
 
 
 

Solution Manual for Concepts of Programming Languages 10th 

Edition by Sebesta ISBN 0131395319 9780131395312 

Full link download 

Solution Manual 

 https://testbankpack.com/p/solution-manual-for-concepts-of-

programming-languages-10th-edition-by-sebesta-isbn-0131395319-

9780131395312/ 

 
 

 
 
 

Instructor’s Solutions Manual 
 
 

 
to 

 
 

 

Concepts of Programming Languages 
 

Tenth Edition 
 

R.W. Sebesta

https://testbankpack.com/p/solution-manual-for-concepts-of-programming-languages-10th-edition-by-sebesta-isbn-0131395319-9780131395312/
https://testbankpack.com/p/solution-manual-for-concepts-of-programming-languages-10th-edition-by-sebesta-isbn-0131395319-9780131395312/
https://testbankpack.com/p/solution-manual-for-concepts-of-programming-languages-10th-edition-by-sebesta-isbn-0131395319-9780131395312/


 

 
 
 
 
 
 
 
 

Preface



Changes for the Tenth Edition 
 

he goals, overall structure, and approach of this tenth edition of T Concepts of 

Programming Languages   remain the same as those of   the nine earlier editions. The principal 
goals are to introduce the main constructs of contemporary programming languages and to 

provide the  reader with the tools necessary for  the critical evaluation of 
existing and future programming languages. A secondary goal is to prepare 
the reader for the study of compiler design, by providing an in-depth discussion 
of programming language structures, presenting a formal method of 
describing syntax and introducing approaches to lexical and syntatic analysis. 

The tenth edition evolved from the ninth through several different kinds 

of changes. To maintain the currency of the material, some of the discussion 

of older programming languages has been removed. For example, the 

description of COBOL’s record operations was removed from Chapter 6 and 

that of Fortran’s Do statement was removed from Chapter 8. Likewise, the 

description of Ada’s generic subprograms was removed from Chapter 9 and 

the discussion of Ada’s asynchronous message passing was removed from 

Chapter 13. 

On  the  other  hand,  a  section  on  closures,  a  section  on  calling 

subprograms indirectly, and a section on generic functions in F# were added 

to Chapter 9; sections on Objective-C were added to Chapters 11 and 12; a 

section on concurrency in functional programming languages was added to 

Chapter 13; a section on C# event handling was added to Chapter 14;. a 

section on F# and a section on support for functional programming in primarily 

imperative languages were added to Chapter 15. 

 
In some cases, material has been moved. For example, several different 

discussions of constructs in functional programming languages were moved 

from Chapter 15 to earlier chapters. Among these were the descriptions of the 

control statements in functional programming languages to Chapter 8 and the 

lists  and  list  operations of  Scheme and  ML  to  Chapter 6.  These  moves 

indicate a significant shift in the philosophy of the book—in a sense, the 

mainstreaming of some of the constructs of functional programming languages. 

In previous editions, all discussions of functional programming language 

constructs were segregated in Chapter 15. 

 
Chapters 11, 12, and 15 were substantially revised, with five figures 

being added to Chapter 12. 

Finally,  numerous  minor  changes  were  made  to  a  large  number  of 
sections of the book, primarily to improve clarity. 

 

 

The Vision



This book describes the fundamental concepts of programming languages by 

discussing the design issues of the various language constructs, examining the 
design choices for these constructs in some of the most common languages, 
and critically comparing design alternatives. 

Any serious study of programming languages requires an examination of 

some  related  topics,  among which  are  formal  methods of  describing the 

syntax  and  semantics  of  programming  languages,  which  are  covered  in 

Chapter 3. Also, implementation techniques for various language constructs 

must be considered: Lexical and syntax analysis are discussed in Chapter 4, 

and implementation of subprogram linkage is covered in Chapter 10. 

Implementation of some other language constructs is discussed in various other 

parts of the book. 

The following paragraphs outline the contents of the ninth edition. 
 

 

Chapter Outlines 
 

Chapter 1 begins with a rationale for studying programming languages. It then 
discusses  the  criteria  used  for  evaluating  programming  languages  and 

language constructs. The primary influences on language design, common 

design trade-offs, and the basic approaches to implementation are also 
examined. 

Chapter 2  outlines the evolution of most of the important languages 

discussed in this book. Although no language is described completely, the 

origins, purposes, and contributions of each are discussed. This historical 

overview is valuable, because it provides the background necessary to 

understanding the practical and theoretical basis for contemporary language 

design. It also motivates further study of language design and evaluation. In 

addition, because none of the remainder of the book depends on Chapter 2, it 

can be read on its own, independent of the other chapters. 

 
Chapter 3 describes the primary formal method for describing the syntax 

of  programming  language—BNF.  This  is  followed  by  a  description  of 

attribute grammars, which describe both the syntax and static semantics of 

languages. The difficult task of semantic description is then explored, including 

brief introductions to the three most common methods: operational, 

denotational, and axiomatic semantics. 

Chapter 4 introduces lexical and syntax analysis. This chapter is targeted 

to those colleges that no longer require a compiler design course in their 
curricula. Like Chapter 2, this chapter stands alone and can be read 
independently of the rest of the book. 

Chapters 5 through 14 describe in detail the design issues for the primary 
constructs of programming languages. In each case, the design choices for 
several example languages are presented and evaluated. Specifically, Chapter 
5 covers the many characteristics of variables, Chapter 6 covers data types, 
and Chapter 7 explains expressions and assignment statements. Chapter 8 
describes control statements, and



Chapters 9 and 10 discuss subprograms and their implementation. Chapter 11 
examines data abstraction facilities. Chapter 12 provides an in-depth discussion 
of  language features that support object-oriented programming (inheritance 
and dynamic method binding), Chapter 13 discusses concurrent program units, 
and Chapter 14 is about exception handling, along with a brief discussion of 
event handling. 

The last two chapters (15 and 16) describe two of the most important 

alternative programming paradigms: functional programming and logic 

programming. However, some of the data structures and control constructs of 

functional programming languages are discussed in Chapters 6 and 8. Chapter 
15 presents an introduction to Scheme, including descriptions of some of its 

primitive functions, special forms, and functional forms, as well as some 

examples of simple functions written in Scheme. Brief introductions to ML, 

Haskell, and F# are given to illustrate some different directions in functional 

language design. Chapter 16 introduces logic programming and the logic 

programming language, Prolog. 
 
 

 

To the Instructor 
 

In  the  junior-level  programming  language  course  at  the  University  of 

Colorado at Colorado Springs, the book is used as follows: We typically 

cover Chapters 1 and 3 in detail, and though students find it interesting and 

beneficial reading, Chapter 2 receives little lecture time due to its lack of hard 

technical content. Because no material in subsequent chapters depends on 

Chapter 2, as noted earlier, it can be skipped entirely, and because we require 

a course in compiler design, Chapter 4 is not covered. 

 
Chapters  5  through  9  should  be  relatively  easy  for  students  with 

extensive programming experience in C++, Java, or C#. Chapters 10 through 
14 are more challenging and require more detailed lectures. 

Chapters 15 and 16 are entirely new to most students at the junior level. 

Ideally, language processors for Scheme and Prolog should be available for 

students required to learn the material in these chapters. Sufficient material is 

included to allow students to dabble with some simple programs. 

 
Undergraduate courses will probably not be able to cover all of the 

material in the last two chapters. Graduate courses, however, should be able 
to completely discuss the material in those chapters by skipping over parts of 
the early chapters on imperative languages. 

 

 

Supplemental Materials 
 

The  following  supplements  are  available  to  all  readers  of  this  book  at 
www.aw.com/cssupport.

http://www.aw.com/cssupport


• A set of lecture note slides. PowerPoint slides are available for each 
chapter in the book. 

 

•       PowerPoint slides containing all the figures in the book. 
 

To  reinforce learning in  the  classroom, to  assist  with  the  hands  -on  lab 
component of this course, and/or to facilitate students in a distance- 

learning situation, access the companion Web site at www.aw.com/sebesta. 

This site contains mini-manuals (approximately 100-page tutorials) on a 

handful  of  languages. These  proceed  on  the  assumption that  the  student 

knows how to program in some other language, giving the student enough 

information to complete the chapter materials in each language. Currently the 

site includes manuals for C++, C, Java, and Smalltalk. 
 

 
Solutions to many of the problem sets are available to qualified instructors in 

our Instructor Resource Center at www.aw-bc.com/irc. Please contact your 
school’s Pearson Education representative or send an email to 
computing@aw.com for more information. 

 

 

Language Processor Availability 
 

Processors for and information about some of the programming languages 
discussed in this book can be found at the following Web sites: 

 

C, C++, Fortran, and Ada           gcc.gnu.o rg 

C# and F#                                   microsoft.com 

Java                                             java.sun.com 

Haskell                                        haskell.org 

Lua                                              www.lua.org 

Scheme                                       www.plt- 

scheme.org/software/drscheme 

Perl                                             www.perl.com 

Python                                        www.python.org 

Ruby                                           www.ruby-lang.org 
 

JavaScript is included in virtually all browsers; PHP is included in virtually 
all Web servers. 

All this information is also included on the companion Web site.

http://www.aw.com/sebesta
http://www.aw-bc.com/irc
mailto:computing@aw.com
http://www.lua.org/
http://www.plt-/
http://www.perl.com/
http://www.python.org/
http://www.ruby-lang.org/


 
 

Acknowledgments 
 

The suggestions from outstanding reviewers contributed greatly to this book’s 
present form. In alphabetical order, they are: 

 

I-ping Chu                                  DePaul University 

Amer Diwan                               University of Colorado 

Stephen Edwards                        Virginia Tech 
Nigel Gwee                                 Southern University–Baton Rouge 

K. N. King                                  Georgia State University 

Donald Kraft                               Louisiana State University 

Simon H. Lin                              California State University– 

Northridge 

Mark Llewellyn                          University of Central Florida 

Bruce R. Maxim                         University of Michigan–Dearborn 

Gloria Melara                             California State University– 

Northridge 
Frank J. Mitropoulos                  Nova Southeastern University 
Euripides Montagne                   University of Central Florida 
Bob Neufeld                               Wichita State University 
Amar Raheja                               California State Polytechnic 

University–Pomona 

Hossein Saiedian                        University of Kansas 

Neelam Soundarajan                  Ohio State University 

Paul Tymann                              Rochester Institute of Technology 

Cristian Videira Lopes               University of California–Irvine 

Salih Yurttas                               Texas A&M University 

Numerous other people provided input for the previous editions of 

Concepts of Programming Languages at various stages of its development. 

All of their comments were useful and greatly appreciated. In alphabetical 

order, they are: Vicki Allan, Henry Bauer, Carter Bays, Manuel E. Bermudez, 

Peter Brouwer, Margaret Burnett, Paosheng Chang, Liang Cheng, John 

Crenshaw, Charles Dana, Barbara Ann Griem, Mary Lou Haag, John V. 

Harrison, Eileen Head, Ralph C. Hilzer, Eric Joanis, Leon Jololian, Hikyoo 

Koh, Jiang B. Liu, Meiliu Lu, Jon Mauney, Robert McCoard, Dennis L. 

Mumaugh, Michael  G.  Murphy,  Andrew  Oldroyd,  Young  Park,  Rebecca 

Parsons, Steve J. Phelps, Jeffery Popyack, Raghvinder Sangwan, Steven 

Rapkin, Hamilton Richard, Tom Sager, Joseph Schell, Sibylle Schupp, Mary 

Louise Soffa, Neelam Soundarajan, Ryan Stansifer, Steve Stevenson, Virginia 

Teller, Yang Wang, John M. Weiss, Franck Xia, and Salih Yurnas. 

 
Matt Goldstein, editor; Chelsea Bell, editorial assistant; and Meredith 

Gertz, senior production supervisor of Addison-Wesley, and Gillian Hall of 
The Aardvark Group Publishing Services, all deserve my gratitude for their 

efforts to produce the tenth edition both quickly and carefully.



About the Author 
 

Robert Sebesta is an Associate Professor Emeritus in the Computer Science 
Department at the University of Colorado–Colorado Springs. Professor 
Sebesta  received  a  BS  in  applied  mathematics  from  the  University  of 
Colorado in Boulder and MS and PhD degrees in computer science from 
Pennsylvania State University. He has taught computer science for more than 
38 years. His professional interests are the design and evaluation of 
programming languages.



 
 

 

Contents 
 
 
 
 

Chapter 1                       Preliminaries 
 

1.1        Reasons for Studying Concepts of Programming Languages 
 

1.2        Programming Domains 
 

1.3        Language Evaluation Criteria 
 

1.4        Influences on Language Design 
 

1.5        Language Categories 
 

1.6        Language Design Trade-Offs 
 

1.7        Implementation Methods 
 

1.8        Programming Environments 
 

Summary • Review Questions • Problem Set 

 
Chapter 2                       Evolution of the Major Programming Languages 

 

2.1        Zuse’s Plankalkül 
 

2.2        Minimal Hardware Programming: Pseudocodes 
 

2.3        The IBM 704 and Fortran 
 

2.4        Functional Programming: LISP 
 

2.5        The First Step Toward Sophistication: ALGOL 60 ............................................ 
 

2.6        Computerizing Business Records: COBOL ....................................................... 
 

2.7        The Beginnings of Timesharing: BASIC ............................................................ 
 

Interview: Alan Cooper—User Design and 
Language Design ........................................................................................................... 

 

2.8        Everything for Everybody: PL/I .......................................................................... 
 

2.9        Two Early Dynamic Languages: APL and SNOBOL ......................................... 
 

2.10      The Beginnings of Data Abstraction: SIMULA 67 ............................................. 
 

2.11      Orthogonal Design: ALGOL 68 ......................................................................... 
 

2.12      Some Early Descendants of the ALGOLs .........................................................



2.13      Programming Based on Logic: Prolog ............................................................... 
 

2.14      History’s Largest Design Effort: Ada ................................................................. 
 

2.15      Object-Oriented Programming: Smalltalk .......................................................... 
 

2.16      Combining Imperative and Object-Oriented Features: C++ .............................. 
 

2.17      An Imperative-Based Object-Oriented Language: Java .................................... 
 

2.18      Scripting Languages 
 

2.19      The Flagship .NET Language: C# ..................................................................... 
 

2.20      Markup/Programming Hybrid Languages ........................................................... 
 

Summary • Bibliographic Notes • Review Questions • Problem Set • 
Programming Exercises ................................................................................................... 

 
Chapter 3                       Describing Syntax and Semantics ................................................................... 

 

3.1        Introduction ........................................................................................................ 
 

3.2        The General Problem of Describing Syntax ...................................................... 
 

3.3        Formal Methods of Describing Syntax .............................................................. 
 

3.4        Attribute Grammars ........................................................................................... 
 

History Note 
 

3.5        Describing the Meanings of Programs: Dynamic Semantics ............................ 

History Note ........................................................................................ 
 

Summary • Bibliographic Notes • Review Questions • Problem Set .................... ........... 

 
Chapter 4                       Lexical and Syntax Analysis ............................................................................ 

 

4.1        Introduction ........................................................................................................ 
 

4.2        Lexical Analysis ................................................................................................. 
 

4.3        The Parsing Problem ......................................................................................... 
 

4.4        Recursive-Descent Parsing ............................................................................... 
 

4.5        Bottom-Up Parsing ............................................................................................ 
 

Summary • Review Questions • Problem Set •Programming Exercises .......................... 

 
Chapter 5                       Names, Bindings, and Scopes ......................................................................... 

 

5.1        Introduction ........................................................................................................ 
 

5.2        Names ............................................................................................................... 

History Note ........................................................................................ 

History Note ........................................................................................



5.3        Variables ........................................................................................................... 

History Note ........................................................................................ 
 

5.4        The Concept of Binding ..................................................................................... 
 

Interview: Rasmus Lerdorf—Scripting Languages and Other Examples of Slick 
Solutions ............................................................................ ............................................. 

 

5.5        Scope ................................................................................................................. 

History Note ........................................................................................ 
 

5.6        Scope and Lifetime ............................................................................................ 
 

5.7        Referencing Environments ................................................................................ 
 

5.8        Named Constants ............................................................................................. 
 

Summary • Review Questions • Problem Set • Programming Exercises ...................... ... 

 
Chapter 6                       Data Types ......................................................................................................... 

 

6.1        Introduction ........................................................................................................ 
 

6.2        Primitive Data Types ......................................................................................... 
 

6.3        Character String Types ..................................................................................... 

History Note ........................................................................................ 
 

6.4        User-Defined Ordinal Types .............................................................................. 
 

6.5        Array Types ....................................................................................................... 

History Note ........................................................................................ 

History Note ........................................................................................ 
 

6.6        Associative Arrays ............................................................................................. 
 

Interview: ROBERTO IERUSALIMSCHY—Lua ............................................................ 
 

6.7        Record Types .................................................................................................... 
 

6.8        Tuple Types 
 

6.9        List Types 
 

6.10      Union Types ...................................................................................................... 
 

6.11      Pointer Types 

History Note ........................................................................................ 
 

6.12      Type Checking .................................................................................................. 
 

6.13      Strong Typing .................................................................................................... 
 

6.14      Type Equivalence .............................................................................................. 
 

6.15      Theory and Data Types .....................................................................................



Summary • Bibliographic Notes • Review Questions • 
Problem Set • Programming Exercises ............................................................................ 

 
Chapter 7                       Expressions and Assignment Statements ...................................................... 

 

7.1        Introduction ........................................................................................................ 
 

7.2        Arithmetic Expressions ...................................................................................... 
 

7.3        Overloaded Operators ....................................................................................... 
 

7.4        Type Conversions ............................................................................................. 

History Note ........................................................................................ 
 

7.5        Relational and Boolean Expressions ................................................................. 

History Note ........................................................................................ 
 

7.6        Short-Circuit Evaluation ................................................................................ ..... 
 

7.7        Assignment Statements .................................................................................... 

History Note ........................................................................................ 
 

7.8        Mixed-Mode Assignment .................................................................................... 
 

Summary • Review Questions • Problem Set • Programming Exercises.... ..................... 

 
Chapter 8                       Statement-Level Control Structures ................................................................ 

 

8.1        Introduction ........................................................................................................ 
 

8.2        Selection Statements ........................................................................................ 

History Note ........................................................................................ 

History Note ........................................................................................ 
 

8.3        Iterative Statements .......................................................................................... 

History Note ........................................................................................ 
 

Interview: Larry Wall—Part 1: Linguistics and the Birth 
of Perl ............................................................................................................................. . 

 

History Note .............................................................................................................. .......................... 
 

8.4        Unconditional Branching ................................................................................... 
 

8.5        Guarded Commands ......................................................................................... 
 

8.6        Conclusions ....................................................................................................... 
 

Summary • Review Questions • Problem Set • Programming Exercises .........................



 

Chapter 9                        Subprograms ..................................................................................................... 
 

9.1         Introduction ....................................................................................................... 
 

9.2         Fundamentals of Subprograms ......................................................................... 
 

9.3         Design Issues for Subprograms ........................................................................ 
 

9.4         Local Referencing Environments ...................................................................... 
 

9.5         Parameter-Passing Methods ............................................................................ 
 

Interview: Larry Wall—Part 2: Scripting Languages in General 
and Perl in Particular ..................................................................................................... 

 

History Note ........................................................................................................................................ 

History Note ......................................................................................... 

History Note ......................................................................................... 

9.6         Parameters That Are Subprograms .................................................................. 

History Note ......................................................................................... 
 

9.7         Calling Subprograms Indirectly 
 

9.8         Overloaded Subprograms ................................................................................. 
 

9.9         Generic Subprograms ....................................................................................... 
 

9.10      Design Issues for Functions .............................................................................. 
 

9.11      User-Defined Overloaded Operators ................................................................ 
 

9.12      Closures 
 

9.13      Coroutines ......................................................................................................... 

History Note ......................................................................................... 
 

Summary • Review Questions • Problem Set • Programming Exercises ......................... 

 
Chapter 10                      Implementing Subprograms ............................................................................. 

 

10.1      The General Semantics of Calls and Returns ................................................... 
 

10.2      Implementing “Simple” Subprograms ................................................................ 
 

10.3      Implementing Subprograms with Stack-Dynamic 
Local Variables ................................................................................................... 

 

10.4      Nested Subprograms ........................................................................................ 
 

Interview: Niklaus Wirth—Keeping It Simple .............................................................. 
 

10.5      Blocks ................................................................................................................ 
 

10.6      Implementing Dynamic Scoping ........................................................................ 
 

Summary • Review Questions • Problem Set • Programming Exercises ........................ 

 
Chapter 11                      Abstract Data Types and Encapsulation Constructs ..................................... 

 

11.1      The Concept of Abstraction ............................................................................... 
 

11.2      Introduction to Data Abstraction ........................................................................ 
 

11.3      Design Issues for Abstract Data Types ............................................................. 
 

11.4      Language Examples .........................................................................................



Interview: Bjarne Stroustrup—C++: Its Birth, Its 
Ubiquitousness, and Common Criticisms .................................................................. . 

 

11.5        Parameterized Abstract Data Types ................................................................. 
 

11.6       Encapsulation Constructs ................................................................................. 
 

11.7        Naming Encapsulations .................................................................................... 
 

Summary • Review Questions • Problem Set • Programming Exercises ......................... 

 
Chapter 12                     Support for Object-Oriented Programming ..................................................... 

 

12.1        Introduction ....................................................................................................... 
 

12.2        Object-Oriented Programming .......................................................................... 
 

12.3        Design Issues for Object-Oriented Languages ................................................. 
 

12.4       Support for Object-Oriented Programming in Smalltalk .................................... 
 

12.5       Support for Object-Oriented Programming in C++ ............................................ 
 

Interview: Bjarne Stroustrup—On Paradigms and 
Better Programming ...................................................................................................... 

 

12.6       Support for Object-Oriented Programming in Objective-C ................................ 
 

12.7      Support for Object-Oriented Programming in Java 
 

12.8       Support for Object-Oriented Programming in C# .............................................. 
 

12.9        Support for Object-Oriented Programming in Ada 95 ....................................... 
 

12.10     Support for Object-Oriented Programming in Ruby ........................................... 
 

12.11     Implementation of Object-Oriented Constructs ................................................. 
 

Summary • Review Questions • Problem Set • Programming Exercises ......................... 

 
Chapter 13                     Concurrency ....................................................................................................... 

 

13.1        Introduction ....................................................................................................... 
 

13.2        Introduction to Subprogram-Level Concurrency ............................................... 

History Note ......................................................................................... 
 

13.3       Semaphores ...................................................................................................... 
 

13.4        Monitors ............................................................................................................ 
 

13.5       Message Passing .............................................................................................. 
 

13.6       Ada Support for Concurrency ............................................................................ 
 

13.7        Java Threads .................................................................................................... 
 

13.8        C# Threads ....................................................................................................... 
 

13.9      Concurrency in Functional Programming Languages 
 

13.10     Statement-Level Concurrency ........................................................................... 
 

Summary • Bibliographic Notes • Review Questions • Problem Set • 
Programming Exercises ................................................................................................... 

 
Chapter 14                     Exception Handling and Event Handling ......................................................... 

 

14.1        Introduction to Exception Handling ...................................................................



History Note ......................................................................................... 
 

14.2      Exception Handling in Ada ................................................................................ 
 

14.3      Exception Handling in C++ ................................................................................ 
 

14.4      Exception Handling in Java ............................................................................... 
 

Interview: James Gosling—The Birth of Java ............................................................ 
 

14.5      Introduction to Event Handling .......................................................................... 
 

14.6      Event Handling with Java .................................................................................. 
 

14.7      Event Handling with C# ..................................................................................... 
 

Summary • Bibliographic Notes • Review Questions • Problem Set • 
Programming Exercises........ ............................ ............................................................... 

 
Chapter 15                      Functional Programming Languages .............................................................. 

 

15.1      Introduction ....................................................................................................... 
 

15.2      Mathematical Functions .................................................................................... 
 

15.3      Fundamentals of Functional Programming Languages .................................... 
 

15.4      The First Functional Programming Language: LISP ......................................... 
 

15.5      An Introduction to Scheme ................................................................................ 
 

15.6      COMMON LISP ................................................................................................. 
 

15.7      ML ..................................................................................................................... 
 

15.8      Haskell .............................................................................................................. 
 

15.9      F# ...................................................................................................................... 
 

15.10    Support for Functional Programming in Primarily Imperative Languages ......... 
 

15.11    A Comparison of Functional and Imperative Languages .................................. 
 

Summary • Bibliographic Notes • Review Questions • Problem Set • 
Programming Exercises ................................................................................................... 

 
Chapter 16                      Logic Programming Languages ....................................................................... 

 

16.1      Introduction ....................................................................................................... 
 

16.2      A Brief Introduction to Predicate Calculus ......................................................... 
 

16.3      Predicate Calculus and Proving Theorems ....................................................... 
 

16.4      An Overview of Logic Programming .................................................................. 
 

16.5      The Origins of Prolog ........................................................................................ 
 

16.6      The Basic Elements of Prolog ........................................................................... 
 

16.7      Deficiencies of Prolog ....................................................................................... 
 

16.8      Applications of Logic Programming .................................................................. 
 

Summary • Bibliographic Notes • Review Questions • Problem Set • 
Programming Exercises ............................ ....................................................................... 

 
Bibliography ........................ ...............................................................................



Index ......................... ..........................................................................................



Answers to Selected Problems 
 
 

 
Chapter 1 

 

Problem Set: 
 
3. Some arguments for having a single language for all programming domains are: It would 
dramatically cut the costs of programming training and compiler purchase and maintenance; it 
would simplify programmer recruiting and justify the development of numerous language 
dependent software development aids. 

 

4. Some arguments against having a single language for all programming domains are: The 
language would necessarily be huge and complex; compilers would be expensive and costly to 
maintain; the language would probably not be very good for any programming domain, either in 
compiler efficiency or in the efficiency of the code it generated. More importantly, it would not 
be easy to use, because regardless of the application area, the language would include many 
unnecessary and confusing features and constructs (those meant for other application areas). 
Different users would learn different subsets, making maintenance difficult. 

 
5. One possibility is wordiness. In some languages, a great deal of text is required for even 
simple complete programs. For example, COBOL is a very wordy language. In Ada, programs 
require a lot of duplication of declarations. Wordiness is usually considered a disadvantage, 
because it slows program creation, takes more file space for the source programs, and can 
cause programs to be more difficult to read. 

 
7. The argument for using the right brace to close all compounds is simplicity—a right brace 
always terminates a compound. The argument against it is that when you see a right brace in a 
program, the location of its matching left brace is not always obvious, in part because all 
multiple-statement control constructs end with a right brace. 

 

8. The reasons why a language would distinguish between uppercase and lowercase in its 
identifiers are: (1) So that variable identifiers may look different than identifiers that are names 
for constants, such as the convention of using uppercase for constant names and using lowercase 
for variable names in C, and (2) so that catenated words as names can have their first letter 
distinguished, as in TotalWords. (Some think it is better to include a connector, such as 
underscore.) The primary reason why a language would not distinguish between uppercase and 
lowercase in identifiers is it makes programs less readable, because words that look very similar 
are actually completely different, such as SUM and Sum. 

 
10. One of the main arguments is that regardless of the cost of hardware, it is not free. Why write 
a program that executes slower than is necessary. Furthermore, the difference between a well-
written efficient program and one that is poorly written can be a factor of two or three. In many 
other fields of endeavor, the difference between a good job and a poor job may be 10 or 20 
percent. In programming, the difference is much greater. 

 
15. The use of type declaration statements for simple scalar variables may have very little effect on 
the readability of programs. If a language has no type declarations at all, it may be an aid to 
readability, because regardless of where a variable is seen in the program text, its type can be 
determined without looking elsewhere. Unfortunately, most languages that allow implicitly 
declared variables also include explicit declarations. In a program in such a language, the



 

declaration of a variable must be found before the reader can determine the type of that variable 
when it is used in the program. 

 

18. The main disadvantage of using paired delimiters for comments is that it results in diminished 
reliability. It is easy to inadvertently leave off the final delimiter, which extends the comment to 
the end of the next comment, effectively removing code from the program. The advantage of 
paired delimiters is that you can comment out areas of a program. The disadvantage of using only 
beginning delimiters is that they must be repeated on every line of a block of comments. This can 
be tedious and therefore error-prone. The advantage is that you cannot make the mistake of 
forgetting the closing delimiter. 

 
 

 
Chapter 2 

 

Problem Set: 
 

6. Because of the simple syntax of LISP, few syntax errors occur in LISP programs. Unmatched 
parentheses is the most common mistake. 

 

7. The main reason why imperative features were put in LISP was to increase its execution 
efficiency. 

 

10. The main motivation for the development of PL/I was to provide a single tool for computer 
centers that must support both scientific and commercial applications. IBM believed that the 
needs of the two classes of applications were merging, at least to some degree. They felt that the 
simplest solution for a provider of systems, both hardware and software, was to furnish a single 
hardware system running a single programming language that served both scientific and 
commercial applications. 

 
11. IBM was, for the most part, incorrect in its view of the future of the uses of computers, at least 
as far as languages are concerned. Commercial applications are nearly all done in languages that 
are specifically designed for them. Likewise for scientific applications. On the other hand, the 
IBM design of the 360 line of computers was a great success--it still dominates the area of 
computers between supercomputers and minicomputers. Furthermore, 360 series computers and 
their descendants have been widely used for both scientific and commercial applications. These 
applications have been done, in large part, in Fortran and COBOL. 

 

14. The argument for typeless languages is their great flexibility for the programmer. Literally 
any storage location can be used to store any type value. This is useful for very low-level 
languages used for systems programming. The drawback is that type checking is impossible, so 
that it is entirely the programmer's responsibility to insure that expressions and assignments are 
correct. 

 
18. A good deal of restraint must be used in revising programming languages. The greatest 
danger is that the revision process will continually add new features, so that the language grows 
more and more complex. Compounding the problem is the reluctance, because of existing 
software, to remove obsolete features. 

 

22. One situation in which pure interpretation is acceptable for scripting languages is when the 
amount of computation is small, for which the processing time will be negligible. Another situation 
is when the amount of computation is relatively small and it is done in an interactive environment, 
where the processor is often idle because of the slow speed of human interactions.



 

24. New  scripting  languages  may  appear  more  frequently  than  new  compiled  languages 
because they are often smaller and simpler and focused on more narrow applications, which 
means their libraries need not be nearly as large. 


