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Chapter 2. First-Order Equations 
 
 
 
 

 

Section 2.1. Differential Equations and Solutions 
 

I.   ¢(1,y,y') =ty +1+1)y  = 0must be solved for        4.   y'(n) +y(0)  =(2 -Ce')+(21 -2+Ce')= 21 
y'.   We get 

 

 
 

• (±py 
t2 

 
 
 
 

2.   d(1.y,y')  = ty' -2y  - t must be solved for y'. 

We get 
 

 
 

,       2y41 
y ==

t 

 
 
 

 

3.   y'(t) = -Ce-um  and -ty(t)= -ice-an 

soy'  = --ty. 

5.    If y(0)  = (4/5) cos1 +(8/5)sin1  + Ce-(a, then 
 

y(' + (1/2)y(1) 

= [-(4/5)sint + (8/5)cos1 -- (C/2)e 

+(1/2)[(4/5)cos1 +(8/5)sint +ce• 

=2cost. 
 

 
 
 
 
 
 

30 
20 

 
 

2          4
 

 
 
 
 

12



t 

----- 

 

 
 

6.    If y(0)  = 4/1  +Ce"), then 
 

,               16Ce-40 

y        @+€~-5j? 

-»rte[-de
 

2.1      Differential Equations and Solutions    13 
 

9.      (a) If? -4y  =c, then 
 

 

(d r -4y)=  
d

 
 
 

16(1+Ce") -16 
=    (1 +Ce-40)? 

16Ce-{ 

dt                       dt 

21 --8yy' = 0 

t-4yy' = 0.

= 
(1+Ce-4)?                                               (b)  If  y(0)     =    ±Va -c/2,    then   y'    =

 
7.    For y(t)  =  0,  y'(t)   =  0  and y(t)(4 - y(t))   = 

0(4 --0) = 0. 

±t/(2/ 
 
 
t -4yy' 

-C), and

8.      (a) 1ft +y = C, then 
 

d          d 
-(+y)=c 
dt                     dt 

2t +2yy' = 0 

t +yy' = 0 
 

(b)  If   y(0)               ±/C --@,     then   y' 
t//C --@?,  and 

 

=t-4[±/z -- C/2±1/(2/- C)] 

-t  -t 

= 0. 
 

 
 
(e) The interval of existence is either -oo  <  t < 

C or C < t < oo.

 

t +yy'=t  +[±/c -mj[u//c -m?]                 (d) 

--t -t 

=0. 
 

(c) For  /c  f?   to  be defined we  must have 

t <C.  In order that y'(t) = t//C --, 
we must restrict the domain further.  Hence the 

interval of existence is -C  < t  < C. 

(d) 
 
 
 
 
 

 

10.    If y(t)  =  3/(61  -- 11),  then y'   = --3.  6/(6t  - 

11)  = --18/(61 -- 11). On the other hand, --2y = 
-2[3/(61 -- 11)   = -18/(61 -- 11),  so we have a 
solution to the differential  equation.   Since y(2)  = 
-3/(12 - 11) ==  -33,  we have a solution to the ini• 
tial value problem.  The interval of existence is the 

interval containing 2 where 6t - 11  "I 0. This is the 
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14    Chapter2    First-Order Equations 

interval (11/6, 00). the interval (-oo, oo).

 
 
 

 

15                                                                                                           ! 
 

5 
10 

 
>, 

 
5 

 

 
0 

2              3              4                5 
 

 
 
 
 

 
11.    See  Exercise  6. 

(-oo, ln(5)/4). 

 
 

 
The  interval  of  existence  is 

 
 

13.    y()  = '   Theintervalofexistence is (0, 0o). 
3        3t

 
 
 
 
 
 

-2               -1 
 

 

(1,2) 
 

 
 

2              3 
 
 
 
 
 

 
12.    y(0)  = (4/17)c0s1 +1/17) sin1 --(21/17)e  on 

14.    We need e'   = y(1)  = e'(1  4C/(1))  = (1  + 
C)e '.  Hence C = 0,  and our solution is yt)  = 
te'. This function is defined and differentiable on 

the whole real line.  Hence the interval of existence
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is the whole real line. 

2.1     Differential Equations and Solutions    15 
 

But this equals (1/2)(1 +2)only ift  > -2, as shown 

in the following figure. 
 
 
 

 
y

 
 
 
 
 
 

0                 2                 4 
 
 
 

15.    y(t) =2/(-14e -2/3).  The interval of existence is 

(- In(3)/2, 00). 

 
(-2, 0)

 
 
 

 
-1 

(0,-3)                                                      The  second  solution  proposed  by Maple,  y(t)  = (1/4)(1-
-2),satisfies the initial condition, as y(0) == (1/4)(0 

- 2)  = 1.  But 

 
 

 
/                   1 

y  (t)     -(t--2), 
2 

16.    The initial value problem is 
 

y'=V.    y(0)=  1. 
 

The  first  solution  proposed  by  Maple,   y(t)   = 
(1/4)(1 + 2), satisfies the initial condition, y(0)  = 
(1/4)(0 + 2)  = 1.  Next, 

 

,                 1 
y'(= ,+2). 

 

 
and 

 

 
 
 
 
 
 

6Fo =-/{-2 =}-2

and  

Vo-['+» =-'+a 

 
 
But this agrees with (1/2)(1  --2)  only if t  2  2, as
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16    Chapter 2       First-Order Equations 

 
shown in the following  figure.                                         18. 

 

 
 
 

y 

 
 
 
 

 
(0, 1) 

 

 
 
 
 
 
 
 
 
 
 
 
 
(2, 0) 

y'=y-t 
 

I  I  / 

>  0      I  /   \ \ 

-1      I   I  / 

-2         -1            0                        2

 

 

19. 
 
 
 
 
 
 
 

Note that  this  graph  does  not pass  through  (0,  1). 

Hence, y(t)  ==  (1/4)01  -- 2) is not a solution  of the 

y'=ttan(y/2) 
 

\ "'      / / 
>>     0   --

initial value problem.                                                                    -1      / /  "'  \

-2         --1             0                         2 
 

 
 

17.                                                                                     20. 

y'=y+t                                                                                  y'=Ry/(+y) 
1.5 

\   / I   I                   I  /  / I 
0.5 

>  O        \   \   / I           >,      0
 

-0.5 

-1       \   \            /       -1      \                 \ 
-1.5 

-2   -1           0                         2                             -2       -1            0                         2 
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2.1     Differential Equations and Solutions    17 
 

21.                                                                                                       the right-hand side of
 

y'sty 

5   ,, 
, 
I 

,I 

 
 
 
is undefined. 

y  == 
y+t 
y -l

, 
'' >-  0                                                                                                             

5 
'\                                                                                                                 I 

4 I 
I I 
I  4 
I                                                            4 
4                                                                                                                                               I 
I 

-5    I                                                                                          4                                                                                                    
>-  0 

-2                 0                  2 

 
22.                                                                                                            -5 

 

 
4 

 
2                                                                                  25. 

 
>-   0 

 
-2 

 

 
-5                           0                       5

 
4 

0                   5                   10 

 
 

23. 
 

y'=t-y+1 

 
4                                                                                               

26. 
 

>-   0 

-2 
 

4 
 

-6 

 
 
 
 
 

-5                     0                     5                                               
-4               -I              2          4 

-2 
-3

24.   Note the difficulty experienced by the solver as it ap• 

proaches  the line y = t, where the denominator of 
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18    Chapter2    First-Order Equations 

27.  
 
y'=3y+sin(t) 

30. 
 

 
5
 

 

 
 
4_44   4'  4   

- •

4                                 4      4
-15          -10           -5 

 

 
-1 

3 
2 
1 
O 

-1                
, 

-3    $,,'-/////e'1 

4                      t 
'+ 

I  I  I 
t  • 

I     I    I 

r   I    I 
t    tt 
t    t    t    t 
I    I   I, I

-20                                        d
 t    tt 

t

-5 ---'-'--~-t -----~t   ~
t    

-
t    t

~
-5 -4-3-2-1    0 

$ tt 

2   3   4    5
 

 
 
 

28.                                                                                             31. 
 

y 
 
 
 
 
 
 

 
-2                                                         2 I 

 

 
 
 
 

29. 32.
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2.1      Differential Equations and Solutions     19 
 

33.                                                                                                      tion curve. 
 

200 

 
150 

 
a.  100 

 
50 

4                                    p   4     tt 

t   1             t        t                         r 
1      1    +                  t                           1                   t 
t          ,                                                                                                        t 

I    +                                                ,   t                                                    , 
It'I        I'    •         t          + 

1                t   •                         4                , 
t             t        t.                                              t        t 

JI    I      I  I  I·        I                            I      I  I 
I  I  I         It·        I                          I     I  I 

t               i 
t  tr  tttt 

tt tt              t 
)+tt   +t 

.4 4.Rt.,t..4.    4..t.t4.. 
,   t'                                t 

w

 

 
0         5                 10                15 

 
 
 

 
34. 

Using the solution curve, we estimate that P(10) z 

124.  Thus, there are approximately  124 mg of bac• 

teria present after 10 days. 
 

36.    We must solve the initial value problem

 

dA 

dt   =--0..254 ' 

 

A(0) = 400.

 

 
 
 

-6    4               4      6 

 

Using our numerical  solver, we input the equation 

and initial condition,  arriving at the following  solu• 

tion curve.

 

 
500 

 

 
KM             $                  4 '4 +      +      4«4 

4       4  4  46   4  $  4  4 '«   4  4       +   4 

4  4  4  ' 4       4 +                  $  +  4 «      '   4

400 $             $         8 ' 44 ' «

 
300 

 

200 

4          ,   '          ' s 
t

 

 
35.    We must solve the initial value problem 

 
100 
 

0   --------------------

0                     2                 4                    6 

 

dP 
-dt   --- 0.44P '            P(O)      1.5. 

Use the  solution  curve  to  estimate  A(4)         150. 

Thus,  there are approximately  150 mg of material 

remaining after 4 days. 
 

37.    We must solve the initial value problem
 

Using our numerical  solver,  we input the equation 

and initial condition, arriving at the following solu• 

 

-
de 

= 
dt 

 
-0055c 

· 

 
c(0) 

 
== 0.10.
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20     Chapter 2      First-Order Equations 

Using our numerical solver, we input the equation 

and initial condition, arriving at the following solu• 

tion curve. 

 
 

 
39. 

Use the solution curve to estimate that it takes a little 

less than 15 minutes to cool to 100° Celsius. 
 

The rate at which the population  is changing with 

respect to time is proportional to the product of the

0.1 
 

'  4  4    •   44        $       f• 
f          f ' 4 4   '     4 $  4  ' +  4  ' ¢ 

f $ +  4   ' +  $4 4  '   4          '  ' ' K 

population and the number of critters less than the 
"carrying capacity" (100). Thus,

0.08
 
. + '

 '  t       f                  $    f 
,4

4KK                        4$

 
0.06 

0 

0.04 
 

0.02 

4  4  +  5      •  4  '  4 6      4      4  +  4  4 
•        4  •                             4 
,                                       « 
«,Kiss    ·4KKK6$s 

 

 

--.-----------. ----• 

d p = kP(00 -- P). 
dt 

With k  = 0.00125 and an initial population of 20 

critters, we must solve the initial value problem

0   --------------------· 
()                     10               20               30 

dP  = 0.00125P(100 -- P), 
dt 

P(0)  = 20.

 
 

Use the solution curve to estimate that it takes a little 

more than 29 days for the concentration level to dip 

below 0.02. 

38.    The rate at which the rod cools is proportional to the 

difference between the temperature  of the rod and 

the surrounding air (20° Celsius).  Thus, 

 

Note that the right-hand side of this equation is posi• 

tive if the number of critters is Jess than the carrying 

capacity (100). Thus, we have growth.  Using our nu• 

merical solver, we input the equation and the initial 

condition, arriving at the following solution curve.

dT  
=-kT -20). 

With k  = 0.085 and an initial temperature of 300° 

Celsius, we must solve the initial value problem 

100 
 
 

 
n. 

--
.
---   ------  ----- 

 
w 

w      ww 
we    w 

' we      w 
w                           »

dT 
- =-0.085(T  -- 20),         T(O)      300, 
dt 

where T is the temperature of the rod at t  minutes. 

Note that since the initial temperature is larger than 

the surrounding air (20° Celsius), the minus sign in• 

sures that the model implies that the rod is cooling. 

Using our numerical solver, we input the equation and 

initial condition, arriving at the following solu• tion 

curve. 

40   
✓  - -

-
- -

2
- ~ 

.
- · 

.
- -

.
- - ~

.
- -

22
- -

22
- •

 

 

 
0   -------------------- 

0                10               20               30 

 

 
Use the solution curve to estimate that there are about 

91 critters in the environment at the end of 30 days.

 
300 4-4 44   44 44   44   44 

(                                   4    ' 4    44   4          4    4   4   4 
f

.• .A
4

.
4    4   4

,5
4   4

.
4    

.
4 

$
f

250   • 

+
 •          A         .A  4 $ 

I     4.4    I         4    5          4    4  4            K

200 

150 

100 

50 

4  44 l 4    .' '  '    4  4  4       4    4 

4  4           44 4  4  4  4      4 4  4  4  4  4

 
0   -------------------- 

0                 10               20               30 
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Section 2.2. Solutions to Separable Equations 

2.2     Solutions to Separable Equations    2

I.   Separate the variables and integrate. 
 

dy 
, 9y 

 

dy 
-=xdx 

In'l=,
I 
r+c 

ly()] = enc 
yGr)  = ±e".an 

= An, 
Where the constant A = ±e' is arbitrary. 

 

2.   Separate the variables and integrate. 
 

dv 
r-=2y 
d 

l               2 
-dy    -d 
y 

In /yl = 2In l! + C 

ly] =hr+e 

y() = ±e'+ 
 

Letting D = ±e, y()  = 

3.   Separate the variables_and »integrate.

 

dx 

5.   Separate the variables and integrate. 

dy 
=G+1 

 

-dy =(r + I)dx 
y 

l 
In lyl=;r +r+€ 

 

ly]= /2e+r+€ 

y() = ±er+ 

Letting D = ±e',y = Dem2e+ 

6.    Separate the variables and integrate.  Note:  Factor 
the right-hand side. 

dy 
7,(' +D0-2) 

 

5
y•   

dy=(e' +Ddr 

Inly -2]=e' 4r +C 

ly -2]= e'++c 

y-2=±e''+ 

Letting D = ±e'.y() = De''+2. 

7.   Separate the variables and integrate, 

dy         x 
-=--, 
dx       y+2 

(y +2)dy = xdx,

e'dy  = e'd 

e'=e'+C 

y() = In(e' +C) 
 

4.   Separate the variables and integrate. 
 

dv 
-=(l  +y)e' 
d.r 

I 

5
I   

+y==
I 

r +c. 

y+4y-(+D)=0, 
 

With D replacing 2C in the last step.  We can use the 
quadratic formula to solve for y. 
 

-4±J16+4(x2+D) 
yI(x) == 

2 

y6)= -2±Wr+(D+4)

-I+y dy=e'dx;

tan'y =e' +C 

y()= tan('  + C) 

 

If we replace  D 4 4 with another arbitrary constant 

E. then y(9)= -2±E.
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22    Chapter 2     First-Order Equations 

8.    Separate the variables and integrate. 

(5) 

y 
»-(+'x-,l     4.

 

11.  
 

6'-5°, 
dx

(y- 2)dy = xdx

 

In/y]  =x +In]x  --I]+C 

]y]  =e"+lnlr-I+C 

y()  = Lee'Jl-II 

Letting D ==  ±e,y() = De'[x  - 1.  It is impor• 

tant to note that this solution is not differentiable at 

x  = l and further information (perhaps in the form 

of an initial condition) is needed to remove the ab• 
solute value and determine the interval of existence. 

9.    First a little algebra. 

ry'=yiny  -y' 

( +1)y' =ylny 

Separate the variables and integrate. 

1                               l 
(d y= --(d 
ylny         x2  + 1 

1                               1 
-du      --d, 
u          x      1 

where u  ==   Iny  and du  =}dy.   Hence,  In [u]  = 
tan 'x + C.  Solve for w: 

Ju]  = can7'etc 

u = ±e,tan' 

Let D = ±e,replace u with In y, and solve for y. 

In y  = De' 
-I 

y()      %Pe"     ' 

 

10. 

dy  
=y0+28) 

 

2
 

 
 
 
 
 
 
12. 
 

 
 
 
 
 
 
 
 
 
 
13. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
14. 

y'                r? 

2=5+C. 
 

The  solution  is  given  implicitly  by  the  equation 

y-8y-2x°  =A,  where we have set A =4C. 
 
 

dy        2x(y + l) 

dx          r?1 
dy          2xdx 

y+1      x?-1 

In[y +1]= In[r     1] +C 

ly +1]= die-c _e1    1] 

y(x)  = A(--1)  -1. 

 
 

dy       y 

dx       x 
dy       dx 

y         X 

3My]  = I]x]  + C 

Iy()]  = «MIC  _ e' pH 

y(x)  = Ax. 

The initial condition y(1)  = -2givesA  = -2.  The 

solution is y(x) = -2x. The solution is defined for 
all x, but the differential  equation  is not defined at 
x = 0 so the interval of existence is (0, oo). 
 

 

dy          2r(1  +y) 
dt                  y 

ydy   =--21 dt

-dy =1  +d2x x  = [ 
-
I 
+lx 

]  
d 1  +y?

y               x                   x 

In [y!  = In[r! 4 + C 

lyGr)[  = %our+c _ e[ye 
2 

y(x) == Axe' 

In(1  +y)=-r +€ 

1   +=2+c_ea-a? 

1+y=Ae?
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2 

 

 
 

With y(0)  = 1,  1+1 = Ae 2 and A = 2. Thus, 

 
1+y=2-2" 

y=±/2e2 - 1. 
 

 
We must choose the branch that contains the initial 
condition  y(0)  = 1.  Thus, y = /2e2     1.  This 

solution is defined, provided  that 
 

 
2e3  1>0 

cw'! 

-21'2 

r<-2R' 
2 

r?      In4 

il <  Vind. 
 

Thus, the interval of existence is (--/In4, /ind). 

 
 
 
16. 

2.2      Solutions to Separable  Equation s     23 
 

 
 

dy        xv 
-Le    " 
dx 

e"dy  =e' dx 

--e=e'4C 

e'=-e' -C 

-y=ln(--e'  -C) 

y= -In(--e' --C) 

With y(O)  = 1, 

l=-In(-e" -C) 

-I-C=e' 

C=-1-e'. 
 

Thus, 
y= -In(-e' 4e'41). 

This solution is defined provided that 
 

-e'  4e'41>0 

e'  <e'41 

x  <In(e'+ D).

 

 
15. 

 
 
 
 

dy       sinx 

dx          y 

ydy =- sin.xdx 

51 )'2=-cosx  + C 

y=-2cosx+C     (C =2C) 

y(x)  = ±/C -2cos.x 

 
Using the initial condition  we notice  that we need 

the plus sign, and I = y(/2)  = WC. ThusC = 1 
and the solution is 

 
y()  =VI-2cosx. 

 
The  interval  of existence  will be the interval  con• 

taining n/2 where 2cos.x  <  1.  This is n/3  <x  < 

57/3. 

 

 
 
17. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
18. 

 

Thus, the interval of existence is (-oo, In(e'4 1)). 
 
 

dy  = 1  + 2 

dt              y 

'_-ad 
14y? 

tan '(y)  =t +C 

y(t) = tan(t  + C) 
 

For the initial condition we have 1   =y(0)  = tan C, 

so C  =   /4 and the solution  is y(t)  =  tan(t  + 
n/4). Since the tangent is continuous on the interval 

(-/2, /2),  the solution  y(t)   = tan(t  +- n/4)  is 
continuous on the interval (--3n/4, n/4). 
 
 

dy           X 

-=--- 
dx       1    +2y 

(1  + 2y) dy  = x dx 

y  +y=r/2+C
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24    Chapter2    First-Order Equatino   s
 

This last equation can be written as y+y -(x[2+ 
C) = 0.  We solve for y using the quadra tic formula 

 

yo =[-1± Vi+i@72+6]/2 

=[-1±V2+c]n  «c=1+4c 
 

 

For the initial condition y(--I) = 0 we need to take 

the plus sign  in order to counter the -1.  Then the 

initial condition becomes 0 = [-I  + V2T/2, 

which means that C = --I,  Thus the solution is 
 

 

-1+2_1 
yGr)=             ;      • 

 
 

For the interval of existence we need the interval con• 

taining -I  where 2£ --1     0. This is  --oo  <x < 

-1/2. 
 
 

19.    Withy(0) = I, we getthe solution yGr) = II , 
with interval  of existence  (-o, o).   This  solu• 
tion is  plotted with  the solid curve in the follow• 

ing figure.    With  y(0)   ==    -I,  we  get the solu• 

tion yGr)  = ff;,  with interval  of existence 
(-oo, 00).  This solution  is plotted   with the dashed 

curve in  the following figure. 

 
20. 

 

 
dy 

 

ydy = -xdx 

I                        1, 
-y'   =--r 4C 
2             2 

y=2c -r 
y=±/2€ --r 

 

 
With  y(0)   =  2,  we choose  the positive  branch 

and 2  =  /2C leads  to  C  = 2 and the solution 
y  =JI_ th interval  of existence (-2, 2). 
This solution is plotted  as a solid curve in the fol• 

lowing figure.  With y(0) = --2, we choose the neg• 

ative branch and -2  = -/z€ eads to C = 2 and 
the solution y --/4 - with interval of existence 
(-2,2). This solution is shown as a dashed curve in 
the figure. 

ad 
 
 

 
y

 

 
---+-----+--------x 

Y                                                                                                                                                               2 

' 
2 

 

0                              
x 

-2                  0               2
 

 

_,,. 

 
_,,. 

 

...- 
...-                     ..... 

-2 
.... 
' 
'
 

 

 

21.    With y(0)  = 3 the solution is
 

 
 

= 2 +e',  on

_,,.                                                                                                        
' 

4 

y(n) 

(-o, oo). This solution is plotted is the solid curve 
in  the next  figure.   With y(0)  =  I   the solution is 
y(n)=2-e',on(-c, oo). This solution is plot-
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ted is the dashed curve in the next figure. 
 
 
 
 
 
 
 

5 

2.2     Solutions to Separable Equations    25 
 

23.    We have N(t) = Nae, and 

N(  +Ty) = Ne+17) 

= Ne  .%Ty 

= N(t).eTn 

1 
= NG· 

 

if e 37n  = 1/2,  or Ty = In2/.
 

 
 
 
 
 
 
 

22. 

 
 
-2       «       10                           2              4 

/ 

I 

/            -5 

24.      (a)  = In2/Ty  = 1.5507  x 10• 

(b) We have N  = 1000  and N(t)  = 100.  Hence 

100 = 1000.e,or t == In  10/  = 1.4849  x 

10 years. 
 

25.    We  have 80   = N(4)   ==   100e    .          Hence ~   = 
In(100/80)/4   = 0.0558.  Then  Ti  =  In2/2

dy       y+1 
= 

dx           Y 

ydy  =dx 

y + I 

I
1   

nGy +1)=x+€ 

y+1=ax+2€  • Ae'     (A=e° 

y=Ae'-1 

y(x)  = ±/Ae  -1 
 

This  is the general  solution.   The initial condition 
y(l) = 2 gives 

 

2= 4/Ae?  -1 

4=Ae   1 

A =5e? 
 

The particular solution is 

y(x) =/5e2?  -1. 

The interval of existence requires that 

502-2       1>0 

2x -2  >  ln(l/5) 

x> 1-1n(5)/2=0.1953. 
 

Thus the interval of existence is 1    - ln(5)/2  < x  < 

00. 

 

12.4251  hours. 
 

26.    Using Tip   = 6 hours,  we have }  = In2/Tn2  = 
0.1155.  Then N(9) = 10e    = 3.5355kg. 

 

27.    Using Ty  = 8.04 days, we have } = In2/Ty  = 
0.0862.  Then N(20)  = 500e 3   89.1537mg. 

 
28.    The  decay  constants  are  related to  the half-lives 

by      o   =  In(2)/2.42   =  0.2864  and  kn  = 
In(2)/15  = 0.0462. The amount of?"Rn is given by 

x(t)  = xoe10  and of?'Rn by y(0)  = ye  '. 

The initial condition is that y(0)/(0)  = yo/xo  = 
0.2/0.8   = 1/4,  so  4xo   = 4yo.    We are looking 

for a time t  when 0.8/0.2   = 4  = y(t)/x(t)   = 
'(10 -3210)/4.  Thus  we need e'a0 -721)     =-   16. 

From this we find that t = 11 .5  hours. 
 

29.      (a) If N = Nae, then substituting T; = 1/, 
 

N = Ne3 

= Nae700 

=Noe"'. 
 

Therefore,  after a period of one time constant 

T,  = 1/,  the material remaining is  Ne'. 
Thus, the amount of radioactive substance has 
decreased to e' of its original value Ne.
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(b)  If the half-life is 12 hours, then                                       Tty2  = In2/  = 7.927days. 

 
 

-No  = Ne02 
2 

e 
-12         •l 

2 
l 

7 

 
6.8 

 

cr 
6.6

-12  =In• 
2 

In ! 
)=2 

-12 
 

 
Hence, the time constant is 

£ 
6.4 

 
6.2 

 
6 

 
 
 
 
 
2           4           6           8          10 

Day

 
1             -12 

T,  ==--z17.3hr. 
In! 

2 

 
 
 

(c) If  1000  mg  of the  substance  is present  ini• 

tially,  then the amount  of substance  remain• 

ing  as a function  of time  is given by  N  = 
1000eIn(1/2)/12,  The graph over four time pe• 

riods ([0, 47)) follows. 

 
 
 

1000 

31.   The half-life is related to the decay constant by 
 

ln2 
Ty =. 

226 
 

The decay  rate is related  to the number of atoms 

present by 

R =)2sN. 
 

Substituting, 

Nln2 
Tin=, 

 

Calculate the number of atoms present in the lg sam• 

ple.

 
800 

 
600 

z 
400 

 
200 

 
 
 
 
 
Now, 

l mol      6.02 3x  10' atoms 
N     lg X   - - X   ------- 

226 g                 mole 

=266  x 10' atoms.

Ty= 
(2.66 x  10' 

t
atoms)(In2) 0         to 

=4.9!        1         .
0 

0           20          40          60          80 
3.7 x  10 

o 
atom/s 

0''s

 
 
 

 
30.    The data is plotted on the following figure.  The line 

is drawn using the slope found by linear regression. 

It has slope -A.  = -0.0869.  Hence the half-life is 

 
 

 
32. 

In years, Tip z 1582 yr.  The dedicated reader might 
check this result in the CRC Table. 
 

(a) Because half of the existing  "C decays every 
5730 years, there will come a time when phys• 

ical instruments can no longer measure the re• 

maining "C. After about 10 half-lives (57300
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2.2     Solutions to Separable Equations    27 

years), the amount of original material remain• 

ing is 

1)10 
No» (5       =0.00097N%.

 

a very small amount. 

(b) The decay constant is calculated with 

ln2        ln2 
=        =z0.0001245. 

Ty      5568 

We can now write 

N = Ne9.0001245 
 

The ratio remaining is 0.617 ofthe current ratio, 

so 

0.617N%  = Ne-0.0001245¢ 

,0.0001245        0.617 

--0.00012451  = In 0.617 

ln0.617 
t=----- 

--0.0001245 

Thus, the charcoal is approximately  3879 years 

old. 

33.    Lett  = 0 correspond  to midnight.   Thus,  T(0)   = 
31C.  Because  the temperature  of the surrounding 
medium  is A  = 21C, we can use T  = A + (T -• 
A)e    and write 

 

T =21  +(31  -21¢    =21  + 10¢ 
 

At t = I, T  = 29°C, which can be used to calculate 

k. 
 

29 =21  + 10e• 

k = -In(0.8) 

k =0.223l 

Thus,  T  = 21 + 10%-0.2231     To find the time of 

death, enter "normal"  body temperature,  T  = 37°C 

and solve fort. 

37 = 21 +10e0.221 

In 1.6 
f 

-0.2231 

tz  -2.1  hrs 
 

Thus,  the murder  occurred  at approximately  9:54 

PM. 

34.   Let  y(t) be the temperature  of the beer  at time  t 

minutes after being placed into the room.  From New• 

ton's law of cooling, we obtain 
 

y'(t) =k(70 -- y(0))     y(0)  = 40 

 
Note k is positive since 70 > y(t)  and y'(t) >  0 (the 

beer is warming up).  This equation separates as 
 

 

'70 --y tr 
 

which  has  solution  y  = 70 -- Ce.   From  the 
initial  condition,  y(0)    =  40,  C   =  30.    Using 

y(10)   = 48,  we  obtain  48  = 70  -- 30% I  or 

k   = (-1/10) ln(ll/15)  or  k   =  .0310.    When 
t =25, we obtain y(25)  = 70 -- 30%-598  , 56.18°. 

 
35.    The same differential  equation  and solution hold as 

in the previous problem: 
 

y(t)  = 70 --Ce 
 

We let t = 0 correspond  to when the beer was dis• 

covered,  so y(0)  = 50.   This means  C = 20.   We 
also have y(10)  = 60 or 

 
60 = 70 -- 20e 10 

 
Therefore,  k = (-1/10)1n(1/2) z .0693. We want 

to find the time T when y(T) = 40, which gives the 

equation 

70 -- 20e'  = 40 
 

Since we know k, we can solve this equation  for T 

to obtain 

 
T  =(-1/k)1(3/2)z --5.85 

 
or about 5.85 minutes before the beer was discovered 

on the counter. 

 
36.    x'  = [at+by+c]' =a+by' =a+bf(at+by+c)  = 

a +f(). For the equation y' =(y +t) we usex= 

I+y. Then.x' =I#y'  = 1+(y41)  = 14.Solv• 
ing this separable equation  in the usual way we get 

thegeneralsolutionx(t) = tan(1 +C). In terms of the 

unknown y, we get y(t) = x(t)-t  == tan(1 +C)--t.
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28    Chapter 2     First-Order Equations 
 

37.    The  tangent  line  at the point  (x, y)  is  y  - y 

y'(x)( - x) (the variables for the tangent line have 

 

 
 
which can be separated as dr/ r = cot(0 /2)d0.  This 
can be solved for r as r(0)  = C sin(0/2), where C

(x, y)  bisects the tangent line,  we have ~  =  x.

the hats).  The intercept is==  -y/y' +x.  Since 

2 

40. 
is a constant. 
 
The area under the curve y

 

==  y(t) from Oto xis

Therefore 
-y 

2.¢  ==           +x
y' 

or                               

'-'y          x                                                   which  by  assumption,   equals (1/4)xy(x)   (one•

 
This separable differential equation is easily solved 
to obtain y(x)  = C/x,  where C is an arbitrary con• 

stant. 
 

38.    With the notation  as in  the previous  problem,  the 

equation of the normal line is 
 

'-ya  - • 
y''' (x).       a 

The 2-intercept is found to be 2j, = yy' +x.  Since 

in  -x is given to be ±l, we obtain 

yy'= ±2 

with solution y= ±4x + C, where C is an arbitrary 

constant. 
 

39.    Let ¢ be the angle from the radius to the tangent. 

fourth the area of the rectangle).  Therefore 
 

fox y(t)dt = (1/4)xy(x). 

 
Differentiating  this equation with respect to x  and 

using the Fundamental Theorem of Calculus for the 

left side gives 
 

y()  = (1/4) (y() +xy'(0)). 

 

This equation separates as 
 

y'       3 

y       X 
 

which has the solution y(x)  ==  Cr'. 
 
41.   Center the football at the origin with equation 

z +r+ 
y 

=4. 
4 

 

The top half of the football is the graph of the func• 

tion

z=/4-x-y/4. 

The  (x, y)-components  of the path of a rain drop 
form a curve in the (x, y)- plane which must always 
point in the direction of the gradient of the function 
z (the path of steepest descent). The gradient of z is 
given by

 

 
 
 
 

From geometry, tan b = rd@/dr.  Since ==  2, we 

obtain
 

-xi  --(y/4)j 
Vz  --,_ 

/4-x?- y/4 
 

where i and j are the unit vectors parallel to the x and 
y-axis.  Since the path traced by the drop, y = y(x), 

must point in the direction of Vz, we must have

dr 
ju       r cot ¢     r cot(0/2) 

dy                                              z    y 
-= slope of the gradient = '=     . 
dx                                                        4x
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This  differential  equation can  be  separated  and 
solved as x = Cy'.  C can be solved from the initial 

position of the drop (o, ») to be C = roly,}.  The 
final answer is given  by inserting x = Cy' into the 
expression for z: 

(r,,z) = (Cy'.y,Vi- c"-y/4), 
 

(here, y is the independent variable). 
 

42.   Let y() be the level of the water and let  V(t)  be the 

volume of the water in the bowl at time t.  On the one 

hand, we have dV/dt = cross sectional area of the 

water level xdy/dt.  The cross sectional area of the 
water level  is rx, where x is the radius.  Using the 
equation of the side of the bowl (y = x), we obtain 

a
dv 

=ady

 

On the other hand, dV/dt  is equal  toav where v 
is the speed of the water exiting the bowl.  From the 

hint, v =  2@@.  Thus we obtain the following 
differential equation: 

+yo! _" -«ass@~. 
 

This equation can be separated and solved  for y as 

to= (c-;3«2a )'P 
Since y(0) = I, we obtain C = 1.  Setting y(t) = 0, 

we obtain 
2 

f 
 

in units of seconds (here g = 32). 

change of volume, d V/dt is the cross sectional arca 
multiplied by the rate of change in  height, dy/dt. 
The cross sectional area is         = x(y). Thus 

 

 
 
 

From Torricelli's law: 

d _-av=-Ra.2.N 
V4 

Since dy/dt = C (a negative constant), we obtain 

cir=-nae 
Solving for y, we obtain y   = Kr'  where  K is a 
constant. 

 

44.    Following the hint, let 6 be the polar angle and lo• 

cate the destroyer at 4 miles along the positive .x-axis. 
The destroyer wants to follow a  path so that its arc 
length  is always three times  that of the sub.  To ac• 

count for the possibility that the sub heads straight 

along the positive x-axis,  the destroyer should first 

head  from r = 4  to r  ==    I     (the sub would  move 

from x = 0to x ==  l  in this same time frame under 
this scenario).  Now the destroyer must circle around 
the sub along a polar coordinate path r = r(8). We 
have r(0)  = I,  If the destroyer intersects the sub at 

(6,r(6)),then the sub will have traveled r(6) and the 
destroyer would have traveled f," Jr'(i) + r(ndo 
(arc length  along the curve r  = r(8)).   Since the 

speed of the destroyer is three times  that of the sub, 
we obtain 

3(r(9)-  I)= l'
3a·,2i 

 

 
 

43,    Let the unknown curve forming  the outside of the 
bowl be given by y = y() (the bowl is then formed 

by revolving this curve around the y-axis).  We can 
also write this equation as x = x(y) (reversing the 

roles of the independent  and dependent variables). 
As in the analysis of the last  problem,  the rate of 

Jr'(t)2  +r(r)2dlJ. 

 
Differentiating this equation gives 
 

3r'=@Fr   s     _r    ,o=1 
VS 

with solution r(0)  = 1N3
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30    Chapter 2      First-Order Equations 
 

Section 2.3. Models of Motion 
l.   We need gt  =  c/5.   or t  =  c/5g  =  612,240  sec• 

onds.   The distance traveled will be s  =  gr/2  = 
1.84 x  10!  meters. 

 

2.    We need 0 =  -9.8t2 /2 + 15t + 100.  The answer is 
6.3 seconds. 

required is t =  m ln(2) / r. The distance traveled is 

x = fo' v(s) ds 

_"
,
&   [a-nds

 

3.    The depth of the well satisfies d = 4.9t2
 

 
where tis -"[Tac-]

 

the amount of time it takes the stone to hit the water. 

It also satisfies d =  340s,  wheres ==-   8 - t is the 

amount of time  it takes for the noise of the splash 

to reach the ear.  Thus we must solve the quadratic 

equation 4.9t2   = 340(8 -1).  The solution is t  = 

7.2438sec. The depth is d = 340(8 --t)  = 257.lm. 

 
4.    In the first 60s the rocket rises to an elevation of 

(100 --9.8)1/2  =  162, 360m and achieves a veloc• 

ity of v(60) =  (100 -- 9.8) * 60 =  5412m/s.  After 

that the velocity is 5412 - 9.8t.  This  is zero at the 

highest point, reached when t,  =  552.2s.  The alti• 

tude at that point is 162, 360 + 5412t  --9.81/2 = 
1.657 x 10m.  From there to the ground it takes t2s, 
where 4.91}  =  1.657  x  10°,  or t =  581.5s.   The 
total trip takes 60 + 552.2  + 581.5 =1193.7s. 

r-s[2z,,a] 
-n[;2 a] 

9.    The resistance force has the form R ==  -r.  When 

v = 0.2,  R = -1 sOr ==  5.  The terminal velocity is 

vem  = mg/r  = -0.196m/s. 

10.      (a)  First,   the  terminal  velocity  gives  us  20   = 
mg/r,  Or r =  mg/20  = 70 x 9.8/20  = 34.3. 

Next, we have v(t)  = Ce=vim     mg/r. Since 

v(0) =  0,C  == mg/r, and v(t)  = mg(e'/m_ 

1)/r.  Integrating and setting x(0)  =0, we get 

x = 1' v(s)ds

 

5.    The distance dropped in  time t is 4.9t2 

 

If  T  is _"&[far-Dads

the time taken for the first half  of the trip,  then 

4.9(T +1  =  24.9T,or4.9(T --2T --1)  = 0. 

Solving we find that T  =  l +2=  2.4142s.   So 

the body fell  2 x  4.9T2   =   57.12m,  and it took
 

, J 

=sp'aea 

 

 

'-1 
]

T + l =  3.4142s. 

 
 

6.      (a)  v3/2g 

(b)  Both times are equal to vo/g. 

(c)  vo. 
 

7.    The velocities must be changed to ft/s,   so  vo   = 

Hence   v(2)    =   -12.4938   and  x(2) 
-14.5025. 

 

(b)  The velocity is  80%  of its  terminal velocity 
when I  - e rt/m   _ 0.8.  For the values of m = 
70 and r = 34.3 this becomes t = 3.2846s. 

11.    Without  air  resistance,   vo     =  2x13.5g    = 
16.2665m/s.  With air resistance,  va is defined by 

o        vdv           r 115

60mi/h   =   60 x  5280/3600   =   88ft/s,  and v  = 

i -+ 

--(l

30 mi/h = 44ft/s.  Then a =  (-- v)/2(x  --xo)  =• 
-5.8ft/s. 

Hence, v    mg/r          m   'is

- vo + (mg/r)in(vo  + mg/r)  - (mg/r)Hn(mg/r)

8.    We have v(t)  ==  Ce-rm  - mg/r.If v(0) =  0 then 

C  = mg/r,  and v(t)  =  mg(e"h  -1)/r.  This is 

r 
=-13.5--     or 

m 

 
 

= --2.7
equal to --mg/2r when e"/     1/2. Thus the time - v¢ +49In(vo  +-49)  --491n(49)
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Thi s  is  an  implicit  equation   for  vo.    Solving  on a 
calculator or a computer  yields v = 18.1142m/s. 

 
12.    The impact velocity v;  is defined by 

 

f"   vde           rf° 
h  •mer,    al," 

From which we get 
 

v -(mg/r)l(+ mg/r) + (mg/r)in(mg/r) 
r 

=-50-,     or 
m 

- 19.6ln(v, + 19.6) + 19.61(19.6)  = --25 
 

This is an implicit equation for v. Solving on a cal• 

culator or a computer  yields  v, = --17.3401m/s. 
 

13.    Following the lead of Exercise IH, we find that 

vdv=(-g +R()/m) dy = (-9.8 --0.5)  dy
 

 

(c)  If y is the maximum height, the corresponding 
velocity is v  = 0, so from (3.16) 

 

o=      2au(};-.',). 
R     R+y 

 

Solving  for y we get the result. 

«9 If vo    <    /2GM7R.  hen  v  <   2GM/R, 

and 2GM/R  - v;   >  0.   Hence by (e)  the 
object has a finite  maximum   height  and  does 

not escape.  However,  when vo = /GM[R. 
2GM/R - v; = 0,  and there is no maximum 
height. 

 

15.    Let x(t) be the distance from the mass to the center 
of the Earth. The force of gravity is kx (proportional 
to the distance from the center of the Earth).  Since 

the force of gravity at the surface (when r = R) is 

-mg,  we must have k = mg/R.   Newton's law 
beco mes 

dr    -mg 

"
 
 
 
 
 
 
 
 
 
 
 
 

 
14.

 

Hence if y is the maximum height we have 

1°     vd1voz-0.5 1•• 
dy. 

Hence 

»»-«+of 
= 7.9010. 

 

(a)  Follows from a = 
dv 

= 
dvdy 

=v
d 

.
 

as 
Using the reduction  of order technique as given in 
the hint, we obtain 

 

dv       g 

'dx        R 

which can be separated  with  a solution  given  by 

v =/C- gr/R.  The constant C can be evalu• 
ated from the initial  condition,  v(x  = R)  = 0, to 

be C = gR.  When x  = 0 (the center of the Earth), 

we obtain  v  = WC = gR or approximately 4.93 

miles per second. 

16.    We will use GM = gR.  Once more we usc-     - 

 
(b) 

d    dy d     dy 
 
 

GM 

vdv=  k+'
 

 

GM 
pd        udy 

(R +9) 

1 sds =-GM  {"      dy

 

r      f ow
 o                                     J,   «R+y)

J,""      @+5" 

}«-«--cu(}-.') 
 

 
•--2Gu(}R -.R'+_y ) 

•-zo[;
R 
-.

R
'
+
,
a 

] 
2agR 

+R 
 

17.    The force acting on the chain  is  the  force of grav• 
ity applied  to the piece of the chain that  hangs off
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the table.  This force is mg.x(t) where mis the mass 

density of the chain.  Newton's law gives 

mx"(t) = mgx(t) 

Using the hint, x"(t) = dv/dt  = v(dv/dx)  and so 

this equation becomes 
 

dv 

"a =Ex 

Separating this equation and integrating gives v = 
gx + C.  Since v ==  0 when x  = 2 (initial velocity 
is zero), we obtain C ==  4g.  Therefore 

v=Vg(x-4). 

Since dx/dt  = v =/g(x? -4),  we can separate 

this equation and integrate to obtain 

In(x +/x-4)=  /gt +K 

where K is a constant. From the initial condition that 
x  =- 2 when t = 0, we obtain K  = In 2.  Inserting 

x = 10 and solving fort, we obtain 

t =-'I.n (u.) z ,405 seconds 

 

 

18.   v  =-g-(k/m)v, v = velocity.  Velocity on im• 

pact is 58.86 meters/per second downward and 90.9 

seconds until he hits the ground. 
 

 
19.    Let x be the height of the parachuter  and let v be 

his velocity.    The  resistance  force  is proportional 
to v  and to e, Hence it is given by R(x,v)  == 
--kev, where k is a positive constant.  Newton's 

second  law gives us mx"  = mg  --key',  or 

mx" +ker' +mg = 0.

 

--------x-------- 
 

 
 

Section 2.4.  Linear Equations 
 

1.    Compare y' = -y + 2 with y' =a(t)y + f(t)  and 

note that a(t) = -1.  Consequently,  an integrating 

factor is found with 

uKt)  = el-at    _ %Id  _e'. 
 

Multiply both sides of our equation by this integrat• 

ing factor and check that the left-hand side of the 

resulting equation is the derivative of a product. 
 

e'(y' +y)  = 2e' 

(e'y)' =2e' 
 

Integrate and solve for y. 

e'y =2e' +C 

y(1)  =2+Ce' 
 

2.    We have a(n)  =- 3, so u(t) = e.  Multiplying we 

see that the equation becomes 

e$-37y=5e. 

 

 
 

We verify that the left-hand side is the derivative of 
e ?y,  so when we integrate we get 

 

 
 
 
 

Solving for y, we get 

 

y(t) = - 
5 

+ Ce
3 

. 
3 

 
3.    Compare  y'  + (2/x) y   =  (cosx)/x2   with  y'   = 

a(x)x + f(x)  and note that a()  = --2/x.   Con• 
sequently, an integrating factor is found with 

u(x) = e! -ads  of2/      _ a2Ill  - Jxf  =. 
 

Multiply both sides of our equation by the integrating 

factor and note that the left-hand side of the resulting
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+ 

+ 

e' 

 
 
 

equation  is the derivative  of a product. 

(+?»)-«s• 
y' +2xy= Cos 

(xy)' = cos x 
 

Integrate and solve for x. 

ry= sinx +C 

sinx + C 
y()  =       2 

x 
 

4.    We have a()  = -21,  sou(t)  =. e".Multiplying by 

u, the equation becomes 
 

er2 
y

I  
+ 2te 12 

y = Ste
r2 

. 
 

We verify that the left-hand side is the derivative of 

y, so when we integrate we get 
 

2                     5   2 

e'yo=;e"     C. 
 

Solving for y  we get the general solution 
 

5               ? 
y(0)  =-     Ce'. 

2 

 
5.    Compare  x'  --2x/(1  + D)   = (t  + 1)  with x' 

a(t)x + f(t) and note that a(t) = -2/(1 + 1). Con• 

sequently, an integrating factor is found with 

u(t)  = el-ad  _ e!-2/0+Dad 

- e2ll+l      [1 +15=(1+1). 
 

Multiply both sides ofour equation by the integrating 

factor and note that the left-hand side of the resulting 

equation is the derivative of a product. 

 
(1  +1)'(x' f  -2x ) =l 

t + I 

(( +1))' =1 
 

Integrate and solve for x. 
 

(1+1)x=t+€ 

x(t) =1( + 1) + C( + 1
 

2.4    Linear Equations    33 
 
6.    If we write the equations  as x' = (4/t)x + t3, we 

see that a (t) = 4/ t. Thus the integrating factor is 
 

u(t)  = e-/«/d  _el' _;' 
 

Multiplying  by u, the equation becomes 
 
 
 

After verifying that the left-hand  side is the deriva• 

tive of t , we can integrate and get 
 

t()  = Int +C. 

Hence the general solution is 

x()  =tint +Ct'. 
 

7.    Divide both sides by l +x  and solve for y. 
 

I                              1                     COSX 

y=74ti± 

 
Compare  this result with y'  = a(x)y + f (x)  and 

note that a(x)   = -1/(1  + x).   Consequently,  an 

integrating factor is found with 
 

u(x) = el -a@dx  _ Ju+od _ Jn+xl      [14x/. 

 
If 1  + x  >  0,  then  11  + x I         = 1   + x.  If 1  + x  <  0, 

then l + x I    = -(1  + x).  In either case, if we mul• 
tiply both sides of our equation by either integrating 
factor, we arrive at 

 

(1 + x)y' + y = COSX. 

 

Check that the left-hand side ofthis result is the deriv• 

ative of a product, integrate, and solve for y. 
 

((1 + x)y)' = cosx 

(1 + x) y  = sin x + C 

sinx + C 
y(x)=--• 

I 4x 
 

8.    Divide by 1 +•to put the equation into normal form 

 
3° 

y' =        4r

y 
1  +x° 
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34    Chapter?2    First-Order Equations 
 

We see that a(x)  = 3r/   4'). Hence the inte• 
grating factor is 

 
 
 
 

Multiplying by this we get 

 
I       ,              3 

i+3'       +»'1±F 
 

We first verify that the left-hand side is the derivative 
of (1  +r')    y. 'Then we integrate, getting 

 
I                  I 
(= ;In( +r)+c. 

 
Solving for y, we gct 

 
 
 

 
9.    Divide both side of this equation by L and solve  for 

di/dt. 

di         R      E 
td 

d      L       L 

Compare this with i' = a(t)i + f()  and note that 

a(t) = -R/L.  Consequently, an integrating factor 
is found with 

u()  = el-a4r  _ IRtd  _ et 
 

Multiply both sides of our equation by this integrat• 

ing factor and note  that the resulting left-hand side 
is the derivative of a product. 

 

 
 

10.    Compare y' = my +ce" with y' = a(x)y + f() 

and note that a(r)  = m. Consequently, an integrat• 
ing factor is found with 

u()  = el -at4r  _ I-md _e 
 

Multiply both  sides of the differential equation by 
the integrating factor and check that  the resulting 

left-hand  side  is the derivative of a product. 

y'-my=ce" 
e"(y'-me")=c 

(e"y)' = c 

Integrate and solve for y. 

e"y=cx +c 
y=(cr +c)e" 

IL.   Compare y' = cos.x  --ysec.x  with y' = at)y + 
f(x) and note that a(r)  = -sec.x.  Consequently, 
an integrating factor is found with 

u(r) = el -at4r  _ fer4 

- alb»err+tnrl  _ [sec.x + tan.xl. 

If sec.x + tan.x  >  0, then [secx + tan]  = sec.r 4 

tan.r.   If sec.x  + tan.r  < 0, then [sccr + tan.r]  = 
- (sec x 4 tan r).  In either case, when we multiply 
both sides  of the differential equation by this inte• 
grating factor,  we arrive at 

(sec r +tan p)(y' + ysec x) = cos.r(scc.r + tan .x), 

or 

(sec r+tan.r)y'+(sec r +sccx tan)y = I+sin.x 

Again, check that the left-hand side of this equation 

isthe derivative of a product,  then integrate and solve

e' ·(-4-"f) 
-Et  . 

for y.

dr       L           L 

(eRt/Lt)' ::::  feRt/1 

 
Integrate and solve for i. 

wt_5pc 

io ='R +ce 

((sec.r  + tan)y)' = I + sin 

(sec x + tan)y ==  x -cos.x 4 C 

x -cosx +C 

Ygecx +tan.x 

12.    Compare x' --(n/tx  = e't" with.x' = a(t)rx + f() 

and note that a(t) = n/t. Consequently, an integrat• 
ing factor is found with 

uqt) = d-aw _I-w   _el_jy".
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2.4     Linear Equations    35 
Depending on the sign of t and whether n is even or 

odd, [t]" either equals t " or --r".  In either case, 
when we multiply  our equation  by either  of these 

integrating  factors, we arrive at 

t'-nt'=e'. 

Note that the left-hand side of this result is the deriv• 
ative of a product, integrate, and solve for x. 

 

("s)' =e' 

t"r=e' +C 

r =t"e'  4Ct" 
 

13.      (a)  Compare  y'  + y cos x   =  cos x  with  y'   = 
a(x)y + f (x)  and note that a(x)  = -COSX. 

Consequently,  an integrating  factor  is  found 

with 

uto) = e=fa@dr  _ fcosxdr  _ osin, 

 
Multiply both sides of the differential  equation 

by the integrating factor and check that the re• 

sulting left-hand side is the derivative of a prod• 

uct. 

where A is any real number, except zero.  How• 

ever, when we separated the variables above by 

dividing by y -1,  this was a valid operation 

only if y  ± 1.   This hints at another  solution. 

Note that y  = 1   easily checks in the original 

equation.  Consequently, 
 

y()  =I--Ae six 

 
where A is any real number. Note that this will 
produce the same solutions ay = 1    4Cesinx, 

C any real number,  the solution found in part 

(a). 
 

14.    Compare y'  =y 42xe'  with y' = a(x)y + f(x) 

and note that a (x)  = l. Consequently, an integrating 
factor is found with 

u()  = el ad el -Ids  _e'. 

 
Multiply both sides of our equation by the integrating 

factor and note that the left-hand side of the resulting 

equation is the derivative of a product.

a'('-+ycos.x)  = e" cos. 
(e"y)' =e' cos.x 

 

Integrate and solve for y. 

= ei'  4C 

=1 +Ce six
 

ey'-ey=2xe' 

(e'y)'=2x' 

 
Integration by parts yields 

f 2xex dx  = 2xex  - f 2ex = 2xex - ~ex + C.

y(x)
 

(b)  Separate the variables and integrate. 
 

-
dy  

= cosx(l  - y) 
dx 

 

Consequently, 
 

e'y=2xe'  -2e'  +C 

y(0)  = 2e'--2e +ce'

-
d
-
y

 
I-y 

= cosxdx 
 

 
The initial condition provides

- In I  1-y I        = sin x + C. 
 

Take the exponential of each side. 

l--y]=esinx-C 

I-y=±e,sinx 

If we let A = ±e  ,  then 

 

3=  y(0)  = 2(0)\   _2a09Ce" = 2+C. 
 

Consequently,C = 5and y(x)  = 2e?'-2e'+5e'. 

 
15.    Solve for y'.

 

y(0)  ==  1-- Aesi 
,                3.              6x 

y  = - x2 + 1   y + x2  + l
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36     Chapter2    First-Order Equations 
 

Compare this with y' = a(x)y + f()  and note that 

a(x) = -3x/(x +1).  Consequently, an integrating 
factor is found with 

u(x)  = el -a(dx  _ ~J3/a+Dd 

= ~G2at@+       ( 4 10, 
 

Multiply both sides ofour equation by the integrating 

factor and note that the left-hand side of the resulting 

equation is the derivative of a product. 

(+ 1)' +3x(+ 1)y = 6x( + 1) 

(@+1)' = 60+ 1)? 

Integrate and solve for y. 

0+ 1          20+ 1+€ 

y=2+C(+1) 3/ 
 

The initial condition gives 
 

-I= y(0) =24+C(0 +13/  2+C. 

 

 

Consequently, C = -/4 and 

tan'z 

4r· 
 

17.    Compare  x'  + x cost   =  (1 /2) sin 2t  with  x'  = 
a(t)x + f(t) and note that a(t)  =-  -cost.   Con• 
sequently,  an integrating factor is found with 

 

u(t) = l -ad  _ of cost   _ sir 

 
Multiply both sides ofour equation by the integrating 

factor and note that the left-hand side of the resulting 

equation is the derivative of a product. 
 

.                                                  .                                                                            1       . 
es''4 e"'(cost)x      -e"    sin 21 

2 

(e')'  = e"' sin21 
2

 

Therefore, C = --3 and y(x) =2 -304 1 3/2, 

 

16.    Solve for y'. 
 

4t                 I 

y  = - I  + t2   y +  l + t2 

Compare this with y' = a(t)y + f (I)  and note that 

a(t) = -4t/(1  + t2  
.   Consequently, an integrating 

factor is found with 

Use sin21  = 2 sin t cost. 
 

(er)' =e""" sint cost 
 

Let u = sint and dv  = e' cost dt.  Then, 

f e•inr cost sin t dt  = f u dv 

= uv - f vdu

u()  = el -atd  _ ~Ju/+rt 

• all+_(  ++. = (sint)esinr  - f  esinrcostdt

 

Multiply both sides ofour equation by the integrating 

factor and note that the left-hand side of the resulting 

equation is the derivative of a product. 

 

 
Therefore, 

= (sin1)e'  e' 4c

 

(1  4+r)y +41(1+1)=  -_, 
1 + t 

(0+)'=., 
1         t 

(141)y=tan 'z+C 

The initial condition y(l) = 0 gives 

(1+1)(0)  = tan'I  +C. 

 

e' = e"   sint -- es'  4 C 

x(t) == sint  -- 1   + Ce=sn 

 
The initial condition gives 
 

I  =x(0)  = sin(0) --1  +Ce sin@0)  _ --1  +C. 

 
Consequently, C ==  2and x(t) == sin t--142e sint
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1                               1.            C 

 

 

18.    Solve xy' + 2y = sin x for y'. 

2.4     Linear Equations    37 
 
negative infinity as x approaches zero from the right.

 

,  
z--

2 

 

+ 
sinx

x            x 
 

Compare this with y' = a(x)y + f() and note that 

a(x) =--2/x and f (x)  = (sinx)/x.  It is important 

to note that neither a nor f is continuous at x  = 0, 

a fa.ct that will heavily influence our interval of ex• 

istence. 
 

An integrating factor is found with 
 

uG) = el a@4   _ Pd _ alls!      Jr[  = R. 
 

Multiply both sides of our equation by the integrating 

factor and note that the left-hand side of the resulting 

equation is the derivative of a product. 
 

'y'+2xy  =xsinx 

(xy)' =xsinr 
 

Integration by parts yields 

f x sin.x dx  ==  -X COS x + f cos x dx 

5             
(r/2,0) 

 

 
 
 
 
 
 
 
 

-25~-------- 
0                                            6 

X 

 
19.    Solve for y'. 
 

y'=_'y+02x+3) 
2x +3 

 

Compare  this  with  y'  ==    a(x)y + f (x)  and note 
that a(x) = 1/(2x  + 3) and f(r)  = (2x 4 3)-2, 
It  is important  to note that a is continuous  every• 

where except x   = -3/2,  but f is continuous  only 
on (--3/2, +o0), facts that will heavily influence our

 

 
 

Consequently, 

= -x cosx  + sinx  + C. 
interval of existence. 

An integrating factor is found with 

u(o) = el -a0dr  _ el-yr+3)dx

 

ry=-xcosx  + sinx  + C, 

y  = -- cosx + - smx  + -. 
x               x2                   x2 

 

The initial condition provides 
 

4       4C 
0=y/2)=_+. 

7t 

Consequently,  C  = -1  and y   = -(/x)c0sx  + 
(1/x)sinx  -- 1/. 

We cannot extend any interval to include x  ==  0, as 

 

=e(/2n2+3l      [2r 4 3;/2 
 
However,  we will  assume  that x   >   -3/2 (a do• 
main where both a and f are defined), so u (x)  = 
(2.x  + 3)-/,   Multiply  both sides of our equation 

by the integrating factor and note that the left-hand 

side of the resulting  equation is the derivative of a 

product. 
 

(2  +3)'      (2x +3)         =(2x  +3)' 

((2 +3)-5)' =(2  +3)' 

Integrate and solve for y.

our solution is undefined there.  The initial condition 
y(/2)  = 0 forces the solution through a point with 

x  = 7/2, a fact which causes us to select (0, +-00) 

as the interval of existence.   The solution curve is 

1 
02 +3)y=I 

 

or 

I
 

 

n(2r  +3)  +C,

shown in the following figure.  Note how it drops to y=,02x +3)1n(2±  +3) +C(2 + 3
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The initial condition provides 

 

0=y(-l)=C. 

Consequently, y = (1/2)021 +3)/ In(2r +3).  The 

interval of existence is (--3/2, +00)  and the solution 
curve is shown in the following figure. 

 

 
 

6 
 
 
 
 
 
 
 
 
 

-1  '------------- 
-2                                                6 

X 

 
 

Consequently, C = 2 and 

x -cos.x +2 
'  ecr +tan.r 

The initial condition forces the graph to pass through 
(0, I),  but a(r)  has  nearby discontinuities  at x  = 
-n/2and x = n/2.  Consequently,  the interval  of 
existence is maximally extended to (--/2, n/2), as 
shown in  the following figure. 
 

 
 

25 
 

 
 
 
 
 

(0.1) 
 

 

-5'------------- 
-1.57                   X                             

1.57

20.    Compare y' = cos.x  -ysecrx  with y'  = a(v)y  + 
ft) and note  that  at)  =  -sec.r  and f(x)   = 
cos x. Although f is continuous everywhere, a has 
discontinuities atr = 2 + kn, k an integer. 

 

 
21.    Solve for.r. 

 
 
 

•                       I                       cost 
t

An integrating factor is found with 

u() = el at4 _ Jeerd 

_ al/er+trl  --  ]secx  + tan rl. 

If secx + tan r > 0, the [sccx  + tan]  = sec.r + 
tan x.  If sccr  + tanx  <  0,  the [sec.x  + tan.r]  = 
-(sec.x  + tan x).  Multiplying our equation  by ei• 
ther integrating factor produces the same result. 

 

(sec.x + tanr)y' + (sec x tanx + sec r)y 

=I +sinx, 
 

From which follows: 

((sec.x + tan)y)' = 1  + sin x 

(sec.x + tanx)y =x -cos.r +C 
 

Use the initial condition, y(0) ==  I. 

(sec0 + tan0)(1)  = 0 - cos(0) +C 

I  +t      I+t 

Compare this result with.r' = a(n)x +f (t)  and note 

that a(t)  = --1/(1  +)  and f()  = cost/(1  + 1), 

neither of which are continuous at t  = -I.  An inte• 
grating factor is found with 

u()  = el a@w  _ IM+D  _ !"!       [1  +1] 
 

However, the initial condition dictates  that our so• 

lution  pass through the point (--n/2,0).   Because 
of the discontinuity   at t  = -I,  our solution must 
remain to  the left of t  = --1.   Consequently,  with 
t  < -I,utt)  = -(I+t).  However, multiplying our 
equation by u(t) prod uces 

(I +1)x' +x == cost, 

((1 +1)x)'  = cost, 

(I +n)x  =sinr  +C. 
 

Use the initial condition. 

(-)or-»(-)+
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x    dx      x        r 

• 

dt 

. 

-2- 

 

 

Consequently,C = I   and 

=  
I  +sint

 
I  4t 

2.4     Linear Equations    39 
 

This is a linear equation for z. The integrating factor 

is I/x, so we have 

'[{-;]-!o

The interval of existence is maximally extended to 
(-oo, -I), as shown in the following figure. []-• 

.-r+€
x 

0                                                                                                      z(r)=x(C -x) 

Since z = 1/y, our solution is y()   c
 

 
 
 
 
 
 
 
 

-1  -----------~ 
--4                                         -1 

 
 

22.   Letz =±!-".  Then 

: _dd_a-m+'r 
d   dx  dt                          dt 

 

This  motivates  multiplying our equation  by (l 

n)r"  to produce 

( -me-«" _-an'"+(-m)ft. 

I 

 

24.  In this case n  =2, so we setz = y'. 'Then 

dz       dzdy 

z% 
=y[-r] 

I 
ml4 

y 

=--l4z 
 

This is a linear equation  for z.  The integrating factor 
is e  ', so we have 

"[:?=-e 
 

[e':]'=-e' 
e'z=e'+C 

z() = I +Ce'

 

Replacing (l - n)x "dx/dt  with dz/dt  and ! 
with  z produces the desired result. 

 

dz     
(-a(x+(  -nf 

Since z ==  I/y our solution is y(r) = 
 
25.   Solve for y'. 

1 

I   +Ce

23.   In this case n =2, so we setz = y'.Then 
 

-
dz 

~-
dzd
-

y 

dx     dy dx 

=-y[1ry      "3] 
I 

z th 
.ry 

z 
t• 

x 

 

Compare this with y' = atr)y + f(x)y" and note 
that this has the form of Bernoulli's equation with 

n= 3.Letz =y!'=y. Then 

d _Md_2! 
dx      dy  dr                dx 

Multiply the equation by -2y  . 
 

•        dr_x     ,rx ·-2
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40     Chapter 2      First-Order Equations 

Replace --2y(dy/dx) with dz/dx and ywith z. 
 

dz       2            + 
--z--Zr 
dx       x 

This equation is linear with integrating factor 

u()  = elf -a@d   _ f -2Ids  _2llx!  _? 

 
Multiply by the integrating factor and integrate. 

.'-2z=-2x 

(e7)' =-2x 

z=-r+€ 

z=-+CR? 

Replace z with y ? and solve for y. 

y=-x'+Cx 

y=±1//CR -r' 
 

26.   Compare this with P'  = a(t)P + f()P" and note 

that this has the form of Bernoulli's  equation  with 
n =2.Letz  =  pi?-P '. Then 

d_ddP  _pa@P 

dt       dP   dt                   dt 

Multiply the equation by -P 2. 

 

-p·
dP=aP

1 
4b 

dt 
 

Replace -P (dP]dt) with dz/dtand  P 'with z. 

Replace z with P'  and solve for y. 
 

 

a ice" 
 

P=----• 
b/a     Cea' 

 

27.      (a)  Since y=+z, y = y; +2yz +z.  Hence 

z'=y-y 

=-[ly +by +g]+[Ny; +y; + xl 

= Vly;   y]+ly1  - yl 

=-l[2yz +z]-¢z 

= -Q2y/ +d)z - 

(b)  Since y = 1/tis a solution, wesetz =  y+1/1. 

Then y  =z -1/t, and y = z --2z/1 +1/1, 
so 

z=y•  
1
 

 

1          y        2        1 
=t 

 

- 
3z 

+? 
2
 

t 

This is a Bernoulli equation with n ==  2.  Thus 
we set w = 1/z.  Differentiating,  we get 

 

w'=-'£2 . 

-[r?         t ]
dz 

=az 4-b 
dt 

 

3 
--] 

tz
This equation is linear with integrating factor 

u(t) = el -a@d  _ %fad  _ e. 
 

Multiply by the integrating factor and integrate. 

 
e"       +ae"z = be" 

dt 
 

--(ez) = be" 
dt 

3w 
--], 
t 

 

This is a linear equation, and t ' is an integrat• 
ing factor. 
 

 

•[      ]-+ 

[w] =-r?

ez =-
b 
e4+C 

a 
h 

z=-4Ce 
a 

w= 
1 
1+c 

w()= -1  +Ct 
2
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I 2 2 

0~ r+2c» ,' 

 

7 

+ 

4 

4                    4 

 

 
 

Now it isa matterof unravelling the changes of 
variable.  First 

 
 
 

Where we have set B = 2C. Then 

I                   2           J 
y(=(-; ,4n  ; 

2.4    Linear Equations    41 
 
T(n)  = -t  + 1/k 4Ce'. Since  T(0)  = 31,  the 

constant evaluates to C = 31  -- 14k. The solution is 
T(t)  = -I +1/k +(31  - /ke'. 

We need to compute the time to  when T(tu)  = 37, 
using k  z 0.2231  from Exercise 35 of Section 2. 
This is a nonlinear equation,  but using a calculator 
or a computer we can find that to z --0.8022.  Since 
t  = 0 corresponds to midnight. this means that the

time of death is approximately IE:12 PM.

This looks a little better if we use partial frac• 

tions to write 

@=,2           1
 

2        2B1 
=-1         77 

2B81 
=-j+ Br 

 

28.   The model is N' = kN(O00 -- N), where the pro• 

portionality constant k is yet to be determined. Since 
we know that  when N  =  100,  the  rate of infec• 
tion is 90/day, we have k. 100.900 = 90, we find 
that k =  I   x 10',   Hence the model equation is 
N'=N-N/1000. This is a Bernoulli equation, 
with n=2.  Accordingly we set.r = 1/N. 'Then 

 

r'=-N'/N? 

= -1/N +10 

=-r410' 
 

Solving this linear equation, we get.x(n) = 10'[1+ 
Ce'] Hence N()  = /x(t)  = I000/[I  + Ce'). 
At1  = 0,N =20 = 1/[I +C]. Hence C = 49, and 

the solution is N()  = 1000/[1  449e']. 

We have N(1)  = 0.9 x 1000 = 900 when 1  = 6.089 
days. 

 

29.   Newton's  law  of cooling says the rate of  change 
of temperature is equal  to k  times the difference 
between the current  temperature and the ambient 

temperature.   In this case the ambient temperature 

is  decreasing  from  0C,  and at a constant rate of 
1C  per hour.   Hence the model equation is T' = 
-k(T 4+1),  where we are taking t = 0 to be mid• 
night,  This  is a linear equation.  The solution  is 

 
30.   'The homogeneous equation, y' ==  -33y has solution 

(t)  = e, We look  for a particular solution  in 
the form y,(t)  = v()y(t), where v is an unknown 
function.  Since 

y,= v'+vy% 

= v'y, - y» 

= v'y -3y, 

and y,  = -3y, +4, we have v' = 4/y,  = 4e". 

Integrating we see that v(t) = 4e/3, and 
 

y,(o= v(»G=·e"= ; 
 

The general solution is 
 

y()=,(0 +Ct)=;+Ce, 

 
31.   The homogeneous equation, y' ==  --2y has solution 

y(t)  = e?',  We look  for a particular solution in 
the form y,(t)  = v(D)y(), where v is an unknown 
function.  Since 

y',= v'» +vy 

=v'y, -21y» 

=v'y,  -2y,, 

and y, = -2y,  + 5, we have v'  = 5/y  = 5e. 
Integrating we see that v(t) = 5e/2,  and 

,to= v@»to-}.e-} 
 

The general solution is 

y()=y,(0) +C»(n)= +5    
Ce

•
.
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42    Chapter2    First-Order Equations 

 
32.   The homogeneous equation, y' = -(2/x)y has so• 

lution y»(r)  =    , We look for a particular solution 

in the form y,()  = v(x)y(),  where v is an un• 
known function. Since 

y,,=v'» +vyj 

= v'y», -2y,/x, 

and y, == -Q2/)y, + 8x, we have v' = 8x/y  = 
8r'. Hence v(x)  = 2, and 

y,6) = v()(9)  =2. 
The general solution is 

y(0)=y,() +Cy(t)  = 2r +Cr. 
 

33.   The homogeneous equation, y'  = -y/t, has solu• 
tion y4(n)  = 1/t. We look for a particular solution in 
the form y,(t) = v(t)y(t), where v is an unknown 

 

 
35.   The homogeneous equation, y' = -2xy has solution 

y()  = e,We look for a particular solution in 
the form y,(x) ==  v(x)y(r), where v is an unknown 

function.  Since 

 
Y,=y +vy

f

 

=v'y, -2xy,, 

and y, = 2ry,  + 4x,  we have  v' = 4x/y,  = 
4e'.Hence v(x) = 2e', and 

 

y,(r) = v()y()  = 2. 

The general solution is

function.  Since  

Y,
t  = vy» + vyj 

yGo)=y,(n) + Ct) = 2+C 
2 

e'.

=v'y -2vyy 

==  v'y -»lt, 

and y, = -y,/r +4t,  we have v' = 41/y, = 4£, 

Integrating we get v(n)  = 4r/3, and 

,Gn= v(»@=;4 r. 
The general solution is 

 

y()=  y,(0) +Cy()= ;t +C/. 

 
34.   The homogeneous equation, x' = --2x has solution 

x(t)  = e?',  We look  for a particular  solution  in 
the form x,(t) = v(t)n(), where v is an unknown 

function. Since 

4,=vn+ vx 

= v'x -2x 

=v'n -2r,, 

and x, = -2x,  +t,  we have v' = t/x  = e'. 
Integrating. we get v(n)  = (1/2 - 1/4e, and 

x,(0)= Go)no)= ;I2 - 1. 
x(0)=,() +Cn)= ;

I 
2I -H+Ce

-2
.
r
 

 

36.   The homogeneous equation,  y' = 3y has solution 

y(t)  = el'.  We look  for a particular  solution in 

the form y,(t)  = v(t)y(t),  where  v is an unknown 

function.  Since 
 

y,= v'+v% 
=v'y, + 33y 

= v'y+3y,, 

 
and y,=3y, +4,  we have v'  = 4/y%  = 4e, 

Integrating we see that v(t) = --4e/3, and 

 

y,to) = v(t)y(n)  = ---e.e"=--. 
3                            3 

 
The general solution is 

 
 
 

 

Since  y(0)  = 2, we must have2  = -4/3 + C, or 

C = 10/3. Thus the solution is 
 

yqt) = (-4+ 10")/3.
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e', 

r, 

'y - [+@>' 

2+. 

 

 
 

37.   The homogeneous equation  y' = -y/2 has solution 

y(n)  =         We look for a particular solution of 

the form y,(n)  = v(t)y(t),  where v is an unknown 

function.  Since 

y',= v'  + vy 
=v'y»  -vy,f2 

=v'y -y,l2. 
 

and y,=  -y,/2+1, we have v' =t/y(t)  = te, 
Integrating  we find that v(t)  = (21  - 4)e,  and 

y,()  = v(D)() = (21 - 4). The general solution 

is y()  = y,() +Cy(o)  = (21 --4) +Ce'.From 
y(0) =  I  we compute that  C = 5, so the solution is 

y() = (21  --4) + 5e 

 
38.   The homogeneous equation y' = -y has solution 

y(t)   = e'. We look  for a  particular  solution  of 

the form y,(t) = v(t)y,(t),  where v isan unknown 

function.  Since 

y,=v'» + vy 
=='yg-vyy 

=v'y -», 
 

and y, = -y, +e,we see that v' =e'/y, = e 
Integrating  we get v(t) = e/2, and y,(n)  = e' [2. 

The general solution  is y(n)  = y,(n)  + Cy(t)  = 
e'[2 +Ce'.  From  y(0)   =  I,  we compute that 
C= 1/2, so the solution is 

2.4     Lnear Equations    43 

Cy»Gx)  =r -I+Ce".Since y(0)  = -I,  we 

have C = 0, and the solution is 

y(r) =r-1. 
 
40.   The homogeneous equation r'  = (2/1)r has solu• 

tion x(r) = e?/, We look for a particular solution 
of the form x,(t)  = (o)x(0),  where  v is an un• 

known function.  Since 

x,=v'n +vx, 
= v'n +2/r 

= v'n +2x,/r, 
 

and r, =2r,/r +1/r, we have v' = 1/(rm) = 
elf• Integrating  we  find  that  v(o)  = --e'[2, 
and x,(n) = -1/2. The general solution  is (n) = 
x,(0)  +Cm(o) = --1/2 + Ce!'.Since (D = 0, 

we find that C = e[2, and the solution is 
 

I 
rt)=;(-1+a-). 

 
41.    The homogeneous  equation r' = --4tr/(1 41) has 

solution x(n)  = (1 41)  . We look for a particular 

solution  of the form r,(n)  = v(t)x(0),  where  v is 
an unknown function.  Since 

r,=v'n + vx, 
='n -4ur,/(1  +1), 

and      = -4nx,/(1 +1)+1/(1  +1),  so

I 

yt==,('+e').
 

r              1 
t z --· 

I 
-mt(l4 .2 

f')

 
 

39.   The homogeneous equation y' = -2xy has solution 

yGx)  = e",We look  for a particular solution  of 

the form y,(x)  = v(x)y(r), where v is an unknown 
function.  Since 

y',=v'y» + vyj 

=         2xvy, 

1+1    n() 

Integrating. we get(t)  =r/2 41/4.Thus 

2r +r' 
r,()= v()n()     4!' 

 

The general solution is 
 

r(n)= r,(n) + Cn(o) = 
4C +20 41'

=v'y -2xy,, 

and y, = -2ry, +2,  we see that v'  = 
Integrating we get v(r) = (- pe",and y,tr) = 
-1.  The general  solution  is y(r)  = y,(x)  + 

 

The initial condition x(0)  =  I  implies  that C = I, 

so the solution is 

442141' 

yG0=      +@'
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44    Chapter2    First-Order Equations 
 

42.      (a)  The equation  T + kT = 0 is separable.  with 

solution T = Ce, C an arbitrary constant. 

(b) The equation T' = --k(T -- A) is autonomous. 
We seek a constant  solution  (see Section 2.9) 
that makes the right side equal to zero.  Hence,

 

 

 
 
C) provides 
 

c_.kA 
k 4 a} 

 
 
 
 

 
and

T,= Ais a particular solution of the inhomo• 
geneous  equation. 

Substituting these results  in T, ==  C cos@r + 
D sin ct provides the particular  solution

(c)  The  general  solution  is  T   = T  + T,  = 
Ce4A,with C an arbitrary constant.

 T,=-
 
 

«kA 
; cos@t +   

4A 
 
sin 

 

@t.;

 
(d)  Again, the solution of the homogeneous equa• 

tion T' +kT  = 0is T  = Ce,  with C an 
arbitrary constant.  The inhomogeneous equa• 

tion T' = -k(T -A) + H is also autonomous 
(the right side is independent of n).  We seek a 

constant solution by setting the right side equal 

to zero. 

k  +a            k  +t 

Hence, the general solution is 
 

T =T +T, 

=Fe_,,+ Jr.2-~wl  [krsinw1  -wCOSM].

 

-kT,  -A)= H 

T,-A= 
H 

44. (a)  If the period of the ambient  temperature is 24 

hours, then the computation 
 

2n      2n 
(LL 

T        24       12

T,=A+ 
 

Hence,  the  general  solution  is  given  by  the 

equation 

r-+r,-c"+(+[) 
 

43.      (a) The  solution   of  the  homogeneous  equation 

T'+kT  =0isT = Fe'',with  F an ar• 
bitrary constant. 

(b)  We guess that T, = C cos «r  + D sin or  is a 

particular solution.  Substituting T, and      = 
-Cc sin ct  + D cos at  in the left  side  of 

T'+kT  = kAsin@t,  then  gathering  coeffi• 
cients of cos ct  and sin @t,  we obtain 

T,+kT, = (-aC+kD) sin «or +(kC+@D) cos at. 

(4.1) 
Comparing  this  with the  right  side  of T,  + 
kT, =kAsin@t, we see that 

-C +kD =kA         and        kC +«D  = 0. 
 

(c)  Solving these equations simultaneously (for ex• 

ample. multiply the first equation by k. the sec• 

ond by «, then add the equations to eliminate 

 
gives the angular frequency.  Because the sinu• 
soid has a maximum  of 8@° F and a minimum 
of 40° F, the amplitude will  be half of the dif• 

ference, or 20.  A sketch  of the ambient tem• 
perature  follows. 
 

 
 
 
 
 
 
 
 
 
 

6         12        18        24 

 
 
Note the minimum at 6 am, then the maximum 

at 6 pm.  What we have is an upside-down  sine, 
with angular frequency n/12, that is shifted up• 
ward 60° F. Thus,  the equation for the ambient 

temperature must be 

 
A=60- 20s 

12
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:cos@r
mailto:cos@t
mailto:@t
mailto:kAsin@t
mailto:@t
mailto:kC+@D
mailto:kAsin@t
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T+, 5 

.a 

}o           ,r)a." 

I 

,0 

4+n 

 
 
 

The refore, the model, adjusted  for this ambient 

tem pe ra tu re,  bec om es 

4d  -'2 (r-so+2s" »"12).     «2» 
 

(b)  The homogeneous  equation T' +(1/2)T  = 0 

has solution 7, = Ce', where C is an arbi• 

trary constant.   Now,  consider the inhomogc• 
neous equation 

 

,        1                                                               .rt 
T=30-10sin                04.3) 

 

Note that the right hand side consists of a con• 

stant and a sinusoid.  Let's try  a particular so• 
 

 

T,=D+Ecos,,+Fsin,5.       (4.4 

2.4    Linear Equations    45 
 

Thus, the general solution is T = T + T,, or 

 
 
 
 
 
 

 
Now, when  the initial  condition  T(0)   = 50 

is  substituted  into equation  (4.6),  we obtain 

C = -10-120/(364+r).  Thus, the general 
solution becomes 
 

T=-   10+-
12cm  ) 

e'460 

mp    z

lution having the form 

t    I
 

(      36 +

Substitute  this guess and its derivative into the 

left hand side of equation (4.4) and collect co• 

efficients to get 

r+'r -  +(-5,r+ 
2         2                12         2             12 

-(e+,)«T 
(4.5) 

 

Comparing this with the right-hand side of 
equation (4.3), we see that 

l    
=30. 

 

sf+5
I 
F=-10.     and 

 

5FF• 
Clearly,  D = 60,  and solving the remaining 
two equations simultaneously, we obtain 

r_  120                                  -720 
t                and        F a 

36                                     36+1 

These  values of D, E,  and F,  when inserted 

into equation (4.4), provide the particular solu• 

tion 

I20n           t  720 

T,=6+564,5+""T 

'5+le';5 -°,5· 
(4.7) 

 

 
(c) The plot of the ambient temperature is shown 

as a dashed curve in the following figure. The 

temperature T inside the cabin  is shown as a 

solid curve. 
 
 

75 

70 

65 

60 

55 

50 

45 

 
0  6  12182430364248 546066  72 

 

 
 

Note that the transient part of the solution dies 
out quickly.   Indeed,  because of the factor of 
e',the time constant (See Section 2.2. Exer• 

cise 2?)is T = 2hr.  Thus, in about four time 
constants,  or 8 hours, this part of the temper• 
ature solution is negligible.  Finally, note how 

the temperature in the cabin reacts to and trails 

the ambient temperature outside, which makes 
scnse.
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46    Chapter2    First-Order Equations 
 

Section 2.5. Mixing Problems 
1. (a) Let S() denote the amount of sugar in the tank, 

measured in pounds.  The rate in is 3 gal/min x 

0.2 lb/gal    =  0.6 Jb/min.   The   rate   out  is 

3 gal/min  x  S/100 lb/gal   = 3S/100 lb/min. 

Solution  enters the tank at 5 gal/min,  but the 

concentration   of this  solution  is  1/4 lb/gal. 

Consequently,

Hence 1 
rate in =  5gal/min  x blgal = 

5  

b/min.

-
dS  

= rate 
. l   l 

 

-rate out
dt 

= 0.6-- 3$/100 

 
This linear  equation  can be solved using the 
integrating factor u(t) = et/to get the gen• 
eral  solution  S(t)  =  20 4 Ce -3/100,   Since 

Solution leaves the tank at 5 gal/min, but at what 

concentration?   Assuming perfect mixing, the 

concentration of salt in the solution is found by 

dividing the amount  of salt by the volume of 

solution, c(t) = x(t)/100.  Consequently,

S(O) = 0, the constant C = --20 and the solu•
 

rate out =  5 gal/
 .              x(t) 

nx       lb/gal 
1                            . 

x(t) lb/m n.

tion is S(t)  = 20(1  -- e-3t/10 
mi                                                i 

100                20

$(20) = 10(1  --e-")  = 9.038lb. 

(b)  S()   = 15  when  e 3/100    _  1   --  15/20 

1/4.  Taking logarithms  this translates  to t  = 
(100 1n 4)/3  - 46.2098m. 

(c)  Ast -»> oo S(1) ->  20. 
 

2.     (a)  Let x(t) represent  the number  of pounds  of 

sugar  in  the  tank  at time  t.    The  rate  in is 

0,  and the rate out is 2 gal/min·  x/50  lb/gal 

= x /25  lb/min.   Hence the model equation is 
x'  ==   -x/25. The general solution  is x(t)  == 
Ae-/5,The initial condition implies that A = 
x(0)  = 50 gal x 2 lb/gal=  100 lb.  Hence the 

solution is x(t) = 100e-'5.  After I0 minutes 

we have x( 10)  = 67 .032 lb of sugar in the tank. 

(b)  We have to find t such that x()  = 100e /5 _ 

20. This comes tot  = 25In 5 z 40.2359 min. 

(c)  x(1)  = 100e-/25  _» 0ast ->  00. 
 

3.     (a)  Let x(t) represent the number of pounds of salt 

in the tank  at time  t.    The rate  at which the 

salt in the tank is changing with respect to time 

is equal to the rate at which salt enters the tank 

minus the rate at which salt leaves the tank, i.e., 

 
As there are 2 lb of salt present in the solution 
initially, x(0) = 2 and 
 

dx       5            1 

i 56'     r0)=2 
 
Multiply by the integrating factor, e(/0',  and 

integrate. 

(20,' 2no 
/ow, = 25%0/20   ±C 

x =254 Ce\/20 

 
The initial condition x(O)  = 2 gives C =-23 

and 
x()  = 25 - 23e0/20¥ 

 

Thus, the concentration  at time t is given by 
 

x(1)       25 -- 23e-0/20% 

c(t) = 100 =        100 

 
and the eventual concentration can be found by 
taking the limit as t -» +0.

 

-
d.x  

= rate 
. 

 
- rate out. 

 
Jim 

25 --23-0/20  
= -

1  
lb/gal

dt 
 

In order that the units match in this equation, 

dx/dt, the rate In, and the rate Out must each 

be measured  in pounds per minute (lb/min). 

t-»+6o            100                 4 
 

Note that this answer is quite reasonable as the 

concentration  of solution  entering the tank is 

also 1/4 lb/gal.
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(b) We found it convenient to manipulate  our 
original differential equation  before using our 

solver.   The  key  idea is simple:   we want to 

sketch the concentration c(t), not the salt con• 

tent x(t). However, 

x(t) 
c(t)                     or        x(n)       100c(). 

LOO 

Consequently,  rx'(t)  = 100c'().   Substituting 
these into our balance equation  gives 

,         5           I 

=;5' 
1ooe?-aooe) 

4      20            ' 

1                     I            1 

<%o    20° 

with c(0)  = r(0)/100 = 2/100 = 0.02.  The 
numerical solution of this ODE is presented in 

the following  figure.  Note how the concentra• 

tion approaches 0.25 lb/gal. 
 
 

c'=1/80 - 1/20 c 

Let c(t) represent the concentration at time t. Thus, 

c(t) = x(n)/500, or 500c(t)= ()  and 500'(t)  = 
r'(t).  Substitute these into the rate equation to pro• 

duce                                  
r 

so¢= $%05900. 

¢= so° 
This  equation  is  separable,   with   solution  c   = 
Ae-tr9o_   Use the initial  concentration, e(0)  = 
.05 lb/gal, to produce 
 

c =0.05et/00¢ 

 
The concentration must  reach 1%  in  one hour (60 
min), so c(60) = 0.01  and 

0.01  = 0.05-/00060 
 

'
s 
_•oas

'
 

25 
r=zln5 

r     13.4gal/min.

 

0.3 
 

 
0.2 

c 

0.1 

,,,,,,,,,,,,,,       «_ 
 

,,,,,,,
a, ,
'
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

t'4 
+et                                           d 

a+ + tt+# t  t 
+ t + # ttt             t        t t 

+++#++t 

t  t  t
 

5.    The volume  is increasing at the rate of 2 gal/min, so 
the volume at time r is  V(r) = 20 + 21. The tank is 
full  when V(r)  = 50,  or when t = I5 min. If r(t) 

is the amount  of salt in the tank at time t, then the 
concentration is x()/V(1). The rate in is 4 gal/min 
.  0.5  lb/gal  = 2 lb/min.   The rate out is 2 gal/min 
·r/V lb/gal.  Hence the model equation is

td 
f t #    +      +               +# 

+                                                   rt t  t  t  t  t  t   +            t  t 
4444           4     4    t   +             t   +                           tt + 

4     4                     4    ft t    4      t   t    t        t  tt 

[  he           +                          it ti t ttti t tt+ 

0                    50                  100 
 
 

4.    Let x(t) represent the amount of salt in  the solution 
at time r. Let r represent the rate (gal/min) that water 

enters (and leaves) the tank.  Consequently,  the rate 
at which salt cntcrs the tank is 0 gal/min, but the 

 

•            x0)              r                   · 
rate out      r gal/min         '&a!                      Ib/min. 

 

Thus, 
d
;
r  

=rate  
. 
n rate out, 

dx            r 
Lr 

dr         500 

 
,                                              X 

r'=2-2x/=2  10+i' 
 

This linear equation can be solved using the integrat• 

ing factor u() = 10 +t, giving the general solution 

x(t) =  10 +1 +C/(10 41). The initial condition 

r(0) = 0 enables us to compute that  C = --100, so 
the solution   is r(t)  = 10 41  --  100/(10  + p).  At 
t  = I5, when  the tank is full,  we have x(15)  = 21 
lb. 

 

6.    The volume  in  the tank is decreasing  at I    gal/min, 

so  the  volume is   V(t)   =  100  -- t. There  is  no 
sugar coming  in,  and  the rate out is  3 gal/min x 
S(t)/V(t) lb/gal. Hence the differential equation is 

 

ds      -3$ 

io-i
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48    Chapter 2       First-Order Equations 

This equation is linear and homogeneous.  It can be 
solved by separating variables.  The general solution 

is S()+A(100-1). Since S(0) = 100x0.05  = 5, 

we  see  that  A   = 5  x  10  ,   and the solution  is 
S()  = 53  10°  x (100 --1). 
When V(t)  = 100 - t = 50 gal, 

S()  = 5  x 10       50'  = 0.625 lb. 
 

 
7.      (a)  The volume of liquid in the tank is increasing 

by 2 gal/min.    Hence  the volume is V (t)   = 
100 + 2t gal.  Let x(t)  be the amount of pol• 
lutant in the tank,  measured in lbs.   The rate 

We are asked to find when this is one-half of 

21.5342.  This happens when (30 --1)  = 450 

or at t = 8.7868 min. 
 

8.    Let x (t) represent the amount of drug in the organ at 

time t.  The rate at which the drug enters the organ is 
 

rate in ==  a cm'/s  x g/cm'  = ax g/s. 
 

The rate at which the drug leaves the organ equals 

the rate at which fluid leaves the organ, multiplied 

by the concentration  of the drug in the fluid at that 

time.  Hence,

in during this initial period is 6 gal/min .    0.5
 

rate out = bcm'/sx
 x(t) 

g/cm'  =
 b 

x(t)g/s.

-  -
lb/gal  = 3  lb/gal.    The rate  out  is  8 gl/min 
·x/V  =4x/(50-+-t). Hence the model equation 

is 

 
Consequently, 

V +rt             V+rt

x'  = 3-4x/(50+ t). 
 

This linear equation can be solved using the in• 
tegrating factor u(t)  = (50 + t)4

.  The general 

solution is x(t) = 3(50 +1)/5 +C(50 +1)-. 

The  initial condition  x(O)   = 0 allows us to 
compute the constant to be C = -1.875 x 10°. 

Hence the solution is 
 

31              1.875      10°
 

dx                      b 
.(k        t , 

dt                 Vo +rt 
 

The integrating factor is 

u()  = fb/Ko+rd  _   ht(v+         (V+rm/r 
 
Multiply by the integrating factor and integrate. 
 

((V +roe)' =ax(V%  +r!

x(= z+ 
 

30-   so+·" 
 

aK 

(Vi      rt)bfr X -- ( /  r t)bfr+ 1                   L 
o                                    r(b/r  +1)     ""

After  10  minutes  the tank contains x(10) 
21.5324 lb of salt. 

(b)  Now the volume  is decreasing  at the rate  of 

4 gal/min from the initial  volume of 120  gal. 
Hence if we start with t = 0 at the 10 minute 
mark, the volume is V (t) = 120- 4t gal. Now 
the rate in is 0, and the rate out is 8  gal/min 

-x/ V = 2x/(30 - t).  Hence the model equa• 
tion is 

2x 

x = (V+rt)+L(V+rtbl/r 
b +r 

No drug in the system initially gives x(O)  = 0 and 

L=-axy?''''/( +r).  Consequently, 
 

ax                      akey/r+1 
x= (+rt)-        D              (V+rub/r 

b +r                  b+r 

."(+ro[-vt"+ror']

X   =--- 
30- t 

This homogeneous  linear equation can solved -#r

 

[tV±rt 7
by separating variables to find the general solu• 

tion x(t)   = A(30 --1).  At t  =-  0 we have 
x(O)   =  21.5342,   from  which  we  find that 
A  = 21.5342/900,  and the solution is 

x= (Vo+rt)    I-    ' 
b 

 
The  concentration   is  found  by  dividing  x(t)  by 

V()  = V +rt.  Consequently, 

(t)=-=-    1t-     -a-  1 .c 
b #r          V +rt 
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9.      (a)  The  rate at which pollutant enters the lake is 

rate in = pkm/yr. 

The rate at which the pollutant leaves the lake 
is found  by multiplying  the flow rate by the 
concentration of pollutant in the lake. 

rate out = (r + p)km/ye'!'' nan' 
V 

-',,/o' 
Consequently, 

dr            r+p 
P• 

Bute(t)  = x(n)/V, so Ve'(t) = r'(t)  and 

r+ p 
Ve'=p-  '(Ve) 

r +p       p 
e'+-'<=i; 

(b)  With r = 50 and p = 2, the equation becomes 

2        50+2 

•16 o' 
e' = 0.02  -0.52c. 

This is lincar and solved in the usual manner. 

(e9e)' = 0.02.095% 

o,_00ads 
0.52 

e=4eon 
26 

The initial concentration is zero, so c(0) = 0 
produces K = -1/26 and 

 

I            I      _-0.s2¥ 

•=2% 26°. 
 

The question asks when the concentration 
reaches 2%, or when c(n)  = 0.02. Thus, 

 

oo=~,[;(-"). 

09_0.48, 

In 0.48 
f 

0.52' 
t       1.4I years. 

 
10.    Because the factory stops putting  pollutant  in the 

lake.  p = 0 and  c' + ((r + p)/V)c  = p/V  be• 

comes 
 

,        50 

''io'= 
Note  that  we  carried  r  = 50  from  Exercise 9. 

This equation  is separable,  with   general  solution 

c =  Keany,   The initial concentration  is 3.5%, 
so c(0) = 0.035 produces K = 0.035 and 

 

ct) = 0.035ea 
 

 
The question asks for the time required to lower the 
concentration  to 2%.   That is,  when  docs c(t)  = 
0.02? 

 

0.02 =0.035en2 

1                       0.02 
--t  =jn 

2            0.035 
0.035 

ff2}1 
0.02 

t  RI.lyears 
 
 
IL.     (a) The concentrations are plotted in the following 

figure.  In steady-state the concentration varies 

periodically. 

 

 
0.04 

 

 
 
 
 
 
 

0.035 

 
30                 40                 50 

 

 
(b)  The following figure shows one year of the os• 

cillation, and indicates that the maximum con• 

centration occurs early in February. This is four 
months  after the  time  of the  minimum flow.
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Thus there is a shift of phase between the cause     13. 

and the effect. 

(a)  Let x(t) be the amount of pollutant (measured 

in km?) in Lake Happy Times.  The rate in for 

Lake Happy Times is 2km'/yr.  The rate out is 

52km/yr  x x/100  = 0.52x km/yr.   Hence 
the model equation is 

 

x' = 2-0.52x.

 
0 

 
 
 
 
 

Feb                    Jul 

t 

 
 
 
 
 
 
Jan 

This linear equation  can be  solved using  the 
integrating  factor u(t)  = e0.524, With the ini• 
tial condition  x(0)  = 0 we find the solution 

x()  = 2[1  -e-054/0.52. 

Let y(t) be the amount of pollutant (measured 

in km) in Lake Sad Times.  The rate into lake 

Sad Times is the same as the rate out of Lake 

Happy Times, or 0.52.x km/yr.  The rate out is

12.    For Tank A we have a constant  volume of 100 gal. 

Let x(t) denote the amount of salt in Tank A. The 

rate into Tank A is 0, and the rate out is 5 galls x 
x/100 lb/gal       x/20 lb/s.  Hence the model equa• 

tion is 

52km/yr  x y/100  = 0.52y km/yr.  Hence 
the model equation is 
 

y' =0.52(x -y)  = 2[1  -e-05--0.52y.

' 
=72

X
0 

The solution with initial value x(0)  = 20 is x(t) = 
20e-1/20 

 

The volume of solution in  Tank B is increasing  at 

2.5 galls.  Hence the volume at time t is 200 + 2.5t. 
Let  y(t)  denote  the  amount  of salt  in  Tank  B. 

Then the rate into Tank B is the same as the rate 

out of  Tank  A, x/20.  The  rate  out of Tank  B is 

2.5 galls x y /(200 + 2.50)lb/gal = y /(80 +t) lb/s. 
Hence the model equation is 

,         x            y            no _' 
y       20      so±,e              80 +t 

This linear equation  can be solved using the inte• 

grating factor  u(t)  = 80 + t.  The general solution 
is 

This linear equation  can also be solved using 
the integrating  factor  u(t)  = e0.5,  With the 
initial condition y(0)  = 0 we find the solution 

 

y(0)  = 2[1  - %-951/0.52 - 2%-052 

=x(1)  --21%-0.52 

 
After   3    months,    when   t             1/4,    we 
have  x(l/4)    =  0.4689km'   and  y(l/4)   = 
0.0298km. 

(b)  If the factory  is shut down,  then the flow of 

pollutant  at the rate  of 2km'/yr  is stopped. 

This means that the flow between the lakes and 

that out of Lake Sad Times will be reduced to 

50km'/yr in order  to maintain  the  volumes. 

We will start time over at this point and we have 
the initial conditions x(0)  == x  == 0.4689km',

 

y(t) C 
20e/20_ 400  

7/20 and y(0)  = y; == 0.0298km'.

804t                         804t 

Since y(0)  =  40,  we can compute  that C  =  65 x 

80 = 5200. Hence the solution is 
 

y¢)_    5200  _2oe-«o_    400,-o 
80 4t              804t 

 

Tank B will contain 250 gal when t  =  20.  At this 
point we have y(20)  = 43.1709 lb. 

Now  there is no flow of pollutant  into  Lake 

Happy Times, and the rate out is x/2km/yr. 
Hence the model equation is x'  =-x/2. The 
solution is x(1)  =xe/2 

The rate into Lake  Sad times  is x /2 km3 /yr, 

and the rate out is 

y/2km/yr.     The  model  equation  is  y'   = 
(x -y)/2  = xe'/2 --y/2.  this time we
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use  the integrating  factor ut)  = e/ and find 

the solution 

y(D)  = [xt/2 + yle'/. 
 

The plot of the solution over 10 years is shown 

in the following figure.  It is perhaps a little sur• 

prising to see that the level ofpollution in Lake 

Sad Times continues to rise for some time after 

the factory  is closed. 
 

 
0.2 

 

 
0.15 

 

 
>>     0.1 

2 .5    Mixing Problems    51 
 

Initially, there is no salt in Tank I, so x(O)  = 0 pro• 

duces K =-aV  and 
 

x=aV  -ave(/YM 

 
Let y(t) represent the amount  of salt in Tank II at 

time  t.   Salt  enters  Tank  II at the same  rate  as it 

leaves Tank I. Consequently, 
 

rate in II = (b/V)x(t) lb/min. 

Salt leaves Tank II at 

rate out II = y(t)/V lb/gal  x b gal/min 

= (b/ V)y(t) lb/min.

 

 
0.05 

 
o~-----~----~ 

Consequently, 
 

 
 
dy       b         b 

zE    , 

dt        V        V

0                             5                            10 

Time in years 

 
Substitute  the solution found for x.

Using a computer  or a calculator, we find that 

y(1)  = y/2 when t ==  10.18 yrs. 
 

14.    Let x (t) represent the amount of salt in Tank I at time
 

dy  l',aV  -ave""«or 
dy          b

 
}' ·

 

t. The rate at which salt enters Tank I is 

rate In I = a lb/gal  x b gal/min  = ab lb/min. 

Salt leaves Tank II at 

rate out I = x(n)/V lb/gal  x b gal/min 

= (b/ V)x(t) lb/min. 
 

Consequently, 
 

dx                 b 
---=ab -- -r. 
dt                 V 

This equation  is linear with general solution 

x =aV +Ke/vw 

--=y+(ab--abe i) 
dt           V 

 

This equation  is also linear,  with integrating factor 
%(/VY,  so 
 

(el,y)' = ab (eI' --1), 

IM,, = av%Iv -ab1 +L, 

y =aV --abe/VY  4 Le/vi 
 

Initially,  there  is no salt in Tank  II, so y(0)  = 0 

produces  L = -a V and 
 

y==aV -abe IV  _ave (b/v
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52     Chapter 2      First-Order Equations 
 

Section 2.6. Exact Differential Equations 
 

1.    d F = 2ydx  +(2x + 2y)dy 

2.    dF  =(2x-2y)dx +(-x +2y)dy 
 

3.   dr  _x+ydy 

/?+ 

 

 
 
 
 
10.    With P =  1  - y sin x and Q = cos x, we see that 

aP           .                      00 
-SIn         • 

0y                       0x 
 

so the equation is exact. We solve by setting

4.    dF  = 
--xdx -ydy 

) 
F(x,y)=  f P(x,y)dx=  f(l-ysinx)dx

==x 

5. 
+ycosx  + d(y).

 

dF  = _
I 

x   +y
 

 

(ydx  +ydx  -ydx 

To find b, we differentiate 
 

@F 

Q(x,y)  ==           =cosx

+rdy +ydy + xdy) -   d'(y). 
0y

 

6.    dF  =(/x  +2xy)dx  +(/y + 3y)dy 
 

7. 

 

 
 
 
11.

 

Thus ¢'  =  0, so we can take ¢  = O.    Hence the 

solution is F(,y)  = x + ycosx =  C. 
 

.                                                                     y                      1 
th P =1         and  Q =-   ,we compute

Wi                    --                    -

r-(,,+»)d 

X           X 

aaa
P       1            0

2
Q        I

4     
2y           X) 

(\
 

( e?  +y    y 

 

 
Hence the equation is not exact. 

 

.                                       X                 y 
12.   WithP=    7 andQ=    7 we com• 

K_ff 
ydx  -xdy +4rydy +4ydy 

x?  4y 
 
pute 

/x?+y             Vr+y

 

 

9.    With P = 2x + y and Q = x  --6y, we see that 

a" _,_"0 

0P            -2xy            00 

0y      (+       ae' 
so the equation is exact.   To find the solution  we 

integrate

0y              0x 
 

so the equation is exact. We solve by setting 
F(x, y)  = f  P(x, y) dx

F(x,  y) = f P(x, y)dx = f (2x +y)dx 

=r+xy+d(y). 
 

To find b, we differentiate 

-/'° 
=/x +y +¢(y). 

To find b, we differentiate 
 

0F            N

00,)_"     +@'0) 
0y 

Q(tr,y)  == 
0y 

= 
/x+ ? 

=d'(y).

Hence ¢'  =-  -6y,  and we can take b(y)  = --3y. 
Hence the solution is F(x,y)  = x +xy--3y  =  C. 

Thus d' = 0, so we can take ¢  ==   0.   Hence the 

solution is F(x, y) = Jx2  + y2  = C.

 

 
 

mailto:@F
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13.    Exactr'+ry  -y=C 
 

14.   Not cxact 

15.    Exact[2 + vu --v/2=C 

16.   Exact In@e +v)= C 
 

17.   Not cxact 

18.    Exact.  Fu,y)  = ylnu  --2u  = C 

19.    Exact.x sin21 --r= C 

20.    Exact.ry +'=C 
 

 
21.    Not exact. 

 

22.    -/y+lnx  =C 

23.   ry/2-Inr +lny = C 
 

-@+De 
24. 

 

25.   x - (/2)l0 + y)= C 
 

»                                           xyp2-y 
26.   p()                 F(x,y)=                         C 

.r 
 

I                                                                                                            y2 
27.   lo) = -.  Ft.y)    xy -In.x -, =C. 

X                    • 

 
 

y.x  +r 
29.   (y)=  I/y.  F(x,y)=                     C 

y 

30.    FG,y) =y =c 

 

31.   x +yand x -y  are homogeneous of degree one. 
 

32.      --xy -y and 4ry are homogeneous of degree 
two. 

33.   r -hr+y and -y  are homogenous  of degree 
one. 

2.6    Exact Differential Equations    53 
 
34.   In.x -- In y and I  are homogeneous of degree zero. 
 

35.  r --Cr=y 
 

36. 

Ft.y) = -(/2)l   
X
_
l +y2) 

+ arctan(y/x) -In.x = C 
 

37.    FU.y)=xy +(3/2)r =C. 

38.    yr -4lny -2lnr = C 

x +C' 
39.   yG)=_Cc 

 

40.   y()  = xln(Cc +2In.x) 
 

 
4J.     ta) First. 
 

dy       dy/dr       vosin6 -- c 

,  J  cos@ 

However,  cos6  = x//r + y and sin8  = 
y//+ y,so 

 

vy-%Ms 
oF 

W+y° 

Divide top and bottom by vo and replace «/vo 
with k. 

r. 
dy      Y--Mr+y     -k/KT? 

d         .x                                       x 
 

(b)  Write the equation 

dy       y-k   +y 
-=------ 

 
in the form
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54    Chapter 2     First-Order Equations 

 
Both  terms  are homogeneous  (degree  I),  so 
make substitutions y  = xv  and dy  = xdv + 
vdx. 

 

(xv-k/r? 4+)dx -x(xdv+vdx)=0 
 

After cancelling the common factor x and com• 

bining terms, 
 

1.la -dv=0. 
 

Separate variables and integrate. 
 

kdx         dv 
-----=0 

VI# 
kn.r  - 1n(/1±%i v) =c 

 

Note the initial condition (x,y)  = (a, 0).  Be• 

cause y  = xv,  v must also equal zero at this 

point.  Thus, (x,v)  = (a, 0) and 
 

kn a-- In(To o)= c 
C = kin a. 

 

Therefore, 
 

khr  - In(/ii ±v)  =klna. 
 

Taking the exponential of both sides, 
 

a'-»Miro _ a«' 
Xk           _ /" 

+Ii, 

()'-·+le 
 

Solve for v. 
 
 
 

( a-(·-18 

 

 
 

Finally, recall that y = xv, so 

'-![Gr rj 

·-:»'Cr] 
 

(c) The  following  three  graphs  show  the  cases 

where a  = l,  and k  = 1/2,   l,  3/2.   When 

0 <  k  <  I, the wind speed is less than that 
of the goose and the goose flies home.  When 

k = I the two speeds are equal, and try as he 
might,  the goose can't  get home.   Instead he 
approaches a point due north of the nest. When 

k  >  l the wind speed is greater, so the goose 

loses ground and keeps getting further from the 

nest. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

0.5
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(b)  The   differential  equation   is   homogeneous. 
Solving  in  the usual  way we find that the or• 
thogonal family  is defined implicitly by 

 

Gt.)=.
r
.

+
'.

y
.=c. 

The original curves are the solid curves in the 

following figure, and the orthogonal  family is 
dashed. 

 

 
2 

/           
\ 

42.   The hyperbolas with FG.y)  = y[r = C are the 

solid curves in the following figure. The orthogonal 
family must satisfy 

 

dy = JF/;JF  =-2,r. 

dx      oy      ox           y 

 
The solution to this separable equation is found to be 
given implicitly by GGr,y) = 2r+ y = C.These 

curves are the dashed ellipses in the accompanying 
figure.  They do appear to be orthogonal. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

X 
 

 
43.     (a) The   curves   are   defined   by   the   equation 

Ft.y)  = x/(   + y)  = e.  Hence the or• 

thogonal family must satisfy 

dy      aF;cJF      2xy 

a   a 

 

 
>-   0 

 

 
-1 

\ 

-2                      '   
4

 

-2      --1          0                     2 
x 

 

 

44.    In(y +r) - (2/3)y=  C 

45.   arctanGy/r)  --y/4 = C 

46.    Assuming that m      n -- I, divide both sides of 

xdy +ydx ="y" dx 

by ry to obtain 

rdy +yd  _"d 

(y") 
 

@y)!"  _"d. 
]--n 

Thus, because m --n + I     4 0, 
 

(ry)'n           m-n+I 
Lt 

]-n         m -n+l 

(m -n + I(y)!" --(1  -me"+!C. 

47.   arctan(/r)  - (1/49)6y +r  = c 

48.   x/y  -In(xy +D)  = C
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x +y 
49.    Cxy     • 

x -y 
 

 
50.      (a)  An exterior angle of a triangle equals the sum 

of its two remote interior angles, so6  = b + a. 

We're given that o == p and d and ~ are corre• 
sponding angles on the same side of a transver• 

sal cutting parallel  lines,  so d  = 8.   Thus, 

8=+a=~+~=2~and 

2tan 8 
ta      =tan      =-,. 

 

 
 
Rearranging, 

 
dy 

dx 

 

becomes 

 
 
 
 
 

-r4,Ml 

y 
 

 
 

dr+ydy  _• 

/+y

1- tan 8 
However,  tan 0  = y /x and tan f3  equals  the 

slope of the tangent line to y   = y(x)  at the 

point (x, y);ie.,tan/  =y'.  Thus, 

y             2y 
-=  ---- 
x       I-(y' 

 

(b)  Use the result from part (a) and cross multiply. 

y-y6y')  =2xy' 

0= y(y)  +2y' -y 
 

Use the quadratic formula to solve for y'. 

-r4,l,» 
y  = 

y 

The trick now is to recognize that the left-hand 

side equals ±d(/x? + y).  Thus,  when we 

integrate, 

 

±d(/x? +y) =dx 

±/x?  +y=r +C. 

 
Square, then solve for y. 
 

r+y=x+2Cx+c? 
y = 2Cx +C 

 
This,  as was somewhat expected, is the equa• 

tion of a parabola.

 

--------x-------- 
 

 
 
 

Section 2.7.  Existence and Uniqueness of Solutions 

4 +.f  is continuous  in the whole plane.    Its

1.    The  right hand  side of the equation  is f (t, y)  = 
 

partial derivative of/~y = 2y is also continuous on 

theorem are not satisfied. 
 
3.    The right hand  side of the equation  is 

 
 

f(t,y)   =

the whole plane.  Hence the hypotheses are satisfied 
and the theorem guarantees a unique solution. 

 
2.   The right hand side of the equation is f (t, y)  = .Jy. 

f is defined only where y   2  0,  and it is continu• 

ous there.   However,  6f/6y  = 1/(2/y),  which is 

only continuous for y  >  0.  Our initial condition is 
at Yo  = 0,  and to  = 4.   There is no rectangle con• 
taining (to, yo) where both f and of/0y are defined 

and continuous.  Consequently the hypotheses of the 

t tan 'y,  which is continuous  in the whole plane. 

ff~y =t/(1  + y) is also continuous in the whole 
plane.   Hence the hypotheses  are satisfied and the 
theorem guarantees a unique solution. 

 
4.    The right  hand side  of the equation is f (s, w) 

@ sin « + s, which is continuous in the whole plane. 

~ff    = sin + cocos is also continuous in the 
whole plane.  Hence the hypotheses are satisfied and 
the theorem guarantees a unique solution.
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5.    The  right hand  side of the equation  is f(t,x)   = 

t / (x + 1), which is continuous  in the whole plane, 
except where x  = -1.   affx  = -t/(x  + 1   is 
also continuous  in the whole plane,  except  where 

x  ==    -1.   Hence the hypotheses  are satisfied in a 

rectangle  containing  the initial point  (0, 0),  so the 

theorem guarantees  a unique solution. 

 
6.    The right hand  side  of the equation  is  f(,y) 

y /x  + 2, which is continuous  in the whole plane, 

except where x =- 0.  Since the initial point is (0, 1), 
f is discontinuous there.  Consequently  there is no 

rectangle containing this point in which f is continu• 

ous.  The hypotheses are not satisfied, so the theorem 

does not guarantee a unique solution. 

 
7.   The  equation  is  linear.     The  general  solution  is 

y(t)  = t sint  +-  Ct.  Several  solutions are plotted 

in the following figure. 

2.7     Existence and Uniqueness of Solutions    57 
 
the following figure. 
 
 

 
2 

 
 
 
 
 
 
 
 
 
 

0.5 
 
 
 

Since the general solution is y()  == t + 2Ct2, every 

solution satisfies y(0)  = 0.  There is no solution with 

y(0)  = 2. If we put the equation into normal form 
 

 
dy       2y --t 

dt 

 

we see that the right hand side f,y)=  (2y - t)/t 

fails to be continuous att = 0.  Consequently the hy• 

potheses of the existence theorem are not satisfied.
 
 

 
 
 

Since every solution satisfies y(0)  = 0,  there is no 

solution with y(0)  = --3.If we put the equation into 

normal form 

9.    The  y-derivative  of the right hand  side  f(t,y)   = 
3/is  2/, which is not continuous  at y  = 0. 
Hence the hypotheses  of Theorem 7.16 are not sat• 

isfied. 

 

 

10.    They-derivative  of the right hand  side  f(t, y)  =
y  

= 
1 
y + tcost, 

dt       t 

1y/ is ty //2 which is not continuous at y = 0. 

Hence the hypotheses  of Theorem 7 .16 are not sat•

we see that the right hand  side f (t, y)  fails to be 

continuous at t  = 0.   Consequently  the hypotheses 

of the existence theorem are not satisfied. 

 
8.   The  equation  is  linear.     The  general  solution  is 

y(t) = t + 2Ct.  Several  solutions  are plotted  in 

isfied. 

 

 
11.   The exact  solution  is y(t)  =  -1 4/3. The 

interval of solution is (/3, o0).  The solver has trou• 

ble near /3. The point where the difficulty arises is
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58    Chapter2    First-Order Equations 

 
circled in the following figure.                                                 figure. 

 
 

 

y                                                                                                                 y 

4                                                                                                                               4 

 
 
 

0 

0                                                                                              -2          -1                                           2 
 

-2                                                                                                                           -2 

 

4                                                      4d 

 
 

 
12.    The exact solution is y(t) = -1+/i -it  -T. The 

interval  of existence is (--00,2 -/5).  The solver 

has trouble near  2 - /5 = --0.2361.   The  point 
where the difficulty arises is circled   in the following 

figure. 

14.   The     exact    solution     is      y()        =     3   • 
JF2l@ +2-2Tn2. The interval of existence 
is  (-2  +2e,oo).   The solver  has trouble  near 
-242ez-1.7293.  The point where the diffi• 
culty arises is circled in the following figure.

 

 
 

y 
y 

4 

 
 
 

'                  0
 

-2                                                     
-3     -2        -1            0        1                 % 

-4d                                                                                                        -1 

 
 
 

13.   The exact solutionis y(t) = -I+/T2in@l  --t). 

The interval  of existence  is  (--o,I      e?y.  'The 

solver has trouble near 1   --e? s 0,8647.  The point 

where the difficulty arises is circled in the following 

 

15.    The solution is defined implicitly  by the equation 
y/3+y-3y = 2r/3. The solver has trouble near 
(t. D,  where t = --(5/2)z --1.3572, and also 
near (1, -3), where t = (27/2)     = 2.3811. The 
points where the difficulty arises are circled in  the
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following figure.                                                                       ure. 
 

 
q 

5 
y 

2                                                                           4 

 
3 

 

2          3 

 
-2 

 

-3                                                              0                          2            3            4 
 

-4                                                                       
The exact solution is 

 

if0  <t < 2, 

ift>2 
 

16.    The solution  is defined implicitly  by the equation              Hence q(4) = 5(1  --e2)e ?   z0.5851. 

2y  -- 15y  + 21'  = -81.  The solver that trouble 
near  (t,0),  where t = --(81/2)/   z -3.4341,      18.    The computed solution is shown in the following fig• 

and also near (t, 5),  where t = 22/  z 2.8020.              ure. 
The points where the difficulty arises are circled in 

the following figure. 

q 

3 
 

 
y                                                               2 

6 
 

 
4 

 

0 
2                                                                    

0                          2            3            4
 

0 

--4            -2                0             2 

 
The exact solution is 
 

o, 
q= {3( e', 

 
 
 

if0  <t < 2, 

ift> 2

 

Hence q(9)  = 3(1  --e) = 2.5940. 
 

17.    The computed solution is shown in the following fig-      19.    The computed solution is shown in the following fig- 
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ure.                                                                                   21.      (a)  If 
 

 
 

q 

 
if1   < to 

ifr  >  to,

then 
 

 
2 

 

 
 
 
 

0 

 

 

'(    ,  y-_yo 
r=/}    ,-% 

.           (-1%)--0 
2elf 

t-to 

= t-li·m,( -to)

0 

The exact solution is 

 
2(t  - I4e'),     if0<  t<2. 

On the other hand, 

 
y
'@°)  ==  jIm  @-yo)

q)=  { 20  +ee'.  ft>2 
h%                   

1"m t  --to

 

z=  limn 
0-0

Hence q(4) = 261 +ee  =0.3073. 
 

20.    The computed solution is shown in the following fig• 

ure. 
 

 
 

q 

3 

 

 
2 

1-+1,   t-to 

= 0. 
 

Therefore,  y'(ta)  = 0,  since both  the left and 

right-hand derivatives  equal zero. 

(b) The right hand side of the equation, f(,y)  = 
3y/,is continuous, but@f/y = 2y '/is not 
continuous where  y = 0.  Hence the hypothe• 

ses of Theorem 7.16 are not satisfied. 

 
22.      (a)  If

1 
 

 
0 

0                          2            3            4 

3"-2'' 
y6) ={,5/2+(3-5e/2)e', 

 
then it is easily seen that 

if I  <  l 

if1z>  I

The exact solution is 

q(t)= {0.  I               2-r 

 

 
if0 <1  <2, 

if1z 2 

 
 

 

It remains to  find the derivative att = 1.   Re• 

member, because of the  "cusp"  at t  =  I, we
Hence q(4) = 3 --e= 2.8647. suspect that this derivative will not exist.  First,
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t, 

~ 

z  + 

y' 

{4 

·]: 

,                 {o. 

 

t,he(derivative from the right, 

2.7     Existence and Uniqueness of Solutions    S1 

If              «-[;
if1  < I 

if1     1,
= m )(-_y( 

r-+1+         t --l 

> 
 

then 

a-[c•••• 
Thus, y = y(t) is a solution ofy' = -2y4f() 

on any interval not containing  t = I, 
 

23.   If 

 
 

Note the indeterminant form 0/0, so l'Hopital's 

rule applies. 

)'(I)=  {0~ 
 

then it is easily seen that 

 

t  <0 

> 0.

«-v-[1
 

6-2)-·]
  

y'G)=  
{   

', 

 
 
t> 0.

=5-6e 
 

However, the derivative from  the left,
 

0      I< 0 

4r, 
 

It remains  to check the existence  of y'(0).  First, the 

left-derivative.
 

y'() =  a )(-y(
 

 

'_'«o') = 
 

i
J
. 
fn 

 

y@-y(o)  
z 

 
lift 0-0

1f        t      ] 

-%.'•(st(-9!).)
  

Secondly, 

-+0                Q               -»t        l

 
 

r-+ft-l
 

 

V.'«o) = 
 
~m.     y@-y(0)  = ~Imm' = 

 

er=o.

 

= lim 

 

3e-3e 
----- 

·                             t-+tt          t-[             rot    t       r-gt 

Thus, y'(0)  = 0 and we can write

1-t           t -l 
 

Again, an indeterminant form 0/0, so we apply 

I'H~pital's rule. 
 

(D= lim(-6e) 
f-+] 

= -6e 

 
(b) The derivative  from the left doesn't equal the 

derivative  from the right.   The  function  y  = 
y(t) is not differentiable  at t  =  I  and cannot 
be a solution of the differential equation on any 

 

 
 
 
 
Now, 
 
 
 
and 

 

 
y'()=    ,4s, 

 
 

 
ty)=        , 

4r', 

 

o. 
4y(t)=         .4 

t'• 

 
t  <0 

2 0. 
 
 
t <6 

t > 0, 
 

 
t  <0 

t 2>0.

interval containing t  = 1. 

(c)  We have that 
 

-&,-i,                   I  <  I 
y'()=                ' 

7 
{ (--6+5e)e      1>   1. 

 

soy =y(t)  is  a solution of ty'   = 4y.    Finally, 

y(0)  = 0.  In a similar manner, it is  not difficult to 
show that
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62    Chapter 2     First-Order Equations 
 

is also a solution of the initial value problem ty' == 
4y, y(0)  = 0.  At first glance, it would appearthat we                                                          h 

have contradicted uniqueness.  However, ifty' = 4y 
is written in normal form, 

 

 
I          4y 

y   =• 
t  ' 

 
then 

 

 

±0y (t)-°t 

(-1,0)

 

is not continuous on any rectangular region contain• 

ing the vertical axis (where t =0), so the hypotheses 

of the Uniqueness Theorem  are not satisfied.  There 

is no contradiction  of uniqueness. 

 
 

 
24.      (a) The point here is the fact that you don't know 

the  moment   the  water  completely   drained. 

Here are two possibilities. 

 
 
 
 

h 
 

 
 
 
 
 
 
 

(--2,  0) 

(b)  Let A represent the cross area of the drum and 

h  the height  of the water  in the drum.   Then 

Ah  represents  the change in height  and AAh 

the volume of water that has left the drum.  A 

particle  of water leaving  the drain at speed v 

travels a distance  vAt in a time At.   Because 

a is the cross section of the drain, the volume 

of water leaving the drain in time At is avt. 

Because the water leaving the drum in time AAt 

must exit the drain, 

Ah  = avt 

Ah 
A-=av. 

At 
 

Taking the limit as At  -» 0, 
 

dh 
A-=av. 

dt 

Using v = 2gh,  v = /2gn  and 
 

dh          0   ., 

;V?sh 
 

The minus sign is present because the drum is 
draining. 

(c)  If we let c = ah ands  = f3t, then by the chain 

rule
 

do     d dh    dt       a dh 

s   dh  .     dt     ds  = f3  dt 
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s        di% 

8 dt             A       8 0                                     1 

w(s) = I 

- 

I 

 

 
 

Multiply  both sides of our equation  by a/ f3, 

--()(3)4% 
 

Replace (a/~)(dh/dt) with d/ds and h with 

@/0. 
 
 
 
 
 
 
 

Let ho represent the height of a full tank. This 
motivates the selection of a  ==  1/ho and « = 
h/ho,  as a = 0 when the tank is empty and 

( = 1    when the tank is full. Thus, 

•-Ley,,e 
 

which motivates the selection of 
 

• eat 
which upon substitution, gives us 

2.7     Existence and Uniqueness of Solutions    63 
 

is a solution of a' = -/@, a(so)  = 0. Finally, 

this emergence  of multiple  solutions  does not 

contradict uniqueness, because in 
 

(
a¢» 

-Jo)  = ---2a• 

is not continuous  on any rectangle  containing 

the horizontal  axis (defined by     = 0). 

25.    The equation  x' = f (t, x)  satisfies the hypotheses 

of the uniqueness  theorem.    Notice  that x(0)   = 

x(0)  =- 0. If they were both solutions r'  = f(t,x) 

near  t  =-   0,  then by the uniqueness  theorem  they 

would have to be equal everywhere.  Since they are 

not, they cannot both be solutions of the differential 

equation. 
 

26.   The equation x' = f(t, x)  satisfies the hypotheses 

of the uniqueness  theorem.  Notice that x(/2) = 
x(/2)   =  0.  If they  were  both  solutions  x'  = 

f ( t,x) near t = n/2, then by the uniqueness  theo• 

rem they would have to be equal everywhere.  Since 

they are not,  they cannot  both  be solutions  of the 

differential  equation. 
 

27.    Notice that x;(t)  = 0 is a solution to the same differ• 

ential equation  with initial value x;(0) =0 <   1   = 

x(0).  The right hand side of the differential  equa• 
tion, f(t,) = x cos t and @f/~x  = cos t are both

co  
= --/w. 

ds 

continuous  on the whole plane.   Consequently  the 
uniqueness  theorem  applies,  so the solution curves 
for x  and x cannot  cross.    Hence  we must  have

(d)  Separate the variables and integrate. 
 

'/d  = -ds 

2'=-s+C 

! = 
I 
(C-s) 

2 

o= (C--s) 
4 

 

However, as evidenced in part (a), we only want 
the left half of this parabola.  After the drum 
empties,  it remains  empty for all time.  Thus, 

for any C < so, 

i<c - s)2,    s  <C 

x(t)> x(t)  = 0 for all t. 

28.   Notice that y(t)  = 3 is a solution to the same dif• 

ferential equation  with initial  value y(l)   = 3   > 

1      =y(1). The right  hand  side of the differential 
equation,  f(1,y)   = (y  - 3)%cs)  and  0f/0y  = 

ecos([1 --t(y -- 3) sin(ty)] are both continuous on 

the whole plane. Consequently the uniqueness theo• 

rem applies, so the solution curves for y and y can• 

not cross.   Hence we must have y(t)  <  y(t)  = 3 

for all t. 
 

29.    Notice  that the right  hand  side of the equation  is 

f(t,y)    =   (y    1)e'   and  f is  continuous   on 
the  whole  plane.    Its  partial  derivative  ff~y   == 

2ye +t(y -- 1)e   is also continuous on the whole 
plane.  Thus the hypotheses  of the uniqueness  theo•

0,                  s >C, rem are satisfied.  By direct substitution we discover
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that  (t)  = --I  and y(t)  =  I  are both solutions 
to the differential equation.  If y is a solution  and 
satisfies  y(D)   = 0.  then yr(D)   <  y(I)  <  y(). 
By the uniqueness theorem we must have y(t)  < 
y(t)  <  (t)  for all r for which y is defined.  Hence 
-I  <y(t)  <  I   for all r  for which y is defined. 

30.    Notice that ni(t)  =  0  and x(t)   = l    are  solu• 

tions  to the same differential  equation  with initial 

values n(0)  =  0  <  1/2  = x(0)  <   I    =   (0). 

The right  hand side of the differential  equation, 
f(t,x) = (-n)/( +1r), and 

af     (3r - D( +1+) -2rx@ -o 
a,                  i+FF 

are both continuous on the whole  plane,   Conse• 
quently the uniqueness theorem applies, so the solu• 
tion curves for x, r, and xz cannot cross.  Hence we 
must have 0 =n(t)  < x(t) < x(t) =  I  for all t. 

 

 
31.   Notice that n(t)  = t is a solution  to the same differ• 

ential equation with initial value x;(0)  = 0 <  l   = 
r(0). The right hand side of the differential equa• 

tion, f(t,9)  =x -t + 21  and af/x = I  are both 
continuous on the whole  plane.   Consequently  the 

uniqueness theorem  applies, so the solution curves 
for x  and x;  cannot  cross.    Hence we  must  have 

t =x(t)  <x(t) for all t 
 
 

32.    Notice that y(t) = cost is a solution to the same dif• 

ferential equation with initial value y(0) =I <2= 
y(0).  The right hand side of the differential  equa• 
tion. f(t.y) = y- cost -- sin t and of/@y = 2y 
are  both continuous  on  the  whole  plane.    Conse• 
quently the uniqueness theorem applies, so the so• 
lution curves for y and y;  cannot cross.  Hence we 
must have y(t)  > y(t) = cost for all  t.

-------x------- 
 
 

 
Section 2.8. Dependence of Solutions on Initial Conditions

 

I.   x(0)  = 0.8009 

2.   rx(0) = .9084 

3.  r(0)  = 0.9596 

4.   x(0) = 0.9826 

5.  r(0) = 0.7275 

6.    r(0) = 0.72897 

7 .   x(0) = 0.7290106 

8.   r(0) = 0.729011125 

9.   r(0) = -3.2314 

I0.    r(0) = -3.23208 

H.   r(0) = -3.2320923 

12.   r(0) = -3.23092999999 

 
13.    Ten!  :-) 
 

14.    1-e'-(/10)e!'< y()<I-e'+(/10)e'
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The three mi ddle curves are the solutions to the dif-      17. 

ferential equation corresponding  to the initial condi• 

tions x(O)  = -.1,  0 .1, and the outside curves are 
the graphs of e; and e.  Note how the solutions of 
the differential equation remain inside the graphs of 

ez and e. 

15.    The only adjustment  from the previous exercise is 

that we now want [xo  -yo]  < 0.01. This leads to 

1  -e' 0.0le"   < y)<1  - e' 4 0.01e" 

and this image. 
 

 
x 

4 
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(a)  The right hand side of the equation is f (t, x) = 
--2x  # sint,  and 0f/0x  = -2. Hence M  = 
max[@f/0x])   = 2,  and Theorem  7.15  pre• 

diets that [y(n)  - x()]  < 1y(0) -- x(0)ye'I  = 
ly(0)  -- x(0)[e. 

(b)  The equation is linear, and we find that x()  = 
[2sint  - cost]/5,  and  y(t)   =  [2sint  -• 
cost]/5 --e?'/10.  Hence 

 

x(1) -y(t)  =e?'/10 = [x(0)  - y(0)]e?' 

</y(0)  -r(0)yell, 

 

(e)  Since e?'   = a?l'l for t  <  0, we see that the 

maximum  predicted  error  is achieved  for all 

t <0.

 
18.    The right  hand  side of the equation  is  f (t, x)   = 

r?--t,and6f/8x  = 2x. On the rectangle  R we have 

x] <  2,  so M  = max[@f/6x]   = max[2x]   = 4. 

Thus the bound predicted by Theorem 7.15 is 

ln() -(0)]  < ln,(0)  -(0)]e"  3e"/4. 

The maximum predicted error is where It I       = 1,  and 
it is 40.9486.   the two solutions  are plotted  in the 

following figure. 

-4 

 
16.     (a) Therighthandsideoftheequationisf(t,x) = (x  

- D)cost.  Thus   0f/~x   =  cost,  and max 

[@f/6x]  = max [cost]  = I. Hence Theo• rem 

7.15 predicts that [x(t)  -y(t)]  < lx(0)  -• 

y(0)le. 
 

(b)  The equation  is separable  and linear,  and the 
solutions are x(t)  = 1   - e""  and y(t) = 1   -- 
9e5'/10.  Hence the separation is(t) -y(t)  == 

es'/10. Since sint  < [t], we see that 

lx()-y(0)1  = e'/10 < e"/10 = [x(0)-y(0)]e. 

(c)  Since  sint   <   [t]  except  at t  = 0,  we have 
[x(t)  -y(t)]  < el/10, except at t = 0. 

 

 
 
 
 
 
 
 
 
 
 
 
 

--1 

 
The actual bound is about 2, which is much less than 
41, the theoretical bound.
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66    Chapter2    First-Order Equations 
 

Section 2.9.  Autonomous Equations and Stability
 

L.   Note that  P'   =  0.05P  -1000  is  autonomous, 
having form P'  =  f(P).    Solving the equation 
0= f(P)  = 0.05P - 1000,  we find the equilib• 
rium point  P = 20000.   Thus,  P()  = 20000 is an 
unstable equilibrium solution, as shown in the  fol• 
lowing figure. 

 
 
 
 

#+ + 

,,,d  ,d,,e,,,,,,,,,,,d,t,, 

 

explicit dependence of the right-hand  side of this 
differential equation  on the independent variable  t 
causes the equation to be non-autonomous. 

 

 
 
 
4.   Note that  P' =.  0.13P(1  - P/200) is autonomous, 

having form P'   = f(P).     Solve  the equation 
f(P) = 0 to find the equilibrium points.

3   
,
:
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:
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:
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%
,

 

,,,..,.,.,,.-,-,.,,.,,.,,,,,,, 
a. 2EE=EE=EE=±=5±51551= 

,,,,,,,,,,,,,,,,,,,, 

or(-{)-" 
P=0    or   P=200
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Thus,  P(n)  = 0 and Pt)  = 200 are equilibrium 
solutions,  as shown in the following figure.   P = 0 

unstable and P = 200 is asymptotically stable.

2.  Note that y' = I  -2y + y is autonomous, having 
form y' = f(y).  Solve the equation f(y)  = 0 to 

find the equilibrium points. 

I-2y+y=0 

y =I 

Thus, y(t) =  I  is an unstable equilibrium solution, 

as shown in the following figure. 
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3.   Note that'  = t -- r is not autonomous, having 

form x' ==   f(,x),  where f(t.x)  = t -- r. The 

 
5.   The equation is autonomous. The point q = 2 is an 

unstable equilibrium point,  as the following figure 
shows.  In addition every solution of sinq  = 0 is an 
equilibrium point. These are the points k, where k 
is any integer, positive of negative. The stability of 
the equilibrium points alternates between asymptotic
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2.9     Aut ono m ou s Equations and Stability    S] 
 

stable and unstable, as is seen in the figure.                         is asymptotically stable and y = 2 is unstable. 
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6.   The equation is not autonomous because of the cost 
term. 

 
 

7.   Note that the graph of f(y)  intercepts the y-axis at 
y = 3.  Consequently, y = 3 is an equilibrium point 
(f(3)  = 0) and y(t) = 3  is an equilibrium  solution, 
shown  in the following figure.  The solution y = 3 
is unstable. 

 
 

 
9.   Since f(y)  has zeros at y = -I  and y = I, these 

are equilibrium points.  Correspondingly, y(t) = -I 
and y(t)  == l are equilibrium solutions, and are plot• 
ted in the following figure. Both are unstable.
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8.   Note that the graph of f(y)  intercepts the y-axis at 
y =0and y = 2. Consequently, y = 0 and y = 2 
are equilibrium points (f(0) = 0 and f(2) = 0) and 
y(t)  = 0 and y(t)  = 2 are equilibrium solutions, 

shown in the following figure.  The solution y  = O 

 

10.    Since f(y) has zeros at y = -2, y = -1/2,y=  I, 
and at y = 2. all four are equilibrium points.  Cor• 
respondingly, y(t) = -2, y(t) = -1/2, y() = I, 

and y(t)  = 2 are equilibrium solutions, and are plot• 
ted in the following figure.  y = -2 and y  = I   are
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asymptotcally stable and the other two are unstable. 

 
 
 
 

y 

in the following figure. 
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I1.   Because the differential  equation  y' = f(y)  is au• 
tonomous, the slope  at any point (t, r)  in  the direc• 

tion field does not depend on r, only on y, as shown 
in the following figure. 

 
 
 
 
 
 

 

'   ' 
\  \  \  \  

' 
\  \  \ \ 

There  are two equilibrium  points.  The smaller of 

them is unstable and the other is asymptotically sta• 

ble. 
 
 
 
13.    The key thing to note is the fact that y' and f(y) are 

equal.  Consequently,  the value of f(y) is the slope 

of the direction line positioned at (t, y). 

 
 

 

• AMy = 3, f(y)  = 0 and the slope is zero. Thus

'  -' -' -''--''--''-'--' 
/   / / / / / / / / / / 

 
I       I   I  I   I   I  I  I   I  I   I 
J            I   I  I   I   I   I  I   I   I   I 

 

 
 

The equilibrium point is asymptotically stable. 
 
 
 

I2.   Because the differential equation y' = f(y) is au• 

tonomous,  the slope at any point (t, x)  in the direc• 

tion field does not depend on r, only on y, as shown 

y = 3is  an equilibrium  point.  This is shown 

in  the following figure. 

 
•  Tothe right of y  = 3, note that the graph of f 

dips below the y-axis.  Therefore, as y increases 
beyond 3, the slope becomes increasingly nega• 
tive. This is also  shown in the following figure. 

 

e  Tothe leftof y = 3, note that the graph of f rise 

above the y-axis. Therefore, as y decreases be• 
low 3, the slope becomes increasingly positive. 

This is also shown in the following figure.  In 
particular, this means that the equilibrium point 

y = 3is asymptotically stable.
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Slope is more negative 

\   
as y increases. 

3                 ' Slope  is zero at y = 3. 
/ 

I 
 

 
Slope is more positive 

as y decreases. 

 

 

Finally,  because  the equation y'   ==    f(y)  is  au• 

tonomous, the slope of a direction line positioned at 

(r, y) depends only on y and not on r. Consequently, 

the rest of the direct ion  field is easily completed, as 

shown  in the next figure. 
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2.9     Autonomous Equations and Stability    b 
 

•  Between  y  = 0 and y  = 4,  the graph of f 
lies  above the y-axis.  Consequently, f(y) is 
positive for 0 < y  < 4.  Moreover,  the graph 

of f has a maximum about halfway between 

y =0and  y = 4.  Consequently, the slope of 
the direc tion field lines will be positive between 
y =0and y = 4,  with a  maximum positive 
slope occurring about halfway betwceny = 0 
and y  = 4.   This  is  shown in  the following 

figure. 
 

 

e To the left of y  = 0,  note that  the graph of f 
falls below the y-axis .   Furthermore,  as y de• 

creases below 0, f(y) (the slope of the direction 
line at  (4, y))  becomes  increasingly  negative. 

This  is also shown in  the next figure. 

 
 
 
 

 
From these considerations  we see that the equilib• 

rium point y = 0 is unstable, and y = 4 is asymp• 
totically stable.

\    
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Slope is more negative
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14.    The key thing to note is the fact that y' and f(y) are 
equal. Consequently,  the value of f(y) is the slope 
of the direction line positioned at (t, y). 

•  Aty  = 0and  y = 4,  f(y)  = 0,  so the slope 

of the direction lines at these y-values is zero. 
These points are the equilibrium points.  This 
is shown in the following figure. 

e   To the right of y  = 4,  notc that the  graph of 

f dips below the y-axis. Furthermore, as y in• 

creases beyond 4, f(y) (the slope of the direc• 

tion line at (r. y)) becomes increasingly  nega• 

tive.  This is also shown in the following figure. 

I            
as y increases beyond y = 4.

 

4                  
I'  

Slope is zero at y = 4. 

I 

l    Slope is most positive midway 

/   between y = 0 and y a 4 

Slope is zero at y =,' 

Slope is more negative 

as y decreases below y = 0. 

 
 
 

Finally,  because the equation y'  =  f(y)   is  au• 

tonomous, the slope of a direction line positioned at 

(t, y) depends only on y and not on t. Consequently, 

the rest of the direction  field is easily completed, as
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shown in the next figure. 
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stable equilibrium solution, y(t) = 2. 
 

 
y 

 

 
 
 
 

(0,2)

 
 
 
 
 

15.    () In this case, f(y)  =2--y, whose graph is shown 

in the following figure. 
 

 
f(y)=2-y 

 

 
 
 
 
 
 
 
 

(2,0) 
«. 

 
 
 
 
 
 

(ii) The phase line is easily captured from the previ• 
ous figure, and is shown in the following figure. 

 

 
«... 

2 

 
(iii) The phase line in the second figure indicates that 

solutions increase if y  <2 and decrease if y  >  2. 

This allows us to easily construct the phase portrait 

shown in the ty  plane in the next figure.   Note the 

 

 
 

16.    () In this case, f (y) = 2y - 7, whose graph is shown 

in the next figure. 
 
 

f(9)=2y-7 

 
 
 
 
 

 
• 

 
 
 
 
 
 
 
 

(ii) The phase line is easily captured from this figure, 

and is shown in next figure. 
 
 
«.w. 

7 
2 

 
(iii) The phase line in the second  figure indicates 

that solutions decrease  if y  <   7 /2 and increase if

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2006 Pea rs on Education,  Inc., Uppe r Saddle Rive r, NJ .  All rights re se rve d. This mate ria I  is prote cted under a II  copyright laws as they curre ntly e xis t. 

No portion ofthis material may be reproduced, in any form or by any means, without permission  in writing from the publisher.



2.9     Autonomous Equations and Stability    71 
y>7 /2.  This allows us to easily construct the phase 

portrait shown in the ty plane in the next figure.  Note 

the unstable equilibrium solution,  y(t) = 7 /2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

17.    (i) In this case, .f(y) =(y+1)(y--4), whose graph 

is shown in the next figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(ii) The phase line is easily captured from the previ• 
ous figure, and is shown in the next figure. 

(iii)  The phase line in the second figure  indicates 

that  solutions  increase  if  y   <   -1,   decrease  for 

-1  < y  < 4,  and increase if y> 4.  This allows us 

to easily construct the phase portrait shown in the ty 

plane in the next figure.  Note the unstable equilib• 
rium solution, y(t) = 4,  and the stable equilibrium 

solution,  y(t) = -1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

18.    () In  this case,  f (y)   =  6 + y  --y factors  as 

f(y)  = (2+ y)(3- y), whose graph is shown in the 
next figure. 

 

 
f(y)=6+y-y 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(ii) The phase line is easily captured from the previ-
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72     Chapter 2      First-Order Equations 

 
ous figure, and is shown in the next figure.                             figure. 

 
 
 
 

« 
-2             3 

 

 
 
 
 

(iii) The phase line in the second figure indicates 

that  solutions decrease  if  y   <   -2,  increase  for 

-2<y <3,and decrease if y > 3.  This allows us 

to easily construct the phase portrait shown in the ty 

plane in the next figure.  Note the unstable equilib• 

rium solution, y(t) = -2, and the stable equilibrium 
solution, y(t) ==  3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

19.    () In this case, f (y)  =9y -y'  factors as f()= 

y(y  + 3)(y  -- 3), whose graph is shown in the next 

 
f(y)=9y-y° 

 
 
 
 
 
 

(3.0) 
Nee«. 
 

 
 
 
 
 
 
 
 
 
 
 
 
(ii) The phase line is easily captured from the previ• 

ous figure, and is shown  in the next figure. 
 

 
 
 
 
 
 
 
 
 
 
 
 
(iii)  The phase line in the second  figure indicates 

that  solutions  increase  if  y   <   -3,  decrease  for 

-3  <  y <0,increase if0  < y  < 3,anddecreasefor 

y  >  3.  This allows us to easily construct the phase 

portrait shown in the t y plane in the next figure.  Note 
the stable equilibrium solution, y()  = -3,  the un• 

stable equilibrium solution,  y(t)  = 0, and the stable
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equilibrium  solution, y(t) = 3. 
 

 
y 

2.9     Autonomous Equations and Stability     73 
 
-3   <y <  -1,  decrease  if -1   <   y  <   3, and 

increase for y   >  3.  This allows us to easily con• 

struct the phase  portrait  shown  in the  t y  plane  in 

the next figure.   Note the unstable equilibrium  so• 

lution,  y(t) = -3,  the stable equilibrium  solution, 

y(t)  = - l, and the unstable equilibrium  solution, 

y(t)= 3. 
 

 
y

 
 

 
 
 
 
 
 
 

20.    (i) ln this case, f(y)  = (y + 1)(y -- 9) factors as 

f(y)  =(y+1)(y-3)(y+3), whose graph is shown 
in the next figure. 

 

\ 
 

 
(0,-D) 

(0,3) 

 
 
 

 
i\,_ 
 

 
(0,-3)

 

f(y)=(y+1)y--9) 
 

 
 
 
 
 
 

l. 

 
 
 
 
 
 
 

 
(ii) The phase line is easily captured from the previ• 

ous figure, and is shown in the next figure. 

 

 
21.   Due to the periodic nature of this equation, we sketch 

only a few regions.  You can easily use the periodicity 

to produce more regions. 

() In this case, f(y)= sin y, whose graph is shown 

in the next figure. 
 
 

f(y)=sin y

 

 
 

#«d 

-3   -1        3 
 

(iii) The phase  line in the second figure indicates 

that  solutions  decrease  if  y   <   -3,   increase  for 
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(ii) The phase line is easily captured from the previ• 
ous figure,  and is shown in the next figure. 

 
 
 
 
«.. 

0                                     2n 

 
 
 

(iii) The phase  line  in  the second figure  indicates 
that solutions decrease if --r <  y < 0, increase  for 
0 <y <,decrease if  <  y < 2, and increase 
for 2r   <   y  <   3n.   This allows  us to easily con• 

struct the phase portrait shown  in the ty plane in the 

next figure.  Note the unstable equilibrium solution, 

y(t) = 0, the stable equilibrium solution, y(t) = , 
and the unstable equilibrium solution, y(t)  = 2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

22.   Due to the periodic nature of this equation, we sketch 

only a few regions.  You can easily use the periodicity 

to produce more regions. 
 
 

(i)ln this case, f (y) = cos 2y, whose graph is shown 

in the next figure. 
 

 
 
 
 
 

ft=cos 2y 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(ii) The phase line is easily captured from the previ• 

ous figure, and is shown in the next figure. 
 
 
 
 
 
 
 
 
 
 
 
 

 
(iii)  The  phase line in the second  figure indicates 

that solutions  increase if --n/4  <  y  <  n/4, de• 

crease  for r/4   <    y   <   3n/4,  and increase  if 
3n/4  <y <  5/4.  This allows us to easily con• 
struct the phase portrait shown in the ry plane in the 
next  figure.   Note the stable  equilibrium solution, 

y(t) = /4, and the unstable equilibrium solution,
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y(t) = 3n/4. 

2.9     Autonomous Equations and Stability    75 
 

 
 
f(y)=6-y

 
y 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
23.    The. equation is linear, so multiply by the integrating 

factor and integrate. 
 

(e'y)' = 6e' 

e'y = 6e'  4C 

y(t) =6+Ce' 
 

 

The initial condition y(O)  = 2 produces C  = -4 

and y(t) ==6 --4e '.  Now, e'  approaches zero as 

t -- +0,  SO 

 

 
(0,6)

 

 

' 
lim  y()= 

t 
lim   (6 --4e') = 6.

-oo -»h

Compare  y'  =  f(y)  with  y'   =  6 --y.    Then 

f (y) ==6-y, whose graph is shown in the first fig• 
ure below.  The phase line on the y-axis in this figure 

shows that y  = 6 is a stable equilibrium point,  so 
a trajectory with initial condition y(0)  ==  2 should 
approach the stable equilibrium solution  y(t) = 6, 

as shown in the second figure.   This agrees nicely 

with the analytical solution. 

 

 
24.    Writing the equation  as  y'  = 5-2y,  we see that 

the right hand side is f (y)  =5-2y.  The graph 

of f is in the next figure.   We have also indicated 

the direction of the solutions on the y-axis,  which 

shows that y = 5/2 is an asymptotically stable equi• 
librium point. Thus any solution curve will approach
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y =5/2as t increases.                                                             as t increases. 
 
 
 
 
 
 
 

fty)  «5-2y 

 
 
 
 
 
 
 
 
 
 

 
To find the exact solution, we separate variables and 

use partial fractions to get 

I  [   I       4 I      ] dymudf

 

 
Integrate, 

6    I+y      5-y

 
 
 

The exact solution can be found since the equations 

is separable (and linear).  With some work we find 

that it is y(t) = 5[I  -- e?/2. Clearly the solution 
has the indicated limiting behavior. 

 

l                     I 
zI! +M-zlI5-yM=t    C, 

In[I  + y] -In[5 -y] = 61 4 6C, 

.[pt;]-+«c 
y -5

=
y4]  

=A 
y-5 

6 
e',

 

 
 
 
 
 

25.    The equation has the form y' = f(y).where f(y) = 
(I + y)(5 - y). The graph of f is in the next figure. 
We have also indicated the direction of the solutions 
on the y-axis.  This shows that y = -l  is an unsta• 
ble equilibrium point, and y = 5is an asymptotically 

stable equilibrium point. Therefore, a solution start• 

ing with y(0) = 2 will increase and approach y = 5 

where A  = ±e.Using the initial condition y(0) = 
2we see that A  = -I,  so 

y +I            6t 
-te 
y --5 

 

Solving for y, we find that 
 

5    1                            5--e6 

yG=  la     fie" 
 

From this we see that y(t) -» Sas1 -+  o, agreeing 
with what we discovered earlier.
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26.    Separating  variables, versus y.

 

dy 
L (3     y)(l - y) 

dt 
dy 

I(lf 

 

 

f()= (3 +y)(1-y)

(3 +y)61  -y) 

[
4    
,
34
'
y  
..

1-
',

y 
]o•
 

A partial  fraction  decomposition allows us to con• 
tinue. 

 

 

In [3 +y]  --In[l -- y]=41 +C 
 

[;
I 
"
--
"
y
]-«+c 

3 +YI= eCe4r 
1 1-y 

3+J_A¢" 

l--y 

with y(0)  = 2, 

3+?_4e» A=5 
I-2 

 

and 

3+¥  _-5e" 
1-y 

3+y=-5e"  +5ye" 

3+5" =y(5e  --1 

3 4+5e 
y  = 5e41  - 1  · 

 

Multiply top and bottom by e ". 

 

3e45 
y =5e{ 

 
Thus, 

lim  y  ==                 = ], 
t-+oo            5--O 

 

Using qualitative analysis, plot the graph ofthe right• 
band side of 

 

-
dy  

= (3 + y)(l - y) 
dt 

 

 
 
 
 
 
 
 

Note the equilibrium  points at y = -3 and y = 1. 
Moreover, note that between  --3 and 2, solutions in• 

crease to the stable point at y = 1.  Thus, 

Jim y(t) = l. 
1-O 

 

27.   We have the equation  x'  = f(x)  = 4- x.The 
equilibrium  points are atx  ==  ±2,  where f (x)  = 0. 

We have f'(x)  = -2x.  Since  f'(-2)   = 4  >  0, 

x = -2 is unstable.  Since !'(2)  =4 <0,x = 2 
is asymptotically stable. 

28.    We have the equation x'  = f(x)  =x(x -1)(x +2). 

The equilibrium points  are at x  = 0,  1,  and  -2, 

where f(x)  = 0.  We have f'(x)  = 3x2  +2x --2. 

Since  f'(0)  ==    -2  <   0, x  = 0 is asymptotically 
stable.  Because  f' (I) = 3 >0,x ==  1    is unstable. 

Finally, because  f'(2)  = 2  >  0,x  = -2 is also 

unstable. 

29.     (a)  f(v) =x, f()  = x,or f()  = r'. 

(b)  f(o) = -r, f()  = -x,or f()  = --r. 
30.   Notice  that we are measuring  the displacement as 

positive below the plane.  First divide through by m 

to get 
dv               k 

rs 
Note that this equation  is autonomous, having     rm 

' = f(v).   The graph  off  is a line,  with  slope
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--k/m  and intercept  g, as shown in the following 
figure. 

 
 

f()=g-{v 
 

 
 

(0.g) 
 

 
 
 
 
 

«..J 
 

 
 
 
 
 

The phase line on the v-axis in this figure shows that 

v = (mg)/k is a stable equilibrium point.  Our sky• 
diver starts from rest, so the solution trajectory with 
v(O)  = 0 should approach the stable equilibrium so• 
lution, v(t) = (mg)/ k.  Consequently, the terminal 

velocity is (mg)/k. 
 

31.   Let x(t) represent  the amount of salt in the tank at 

time t. The rate at which solution enters the tank is 

given by 

Rate In = 2 gal/min x 3 lb/gal  = 6 lb/min. 

The rate at which solution leaves the tank is 

.                       X                           1                       . 
Rate out = 2gal/min  ;eh/gal=  ,, lb/min. 

 

Consequently, 

dx               1 
-b         • 

dt              50 

Let c(t) represent  the concentration  of salt in the 
solution  at time  t.    Thus,  c(t)   = x(0)/100  and 

100c'  ==x'. 

 
1 

100¢'=6    (00e) 
 

I              6         1 
€                             C 

100     50 

 
Let  f(c)  = 6/100 -- (1/50)c.   Setting  f(c)  = 0 

produces  the equilibrium  point c =3, as shown in 
the following figure. 
 

 
 

f«=  kc 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The phase line on the c-axis in this figure shows that 
c = 3 is a stable equilibrium  point so a trajectory 
with initial condition c(0)  = 0 (the initial concen• 

tration  of salt is zero)  should  approach  the stable 
equilibrium  solution c(t) = 3.
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