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Chapter 2. First-Order Equations

Section 2.1. Differential Equations and Solutions

2. d(t.y,y) =ty —2y - T must be solved for y'.

3 y(t) = -Ce-umand -ty(t)= -ice-ang

12

I ¢@,y,y) =ty +1+1)y = Omust be solved #r

y.. We get

= _(Hy

T w

We get

2yal
i -

soy'. — --ty.

=N
=

VN

5.

4, y'(n) ty(@© =2 -Ce")+(2l -2+Ce")= 21

If y(0) = (4/5) cosl +(8/5)sin1 + Ce-(=, then

y(* T (/2)y()
= [-(4/5)sint t (8/5)cosl -- (C/2)e<|/2n]
+(1/2)[(4/5)cosl +(8/5)sht +C¢°|/2n]
=2cost.




6. Ify(0) = 4/1 +Ce™), then

, 16Ce—40
= @F€=-5}7

y—> rte [—de]

_ B(ITFCe™) =16
( +Cejy40)?
16Ce-{

~ @+Ce-a)?

7. Fory() = 0, y'(t) = 0 and y(t)(4 - y(1))
0(4 --0) =0.

8 (a) iFL+Y =C, then

a Y TE
2t +2yy' =0

(b) If () +/C --@, then_y'
Tt//C - and

t+yy'=t +[t/C -mj[W//C -m]
-t —t
=0. s

(c) For /C  to be defined we must have

Tt <C. Inorder that y'(ty = €//C --,
we must restrict the domain further. Hence the

interval of existence is -C <t < C.
(d) '

9.

10.

2.1 Differential Equations and Solutions 13

(@ 1f? —4y =C, then

(I’ —4y)=‘dt
dt dt
21 --8yy' =0
t—4yy' = 0.
() If y0) = xVa -c/2, then yv =

/(2”7 —C), and

t —4yy'

=t—4[x/z -- C/2Xl/(2/ — C)]
—t —t
=0

(e) The interval of existence is either —00 < t <
CorC<t<oo

(@)

If y(t) = 3/(6°—- 11), then y' = --3. 6/(6t -
11) = --18/(6L-- 11). On'the other hand, --Y =
-2[3/(61 -- 11) = -18/(6! -- 11, so we have a
solution to the differential equation. Since y(2) =
-3/(12 - 11) == -%, we have a solution to the inie
tial value problem. The interval of existence is the
interval containing 2 where 6t — 11 "l 0. This is the
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14 Chapter2 First-Order Equations

interval (11/6, 00). the interval (—o0, 00).
15 |
o g
5 3
10
-1
5
2,3) 2
A &5
2 3 4 5
g &

) ) ) 1By =" Theintervalofexistence is (0, 00).
11. See Exercise 6. The interval of existence is 3 ’_ﬁ

(=00, In(5)/4).

104

(0, 1)

(1,2)

14. Weneede' =y(1) = e'(l4acs/@) =1+

C)e'. Hence C = 0, and our solution is yt) =

te". This function is defined and differentiable on

12. y(0) = (4/17)c0sl +1./17) sinl --(21/17)e on the whole real line. Hence the interval of existence

4
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21 Differential Equations and Solutions 15

is the whole.real line. But this equa!s (1{2)(1 +2)only ift > -2, as shown
in the following figure.

1
0 (1,e™ y
A
> -1
=
0 2 4
3 (-2, 0) ©0,1)
- -/ > |
t

15. y(t) =2/(-14e-2/3). The interval of existence is
(= In(3)72, 00).

1 ™
1 D]
i = The second solution proposed by Maple, y(t) = (1/4)(1-
-2) ,satisfies the initial condition, as y(0) ==(1/4)(0
-2) =1 But
1
/' =2 -2)
16. The initial value problem is
=V, yd=1 and

The first solution proposed by Maple, y(t) =
(174)(1 + 2), satisfies the initial condition, y(0) =
(1/4)(0 + 2) = 1. Next,

shlog i 6Fo —rf—2 =}—2
y(=,+2).

and

L]
VO_ [_-H)_ -=-+a But this agrees with (1/2)(1 --2) only ift 2 2, as
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16  Chapter 2  First-Order Equations

shown in the following figure. 18.

- _1| | 7/ n

U
S

|
—
o
N

19.
y =ttan(y/2)

v INm _ s/

> 0| ——

Note that this graph does not pass through (O, 1).
Hence, y(t) = (1/4)01 -- 2) is not a solution of the

initial value problem. A J o/ T o\

:
t
2 a0 2
17. 20.
1t — y'=y+t a4 y'=Ryrg+Y)
\ 7| | Lz _~z1
05
AN 7 5
A N A -05 LY = *
o VR WL LY 4 4\ n mo\
} 15 .
2 1 0 2 2 0 2
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Differential Equations and Solufions 17

2

the right-hand sde of

21.

o Wbt

y sty
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e meoy
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is undefined.
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24. Note the difficulty e(per'ienced by the solver as it ape

= t, where the denominator of

proaches the line y
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18 Chapter2 First-Order Equations

30.

27.

sozrAesdl)

e

B

y

3y +sin(t)

tgt g

AN =n
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33.

34,

35.  We must solve the initial value problem

dpP

9t =044P.  P(0) = 15.

Using our numerical solver, we input the equation
and initial condition, arriving at the following solus

21 Differential Equations and Solutions 19

tion curve.
4 4 -

200 t 1 t F_ P r
il t 1 [
P b Lol
150 br'il" ’_111{: N A
tgte b i IREEEE

I AEE R R £.4, ’i
AEEes VT I Lie i
a. 100 ylzll } trtw) g ’ ;

IJI:‘gtI e 4 t.8

‘ ’ ’

-4 4. 1:-_ < t..é.‘ be ,~'t4~.i_-,

s0f 27 -7 Lafrirg

) RN YR v
9 tpr e v 7
. 4 . ¢
’ v rsr s e
7’ & & L xS A
- il i
of 3= o fermetio e

Using the solution curvet we estimate that P(10) z
124. Thus, there are approximately 124 mg of bace
teria present after 10 days.

36. We must solve the initial value problem

dA

g =--0254.  A®D) = 400.

Using our numerical solver, we input the equation
and initial condition, arriving at the following solue
tion curve.

500
400

< 300
s l2Ei

100

Use the solution curve to estimate A(4) ~ 150.
Thus, there are approximately 150 mg of material
remaining after 4 days.

37. We must solve the initial value problem

%€ = _oosser

5= ¢(0) = 0.10.
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20 Chapter 2 First-Order Equations

Using our numerical solver, we input the equation Use the solution curve to estimate that it takes a little
and initial condition, arriving at the following solue less than 15 minutes to cool to 100° Celsius.
tion curve.

39, The rate at which the population is changing with
respect to time is proportional to the product of the
population and the number of critters less than the

0.1 44 - aa s e i :
‘.é.\;“ Tiddae 33l %k "carrying capacity" (100). Thus,
N NN NN
& N N NRLN
ooe | LENS N ERERS L KSRt
> )\ N BB
33T NEAIIIIIINLTLLE _
006[ ¢ KTs= DRIVseTH= L G(E = kP (00 -- P).
o SIIIIIIIINGAN NN
004]$3333333333¢ 3WsS33ss With k = 0.00125 and an initial population of 20
B e e R e critters, we must solve the initial value problem
0 ———————— = AT 7 - —
t dP = 0.00125P(100 -- P), =20
0 10 20 30 (ﬁ ( ) P(©) Ay
Note that the right-hand side of this equation is posie
Use the solution curve to estimate that it takes a little tive if the number of critters is Jess than the carrying
more than 29 days for the concentration level to dip capacity (100). Thus, we have growth. Using our nus
below 0.02. merical solver, we input the equation and the initial

i ’ . conditign, arriving at the following solution curve.
38. The rate at which the rod cools is proportional to the o o S SR
difference between the temperature of the rod and 60 ZIZozIIIIzIIIiooE
the surrounding dlir (20° Celsius). Thus, <z
. 1802232272
T ,.
=—kT -20). 22
With k = 0.085 and an initial temperature of 300° 20} =% ;
Celsius, we must solve the initial value problem n. st s atoc ot g el e A
40
dT =
Y =—0.085(T -- 20), T() 300, t
where T is the temperature of the rod at t minutes. P
Note that since the initial temperature is larger than 0 10 20 30

the surrounding air (20° Celsius), the minus sign ine
sures that the model implies that the rod is cooling.

Using our numerical solver, we input the equation and Use the solution curve to estimate that there are about

initial gopdition, atriving at the following solus tion 91 critters in the environment at the end of 30 days.
curve. \\\\:\,\\ 3 2
2 SN AN X aA X
S N &, AR
E Y B s, ! \
h 2 O ANRY > % I
300058 s s N8 %&444442
SN E IR LR
250 s3I NS
DI, ], Al bl g
ek - e 4~ A 4
01 w273 ATTTTIZITITIAS
L] S s R
100
t
50
0
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2.2 Solutions to Separable Equations 2

Section 2.2. Solutions to Separable Equations

l. éeparate the variables‘ and integrate. 5. Separate the variables and integrate.
ay Oy e G+1
dl=xdx )[—/dy =(r + dx
l | =g
Inl=,r+c nlyl=;r +r+€
yQ)l = enc y]|— /2e“+r+é:
yer) = 2£".an yO =1E X +
= An, Leting D = +e',y = Deme+"

6. Separate the variables and irifegrate. Note: Factor
the right-hand side.

2. Separate the variables and integrate. dy
gz 7. C* +D0O-2)

Where the constant A = *e" is arbitrary.

)—/dy—;;d inly —2]=e’ ar +C
Inlyl=2In 11 +C ly —2]="e"++c
yl=hre y—2=%6""+
yO = ieD Leting D = #e"ly () = De" = +2.
LettingD = +&;yQ) = U 7. Separate the variables and integrate,
3. Separate the variables and ')S'tegrate. dy- m—x—
dy dx - y+2'
& ST (y +2)dy = xdx,
edy' =e'd S—I-y:-_l-r +C.
EmaC! y+4y-(+D)=0,

yQ) = In(e* +C) g
‘ With D 'replacing '2C in the last step. We can use the

4. Separate the variables and integrate. quadratic formula to solve-for-y:—————
-4+J16+4(x>+D
L= +yye Q.= pe maea)

R y6)= -2EWrr+(D+4)

+y dy:e‘dx st

tan'y =e' +C If we replace D 4 4 with another arbitrary constant
yO=tan(" +C) E. then y(9)= -2+ E= _
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22 Chapter 2  First-Order Equations
8. Separate the variables and integrate.

L7 (5)

D-(+1) -

In/y] =x +In]x --1]+C
vl =e"+nir-1+c
v(Q) — Lee'JIl-Il
Letting D = xe,y () = De"[x - 1. Itis impore
tant to note that this solution is not differentiable at

x = | and further information (perhaps in the form
of an initial condition) is needed to remove the abe
solute value and determine the interval of existence.

9. First a little algebra.
ry'=yiny -y’
(+1y =ylny
Separate the variables and integrate.

1 |
sy YT 21
Ihaei = —
TR e S
where u == Iny and du :}dy. Hence, In[u] =
tarn'x + C. Solve for w.

Ju] = can7'etc
u=zfe,n-"

Let D = e, replace u with Iny, and solve fory.

ny =De "
yO =weer
10.
x% —y0+28)

2
dy Lt gy =l a
y jX Xy 2
Iny =Infrl a4+ c
lyer)[ = hour+c _ e[je

y(x) = Axe'’

11.

6'-57 =

(Y —2)dy = xdx

Vi 2
¥ ==5+C
The solution is given implicitly by the equation

Y —8y—2x° =A, where we have set A =4C.

12.
dy = 2xty +1y
dx r=1
ty— =2xex—
ytl x?2—1
Infly +1]= In[r !1] +C 5
ly +1]1= die—c _€1

yx) =AC--1) —-1.

13.

il
x%—x*‘:

ey
dx
dy-
y
Ayl = 1]x] +C
yQl =wmrc _ € pi
y(x) = Ax.

The initial condition y(1) = —2givesA = -2. The
solution is y(x) = —2x. The solution is defined for
all x, but the differential equation is not defined at
x = 0 so the interval of existence is (O, 00).

14,
dy = —2r@+y)

dt y
“ydy— —--21 dt
1 1 +y?

2
In¢ +y)=-I +€
| +=2+c_ea-a

1+Y=Ae?
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With y(0) = 1, 1+1 = Ae 2% and A = 2. Thus,
Iy =2-2"
y==*/22 -1

We must choose the branch that contains the initial
condition y(0) = 1. Thus, y = /222 1. This
solution is defined, provided that

2e3 A1.=0
cw ¥
T
_2 2

r<—2R2

2
7 _In4

il < Vind.

Thus, the interval of existence is (--/In4, /ind).

dy — sinx

dx y
ydy =- sin.xdx
%)i:—cosx +C

Y =—-2cosx+C
y(x) = £/C —2cosx

(€ =2C)

Using the initial condition we notice that we need
the plus sign, and | = y/2) = WC. ThusC = 1
and the solution is

yQ) =VI—2cosx.

The interval of existence will be the interval cone
taining N/2 where 2cos.x < 1. Thisis n/3 <x <
57/3.

16.

17.

18.

2.2 Solutions to Separable Equations 23

dy e
dx
e""dy =e" dx
--=e"4C
e —=—e" -C
-y=In(--e* —-C)
y= —In(--¢" --C)
With y(0) = 1,
I=—In(-¢" -C)
-1—c=e'
C=-1-e"
Thus,

y= —In(-e' 4e&'41).
This solution is defined provided that
-e' 4e'41=0
e' <e'4al

x <In(e'+ D).

Thus, the interval of existence is (—o0, In(e"4 1)).

=
r(leyz

= —ad
1297
tan'(y) =t +C

y(t) =tan(t + C)

For the initial condition we have 1 =y(0) = tan C,
so C = /4 and the solution is y(t) = tan(t +
n/4). Since the tangent is continuous on the interval
(=72, /2), the solution y(t) = tan(t + n/4) is
continuous on the interval (--3n/4, n/4).

ay __x _
dx — 1 +2y
@ +2y)dy =xdx
y +y=r/2+C
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24 Chapter2

19.

First-Order Equats

This last equation can be written as Y +y — (X[2+
C) — 0. We solve for y usingthe quadratic formula

yo =[-1% viFig7z¥e] 2
=[-1xV2=#T]n c=1+4c

For the initial condition y(--1) = 0 we need to take
the plus sign. in order to counter the —1. Then the
initial condition becomes 0 = [—1 + /2,
which means that C = --1, Thus the solution is

-1+2 1
yor)= 2 AT )

For the interval of existence we need the interval con-
taining —1 where 2£ --1 0. This js —00 <X <
-1/2. ;

Withy(0) = I, we getthe solutionyor) = B 1|
with interval of existence (—O, ©). This solu-
tion is plotted wih the solid curve in the follows
ing figure. With y(0) = —I, we get the solu-
tion yor) = - 7, with interval of existence
(=00, 00). This solution is plotted with the dashed
curve |n the followmg figure. ‘
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20.

With y(0) = 2, we chiose the. positive “branch
and 2 = /2C feads to C = 2.and the solution
y =31 __ th interval of existence (=2, 2).
This solution is plotted as a solid curve in the fole
lowing figure. With y(0) = --2, we choose the nege
ative branch and -2 = -/z€ eads to C = 2 and
the solution y --Z4—"wvith interval of exustence
(=2,2). This solution is shown as a dashed curvein
the figure.

ad

21.

With y(0) = 3 the solution is =2+te"

y(n)
(— o, 00). This solution is plotted isthe solid curve
in ‘the next flgure With y(0) = I the solution is

y(n=2-e",on(-c, 00). This solution is plot-
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ted is the dashed curve in the next figure.

104
5
%‘————
7 t
0
P 2 4
|
/ -5
22,
dy _ Y+l
dx ~— Y

_yc_l?l_ =dx
Y +i
10ty +1)=x+e
Y+1=ax+e€ - Ae”
Y=Ae~ —1
yx) =x/Aex -1

This is the general solution. The initial condition

(A=e=

y(l) = 2 gives
2=4/A¢? -1
a=Ae _1
A =5e7?

The particular solution is
y(x) =/5e27 —1.

The interval of existence requires that

502-2 _ 1=0
2x =2 > In(1/5)
x> 1—1n(5)/2=0.1953.

Thus the interval of existence is |
00.

—In(5)/2 < x <

23.

24.

25.

26.

27.

28.

29.

2.2 Solutions to Separable Equations 25

We have N(t) = Naey, and

NC +Ty) = Ne+17)
=Nex .%Ty
= N@{).eTn
= NG —l

Z
ife37n =1/2, or Ty =In2/.

@ ™ In2/Ty = 15507 x 1O+

(b) Wehave N = 1000 and N(t) = 100. Hence
100 = 1000. €y, 0rt ==In 10/ = 1.4849 x

10 years.
We have 80 = N(4) == 100e4. Hence ~ =
In(100/80)/4 = 0.0558. Then TI = In2/2 _

12.4251 hours.

Using Tip = 6 hours, wefave } = In2/Tn2 =
0.1155. Then N(9) = 10e = 3.5355kg.

Using Ty = 8.04 days, we haye } =In2/Ty =
0.0862. Then N(20) =500 =" = 89.1537mg.

The decay constants are related to the half-lives
by 220 = In(2)/242 = 02864 and kn =
In(2)/15 = 0.0462. The amount of?*"Rn is given by
X(t) = xo0€*10 and of?"Rn by y(0) = y&l?! =,
The initial condition is that y(0)/(0) = yo/xo =
0.2/0.8 = 1/4, s0 4x0 = 4yo We are looking
for a time t when 0.8/0.2 = 4 = y(t)/x(t) =
= 20-320)/4. Thus we need e'a0-721) =- 16.

From this we find that t = 11 .5 hours.

(@) If N = Naet, then substituting T; = 1./,

N =Ne3

= Nae700)

_Noelll
Therefore, after a period of one time constant
T, = 1/, the material remaining is Ne".

Thus, the amoupt of radioactive substance has
decreased to € of its original value Ne.
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26 Chapter2 First-Order Equations

(b) Ifthe half-life is 12 hours, then

1
-No = Neo2

2
I |
2
= |
-12 —In-2
nl!
=T

Hence, the time constant is

"1|2 17.3hr.
2

1
A In

(c) If 1000 mg of the substance is present inie
tially, then the amount of substance remaine
ing as a function of time is given by N =
1000e In(1/2)/12, The graph over four time pes

riods (O, 47)) follows.

1000

800
600
400

200

30. The data is plotted on the following figure. The line
is drawn using the slope found by linear regression.
It has slope —A. = —0.0869. Hence the half-life is

3L

32.

Tty2 = In2/ = 7.927days.

7

6.8
6.6
cr
£
6.4
6.2
6
2 4 6 8 10
Day

The half-life is related to the decay constant by

In2
226

Ty

The decay rate is related to the number of atoms
present by

R =)2sN.
Substituting,
. NIn2
Tin=

Calculate the number of atoms present in the Ig sams
ple.

6.02 3% 10" atoms

I"mol
226 g
=266 x 10" atoms.

N = Ig x

Now,

_ (266 x 10" atoms)(In2) 0 * to

3.7 x 10 ~ atom/s e p 55
0O"s
Inyears, TIp z 1582 yr. The dedicated reader might
check this result in the CRC Table.

(a) Because half of the existing 'C decays every
5730 years, there will come a time when physe
ical instruments can no longer measure the ree
maining "C. After about 10 half-lives (57300
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33.

years), the amount of original material remains
ing is

No» (4)10 =0.00097N%.

a very small amount.
(b) The decay constant is calculated with

=2 _1In2__ 4 6001245,
g Ayt

5568
We can now write
N = Neo.ooo1245

The ratio remaining is 0.617 ofthe current ratio,

S0
0.617Ni = Ne -ono1245¢
. 0now4s  0.617
--0.0001245! = In 0.617
In0.617
"~ --0.0001245
Thus, the charcoal is approximately 3879 years
old.

Lett = 0 correspond to midnight. Thus, T(0) =
31C. Because the temperature of the surrounding
medium is A =21C,wecanuse T = A + (T -
A)e and write

¥ =21 +(3l -2l =21 + 10¢

Att = I, T = 29°C, which &an be used to cAlculate
k.

29 =21 + 10e=
k= —In08) o
k =0.2231

Thus, T = 21 + 10%-02231  To find the time of
death, enter "normal” body temperature, T = 37°C
and solve fort. *

37 = 21 +10e0.221

In 1.6
-0.2231
t= =2.1-hrs

Thus, the murder occurred at approximately 9:54
PM.

34.

35.

36.

2.2 Solutions to Separable Equations 27
Let y(t) be the temperature of the beer at time t
minutes after being placed into the room. From News
ton's law of cooling, we obtain

y'(t) =k(70 -- y(®) y(0) =40

Note k is positive since 70 > y(t) and y'(t) > 0 (the
beer is warming up). This equation separates as

10-y €r

which has solution y = 70 -- Ce. From the
initial condition, y(0) = 40, C = 30. Using
y(10) = 48, we obtain 48 = 70 -- 30% 1 or
k = (=1/10) In(11715) or k = .0310. When
t =25, we obtain y(25) = 70 -- 30%—598 , 56.18°.

The same differential equation and solution hold as
in the previous problem:

y(t) =70 --Ce
kt
We let t = 0 correspond to when the beer was dise
covered, so y(0) = 50. This means C = 20. We
also have y(10) = 60 or

60 =70 -- 20e 10

Therefore, k = (=1/10)1n(1/2) z .0693. We want
to find the time T when y(T) = 40, which gives the
equation

70 --20e ™ =40

Since we know k, we can solve this equation for T
to obtain

T =(-1/K)1(3/2)=z --5.85

or about 5.85 minutes before the beer was discovered
on the counter.

X' = [at+by+c]' =a+by' =a+bf(at+by+c) =
a +T ). For the equation y' =(y +1t) we usex=
I+y. Thenx' =1#y' = 1+(y41) = 1<=1 _Solve
ing this separable equation in the usual way,we get
thegeneralsolutionx(t) = tan(1+C). In terms ofthe
unknown vy, we get y(t) = x(t)—t == tan(l +C)--t.
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28  Chapter 2

37.

38.

39.

First-Order Equations

The tangent line at the point (x,y) isYy -y =
y'(X) C - x) (the variables for the tangent line have

AL

(x, y) bisects the tangent line, we have = X
the hats). The intercept T=s== -y/y' +x. Since
2
Therefore =
-y
2.0 == i +X
y
or w
1
y X

This separable differential equation is easily solved
to obtain y(x) = C/x, where C is gn arbitrary cone
stant. :

With the notation as in the previous problem, the
eqyation of the normal line is

YW)_ ) ]

The 2-intercept is found to be 2j, = yy' +x. Since
in —X is given to be =1, we obtain

_ya

yy'= +2

with solution Y= +4x+ C, where C is an arbitrary

constant.
Let ¢ be the ahgle frgm the radius to the tangent.

¢

From geometry, tan b = rd@/dr. Sinc€ = 2, we
obtain

d
jﬂ rcot ¢ = rcot(0/2)

40.

41.

which can be separated as dr/r = cot(0/2)d0. This
can be solved for r as r(0) = Csin(0/2), where C

= y(t) from Oto xis

IS a constant. dt

The area under the curve y

fo

which by assumption, equals (1/4)xy(x) (onee

fourth the area of the rectangle). Therefore
fox y(t)dt = (1/4)xy(x).

Differentiating this equation with respect to x and
using the Fundamental Theorem of Calculus for the
left side gives

yQ = (W4) (yO +xy'(0)).

This equation separates as

y' 3
y X

which has the solution y(x) == Cr".

Center the football at the origin with equation

z+r+%:,
The top half of the football is the graph of the funce
tion

z=/4-X—-y/4

The (x, y)-components of the path of a rain drop
form a curve in the (x, y)- plane which must always
point in the direction of the gradient of the function
Z (the path of steepest descent). The gradient of Z is
given by )

=Xi --(y/4)j
74=x7=yl/4

where i and j are the unit vectors parallel to-the x and
y-axis. Since the path traced by the drop, y = y(x),
must point in the direction of VZ, we must have

Vz --

y

dy L
el slope of the gradient = 7 ax
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42.

43,

This differential equation can be separated and
solved asx — Cy'. C can be solved from the initial

position of the drop (0, >>) to be C = rOIy} The
final answer is given by insertingx — Cy" into the

expression for z
r' 2= (Cy'.y,Vi— C"—y/4),

(here, y is the independent variable).

Let yQ) be the level of the water and let V(t) be the
volume of the water in the bowl at timet. .On the one
hand, we have dV/dt ‘:'cross sectional area of the
water level Xdy/dt The cross sectional area of the

water level is Ir><, wherex is the radius. USIng the
equation 'of the side of the bowl (y = %), weobtin

e &
On the other hand, dV/dt ¥kqual to@V where v
is the speed of the water exiting the bowl. From the

hint, v = 2@ @. Thus we obtain the following
differential equation:

T — «ass@~.
—d
This equation can be-eparated and solved fory as

" to= (c—§«2a)IP

Since y(0) = I, we obtain C = 1. Setting y(t) = 0,
we obtain

+yO dl7t

2
f ] ]

in units of seconds (here g = 32).

Ba,2i

Let the unknown curve forming the outside of the
bowl be given by y = y ) (thebowl is then formed
by revolving thiis curve around the y-axis). We can
also write this equation as:x = x(y) (reversing the
roles of the independent and dependent variables).
As in the analysis of the last problem, the rate of

44.

23 Models of Motion 29
change of volume, d V/dt is the cross sectionall arca
multiplied by the rate of change in height, dy/dt.
The cross sectional areais [l = ><(y).. Thus

|

av 2dv
From Torricelli's IaW: dr

o _- AV=-Ra. \;AN
Since dy/dt—: C (a negative constant), we obtain
cir=-nae

Solving fir y, we obtainy = Kr" where K is a
constant. ;

Following e hint, let 6 be the polar angle and lo*
cate l© destroyer at 4 miles along the positive .x-axis.

The destroyer wants to follow a path so that its arc
length is always three times that of the sub.. To ac:
count for the posibility that the sub heads straight
along the posmve X-axis, the destroyer should first
head from r = 4 (Y (the sub ‘would. _move
fromx = Oto x ==_| in this same time frame under
this scenario). Nowthe destroyer must crrcle around
the sub along a polar coordinate path'r = r(8). We
have r(0) = I, Ifthe destroyer intersects the b at
(6,1(6)),then the sub will hav, ;raveled r(6) andthe
destroyer would have traveled ,~ Jr* (i) + r(ndo
(arc lengh along the curve r = r(8)). Since the
speed of the destroyeris three times that of the sub,

we obtain !

I
3(r(9)— H= I
Jri(t)2 +r(r)2dl.

Differentiating this equation gives

dr )
%=0g ©

with solution r(0) = AN3

Irr=@kF—r s =1
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30 Chapter 2

First-Order Equations

Section 2.3. Models of Motion

We need gt = ¢/5. ort = ¢/59 = 612,240 sece
onds, The distance traveled will be s = (/2 =
1.84 x 10T meters.

Weneed 0 = —9.8t2/2 + 15t + 100. The answer is
6.3 seconds.

The depth of the well satisfies d = 4.9t2, where tis

the amount of time it takes the stone to hit the water.
It also satisfiesd = 340s, wheres = 8 -t is the
amount of time it takes for the noise of the splash
to reach the ear. Thus we must solve the quadratic
equation 4.9t> = 340(8 —1). The solution is t. =
7.2438sec. The depthisd = 340(8 --t) = 257.Im.

In the first 60s the rocket rises to an elevation of
(100 --9.8)1/2 = 162, 360m and achieves a veloce
ity of v(60) = (100 -- 9.8) * 60 = 5412m/s. After
that the velocity is 5412 — 9.8t. This is zero at the
highest point, reached when t, = 552.2s. The altie
tude at that point is 162, 360 + 5412t --9.8.1/2 =
1.657 X 10m. From there to the ground it takes t2s,
where 4.91} = 1.657 x 10°, or t = 581.5s. The
total trip takes 60 +552.2 +581.5 =1193.7s.

2

The distance dropped in time t is 4.9t2 If T is

the time taken for the first half of the trip, then
49(T+1 = =249T,0rd.9(T --2T --1) = 0.
Solving we find that T = | +=2= 2.4142s. So
the body fell 2 x 4.9T2 = 57.12m, and it took

T +1 = 3.4142s.

) v3/2g
(b) Both times are equal to vo/g.
(c) vo.

The velocities must be changed to ft/s, so vo =

60mi/h = 60 x 5280/3600 = 88ft/s, and v =

30 mi/h = 44ft/s. Thena= (—— V)/Z(x —-x0) =
-5.8ft/s.

We have v(t) == Ce-rm - mg/r.1f v(0) = 0 then
C = mg/r, and v(t) = mg(e""h —1)/r. Thisis

equalto --mg/2r when €'/  1/2. Thus the time

required is t = m In(2)/r. The distance traveled is

fo' v(s) ds
_e J[zat— Nds

X

- [Tac—]
sz aj
-Lal

9. The resistance force has the form R == —r~. When

vV =0.2, R = =1 s0r =5, The terminal velocity is
vem = mMg/r = -0.196m/s.

10. (a) First, the terminal velocity gives us 20 =
mg/r, Or r = mg/20 =70 x 9.8/20 = 34.3.
Next, we have v(t) = Ce=vim mg/r. Since
v(0) = 0,C ==mg/r, and v(t) = mg(e ™ /m__
D/r. Integratirllg and setting x(0) =0, we get

X =

v(s)ds

s e

_'"RJfar- E)ads

, J
ﬁpaea i

-12.4938 and_x(2)

Hence v(2) =
-14.5025.

(b) The velocity is 80% of its terminal velocity
when | — ewrt/m _ 0.8. For the values of m =

70 and r = 34.3 thishecomes t = 3.2846s.

0
11. Without air resistance, vo = Z=x135g9 -
16.2665m/s. With air resistance, va is defined by

0 vdv r

Do A
| +

Hence, v mg/r m s

- vo + (mg/r)in(vo + mg/r) - (mg/r)in(mg/r)
=—13.5—r— or
m

_ vo +49In(vo +-49) --491n(49)
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This is an implicit equation for vo. Solvin
calculator or a computer. yields V. — 18.1142mé:

12. The impact velocity v is defined by

' vde s
h .mer, _al,

From which we get

\% —(mg/r)‘l (+ mg/r) + (mg/r)in(mg/r)

:——501, or ‘
m
~19.6In(v, + 19.6) + 19.61(19.6) = 25

This is an implicit equation for V. Solving on a cal+
culator or a computer, yields v, = --17.3401m/s.

13. Following the lead of Exercise IH, we find that
vdv=(-g +*R(D)/m) dy = (=98 --0.5) dy
Hence ify is the maximum height we have

s 1 [ ‘
vd o 1"
LOV_I_I’QZ 05 dy.

m— <L +Of,,

= 7.9010.

Hence

d dvdy _ d
v_ Y=,

14. (a) Follows froma = .
d o o
(b)

GM

vdv= "R~

F e

J nw w

+5="

}«—«— -CU( ¢~ §+:/)

- — 26Uk /iy)

on a

23 Models of Moion 31

(c) Ify isthe maximum height, the corresponding
velocity iis v. = 0; so from (3.16)
BE | i

‘0=«'2au G~ riy):

Solving fory we get the result. |

Q 1 vo < /26MIR.shen V < 26M/R,

and 2GM/R = |’ > 0. Hence by (¢) the
object has a finite maximum - height and does
not escape.  However, when V0 = / GM[R.
2GM/R -\ = 0, and there is N0 maximum
height.

15.  Letx(t) be the distance from the mass to the center
of the Earth. The force of gravity iskx (proportional
to the distance from the center of the Earth). Since
the force of gravity at the-surface (wen I = R)is
-mg, we must have K = mg/R." Newton's law

bécores At '

! dr = -mg

n
as
Using the reduction of ‘order technique as given in
the hint, we obtain

—
dx R

which can be separated with a solution given by
v =/CT=70F7R. The constant C can be evalu-
ated from the initial condition, v(x = R) = 0, to
be C = gR. When x = 0 (the center of the Earth),
we obtain v = B gR or approximately 4.93
i les per second.

16. We will use GM = gR. Once more we usc

pd=_(§%“"§1y

1~sds =—GM {" dy

0 'J R+y>
._ZO[I‘\: - R:La]
2=gREN {in !
—+R

17. The force acting on the chain is the force of grave
ity applied to the piece of the chain that hangs off
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32 Chapter 2 First-Order Equations
the table. This force is mg.x(t) where mis the mass
density of the chain. Newton's law gives
mx"(t) = mgx(t)

Using the hint, x"'(t) = dv/dt = v(dv/dx) and so
this equation becomes

L, av
a =Ex

Separating this equation and integrating gives V=
X + C. Since v == 0 when x = 2 (initial velocity
Is zero), we obtain C == <4kg. Therefore

v=V((X-2).

Since dx/dt = v =/ g(Xx? —4), we can separate
this equation and integrate to obfain

In(x +/X_2y= /gt +K

Section 2.4. Linear Equations

1. Compare y' = -y + 2 with y' =a(t)y + F(t) and
note that a(t) = —1. Consequently, an integrating
factor is found with

ukt) =el-at  _wia _e"

Multiply both sides of odf equation by this integ-ate
ing factor and check that the left-hand side of the
resulting equation is the derivative of a product.

e'(y' +y) = 2¢
(e'y) =2¢'
Integrate and solve for y.
e'y =2e' +C
y(l) =2+Ce"
2. We have a(n) = 3, so u(t) = e . Multiplying we
see that the equation becomes i
e$-37yv=he.

3r 1 3t
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where K is aconstant. From the initial condition that
x =- 2 whent = 0, we obtain K = In 2. Inserting
x = 10 and solving fort, we obtain

| |
t==—=1lp (u ) z 405 seconds
E A=

18. v =—g—(k/m)v, v = velocity. Velocity on ime
pact is 58.86 meters/per second downward and 90.9
seconds until he hits the ground.

19. Let x be the height of the parachuter and let v be
his velocity. The resistance force is proportional
to v and to €, Hence it is given by R(x,v) ==
--kev, wheresX is a positive constant. Newton's
second law gives us mx" = mg --key/', or
mx" +ker' +mg = 0. a

We verify that the left-hand side is the derivative of
e 2y, S0 when we integrate we get

5
edy(t) =~ 4+ C.
Solving for y, we get

y(t) = —g +ce®.

3. Compare y' + (2/x)y = (cosx)/x? with y* =
a(x)x + f(x) and note thataq) = --2/x. Cone

sequently, an integrating factor is found with
ux) —el-ads of2s _ a2lll - xf —

: ; dx é 2
Multiply both sides of our eqxuatlon by the integrating
factor and note that the left-hand side of the resulting
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equation is the derivative of a product.

«(+7)=(se
Y" +2xy= tos
(><y)" = cos X

Integrate and solve for x,

ry: sinx +C
_sinx +C
yO=—7—

We have a() = -21, sou(t) =. e"".Multiplying by
u, the equation becomes

e’y + 2te?y = ste”.

We verify that the left-hand side is the derivative of
Y, S0 when we integrate we get

5
eyo=7:¢" +c.
Solving for y we get the general solution

v(0) =g +ce~.

Compare x' --2x/(1 +0) = (t + 1) with x' _
a(t)x *+ F(t) and note that a(t) = -2/(1 + 1). Cone
sequently, an integrating factor is found with

uit) = el-ad _ e!-2/0+Dad
-ell+  1+15=U+1),

Multiply both sides of our equation by the integrating
factor and note that the left-hand side of the resulting
equation is the derivative of a product.

(1 +l)'<x'f ﬁ) =I
(+1D)" =1

Integrate and solve for x.

1+ <=t+€
x(®) =1+ 1) +cC+ 1,

6.

8.

24 Linear Equations 33

If we write the eﬂuations as X' = (4/t)x +13, we
see that a (t) = 4/t. Thus the integrating factor is

utty =e-/«/d _ell' _;
Multiplying by u, the equation becomes

T =4 =170

After verifying that the left-hand side is the derivas
tive of €4, we can integrate and get

Q) = Int+C.
Hence the general solution is
xQ =Tint +Ct".

Divide both sides by | +x and solve for Y.

| 1 cosx
V=7 it

Compare this result with y' = a(x)y + f(x) and
note that a(x) = —1/(1 +x). Consequently, an
integrating factor is found with

u) = el -aeax _ Ju+od _ In+x [14x.

If1l+x >0tenll +x =1+x Ifl+x <0,
then I + x| = —@ + x). In either case, if we mule
tiply both sides of our equation by either integrating
factor, we arrive at

1+ x)y +y = cosx.

Check that the left-hand side ofthis result is the derive
ative of a product, integrate, and solve for y.

((1 + x)y)' = cosx
@1 +xy=sinx+C

Divide by 1 + < to put the equation into normal form

30
y' = ar

ol
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34 Chapter? Firstdirder Equations

We see thata(x) = 3r1 4 =). Hence the intes
grating factor is

u(x) = (-fh’/uu-‘m . e—th»r‘) - | ;
1+ x3

Multiplying by this we get

l 32 o2
Et T o AERE

We first verify that the left-hand sidg s the derivative
of (1 +r")~ y. 'Then We integrate, getting

C= ‘n(+r+c

1423
Solving fory, we gct

k!
K+ md+a T+

yvix) =

9. Divide both side of thls equation by L and solve fir

di/dt ’
di
- %d

Compare this with i' = a(t)i T £() and note that
a(t) = —R/L. Consequently, an mtegratmg factor

is found with
_et
I

Multiply both sides of our equation by this integrate
lng factor and note that the resulting left-hand side
is the derivativeiof a product. ]

u() =el-aar _ IRtd

Gt B,
dr B f
(eRt/Lt)" = N eRU/L
Integrate and solve for i.
mm_gipn:

a = + Re/L
I0 r'cCe

10.

12.

Comparey' = my +ce"" withy' = a(x)y + £Q)
and note that a(r) = m. Consequently, an integrats
ing factor is found with

uQ) =el-atar _ 1-nd _Em:
Multiply both sides of the differential equation by
the integrating factor and check that the resulting
left-hand side is the derivative of a product.

y'—my=ce""
ey =me=)=Cc
(e™y) =

Integrate and solve for y.
"y=cx +C
y—(cr tc)e""

Compare y' = c0sX --ysecx with y = —at)yt
T(X) and note that a(r) = —sec.x. Consequently,
an integrating factorls found with

u(r) = el -at4r _ Fer4a

— alberr+tnrl _ [secx + tan.xl.

If sec.x T tanx > 0, then [secx t tarm] = sec.r 4
tanr. Ifsecx +tanr < 0, then [sccr + tan.r] =
— (secx 4 tanr). In either case, when we multiply
both sides of the differential equatlon by this intes
grating ictor,"we irrive at

(secr +tan p)(y" + ysecx) = cos.r(sce.r T tan x),
or :
(secr +Htan.r)y'+(sec r+sccx tan)y = I+sinx

Again, check that the left-hand side of this equation
isthe derivative of'a product Ihen mtegrate andsolve
fory.

((secr +tan)y)' = | + sim
(secx +tan)y =x =cosx 4 C
X —Cosx +C

Y gecx +tanx

Compare X' --(n/tx = e't" with.x" = a(t)x + £Q)
and note thata(t) = n/t. Consequently, an integrate
ing factor is found with

ut) = d-aw _ I -la _Sull__jy-'.
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13.

Depending on the sign of t and whether n is even or
odd, [t]"" either equals t** or --I'"". In either case,
when we multiply our equation by either of these
integrating factors,'we arrive at

“nt = =e"
Note that the left-hand side of this result is the derive
ative of a product, integrate, and solve for X.

(l IS)I :el
t""'r=e' +C
r =t"e' 4Ct"

(@) Compare y' + ycosx = cosx with y' =
a(x)y *+ f(x) and note that a(x) = —cosx.
Consequently, an integrating factor is found
with

uto) — e=Ffa@dr __ #cosxdr __ osin,
Multiply both sides of the differential equation
by the integrating factor and check that the ree

sulting left-hand side is the derivative of a prods
uct.

a” ( " +ycosx) =e** CO0S.
(€"y) =" cosx
Integrate angi solve for y.
é =ei” 4C
=] +Cesix
y(x)

n

(b) Separate the variables and integrate.

dy
dx

cosx(l —y)

Oy

cosxdx
1=y

-Inll—y! =sinx +C.

Take the exponential of each side.
I--y]=esinx-C

I—y&E+e , sinx

Ifwe let A = € | then *

y(0) = 1-- Aesi

14.

15.

2.4 Linear Equations 35
where A is any real number, except zero. Howe
ever, when we separated the variables above by
dividing by y —1, this was a valid operation
only ify ® 1. This hints at another solution.
Note that y = 1 easily checks in the original
equation. Consequently,

yQ =I1--Aesix
where A is any real number. Note that this will

produce the same solutions ay = | 4Cesinx,
C any real number, the solution found in part

().
Compare y' =y 42xe" with y' = a(x)y + f(x)

and note that a (x) — I. Consequently, an integrating
factor is found with

uQ) —elad el-ios _e~.

Multiply both sides of our equation by the integrating

factor and note that the left-hand side of the resulting
equation is the derivative of a product.

ey'—ey=2xe
emyy=2s-

Integration by parts yields

f2xex dx =2xex — f2ex = 2xex - ~ex + C.

Consequently,
e~ y=2xe' —2¢" +C
y0) =2e"--2€ +ce’

The initial condition Rrovides

3= y(0) = 2(0)\. _2a09Ce" = =2 +C.
Consequently,C = 5and y(x) — 2e?"—2e~ +5e".

Solve for y".

, 3. 6X
y =-x2+1iy+x +I


mailto:fa@dr
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16.

First-Order Equations

Compare this with y' = a(x)y + £) and note that
a(x) = —3x/(> +1). Consequently, an integrating
factor is found with

_ ~J3/a+Dd
= -czap+ _ (4 165

u(x) = el -aCdx

Multiply both sides of our equation by the integrating
factor and note that the left-hand side of the resulting
equation is the derivative of a product.

(+ 1= +3x(F DY =ex¢t D~
(@+13D ‘=60t >
Integrate and solve fory.
0+ 12— 20+ Tr-e
y=2+C(—+1)3/
The initial condition gives

-1= y(0) =24+C(0 +13/ 2+cC.

Therefore, C =--3 and y(x) =2 —304 132,
Solve for y'.

: 4t |
y =-T+oy+T+1T

Compare this with y' = a(t)y + £(1) and note that
a(t) = -4t/(1 + t2y. Consequently, an integrating
factor is found with

)
uQ) :el—atdl _ ~Ju/+rt
-all+__ T+

Multiply both sides of our equation by the integrating
factor and note that the left-hand side of the resulting
equation is the derivative of a product.

%
_—]
(1 #F)Y +41(1+1)= Tev
O+> =1,

141)y=tan'z+C
The initial condition y(l) = 0 gives
1+1>(0) = tan"l +C.

17,

Consequently, C = — /4 and
tan'z - %
vt — 7'_—r'
P ( ...F

Compare x' + x cost = (1/2)sin2t with x' =
a(t)x + F(t) and note that a(t) =- —cost. Cone
sequently, an integrating factor is found with

ut) = -aa _ ofwse,  Sir

Multiply both sides of our equation by the integrating
factor and note that the left-hand side of the resulting
equation is the derivative of a product.

—

es ™ 4 e" " (cost)x = =€"nssin 21

e

sin21

MO

-\l
ev|s=
Use sin2] = 2sintcost.
(€'r)" =e™" sint cost
Letu = sintanddv = €" costdt. Then,
f esinr cost sintdt = f udv

:uv—fvdu

= (sint)esinr — f esinrcostdt

=Gsinpe” € " 4C
Therefore,
e™ =e" sint--es” 4C
x(t) ==sint -- | + Ce=sn
The initial condition gives
| =x(0) =sin(0) --1 +Cesinfl) _ -1 +C.

Consequently, C = 2and x(t) == sin t--142e sint


mailto:~G2at@+
mailto:@+1
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18. Solve xy' + 2y = sinx for y".

y 2)’

-,Z__+ sinx

X X

Compare this with y* = a(x)y + £¢) and note that
a(x) =--2/x and F(x) = (sinx)/x. It is important
to note that neither a nor F is continuous atx = 0,
a fact that will heavily influence our interval of exe
istence.

An integrating factor is found with
uG) =elaga _ P d _allss Ir[=R.
Multiply both sides of our equation by the integrating
factor and note that the left-hand side of the resulting
equation is the derivative of a product.
= y'+2xy =xsinx
(Xy)' =xsinr

Integration by parts yields

fx sinxdx = —xcosx + f cos x dx

-x cosx *sinx + C.

Consequently,

Y =—xcosx +sinx + C,
— 1 1. C
—_—— _— +
y 2 CoSX F 5 smx + o3,

The initial condition provides @

o=ys2)="+%

Consequently, C = —1 and y = —(/x)c0sx +
(I/x)sinx - 1/ .
We cannot extend any interval to include x == 0, as

our solution is undefined there. The initial condition
y(/2) = 0 forces the solution through a point with

x = 7/2, a fact which causes us to select (0, +-00)
as the interval of existence. The solution curve is

shown in the following figure. Note how it drops to

19.

24 Linear Equations 37

negative infinity as x approaches zero from the right.

5 (r72,0)
>
_25 P~ — — —— — — — J—
0 " 6
Solve for y". 1/2
y'=7ﬁ; y+02x+3)

Compare this with y' == a(x)y + F(x) and note
that a(x) = 1/(2x + 3) and F(r) = (2x 4 3)—2,
It is important to note that a is continuous everye
where except x = -3/2, but F is continuous only
on (--3/2, +00), facts that will heavily influence our

interval of existence.
An integrating factor jis found with

u(0) = el -a0dr __ el —y/r+3)dx

=e (2n2+3 (2r 433 /2

However, we will assume that x > -3/2 (a do-
main where both a and T are defined), so u(x) =
(2x *+ 3)-, Multiply both sides of our equation
by the integrating_factor and mtg, that the left-hand
side of the resulting equatior/l is"the derivative of a
product.

(2+32D$ ° (2x+3) =(2x +3)'
(2 +3)-5) == +3)>"

Integrate and solve for y.

12 +3D) 4= ' n@r +3) +C, 2
or
I
y=,02x +3) Ln(2+ +3) +C(2 + 3


mailto:a@4
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20.

Chapter”  First-Order Equations

The initial condition provides
o=y(-D=¢.

Consequently, y = (1/2)021 +3)/ In(2r +3). The
interval of existenceis(--3/2, +00) andthe solution
curveis shown in the following figure.

Compare y' = cos.x —ysecrx with y' = a(v)y +
TL) and note that at) = —secr and F(x) =

cosX. Although ¥ is continuous everywhere, a has
dlscontlnumes atr — +'kn, 'k in integer.

An mtegratmg factor is, found with
uQ) —elata _ Jeera

_ aller=+trl - Jsecx ttanrl,

If secx +tanr > 0, the [scex +tan] = sec.r +
tan x. If sccr * tanx < 0O, the [secx * tan.r] =
—(secx t tanx), Multiplying our equation by eie
ther integrating factor produces the same result.

(sec.x t tanr)y" + (secx tanx + SEC r)y
= +sinx,

From which follous:

((secx t tanDy)' = 1 +sinx
(seex T tanx)y =x —cos.r +C

Use the initial condition, y(0) ==

(secO + tan0)(1) = 0 - cos(0) +C

© 2006 Pea rs on Education, Inc., Uppe r Saddle Rive r, NJ . All rights re se rve d. This mate ria | is prote cted under a Il copyright lawvs as they curre ntly e xis t.

21.

=2and

x —cosx +2

ecr +tanr

The initial condition forces the graph to pass through

(0, 1), but a(r) has nearby dscontinuities at x —
-n/2and x = n/2. Consequently, the interval of
existence is maximally extended to (--/2, n/2), as

shown in the followng figure.

Consequently, C

25
>
(0.1)
-1.57 X 1.57
Solve for.r.
' _ 'Ll: 4 cost
- B 1+t

Compare this result with.r' = a(n)x +f(t) and note
that a(t) = --1/(1 +) and FQ) = cost/(l t1),
neither of which are continuous att = —1. An intes
grating factor is found with

uQ) = el aow I v+o __mpE 1 +1]
‘However, the initial condition dictaes that our soe

lution pass through the point (--n/2,0). Because

of e discontinuity at t — —1, our solution must
remain to the left of t — --1. Consequently, with
t < —1,utt) = —(1+t). Howewr, multiplying our
equation by u(t) produces

(1 +1)x" +x == cost,

(1 +1)x)" = cost,
(I Fn)x =sinr +C.

Use the initial condition.

(-20-»(+
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24 Linear Equations 39

This is a linear equation for z. The integrating factor

Consequently,C = | and is 1/x sowe have

_ | +sint E 1
ET T x[i_k]_ro
The interval of exstence is maximally extended to ‘
(-o00, —I), asshown in the following figure. [] -®
g T+
0 (-n/2,0) 2r)=x(C —x)
Since z = 17y, our solution isy (> xC v
x 24. In this case n =2, so wesetz = y/'. 'Then

_d_zl%
—yIZ r]

-1 AT T~ = nTi 4 v
=--l14z
22. Letz =+!-". Then Thisiis a linear equation for z. The integrating fictor
= ise” ", soweh
-~ =t el =8 — ¥,
ddx dt dt d -
This 1Otivates multiplying our equation by (I — 2
n)r*" to produce ] e
1 e~ z=e +C
n

(-re- 1=all -+ -mfe. 20 = | +ce-.
Replacing (I - n)><"dx/dt withdz/dt and ¥ Since 7 = I/y our solution is y(r) =
with z produces the desired result. & | +Ce

o = 1 1) 25. Solve for y". 1

df (—a(X+¢-nF y'=—; y+x'y’

23. Inthis case n =2, sowe setz = y/".Then Compare thiswith y' = ar)y + f(x)y" and note

dz __ dzdy that this has the form of Bernoulli's equation with
e 2. n= 3.Letz=y! ==>,. Them —
d Md_=2>1&¢
- ['Lp/ 3] ' dx  dy dr dx
= tkp s Multiply the e?.latldfr!by 2y
z ]
= o odo—rx T -2
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40 Chapter 2 First-Order Equations
Replace --2y (dy/dx) with dz/dx and }/ wvith z.

dz 2 +
i —_)z——Zr

This equation is linear with integrating factor
uQ) =elf-aeaa _ F-20ds __ 211x ___ >

Multiply by the integrating factor and integrate.

o (e7)" =—2x
=-r+e
= Z—_+CR7

Replace z with y-=> and solve for y.
Y=-X"+Cx
y=+1//CR -r"
26. Compare this with P' = a(t)P + FQP" and note

that this has the form of Bernoulli's equation with
n=2.Letz = pi=— P '. Then

d_ddpP _pagP

de dp d dt
Multiply the equation by —-P =.
dt

Replace — P (dP]dt) with dz/dtand PP "with z.

dz
dat

This equation is linear with integrating factor

=aaz 4-b

ut) =el -agd _ %fad _ €.

Multiply by the integrating factor and integrate.
d
e" 2 +ae"z = pe"
dt
d
--(ez) = be"
5 (€2)
= 1
ez —Ee4+C

at

h
z=—4Ce
a

Replace z with Pg and solve for y.
p IT y

r alEce™"

P=——1—-=
b/a -IJE:ea'

(a) Since y=—+2z, Y =y; +2yz +=. Hence

r=y-y
=-—[ly +by +g]+[Ny; +Y; +x
=VIy; yi]+Byl -yl
=—I12yz +=z]—¢z
= —Q2y/ +d)z - Z

(b) Sincey = 1/tisasolution, wesetz = y+1/1.

Theny =z —1/t,andy =Z --2z/1 +1/1,
SO

__ B4 P

This is a Bernoulli equation with n == 2. Thus
we set w = 1/z. Differentiating, we get

)

7

3w
= _] 2z
t
This is a linear equation, and t = is an integrate
ing factor.

oI:'-— _+3

[W] =—r?

~ + 4
W= 1+c
wQ= §|1 +Ct
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28.

29.

Now it isa matter of unravelling the changes of
variable. First

| 2 2
e " Fie =0
Where we have set B = 2C. Then
| 2 ]
N—R— =48 =

This looks a little better if we use partial frace
tions to write

The modelis N' = KN(OOO -- N), where the proe
portionality constant k is yet to be determined. Since
we know that when N = 100, the rate of infece
tion is 90/day, we have k. 100.900 = 90, we find
thatk = | x 10" Hence the model equation’is
N*=N—N/1000. This is a Bernoulll equation,
with n=2, Accordlngly we set.r = I/N. Then

"—_N'/N? 3
= —-1/N +10
=-r410"

Solving this linear equaion, we get.x(n) = 10 = [1+
Ce'] 'Hence NQ) = [/x(t) = "1000/[I + Ce™).
Atl = 0,N =20 = 1/[I +C]. Hence C = 49, and
the solution is N) = 1000/[1 449e'].

We have N(1) = 0.9 X 1000 = 900 when 1 = 6.089
days

Newton's law of cooling says the rate of change
of temperature is ‘equal to k times the difference
between the current temperature and ‘the ambient
temperature.  Inthis case the ambient temperature
is decreasing from OC, and at a constant rate of
1C per hour. Hence the model equation is T'/=
—k(T 4+1), where we:are taking t = 0 to be mids
night, This is a linear equation. The solution is

30.

31

24 Lineg Equaions 4l

TM = -t +1/k4Ce = . Since T(0) — 31, the
constant evaluates to C = 31 -- /14k. The solution is
T = -1 TWk +@3L - Zke".

We need to compute the time 0 when T(t) = 37,

using k z 0.2231 from Exercise 35 of Section 2.

This is a nonlinear equation, but using a calculator
or a computer we can find that to =z --0.8022." Since
t=0 corresponds to midnight. this means that the

time of death is approximately IE:12 PM.

¥

‘T he homogeneous equaion, y' == =3y has solution

= We look for a partlcu ar solution in
the irm vy, (t) = vQy(t), where v is an unknown
function. Since

Y,= V' 4wy
vy, —w

VY =3y,
r

andy, = -3y, +4, we have|' = =4y, =
Integrating we see that v(t) = 48/3 and

2 4
. (0= v(»>G=—=-€""=
The general solution is L

\ ‘
—4
yO=.0+Ct)=;+ce,
) 1y
The homogeneous equation, y* == -2y has solution
v(t) = e?*) We look for a particular solution in
the form-y, (t) = v(0)y ), where v is an unknown
function. Since

»
y,— V>» +Vvy

=VYy, =21y
) :Vlyv _2yn
andy = =2y, 7F5, we haveSV =5y = he.
Integrating we see that v(t) — e/Z, and

,t0= V@»to—} .e—}

The general solution is

2

yO=y.@) +Cr@= T cea.
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32.

33.

34.
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Chapter2  First-Order Equations

The homogeneous equation, y* = —=(2/x)y has so*
lution y»(r) = x~ , We look fir a ﬁar.ticular solution
in the form y, Q) = v(x)y ), Were v is an une
known function. Since

¥ =V vy
=y, —2y,/X,
and Y, == =02/)y, t 8x, we have v' = 8x/y =
8r". Hence v(x) — 2, and
y.6) = v ) =2.
The general solution is
y©=y,0 +Cy® = +cr.

The homogeneous equation, y* = —y/t, has solue
tion ya(m = 1/t. Welook for a particular solution in
the formy, (t) = v(t)y/(t), where v is an unknown

function: Since _ !
Yi= vy vy

=V'y —2vyy
= vy —»lt,
and Y, = -y, /r +4t, we have V''= 41/y, = 4£,

Integrating we get v(n) :) 4r/3, and

— — 4
Ln=y(»0=,r.
The general solution is

_4
YO=y.0 *Cy O= yL+crs.

The homogeneous equation, X' ='--2< has solution
x(t) = e?", We look for a particular ©lution in
the form x, (t) = v(t)n (), wherev is an unknown
function. Since

|

4, =VN+ VX
=X -2x
' =N -~2r,,
and X,'= —2x, 4t, we havev' = ¢/X = @',

Integating. we get v(n) = (1/2 — l/4€e, and

x,(= Gyno)= 1;I2 — &
( ]
xM=. Q+Cn)= fZI ~-H+ce&™

35. The homogeneous equation, y' = —2xy has solution

36.

vQ = éj, We look for-a particular solution' in
the form y, (x) == v(x)y/(r), where v is an ukmown
function. Since

YI’ [ +Vyl
=V'Y, —2XY,,

and y, = 2ry, t4x, we have v' = dxX/y, =
4e" . Hence v(x) = 2€', and

y. (N =vOQy O =2

The general solution is

Y=y + c1) = 2+ce’,

The hoiogeneous equation, y' = 3y has solution
v(t) = el', We look for a particular solution in

the formy, (t) = v(t)y (t), where v is an unknown
function. Since

y,= vV
=vy, + &y
, - 'y +3y,, "
and y, =3y, +4, 'we have " = 4/y4 T e,
Integrating we see that v(t) = --4e/3, and
» T T

Wl

y,t0) = v()y (n) = g .en=-

The general solution is "
y(0) = yp() + Cnl) = -3 + &s”.

Since y(0) = 2, we must have2 = -4/3 + C, or
C = 10/3. Thus the solution is

yat) = (~4+ 10")/3,
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37,

38.

39.

The homgpgmneous equation y' — —y/2 has solution
v = ; We look for a particular solution of
the formy, (n) = v(t)y/(t), where v is an unknown
function. Since

= Vit Wy
=V'y», —vy,f2
=y -y,l12

1
and Y, = -y,/2+1 we have | =t/y(t) — te B
Integrating we find that v(t) — (21 - 4)e, and
y,O) = v(0 Q) = (21 - 4). The general solution
isyQ) = vy, +Cy(0) = (2t--4) +Ce” . From
y(0) = 1 we compute that C = 5, so the solution is

yQ) = (21 --4) + 5e'?,

The homogeneous equationy' = -y has solution
v(t) — e, We look for a particular solution of
the orm y,(t) = v(t)y, (t), where v isan unknown
function. Since

y’ :V'» i Vy
=" yg Vyy

andy _'y +e,We see that V' —=e y =e
Integrating we get v(t) = e/2 and y, (n) =2
The general solution is y(n) = y,(n) + Cy(t) =
e'[2 +Ce™. From y(0) = 1, we compute that
C— 1/2, so the solution is

yt=:|,('+e').

The homogeneous equation-y" ="—2xy has solution
VOX) = e, We look for a particular solution of

the form y, (X) = v(x)y(r), where v is an unknown
function. Since

V'\=yy + wi
= —2xvy,
=VY =2X,, & +
Xz : 3 B ]
andy = -2ry, +2, we see hat " =

Integrating we get v(r) = ( — e’ ,andy, tr) =
—1. The general solution is y(r) = v,0 t

40.

41.

24 Lnear Equations 43

Cy»Gx) = —1+Ce" .since y(0) = =1, we
have C = 0, and the solutlon is
y(r) =r-—1.

The homogeneous equation ' = (2/1)r has solus
tioh (1) = €2/, We look for apartlcular solutldn
of the form x,(t) = Co0)><(0), Where v is an'une
known functlon Slnce

—v n +VX

=vn +2/r

=\VN +2x/r,

=& ,/r +1/r, wehave v' = 1/(rm') =

e f]° Integratlng we find that v(o) = o <) [2,
and x,(n) ‘= —1/2. The general solution is Cn) =
x,(0) +Cm(0) = --1/2 +'Ce1".Since (D = 0,
we flnd that C — e[ 2, and the solutlon is

) )_1.)

rt)_ '( 1+a )

The homogeneous equatlon r' = --4tr/(1 41) has
solution >< () = (1- 41, We look for a partlcular
solution of the firm r, (M® = v(t)><(0), where v is
an unkiown function. Since

r, =vn +1X,
"n -4ur,/(l +1),
and r - —4nx (1 +1)+1/(1 +1), so

t z L. —Imt(l4 f'b

1;|—1 NnQ

Integrating. we get (t) —r/ijl-‘l‘/ﬂ‘Thus
o ar

r,O= v()n() A !

The general-olution'is 1

C +£20 41
[+@>

The initial condition x(g)(—.:—n-i-sgplies that C = I,

so the solution is

r(—r, (n) +cnQ) =

442141

o=  +@-
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44 Chapter2

42.

43

First-Order Equations

(a) The equation T + kT = 0 is separable.. with

solution T, = Ce&*, C an arbitrary constant.

(b) The equation T' = --k(T -- A) is autonomous,

©

d

(a

(b

(c

)

Rt

~

~

We seek a constant solution (see Section 2.9)
that mdes fie right side equal to zero. Hence,

T,= Ais a particular solution of the inhomo-
geneous equation.

b g ‘ o
The general solution is T = a3 T
Ce <A, with C an arbitrary constant.

/Again, the solution of the homogeneous equas
tion T' +kT = 0is T = Ce’, with.Can
arbitrary constant. The inhomogeneous equa:
tion T". = —k(T —A) * H is also autonomous
(the right side is independent ofn). We seek a
constant solution My setting -the right side equal
to Zero.

X
kT, —A)=H
- P

H

T,=A—+

Hence, the general solution is glven by the
equation

er-o ()

The solution of the homogeneous equation

T+kT =0isT = Fe",with F anar
bitrary constant.

We guess that T, = Ccos «r + DsinoTis a
particular solution. Substituting T, and
—Ccsinct + Dcosat in the left side of
T'+KT_ = kAsin@t, then gathering coéffie
cients of cos ct and sin @t, we obtain

T,+KT, = (=aC+kD) sin «r +(kC+@D) cos at.

) . (4.1
Comparing this with the right side of T,
kT, —kASINn@t, we see that
—C+kD =kA  and  kC +«D = 0.
Solving these equations simultaneously (for exe
ample. multiply the first equation by k. the sece

ond by «, then add the equations to eliminate

44

@)

C) provides
C kA KA
Substituting these results in T, == 'C'cos@r +

Dsin ct provides the particular solution

4A
cos@t + 7 5 sinet =

k +a k +t
Hence, the general solution is

T=T +T,
—Fe ey

=+ - —-WI [krsinw1" —wCOSMI].

n

If the period of the ambient ten?ﬁerature is 24
hours, then the computation

2n(_‘ 2n )
T 245 98 4D,

gives the angular frequency. Because the snue
soid ha®@ymaximum of 8@,-R~and a minimum
of 40° F, the amplitude will be\nalF of the dife
ferenceof 20: - A- sketch/ of-the \ambient teme
perature follows.

< 60

6 12 18 24

Note the minimum at 6 am, then the maximum
at 6 pm. What we have is an ufdide-down sine,
with angular frequency N/12, that is shifted upe
ward 60° F. Thus, the equation for the ambient
temperature must be

A=60- 20s
12


mailto:cos@r
mailto:cos@t
mailto:@t
mailto:kAsin@t
mailto:@t
mailto:kC+@D
mailto:kAsin@t
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b

—

The refore, the model, adjusted for this ambient
temperature, becomes

= — (r—so+23»'-15)_|. &2)

The homogeneous equation T' +(1/2)T = 0
has solution 7, = Ce =2, where C is an arbie
trary constant. Now, consider the inhomogce
neous equation
T - 2
Ty T=30-10sin S 13

Note that the right hand side consists of a cons
stant and a sinusoid. Let's try a particular sos

T,=D+EC0S, ,+Fsin,5. (¢4

lution taving the form
T [ ]

Substitute this guaess and its derivative into the
left hand side ofequation (4.4) and collect co
efficients to get

repr Joscg i,
-(et,) «T
%1 (4.5)

Comparﬁg-this with the right-hand side of
equation (4.3), wersge that
|0 '

0

D T

ey ‘
Clearly, D = 60, and sqlving the remaining
two equations simultaneously, we obtain

r 120 -720
- d F n
Slesr— WG T Ssera—
These values of D, E, and F, when inserted

into equation (4.4), provide the particular solue
tion

=30.

120n T 720
T,=6+564 , == +""""T

2.4 Linear Equations 45
Thus, the general solution is T =T +T,, or
T, =Ce"'? +60
2 1 — wt "
36 4 2 12 12

Now, when the initial condition T(0) = 50
is substituted into equation (4.6), we obtain
C = -10-120/(364+r). Thus, the general
solution becomes '

T=— 10+2M )= 460

mp - _.d

.0 6 12182430364248 546066 72

i I '

Note that the transient part- of the solution dies
out quickly. Indeed, because of the factor of
e = ,the time constant (See Section 2.2. Exere
cise 2?)is T = 2hr. Thus, in about four time
constants, or 8 hours, this part of the tempere
ature solution is negligible. Finally, note how
the temperature in the cabin reacts to and trails
the ambient temperature outside, which makes
scnse.
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46  Chapter2 First-Order Equations

Section 2.5. Mixing Problems

1

2.

(a) Let SQ) denote the amount of sugar in the tank,
measured in pounds. The rate in is 3 gal/min x
0.2Ib/gal = 0.6 Jb/min. The rate out is
3gal/min x S$/100 Ib/gal = 3S/100 Ib/min.

Hence

ds _ :
— “raten

—rate out
dt

= 0.6-- 3$/100

This linear equation can be solved using the
integrating factor u(t) = et/ Lo get the gen-

eral solution S(t) = 20 4 9e73/1oo, Since

S(0) =0, the constant C = --20 and the solus

tion is S(t) = 20(1 -- e-3t/10

$(20) = 10(1 --e—"") = 9.038lb.

(b) SO = 15 when e3/100 _ 1 -- 15/20
1/4. Taking logarithms this translates to t =
(1001n 4)/3 — 46.2098m.

(C) Ast -»> 00 S(l) > 20.

(@) Let x(t) represent the number of pounds of
sugar in the tank at time t.  The rate in is
0, and the rate out is 2 gal/min- x/50 Ib/gal
= x/25 Ib/min. Hence the model equation is
X' = =x/25. The general solution is x(t) ==
Ae-/5,The initial condition implies that A =
x(0) =50 gal x 2 Ib/gal= 100 Ib. Hence the
solution is x(t) = 100e-"5. After 10 minutes
we have x( 10) = 67.032 Ib of sugar in the tank.

(b) Wehave to find t such that x() = 100e/5 __
20. This comes tot = 25In 5 z 40.2359 min.

(c) x(1) = 100e—/25 _» Oast -> 00.

(a) Let x(t) represent the number of pounds of salt
in the tank at time t. The rate at which the
salt in the tank is changing with respect to time
is equal to the rate at which salt enters the tank
minus the rate at which salt leaves the tank; i.e.,

d5en 2 ;
— =rate m - rate out.

dt

In order that the units match in this equation,
dx/dt, the rate In, and the rate Out must each
be measured in pounds per minute (Ib/min).

Solution enters the tank at 5 gal/min, but the
concentration of this solution is 1/4 Ib/gal.
Consequently,

1 9 .
rate in = 5gal/min x  Plgal = b/min.

Solution leaves the tank at 5 gal/min, but at what
concentration?  Assuming perfect mixing, the
concentration of salt in the solution is found by
dividing the amount of salt by the volume of
solution, c(t) = x(t)/100. Consequently,

X 1 :
rate out = 5gal/  nx Ib/gal x(t) Ib/m n.

mi = i
100 20

As there %fe 2 Ib of salt present in the solution
initially, x(0) = 2 and

dx & 1
B 56 ro)==2
20
Multiply by the integrating factor, e(/O*", and
integrate. e’ !

1
(20 y =0
/0l, =25%/20 *C
x =254 Ce\/20

The initial condition x(0) = 2 gives C =—23
and

xQ) =25 = 23e0/20
Thus, the concentration at time t is given by

x(1) 25 -- 23e-0/20%
c(t) = 100 = 100

and the eventual concentration can be found by
taking the limit ast -» +O.

t-»+60 100 4

Note that this answer is quite reasonable as the
concentration of solution entering the tank is
also 1/4 1b/gal.
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(b) We found it convenient to manipulate our
original differential equation tefore using our
©olver. The key ideais:simple: ‘we want'to
sketch the concentration c(t), not the salt cone
tent x(t). However,

— X

c(t)— 100 or

Consequently, 'r'(t) = 100c” (). Substituting
these into-our balance equation gives

b |
—_— 5 L]
looe’>4 —aooe)

x(n) = .lOOC O.

%o 20°

with ¢(0) = r(0j/100™="2/100 = 0.02. The
numerical solution of this ODE is presented.in
the foIIowmg figure. Note how the concentras
tion approacheso 25 Ib/gal.

c"=1/80 - 1/20c

Let x(t) represent the amount of salt in the solution
attime r. Letr represent the rate (gal/min) that water
enters (and leaves) the tank. Consequently, the rate
at which salt cntcrs the tank is 0 gal/min, but the

rate out = r gal/mir 22 = gal =

Thus,
, —rate iIM rate out,
dx
—_—
dr 500

28" pmin

25 Maing Prblems 47

Let c(t) represent the concentration at time t. Thus,
c(t) = x(n)/500, or 500c(t)= ) and 500'(t) =
r'(t). Substitute these into the rate equation to proe

duce
sot= shno
T—o'
.= S0

This equation is separable, wth solution c

Ae-trO9o . Use the initiall concentration, e(0)
.05 Ib/gal, to produce

¢ =0.05et/00!

The concentration must reach 1% in one hour (60
min), so ¢(60) = 0.01 and

0.0f =0.05-/00060

. =0as,
S_

=5
r==In5
r - 13.4gal/min.

R |

The volume is increasing at the rate of 2 gal/min, so
the volume attimer is V(r) = 20+ 21 The tnk is
full when V(r) = 50, or whent = I5 min. If r(t)
is the amount of salt in the tank at time t, then the
concentration is X ()/V(1). The rate'in:is 4 gal/min
. 0:5 Ib/gal = 2 Ib/min. The rate out is 2 gal/min
-r/V lb/gal. Hence he model equation is

r=2-2x=22 10+r1'

Thls linear equation can be solved using themtegrat-
ing factor uQ) - 10 +1t, giving the general solution
x() = 10 +1 +C/(10 41). The initial condition
r(0) -0 enables us o compute that C — --100, s0
the solution is r(t) = 1041 -- 100/(10.+ ). At
t = 15, when the tank is full. we have x(15) = 21

Ib.

The volume in the tink is decreasing at | gal/min,

so the volume is V(t) = 100 -- t. There is no
sugar coming in; and the rate out is 3 gal/min X

S(t)/V/(t) Ib/gal. Hence the differential equation is

ds _ _-38%

dt  jO-1
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48  Chapter 2

7.

First-Order Equations

This equation is linear and homogeneous. It can be
solved by separating variables. The general solution
is SO +A(100—1). Since S(0) = 100x0.05 = 5,
we see that A = 5 X 1O , and the solution is
S() = 5= 10° x (100 --1).

When V(t) = 100 - t = 50 gal,

SO =5x 10 50" =0.625Ib.
6

X
(@) The volume of liquid in the tank is increasing
by 2 gal/min. Hence the volume is V (t) —
100 + 2t gal. Let x(t) be the amount of pole
lutant in the tank, measured in Ibs. The rate

in during this initial period is 6 gal/min . 0.5

Ib/gal = 3 Ib/gal. The rate out is 8 gl/min
X/V =4x/(50-+t). Hence the model equation
is

X' = 3—4x/(50+ 1).

This linear equation can be solved using the ine
tegrating factor u(t) = (50 + t)* The general
solution is x(t) = 3(50 +1)/5 +C(50 +1)—.
The initial condition x(0) = 0 allows us to
compute the constant to be C = -1.875 x 10°.
Hence the solution is x

3 1875 10°

x(— Z+30- so+-"

After 10 minutes the tank contains x(10)
21.5324 b of salt.

(b) Now the volume is decreasing at the rate of
4 gal/min from the initial volume of 120 gal.
Hence if we start with t = 0 at the 10 minute
mark, the volume is V (t) = 120— 4t gal. Now
the rate in is 0, and the rate out is 8 gal/min
X/V = 2x/(30 - t). Hence the model equar
tion is

2X

X ==

30—t
This homogeneous linear equation can solved

o 21.5342 ,
by separatiidvati A8 thef deneral solue
tion x(t) = A@30 =-1). Att =- 0 we have
x(0) = 21.5342, from which we find that
A = 21.5342/900, and the solution is

We are asked to find when this is one-half of
21.5342. This happens when (30 --1) = 450
oratt = 8.7868 min.

Let x (t) represent the amount of drug in the organ at
time t. The rate at which the drug enters the organ is

rate in == acm’/s x g/cm' = ax g/s.

The rate at which the drug leaves the organ equals
the rate at which fluid leaves the organ, multiplied
by the concentration of the drug in the fluid at that
time. Hence,

x(t)

rate out = bcm'/sx g/cm’ = x(t)g/s.
V o+t V+rt

Consequently,

dx b

-k o,

dt Vo +rt
The integrating factor is,( 0 - :
uQ) = Foko+rd _ h(v+ (V+rm/r

Multiply bythe integrating factgr and integrate.
((V +roe) =ax(w +tr 1 |
) i robfrx Eﬁ/ 1) robfrer L+
x = bgv+rt)+L(V+ rtblr

No drug in thg system initially gives x(0) = O :and
L=—axy?""""/ +r). Consequently,
1 r
ax akey / 7+
X= g+rt)— D +rq}p/r

= (+ro[ - vt"—llror"]

&7

The concentration is found by dividing x(t) by
V() =V =+rt. Consequently,

w=tal

_b+l’

X= b(Vo+ rt)
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9.

(a) The rate at which pollutant enters the lake is
rate in = pkm/yr.

The rate at which the pollutant leaves the lake
is found by multiplying the flow rate by. the
concentration of pollutant in the lake:

rateout = (r + p)km/ye '\'/' = nan'

—k
| ] -
-',/0
— yr
Consequently,
dr — r+p

Bute(t) = x(a)/v so ve' (t) ='r'(t) and

Ve'=p- (P/e)
r+p’
e+ Pe= f);
(b) Withr =50and p = 2, the equation becomes
2 50+2
16 ‘e B
' =002 —0.52¢.

This is lincar and solved in the usual manner.
(e9e)' =0.02.095%
o, 0Oas
v 0.52
e==1 edh¥
The initial coneentration is zero, so ¢(0) = 0
produces K = —1/26 and

| | _-0.s2¥
=296 26 =

The question asks when_ the concentration
reaches 2%, or when c(n) — 0.02. Thus

yo T 0@DSrf; (— S ¥
09__0us, "
3 In 0.48
g 052"
t 14l years.

~

2.5 Mixing Problems 49

10. Because the facory stops puttlng pollugNt in the
lke. p =, 0and C' * ((r + p)/V)c = p/V. ber
comes

w '50 | |
10 —
Note that we carried r = 50 from Exercise 9.
This equation is separable, with -general solution

¢ — Keany, The initial concentratlon is 3.5%,
so ¢(0) = 0.035 produces K = 0.035 and ;

ct) =0.03bean
{

The question asks for the time requwed to lower the
concentration to 2%. That is, wien docs c(t) -

0.027
0.02=0035&n2
G 02
2t =N 0035
0.035
. '0.02
t R1.lyears

IL. (a) The concentrations are plotted in the following
figure. In steady-state the concentration varies
periodically. -

0.04

©
0.035

60

(b) The following figure {Aws one year of the ose
cillation, and indicates that the maximum cons
centration occurs early, in February. Thiss is four
months- after the time of he minimum flow.

{
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50 Chapter2

First—Order Equations

Thus there is a shift of phase between the cause
and the effect.

Jan

Feb Jul
t

12. For Tank A we have a constant volume of 100 gal.

Let x(t) denote the amount of salt in Tank A. The
rate into Tank A is 0, and the rate out is 5 galls X
x/100 Ib/gal x/20Ib/s. Hence the model equae
tion is =

x =770

The solution with initial value x(0) = 20 is x(t) =
20e-1/20

The volume of solution in Tank B is increasing at
2.5 galls. Hence the volume at time t is 200 + 2.5t.
Let y(t) denote the amount of salt in Tank B.
Then the rate into Tank B is the same as the rate
out of Tank A, x/20. The rate out of Tank B is
2.5galls x y/(200 + 2.50)1b/gal = y/(80 +t) Ib/s.
Hence the model equation is

no_~
80 +t.
This linear equation can be solved using the intee

grating factor u(t) = 80 + t. The general solution
is

) X y
y =20 _s0o+ &

C—=oesn 40

y(t) L7

804t 804t

Since y(0) = 40, we can compute that C = 65 x
80 = 5200. Hence the solution is

y¢) 5200 2o0e-«o_ 1O, -o°
80 4t 804t

Tank B will contain 250 gal when t = 20. At this
point we have y(20) = 43.1709 Ib.
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13.

@

(b)

Let x(t) be the amount of pollutant (measured
in km?) in Lake Happy Times. The rate in for
Lake Happy Times is 2km*/yr. The rate out is
52km/yr x x/100 = 0.52x km/yr. Hence
the model equation is

X' = 2—0.52x.

This linear equation can be solved using the

integrating factor u(t) = e0.524, With the inie
tial condition x(0) = 0 we find the solution
xQ) = 2[1 —e-054/0.52.

Let y(t) be the amount of pollutant (measured
in km) in Lake Sad Times. The rate into lake
Sad Times is the same as the rate out of Lake
Happy Times, or 0.52.x km/yr. The rate out is
52km/yr x y/100 = 0.52y kKm/yr. Hence
the model equation is

y' =0.52(x —y) = 2[1l —e-05——-0.52y.

¢

This linear equation can also be solved using
@ integrating factor u(t) = en=, With the
initial condition y(0) = 0 we find the solution

y(©0) = 2[1 - %-951/0.52 - 2%-052
=x(1) --21%-052

After 3 months, when t _  1/4, we
have x(1/4) = 0.4689%m" and y(l1/4) =
0.0298km.

If the factory is shut down, then the flow of
pollutant at the rate of 2km*/yr is stopped.
This means that the flow between the lakes and
that out of Lake Sad Times will be reduced to
50km*/yr in order to maintain the volumes.
We will start time over at this point and we have
the initial conditions x(0) == X == 0.4689km",

and y(0) =y; ==0.0298km".

Now there is no flow of pollutant into Lake
Happy Times, and the rate out is x/2km/yr.
Hence the model equation is X' =—x/2. The
solution is x(1) =Xe& /2

The rate into Lake Sad times is x/2 km®/yr,
and the rate out is

y/2km/yr. The model equation is y' =
(x —y)/2 = Xe™ /2 --y/2. this time we
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14.

use the integrating factor ut) = e/ and find
the solution

y0) = [xt/2 +yle'/.

The plot of the solution over 10 years is shown
in the following figure. Itis perhaps alittle sure
prising to see that the level of pollution in Lake
Sad Times continues to rise for some time after
the factory is closed.

0.2
0.15

> 0.1

0.05

Time in years
Using a computer or a calculator, we find that
y(1) = y/2 when t == 10.18 yrs.

Let x (t) represent the amount of salt in Tank | at time

t. The rate at which salt enters Tank | is
rate In1 = alb/gal x bgal/min = ab Ib/min.
Salt leaves Tank Il at

rate out 1 = x(n)/V Ib/gal x b gal/min
= (b/ V)x(t) lb/min.

Consequently,

This equation is linear with general solution

x =aV +Ke/Zvi

25 Mixing Problems 51

Initially, there is no salt in Tank I, so x(0) = 0 proe
duces K =—aV and

x=aV —-ave (/YN
Let y(t) representthe amount of salt in Tank Il at
time t Salt enters Tank Il at the same rate as it
leaves Tank 1. Consequently,
rate in Il = (b/V)x(t) Ib/min.

Salt leaves Tank Il at

rate out Il = y(t)/V Ib/gal x b gal/min
= (b/ V)y(t) lb/min.
Consequently,

=

ay
dt

<|'|'|cr

Substitute the solution found for x.

dt

¢
&y Wav -ave" Ol
dy b

i =¥+(ab——abe i)

This equation is also linear, with integrating factor
%/ \pk SO

(
(el)y) =a(el™ --1),
BN, =av¥%lwv —abl +L,
y =aV --abe/Vi4Le/Vvi

{ t t _
Initially, there is no salt in Tank I, so y(0) = 0
produces L = -aV and

Y==aV —abe 1V _ave p/v
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52 Chapter2  First-Order Equations
Section 2.6. Exact Differential Equations
1. dF =2ydx +(2x *2y)dy

2. dF =(@x—2y)dx +(-x +2y)dy

3. dr b<+¥9_Y
/?+
_ ==Xdx—ydy
4 R =00 4y
5.
dF = Cydx +ydx —ydx
X +y
+rdy +\sdy T xdy)
6. dF =(/x +2xy)dx +(/y + 3y )dy
7 e 5
RN el (s ) 12
2y X)
Yoty y O
K_FF ydx —xdy F4rydy +4ydy

x? 4y

9. With P =2x + y and Q = x --By, we see that
" (1]

d ¥ 550

Oy 0x

so the equation is exact—WWe=solve by setting

F(x, y) = f P(x, y)dx = f(Zx +y)dx
=r+xy-+d(y).

To find b, we differentiate

00,)_°-

+ 1
N +@0)

Hence ¢' = -6y, and we can take b(y) = 3y
Hence the solution is F(x,y) = X +xy--3y = C.

10.

11.

12,

With P = | - ysinx and Q = cosx, we see that

aP =00
Oy S

so the equation is exact. We solve by setting
F(x,y)= F P(x,y)dx= F(l—ysinx)dx
=x +ycosx t d(y).

To find b, we differentiate

OF

Q(X,y) = =cosx T

W aw).
Thus ¢' = 0, so we can take ¢ = 0. Hence the
solution is FC,y) :;< # %tiesx =C.

‘ y 1
thP=1%"and Q =— ,we compute
Wi - -

Py, QI b S T
— =4
P T e
Hence the equation is not exact.

: - X _ .
WithP= /)(_Z)}ndQ_ Wiv)v;,com

pute

oP -2xy 00

o (+ ae'
so the equation is exact—To~find the solution we
integrate

F(x, y= fE&:}QAX

/ w O
=/X +Y +a(y).

To find b, we differentiate

OF N

Q(tr,y) == =d'(y).

oy :/X+?

Thus d' = 0, so we can take ¢ == 0. Hence the
solution is F(x, y) = JX? +y2 = C.


mailto:@F
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19.

20.
21.

20
23,

24,
25
26,
21.

28.
29.

30.

3L
32.

33.

Exactr*+ry -y =cC

Not cxact

Excaz2 t+ vu --v/2=C
Exact Inle +V)= C

Not cxact

Exact. FU,y) = ylnu: --2u =C
Exactxsin2l === ¢

Exactrys + © =cC
Not exact.
—/y+Inx =C

ry/2—Inr +Iny = C
-atDe

x - (210t y)=c

Xyp2=y _

PQ) = /¥, Fxy)= ——

1o) = -. FE.y)=xy —Inx _y,'2 =G,

1
X

1) =1//3. F(x,y) =2x/y+(2/3)y** = C

+r
= Iy Foy)=Y* =c
&) V. F(X,y)

FG,y) =¥ =c
x *yand x —y are homogeneous of degree one.

#wo.

one.

——Xy -V and 4ry are homoge_neous of degree

r —hr:l# and -y are homogenous of degree

34.

35.
36.

37.
38.

39.

40.

4].

26 pact Differential Equations 53

Inx -- Iny and | are homogeneous of degree zero.

I --cr=y

Fy) =-¢21 A
+ arctan(y/x) Zinx=c

FU.y)=xy +(3/2)r —C.
ylC —4iny —2Inr = C
+ ]
yG)=X 8C
1

y Q) = xIn(Cc +2Inx)

ta) First.
dy dy/dr vosinG --c
— = T;? = —cost—.

However, cos6 = X//I’A-—y and sin8 =
Y1/ Fy.50 ‘

o %N\
——— o - S
dy _JFFR = YTOD
dx —— ::E; T .
Divide top and bottom by vo and replace «/vo
with k & (st 5 00

Y—OMF:FS/

dy — k/KT?
d’_ Yo X - et 28
(b) Write the equation
d -+
dy = YA

in the form x

(y —kyx2+ y)dx —xdy =0.
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54  Chapter 2 First-Order Equations

Both terms are homogeneous (degree 1), so
make substitutions y = xv and dy = xdv +
vdx.

(xv=k/Tr? 4-+p» dx —x(xdv+vdx)=0

After cancelling the common factor x and coms
bining terms,

1 ._.la-av=o

Separate variables and integrate.

»  VI#
kn.r - In(/1=*+2%%6iv) =C
Note the initial condition (X,y) = (a, 0). Bes

cause y = xv, v must also equal zero at this
point. Thus, (X,v) = (a, 0) and

kna-- In(C T <« 0)=C
C =Kkina.

Therefore,
khr - In(./ m ®§ *v) =klna.
Taking the exponential of both sides,

a"-»Miro _ac

Xk Yz

P -
Q--tle

Solve for v. |

@
¢ra-@ - -ls

G -1=2()
Q-]
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Finally, recall that y = xv, so

-IGK rj
-.» Cr]

The following three graphs show the cases
where a = |, and k = 1/2, |, 3/2. When
0 < k < |, the wind speed is less than that
of the goose and the goose flies home. When
k = 1 the two speeds are equal, and try as he
might, the goose can’t get home. Instead he
approaches a point due north of the nest. When
k > 1 the wind speed is greater, so the goose
loses ground and keeps getting further from the
nest.

0.2}

0.1

<

o
ot
3
—t
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0 . 0.5 1
42. The hyperbolas with FG.y) = yY[[r = C are the
solid curves in the following figure. The oithogonal
family must satisfy '

43.

X

dy = IF/JF =2
ax oy 0X y

The solution to th|s se arable equation is foind to be
given implicitly by Gbr F+ Yy = C.These

curves are the dashed elhpses in‘the accompanymg
figure. They do appear to be orthogonal

(a) The curves are defined by the equation
Ft.y) = x/C +Y) = e Hence the or-
thogonal fimily must satisfy

dy aF S WF 2xy0
R

dx ; x

44,
45,
46,

47.
48.

2.6  Exact Diffyental Equations 55

(b) The differential equation is homogeneous.
Solving in the usual way we find that the or:
thogonal family is defined implicitly by

GE.)=1 . y-=C-

The original curves are the solid curves in the
following figure, and the orthogorall -family is
dashed.

In(y + r) -
arctanty/r) --y/4 = C
Assuming thatm | n-- I, divide bothsides of
Loxdyg#hydx =" Ty dx
by 'y to obtain
rdy +yd
")

]-—n
Thus, because T==rr+714 0,
(ry)'n m-n+|
1—n m —n—+1

ment|QY .4 ~me"+1C.
arctanC/r) - (/®)y ¥ =c¢ =

2/3)y=C

--d

--d.

x/y —In(xy +D) = C )2

'
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56  Chapter 2 First-Order Equations

49,

50.

+
ny = XJ
X -y
(@) An exterior angle of a triangle equals the sum

of its two remote interior angles, so6 =b + a.
We're given that o ==p and d and ~ are corree
sponding angles on the same side of a transvers
sal cutting parallel lines, so d = 8. Thus,

8:¢-|-a:"‘+"‘:2"'and
) =taR0 :Enf .
1—fans

However, tan0 = y/x and tanf3 equals the
slope of the tangent line to y = y(x) at the
point (x, y);ie.,tan/ =y" Thus,

(b) Use the result from part (a) and cross multiply.
y—ybyD =2xy'
0=y(y> +2y' -y
Use the quadratic formula to solve for y-.-

7 ot r4 I >>

Rearranging,
dy -rd,mnl
ax — y
becomes

dr+tyd -
4 yay

7wy

The trick now is to recognize that the left-hand
side equals +d(/x? +Y). Thus, when we
integrate,

+d(/x? +Y) =dx

+/x? TY=r +C.
Square, then solve for y.

r+y=X+2cx+C!
Yy =2cx +C

This, as was somewhat expected, is the equas
tion of a parabola.

Section 2.7. Existence and Uniqueness of Solutions

1

T S,ight hand side of the equation is F(t,y) —

4 m T is continuous in the whole plane. lIts
partial derivative 0f/~y = 2y is also continuous on

the whole plane. Hence the hypotheses are satisfied
and the theorem guarantees a unique solution.

The right hand side of the equation is F(t, y) = .Jy.
T is defined only where y 2 0, and it is continue
ous there. However, 6F/6y = 1/(2/y), which is
only continuous for y > 0. Our initial condition is
at Yo = 0, and to = 4. There is no rectangle cone
taining (to, yo) where both T and of/0y are defined
and continuous. Consequently the hypotheses of the

© 2006 Pea rs on Education, Inc., Uppe r Saddle Rive r, NJ . All rights re se rve d. This mate ria | is prote cted under a Il copyright laws as they curre ntly e xis t.

theorem are not satisfied.

3. The right hand side of the equation is F(t,y) =

ttan "y, which is continuous in the whole plane.
Ff~y =t/(1 +Y) is also continuous in the whole
plane. Hence the hypotheses are satisfied and the
theorem guarantees a unique solution. 2y

The ;‘i)ght hand side of the equation is (s, w)

@ sin « + s, which is continuous in the whole plane.
~FF = sim +cocoss is also continuous in the
whole plane. Hence the hypotheses are satisfied and
the theorem guarantees a unique solution.
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5 The right hand side of the equation is F(t,x) =

t/(x + 1), which is continuous in the whole plane,
except where x = —1. affX = —t/(x + 12 is
also continuous in the whole plane, except where
x == —1. Hence the hypotheses are satisfied in a
rectangle containing the initial point (0, 0), so the
theorem guarantees a unique solution.

The right hand side of the equation is FC,y) —
y/x * 2, which is continuous in the whole plane,
except where x = 0. Since the initial point is (O, 1),
T is discontinuous there. Consequently there is no
rectangle containing this point in which ¥ is continue
ous. The hypotheses are not satisfied, so the theorem
does not guarantee a unique solution.

The equation is linear. The general solution is
y(t) = tsint - Ct. Several solutions are plotted
in the following figure.

1 -4
Since every solution satisfies y(0) = 0, there is no
solution with y(0) = --3.1f we put the equation into
normal form
y _ 1
= -y * tcost,
dt ty

we see that the right hand side F(t, y) fails to be
continuous att = 0. Consequently the hypotheses
of the existence theorem are not satisfied.

The equation is linear. The general solution is
y(t) = t +2Ct. Several solutions are plotted in

10.

11.

2.7 Existence and Uniqueness of Solutions 57

the following figure.

= : :
~{ =08 0 0.5

Since the general solution is y() ==t + 2Ct?, every
solution satisfies y(0) = 0. There is no solution with
y(0) = 2. If we put the equation into normal form

dy 2y --t

'd‘t:tv

we see that the right hand side T, y)= (2y - t)/t
fails to be continuous att = 0. Consequently the hye
potheses of the existence theorem are not satisfied.

Thv/-derivative of the right hand side F(t,y) =
is 2./, which is not continuous at y =0
Hence the hypotheses of Theorem 7.16 are not sate
isfied.

They-derivative of the right hand side F(t,y) =

ly/ is ty / /2 which is not continuous aty = 0.
Hence the hypotheses of Theorem 7.16 are not sate

isfied.

The exact solution is y(t) = -1 4 Z=3 The
interval of solution is (/3, 00). The solver has troue
ble near /3. The point where the difficulty arises is
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58 Chapter2 Fist-Order Equations

circled in the following figure. figure.
y
Y
4 4
2 2
—_—
® t 0\ 5t
2 -1
5 1 2 3 2 DY
-2 J 52
4 4d;
2 Th tsolution s y() = —1+/1 —it —T.Th 14. The exact solution is y(Q) = 3
. The exact solution is y(t) = — —it —T.The ” : :
interval, of exstence s (-00.2 ~ S} Tmesolver - I 288 + 22102 The interval of existence

has, trouble- near 2 — /5 = -02361 The point

\ -242 —1.7293. Th i h he diffie
where the difficulty arises is circled in the following N o 93. The point where the diffi

culty arises is circled in the following figure.

figure.
y
; )
4e
31
. 2
e I
i -\
-2 1 %2 0 H
- —8———t gt
-4 -1
15. Thi solution is defined implicitly by the equation
13. Theexactsolutionis y(t) = -1+ T 2ingl --t). y/3+Y -3y = ¥ /3. The solver has trouble near
The interval of existence is ;--o,l e, The (€0, Mere t = -—(5/2> = --1.3572, and also
solver has trouble near | --€7 s 0,8647. The point near (1, —3), where T = (27/2) ' ‘= 2.3811. The
where the difficulty arises is circled inthe following points where the difficulty &tises are circled in the
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following figure.

16. The solution is defined implicitly by the equation

2y -- 15y + 21" = -81. The solver that trouble
near (t,0), where t = --(81/2)/ z -3.4341,
and also near (t;, 5), where T = 22/ z 2.8020.
The points where the difficulty arises are circled in
the following figure.

17.  The computed solution is shown in the following fig-

18.

27  Existence and Uniqueness of Solutions 59

ure.

t
0 1 2 3 4

The exact solution is

ifO <t < 2,

5—"5e7",
ift>2

5(1 — e~ e,

Hence q(4) = 5(1 --e2)e» z0.5851.

q(t) =

The computed solution is shown in the following fige
ure.

0 3 4
1
The exact solution is

0, - ifO <t < 2,
9= {sce”, 2

Hence q(9) = 3(1 --€) = 2.5940.

19. The computed solution is shown in the following fig-

© 2006 Pea rs on Education, Inc., Uppe r Saddle Rive r, NJ . All rights re se rve d. This mate ria | is prote cted under a Il copyright laws as they curre ntly e xis t.

No portion ofthis material may be reproduced, in any form or by any means, without permission in writing from the publisher.



60 Chapter2
ure.

First-Order Equaiions

g 1 2 3 4
0
The exact solution is

2t - 14e'), ifo< t<2.
2

Q)= {20 tee’. ft=2
2

2

]

Hence q(4) = 261 +€ € =0.3073.

20. The computed solution is shown in the following fige
ure:

The exact solution is

_ {0 ‘ if0 <1 <2,
aO= 1 "o iRz

Henceq(4) — 3 --€= 2.8647.

21, (a) If

if1 <to

0 .
W =1" ifr > to,
i I(:—:o)’.

then

oy Yy

el L—)— =t kel
{= t—to
= [Li.m( ~t0)
b)
=0,

Onthe other hand,

yl@o) == jlm @—_—)LQ-)-
oo . :
"'m G220

z="limn

141, t—10 -
=0.

Therefore, y'(ta),— 0, since both the left and
right-hand derivatives equal zero,, |

|

(b) The right hand side of the' equation, F(,y) =
3y./ ,is continuous, but@f/y = 2/ '/is not
continuous where y — 0. Hence the hypothee
ses of Theorem 7.16 ire not sati sfied.

22, (a) If
i Qa0 if1 < |
y6) ={6/2+(3-5e/2)e", iflp |
—6e7 X, t<l1

then irvisf'e?a's_'il e hde?)e ¥ 1> 1.

It remains to find the derivativeatt = 1. Ree

member, because of the "cusp” att = I, we
suspect that this derivative will notexist. First,


mailto:@-yo
mailto:but@f
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the ferivative from the right,

1\

" -l
P (§+(3-§§) ’)
-(+0-%))]

= lim

teelt r—1

Nqie the i'n‘determinant fo?m 0/0, so I'Hopital's

rule applies.

«~I6-)-]

; —5—6e—

However, the dgrelvatlve from the left,

T -(-F)r
T ler -0t o
( 2 2 23 If

_ u e |
y'O- a)(—y(C

- GC9))

-+ @1

t =1
Again, an indeterminant form 0/0, so we apply
I'H~pital's rule.

. , u
| (D= jmc-6e>
= -6e

=

(b) The derivative from the left doesn't equal the
derivative from the right. The function y =

y(t) is not differentiable att = | and cannot
be a solution ofthe differential equation on any

interval containingt = 1.
(c) We have that

—&,-1,
—A{(- 6+5e)e

1< |
yQO=

1> 1

2.7 Existence and Uniqueness of Soluions ~ S1

o gle

ifl=> |,
then
t <1
£

+f( I::@.O.Q

Thus,y = y(t) is a olution ofy' = 1-2y4¥()
on any interval not containing t = I,

) (D= {Q : <0‘

> 0.

then it is easily seen that

t= 0.

It remains to check the existence of y*(0). First, the
left- derlvatlve

2.8 = st y@—y(0) z a\if—t_O-O

-+0 Q -»t |
' z
Secondly,
|
1 o -
/0) = my@—y©0) = m = €l=o
-+t t—L rot't r—gt
Thus, y'(0) = 0 and we can write
| :
. o t <0
y'Q 120
wlt) =
Now, t20
t <6
t
v (>0
and
t <0
4y(t
Vo= {4t' t 20.
soy —y(t) is a solution of ty' = 4y. Finally,

y(0) = 0. In a similar manner, it is not difficult to
show that


mailto:y@-y
mailto:y@-y
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24.

Chapter 2 First-Order Equations

is also a solution of the initial value problem ty"' ==
4y, y(0) = 0. At firstglance, it would appearthat we
have contradicted uniqueness. However, ifty' =4y
is written in normal form,

4
y =¥

then

0
& ()"

is not continuous on any rectangular region containe
ing the vertical axis (where t =0), so the hypotheses
of the Uniqueness Theorem are not satisfied. There
is no contradiction of uniqueness.

(@) The point here is the fact that you don't know
the moment the water completely drained.
Here are two possibilities.

-2, 0)
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~1,0)

(b) Let A represent the crbss area of the drum and
h the height of the water in the drum. Then
Ah represents the change in height and AAh
the volume of water that has left the drum. A
particle of water leaving the drain at speed v
travels a distance VAt in a time At. Because
a is the cross section of the drain, the volume
of water leaving the drain in time At is av&.
Because the water leaving the drum in time AAt
must exit the drain,

Ah =avt
Ah

A— =av.
At

Taking the limit as At -» 0,

Adh =av
dt ~—

Using V = 2gh, v =/2gn and
dh ©. A
= V?sh
The minus sigryjs Present because the drum is
draining.
(c) Ifwe let ¢ = ah ands = f3t, then by the chain
rule

do d dh dt adh
S dh . dt ds = 3 dt
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Multiply both sides of our equation by al/f3,

12 -- (e

g)t;place (@/~)(dh/dt) with A/ds and h with
0.

o __(&)(& |280
ds ~ A\ B o
dw l sa
——— | — 2
ds B (A) VEeIG:
Let ho represent the height of a full tank. This

motivates the selection of a == 1/ho and « =
h/ho, as a = 0 when the tank is empty and

(=1 when the tank is full. Thus, 2.

()

which motivates the selection of

1—-LE)y

° eat 27.

which upon substitution, gives us

o

= --/w,

(d) Separate the variables and integrate.

w 7d = -ds 28.
27=—-s+C
|
12 :E(C—s)
o= ‘:(C——s)

However, as evidenced in part (a), we only want
the left half of this parabola. After the drum

empties, it remains empty for all time. Thus, 29.

for any C < s0,

w(s) = I<C =92, s<C

0, s=C,

)
ol

2.7 Existence and Uniqueness of Solutions 63

is asolution ofa’ = —=/@, a(so) = 0. Finally,
this emergence of multiple solutions does not
contradict uniqueness, because in

is not continuous on any rectangle containing
the horizontal axis (defined by ac= 0).

The equation X' = F(t, x) satisfies the hypotheses
of the uniqueness theorem. Notice that ><(0) =
X(0) =- 0. If they were both solutions r' = F(t,x)
near t =- 0, then by the uniqueness theorem they
would have to be equal everywhere. Since they are
not, they cannot both be solutions of the differential
equation.

The equation x' = T(t, x) satisfies the hypotheses
of the uniqueness theorem. Notice that X(/2) =
X /2) = 0. If they were both solutions x' =
f(t,x) near t = n/2, then by the uniqueness theos
rem they would have to be equal everywhere. Since
they are not, they cannot both be solutions of the
differential equation.

Notice that x;(t) = 0 is asolution to the same differe
ential equation with initial value x;(0) =0 < 1 =
x(0). The right hand side of the differential equar
tion, F(t,D) = x cos tand @f/~x = cos t are both

continuous on the whole plane. Consequently the
uniqueness theorem applies, so the solution curves
for x and X cannot cross. Hence we must have

x(t)> x(t) =0 for all t.

Notice that y(t) = 3 is a solution to the same dif*
ferential equation with initial value y(I) = 3 >
1 =y(1). The right hand side of the differential
equation, F(1,y) = (y — 3)%csy) and 0F/Qy =
ecos (1 --t(y -- 3) sin(ty)] are both continuous on
the whole plane. Consequently the uniqueness theoe
rem applies, so the solution curves for y and y cane
not cross. Hence we must have y(t) < y(t) = 3
for all t.

Notice that the right hand side of the equation is
T(t,y) = (y _1De” and F is continuous on
the whole plane. Its partial derivative Hf~y ==
2ye)+t Y -- e, isalso continuous on the whole
plane. Thus the hypotheses of the uniqueness theos

rem are satisfied. By direct substitution we discover
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30.

First-Order Equations

that y(t) = --I and y(t) = | are both solutions
to the differential equation. If y is a solution: and
satisfies y(0) = 0. then yr(0) < y() < v Q.
By the uniqueness theorem we must have y/(t) <
y(t) < «t) forall r for whichy is defined. Hence
=l <y(t) < | for all r for which y is defined.

Notice that ni(t) = 0 and x<(t) = | are solue
tions to the same differential equation with initial
valuesn(0) = 0 < /2 = x(0) < | = ,(0).
The right hand side of the differential equation,
f(t,x) = (—n)/C +1r), and

af @r-D( +l+) -2rx@—O0O

o = HH— -,
are both continuous on the whole plane, Conses
quently the uniqueness theorem applies, so the solue
tion curves forx, I, and Xz cannot cross. Hence we
must fave 0 =n (1) < x(t) < ><(t) = | fordll t.

31

32,

Notice that n(t) = T isasolution to the same differe
ential equation with iinitial value x;(0) = 0 < 'l =
r(0). The right hand side of the differential equas
tion, F(t,9) =x —1T + 21 and af/Xx = | are both
continuous on the whole plane. Conszquently the
uniqueness theorem applies, so the solution curves
for x and x; cannot cross. Hence we must have
T =) <x() forall t

Notice that y/(t) = cost is a solution-to the same dife
ferential equation with initial value y (0) =1 <2=
y(0). The right hand side of the differential equas
tion. F(t.y) = Y = cost --sin t and of/@y = 2y
are both continuous on the whole plane. Conses
quently the uniqueness theorem applies, so the soe

[ution curves for y and y; cannot cross.  Hence we
must fave y(t) > y/(t) — costfor all t.

_______ X_______

Section 2.8. Dependence of Solutions on Initial Conditions

l.
2.
3.

5.

=)

x(0) = 0.8009
(0) = .9084

r(0) = 0.9596
x(0) = 0.9826
r(0) = 0.7275

r(0) = 0.72897

x(0) = 0.7290106

r(0) = 0.729011125
r(0) = -3.2314

r(0) = -3.23208

r(0) = -3.2320923
r(0) = —3.23092999999
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13.

14.

Ten! :-)

l—e'- (/10" < yO<1-e'+(/10)e"
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15.

The three middle curves are the solutions to the dif-
ferential equation corresponding to the initial condie
tions x(0) = -.1, 0.1, and the outside curves are
the graphs of e; and €. Note how the solutions of
the differential equation remain inside the graphs of
ez and €.

The only adjustment from the previous exercise is
that we now want [xo —yo] < 0.01. This leads to

1 -@" 0.0le" <y)<1-€" 4001

and this image.

. -
_7 | 4

-4

16. (a) Therighthandsideoftheequationis®(t,x) = (X

- D)cost. Thus 0f/~x = cost, and max
[0F/6x] = max [cost] = I. Hence Theo- rem
7.15 predicts that [x(t) —y(t)] < Ix(0) -
y(O)le.

(b) The equation is separable and linear, and the
solutions are x(t) =1 —e""" and y(t) = 1 --
9e5 = /10. Hence the separation is (t) —y(t) ==
es” /10. Since sint < [t], we see that

17.

18.

xQ-y@O)! =€ "/10<e"/10= x(0)-y(0)]e.

1
(c) Since sint < [t] except at t — 0, we have
x(t) —y(t)] < el/10, except att = 0.

|

29  Autonomous Equations and Stability 65

(@) The right hand side of the equation is F(t, X) =
--2x # sint, and 0F/0x = -2. Hence M =
max[@f/0x]) = 2, and Theorem 7.15 pree
diets that [y(n) - xQ)] < ly(0) -- x(Q)je" I} =
ly(0) -- x(0)[ -

(b) The equation is linear, and we find that x() =
[2sint - cost]/5, and y(t) = [2sint -e
cost]/5 --e ?'/10. Hence

x(1) —y(t) =—e?'/10 = [x(0) - y(0)]e=
</y(0) —r(Q)yell,

(e) Since e»+ = a2l fort < 0, we see that the
maximum predicted error is achieved for all
t <O.

The right hand side of the equation is F(t, x) =
r?--t,and6¥/8x = 2x. On the rectangle R we have
X| < 2 s0 M = max[§f/6x] = max[2x] = 4.
Thus the bound predicted by Theorem 7.15 is

INQ — )] < In,(0) — (O)]e’"' Be*'/4,
The maximum predicted error is where It| = 1, and

it is 40.9486. the two solutions are plotted in the
following figure.

-1/615/ 0 \ms\"i‘
-0.57

The actual bound is about 2, which is much less than
41, the theoretical bound.
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66 Chapter2

First-Order Equations

Section 2.9. Autonomous Equations and Stability

L.

Note that P* = 0.05P —1000 is autonomous,
having form P' = f(P). Solving the equation
0= F(P) = 0.05P — 1000, we find the equilibe
riumpoint P = 20000, Thus, P() = 20000is an
unstable equilibrium solution, is shown in the fols
lowing fig1e.

El
x10
#——

4 bORIISECERSOREI R OO TOU
PP A ES s et
2233993999999 NIITIIY

== -%
rrroror rr
e e o . 2 e oy 2 e e e s e e e A e e 1

“mm - s

a. 2pE=EE=EE=+=5+51+551=
PARNNARRRRRRANRNRNRR AN
SN A NSNS SNSSNSASSNENSS
&N ) 4NN ASNANNNANADN
3 BaaaNNAN NN a

L LR

Vraaaaa i Nba4a \ N aa \
saaa a4 4 1 4 Fr aa
4 4 4 4 4494 4 4 4 A4 4 4 44

O 444 4 444 {4 4 4 4A4<<aA44A49
0 50 100

Note that y' = | —2y + Y is autonomous, having

form y' = F(y). Solve the equation F(y) = 0 to
find the equilibrium points.

I-2y+Y=0
Thus, y(t) = | is an unstable equilibrium solution,
as shown in the following figure.
ARBEZER. [} LU A ) “°
tr vy Frea's 3 LI}
s LR (R NN ‘P
LR A ' L LR
LA LA A A L
’ L L ’ ’ ’
K P e it th 5
> 1 ------- ‘;h—--—L*¢———
2| 77 - S Vo s Ve -
:L;:’ ll‘l ll' s
SRR EEETERRR NSRS
LA 4
ST TTT RN ITTVTAITSTOTTR t
0 & By i
e Yy P T
4 4 4 4 444 4 4 4 4 44 aa
=\ 444 [ B v A A A
0 5 =10

Note that = = € - I is not autonomous, having
formx' = F(,x), where F(t.x) = -1 The

explicit dependence of the right-hand side of this
differential equation on the independent variable t
causes the equation to be non-autonomous.

Note that P' = 0.13P(l — P/200) is autonomous,
having form P' = ¥(P). Solve the equation
T(P) = 0 to find the equilibrium points. !

or (-{)-"

P=0 or P=200

Thus, P() = 0 and Pt) = 200 are equilibrium
solutions, as shown in the following figure. P = 0
unstable and P = 200 is asymptotically stable.

.

~ ~
- -~

s’

~
-~

tee
v
L

~
-~

‘e

.
. N
-~ Saas

i

-~ ~
-~ ~

w
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P

AAG 4 H4F233F 2 L 2FFA%
Sh eSO eae
2000 ~

W W o —
g’—,i“:::Z:r‘wn4F1b

0 20 40

The equation is autonomous. The point g = 2.is an
unstable equilibrium pont, as the following figure
shows. Inaddition every solution of sing = 0 is an
equilibrium point. These are the points k<, where k
is any integer, positive of negative. The stbility of
the equilibrium points alternates between asymptotic
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2.9 Autonomous Equations and Stabilty S]

stable and unstable, as is seen in the figure. is asymptotically sibole and y = 2 is unstable.
q
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The equation is not autonomous because of the cost

term.

' 9. Since F(y) has'zeros aty = —I;and‘y = |, these
Note that the graph of F(y) mtercepts the y-axis at areequilibrium points. Correspendingly, y(t) = —|
y = 3._Consequently, y = 3 s anequilibrium point 1nd y(t) == | are equiliorium solutions, and are plote

(f(3) = 0) and y(t) = 3 is'an equilibrium solution,

: e ) s ted in the following figure. Both are unstable.
shown' in the following figure. The solution y = 3 " wing g unsteble

is unstable.
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Note that the graph of f(y) mtercepts the y axisat 10. Since f(y) has zeros aty = -2,y = -1/2,y=1,
y =Oand y = 2. Consequently, y — O and y = 2 andaty = 2. all four are equilibrium points COr-
are equilbrium points (F(0) = O and (2) = 0) and respondingly, y(t) = -2, y(t) = -1/2,yQ) = |,

y(t) = 0andy(t) = 2 are equiibrium solutions, and = — ;
. L : - y(t) — 2are equilibrium solutions, and are plote
shown in the following figure. The solution y = O ted in the following figure. y = —2 and y = | are
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asymptotcally stable and the other two are unstable.

——

——e =
-

ane o
e

.

Because the differential equation y' = F(y) is aue
tonomous, the slope at any point (t, r) in the direce

tion field does not depend on r, only on Yy, as shown
in the following figure.

N\ -k—/l'/_

The equilibrium point is asymptotically stable.
| ) i A

Because the differential equation y' = F(y) is aur
tonomous, the slope at any point (t, x) in the direce
tion field does not dependon I, only on Yy, as shown

13.

in the ©l lowing figure.

There are two equilibrium points. The smaller of
them is unstable and the other is asymptotically sta*
ble.

|

The key thing to note is the fact that y' ind F(y) are
equal. Consequently, the value of F(y) is the slope
of the direction line positioned at (t, y).

» Ally = 3, F(y) = 0and the slope is I€0. Thus

y = 3is an eqdilibrium ‘point". This is shown
in the following figure. :

« Tothe rightofy = 3, note that the gryh of T
- dips below the y-axis. Therefore, asy increases
beyond 3, the slope becomes increasingly negas
tive. This is also shown.in the following figure.

e Tothe leftofy = 3, notethatthe graph'of Frise
above the y-axis. Therefore, asy decresses bee
low 3, the slope becomes increasingly positive.
This is also shown in the following figure. In
particular, this means that the equilibrium point
y = 3is asymptotically stable.
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i Slope is more negative
\ as y Increases.
I —
3 — Slope is zeroaty — 3.

/
|

- L .1
| Slope is more positive
| asy decreases.

Finally, becuse the equation y* == T(y) is aue

tonomous, the slope of a direction lne positioned at
(r, y) depends only ony and.notonr. Consequently,
the rest of the direction field is easily completed, as
shown in the next figure.

A &Y AR A A LA 4y
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e AR Ak
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14. The key‘thing to note is the fact that y'and F(y) are

equai. Consequently, the value of F(y) is the slope
of the direction line positioned at (t, y).

« Aty = Oand y = 4, f(y) = 0, so the slope
of the direction lines at these y-values is zero.
These points ire the equilibrium points. This
is shown in the fo‘ll‘owing figure

e To the right of y = 4, notc that the graph of
f deS below the y-axis. Furthermore, as y ine
creases beyond 4, F(y) (the slope of the direc.
tion line at (r. y)).becomes increasngly negae
tive. This is also shown in the following figure.

2.9 Autonomous Equations and Stabiliy (b

. Between y = Oand y = 4, the graph of T
lies above the y-axs. Consequently, F(y) is
positive for0 < y < 4. Moreover, the graph
of f hasa maX|mum about halfway between
y =0and y = 4. Consequently, the slope of
the direction field lines will be posmve between
y =0and y — 4, with a maximum posmve
slope occurring about halfway betwceny = 0
and y = 4. This is shown in the following
figure. e

e Tothe left ofy = 0 note that the graph of f
falls below the y-axis. Furthermore, as'y des
creases below 0, Fy) (the slope ofthe direction
line at (4,')) becomes increasingly negative.
This is also shown i in the next figure.

From these considerations we see that the equilibe
riumpoint y = 0 is unstable, andy = 4 is asympe
totically stable.

y ’ { .
1 | Slope is more negative
| asyincreases beyond y = 4.
e j Ry =
4 : Slope iszro aty — 4.
I Slope is most positive midway
/  betweeny =0andy = 4
i =();,
\ Slopeis zeroaty =,
| Slopeismore negdive
as y decreaes belowy = 0.
Finally, because the equationy' = (y) is au-

tonomous, the slope of a direction line positioned at
(t, y) depends only on y and not on t. Consequently,
the rest of the direction field IS easily completed, as
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70 Chapter 2 First-Order Equations

shown in the next figure.

___i_.—_-_.—

15. () Inthis case, F(y) =2--y, whose graph is shown
in the following figure.

fy)=2-y
3

AN

2,0
- - (2.0)

L

(ii) The phase line is easily captured from the previe
ous figure, and is shown in the following figure.

—_—

2 e .

(iif) The phase line in the second figure indicates that
solutions increase if y <2 and decrease ify > 2.
This allows us to easily construct the phase portrait
shown in the ty plane in the next figure. Note the
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stable equilibrium solution, y(t) = 2.

©02) K

)
v
-~

\j

16. Q Inthis case, F(y) = 2y -7, whose graph is shown

in the next figure.

fO)=2y-7
'y

(7/2,0)

\J

(ii) The phase line is easily captured from this figure,
and is shown in next figure.

—— _ I\ _
= a 7 y
2

(iii) The phase line in the second figure indicates
that solutions decrease if y < 7/2 and increase if
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17.

y=7/2. This allows us to easily construct the phase
portrait shown in the ty plane inthe next figure. Note
the unstable equilibrium solution, y(t) = 7/2.

Ay
4,7/2)

v

(i) In this case, .f(y) =(y—+1)(y--4), whose graph
is shown in the next figure.

A fO)=0+DH(y—4

(=1,0)

v
(ii) The phase line is easily captured from the previe
ous figure, and is shown in the next figure.

18.

2.9  Autonomous Equations and Stability 71
(iii) The phase line in the second figure indicates
that solutions increase if y < -1, decrease for
-1 <y < 4, andincrease if y> 4. This allows us
to easily construct the phase portrait shown in the ty
plane in the next figure. Note the unstable equilibe
rium solution, y(t) = 4, and the stable equilibrium
solution, y(t) = —1.

o

4
v
&

(0,—1) [
A

0O In this case, F(y) = 6 +y ==Y factors as

f(y) = (2+ y)(3—y), whose graph is shown in the
next figure.

T(y)=6+y-y
A

(—2,0) (3,0)

v
(ii) The phase line is easily captured from the previ-
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72 Chapter 2 First-Order Equations

ous figure, and is shown in the next figure.

_

(iii) The phase line in the second figure indicates
that solutions decrease if y < -2, increase for
-2<y <3,and decrease if y > 3. This allows us
to easily construct the phase portrait shown in the ty
plane in the next figure. Note the unstable equilibe
rium solution, y(t) = -2, and the stable equilibrium
solution, y(t) == 3.

(‘"

0.3

A
A
-

0,-2)

19. () Inthis case, F(y) =9y —y" factors as FQ=

y(y *3)(y -- 3), whose graph is shown in the next
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figure.

T(y)=9y-y°

(3.0)

— e
(--3,0) g
(0,0}

(ii) The phase line is easily captured from the previe
ous figure, and is shown in the next figure.

(iii) The phase line in the second figure indicates
that solutions increase if y < _ -3, decrease for
-3 < y <O,increase if0 < y < 3,anddecreasefor
y > 3. This allows us to easily construct the phase
portrait shown in the ty plane inthe next figure. Note
the stable equilibrium solution, y() = -3, the une
stable equilibrium solution, y(tf) = 0, and the stable
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equilibrium solution, y(t) = 3.

‘y

0,3 7

< J (0‘0) > 1

- \ >
\
[

(i) In this case, f(y' =y + 1)(y -- 9) factors as
f(y) =(y+1)(y—3)(y+3), whose graph is shown
in the next figure.

©,-3)

Ty)=(y+Dy--9)

L
(=3.0) /\ =10
- -

(i) The phase line iseasily captured from the previe
ous figure, and is shown in the next figure.

HH<<d []
-3 -1 3
- ——— ———— ——— e}
(iii) The phase line in the second figure indicates
that solutions decrease if y < -3, increase for

21.

2.9  Autonomous Equations and Stability 73

-3 <<y < -1, decrease if -1 < y < 3, and
increase for y > 3. This allows us to easily cone
struct the phase portrait shown in the ty plane in
the next figure. Note the unstable equilibrium soe

lution, y(t) = -3, the stable equilibrium solution,
y(t) = -1, and the unstable equilibrium solution,
y(®O= 3.

y

0.3)

(67=3)

>

Due to the periodic nature of this equation, we sketch
only a few regions. You can easily use the periodicity
to produce more regions.

Q) In this case, F(y)= siny, whose graph is shown
in the next figure.

f(y)=siny

(0,0) (7,0)

(2m,0)
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(i) The phase line is easily captured from the previe
ous figure, and'is shown in the next figure.

0 2n

(i) The prase line in the second figure indicates
that solutionsdecrease if --r < 'y < 0, increase for
0 <y < , decrease i < y < 2, and increase
for 2r <-y < 3n. This allows us to easily cone
struct the phase portrait shown in the ty plane in the
next figure. Note the unstable equilibrium solution,
y(t) = 0, the stable equilibrium solution, y(t) = ,
and the unsable equilibrium solution, y(t) = 2.

-

0,27)

4
/
0,m)

L
——

.\

Due to the periodic nature of thisequation, we sketch
only.a few regions. You can easily use the periodicity
to produce more regions. .

(i)In this case, f(y) = ¢0s 2y, whose graph is shown
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in the next figure.

ft=co0s 2y

(i) The phase line is easily captured from the previe
ous figure, and is shown in the next figure!

(iii) The phase line in the second figure indicates
that ‘olutions increase 'if --n/4 < y < 'n/4, de
creae for r/4 < y <-3n/4, and increase!if
3n/4 <y < 5/4. This allows. us to easily cone
struct the phase portrait hown in the ry plane in the
next figurg. . Note the stable equilibrium solution,
yi(t) = 4 4, and the unstable equilibrium solution,
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y(t) = 3n/4.

(0,37/4)

Moo -

s
N

(0.7/4)

4
v
=y

The equation is linear, so multiply by the integrating
factor and integrate.

(ey) = e
e'y = 6e' 4C
y(t) =6+Ce"

The initial condition y(0) = 2 produces C = -4
and y(t) ==6 --4e . Now, e~ approaches zero as
t -- +0O, 50

lim (6--4e%) =s.

li =
Jim yO S

Compare y' = F(y) with y = 6 --y. Then
T(y) ==6—y, whose graph is shown in the first fige
ure below. The phase line on the y-axis in this figure
shows that y = 6 is a stable equilibrium point, so
a trajectory with initial condition y(0) == 2 should
approach the stable equilibrium solution y(t) = 6,
as shown in the second figure. This agrees nicely
with the analytical solution.

24,

2.9 Autonomous Equations and Stability 75

apop=8=y

6,0
- > 6.0 < >y
v

e

(0,6)

0,2)
- >
[y

Writing the equation as y' = 5—2y, we see that
the right hand side is f(y) =5 —2y. The graph
of T is in the next figure. We have also indicated
the direction of the solutions on the y-axis, which
shows that y = 5/2 is an asymptotically stable equis
librium point. Thus any solution curve will approach
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76 Chapter2 First-Order Equations

y =5/2as t increases. as t increases,

J=U+y)5-y
3

Fty) «5—2y

(~1,0) (5.0)

(5/2.0)

’
To find the exact solution, we separate variables and
use partial fractionsto get

LL 1 a4 |1 dymuif

6§ Tvy 5=y

Integrate,

I I ‘
Z1' +M—-z115-yl=ttC,

The exactsolution ‘c‘an be found since fie equ‘a'tio‘ns In[l'+y] —In[5 —y] = 61 4 6C,
is separable (and linear). With some work we find ‘
that it is y(t) = 5[I -~ e72/2. Clearly the solution -[p —tS] —'+«e
has the indicated limiting behavior. y
=l _ 6§
y_'5 A€,
where A = Z=e .Using the initial condition y(0) —
2we see that A = —1, so_
ytie o
( | 5 v
25. The equétion hasthe formy" = F(y).where £(y) — Solving for y, we findethat
(I T y)(5 = y). The graph of T isin the next figure. o
We have also indicated the direction of the solutions 5 | &==80
on the y-axis. This shows that y = —I is an unsta VT | a fie""
bleequilibrium point, and y = 5is anasymptotically ; ‘
stable'equilibriljm point.“Therefore, a solution starte From this we seé that y(t) -» Sasl -+ O, agreeing
ing with y(0) = 2 will increase and approachy = 5 with what we discovered earier.
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26. Separating variables,
d
& G+ -
dy n(f

(3 +y)6l —y)

A partial fraction decomposition allows us to cone

tinue. ’

‘I;%‘LVyl —1rnﬂ] y]—41 +C

[1""] «+C

+Y|_ eCedr
1L_y

3+3J__ A¢"

I--y

with y(0) =2,

3+?7_ _de> A=5

|—2 (())
and
3+¥  —b5e"
Y

3+y=-5¢" +5ye"
3+5"" =y(5e --1
3 45e

y = bea - }-

Multiply top and bottom by e = ~=.

leAasb
y =5 {
Thus,
im v o 045 —
oo’ T 5--0

Using qualitative analysis, pIot the graph ofthe right.

band side of

dy _
pm Bty -y

27.

28.

29.

30.

2.9 Autonomous Equations and Stability 77
VErsus y.

fO=@ TY)(l—y)
4

(—3,0) (1,0)

A
Note the equilibrium points aty = -3 and y = 1.
Moreover, note that between --3 and 2, solutions ins
crease to the stable point aty = 1. Thus,

Jim y(t) =1
1—O

We have the equation X' = F(x) = 4— >.The
equilibrium points are atx == +2, where f(x) = 0.
We have F'(x) = -2x. Since f'(-2) =4 > 0,
X = =2 is unstable. Since 1'(2) = <O,x = 2
is asymptotically stable.

We have the equation x' = F(x) =x(x —1)(x +2).
The equilibrium points are at x = 0, 1, and -2,
where F(x) = 0. We have F'(x) = 3x® +2x --2.
Since ¥'(0) = -2 < 0,x = 0 is asymptotically
stable. Because f* (1) = 3 =>0,x == | is unstable.

Finally, because (=) =2 > 0,x = -2 is also
unstable.

@ fv) =X, £Q = X,or FQ) =r".

(o) F(o) = 'r, O = —X,or fQ) = -r.

Notice that we are measuring the displacement as
positive below the plane. First divide through by m
to get !
v
r'S"‘7
Note that this equafion is autonomous, having form
= F(v). The graph ofF is a line, with slope
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--k/m and intercept g, as shown in the following
figure.

fO=g-{v

(0.9)

v
The phase line on the v-axis in this figure shows that
v = (mg)/k is a stable equilibrium point. Our skye
diver starts from rest, so the solution trajectory with
v(0) = 0 should approach the stable equilibrium soe
lution, v(t) = (mg)/ k. Consequently, the terminal
velocity is (mg)/k.

Let x(t) represent the amount of salt in the tank at
time t. The rate at which solution enters the tank is
given by

Rate In = 2 gal/min x 3 Ib/gal = 6 Ib/min.

The rate at which solution leaves the tank is

3 1 ‘
Rate out = 2gal/mirm ;Xeh/gal =, . Ib/min.

Consequently,

dxbl
dt ~ = 50
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Let c(t) represent the concentration of salt in the
solution at time t. Thus, c(t) = x(0)/100 and
100c’ ==x".

100¢'= &S 1(OOe)
635 I
1000 5o

¢

Let f(c) = 6/100 -- (1/50)c. Setting F(c) = 0
produces the equilibrium point ¢ =3, as shown in
the following figure.

f«= ke

4 00

— (3,0)
- ¢

v

The phase line on the c-axis in this figure shows that
c — 3 is a stable equilibrium point so a trajectory
with initial condition c(0) = 0 (the initial concene
tration of salt is zero) should approach the stable
equilibrium solution c(t) = 3.
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