Solution Manual for Cost Accounting 15th Edition by Horngren Datar Rajan ISBN 01334287029780133428704
 Full link download:
 Solution Manual:
 https://testbankpack.com/p/solution-manual-for-cost-accounting-15th-edition-by-horngren-datar-rajan-isbn-0133428702-9780133428704/

Test Bank:

https://testbankpack.com/p/test-bank-for-cost-accounting-15th-edition-by-horngren-datar-rajan-isbn-0133428702-9780133428704/

CHAPTER 2
 AN INTRODUCTION TO COST TERMS AND PURPOSES

2-1 A cost object is anything for which a separate measurement of costs is desired. Examples include a product, a service, a project, a customer, a brand category, an activity, and a department.

2-2 Direct costs of a cost object are related to the particular cost object and can be traced to that cost object in an economically feasible (cost-effective) way.

Indirect costs of a cost object are related to the particular cost object but cannot be traced to that cost object in an economically feasible (cost-effective) way.

Cost assignment is a general term that encompasses the assignment of both direct costs and indirect costs to a cost object. Direct costs are traced to a cost object, while indirect costs are allocated to a cost object.

2-3 Managers believe that direct costs that are traced to a particular cost object are more accurately assigned to that cost object than are indirect allocated costs. When costs are allocated, managers are less certain whether the cost allocation base accurately measures the resources demanded by a cost object. Managers prefer to use more accurate costs in their decisions.

2-4 Factors affecting the classification of a cost as direct or indirect include the materiality of the cost in question
available information-gathering technology
design of operations

2-5 A variable cost changes in total in proportion to changes in the related level of total activity or volume. An example is a sales commission that is a percentage of each sales revenue dollar.

A fixed cost remains unchanged in total for a given time period, despite wide changes in the related level of total activity or volume. An example is the leasing cost of a machine that is unchanged for a given time period (such as a year) regardless of the number of units of product produced on the machine.

2-6 A cost driver is a variable, such as the level of activity or volume, that causally affects total costs over a given time span. A change in the cost driver results in a change in the level of total costs. For example, the number of vehicles assembled is a driver of the costs of steering wheels on a motor-vehicle assembly line.

2-7 The relevant range is the band of normal activity level or volume in which there is a specific relationship between the level of activity or volume and the cost in question. Costs are described as variable or fixed with respect to a particular relevant range.

2-8 A unit cost is computed by dividing some amount of total costs (the numerator) by the related number of units (the denominator). In many cases, the numerator will include a fixed cost that will not change despite changes in the denominator. It is erroneous in those cases to multiply
the unit cost by activity or volume change to predict changes in total costs at different activity or volume levels.

2-9 Manufacturing-sector companies purchase materials and components and convert them into various finished goods, for example automotive and textile companies.

Merchandising-sector companies purchase and then sell tangible products without changing their basic form, for example retailing or distribution.

Service-sector companies provide services or intangible products to their customers, for example, legal advice or audits.

2-10 Manufacturing companies have one or more of the following three types of inventory:

1. Direct materials inventory. Direct materials in stock and awaiting use in the manufacturing process.
2. Work-in-process inventory. Goods partially worked on but not yet completed. Also called work in progress.
3. Finished goods inventory. Goods completed but not yet sold.

2-11 Inventoriable costs are all costs of a product that are considered as assets in the balance sheet when they are incurred and that become cost of goods sold when the product is sold. These costs are included in work-in-process and finished goods inventory (they are "inventoried") to accumulate the costs of creating these assets.

Period costs are all costs in the income statement other than cost of goods sold. These costs are treated as expenses of the accounting period in which they are incurred because they are expected not to benefit future periods (because there is not sufficient evidence to conclude that such benefit exists). Expensing these costs immediately best matches expenses to revenues.

2-12 Direct material costs are the acquisition costs of all materials that eventually become part of the cost object (work in process and then finished goods) and can be traced to the cost object in an economically feasible way.

Direct manufacturing labor costs include the compensation of all manufacturing labor that can be traced to the cost object (work in process and then finished goods) in an economically feasible way.

Manufacturing overhead costs are all manufacturing costs that are related to the cost object (work in process and then finished goods) but cannot be traced to that cost object in an economically feasible way.

Prime costs are all direct manufacturing costs (direct material and direct manufacturing labor).

Conversion costs are all manufacturing costs other than direct material costs.
2-13 Overtime premium is the wage rate paid to workers (for both direct labor and indirect labor) in excess of their straight-time wage rates.

Idle time is a subclassification of indirect labor that represents wages paid for unproductive time caused by lack of orders, machine breakdowns, material shortages, poor scheduling, and the like.

2-14 A product cost is the sum of the costs assigned to a product for a specific purpose. Purposes for computing a product cost include
pricing and product mix decisions,
contracting with government agencies, and
preparing financial statements for external reporting under GAAP.
2-15 Three common features of cost accounting and cost management are calculating the costs of products, services, and other cost objects obtaining information for planning and control and performance evaluation analyzing the relevant information for making decisions

2-16 (15 min.) Computing and interpreting manufacturing unit costs.

1.

			(in millions)	
	Supreme	Deluxe	Regular	Total
Direct material cost	$\$ 89.00$	$\$ 57.00$	$\$ 60.00$	$\$ 206.00$
Direct manuf. labor costs	16.00	26.00	8.00	50.00
Manufacturing overhead costs	48.00	78.00	24.00	150.00
Total manuf. costs	153.00	161.00	92.00	406.00

Fixed costs allocated at a rate
of $\$ 15 \mathrm{M} \$ 50 \mathrm{M}$ (direct mfg.
labor) equal to $\$ 0.30$ per
dir. manuf. labor dollar

$(0.30$	$\$ 16 ; 26 ; 8)$	4.80	7.80	2.40	15.00

Variable costs
Units produced (millions)
Cost per unit (Total manuf. costs \div units produced)

4.80	7.80	2.40		
$\underline{\underline{\$ 148.20}}$	$\underline{\underline{\$ 153.20}}$	$\underline{\underline{\$ 89.60}}$		$\underline{\underline{\$ 391.00}}$
:---				
125				

Variable manuf. cost per unit (Variable manuf. costs Units produced $\quad \$ 1.1856 \quad \$ 1.0213 \quad \$ 0.6400$
Based on total manuf. cost
per unit (\$1.2240 150;
$\$ 1.0733 \quad 190 ; \$ 0.6571220) \$ 183.60 \quad \$ 203.93 \quad \$ 144.56 \quad$ \$532.09
Correct total manuf. costs based on variable manuf. costs plus fixed costs equal Variable costs (\$1.1856 150; $\quad \$ 177.84 \quad \$ 194.05 \quad \$ 140.80 \quad \$ 512.69$ \$1.0213 190; \$0.64 220)
Fixed costs
Total costs
$\underline{\$ 527.69}$

The total manufacturing cost per unit in requirement 1 includes $\$ 15$ million of indirect manufacturing costs that are fixed irrespective of changes in the volume of output per month, while the remaining variable indirect manufacturing costs change with the production volume.

Given the unit volume changes for August 2014, the use of total manufacturing cost per unit from the past month at a different unit volume level (both in aggregate and at the individual product level) will overestimate total costs of $\$ 532.09$ million in August 2014 relative to the correct total manufacturing costs of $\$ 527.69$ million calculated using variable manufacturing cost per unit times units produced plus the fixed costs of $\$ 15$ million.

2-17 (15 min.) Direct, indirect, fixed, and variable costs.

1. Yeast-direct, variable

Flour-direct, variable
Packaging materials - direct (or could be indirect if small and not traced to each unit), variable
Depreciation on ovens-indirect, fixed (unless "units of output" depreciation, which then would be variable)
Depreciation on mixing machines-indirect, fixed (unless "units of output" depreciation, which then would be variable)
Rent on factory building-indirect, fixed
Fire Insurance on factory building-indirect, fixed
Factory utilities-indirect, probably some variable and some fixed (e.g., electricity may be variable but heating costs may be fixed)
Finishing department hourly laborers-direct, variable (or fixed if the laborers are under a union contract)
Mixing department manager-indirect, fixed
Materials handlers-depends on how they are paid. If paid hourly and not under union contract, then indirect, variable. If salaried or under union contract, then indirect, fixed
Custodian in factory-indirect, fixed
Night guard in factory-indirect, fixed
Machinist (running the mixing machine)-depends on how they are paid. If paid hourly and not under union contract, then indirect, variable. If salaried or under union contract, then indirect, fixed
Machine maintenance personnel-indirect, probably fixed, if salaried, but may be variable if paid only for time worked and maintenance increases with increased production
Maintenance supplies-indirect, variable
Cleaning supplies-indirect, most likely fixed because the custodians probably do the same amount of cleaning every night
2. If the cost object is Mixing Department, then anything directly associated with the Mixing Department will be a direct cost. This will include:

Depreciation on mixing machines
Mixing Department manager
Materials handlers (of the Mixing Department)
Machinist (running the mixing machines)
Machine Maintenance personnel (of the Mixing Department)
Maintenance supplies (if separately identified for the Mixing Department)
Of course the yeast and flour will also be a direct cost of the Mixing Department, but it is already a direct cost of each kind of bread produced.

2-18 (15-20 min.) Classification of costs, service sector.

Cost object: Each individual focus group
Cost variability: With respect to the number of focus groups
There may be some debate over classifications of individual items, especially with regard to cost variability.

Cost Item	D or I	Vor F
A	D	V
B	I	F
C	I	$\mathrm{V}^{\text {a }}$
D	I	F
E	I	V
F	I	F
G	D	V
H	I	$\mathrm{V}^{\text {v }}$
I	I	F

${ }^{a}$ Some students will note that phone call costs are variable when each call has a separate charge. It may be a fixed cost if Market Focus has a flat monthly charge for a line, irrespective of the amount of usage.
${ }^{\mathrm{b}}$ Gasoline costs are likely to vary with the number of focus groups. However, vehicles likely serve multiple purposes, and detailed records may be required to examine how costs vary with changes in one of the many purposes served.

2-19 (15-20 min.) Classification of costs, merchandising sector.

Cost object: DVDs sold in movie section of store
Cost variability: With respect to changes in the number of DVDs sold
There may be some debate over classifications of individual items, especially with regard to cost variability.

Cost Item	D or I	V or F
A	D	F
B	I	F
C	D	V
D	D	F
E	I	F
F	I	V
G	D	F
H		

2-20 (15-20 min.) Classification of costs, manufacturing sector.

Cost object: Type of car assembled (Teana or Murano)
Cost variability: With respect to changes in the number of Teanas assembled
There may be some debate over classifications of individual items, especially with regard to cost variability.

Cost Item	D or I	V or F
A	D	V
B	I	F
C	D	F
D	D	V
E	D	V
F	D	V
G	I	V
H	F	

2-21 (20 min.) Variable costs, fixed costs, total costs.

1.

| Minutes/month | $\mathbf{0}$ | $\mathbf{5 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 5 0}$ | $\mathbf{2 0 0}$ | $\mathbf{2 4 0}$ | $\mathbf{3 0 0}$ | $\mathbf{3 2 7 . 5}$ | $\mathbf{3 5 0}$ | $\mathbf{4 0 0}$ | $\mathbf{4 5 0}$ | $\mathbf{5 1 0}$ | $\mathbf{5 4 0}$ | $\mathbf{6 0 0}$ | $\mathbf{6 5 0}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plan A $(\$ /$ month $)$ | 0 | 5 | 10 | 15 | 20 | 24 | 30 | 32.75 | 35 | 40 | 45 | 51 | 54 | 60 | 65 |
| Plan B $(\$ /$ month $)$ | 15 | 15 | 15 | 15 | 15 | 15 | 19.80 | 22 | 23.80 | 27.80 | 31.80 | 36.60 | 39 | 43.80 | 47.80 |
| Plan C $(\$ /$ month $)$ | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 23.50 | 26.50 | 29 |

2. In each region, Ashton chooses the plan that has the lowest cost. From the graph (or from calculations)*, we can see that if Ashton expects to use $0-150$ minutes of long-distance each month, she should buy Plan A; for 150-327.5 minutes, Plan B; and for more than 327.5 minutes, Plan C. If Ashton plans to make 100 minutes of long-distance calls each month, she should choose Plan A; for 240 minutes, choose Plan B; for 540 minutes, choose Plan C.
*Let x be the number of minutes when Plan A and Plan B have equal

$$
\begin{aligned}
\operatorname{cost} \$ 0.10 x & =\$ 15 \\
x & =\$ 15 \div \$ 0.10 \text { per minute }=150 \text { minutes } .
\end{aligned}
$$

Let y be the number of minutes when Plan B and Plan C have equal

$$
\begin{aligned}
& \text { cost } \$ 15+\$ 0.08(y-240)=\$ 22 \\
& \$ 0.08(y-240)=\$ 22-\$ 15=\$ 7 \\
& y-240=\frac{\$ 7}{\$ 0.08} 87.5 \\
& y=87.5+240=327.5 \text { minutes }
\end{aligned}
$$

2-22 (15-20 min.) Variable costs and fixed costs.

1. Variable manufacturing cost per vehicle

Steel	$\$ 1,500$ per Surfer
Tires	625 per Surfer
Direct manufacturing labor	700 per Surfer
\quad Total	$\underline{\$ 2,825 \text { per Surfer }}$

Fixed manufacturing costs per month
Plant management costs $(\$ 1,200,000 \div 12) \quad \$ 100,000$
Cost of leasing equipment $(\$ 1,800,000 \div 12) \quad 150,000$
$\begin{array}{ll}\text { City license (for } 110 \text { surfers or } 550 \text { tires) } & \quad 74,500 \\ \text { Total fixed manufacturing costs }\end{array}$
Total fixed manufacturing costs
$\underline{\$ 324,500}$
Fixed costs per month (1 surfer takes 5 tires)

$$
\begin{aligned}
& 0 \text { to } 100 \text { surfers per month } \quad=\$ 100,000+\$ 150,000+\$ 50,000=\$ 300,000 \\
& 101 \text { to } 200 \text { surfers per month } \quad=\$ 100,000+\$ 150,000+\$ 74,500=\$ 324,500 \\
& \text { More than } 200 \text { surfers per month }=\$ 100,000+\$ 150,000+\$ 200,000=\$ 450,000
\end{aligned}
$$

2.

The concept of relevant range is potentially relevant for both graphs. However, the question does not place restrictions on the unit variable costs. The relevant range for the total fixed costs is from 0 to 100 surfers; 101 to 200 surfers; more than 200 surfers. Within these ranges, the total fixed costs do not change in total.
3.

Vehicles Produced per Month (1)	Tires Produced per Month $(\mathbf{2})=(\mathbf{1}) \times 5$	Fixed Cost per Month $\mathbf{(3)}$	Unit Fixed Cost per Vehicle $(\mathbf{4})=\mathbf{F C} \div(\mathbf{1})$	Unit Variable Cost per Vehicle	Unit Total Cost per Vehicle
(a) 100	500	$\$ 300,000$	$\$ 300,000 \div 100=\$ 3,000$	$\$ 2,825$	$(\mathbf{5})=(\mathbf{4})+(\mathbf{5})$
(b) 225	1,125	$\$ 450,000$	$\$ 450,000 \div 225=\$ 2,000$	$\$ 2,825$	$\$ 4,825$

The unit cost for 100 vehicles produced per month is $\$ 5,825$, while for 225 vehicles it is only $\$ 4,825$. This difference is caused by the fixed cost increment of $\$ 150,000$ (an increase of 50%, $\$ 150,000 \div \$ 300,000=50 \%)$ being spread over an increment of $125(225-100)$ vehicles (an increase of $125 \%, 125 \div 100$). The fixed cost per unit is therefore lower.

2-23 (20 min.) Variable costs, fixed costs, relevant range.

1. The production capacity is 4,400 jaw breakers per month. Therefore, the current annual relevant range of output is 0 to 4,400 jaw breakers $\times 12$ months $=0$ to 52,800 jaw breakers.
2. Current annual fixed manufacturing costs within the relevant range are $\$ 1,300 \times 12=$ $\$ 15,600$ for rent and other overhead costs, plus $\$ 9,500 \div 10=\$ 950$ for depreciation, totaling $\$ 16,550$.

The variable costs, the materials, are 10 cents per jaw breaker, or $\$ 3,720$ ($\$ 0.10$ per jaw breaker $\times 3,100$ jaw breakers per month $\times 12$ months) for the year.
3. If demand changes from 3,100 to 6,200 jaw breakers per month, or from 3,100 $\times 12=$ 37,200 to $6,200 \times 12=74,400$ jaw breakers per year, Sweetum will need a second machine. Assuming Sweetum buys a second machine identical to the first machine, it will increase capacity from 4,400 jaw breakers per month to 8,800 . The annual relevant range will be between $4,400 \times 12=52,800$ and $8,800 \times 12=105,600$ jaw breakers.

Assume the second machine costs $\$ 9,500$ and is depreciated using straight-line depreciation over 10 years and zero residual value, just like the first machine. This will add $\$ 950$ of depreciation per year.

Fixed costs for next year will increase to $\$ 17,500$ from $\$ 16,550$ for the current year + $\$ 950$ (because rent and other fixed overhead costs will remain the same at $\$ 15,600$). That is, total fixed costs for next year equal $\$ 950$ (depreciation on first machine) $+\$ 950$ (depreciation on second machine) $+\$ 15,600$ (rent and other fixed overhead costs).

The variable cost per jaw breaker next year will be $90 \% \times \$ 0.10=\$ 0.09$. Total variable costs equal $\$ 0.09$ per jaw breaker $\times 74,400$ jaw breakers $=\$ 6,696$.

If Sweetum decides not to increase capacity and meet only that amount of demand for which it has available capacity (4,400 jaw breakers per month or $4,400 \times 12=52,800$ jaw breakers per year), the variable cost per unit will be the same at $\$ 0.10$ per jaw breaker. Annual total variable manufacturing costs will increase to $\$ 0.10 \times 4,400$ jaw breakers per month $\times 12$ months $=\$ 5,280$. Annual total fixed manufacturing costs will remain the same, $\$ 16,550$.

2-24 (20 min.) Cost drivers and value chain.

1. Identify customer needs (what do smartphone users want?)—Design of products and processes
Perform market research on competing brands-Design of products and processes
Design a prototype of the RMC smartphone-Design of products and processes
Market the new design to cell phone companies-Marketing
Manufacture the RMC smartphone-Production Process
orders from cell phone companies-Distribution
Package the RMC smartphones-Production
Deliver the RMC smartphones to the cell phone companies-Distribution
Provide online assistance to cell phone users for use of the RMC smartphone-Customer Service
Make design changes to the RMC smartphone based on customer feedback—Design of products and processes
2.

Value Chain

Category	Activity
Design of products and processes	Identify customer needs
	Perform market research on competing brands

Design a prototype of the RMC smartphone
Make design changes to the smartphone based on customer feedback

Production	Manufacture the RMC smartphones Package the RMC smartphones
Marketing	Market the new design to cell phone companies

Distribution $\begin{gathered}\text { Process orders from cell phone } \\ \text { companies }\end{gathered}$
Deliver the RMC smartphones to cell phone companies

Customer Provide on-line assistance to Number of smartphones shipped by RMC service cell phone users for use of the RMC smartphone

Machine hours required to run the production equipment
Number of smartphones shipped by RMC
Number of cell phone companies purchasing the RMC smartphone

Cost Driver

Number of surveys returned and processed from competing smartphone users

Hours spent researching competing market brands
Number of surveys returned and processed from competing smartphone users
Engineering hours spent on initial product design
Number of design changes

Number of smartphone orders processed
Number of deliveries made to cell phone companies
Number of deliveries made to cell phone companies Customer service hours
1.

Function

Representative Cost Driver

1. Accounts payable

Number of payments processed
2. Recruiting
3. Data processing
4. Research and development
5. Purchasing
6. Warehousing
7. Billing

Number of employees hired
Hours of computer processing unit (CPU)
Number of research scientists
Number of purchase orders
Number of pallets moved
Number of invoices sent

Function

1. Accounts payable
2. Recruiting
3. Data Processing
4. Research and Development
5. Purchasing
6. Warehousing
7. Billing

Representative Cost Driver

Number of supplier invoices received Number of interviews conducted
Number of computer transactions
Number of new products being developed Number of different types of materials purchased Distance of deliveries made
Number of credit sales transactions
1.

Number of guests	0	50	100	150	200	250	300
Variable cost per guest (\$80 caterer charge $\$ 5$ discount for advertising)	\$75	\$75	\$75	\$75	\$75	\$75	\$75
Fixed Costs	\$14,000	\$14,000	\$14,000	$\overline{\$ 14,000}$	\$14,000	\$14,000	\$14,000
Variable costs (number of guests \times variable cost per guest)	0	3,750	7,500	11,250	15,000	18,750	22,500
Total costs (fixed + variable)	\$14,000	\$17,750	\$21,500	\$25,250	\$29,000	\$32,750	\$36,500

Number of guests	0	50	100	150	200	250	300
Total costs (fixed + variable)	\$14,000	\$17,750	\$21,500	\$25,250	\$29,000	\$32,750	\$36,500
Costs per guest (total							
costs number of guests)		\$355	\$215	\$168.33	\$ 145	\$131	\$121.67

As shown in the table above, for 150 attendees the total cost will be $\$ 25,250$, and the cost per attendee will be $\$ 168.33$.
3. As shown in the table in requirement 2 , for 200 attendees, the total cost will be $\$ 29,000$, and the cost per attendee will be $\$ 145$.
4. TBE should charge customers based on the number of guests. As the number of guests increase, TBE could offer price discounts because its fixed costs would be spread over a larger number of guests.

Alternatively, TBE could charge a flat fee of $\$ 10,000$ plus a margin for the music. The catering costs would then vary less with the number of guests because only $\$ 4,000$ of fixed costs would be spread over the number of guests. For 100 guests, the fixed catering cost per guest
would be $\$ 40$ ($\$ 4,000 \div 100$ guests); for 200 guests, it would be $\$ 20(\$ 4,000 \div 200$ guests $)$. TBE's total cost would be $\$ 115$ (variable cost per guest of $\$ 75+$ fixed catering cost per guest of $\$ 40$) for 100 guests and $\$ 95$ (variable cost per guest of $\$ 75+$ fixed catering cost per guest of $\$ 20)$ for 200 guests.

2-27 (25 min.) Total and unit cost, decision making.

1.

Note that the production costs include the $\$ 28,000$ of fixed manufacturing costs but not the $\$ 10,000$ of period costs. The variable cost is $\$ 1$ per flange for materials, and $\$ 2.80$ per flange ($\$ 28$ per hour divided by 10 flanges per hour) for direct manufacturing labor for a total of $\$ 3.80$ per flange.
2. The inventoriable (manufacturing) cost per unit for 5,000 flanges is
$\$ 3.80 \times 5,000+\$ 28,000=\$ 47,000$
Average (unit) cost $=\$ 47,000 \div 5,000$ units $=\$ 9.40$ per unit.
This is below Flora's selling price of $\$ 10$ per flange. However, in order to make a profit, Gayle's Glassworks also needs to cover the period (non-manufacturing) costs of $\$ 10,000$, or $\$ 10,000 \div 5,000=\$ 2$ per unit.
Thus total costs, both inventoriable (manufacturing) and period (non-manufacturing), for the flanges is $\$ 9.40+\$ 2=\$ 11.40$. Gayle's Glassworks cannot sell below Flora's price of $\$ 10$ and still make a profit on the flanges.

Alternatively,
At Flora's price of $\$ 10$ per flange:

Revenue	$\$ 10$	$\times 5,000$	$=$	$\$ 50,000$
Variable costs	$\$ 3.80$	$\times 5,000$	$=$	19,000
Fixed costs				$\underline{38,000}$
Operating loss				$\underline{(7,000)}$

Gayle's Glassworks cannot sell below $\$ 10$ per flange and make a profit. At Flora's price of $\$ 10$ per flange, the company has an operating loss of $\$ 7,000$.
3. If Gayle's Glassworks produces 10,000 units, then total inventoriable cost will be: Variable cost $(\$ 3.80 \times 10,000)+$ fixed manufacturing costs, $\$ 28,000=$ total manufacturing costs, $\$ 66,000$.

Average (unit) inventoriable (manufacturing) cost will be $\$ 66,000 \div 10,000$ units $=\$ 6.60$ per flange
Unit total cost including both inventoriable and period costs will be $(\$ 66,000+\$ 10,000) \div 10,000=\$ 7.60$ per flange, and Gayle's Glassworks will be able to sell the flanges for less than Flora and still make a profit.

Alternatively,

At Flora's price of $\$ 10$ per flange:
Revenue $\$ 10 \times 10,000=\$ 100,000$
Variable costs $\$ 3.80 \times 10,000=38,000$
Fixed costs
Operating income
Gayle's Glassworks can sell at a price below $\$ 10$ per flange and still make a profit. The company earns operating income of $\$ 24,000$ at a price of $\$ 10$ per flange. The company will earn operating income as long as the price exceeds $\$ 7.60$ per flange.

The reason the unit cost decreases significantly is that inventoriable (manufacturing) fixed costs and fixed period (non-manufacturing) costs remain the same regardless of the number of units produced. So, as Gayle's Glassworks produces more units, fixed costs are spread over more units, and cost per unit decreases. This means that if you use unit costs to make decisions about pricing, and which product to produce, you must be aware that the unit cost only applies to a particular level of output.

2-28 (20-30 min.) Inventoriable costs versus period costs.

1. Manufacturing-sector companies purchase materials and components and convert them into different finished goods.

Merchandising-sector companies purchase and then sell tangible products without changing their basic form.

Service-sector companies provide services or intangible products to their customers-for example, legal advice or audits.

Only manufacturing and merchandising companies have inventories of goods for sale.
2. Inventoriable costs are all costs of a product that are regarded as an asset when they are incurred and then become cost of goods sold when the product is sold. These costs for a manufacturing company are included in work-in-process and finished goods inventory (they are "inventoried") to build up the costs of creating these assets.

Period costs are all costs in the income statement other than cost of goods sold. These costs are treated as expenses of the period in which they are incurred because they are presumed not to benefit future periods (or because there is not sufficient evidence to conclude that such benefit exists). Expensing these costs immediately best matches expenses to revenues.
3. (a) Lettuce and tomatoes purchased for resale by Star market-inventoriable cost of a merchandising company. It becomes part of cost of goods sold when the lettuce and tomatoes are sold.
(b) Electricity used for lighting at Maytag refrigerator assembly plant-inventoriable cost of a manufacturing company. It is part of the manufacturing overhead that is included in the manufacturing cost of a refrigerator finished good.
(c) Depreciation on Yahoo!'s computer equipment used to update directories of websites-period cost of a service company. Yahoo! has no inventory of goods for sale and, hence, no inventoriable cost.
(d) Electricity used to provide lighting for Star Market's store aisles-period cost of a merchandising company. It is a cost that benefits the current period, and it is not traceable to goods purchased for resale.
(e) Depreciation on Maytag's assembly testing equipment-inventoriable cost of a manufacturing company. It is part of the manufacturing overhead that is included in the manufacturing cost of a refrigerator finished good.
(f) Salaries of Star Market's marketing personnel-period cost of a merchandising company. It is a cost that is not traceable to goods purchased for resale. It is presumed not to benefit future periods (or at least not to have sufficiently reliable evidence to estimate such future benefits).
(g) Perrier mineral water consumed by Yahoo!'s software engineers-period cost of a service company. Yahoo! has no inventory of goods for sale and, hence, no inventoriable cost.
(h) Salaries of Yahoo!'s marketing personnel-period cost of a service company. Yahoo! has no inventory of goods for sale and, hence, no inventoriable cost.

2-29 (20 min.) Computing cost of goods purchased and cost of goods sold.
1a.

Marvin Department Store

Schedule of Cost of Goods Purchased For the Year Ended December 31, 2014
(in thousands)

Purchases Add transportation-in		\$155,000
		7,000
		162,000
Deduct:		
Purchase returns and allowances	\$4,000	
Purchase discounts	6,000	10,000
Cost of goods purchased		\$152,000
1 b . Marvin Department Store Schedule of Cost of Goods Sold For the Year Ended December 31, 2014 (in thousands)		
Beginning merchandise inventory 1/1/2014 Cost of goods purchased (see above)		$\begin{array}{r} \hline \$ 27,000 \\ -152,000 \\ \hline \end{array}$
Cost of goods available for sale		179,000
Ending merchandise inventory 12/31/2014		34,000
Cost of goods sold		\$145,000
2. Marvin Department Store Income Statement Year Ended December 31, 2014 (in thousands)		
Revenues		\$280,000
Cost of goods sold (see above)		145,000
Gross margin		135,000
Operating costs		
Marketing, distribution, and customer service costs	\$37,000	
Utilities	17,000	
General and administrative costs	43,000	
Miscellaneous costs	4,000	
Total operating costs		101,000
Operating income		\$ 34,000

2-30 (20 min.) Cost of goods purchased, cost of goods sold, and income statement.
1a.

Montgomery Retail Outlet Stores

Schedule of Cost of Goods Purchased For the Year Ended December 31, 2014 (in thousands)

Purchases		\$520,000
Add freight-in		20,000
		540,000
Deduct:		
Purchase returns and allowances	\$22,000	
Purchase discounts	18,000	40,000
Cost of goods purchased		\$500,000
1 b . Montgomery Retail Outlet Stores Schedule of Cost of Goods Sold For the Year Ended December 31, 2014 (in thousands)		
Beginning merchandise inventory 1/1/2014		\$ 90,000
Cost of goods purchased (see above)		- 500,000
Cost of goods available for sale		590,000
Ending merchandise inventory 12/31/2014		104,000
Cost of goods sold		\$486,000
Montgomery Retail Outlet Stores Income Statement Year Ended December 31, 2014 (in thousands)		
Revenues		\$640,000
Cost of goods sold (see above)		486,000
Gross margin		154,000
Operating costs		
Marketing and advertising costs	\$48,000	
Building depreciation	8,400	
Shipping of merchandise to customers	4,000	
General and administrative costs	64,000	
Total operating costs		124,400
Operating income		\$29,600

(All numbers below are in millions).
1.
Direct materials inventory 10/1/2014 \$ 105
Direct materials purchased 365
Direct materials available for production 470
Direct materials used (385)
Direct materials inventory 10/31/2014 85
2.Total manufacturing overhead costs\$ 450
Subtract: Variable manufacturing overhead costs (265)
Fixed manufacturing overhead costs for October 2014 $\$ \quad 185$
3.Total manufacturing costs\$ 1,610
Subtract: Direct materials used (from requirement 1) (385)
Total manufacturing overhead costs (450)
Direct manufacturing labor costs for October 2014 $\$ \quad 775$
4.Work-in-process inventory 10/1/2014\$ 230
Total manufacturing costs
Work-in-process available for productionSubtract: Cost of goods manufactured (moved into FG)1.840Work-in-process inventory 10/31/2014$(1,660)$$\$ \quad 180$
5.Finished goods inventory 10/1/2014\$ 130
Cost of goods manufactured (moved from WIP) 1.660
Cost of finished goods available for sale in October 2014 $\$ 1,790$
6.Finished goods available for sale in October 2014(from requirement 5)\$ 1,790Subtract: Cost of goods soldFinished goods inventory 10/31/2014$\begin{array}{r}(1,770) \\ \$ \quad 20 \\ \hline\end{array}$

1. | Peterson Company |
| :---: |
| Schedule of Cost of Goods Manufactured |
| Year Ended December 31, 2014 |
| (in thousands) |

Direct materials cost		
Beginning inventory, January 1, 2014	\$ 21,000	
Purchases of direct materials	74,000	
Cost of direct materials available for use	95,000	
Ending inventory, December 31, 2014	23,000	
Direct materials used		\$ 72,000
Direct manufacturing labor costs		22,000
Indirect manufacturing costs		
Indirect manufacturing labor	17,000	
Plant insurance	7,000	
Depreciation-plant building \& equipment	11,000	
Repairs and maintenance-plant	3,000	
Total indirect manufacturing costs		38.000
Manufacturing costs incurred during 2014		132,000
Add beginning work-in-process inventory, January 1, 2014		26,000
Total manufacturing costs to account for		158,000
Deduct ending work-in-process inventory, December 31, 2014		25,000
Cost of goods manufactured (to Income Statement)		\$133,000

2.

> Peterson Company
> Income Statement
> Year Ended December 31, 2014 (in thousands)

Revenues		\$310,000
Cost of goods sold:		
Beginning finished goods, January 1, 2014	\$ 13,000	
Cost of goods manufactured	133,000	$\stackrel{ }{2}$
Cost of goods available for sale	146,000	
Ending finished goods, December 31, 2014	20,000	
Cost of goods sold		126.000
Gross margin		184,000
Operating costs:		
Marketing, distribution, and customer-service costs	91,000	
General and administrative costs	24.000	
Total operating costs		115.000
Operating income		\$ 69,000

Shaler Corporation
 Schedule of Cost of Goods Manufactured
 Year Ended December 31, 2014 (in thousands)

Direct materials costs		
Beginning inventory, January 1, 2014	\$130,000	
Purchases of direct materials	256,000	
Cost of direct materials available for use	386,000	
Ending inventory, December 31, 2014	68,000	
Direct materials used		\$318,000
Direct manufacturing labor costs		212,000
Indirect manufacturing costs		
Indirect manufacturing labor	96,000	
Indirect materials	28,000	
Plant insurance	4,000	
Depreciation-plant building \& equipment	42,000	
Plant utilities	24,000	
Repairs and maintenance-plant	16,000	
Equipment lease costs	64,000	
Total indirect manufacturing costs		274,000
Manufacturing costs incurred during 2014		804,000
Add beginning work-in-process inventory, January 1, 2014		166,000
Total manufacturing costs to account for		970,000
Deduct ending work-in-process inventory, December 31, 2014		144,000
Cost of goods manufactured (to Income Statement)		\$826,000
Shaler Corporation Income Statement Year Ended December 31, 2014 (in thousands)		
Revenues		\$1,200,000
Cost of goods sold:		
Beginning finished goods, January 1, 2014	\$ 246,000	
Cost of goods manufactured	826.000	
Cost of goods available for sale	1,072,000	
Ending finished goods, December 31, 2014	204,000	
Cost of goods sold		868.000
Gross margin		332,000
Operating costs:		
Marketing, distribution, and customer-service costs	124,000	
General and administrative costs	68,000	
Total operating costs		192,000
Operating income		\$ 140,000

Howell Corporation
Income Statement for the Year Ended December 31, 2014 (in millions)
Revenues $\$ 950$Cost of goods sold
Beginning finished goods, Jan. 1, 2014 \$ 70
Cost of goods manufactured (below) - 645
Cost of goods available for sale 715
Ending finished goods, Dec. 31, 2014 660
Gross margin 290
Marketing, distribution, and customer-service costs 240
Operating income $\$ 50$
Howell Corporation
Schedule of Cost of Goods Manufactured for the Year Ended December 31, 2014
(in millions)
Direct materials costs
Beginning inventory, Jan. 1, 2014 \$ 15
Purchases of direct materials -325
Cost of direct materials available for use 340
Ending inventory, Dec. 31, 2014 20
Direct materials used \$320
Direct manufacturing labor costs 100
Indirect manufacturing costs
Indirect manufacturing labor 60
Plant supplies used 10
Plant utilities 30
Depreciation-plant and equipment 80
Plant supervisory salaries 5
Miscellaneous plant overhead$\underline{220}$
Manufacturing costs incurred during 2014 640
Add beginning work-in-process inventory, Jan. 1, 2014 10
Total manufacturing costs to account for 650
Deduct ending work-in-process, Dec. 31, 2014 5
Cost of goods manufactured \$645

1. The schedule in 2-34 can become a Schedule of Cost of Goods Manufactured and Sold simply by including the beginning and ending finished goods inventory figures in the supporting schedule, rather than directly in the body of the income statement. Note that the term cost of goods manufactured refers to the cost of goods brought to completion (finished) during the accounting period, whether they were started before or during the current accounting period. Some of the manufacturing costs incurred are held back as costs of the ending work in process; similarly, the costs of the beginning work in process inventory become a part of the cost of goods manufactured for 2014.
2. The sales manager's salary would be charged as a marketing cost as incurred by both manufacturing and merchandising companies. It is basically an operating cost that appears below the gross margin line on an income statement. In contrast, an assembler's wages would be assigned to the products worked on. Thus, the wages cost would be charged to Work-in-Process and would not be expensed until the product is transferred through Finished Goods Inventory to Cost of Goods Sold as the product is sold.
3. The direct-indirect distinction can be resolved only with respect to a particular cost object. For example, in defense contracting, the cost object may be defined as a contract. Then, a plant supervisor working only on that contract will have his or her salary charged directly and wholly to that single contract.
4. Direct materials used $=\$ 320,000,000 \div 1,000,000$ units $=\$ 320$ per unit Depreciation on plant equipment $=\$ 80,000,000 \div 1,000,000$ units $=\$ 80$ per unit
5. Direct materials unit cost would be unchanged at $\$ 320$ per unit. Depreciation cost per unit would be $\$ 80,000,000 \div 1,200,000=\$ 66.67$ per unit. Total direct materials costs would rise by 20% to $\$ 384,000,000$ ($\$ 320$ per unit $\times 1,200,000$ units), whereas total depreciation would be unaffected at $\$ 80,000,000$.
6. Unit costs are averages, and they must be interpreted with caution. The $\$ 320$ direct materials unit cost is valid for predicting total costs because direct materials is a variable cost; total direct materials costs indeed change as output levels change. However, fixed costs like depreciation must be interpreted quite differently from variable costs. A common error in cost analysis is to regard all unit costs as one-as if all the total costs to which they are related are variable costs. Changes in output levels (the denominator) will affect total variable costs, but not total fixed costs. Graphs of the two costs may clarify this point; it is safer to think in terms of total costs rather than in terms of unit costs.
2-36 (25-30 min.) Income statement and schedule of cost of goods manufactured.
Chester Corporation
Income Statement for the Year Ended December 31, 2014
(in millions)
Revenues \$354
Cost of goods sold
Beginning finished goods, Jan. 1, 2014 \$ 43
Cost of goods manufactured (below) _ 225
Cost of goods available for sale 268
Ending finished goods, Dec. 31, 2014 19 249
Gross margin 105
Marketing, distribution, and customer-service costs 91
Operating income (loss) $\$ 14$
Calendar CorporationSchedule of Cost of Goods Manufacturedfor the Year Ended December 31, 2014(in millions)
Direct material costs
Beginning inventory, Jan. 1, 2014 \$ 39
Direct materials purchased 82
Cost of direct materials available for use 121
Ending inventory, Dec. 31, 2014 9
Direct materials used \$112
Direct manufacturing labor costs 41
Indirect manufacturing costs
Plant supplies used 5
Property taxes on plant 3
Plant utilities 6
Indirect manufacturing labor costs 25
Depreciation-plant and equipment 8
Miscellaneous manufacturing overhead costs 17 64
Manufacturing costs incurred during 2014 217
Add beginning work-in-process inventory, Jan. 1, 2014 15
Total manufacturing costs to account for 232
Deduct ending work-in-process inventory, Dec. 31, 2014 7
Cost of goods manufactured (to income statement) $\$ 225$
7. Direct materials used

Direct manufacturing labor costs
Prime costs
Direct manufacturing labor costs
Indirect manufacturing costs
Conversion costs
2. Inventoriable costs (in millions) for Year 2014 Plant utilities Indirect manufacturing labor
Depreciation-plant and equipment 8
Miscellaneous manufacturing overhead
Direct materials used
Direct manufacturing labor 41
Plant supplies used 5
Property tax on plant
Total inventoriable costs
Period costs (in millions) for Year 2014
Marketing, distribution, and customer-service costs
Direct materials -112
\$ 112 million
41 million
\$153 million
\$ 41 million
64 million
\$105 million \$ 6

- $-(-25$

3
$\$ 91$
3. Design costs and R\&D costs may be regarded as product costs in case of contracting with a governmental agency. For example, if the Air Force negotiated to contract with Lockheed to build a new type of supersonic fighter plane, design costs and R\&D costs may be included in the contract as product costs.
4. Direct materials used $=\$ 112,000,000 \div 1,000,000$ units $=\$ 112$ per unit Depreciation on plant and equipment $=\$ 8,000,000 \div 1,000,000$ units $=\$ 8$ per unit
5. Direct materials unit cost would be unchanged at $\$ 112$. Depreciation unit cost would be $\$ 8,000,000 \div 2,000,000=\$ 4$ per unit. Total direct materials costs would rise by 100% to $\$ 224,000,000$ ($\$ 112$ per unit $\times 2,000,000$ units). Total depreciation cost of $\$ 8,000,000$ would remain unchanged.
6. In this case, equipment depreciation is a variable cost in relation to the unit output. The amount of equipment depreciation will change in direct proportion to the number of units produced.
(a) Depreciation will be $\$ 1$ million $(\$ 1 \times 1$ million) when 1 million units are produced.
(b) Depreciation will be $\$ 2$ million ($\$ 1 \times 2$ million) when 2 million units are produced.
1.(a) Total cost of hours worked at regular rates 48 hours $\times \$ 20$ per hour \$ 960
44 hours $\times \$ 20$ per hour 880
43 hours $\times \$ 20$ per hour 860
46 hours $\times \$ 20$ per hour 920Minus idle time
(6.4 hours $\times \$ 20$ per hour) 128
(2.0 hours $\times \$ 20$ per hour) 40
(5.8 hours $\times \$ 20$ per hour) 116
(3.5 hours $\times \$ 20$ per hour) 70
Total idle time 354
Direct manufacturing labor costs \$3,266
(b) Idle time $=17.7$ hours $\times \$ 20$ per hour $=$ \$ 354
(c) Overtime and holiday premium.
Week 1: Overtime $(48-40)$ hours \times Premium, $\$ 10$ per hour \$ 80
Week 2: Overtime $(44-40)$ hours \times Premium, $\$ 10$ per hour 40
Week 3: Overtime $(43-40)$ hours \times Premium, $\$ 20$ per hour 60
Week 4: Overtime $(46-40)$ hours \times Premium, $\$ 10$ per hour 60
Week 4: Holiday 8 hours $\times 2$ days \times Premium, $\$ 20$ per hour 320
Total overtime and holiday premium $\$ 560$
(d) Total earnings in DecemberDirect manufacturing labor costs\$3,266
Idle time 354
Overtime and holiday premium 560
Total earnings \$4,180
2. Idle time caused by regular machine maintenance, slow order periods, or unexpected mechanical problems is an indirect cost of the product because it is not related to a specific product.

Overtime premium caused by the heavy overall volume of work is also an indirect cost because it is not related to a particular job that happened to be worked on during the overtime hours. If, however, the overtime is the result of a demanding "rush job," the overtime premium is a direct cost of that job.

1. Finished goods inventory, $3 / 31 / 2014=\$ 105,000$
2. Work-in-process inventory, $3 / 31 / 2014=\$ 95,000$
3. Direct materials inventory, $3 / 31 / 2014=\$ 42,500$

This problem is not as easy as it first appears. These answers are obtained by working from the known figures to the unknowns in the schedule below. The basic relationships between categories of costs are:

$$
\begin{array}{ll}
\text { Manufacturing costs added during the period (given) } & \$ 420,000 \\
\text { Conversion costs (given) } & \$ 330,000
\end{array}
$$

$$
\begin{aligned}
\text { Direct materials used } & =\text { Manufacturing costs added }- \text { Conversion costs } \\
& =\$ 420,000-\$ 330,000=\$ 90,000
\end{aligned}
$$

Cost of goods manufactured $=$ Direct Materials Used $\times 4$

$$
=\$ 90,000 \times 4=\$ 360,000
$$

Schedule of Computations

Direct materials, 3/1/2014 (given)		\$ 12,500
Direct materials purchased (given)		$\underline{120,000}$
Direct materials available for use		132,500
Direct materials, 3/31/2014	$3=$	42,500
Direct materials used		90,000
Conversion costs (given)		330,000
Manufacturing costs added during the period (given)		420,000
Add work in process, 3/1/2014 (given)		35,000
Manufacturing costs to account for		455,000
Deduct work in process, 3/31/2014	$2=$	95,000
Cost of goods manufactured ($4 \times \$ 90,000$)		360,000
Add finished goods, 3/1/2014		160,000
Cost of goods available for sale		520,000
Deduct finished goods, 3/31/2014	$1=$	105,000
Cost of goods sold ($80 \% \times \$ 518,750$)		\$415,000

Some instructors may wish to place the key amounts in a Work in Process T-account. This problem can be used to introduce students to the flow of costs through the general ledger (amounts in thousands):

1. If 2 pounds of direct materials are used to make each unit of finished product, 115,000 units $\times 2 \mathrm{lbs}$., or $230,000 \mathrm{lbs}$. were used at $\$ 0.65$ per pound of direct materials ($\$ 149,500 \div$ $230,000 \mathrm{lbs}$. .) (The direct material costs of $\$ 149,500$ are direct materials used, not purchased.) Therefore, the ending inventory of direct materials is $2,300 \mathrm{lbs} . \$ 0.65=\$ 1,495$.
2.

Manufacturing Costs for			$\mathbf{1 1 5 , 0 0 0}$ units
Variable		Fixed	
$\$ 149,500$		Total	
34,500		-	$\$ 149,500$
6,000		-	34,500
12,000		6,000	
7,000		17,000	29,000
$\$ 209,000$		$\underline{27,000}$	34,000

Average unit manufacturing cost:
Direct materials costs
Direct manufacturing labor costs
Plant energy costs
Indirect manufacturing labor costs
Other indirect manufacturing costs
Cost of goods manufactured
\$209,000

Finished goods inventory in units:

$$
\begin{aligned}
& \$ 253,000 \div 115,000 \text { units } \\
& =\$ 2.20 \text { per unit } \\
& =\frac{\$ 15,400 \text { (given) }}{\$ 2.20 \text { per unit }} \\
& =7,000 \text { units }
\end{aligned}
$$

3. Units sold in $2014=$ Beginning inventory + Production - Ending inventory

$$
=0+115,000-7,000=108,000 \text { units }
$$

Selling price in $2014=\$ 540,000 \div 108,000$
$=\$ 5.00$ per unit
4.

Atlanta Office Equipment Income Statement Year Ended December 31, 2014 (in thousands)

Revenues (108,000 units sold $\times \$ 5.00$)
Cost of units sold:
Beginning finished goods, Jan. 1, 2014 \$ 0
Cost of goods manufactured $-\frac{253,000}{253,000}$
Cost of goods available for sale $\quad 253,000$

Gross margin
302,400
Operating costs:
Marketing, distribution, and customer-service costs
$(\$ 126,000+\$ 47,000) \quad 173,000$
Administrative costs $\quad \underline{\mathbf{5 8 , 0 0 0}}$
Operating income

Note: Although not required, the full set of unit variable costs is:
Direct materials cost ($\$ 0.65 \times 2 \mathrm{lbs}$.)
Direct manufacturing labor cost $(\$ 34,500 \div 115,000)$
Plant energy cost $(\$ 6,000 \div 115,000)$
Indirect manufacturing labor cost $(\$ 12,000 \div 115,000)$
Other indirect manufacturing cost $(\$ 7,000 \div 115,000)$
Marketing, distribution, and customer-service costs
$\$ 1.09$ per unit sold

2-41 (20-25 min.) Classification of costs; ethics.

If the $\$ 3,570,000$ is treated as period costs, the entire amount would be expensed during the year as incurred. If it is treated as a product cost, it would be "unitized" at $\$ 17$ per unit and expensed as each unit of the product is sold. Therefore, if only 190,000 of the 210,000 units are sold, only $\$ 3,230,000$ ($\$ 17$ per unit $\times 190,000$ units) of the $\$ 3,570,000$ would be expensed in the current period. The remaining $\$ 3,570,000-\$ 3,230,000=\$ 340,000$ would be inventoried on the balance sheet until a later period when the units are sold. The value of finished goods inventory can also be calculated directly to be $\$ 340,000$ ($\$ 17$ per unit $\times 20,000$ units).
2. No. With respect to classifying costs as product or period costs, this determination is made by GAAP. It is not something that can be justified by the plant manager or plant controller. Even though these costs are in fact related to the product, they are not direct costs of manufacturing the product. GAAP requires that research and development, as well as all costs related to warehousing and distribution of goods, be classified as period costs and expensed in the period they are incurred.
3. Jason Hand would improve his personal bonus and take-home pay
by $8 \% \times \$ 340,000=\$ 27,200$
4. The controller should not reclassify costs as product costs just so the plant can reap shortterm benefits, including the increase in Hand's personal year-end bonus. Research and development costs, costs related to the shipping of finished goods, and costs related to warehousing finished goods are all period costs under GAAP and must be treated as such. Changing this classification on Old World's financial statements would violate GAAP and would likely be considered fraudulent. The idea of costs being classified as product costs versus period costs is to properly reflect on the income statement those costs that are directly related to manufacturing (costs incurred to transform one asset, direct materials into another asset, finished goods) and to properly reflect on the balance sheet those costs that will provide a future benefit
(inventory). The controller should not be intimidated by Hand. Hand stands to personally benefit from the reclassification of costs. The controller should insist that he must adhere to GAAP so as not to submit fraudulent financial statements to corporate headquarters. If Hand insists on the reclassification, the controller should raise the issue with the chief financial officer after informing Hand that he is doing so. If, after taking all these steps, there is continued pressure to modify the numbers, the controller should consider resigning from the company rather than engage in unethical behavior.

2-42 (20-25 min.) Finding unknown amounts.

Let $\mathrm{G}=$ given, $\mathrm{I}=$ inferred

Step 2: Use schedule of cost of goods manufactured formula

Direct materials used
Direct manufacturing labor costs
Indirect manufacturing costs
Manufacturing costs incurred
Add beginning work in process, $1 / 1$
Total manufacturing costs to account for
Deduct ending work in process, $12 / 31$
Cost of goods manufactured
Step 3: Use cost of goods sold formula
Beginning finished goods inventory, $1 / 1$
Cost of goods manufactured
Cost of goods available for sale
Ending finished goods inventory, 12/31
Cost of goods sold
For case 1 , do steps 1,2 , and 3 in order.
For case 2, do steps 1, 3, and then 2.

$\$ 12,000 \mathrm{G}$	$\$ 18,000 \mathrm{G}$
$4,500 \mathrm{G}$	$7,500 \mathrm{G}$
$\underline{10,500} \mathrm{G}$	$\mathrm{D} \boldsymbol{9 , 7 5 0} \mathrm{I}$
$27,000 \mathrm{I}$	$35,250 \mathrm{I}$
0 G	$\underline{1,200} \mathrm{G}$
$27,000 \mathrm{I}$	$36,450 \mathrm{I}$
0 G	$\underline{4,500} \mathrm{G}$
$\underline{\$ 27,000} \mathrm{I}$	$\underline{\$ 31,950} \mathrm{I}$

$\$ 6,000 \mathrm{G}$	$\$ 6,000 \mathrm{G}$	
27,000	I	$-311,950 \mathrm{I}$
33,000	I	$37,950 \mathrm{I}$
B1,950 I $\underline{9,950} \mathrm{G}$ $\underline{\$ 31,050} \mathrm{I}$ $\underline{\underline{\$ 30,000}} \mathrm{G}$		

