Solution Manual for Developmental Math 3rd Edition by Lial Hornsby Ginnis Salzman and Hestwood ISBN 03218544629780321854469

Fulllink download
Test Bank:
https://testbankpack.com/p/test-bank-for-developmental-math-3rd-edition-by-lial-hornsby-ginnis-salzman-and-hestwood-isbn-0321854462-9780321854469/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-developmental-math-3rd-edition-by-lial-hornsby-ginnis-salzman-and-hestwood-isbn-0321854462-9780321854469/
16. Four of the \square coins are pennies:

Three of the \square coins are nickels:

Two of the \square coins are dimes: -
17. There are $\square \square$ students, and \square are hearing impaired.
$\square \square$ hearing impaired students (numerator) total students (denominator)
18. There are $\square \square$ shopping carts of which are in the parking lot (not in the parking lot, but are in the store).

Fraction of carts in store: \square
19. There arerooms.

ㅁㅁ are for nonsmokers, and

20. There are $\square \square$ employees.
 are part- time.

21. Proper fractions: numerator smaller than denominator.

Improper fractions: numerator greater than or equal to denominator.

22. Proper fractions: numerator smaller than denominator.
24. Proper fractions: numerator smaller than denominator.

> none

Improper fractions: numerator greater than or equal to denominator.

25. Answers will vary. One possibility is

The denominator shows the number of equal parts in the whole and the numerator shows how many of the parts are being considered.
26. An example is as a proper fraction and an

Improper fractions: numerator greater than or equal to denominator.
improper
fraction.
A proper fraction has a numerator smaller than the denominator.

An improper fraction has a numerator that is
greater than or equal to the denominator.

23. Proper fractions: numerator smaller than denominator.

Improper fractions: numerator greater than or equal to denominator.

Proper fraction Improper fraction

$$
\frac{1}{4}
$$

2.2 Mixed Numbers

2.2 Margin Exercises

1. (a) The figure shows \square whole object with \square equal parts, all shaded, and a second whole with \square parts shaded, so \square parts are shaded in all.
(b) Since each of these diag ans is divided into \square
pieces, the denominator will be \square. The number of
(b) Since each of these diag ans is divided into \square
pieces, the denominator will be \square. The number of pieces shaded is \square.
2.

$\square_{\square}^{\square} \square$
$\square \square$

7.

M
u
1
t
i
p
1
y
a
n
d

A
d
d

(d) \square Divide $\square \square$ by \square.

8.Multiply \square and
\square. Add \square.
9. \square

Multiply \square and \square.
Add \square.

2.2 Section Exercises

1. $\frac{\square \square}{\square \square}$ is an improper fraction since the numerator is
greater than or equal to the denominator. The statement is true.
10.$\square \cdot \square$ \square Multiply \square and \square. $\quad \square \square \square$
$\square \quad \square \square$
$\square \quad \square$
2.

Multiply \square and
\square. Add \square.
12.

Multiply \square and $\square \square$. Add \square.
13.

14.

$\square \square \cdot$ - \square Multiply $\square \square$ and

15.
 - $\square \square$ Multiply $\square \square$ and \square. Add \square.
16.

Multiply \square and \square. Add \square.
21.

Multiply \square and $\square \square$. Add $\square \square$.
22.

Multiply $\square \square$ and \square. Add \square.
23.

Multiply $\square \square$ and \square.
Add \square.
24.

Multiply $\square \square$ and \square. Add \square.

25

$$
\square \frac{\square}{\square \square} \frac{\square \square \square \square}{\square \square}
$$

Multiply $\square \square$ and $\square \square$. Add \square.
26.

Multiply $\square \square$ and $\square \square$. Add \square.

32. The statement "An improper fraction cannot always be written as a whole number or a mixed number" is false since a mixed number always has a value equal to or greater than a whole number.
33. The statement "Some improper fractions can be written as a whole number with no fraction part" is true. For example,
34. The statement "The improper fraction $\frac{\square \square}{\Gamma}$ can be written as the whole number \square " is true.
35. $\square \square \square$ Whole number part
36.

Remainder

$$
-\begin{gathered}
\square \\
\square \\
\square \\
\square-
\end{gathered}
$$

\qquad

37.

38.

40.

41.

42.

$\square \quad$ Whole number part

43.

part \square Remainder

54.

Wh ole nu mbe r part

50.

55. Multiply the denominator by the whole number and add the numerator. The result becomes the new numerator, which is placed over the original denominator.

56. Divide the numerator by the denominator. The quotient is the whole number of the mixed number and the remainder is the numerator of the fraction part. The denominator is unchanged.

57.

58.

59.

60.

61. $\quad \square \square \square \quad \square \square \square \cdot \square \square \square \square \square \square$ $\stackrel{\square}{\square} \quad \square \square$
64.

65. The commands used will vary. The following is from a TI-83 Plus:

66. The commandsused will vary. The following is

63.

67. The commands used will vary. The following is from a TI-83 Plus:

Note: You can use the following procedure on any calculator. Divide $\square \square \square \square$ by $\square \square$ to get $\square \square \square \square \square \square \square \square \square$. mixed number is $\square \square \square \square$.
68. The commands used will vary. The following is from a TI-83 Plus:

Relating Concepts (Exercises 69-74)

69. The following fractions are proper fractions.

70. (a) The proper fractions in Exercise 69 are the ones where the numerator is less than the denominator.
(b)

$\square ; \square$| \square | | |
| :--- | :--- | :--- |

\square

$\square \square$ | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(c) The proper fractions in Exercise 69 are all less than \square.
71. The following fractions are improper fractions.

72. (a) The improper fractions in Exercise 71 are the ones where the numerator is equal to or greater than the denominator.
(b)

(c) The improper fractions in Exercise 71 are all equal to or greater than \square.
73. The following fractions can be written as whole or mixed numbers.

74. (a) The fractions that can be written as whole or mixed numbers in Exercise 73 are improper fractions, and their value is always greater than or equal to \square.

$$
\square \quad \square \square \square \square \square
$$

2.3 Factors

2.3 Margin Exercises

1. (a) Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square, \square, \square$, and $\square \square$.
(b) Factorizations of $\square \square$:
$\square \cdot \square \square \square \square \square \quad \square \cdot \square \square \square \square \quad \square \cdot$

The factors of $\square \square$ are $\square, \square, \square, \square$, and $\square \square$.
(c) Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square, \square, \square, \square, \square \square$, $\square \square$, and
$\square \square$.
(d) Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square, \square, \square, \square \square, \square \square$, $\square \square$, $\square \square$, and $\square \square$.
2. $\square, \square, \square, \square \square, \square \square, \square \square, \square \square, \square \square$
$\square, \square \square, \square \square, \square \square$, and $\square \square$ are prime because they are divisible only by themselves and \square.
3. $\square, \square, \square, \square, \square, \square \square, \square \square, \square \square, \square \square, \square \square, \square \square$,
$\square \square, \square \square, \square \square, \square \square$
$\square, \square, \square \square, \square \square$, and $\square \square$ each have no factor other than
themselves or \square; $\square, \square, \square$, $\square \square$, $\square \square$, $\square \square$, and $\square \square$ each
have a factor of \square; $\square \square, \square \square$, and $\square \square$ have a factor of
\square. So $\square, \square, \square, \square \square, \square \square, \square \square, \square \square, \square \square, \square \square$, and $\square \square$ are composite.
4. (a)

This division is done from the "top-down."

Quotient is 1.

Either method is correct and yields the prime factorization as follows:

```
\square\square\square\square•\square•\square•\square\square\square\square•\square\square
```

(b)

Quotient is 1.

```
\square\square\square\square•\square•\square•\square\square\square•\square\square
```

(c) $\square \square$
)

Divide $\square \square$ by \square. Divide by \square. Divide

Divide \square by

Quotient is 1.

```
\square\square\square\square•\square•\square•\square\square\square\square•\square•\square
```

(d)
$\square \square$ Divide $\square \square$ by \square.
5. (a) This division is done from the "bottom-up."

6. (a)

Divide \square by \square.

Quotient is 1 .

Quotiont is

Quotient is 1.

```
|\square.\square\square•\square•\square•\square•\square\square
```

7. (a)
(b)

$\square \square \square \square \cdot \square \cdot \square \square \square^{\square} \cdot \square$
(b)

8. Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square, \square, \square, \square, \square \square$, $\square \square, \square \square$, and $\square \square$.
6. Factorizations of
$\square \square$:
$\square \cdot \square \square \square \square \square \quad \square \cdot \square \square \square \square \square \quad \square \cdot \square \square \square \square \square$ $\square \cdot \square \square \square \square$

The factors of $\square \square$ are $\square, \square, \square, \square, \square, \square \square, \square \square$, and $\square \square$.
7. Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square, \square, \square, \square \square, \square \square$, and \qquad
8. Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square, \square, \square, \square, \square, \square \square$, $\square \square$, $\square \square$, $\square \square$, and \qquad
9. Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square, \square, \square, \square, \square \square$, $\square \square$, and
$\square \square$.
10. Factorizations of $\square \square$:

```
\bullet\bullet\square\square\square\square\square \square•\square\square\square\square\square \square•\square\square
\square
```

The factors of $\square \square$ are $\square, \square, \square, \square, \square \square$, and \square.
11. Factorizations of $\square \square$:
15. Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square \square$, and $\square \square$.
16. Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square \square$, and $\square \square$.
17. \square is divisible by \square and \square, so \square is composite
18. \square is divisible by \square, so \square is composite.
19. \square is only divisible by itself and \square, so it is prime.
20. $\square \square$ is divisible by \square, so $\square \square$ is composite.
21. $\square \square$ is divisible by \square and \square, so $\square \square$ is composite.
22. $\square \square$ is only divisible by itself and \square, so it is prime.
23. $\square \square$ is only divisible by itself and \square, so it is prime.
24. $\square \square$ is only divisible by itself and \square, so it is prime.
25. $\square \square$ is divisible by \square, so $\square \square$ is composite.
26. $\square \square$ is divisible by \square and \square, so $\square \square$ is composite.

27
28
28. $\square \square$ is divisible by \square and \square, so $\square \square$ is composite.
29.

b
y

D
i
v
i
d
e

The factors of $\square \square$ are $\square, \square, \square, \square, \square, \square, 1 \square, \square \square$, $\square \square$, $\square \square$, $\square \square$, and $\square \square$.
13. Factorizations of $\square \square$:

Quotient is 1.
$\square \square \square$$\cdot \square \cdot \square$ The correct choice is \mathbf{B}.
30.

The factors of $\square \square$ are $\square, \square, \square, \square, \square \square, \square \square$, and $\square \square$.
14. Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square, \square, \square, \square, \square \square, \square \square$, $\square \square$, $\square \square$, $\square \square$, and $\square \square$.

The correct choice is \mathbf{C}.
31.

$\square \square \square$	
$\square \square$	
\square	Divide $\square \square \square$ by
$\square \square$	\square.
$\square \square$	Divide $\square \square$ by
\square	
\square	\square. Divide $\square \square$
\square	by \square. Divide \square
$\square \square$	by \square.

Quotient is 1.
The correct choice is \mathbf{A}.
32.

\square	
\square	Divide \square by
\square.	
\square	
\square	Divide \square by
\square.	

$\square \quad$ Divide \square by

Quotient is 1.
33.
$\square \square \quad$ Divide \square by
$\lceil\square$ Divide \square by

Quotient is 1 .
34. We can also use a factor tree.
37.

38.
$\square \square$
$\square \quad$ Divide $\square \square$ by \square. Divide $\square \square$ by

Quotient is 1.
$\square \square \square \square \cdot \square \cdot$
39.
$\square \quad$ Divide $\square \square$ by
\square
\square. Divide $\square \square$
$\square \quad$ by \square.
Divide $\square \square$ by \square.
Γ
$\lceil\square \quad$ Divide \square by \square.
$\lceil\square \quad$ Divide \square by \square.

Quotient is 1 .
$\square \square \square \square \cdot \square \cdot \square \cdot \square \cdot \square \square \square \square$
$\cdot \square$

35.

36.

\square by \square. Divide
$\square \quad \square \square$ by \square.
$\square \quad$ Divide \square by

Γ
Quotient is 1 .
$\square \square \square \square \cdot \square \cdot \square \cdot \square \square$
40.

41.

Quotient is 1 .
42.

43.

by \square.

Quotient is 1.

44.

45.

Quotient is 1.

$\square \square \square \square \square \cdot \square \cdot \square \cdot \square \cdot \square \square \square^{\square} \cdot \square^{\square} \cdot \square$
48.

49.

Divide $\square \square \square$ by \square. Divide $\square \square \square$ by \square.

Divide $\square \square$ by \square.Divide $\square \square$ by \square
\square

Divide $\square \square \square$ by \square. Divide $\square \square$ by \square.

D
i

V
i
d
e
b
y

D
i

V
i
d
e

$\lceil\quad$ Divide \square by

Quotient is 1.

46.

47.

$\square \square \quad$ Divide \square by \square.
Quotient is 1 .

50.

$\begin{array}{lll}\square & & \square \square \\ \square & \square & \square\end{array}$
51.

Divide $\square \square$ by \square.

Divide $\square \square$ by \square.

\square. Divide
by \square.

Divide \square by
Quotient is 1 .
52.

Answers will vary. A sample answer follows. A prime number is a whole number that has exactly two different factors, itself and \square. Examples
include $\square, \square, \square, \square$, and A composite number $\square \square \square$
57.

$\lceil\square \quad$ Divide \square by \square. Quotient is 1.

```
\square\square\square\square\square•\square•\square•\square\square\square•\square\square•\square
```

58.

has a factor(s) other than itself or \square. Examples include $\square, \square, \square, \square$, and $\square \square$. The numbers \square and \square are neither prime nor composite.
54. No even number other than \square is prime because all even numbers have \square as a factor. Many odd numbers are multiples of prime numbers and are not prime. For example, $\square, \square \square$, $\square \square$, and $\square \square$ are all multiples of \square.
55. All the possible factors of $\square \square$ are $\square, \square, \square, \square, \square$, \square, $\square \square$, and $\square \square$. This list includes both prime numbers and composite numbers. The prime factors of $\square \square$ include only prime numbers. The prime factorization of $\square \square$ is

56. Yes, you can divide by $\square \mathrm{s}$ before you divide by \square.
No, the order of division does not matter. As long as you use only prime numbers, your answers will be correct. However, it does seem easier to always start with \square and then use progressively greater prime numbers. The prime factorization of $\square \square$ is
$\square \square \square \square \square \cdot \square \square \square \cdot \square$
Quotient is 1.
59.

Divide $\square \square \square$ by \square.

Divide $\square \square \square$ by
\square. Divide \qquad
by \square. Divide
$\square \square \square$ by \square.
Divide $\square \square$ by
\square. Divide $\square \square$
by \square. Divide
$\square \square$ by \square.

Divide \square by \square.

60.

$\square^{\square} \cdot \square$
61. $\square \square \square \square$

$$
\text { Divide } \square \square \square \square \text { by }
$$

Divide $\square \square \square$ by

Divide $\square \square \square$ by

Divide $\square \square \square$ by
\square. Divide $\square \square$
by \square. Divide
$\square \square$ by $\square \square$.

Quotient is 1 .
63.

१ロロ

64.

$\square \quad \square \square \square$
$\square \square \square \square \square$

Relating Concepts (Exercises 65-70)
65. The prime numbers less than $\square \square$ are $\square, \square, \square, \square$, $\square \square$, $\square \square, \square \square$, and $\square \square$.
66. A prime number is a whole number that is evenly divisible by itself and \square only.
62. $\square \square \square \square$
67. No. Every other even number is divisible by \square in addition to being divisible by itself and \square.

Quotient is 1.
$\square \square \square \square \square \square \cdot \square \cdot \square \cdot \square \cdot \square \cdot \square \cdot \square$
$\square \square \square \cdot \square \square$
68. No. A multiple of a prime number can never be prime because it will always be divisible by the prime number.
69.Divide $\square \square \square \square$ by
\square. Divide \qquad
by \square. Divide
$\square \square \square$ by \square.
Divide $\square \square \square$ by
\square. Divide $\square \square$ by
\square. Divide \square by \square.

Quotient is 1.
70.
$\square \square \square \square \square \square \cdot \square \cdot \square \cdot \square \cdot \square \cdot \square$
\qquad $\square \cdot \square$
\square

2.4 Writing a Fraction in Lowest Terms

2.4 Margin Exercises

1. (a) \square, $\square \square$;
(b)

(d)

Yes, \square is a common factor of \square and $\square \square$.
(b)

$\square \square \square \square \cdot \square$
Yes, \square is a common factor of $\square \square$ and
(c)

$\square \square \square \square \square \cdot \square$, but ut $\square \square$ is not a factor of $\square \square$.

No.
(d) $\square \square$,
$\square \square$; \square

Yes, \square is a common factor of $\square \square$ and
2. (a) and \square have no common factor other than

Yes, it is in lowest terms
(b) $\frac{\square}{\square}$
\square and $\square \square$ have a common factor of
\square. No, it is not in lowest terms.
(c) -
\square and $\square \square$ have a common factor of
5. (a) $\frac{\square \square}{\square \square}$ and $\frac{\square \square}{\square \square}$

The fractions are equivalent $\square \square \square \square$
(b) and

No, it is not in lowest terms.
$\square \square$
(d) $\square \square$
$\square \square$ and $\square \square$ have no common factor other than \square. Yes, it is in lowest terms.
3. (a)

(b)

(c)

,

(d)

$\square \square$
ㅁㅁㅁㅁ
(e)

$\stackrel{\square}{\square \square}$
4. (a)

$\square \square \square$
2.4 Writing a Fraction in Lowest Terms
24. $\neg \square \overline{\square \square \square \square}$
25.

26.
27.

2.4 Section Exercises

1. A number can be divided by \square if the number is an even number.
2. A number can be divided by \square if the number ends in \square or \square.
3. Any number can be divided by $\square \square$ if the number ends in $\underline{0}$.
4. If the sum of a number's digits is divisible by \square, the number is divisible by
\qquad
5. $\quad \checkmark \preceq \preceq \preceq \preceq$
$\begin{array}{lllll}\text { 6. } & \underline{v} & \frac{v}{v} & \frac{v}{v} & \frac{v}{x} \\ \text { 7. } & \underline{v} & \underline{v} & \underline{x} & \underline{x} \\ \square & \underline{v} & \underline{x} & \underline{x} & \underline{x}\end{array}$
6.

$\begin{array}{llll}\mathbf{9} & \square \square \square \quad \underline{X} \quad \underline{\checkmark} \\ \underline{\vee}\end{array}$
10. $\square \square \square \underline{X} \quad \underline{X}$
\underline{X}
11.
$\square \square \quad \underline{\checkmark} \quad \underline{X} \quad \underline{X}$
12.

13.

29.
30.
31.
$\square \square \square$

28.

- $\square \square$

32.

33.

34.

35.

[^0]14. $\frac{\square}{\square}$ is in lowest terms, so the fractions and \square are not equivalent. false
15. $\frac{\square}{\square}$ is in lowest terms, so the fractions and \square
are not equivalent. false
16.

17.

\qquad

$\begin{array}{ll}\square \square & \square \square \square \square \\ \square & \end{array}$
18.
$\square \square$

$\square \square \quad \square \square \square \square \square$
\square
19.
 $\square \square \square \square$
$\square-$ \square ㅁㅁ
20.

\qquad
21.

ㅁㅁㅁ $\square \square \square \square$
\square

ㅁㅁㅁ
22.

23.
 Пロロ

36.

37.

38.

39.

40.

41.

42.

The fractions are equivalent
44. $\quad \square$ and $\frac{\square \square}{\square \square}$

The fractions are equivalent
45.

The fractions are not equivalent
48.

The fractions are not equivalent
$\square \square \square \square$ $\square \square \square$
$\begin{array}{ll}\text { 49. } & \square \square \\ \square \square & \text { and }-\square \square \\ \square \square & \square \\ & \square \square \cdot \square \\ \square \square & \square \cdot \square \cdot \square-\end{array}$

The fractions are equivalent $\square^{-\square} \square^{-} \square \square$
50.

The fractions are equivalent $\square \quad \square \square \square \square$
46. $\frac{\square \square}{\square \square}$ and $\frac{\square \square}{\square \square}$

\square_{-}

The fractions are not equivalent $\square \square \square \square$
47.

The fractions are not equivalent \square $\square \square$
51. $\frac{\square \square}{\square}$ and $\frac{\square \square}{\square}$

The fractions are not equivalent $\square \square \square \square \square \square$

The fractions are equivalent $\square \square \square \square \square \square$
53. $\frac{\square \square}{\square \square}$ and $\frac{\square \square}{\square \square}$

The fractions are equivalent
54. $\square \square$ and $\square \square$

The fractions are equivalent $\square \square$
55. A fraction is in lowest terms when the numerator and the denominator have no common factors other than \square. Some examples are \square, \square, and $\square \square$
56. Two fractions are equivalent when they represent the same portion of a whole. For example, the $\square \square$

2.5 Multiplying Fractions

2.5 Margin Exercises

1. \quad of \quad as read from the figure is the darker shaded part of the second figure. One of eight equal parts is shaded, or $-\square$

2. (a)

(b)

(c)

3. (a)

(b)

(c)

fractions \quad and- are equivalent.

The fractions are equivalent $\square \square-$ $\square \square$
57.

\qquad -•••• $\square \square \square$
58.

.

59. $\stackrel{\square \square \square}{\square} \stackrel{\square \cdot \square \square}{\square \square}$
60.

5. (a) Area \square length \cdot width

$\square{ }^{-}{ }^{-1 d}$
13.
(b) Area \square length \cdot width

(c) Area \square length \cdot width

$\square{ }^{-} \mathrm{mi}^{\square}$

2.5 Section Exercises

1. To multiply two or more fractions, you multiply
the numerators and you multiply the denominators.
2. To write a fraction in lowest terms, you must divide both the numerator and denominator by a common factor.

3.

16.

17.

18.

87 Chapter 2 Multiplying and Dividing Fractions
3. A shortcut when multiplying fractions is to divide both a numerator and a denominator by the same number.
4. Using the shortcut when multiplying fractions
should result in an answer that is in lowest terms.
5.

6.

7. $\square . \square \square \square \square \square$

8.

9.

10.

11. $\square . \square$.

19. $\square \square . \square$.

20. The statement "When multiplying a fraction by a whole number, the whole number should be rewritten as the number over $\square . "$ is true.

21.

The correct method is as follows:

22
23.

24.

26.

27.
————

28.

29.

31.
$\square \square \square{ }^{\square}$

36

37. Area \square length \bullet width
38. Area \square length • width

39. Area \square length \cdot width

40. Area \square length \cdot width

41. Area \square length \cdot width

42. Area \square length • width

43. Multiply the numerators and multiply the denominators. An example is

44. You must divide a numerator and a denominator by the same number. If you do all possible divisions, your answer will be in lowest terms. One example is

45. Area \square length \cdot width

46. Area \square width • height

47. Area \square length • width

48. Area \square length \cdot width

49. Sunny Side Soccer Park Creekside Soc. Park Area \square length \cdot width \quad Area \square length \cdot width

They are both the same size.
50. Rocking Horse Ranch Silver Spur Ranch

Area \square length \cdot width \quad Area \square length \bullet width

Neither ranch is larger in area. They are both the same size.

Relating Concepts (Exercises 51-56)

51.

55. We need a multiple of \square with two nonzero digits that is close to $\square \square \square \square$. A reasonable choice is $\square \square \square \square$ and an estimate is

This value is closer to the exact value because using $\square \square \square \square$ as a rounded guess is closer to $\square \square \square \square$
than using $\square \square \square \square$ as a rounded guess.
56. We need a multiple of \square with two nonzero digits that is close to $\square \square \square$. A reasonable choice is and an estimate is

This value is closer to the exact value because using $\square \square \square$ as a rounded guess is closer to than
using $\square \square \square$ as a rounded guess.

2.6 Applications of Multiplication

2.6 Margin Exercises

1. (a) Step 1 The problem asks us to find the amount of money they can save in a year.

Step 2 Find the amount they can save by multiplying and $\square \square$, $\square \square \square$.

T stimate of the total number of h supermarkets in these states is
e $\square \square \square \square$.
e

Step 3	We
$\square \square, \square \square \square$.	can
	estimat
\square	e this
	amount using \square
	and

52.

$\square \square \square \square \square \square \square \square \square \square \square$ supermarkets, which
is the
exact total number of supermarkets in these states.
53. An estimate of the number of supermarkets in medium to large population areas in New York is

$-\bullet \square \square \square \square$

The exact value is

54. An estimate of the number of supermarkets in New Hampshire which are in shopping centers, is

The exact value is

We
can
e this
amount
using
and

Step 4 Now solve the problem using the original values.

Step 5 They can save $\$ \square \square, \square \square \square$ in a year.

Step 6 The answer is reasonably close to our estimate.
(b) Step 1 The problem asks us to find the
amount of money she will receive as retirement income.

Step \quad To find her retirement income, multiply \square and $\$ \square \square, \square \square \square$.

Step 3 We can estimate this amount using $\frac{\square}{[}$ and $\square \square, \square$ $\square \square$.

Step 4 Now solve the problem using the original values.

Step 5 She will receive $\$ \square \square, \square \square \square$ as income. retirement

Step 6 The answer is reasonably close to our estimate.
2. Step 1 The problem asks for the number of prescriptions paid for by a third party.

Step 2 A third party pays for $\frac{\square}{}$ of the total number of prescriptions,
$\square \square \square \square$.

Step 3 An estimate is

Step 5 A third party pays for prescriptions.

Step 6 The answer is reasonably close to our estimate.
3. Step 1 The problem asks for the fraction of students who speak Spanish.

Step $2-$ of the of the students who speak
(c) From the circle graph, the fraction is -
(d) Multiply \quad by $\square \square \square \square$. Since we can estimate
the answer using the exact values, our estimated answer will be the same as the exact answer.

१ロロ
children buy food from a convenience store or street vendor.

2.6 Section Exercises

1. The words that are indicator words for multiplication are of, times, twice, triple, product, and twice as much.
2. The final step when solving an application problem is to check your work.
3. When you multiply length by width you are finding the area of a rectangular surface.
4. When calculating area, the length and the width must be in the same units of measurement. If the measurements are both in miles, the answer will be in square miles and shown as mi
5. Multiply the length and the width.

The area of the digital photo frame is $\square \mathrm{ft}^{\square}$.
6. Multiply the length and width.

Chapter 2 Multiplying and Dividing Fractions
foreign language, speak Spanish

Step 3 An estimate is

Step 4 The exact value is $\frac{\square}{\square}$, which is the same as the estimate since we didn't round.

Step 5 The fraction of students who speak Spanish is \square.

Step 6 The answer, $\frac{\square}{\square}$, matches our estimate.
4. (a) From the circle graph, the fraction is -
(b)

Multiply $\frac{\square}{[}$ by the number of people in the survey,

Since we can estimate the answer
using the exact values, our estimated answer will be the same as the exact answer.

$\square \square \square$ children buy food from vending machines.
2.6 Applications of Multiplication

The area of the floor is $\square \mathrm{yd}^{\square}$.
7. Multiply the length añd the width.

The area of the cookie sheet is ${ }^{\bar{\square}} \mathrm{ft}$.
8. Multiply ${ }^{\square}$ by $\square \square, \square \square \square, \square \square \square \square$

$\square, \square \square \square, \square \square \square$ people who shop at flea markets on a
daily basis purchase produce.
9. Multiply the length and the width.

The area of the top of the table is $\square \mathrm{yd}^{\square}$.
10. Multiply the number of bowls by the fraction eaten in the summer months.
\square

The average person consumes $\square \square$ bowls of cereal
in the summer months.
11. Multiply by

He earned $\$ \square \square \square \square$ on his job.
12. Multiply \square by $\square \square \square$

The average household does $\square \square \square$ loads of wash in the winter months.
13. Multiply the daily parking fee by the fraction.

The daily parking fee in Boston is \$ \square.
14. Multiply the daily parking fee by the fraction.
17. The smallest sector of the circle graph is the 4 hours group, so this response was given by the least number of people. To find how many people
gave this response, multiply \square by the total number
of people,
$\square \square \square \square$.

$\square \square \square$ people gave this response.
18. The largest sector of the circle graph is the 2 hours
or less group, so this response was given by the greatest number of people. To find how many people gave this response, multiply ${ }^{\square}$ by the total
number of people,
१००.

people gave this response.
19. The only group that is not willing to wait \square hours or less is the 8 hours group, and the fraction corresponding to that group is \square Thus, the fraction
willing to wait \square hours or less is

The total number of people willing to wait \square hours or less is

The daily parking fee in San Francisco is $\$ \square \square$.
15. (a)

$\square \square \square$

$\square \square \square$ runners are women.
(b) The number of runners that are men is
16. (a) Multiply the fraction of nonsmoking rooms by the number of rooms.

There are $\square \square \square$ nonsmoking rooms.
(b) The number of smoking rooms is
20. The only group that is not willing to wait \square hours
or more is the 2 hours or less group, and the fraction corresponding to that group is Thus,
the fraction willing to wait \square hours or more is

The total number of people willing to wait \square hours or more is

21. Because everyone is included and fractions are given for all groups, the sum of the fractions must be 1 , or all of the people.
22. Answers will vary. Some possibilities are

1. You made an addition error.
2. The fractions on the circle graph are incorrect.
3. The fraction errors were caused by rounding.
4. Add the income for all twelve months to find the income for the year.

\square $\square \square \square, \square \square \square$

The Owens family had income of $\$ \square \square, \square \square \square$ for the year.
24. Multiply the fraction $\stackrel{\square}{\square}$ by the total income (\$ $\square \square, \square \square \square$).

Their taxes were \$
25. From Exercise 23, the total income is

$$
\$ \square \square, \square \square \square .
$$

The circle graph shows that $\frac{\square}{[}$ of the income is for rent.

The amount of their rent is $\$ \square \square, \square \square \square \square$
26. Multiply the fraction $\frac{\square}{\square}$ by the total income.

They spent $\$ \square \square, \square \square \square$ on food.
27. Multiply the total income by the fraction saved.

31. Multiply the cost in the United States by \square

The cost of laser eye surgery for one eye in Thailand is \$
32. Multiply the cost in the United States by $\frac{\square}{\square}$

The cost of a knee replacement in Mexico is \$ $\square \square \square \square$.
33. We want $\frac{\square}{\square \square}$ of the actual length.

The length of the scale model is \square feet.
34. First multiply and $\square \square, \square \square \square$ to find the number of pounds saved.

To find the weight of the test truck, subtract:

$$
\text { 10, } \square \square
$$

pounds. The test truck weighs $\square \square \square \square$
pounds.
35. First multiply \square and $\square \square, \square \square \square$ to find the number
year.
28. Multiply the fraction $\stackrel{\square}{\Gamma}$ by the total income.

They spent $\$ \square \square \square \square$ on clothing.
29. The error was made when dividing $\square \square$ by \square and writing \square instead of \square. The correct solution is

30. Yes, the statements are true. Since whole numbers are \square or greater, when you multiply, the product will always be greater than either of the numbers multiplied. But, when you multiply two proper fractions, you are finding a fractional part of a fraction, and the product will be smaller than either of the two proper fractions.

2.6 Applications of Multiplication

her votes from senior citizens.

To find the votes needed from voters other than the senior citizens, subtract:

$$
\square \square, \square \square \square \square \square \square, \square \square \square \square \square \square \square \square \text { votes. }
$$

She needs $\square \square \square \square$ votes from voters other than the senior citizens.
36. Multiply the fraction \square by the cost $(\$ \square \square, \square \square \square)$.

To find the amount borrowed in the first years, subtract:

$$
\begin{gathered}
\$ \square \square, \square \square \square \square \$ \square \square \square \square \square \\
\$ \square \square, \square \square \square
\end{gathered}
$$

$\$ \square \square, \square \square \square$ was borrowed in the first years.
37. Multiply the remaining fraction going to the American Cancer Society.

\square of the estate goes to the American Cancer Society.
38. Multiply the remaining $\underset{\bar{E}}{ }$ of their total investments by the fraction invested in bonds.

The couple invested \square of their total investment in bonds.

2.7 Dividing Fractions

2.7 Margin Exercises

1. (a) $\square \square$; The reciprocal of - is $-\square$ $\square \quad$ _

(b) $\begin{aligned} & \square \text { because } \\ & \square\end{aligned}$

(c) The reciprocal of \square because

$$
\square \cdot \square \square-\square
$$

3. (a)

(b)

(c)

(d)

4. (a) Step 1 The problem asks for the number of
$\square^{- \text {ounce dispensers that can be filled using }}$ ounces of eye drops.

Step 2 Divide the total number of ounces of eye
drops by the fraction of an ounce each dispenser holds.

Step 3 An estimate is
Step 4 Solving gives us

Step $5 \square \square$-ounce dispensers can be filled.

Step 6 The answer is reasonably close to our estimate.
(b) Step 1 The problem asks for the number of Copyright © 20 y Aghta@s 20 Eflifeatiom Frducation, Inc.
(d) The reciprocal of $\square \square$ is because

2.

(d)

2

\square-quart bottles that can be filled from a $\square \square \square$ quart
cask.
Step 2 Divide the total number of quarts in the cask by the size of the bottles.

Step 3 An estimate is

Step 4 Solving gives us

Step $5 \quad \square \square \square$-quart bottles can be filled.

Step 6 The answer is reasonably close to our estimate.
5. (a) Step 1 The problem asks for the fraction of the bonus money that each employee will receive. [
Step Divide the fraction of the bonus money,
\square, by the number of employees, $\square \square$.

Step 3 An estimate is \qquad $\square \square \square \square$

Step 4 Solving gives us

Step 5 Each employee will receive $\frac{\square}{\square}$ of the bonus money.

Step 6 The answer is reasonably close to our estimate.
(b) Step 1 The problem asks for the fraction of the prize money that each employee will receive.

Step 2 Since they donate ${ }^{\bar{E}}$ of the winnings, they have

$$
\square \square_{\square}^{\square} \square_{\square}^{\square} \square_{\square}^{\square} \square \square
$$

of the winnings left to divide. Divide the fraction of the winnings that remain, $\stackrel{\square}{\Gamma}$, by the number of employees, \square.

Step 3 An estimate is

Step 4
Solving gives us

Step 5 Each employee will receive $\frac{\square}{\square}$ of the prize money.

Step 6 The answer is reasonably close to our estimate.

2.7 Section Exercises

9. The reciprocal of - is because
10. The reciprocal of ${ }_{\square \square}$ is because

11. The reciprocal of \square is ${ }_{-}^{\square} \quad \square . \quad \square \quad \square \square \square$. because
12. The reciprocal of $\square \square$ is because

13.

14.

15.

16.

17.

18. $\quad \square \square \square \square \square$. $\square \square \square \square$

19.

1. When you invert or flip a fraction, you have the reciprocal of the fraction.
2. To find the reciprocal of a whole number, you
must first write the whole number over $\underline{1}$, and then invert it.
3. To divide by a fraction, you must first invert the divisor and then change division to multiplication.
4. After completing a fraction division problem, it is best to write the answer in lowest terms.
5. The reciprocal of \square is because
6. The reciprocal of - is because

\square

$\square . \square \square \square \square$
7. The reciprocal of - is $\square . \square \square \square \square$. because

8. The reciprocal of $\frac{\square \square}{\square}$ is \square because

$$
\bar{\square} \cdot \bar{\square} \square-\square \square
$$

20. $\square \square \square \square$
21.

23.

21.

-

$\square \square$

\qquad
\square

24.

25.

\square
26.

28.

29.

30.

,
31.

32.

37. Divide the total number of ounces of eye drops by the fraction of an ounce each dispenser holds.

$\square \square$ dispensers can be filled.
38. Divide the number of pounds of peanuts by the
fraction of pounds of peanuts each person will likely eat.
$\square \square$ guests can be served with $\square \square$ pounds of peanuts.
39. Divide the total weight of a carton by the weight per fastener.

There are $\square \square \square$-pound fasteners in each carton.
40. Divide the total acreage by the acreage per lot.

There are $\square \square \square \square$-acre lots in the subdivision.
41. Answers will vary. A sample answer follows:
33.
\square of a quart divided into \square parts:

Each horse will get $\frac{\square}{\overline{[}}$ of a quart.
34. Divide the number of quarts of shampoo by the fraction of a quart each container holds.

Harold can fill $\square \square$ containers.
35. Divide the total number of cups by the size of the measuring cup.

They need to fill the measuring cup $\square \square$ times.
36. Divide the total number of pounds of jelly beans by the size of the bag.

$\square \square{ }^{\square}$-pound bags can be
filled.

You can divide two fractions by multiplying the first fraction by the reciprocal of the second fraction (divisor).
42. Sometimes the answer is less and sometimes it is greater.

43. Each loafcake requires ${ }^{\square}$ pound of jellybeans, so to make $\square \square$ loafcakes, use multiplication.

\square pounds will be needed.
44. We want $\frac{\square}{[}$ of $\square \square \square \square$ patients—use multiplication.

$\square \square \square \square$ patients were still taking their drugs.
45. Divide the $\square \square \square$ cans of compound by the fraction of a can needed for each new home.

$\square \square \square$ homes can be plumbed.
46. Divide the $\square \square$ gallons of differential fluid by the
fraction of a gallon needed for each car serviced.

$\square \square$ cars can be serviced.
47. (a) In ${ }^{\square}$ of the $\square \square$ visits, doctors failed to discuss
the issues-use multiplication.

The doctors failed to discuss the issues in visits.
(b) The doctors did discuss the issues in
$\square \square \square \square \square \square \square \square \square \square$ visits.
48. (a) \square of the $\square \square \square$ miles have been completeduse
multiplication.

52. The indicator words for division are underlined below.

fewer goes into	sum of divide
per	$\underline{\text { quotient }}$
equals	double
loss of	$\underline{\text { divided by }}$

53. To divide two fractions, multiply the first fraction by the reciprocal of the second fraction.
54. The reciprocal of \square is because

The reciprocal of ${ }^{\square}$ is \square because

The reciprocal of \square is because

The reciprocal of \quad is \quad because
55. (a) To find the perimeter of any flat equal-sided 3-, 4-, 5-, or 6-sided figure, multiply the length of one side by $3,4,5$, or 6 , respectively.
(b) The stamp has four sides, so multiply $\square \square$ by

He has gone $\square \square \square$ miles.
(b) The number of miles that remain is

49. Divide the $\square \square \square$ yards of fabric by the fraction of a yard needed for each dish towel.

$\square \square \square$ towels can be made.
50. Multiply the number of applicants by the fraction of jobs available per applicant.

Relating Concepts (Exercises 51-56)

51. The indicator words for multiplication are underlined below.
more than per

$\underline{\text { double }}$ twice times	product less than difference
equals	twice as much

The perimeter of the stamp is $\square{ }^{\square}$ inches.
56. Area \square length \cdot width

The area is $\frac{\square \square \square}{\square 0 \square}$. Multiply the length by the width to find the area of any rectangle.

2.8 Multiplying and Dividing Mixed Numbers

2.8 Margin Exercises

1. (a)

(c)

-

$\square \square \square$ is more than
$\square \square$
\square Half of \square is $\square \square$ rounds up to
(d) $\square \square$

$$
\square \square
$$is more than

$\square \square$ \square Half of $\square \square$ is is $\square \square$ rounds up to \square.
(e) $\square \frac{\square}{\square}$

$$
\begin{aligned}
& \square \square \square \square \text { is the same as } \\
& \square \square \square \text { Half of } \square \text { is } \\
& \square \square \\
& \square \square \text { rounds up to } \\
& \square .
\end{aligned}
$$

(f)
\square
(d) $\square^{\square} \cdot \square \square$

Estimate: $\square-^{\square}$ rounds to $\quad \square^{\square}$ rounds to \square.
$\square \cdot \square \square \square \square$

Exact:

3. (a)

Estimate: $\square \square$-rounds to $\square . \square \square$ rounds to \square. $\square \square \square \square \frac{\square}{\bar{\square}}$

Exact:

(b) $\square \square \square \square$

Estimate: $\square \square \square$ rounds to $\quad \square \square$ rounds to \square.

- - \square

$$
\square \square \square \square \square_{\underline{-} \square}
$$

Exact:

(c)

2．（a）$\square^{\square} \square^{\square}$

Estimate：$\square-\square$ rounds to $\quad \square-\square$ rounds to \square ． $\square \cdot \square \square \square \square$

Exact：$\square^{\square} \cdot \square^{\square} \square \square \square \square \square$
（b）\square^{\square} ．

Estimate：$\square \square$ rounds to $\quad \boxminus$ ．rounds to －・ロロロロ
Exact：

（c）

Estimate：$\square{ }^{\square}$ rounds to $\quad \square^{\square}$ rounds to

Exact：

Estimate：\square rounds to $\quad \square_{\bar{\Sigma}}^{\square}$ rounds to \square.
\square.
$\square \square \square \square_{\square}^{\square}$
Exact：

（d）

Estimate：$\square \square \square$ rounds to $\square \square$ rounds to $\square \square$ ．

Exact：

4．Multiply the amount of paint needed for each car by the number of cars．

Estimate：\square^{\square} rounds to $\square \square$ rounds to $\square \square$ ．
\cdot
ㅁㅁㅁ

$\square \square$ quarts are needed for $\square \square$ cars．The answer is reasonably close to the estimate．
5. (a) Divide the total pounds of brass by the number of pounds needed for one engine.

Estimate: $\square \square$ rounds to $\square=\square$ rounds to $\square \square$.

Exact:

$\square \square$ propellers can be manufactured from pounds of brass. The answer is reasonably close to the estimate.
(b) Divide the total number of quarts by the number of quarts needed for each oil change.

Estimate: $\square \square \square$ rounds to

$$
\square \square \square \text { rounds to } \square \square .
$$

$\square \square \square \square \square \square \square \square \square$
Exact:

$\square \square$ oil changes can be made with $\square \square \square$ quarts of oil. The answer is reasonably close to the estimate.

2.8 Section Exercises

1. The statement "When multiplying two mixed numbers, the reciprocal of the second mixed number must be used." is false. A reciprocal is used when dividing fractions, not multiplying
fractions.
2. The statement "If you were dividing a mixed number by the whole number $\square \square$, the reciprocal
3. $\square_{\square}^{\square} \cdot \square \square$

Estimate:

8.

Estimate: $\square \cdot \square \square \square \square$
Exact:
9.

Estimate: $\square \cdot \square \square \square$

10. $\square^{\square} \cdot \square$

Estimate: $\square \cdot \square \square \square \square$
11.

Estimate: $\square \cdot \square \square \square \square$

$\square \square$ would be \square." is false. The reciprocal of $\square \square$ is
\square
3. The statement "To round mixed numbers before estimating the answer, decide whether the numerator of the fraction part is less than or more than half of the denominator." is true.
4. The statement "When rounding mixed numbers to
estimate the answer to a problem, the estimated answer can vary quite a bit from the exact answer. However, it can still show whether the exact
answer is reasonable." is true.
5. \square^{-}.

Estimate: $\square \cdot \square \square \square \square$
Exact:
$\square \square$
6. $\square^{\square} \cdot \square$

Estimate: $\square \cdot \square \square$

Exact:
$\square \square-$

Exact: $\square \cdot$
12.

Estimate: $\square \cdot \square \square \square \bar{\square}$

Exact:

$$
\vdash \square
$$ 10 १ロ

13. $\square^{\square} \cdot \square$.

Estimate: $\square \cdot \square \cdot \square \square \square \cdot \square \square \square \square$

14. $\square^{\square} \cdot \square^{\square} \cdot \square^{\square}$

Estimate: $\square \cdot \square \cdot \square \square \square \square$

15. $\square \square$.
$\square-$

Estimate:

Exact:

$\because \square \square \square$
16. $\square . \square . \square$

Estimate:

Exact: $\square . \square$.

17.

The best estimate is choice \mathbf{D}.
18. $\square \cdot \square$ Estimate: $\square \cdot$

The best estimate is choice \mathbf{A}.
19.
 Estimate:

The best estimate is choice \mathbf{B}.
20.
 Estimate: \qquad

The best estimate is choice \mathbf{C}.
21.

25. $\square \square \square-$

Estimate: $\square \square \square \square \square$

Exact:

26.

Estimate:

Exact:
27.

Estimate:

28.

Estimate:

29.

Estimate:

22.

Estimate: \square

23.

Estimate:
Exact:
$\square-$

24.

Estimate:

30.

Estimate:

Exact:
31.

Estimate:

Exact:
32.

Estimate: $\square \square \square \square \square$
Exact: $\square \square \square$$\square \square-$ $\square \square$ \square $\square \square . \square \square \square \square$ \square
33. Multiply each amount by
(a) Applesauce: $\frac{\square}{\square}$

Estimate: $\square \cdot \square \square \square$ cups

(b) Salt: \square tsp.

Estimate: $\square \cdot \square \square \square$ tsp.
Exact: ${ }^{\square} \cdot \square^{\square} \square \cdot \square \square \square \square \square$
${ }^{-}$tsp.
(c) Flour:

Estimate: $\square \cdot \square \square$
cups

Exact:
$\square_{\text {cups }}$
34. Multiply each amount by
(a) Flour: cups

Estimate: $\square \cdot \square \square \square$ cups
Exact: $\square^{\square} \cdot \square^{\square} \square, \square \square \square \square \square \square$

- cups
(b) Applesauce: cup

Estimate: $\square \cdot$
cups
Exact: $\square \cdot \square \square \square \square . \square \square \square \square \square \square$ cups
36. Divide each amount by \square.
(a) Flour: $\square \frac{\square}{\square}$ cups

Estimate:

Exact: $\square^{\square} \square \square \square \square \square \square \square \square . \square$ cup
(b) Salt: $\square \mathrm{tsp}$.

Estimate: $\square \square \square \square$ teaspoon

Exact: $\quad \square \square \square^{\sqcap \square} \square \square \square . \square \square \square$ teaspoon
(c) Applesauce: \quad cup

Estimate:

37. Divide the number of gallons available by the number of gallons needed for each unit.

\square units can be painted with $\square \square \square$ gallons of paint.

35. Divide each amount by \square.

tsp.
Exact: $\quad \square \square \square \square$
tsp.
(b) Applesauce: $\frac{\square}{\square}$ cup

(c) Flour: $\square_{\text {cups }}^{-}$

Estimate: $\square \square \square \square \square$ cup
Exact: $\square^{\square} \square \square \square \square \square \square \square \square . \square$ ${ }_{-}$cup
41. The answer should include:

Step 1 Change mixed numbers to improper fractions.

Step 2 Multiply the fractions.
Step 3 Write the answer in lowest terms,
changing to mixed or whole numbers where possible.
42. The additional step is to use the reciprocal of the second fraction (divisor).
43. Multiply the amount of money for each cell phone times the number of cell phones to get the total amount of money from the sale of gold.

Estimate: $\$ \square \cdot \square \square \square$ million $\square \$ \square \square \square$ million

Exact: $\square^{\square} \cdot \square \square \square$ million $\square \square . \square \square \square \square$ $\xrightarrow[\square]{\square \square \square \square}$ $\square \square \square \square$ million

You would have $\$ \square \square \square$ million from the sale of the gold.
44. Divide the number of square yards of carpet by the amount of carpet needed for each apartment unit.
Estimate: $\square \square \square \square \square \square \square \square \square \square \square$ units
Exact:

$\square \square$ units can be carpeted.
45. Divide the total amount of firewood to be delivered by the amount of firewood that can be delivered per trip.

Estimate:

 $\square \square \square \square \square \square \square \square \square$ trips

The hydraulic lift must raise the car $\square \square$ inches.
(b) There are $\square \square$ inches in a foot, so the \square-foot-
tall mechanic is $\square \square \square \square \square \square \square$ inches tall. So no, the mechanic can not stand under the car without bending.
48. (a) The maximum height of the low-profile jack is $-\square$
a inches. Use division.
Estimate: $\square \square \square \square \square \square \mathrm{in}$.

The low-profile lift must raise the car \square inches. ㅁ
(b) No, because \square in. is greater than \square in.
49. Multiply the swimming speed of the person times the number of times faster that a shark can swim than a person.

Estimate: $\square \cdot \square \square \square \square$ miles per hour
Exact:
 $\square \square$

The shark can swim $\square \square \square$ miles per hour.
50. Multiply the boxes of tile per floor times the number of floors (homes) to get the total number of boxes needed.

Estimate: $\square \square \cdot \square \square \square \square \square \square$ boxes

\qquad
\qquad
\qquad
trips will be needed to deliver cords of firewood.
46. Divide the total amount of roofing material by the amount of roofing material needed for each roof.
Estimate: \qquad homes
Exact:

homes can be re-roofed with squares of roofing material.
47. (a) The maximum height of the standard jack is \square
$\square \square{ }^{\square}$ inches. Use multiplication.
Estimate: $\square \cdot$ $\cdot \square$ in.
boxes of tile are needed.

Chapter 2 Review Exercises

1.

There are
parts, and \square is shaded.
2.
3.

There are parts, and \square are shaded.

There are parts, and \square are shaded.
4. Proper fractions have numerator (top) smaller than denominator (bottom).

They are:

Improper fractions have numerator (top) larger than or equal to the denominator (bottom).

They are: \qquad
5. Proper fractions have numerator (top) smaller than denominator (bottom).

They are:

Improper fractions have numerator (top) larger than or equal to the denominator (bottom).
They are:

6.

7.

8.

14.

15.

16.

17.
18.
19.
20.
21. All $\square \square$ parts out of a possible $\square \square$ parts are gold.

22. 18 of the possible $\square \square \square \square \square \square \square$ parts are gold.
10. Factorizations of \square :

The factors of \square are $\square, \square, \square$, and \square.
11. Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square, \square, \square, \square, \square \square$, and $\square \square$.
12. Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square \square$, and $\square \square$.
13. Factorizations of $\square \square$:

The factors of $\square \square$ are $\square, \square, \square, \square, \square, \square, \square \square, \square \square$, $\square \square$, $\square \square$,
$\square \square$, and
$\square \square$. \square.

23. $1 \square$ of the possible $\square \square \square \square \square \square \square \square$ parts are gold.

24. $1 \square$ of the possibleparts are gold.
25.

26.
$\square \square \square \square \square \square$
27. - and
$\frac{\square \square}{\square \square}$

The fractions are equivalent
28. $\frac{\square}{\square}$ and

$\square \square$
The fractions are not equivalent $\square \square-$
29.

$\begin{array}{ll}\square & \square \square \square \\ \square \square \square & \square \square \square \square \square \square \square \\ \square \square \square \square \square \square \square & \square\end{array}$
The fractions are equivalent $\square-$
30. \square.

31.

32.

40.

41.

42. $\square_{\square \square \square} \square_{\square} \square_{\square} \square . \square \square \square \cdot \square$
43.

44.

45. To find the area, multiply the length and the width.

The area is $\square^{\square} \mathrm{ft}$.
46. To find the area, multiply the length and the width.

33.

34.

35.

36. $\square_{\square}^{\square} \square \square . \square \square \square \cdot \square \square \square \square$
\square

37. $\underset{\square}{\square} \square \square \cdot \square \square^{\square}$

38. $\begin{array}{r}\square \square \square \square \\ \\ \\ \square \square \square \square \square\end{array}$

The area is $\square \square \mathrm{yd}^{\square}$.
47. Multiply the length and width.

The area is $\square \square \square \square \mathrm{ft}^{\square}$.
48. Multiply the length and width.

49. $\square^{\square} \cdot \square$

Estimate: $\square \cdot \square \square \square$

Exact:

50.

Estimate: $\square \cdot \square \cdot \square \square \square \square$

51.

Estimate:

Exact:

$\square \square-$
52.

Estimate: $\square \square \square \square \frac{\square}{\square}$

53. Divide the total tons of almonds by the size of the bins.

Estimate:

Exact

$\square \square \square$ bins will be needed to store the almonds.
54. The \square other equal partners own

of the business. Divide that amount by \square.

Each of the other partners owns $\frac{\square}{\square}$ of the business.
55. Divide the total yardage by the amount needed for each pull cord.

Ebony gave $\square \square$ pounds to her parents. The amount she has left is \qquad pounds.
58. Sheila paid $\frac{\square}{[}$ of $\$ \square \square \square \square$ for taxes, social security, and a retirement plan.

She paid $\$ \square \square \square \square$ for taxes, social security, and a retirement plan.

She has \$ $\square \square \square \square \square$ \$ $\square \square \square \square$ \$ $\square \square \square$ left.
59. must be divided by \square.

Each school will receive \square of the amount raised.
60. \square of the catch must be divided evenly among \square fishermen.

Chapter 2 Multiplying and Dividing Fractions

Exact:

\square pull cords can be made.
56. Multiply the weight per gallon times the number of aquariums times the gallons per aquarium.

Estimate: $\square \cdot \square \cdot \square \square \square$
-

The weight of the water is $\frac{\square}{\square}$, or $\square \square \square$ pounds.
57. Ebony sold \square of $\square \square$ pounds of rice.

 gave ${ }^{\square}$
of $\square \square$ pounds to her
parents.

Each fisherman receives \square ton.
61. [2.5]

62. [2.5]

63. [2.8]

64. [2.8]

65. [2.7]

66. [2.7]
\qquad
67. [2.5]

$\because \square \square \square$
68. [2.8]

69. [2.2]

70. [2.2]

71. [2.2] $\begin{array}{ll}\square & \square \cdot \square \square \square \square \\ \square & \square \square \square \square \square \\ \square & \square \square\end{array}$
79. [2.8] Multiply \square^{\square} ounces per gallon by the number of gallons.

Estimate: $\square \cdot \square \square \square \square \square \square$ ounces

80. [2.8] Multiply the number of tanks by the number of quarts needed for each tank.
Estimate: $\square \cdot \square \square \square \square \mathrm{qt}$

Exact:

$\square \square^{\square}$ quarts are needed.
81. [2.8] To find the area, multiply the length and the width.
72. [2.2]

73. [2.4]

74. [2.4]

75. [2.4]

76. [2.4] $\square \square \square$ ००००口 \square \qquad
77. [2.4]

78. [2.4]

5.

\square Remainder

6. Factorizations of $\square \square$:

```
\square•\square\square\square\square\square \square•\square\square\square\square \square•
```

The factors of $\square \square$ are $\square, \square, \square, \square, \square$, and $\square \square \square$
7.

$\square \square \square \square \cdot \square \cdot \square$
$\square \square \cdot \square$
8.

9.

10.

$\square-$ $\square \square \quad \square \square \square \square \square$
11.

15.
 $\square \square$
$\square \square$
\square
16. Multiply the length and the width.

The area of the grill is $\square \mathrm{yd}^{\square}$.
17. First, find the number of seedlings that don't survive.

Next, subtract to find the number that do survive.
$\square \square \square \square$ seedlings do survive.
18.
 \square \square. \llbracket \qquad - \square

19.
\qquad
 - $\square \square \square \square \square$
9.
20. Divide the total length by the length of the pieces.

$\square \square$ pieces can be cut.
$\square \square-\square \square \square \square \square$
12. Write the prime factorization of both numerator and denominator. Divide the numerator and
denominator by any common factors. Multiply the remaining factors in the numerator and denominator.

13. Multiply fractions by multiplying the numerators and multiplying the denominators. Divide two fractions by using the reciprocal of the divisor (the
second fraction) and then changing division to multiplication.
14.

Chapter 2 Multiplying and Dividing Fractions

24. $\frac{\square}{\square}$

Estimate:
\square^{-}

Exact:

25. If \square grams can be synthesized per day, multiply to find the amount synthesized in $\varepsilon \square^{\square}$ days.
Estimate: $\square \cdot \square \square \square \square \square$ grams
Exact:
$.^{\square} \cdot \square \boxminus \quad \square-\square-\square-\square \square \square$

E
$\square \square$ grams can be synthesized.

[^0]: $\square \square$
 $\square \cdot$

