‐3. The following 4‐bit numbers are represented in negabinary form. Convert them into their decimal 
equivalents. 

 
a. 0000 

b. 0101 
c. 1010 
d. 1111 

SOLUTION 

a. 0 

b. +4 + +1 = 5 

c. ‐8 + ‐2 = ‐10 
d. ‐8 + +4 + ‐2 +1 = ‐5 

 

20. Perform the following additions on 4‐bit negabinary numbers. The result is a 6‐bit negabinary value. 

 
a. 0000 b. 1010 c. 1101 d. 1111 

 +0001  +0101  +1011  +1111 

 

SOLUTION 

 
a. 0000 b. 1010 c. 1101 d. 1111 

 + 0001  + 0101  1011  1111 
 000001  001111  110100  001010 
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21. Arithmetic overflow occurs during a two's complement addition if the result of adding two positive numbers yields 

a negative result, or if adding two negative numbers yields a positive result. If the sign bits of A and B are the 

same but the sign bit of the result is different, arithmetic overflow has occurred. If an‐1 is the sign bit of A, bn‐ 1 is 
the sign bit of B, and sn‐1 is the sign bit of the sum of A and B, then overflow is defined by 

 

V = an‐1 bn‐1 s n‐1 + an‐1bn‐1 sn‐1 

In practice, real systems detect overflow from Cin  Cout to the last stage. That is, we detect overflow from 

V = c nc n‐1 + c nc n‐1. 

Demonstrate that this expression is correct. 
 

SOLUTION 
 

The diagram illustrates the most‐significant stage of a parallel adder that adds together bits a n‐1, b n‐1, and c n‐1 to 
generate a sum bit, s n‐1, and a carry‐out, c n. There are four possible combinations of A and B which can be added 
together: 

 
 
 

+A + +B 
+A + ‐B 

‐A + +B  
‐A + ‐B 

 
 
 
 
 

Because adding two numbers of differing sign cannot result in arithmetic overflow, we need consider only the 
cases where A and B are both positive, and where A and B are both negative. 

 
Case 1: A and B are positive; that is, an‐1 = 0, bn‐1 = 0 

 

The final stage adds an‐1 + bn‐1 + cn‐1 to get cn. Because an‐1 and bn‐1 are both 0 (by definition if the numbers are 
positive), the carry‐out, cn, is 0, and sn‐1 = cn‐1. 

 
We know that overflow occurs if sn‐1 = 1 (i.e., the sign bit of the sum is negative), therefore overflow occurs if cn 
Cn‐1 = 1. 

 
Case 2: A and B are negative; that is, an‐1 = 1, bn‐1 = 1. 

 

The final stage adds an‐1 + bn‐1 + cn‐1 = 1 + 1 + cn‐1, to get a sum, Sn‐1 = cn‐1, and a carry‐out cn = 1. 

Overflow occurs if sn‐1 = 0. Consequently, overflow occurs when cn‐1 = 0 and cncn‐1 = 1. 

  

Considering both cases, overflow occurs if cncn‐1 + cncn‐1 = 1. 
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22. What is the difference between a truncation error and a rounding error? 
 

SOLUTION 
 

A truncation error occurs when a number is rounded by chopping off bits; for example, 0.1110111 is truncated 
to five bits as 0.11101 by chopping off the last two bits (11). Rounding is similar to truncation in the sense that 
bits are removed. When a number is truncated, the bits removed are examined. If they are less than half the 
value of the least‐significant bit, then the bits are just dropped. If they are equal to or greater than half the least‐
significant digit, the least significant digit is rounded up. 

 

For example 0.1110111 would be rounded up to 0.11101 + 1 = 0.11110, whereas 0.1110001 would be rounded 
down to 0.11100. Truncation leads to a systematic or biased error (the rounding is always down). Rounding leads 
to an unbiased error (the error is sometimes positive and sometimes negative). However, rounding is more 
difficult to perform as it requires an extra addition. 

 
23. Positive and negative numbers can be represented in many ways in a computer. List some of the ways of 

representing signed numbers. Can you think of any other ways of representing signed values? 
 

SOLUTION 
 

There are four common ways of representing signed numbers in computing: 
 

a. One’s complement; the number begins with 0 for positive values and 1 for negative values. If the number 
has n bits, n‐1 bits are used for the number and one for its polarity (i.e., sign). A negative number is obtained 
from a positive number by inverting bits; for example, if 12 in six bits is 001100 then ‐12 is 110011. One’s 
complement is little used today. It has the disadvantage that there are two values for zero: 000…0 is +0 and 
111…1 is ‐0. 

 

b. Two’s complement: like 1’s complement, the most‐significant bit is a sign bit. A two’s complement number  
is formed by inverting the bits and then adding 1 (i.e., one’s and two’s complement negative values differ 
by 1). If 12 is 001100, ‐12 is 110011 + 1 = 110100. A two’s complement number has a single value for zero, 
000...0, and is a true complement because × + ‐x = 0 (e.g., 12 + ‐12 = 001100 + 110100 = 1 000000). The 
addition of two numbers generates a carry bit that is not part of the result. Two’s complement representation 
is the standard form of representing signed integers. It is used because addition and subtraction are the same 
operation; that is x ‐ y is evaluated by x + (‐y). 

 
c. Sign and magnitude representation is the simplest way of representing signed values. You take the most‐ 

significant bit and use it as a sign (0 = + and 1 = ‐); for example, +12 = 001100 and ‐12 = 101100. Sign and 
magnitude representation has two values for 0 and you can’t use the same hardware for addition and 
subtraction. It is used largely to represent floating‐point values. 

 

d. Excess notation. One way of dealing with negative values is to get rid of negative numbers. Six bits can 
represent the unsigned integer range 0 to 63. Suppose we call these numbers ‐32 to 31 so that 000000 is ‐ 
32, 000001 is 31, … , 100000 is 0, 100001 is 1, …, and 111111 is 31. Now we have a continuous sequence of 
positive numbers that represent ‐32 to 31 This representation is called ‘excess’, because we add a bias or 
constant to each number to convert it to its excess representation form. For example, in 6 bits ‐5 becomes ‐ 
5 + 32 = 27 = 011011. The advantage of this representation is that numbers are monotonic from the most 
negative to most positive (monotonic means that if two numbers differ by 1, their representation differs by 
1 in two’s complement form, 0 is 0000..0 and ‐1 is 1111..11). This form of representing negative values is 
used to represent exponents in floating‐point. 

 

e. You can represent negative numbers in many ways; for example, negabinary numbers use positional 
weighting with the nth digit being weighted by (‐2)n. The position values would be +64 ‐32 +16 ‐8 +4 ‐2 +1; 
for example 0011011 would represent 0 + 0 + 16 ‐8 + 0 ‐ 2 + 1 = +7. 
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24. What is a NaN and what is its significance in floating‐point arithmetic? 
 

SOLUTION 
 

The IEEE 754 floating‐point standard represents real numbers and three special entities: plus infinity, minus  
infinity, and not a number, NaN. The NaN cannot be interpreted as a normal floating‐point value. That is, a NaN 
is a value that is outside the IEEE 754 standard. This mechanism allows the designer to use the bits of a floating‐ 
point value to represent anything that he or she wishes; it’s a form of escape code. The NaN has the curious 
property that it is unordered and is not larger or smaller than another number including itself! A NaN is 
represented by an all 1s exponent and a non‐zero mantissa. 

 
Some literature divides NaNs into two categories: quiet NaNs that can be propagated in computer arithmetic, and 
signalling NaNs that can be used to force an exception. 

 
25. Write down the largest base‐5 positive integer in n digits and the largest base 7 number in m digits. It is necessary 

to represent n‐digit base‐5 numbers in base‐7. What is the minimum number m of digits needed to represent all 
possible n‐digit base‐5 numbers? Hint—the largest m‐digit base‐7 number should be greater than, or equal to, 
the largest n‐digit base‐5 number. 

 

SOLUTION 
 

The largest base‐5 number in n digits is 444…4 (n fours) which is 5n‐1. Similarly, the largest base 7 number in m 

digits is 7m ‐ 1. In order to represent all base 5 numbers we have 
 

7m ‐ 1 ≥ 4n ‐ 1 or 7m ≥ 4n or m.log107 ≥ n.log104 or m ≥ n.log104 /log107 
 

26. What is the largest three‐digit number in base 13? 
 

SOLUTION 
 

133 ‐ 1 = 2197 ‐ 1 = 2196 or CCC13 = 12 × 13 × 13 + 12 × 13 + 12 = 2028 + 156 + 12 = 2196 
 

27. Consider x2 ‐ y2 where x = 12.1234 and y = 12.1111. If arithmetic operations are carried out to six decimal 
significant figures , does it matter whether you evaluate this expression as x2 ‐ y2 or 
(x + y)(x ‐ y)? 

 

SOLUTION 
 

x = 12.1234 x2 = 146.97682756 = 146.977 (six figures rounded up) 
y = 12.1111 y2 = 146.67874321 = 146.679 (six figures rounded up) 

x2 ‐ y2 = 146.977 ‐ 146.679 = 0.298000 (only three significant figures available) 
 

x + y = 12.1234 + 12.1111 = 24.2345 (six figures) 
x ‐ y = 12.1234 ‐ 12.1111 = 0.0123 
(x + y)(x ‐ y) = 24.2345 × 0.0123 = 0.29808435 = 0.298084 (six figures) 

 
Using a calculator the answer is 0.29808435. Clearly, the way in which we perform operations affects the result 
when using finite precision. 
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28. You are evaluating the function x4 + 4x2 + 10x + 2 at x = 2. What is the estimated error if the error in x is Rx? 
 

SOLUTION 
 

To calculate the error, differentiate the polynomial and substitute the value of x. That is: 4x3 + 8x + 10 at x = 2 is 
4 x 8 + 8 x 2 + 10 = 58. Consequently, the total estimated error is 58Rx where Rx is the error in x. 

 
29. What does the following ASCII‐encoded message mean? Each character is given in hexadecimal form. 

 
43, 6F, 6D, 70, 75, 74, 65, 72, 2E 

 

SOLUTION 
 

Simply read these values from the ASCII table to get Computer. 
 

30. Floating‐point arithmetic is seldom used to perform financial calculations. Why? 
 

SOLUTION 
 

Floating‐point is generally used in engineering, scientific, and graphics calculations where wide‐ranging numbers 
have represented (e.g., 5.97219 × 1024 or 9.10938188 × 10‐31). Floating‐point arithmetic is intrinsically slower than 
fixed‐point integer arithmetic (but not necessarily so in practice if hardware acceleration techniques and 
pipelining are used to implement a dedicated floating‐point processor). Binary floating‐point numbers do not 
exactly represent real numbers, and there is an error of conversion between real and floating‐ point forms. Very 
large numbers of financial transactions could lead to significant rounding errors in the long term. 

 

31. Modern computers use unsigned integer arithmetic, fixed point arithmetic, two’s complement arithmetic, and 
floating point arithmetic. 

 
a. By examining a binary number, can you tell which number system it represents? 
b. Why are there so many ways of representing numeric values? 
c. Do we need them all? 

 

SOLUTION 
 

a. No. Remember that binary numbers have no intrinsic meaning and you cannot determine the meaning of 
a given number. However, you can guess the meaning of a string of binary values because the string may 
‘make sense’ when interpreted in a particular way. For example, if you see a string of bits and notice that 
when interpreted as ASCII characters the string says ‘Hello world”, it is very likely to be ASCII text and not 
a floating‐point number that looks like this string. 

 

b. People invent things and then make improvements. Moreover, different representations have different 
properties; for example, two’s complement representation makes the operation of addition and 
subtraction identical although this complicates division and multiplication. 

 
c. A single binary format could be devised to deal with all number types – but that would complicate the logic 

circuits that are used to implement the system 
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32. For each of the following numbers, state the base in use; that is, what is p, q, r, s, t, u? 

 
a. 100001p = 3310 

b. 25q = 1310 

c. 25r = 2310 

d. 25s = 3710 

e. 1010t = 6810 

f. 1001u = 12610 

 

SOLUTION 

 
a. 100001p = 3310 p = 2 
b. 25q = 1310 q = 4 (2x4 + 5 = 13) 
c. 25r = 2310 r = 9 
d. 25s = 3710 s = 16 (2 × 16 + 5 = 37) 
e. 1010t = 6810 t = 4 (4 × 4 × 4 + 1 × 4 = 68) 
f. 1001t = 12610 u = 5 (5 × 5 × 5 + 1 = 126) 

 

33. A digital logic element represents the high state with an output of between 2.8 and 2.95 V. The same logic element 
will see an input high state as a voltage in the range 2.1 to 3.0 V. What is the reason for this difference? What 
are the practical implications? 

 

SOLUTION 
 

The output level for a high state is determined by the circuit of the gate and the electrical characteristics of the 
transistors. When a circuit is designed, the output high level is made as close to the high‐voltage level in the circuit 
as possible. The range of inputs that are interpreted as a high level is made wider. This is done so that a high‐level 
signal can suffer from some degradation due to noise and still be interpreted as a high level state. In this example, 
the lowest high‐level output of a gate is 2.8V, whereas an input of 2.1V will be recognized as a high‐level state. 
This means that a 2.1V output can be corrupted by noise or otherwise degraded by 0.7V and STILL be recognized 
as a high‐level state. 

 
34. Draw a truth table to represent the intermediate values and output of the circuit below. 

 
A 

 
B 

C 

 
 

F 

 
 
 
 

D 
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SOLUTION 
 

We can redraw the circuit with intermediate gate outputs and then create the following truth table. 
 

A 

 
 

B A.(B+C) 
C C B+C 

 

 
B.(C+D) 

 
 

D C+D A.(B+C)+B.(C+D)+(B.D) 

 
 

 
B.D 

D 

 
A B C D C* D* B+C* C+D* A(B+C*) B(C+D*) B.D A(B+C*) +B(C+D*)+B.D 
0 0 0 0 1 1 1 1 0 0 0 0 
0 0 0 1 1 0 1 0 0 0 0 0 
0 0 1 0 0 1 0 1 0 0 0 0 
0 0 1 1 0 0 0 1 0 0 0 0 
0 1 0 0 1 1 1 1 0 1 0 1 
0 1 0 1 1 0 1 0 0 0 1 1 
0 1 1 0 0 1 1 1 0 1 0 1 
0 1 1 1 0 0 1 1 0 1 1 1 
1 0 0 0 1 1 1 1 1 0 0 1 
1 0 0 1 1 0 1 0 1 0 0 1 
1 0 1 0 0 1 0 1 0 0 0 0 
1 0 1 1 0 0 0 1 0 0 0 0 
1 1 0 0 1 1 1 1 1 1 0 1 
1 1 0 1 1 0 1 0 1 0 1 1 
1 1 1 0 0 1 1 1 1 1 0 1 
1 1 1 1 0 0 1 1 1 1 1 1 

 

35. In a digital system, what is the meaning of negative logic? 
 

SOLUTION 
 

In negative logic a low‐level is interpreted as the true state and a high‐level as the false state. Thus, a negative  
logic AND gate gives a low output if, and only if, both its inputs are low. A negative logic AND gate is identical to 
a positive logic OR gate. 

 
36. The signal RESET is asserted. What does this statement mean? 

 

SOLUTION 
 

This means that a signal must be asserted active‐low to cause a reset to occur. The term asserted means put in 
which ever state caused its named action to occur. Using the word asserted avoids the reader having to remember 
which level (1 or 0) is the active state. 



30 
© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available we bsite, in whole or in part. 

 

37. A digital system has four one‐bit inputs D, C, B, A, and an output F. The input represents a 4‐bit number in the 
range 0 to 15, where A denotes the least‐significant bit. The output F is true if the binary input is divisible by 3, 
4, or 7. Construct a truth table to represent this system and construct a logic circuit to implement it. 

 

SOLUTION 

 
DCBA Number ÷3 ÷4 ÷7 Divisible by 3, 4, or 7 
0000 0 0 0 0 0 
0001 1 0 0 0 0 
0010 2 0 0 0 0 
0011 3 1 0 0 1 
0100 4 0 1 0 1 
0101 5 0 0 0 0 
0110 6 1 0 0 1 
0111 7 0 0 1 1 
1000 8 0 1 0 1 
1001 9 1 0 0 1 
1010 10 0 0 0 0 
1011 11 0 0 0 0 
1100 12 1 1 0 1 
1101 13 0 0 0 0 
1110 14 0 0 1 1 
1111 15 1 0 0 1 

 

DCBA + DCBA + DCBA + DCBA + DCBA + DCBA + DCBA + DCBA + DCBA 

F = CB + CA + DBA + DCB 

D 
C B A 

 
 
 
 
 
 
 
 
 
 
 
 
 

F 
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38. Consider the following circuit that takes a 4‐bit binary input and encodes it. Construct a truth table for the 16 
inputs 0000 to 1111 and examine the output code. What is the characteristic feature of this code? 

 

SOLUTION 

8421 binary input 

b
4 

b
3 

b
2 

b
1 

b0 

 
 
 
 
 
 
 

 

g g g g g 
4 3 2 1 0 

Encoded output 

 

 
The truth table for this circuit is: 

 
0 0000 0000 
1 0001 0001 
2 0010 0011 
3 0011 0010 
4 0100 0110 
5 0101 0111 
6 0110 0101 
7 0111 0100 
8 1000 1100 
9 1001 1101 

10 1010 1111 
11 1011 1110 
12 1100 1010 
13 1101 1011 
14 1110 1001 
15 1111 1000 

 

The output code is called a Gray code and is an unweighted binary code; that is, the bit positions do not have 
the binary weight 1,2,4,8. The important feature of this code is that two successive values (including from 15 to 
0) differ in only one bit position, unlike natural binary where 7 (0111) and 8 (1000) differ in all four bit positions. 
This code is used when data always monotonically increases or decreases (i.e., numbers step through all values 
in sequence). Because only one bit changes at a time, there can never be any confusion between two 
consecutive numbers. In weighted codes where two bits may change so that 0011 (3) goes to 0100 (4) the 
sequence may change 0011 to 0000 to 0100 with the intermediate 0000 value being an error or glitch. 

Decimal value Natural binary value Gray code 



32 
© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available we bsite, in whole or in part. 

 

39. A logic circuit has two 2‐bit natural binary inputs A and B. A is given by A1, A0 where A1 is the most‐significant bit. 
Similarly, B is given by B1, B0 where B1 is the most‐significant bit. The circuit has three outputs, X, Y, and Z. This 
circuit compares A with B and determines whether A is greater or less than B, or is the same as B. The relationship 
between inputs A and B, and outputs X, Y, Z is as follows. 

 
Condition X Y Z 

A > B 1 0 0 

A < B 0 1 0 
A = B 0 0 1 

 
Design a circuit to implement this function. 

 

SOLUTION 
 

The truth table for this problem is obtained by treating the A and B inputs as 2‐bit numbers (i.e., 0,0 = 0, 0,1 = 1, 
1,0 = 2, and 1,1 = 3) and then comparing the A and B inputs. 

 

 

0 0 0 0 0 0 1 
0 0 0 1 0 1 0 
0 0 1 0 0 1 0 
0 0 1 1 0 1 0 
0 1 0 0 1 0 0 
0 1 0 1 0 0 1 
0 1 1 0 0 1 0 
0 1 1 1 0 1 0 
1 0 0 0 1 0 0 
1 0 0 1 1 0 0 
1 0 1 0 0 0 1 
1 0 1 1 0 1 0 
1 1 0 0 1 0 0 
1 1 0 1 1 0 0 
1 1 1 0 1 0 0 

1 1 1 1 0 0 1 
 

We can use a Karnaugh map to derive expressions for outputs X, Y, and Z. This example demonstrates symmetry 
in Boolean systems. Notice the relationship between the column corresponding to the X output (A > B) and the 
Y output (A < B). These outputs are complements for all cases except when A = B. You would expect this symmetry 
from the very nature of the problem. 

 

 
 

 

   

  
 

  

   
 

 

    
 

Inputs A > B A < B A = B 

A1 A0 B1 B0 X Y Z 
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We can write down expressions for X, Y, and Z as 

X = A1B1 +A1A0B0 + A0B1B0 

Y = A1B1 + A1A0B0 + A0B1B1 

 

Z = A1A0B1B0 + A1A0B1B0 + A1A0B1B0 + A1A0B1B0 

A circuit for the comparator constructed from AND, OR, and NOT gates is give below. Note that we have 
provided circuits for X and Y (although you might derive one from the other by means of an inverter). 

 

 

40. Draw a truth table for the circuit below and explain what it does. 

 
A 

 
 

C 

 
 

B 

 

 

 



34 
© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly available we bsite, in whole or in part. 

 

x0 

T 

Q 

x1 

S 

P 

x2 

x3 

SOLUTION 
 

  A B P Q R C  

0 0 1 1 1 0 
0 1 1 1 0 1 
1 0 1 0 1 1 
1 1 0 1 1 0 

 
The output is true if one and only one input is true. This is the exclusive or function, XOR (EOR). It is also a two‐ 
bit binary adder without carry‐out because it gives the sum of two bits. 

 

41. The circuit below receives three pairs of inputs a0, b0, a1, b1, … a3, b3 and produces a four‐bit output c0, c1, …, c3. 
Analyze the circuit and explain what it does in plain English. 

 
F 

 
 
 
 

a0 

a0 c0 

 
 
 
 
 

 
a1 

b1 c1 

 
 
 
 
 

 
a2 

b2 c2 

 
 
 

 
a3 

c3 

b3 

 

 

SOLUTION 
 

Since all inputs are in pairs connected to XOR gates, we can simplify the truth table by just using the XOR outputs 
as variables. The diagram gives the intermediate variables to help us draw the truth table. As you can see the 
circuit is a priority encoder so that c3 is asserted if X3 is asserted, C2 is asserted if X2 is asserted (but not X3), C1 
is asserted if X1 is asserted (but not C2 and C3). In practice this means that if two 4‐bit words are matched, the C 
outputs correspond to the highest matching bits. Note that F is asserted only of there are no matching bits. 
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X3 X2 X1 X0 P Q F S T C3 C2 C1 C0 

0 0 0 0 0 0 0 1 1 0 0 0 0 
0 0 0 1 0 0 1 1 1 0 0 0 1 
0 0 1 0 0 1 1 1 0 0 0 1 0 
0 0 1 1 0 1 1 1 0 0 0 1 0 
0 1 0 0 1 1 1 0 0 0 1 0 0 
0 1 0 1 1 1 1 0 0 0 1 0 0 
0 1 1 0 1 1 1 0 0 0 1 0 0 
0 1 1 1 1 1 1 0 0 0 1 0 0 
1 0 0 0 1 1 1 0 0 1 0 0 0 
1 0 0 1 1 1 1 0 0 1 0 0 0 
1 0 1 0 1 1 1 0 0 1 0 0 0 
1 0 1 1 1 1 1 0 0 1 0 0 0 
1 1 0 0 1 1 1 0 0 1 0 0 0 
1 1 0 1 1 1 1 0 0 1 0 0 0 
1 1 1 0 1 1 1 0 0 1 0 0 0 
1 1 1 1 1 1 1 0 0 1 0 0 0 

 

42. Demonstrate that all logic circuits can be constructed from NOR gates by building an inverter, an and gate, and 
an or gate from one or more nor gates. 

 

SOLUTION 
 

The logic function for a NOR gate is C = A + B. 
 

If we connect its two inputs together so that B = A we get C = A + A = A; that is the circuit acts as an inverter. 
 

Suppose we put two inverters in the input path of a NOR gate (the inverters themselves constructed from 
NORs). We get 

 

C = A + B = A  B = A  B; that is, the circuit functions as an AND gate. 

If we put an inverter on the output of a NOR gate we get 

C = A + B = A + B which is an OR gate. 
 

So, with a NOR gate you can make a NOT gate, AND gate, and OR gate. 
 

43. Design a logic circuit to implement the logical function X = ABC + ABC 

SOLUTION 
 

The following circuit performs this operation. Note that this is a direct implementation of the Boolean algebra. 
We could have simplified the equation and, therefore, the circuit. 

 

C A.B.C 
B 
A 

A.B.C + A.B.C 

 
 

 

A 
A.B.C 
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44. Simplify the following Boolean expressions. 
 

a. F = A∙B∙C∙D + A∙B∙C∙D + A∙B∙C∙D + A∙B∙C∙D 
 

b. F = A∙B∙C + A∙B∙C + A∙C∙D + A∙B∙C∙D 
 

c. F = A∙C∙D + A∙B∙C∙D + A∙B∙C 
 

SOLUTION 
 

a. F = A∙B∙C∙D + A∙B∙C∙D + A∙B∙C∙D + A∙B∙C∙D 
= CD(AB + AB) + A∙B∙C∙D + A∙B∙C∙D 

= CDA + B∙C∙D(A + A) since AB + AB = A 

= CDA + B∙C∙D since A + A = 1 
 
 

b. F = A∙B∙C + A∙B∙C + A∙C∙D + A∙B∙C∙D 
= B∙C(A + A) + A∙C∙D + A∙B∙C∙D 

= B∙C + A∙D(C + B∙C) 

= B∙C + A∙D(C + B) 

= B∙C + A∙CD + ABD 

= B∙C + A∙CD 
 
 

c. F = A∙C∙D + A∙B∙C∙D + A∙B∙C 
 

= A∙C∙D  A∙B∙C∙D + A∙B∙C (deMorgan) 
= (A + C + D) (A + B + C + D) + AB C (deMorgan) 

= A + B C + D + A B C 

= A + B C + D + B C = A + C + D 
 

45. It is possible to have n‐input AND, or, NAND, and NOR gates, where n > 2. Can you have an n‐input XOR gate for 
n > 2? Explain your answer with a truth table. 

 

SOLUTION 
 

You can have AND, OR, NAND, and NOR gates with any number of inputs. They obey the rules of the simple 2‐ 
input gates (e.g., the output of a NAND gate is true if and only if each of its n inputs are true simultaneously). 

The exclusive or gate is rather more complex. If you define it as a gate with two inputs whose output is true if one 
or both inputs are true, then you can have only a 2‐input EOR (XOR) gate. However, if you say that the output of 

an XOR gate is y = ab, then you can also have y = abcd. In this case the output is true if the number of 
inputs that are set to 1 is odd. This is a parity detector. 
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46. Draw the truth table of a full subtractor that directly subtracts bit A from B together with a borrow‐in, to 
produce a difference D and a borrow‐out. 

 

SOLUTION 
 

The truth table is below: 
 

Bin A B Bout D 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 0 1 

0 1 1 0 0 

1 0 0 1 1 

1 0 1 1 0 

1 1 0 0 0 

1 1 1 1 1 

 

47. Design a D flip‐flop using only an RS latch and simple gates. Include a circuit diagram, timing diagram, and truth 
table in your answer. 

 

SOLUTION 
 

There are several ways of tackling this problem. Let’s start with an RS latch made from NOR gates. This has an R 
input and an S input that can be used to set or reset the flip‐flop. If both inputs are 0, the outputs remain the  
same. If R = 1, S = 0, Q is cleared and if S = 1, R = 0, Q is set. The state S = R = 1 should be avoided. 

 
So, we use two AND gates to feed the R,S inputs. One input to of each of the two AND gates is the clock. When 
the clock is 0, the AND gates both have 0 outputs and R = S = 0. Consequently Q remains what it was, unchanged. 

 
When the clock is 1, the AND gates are enabled. One input is D and the other NOT D (via an inverter). This assumes 
that R,S = 0,1 or 1,0. Consequently, the Q output is set if D is 1 and cleared if D is 0. This is a D flip‐ flop. 

 
D 

 
 
 

Clock 

 

RS Flip-flop 

 
 
 
 
 

48. Without the tristate gate, it would be almost impossible to design a modern computer. Why is this so? 
 

SOLUTION 
 

Tristate gates are used to allow one of several devices to put data onto a common bus. A tristate device has three 
output states: high (driving the bus), low (driving the bus), and high‐impedance (disconnected from the bus). The 
tristate gate makes it easy to design bused systems. The output of any tri‐state device connected to a bus has 
tristate control logic. This allows one and only one device connected to a bus to drive the bus. All other devices 
connected to the bus are disconnected electrically by assuming the third state. 
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Without tristate gates you would have to drive buses with an alternative technology (e.g., open‐collector or open‐
drain circuits). However, these are very similar to tristate logic in the sense that they allow one out of n devices 
to drive the bus. 

 
If there were no tristate drives (or open‐collector/open‐drain) the only other way that a buses system would be  
possible would be to use multiplexers to control buses. This would be a rather cumbersome solution. 

 
49. The circuit below consists of four JK flip‐flops. Inputs J and K are not shown because it is assumed that they are 

both permanently connected to a logical 1. These JK flip‐flops are positive edge triggered (i.e., they change state 
on the rising edge of the clock). Note that these flip‐flops have a CLR (clear) input that sets Q to 1 when CLR = 1. 
What does this circuit do? 

 

 

SOLUTION 
 

The problem can be solved with a simple timing diagram. However, we can explain its action just by inspection. 
The JK flip‐flops are configured as counters (J,K = 1,1 forces the output to toggle on each clock pulse). If JK flip‐  
flops are positive‐edge triggered and their Q outputs are connected to the clock input of the next stage, they will 
count down. If we connect the NOT Q outputs to the clocks they will count up. Consequently, we have a binary 
up counter. 

 

Note the AND gate. This detects Qd,Qc.Qb = 1,1,1. The state of Qa does not matter, so this value will be reached 
when Qd,Qc.Qb,Qa = 1110 which is 13. When that happens, all flip‐flops will be set to zero. This is a modulo 13  
counter that counts 0,1,2, …10,11,12, 0, 1, 2 , … 

Clock 
 

Qa 

 
CLR Q 

 

Qb 

 
CLR Q 

Qc Qd 

 
 

CLR Q 

 

CLR 

 
 

Reset 
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G2  

G7 

2 delays 
G9 

2 delays 
G1 1 delay 

 
2 delays 

 
G5 

1 delay 

 
G6 

 

2 delays G8 

D 
G3 

 2 delays 2 delays 

 G4 
 

50. Consider the circuit below. Assume that all gates are implemented in silicon by NAND gates, NOR gates and 
inverters. Each NAND gate, NOR gate, or inverter has an internal delay of 0.4 ns. A logic transition at an input may 
cause a change at the output (depending on other inputs and the circuit). The time for a transition at the input to 
appear as a corresponding transition at an output depends on the circuit path and the nature of the gates. What 
is the longest circuit path through this circuit and what is the worst case delay that a signal experiences going 
through the circuit? 

 

A 

B 
P 

 
 
 
 

 
C 

Q 

 
D 

E 

SOLUTION 
 

The following diagram demonstrates all the paths through this circuit and their delays. Remember an AND gate 
is a NAND gate plus an inverter (and an OR gate is a NOR gate plus an inverter). Consequently, all AND and OR 
gates suffer two delay units. The longest path is from B via G1, G3, G6, G8 and is 7 delays or 7 × 0.4 = 2.8 ns. 

 

6 delays 

P 

5 delays 

 
 

 
4 delays 

5 delays 
Q 
6 delays 
7 delays 

3 delays 

 
 

 
1 delay 

 
G2  

G7 
G9 

G1 
 

 
G5 

G6 
 

G8 

G3 
 

G4 
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51. The following state diagram describes a system with states A, B, and C. The system is initialized in State A. The 
state transition notation x/yz indicates that an input x causes a transition in the direction shown and the system 
outputs the value yz; for example, an input 1 in State A causes a transition to State B and the system outputs 01. 

 

0/01 

 

 
Start 

 
1/10 

 
 
 
 

 

a. How many flip‐flops would be required to construct this system? 

b. If the system receives the input 00010011001010111110010, what would the output be? 

 

SOLUTION 
 

a. This system has three states and requires two flip‐flops (which can store up to four states). 

 
b. Consider the following table that gives the current state, input, next state, and output. 

 
Current state Input Next state Output 

A 0 A 00 

A 0 A 00 
A 0 A 00 
A 1 B 01 
B 0 A 01 
A 0 A 00 
A 1 B 01 
B 1 C 10 
C 0 A 01 
A 0 A 00 
A 1 B 01 
B 0 A 01 
A 1 B 01 
B 0 A 01 
A 1 B 01 
B 1 C 10 
C 1 C 10 
C 1 C 10 
C 1 C 10 
C 0 A 01 
A 0 A 00 
A 1 B 01 
B 0 A 01 

 
1/01 

 
1/10 

 

0/00 0/01 
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MPLX Register UL0   Q MPLX 
  Register UR0   

Q
  

MPLX MPLX 

MPLX MPLX 

MPLX MPLX 

C_UL1 A_UL C_UR1 A_UR 

C_UL2 B_UL C_UR2 B_UR 

C_UL1 A_UR 

 
C_UU2       B_UR 

MPLX MPLX 

MPLX MPLX 

MPLX MPLX 

MPLX MPLX 

Q 
D Register UR3 

Q 
D Register UR2 

Q 
D Register UR1 

C_LR1 A_LR 

 
C_LR2 B_LR 

C_LL1 A_UL 

 
C_LL2 B_UL 

Register LR3 Register LL3 

Register LR2 Register LL2 

Register LR1 Register LL1 

Register LR0 Register LL0 

C_UL1 A_UL 

 

C_UL2 B_UL 

Register UL3 

Register UL2 

Register UL1 

52. The following structure contains registers, ALUs, multiplexers, tristate gates and buses, and is essentially a more 
elaborate form of the register, ALU structure we introduced in this chapter. As a computing structure, what are 
the advantages of this over the simpler system we described earlier? 

 

SOLUTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C_LL1 A_LL C_LR1 A_LR 

C_LL2 B_LL C_LR2 B_LR 

 
 
 
 
 
 
 

Essentially, this replicates a basic register and ALU circuit four times. In each quadrant data can be moved from 
registers to the ALU and back to registers. Note that the four buses and two ALUs permit parallel operations (two 
ALU operations at a time). 

 
By repeating the system four times, up to eight operations can take place simultaneously. This system is intended 
to demonstrate parallelism in digital systems. 


