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Chapter 2

First Order Differential Equations

Separable Equations

1. Rewriting as ydy = x'dx, then integrating both sides, we have y*/2 = x°/5 + c, or
5/ -2x"=c;y6=0

2. Rewriting as ydy = (x¥°/(1 + x°))dx, then integrating both sides, we obtain that y* /2 =
In|1+x’|/3+c,or3y’=2In|1+x°| =c; x6=-1, y6=0.

3. Rewriting as y—°dy = - sin xdx, then integrating both sides, we have —y—*/2 = cos x + c,
ory—*+2cosx =c ify 6=0. Also, y = 0 is a solution.

4. Rewriting as (7 + 5y)dy = (7x* — 1)dx, then integrating both sides, we obtain 5y° /2 +
7y —7x/3 +x =c as long as y 6= —7/5.

5. Rewriting as sec’ ydy = sin’ 2xdx, then integrating both sides, we have tany = x/2 -
(sin 4x)/8 + ¢, or 8tany —4x +sin4x = c aslong as cos y & 0. Also,y = +(2n + 1)m/2for
any integer n are solutions.

6. Rewriting as (1 — y*)~"/°dy = dx/x, then integrating both sides, we have arcsiny =
In |x| + c. Therefore, y = sin(In |x| + ¢) as long as x 6= 0 and |y| < 1. We also notice that
y = =1 are solutions.

7. Rewriting as (v/(1 +y°))dy = xe*’dx, then integrating both sides, we obtain In(1 +y?) =
e’ + ¢. Therefore, y* = cee” — 1.

8. Rewriting as (y* —ev)dy = (x’+e—X)dx, then integrating both sides, we have y°/3 —ev =
X/3—e=x+cory’—x —3(e¥—e>x)=caslongas y’ —ev6=0.

9. Rewriting as (1 +y°)dy = x’dx, then integrating both sides, we have y +y°/3 = /3 +¢,
or3y +y’ —x’=c.

10. Rewriting as (1 + y°)dy = sec’xdx, then integrating both sides, we have y + y*/4 =
tan x + c as long as y 6= —1. N
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11. Rewriting as y—/°dy = 4 xdx, then integrating both sides, we have y'/* = 4x°/°/3 + c,



ory = (4x/°/3 + c)’. Also, y = 0 is a solution.
12. Rewriting as dy/(y—y°) = xdx, then integrating both sides, we have In |y|- In |1 —-y| =

17
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X/2 + c,or y/(1—y) = cex’?, which gives y = exX/2/(c + ex/?). Also, y =0 and y = 1 are
solutions.

13.(a) Rewriting as y—°dy = (1 — 12x)dx, then integrating both sides, we have —-y—' =
x—6x* +c. The initial condition y(0) = -1/8 implies ¢ = 8. Therefore, y = 1/(6x* —x— 8).

(b)

\/
(c)(1- 193)/12 <x < (1 + 193)/12

14.(a) Rewriting as ydy = (3—2x)dx, then integrating both sides, we have y*/2 = 3x —x*+c.
The initial condition y(1) = —6 implies ¢ = 16. Therefore, y = — —2x% + 6x + 32.

(b)

_ \_
©) (83— 73)/2<x<(3+ 73)/2
15.(a) Rewriting as xexdx = —ydy, then integrating both sides, W@ave xex—ex = —)° /2+c.
The initial condition y(0) = 1 implies ¢ = =1/2. Therefore, y = 2(1 — x)ex -1.
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(b)

(c) -1.68 < x < 0.77, approximately

16.(a) Rewriting as r—"dr = 8-'d6, then integrating both sides, we have —-r—"=1n|9] + c.
The initial condition r(1) = 2 implies ¢ = =1/2. Therefore, r =2/(1 — 2 In |9)).

(b)

30

20

V_
(c)0<BO< e

17.(a) Rewriting as ydy = 3x/(1 + x)dx, then integrating both sides, we have y* /2 = 3
Iﬁ{l + x°)/2 + c.  The initial condition y(0) = —7 implies ¢ = 49/2. Therefore, y =
— 3In(1 +x?) +49.

(b)
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(€) == <x <

18.(a) Rewriting as (1 +2y)dy = 2xdx, then integrating both sides, we have y +)° = x* +c.
e initial condition y/(2) = 0 implies ¢ = —4. Therefore, y* + y = x* — 4. Completing the
2 3quare, we have (y + 1/2-=x  15/4, and, therefore, y = 1/2—+

(b)x15/4.

\/
(c) 15/2 < x <
19.(a) Rewriting as y—*dy = (2x +4x°)dx, then integrating both sides, we have —-y—" = x* +
x' +c. The initial condition y(1) = —2 implies ¢ = —3/2. Therefore, y = 2/(3 - 2x"* — 2X°).

(b)

4
© (-1+ 7)/2<x<

20.(a) Rewriting as e’vdy = x°dx, then integrating both sides, we have e%/3 = x’/3+c. The
initial condition y(2) = 0 implies ¢ = =7/3. Therefore, e’V =x*— 7, and y = In(x’ - 7) /3.
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(b)

\/

() *T<x<oo

21.(a) Rewriting as dy/(1 + y*) = tan 2xdx, then integrating both sides, we have arctany =
— In(cos2x)/2 + c. The initial condition y(0) = — 3implies ¢ = —n/3. Therefore, y =
- tan(In(cos 2x)/2 + m/3).

(b)

(c) /4 < x < /4

22.(a) Rewriting as 6y°dy = x(x* + 1)dx, then integrating_both sides, we obtain that
y62 (:) x9+ 1)%’4 + c.y 'the init(lal con)ditlon y(0) :g -1 g7imp|ies c¢ = 0. Therefore,

y=-"EFI/Z

(b)
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(C) == <x <
23.(a) Rewriting as (2y—11)dy = (3x*—e¥)dx, then integrating both sides, we have y*-11y =
x° —ex + ¢. The initial condition y(0) = 11 implies ¢ pl Completing the square, we have
(v —11/2)* =x* —ex +125/4. Therefore, y = 11/2+ x° — ex+125/4,

(b)

(c) —3.14 < x < 5.10, approximately
24.(a) Rewriting as dy/y = (1/x° — 1/x)dx, then integrating both sides, we have In|y| =

—1/x-In |x|+c. The initial condition y(1) = 2 implies ¢ = 1+In 2. Therefore, y = 2e'~"/x/x.
(b)

()0 < x <o

25.(a) Rewriting as (3+4y)dy = (e—x—e¥)dx, then integrating both sides, we have 3y +2y° =
—(ex + eX) + ¢. The initial condition y(0) = 1 implies ¢ = 7. Completing the square, we

have (y + 3/4)° = —(ex + e~¥)/2 + 65/16. Therefore, y = -3/4 + (1/4) 65 — 8eX — 8e ™.
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(b)

(c)-In8<x<1In8 N J

26.(a) Rewriting as 2y dy = xdx/ x? — 4, then integrating both sides, welaey = x2 — A+
c. The initial condi)t]ion y(3) = -1 implies ¢ = 1—%5_ Therefore, y = - pt@f" &+ 1 - \/i

(b)

(C) 2 <x <eo

27.(a) Rewriting as cos 3ydy =-sin 2xdx, then integrating both sides, we have (sin 3y)/3 =
(cos 2x)/2 + c¢. The initial condition y(m/2) = m/3 impliesc =1/2. Thus we obtain that
y = (m —arcsin(3 cos’ x))/3.

(b)

09
08
0.7

0.6
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(c) m/2 - 0.62 < x < /2 + 0.62, approximately

28.(a) Rewriting as y’dy = arcsin xdx/ 1 — x2, then integrating both sides, we have y°/3 =
(arcsin x)°/2 + c. The initial condition y(0) = 1 implies ¢ = 1/3. Thus we obtain that
y =2 3(arcsinx)2/2 + 1.

(b)

() m/2 <x <m/2
29. Rewriting the equation as (12)° 42y)dy = (1 + 3x°)dx and integrating both sides,

we have 4y° 6)° = x + x* + c¢. The initial condition y/(0) = 2 implies ¢ = 8. Therefore,
4y° -6y x x¥ 8-=0. When 12y° 22y = 0, the integral curve will have a vertical

tangent. This happens when y = 0 or y = 1. From our solution, we see that y = 1 implies
x = —2; this is the first y value we reach on our solution, therefore, the solution is defined for
-2 <X <>,

30. Rewriting the equation as (2y” — 6)dy = 2x°dx and integrating both sides, we have
2y°/3 — 6y = 2x’/3 + c. The initial condition y(1) = 0 implies ¢ = =2/3. Therefore, y° -
9 —x° = -1 Wen 2y*> —6 =0, the integral curve will haw a vergical tangent. This
happens when y = + 3. At these values for y, we have x = * 1+ 6 3. Therefore, the
solution is defined on this interval; approximately —2.11 < x < 2.25.

31. Rewriting the equation as y—*dy = (2 + x)dx and integrating both sides, we have
—-y—'= 2x + X’/2 + c¢. The initial condition y(0) = 1 implies ¢ = —1. Therefore, y =
-1/(x¥’/2 + 2x — 1). To find where the function attains it minimum value, we look where
y0 = 0. We see that y0 = 0 implies y =0 or x = —2. But, as seen by the solution formula, y is
never zero. Further, it can be verified that y'(—2) > 0, and, therefore, the function
attains a minimum at x = —2.

32. Rewriting the equation as (3 + 2y)dy = (6 —eX)dx and integrating both sides, we have
3y+y® = 6x—ex+c. By the,igitial condition y(0) = 0, we have ¢ = 1. Completing the square,

it follows that y = =3/2+ 6x —ex + 13/4. The solution is defined if 6x —e* + 13/4 2 0,
— < <

that is, 043 x 308 (%pproximatel%/). In that interval, y0 = 0 for x = In 6. It can be
verified that y (In 6) < 0, and, therefore, the function attains’its maximum value at x = In 6.

33. Rewriting the equation as (10 + 2y)dy = 2 cos 2xdx and integrating both sides, we have

10y + y* = sin 2x + ¢. By the initial condition v(0) = =1, we have c = =9. Completin
thg sqﬂ/are, it follows t¥1aty = -5+ "sin X . To find where the solution attaplns |ts§J
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maximum value, we need to check where y0 = 0. We see that y© = 0 when 2 cos 2x = 0. This
occurs when 2x = /2 + 2km, or x = /4 + km, k =0, £1, £2, . . ..

34. Rewriting this equation as (1 + y*)~'dy = 2(1 + x)dx and integrating both sides, we

have arctan y = 2x + X’ + c¢. The initial condition implies ¢ = 0. Therefore the solution is

{ = tan(x” + 2x). The solutiop is deflned as Ion&as A2 < 2x + X’ < m/2. We note that
+ x°= 4. Further, 2x + x* = /2 for x = 6 and 0.6. Therefore, the solution is valid

in the interval 226 < x < 0.6. We see that y© = 0 when x =1. Furthermore, it can be

verified that y"(x) > 0 for all x in the interval of definition. Therefore, y attains a global
minimum at x = —1.

35.(a) First, we rewrite the equation as dy/(y(4-y)) = tdt/3. Then, using partial fractions,
after integration we obtain

4 = ce¥3
y—4

From the equation, we see that yo = 0 implies that C = 0, so y(t) = 0 for all t. OtherW|se

y(t) >0 for all tor y(t) <0 for all t. Therefore, if yo>0and |y/(y — 4)| = Ce’t/* — o, we
must have y — 4. On the other hand, if yo<0, then y — —< as t — «. (In particular, y —
—<o in finite time.)

(b) For yo= 0.5, we want to find the time T when the solution first reaches the value
3.98. Using the fact that |y/(y — 4)| = Ce’t/® combined with the initial condition, we have

C = 1/7. From this equation, we now need to find T such that |3.98/.02| = €°T*/3/7. Solving
this equation, we obtain T = 3.29527.

36.(a) Rewriting the equation as y—'(4 —y)~'dy = t(1 + t)~'dt and integrating both sides, we
have In|y|—In|y—4| =4t—4In|1+t| +c. Therefore, |y/(v —4)| = Ce't/(1 +t)" —
as t — e which implies y — 4.

(b) The initial condition y(0) = 2 implies C = 1. Therefore, y/(y— 4) = —e't/(1 + t)*. Now
we need to find T such that 3.99/-0.01 = —'7/(1 + T)". Solving this equation, we obtain
T = 2.84367.

(c) Using our results from part (b), we note that y/(y—4) = yo/(yo —4)e't/(1+ t)*. We want
to find the range of initial values yo such that 3.99 < y < 4.01 at time t= 2. Substitutingt
= 2 intotheequation above, we have yo/(yo—4) =(3/€°)'y(2)/(y(2)-4). Sincethefunction
y/(y —4) is monotone, we need only find the values y. satisfying yo/(yo —4) = =399(3/¢€%)"*
and yo/(yo — 4) = 401(3/€°)". The solutions are yo= 3.6622 and y. = 4.4042. Therefore, we
need 3.6622 < yo < 4.4042.

37. We can write the equation as

cy+d
dy= dx,
ay +b =X

which gives
cv d

+ dy = dx.
ay+b ay+b
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Now we want to rewrite these so in the first component we can simplify by ay + b:

o facay B fa(cay +bc) —bc/a_ 1 bc
= = = To_ )
ay+b ay+b ay +b a ay+b
S0 we obtain
c bc d

- + dy = dx.
a a’+ab ay+b V- ax

Then integrating both sides, we have

c bc

d
y In|a’y +ab|+ " In|ay + b| =x + C.
a a? a

Simplifying, we have

c bc bc d
= zinlal = Injay + bl +— Injay +b| =x+C,

which implies that

d—b
gy+uln|ay+b|=x+C.

a2
Note, in this calculation, since < |p |a| is just a constant, we included it with the arbitrary
constant C. This solution will exist as long as a 6= 0 and ay + b 6= 0.

Linear Equations: Method of Integrating Factors

1.(a)
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(b) All solutions seem to converge to an increasing function as t — <.
(c) The integrating factor is u(t) = e't. Then

e'tyl + de’ty = (¢t + e 7t)

implies that
(e*ty)! = te't + €%,
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Z
thus 1 1 1
e'ty = (te't+et)dt= te't— et+ et+g
4 16 2

and then
t 1

y= cet+loaurt 1
2 4 16
We conclude that y is asymptotic to the linear function g(¢t) = t/4 — 1/16 as t — .

2.(a)

B e e T

S P ——

(b) All slopes eventually become positive, so all solutions will eventually increase without
bound.

(c) The integrating factor is u(t) = e=t. Then

e—Ztyo — 26—2ty — e’Zt(tzeZt)

implies
(e’y) =,
thus
zt_zfm:§+c
ety 3 ,
and then
e,

a Ee 4+ e’

We conclude that y increases exponentially as t — .
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CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS
(b) All solutions appear to converge to the function g(t) = 1.

28
11.(a)

t+et, so

, etyl + ety = t + et, thus (ety)’

et, Therefore

—%

+ et+ ¢,

tZ

2

(t+et)dt

(c) The integrating factor is u(t)

ely =

..........

llllllllll

...........................

— e

2

Therefore, we conclude that y — 1 as t — <.

4.(a)

—e t+1+cet,

tZ

.

y

and then

(b) The solutions eventually become oscillatory.

2t +c,

~tsin

5
cos 2t +

5

= t. Therefore, ty! +y = 5tcos 2t implies (ty)! = 5t cos 2t,

5t cos 2t dt

ty

{RY,s he integrating factor is /i(t)

c

5sin 2t

5 cos 2t

and then

4¢

We conclude that y is asymptotic to g(t) = (5 sin 2t)/2 as t — .
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5.(a)

(b) Some of the solutions increase Without bound, some decrease without bound.
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zc) Th% mtegratlﬂg factor is u(t) = e~*t. Therefore, e~y

&-ity)

e~y =

4

3e-tdt=-3et+¢

29

— 2e~’ty = 3e~t, which implies

and then y = =3et +ce’t. We conclude that y increases or decreases exponentially as t — o,

6.(a)

(b) For t > 0, all solutions seem to eventually converge to the function g(t) = 0

(c) The integrating factor is u(t) = t°.
Z

2

ty =

and then
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tsintdt=sint—tcost+c

sint—tcost+c

y:

We conclude that y — 0 as t — .

t2

Therefore, t°y! + 2ty = tsint, thus (t°y)! = tsint, so
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o
I
o
~—
[»))
c
(@)
=
m
S 8
[
o 1
= =
< %)
T (@] e AAAEIS A T T N NN SE SN
................ B N N — + m_ Q' @© \.\.xw\\\\ “ IR N,./ N.r/././v
—— ettt e SN A (5 () ammp,,rr?? LR LML NN N N
66666666 B N (@) 1 + PPV YYE SN NN NN SN
A | LY TSR ——— — «~ % R B LN NN U,
|||||||||||||||| I ] L N S (5] N m_&, N B R L NCNCNE N NENPAPARY
Y ] [N > QL N I IR AT NN,
s s ot ot ottt PR W e e e e c W __ y e e P A S L A LN NE N i S
- 2P e (@] n_um. e L A LR LN N N N
B 2 1 L DS, o < (qV] ey © B D I I L NS AL NP,
e /-ﬁuff..u.it-l-l-lrr y 0 + m L ewm o, A2 *. R R L
e B R N e -_— ﬁ © = e AT PR NN
.yt LN NE PP _— - i PR
VAT NN s o g 2 . = 3 e AR e
Z7 o S @ o~ 5 Tgomeee A N .
R N N N NN N —— o = ) > ettt I I L B N
rrrrrrrrrrrrrrrrrrrrr ————— c = N s el I LN NN
et e A e e e e W I 1 c N .\..\\“ ”. R
lllllllllllllllllllllllllllllllllllllll - - TV R e e N ]
e e e eSS S S S e S S S S S S S S e, [ 2= Q B B N R R
(]
B o Q =N N P I e
N +—= || zte M W ) '
m = .
g X zt
0 L
(72 o
5 5
= +
+— ..a Zt
= & I
o Q
n D e
—_ C [e0)
— ...u
T © I
L =
o (@] =
..nh ~
N B =
o = c
— [} [B)
o < ..kIH..
L+ 0 <
3 S 2 i
= O =] © 00

0.

7

1
1+ ¢

dt,

1+¢

1
(arctan t + ¢)/(1 + t/)°. We conclude that y — 0 as t — .

z

L+ + 41 + £y
(1 +6)y)

(b) For t > 0, all solutions seem to eventually converge to the function g(t)

(c) The integrating factor is u(t) = (1 + t®)°. Then

and then y

SO
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5.(a)
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(b) All solutions increase without bound.

(c) The integrating factor is u(t) =

et/?. Therefore, 2et/*y! +
Z

2et/’y =

et/’y = 3tet/?, thus

3tet/” dt = 6tet’”* —12et/* + ¢,

31

and then y = 3t — 6 + ce~t*. We conclude that y is asymptotic to g(t) = 3t = 6 as t — . 10.(a)
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(b) For y > 0, the slopes are all positive, and, therefore, the corresponding solutions increase
without bound. For y < 0 almost all solutions have negative slope and therefore decrease without

bound.

(c) By dividing the equation by t, we see that the integrating factor is u(t) = 1/t. Therefore,
Y/t —y/t? = tPet, thus (y/t)) = t°e~t, s0
Z

Y =
t

fe-tdt = —tet—2tet —2et+ ¢

and then y = —t'e~t — 2t’e—t — 2e~t + ct. We conclude that y — < if c > 0, y — — if

c<O0andy —0ifc=0.
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y

2

2tet dt = 2te’t — 2e°t + cel.

3tet/’ dt = 6t°et/* —24tet/* + 48et/” + c,
Z
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32
7.(a)

5et sin 2t dt = —2et cos 2t + et sin 2t + ¢,
and then y = =2 cos 2t + sin 2t + ce~t. We conclude that y is asymptotic to g(t) = sin 2t —
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Z
y=el

2et’y
3t* 12t +24+ce~t/*. We conclude that y is asymptotic to g(t) = 3t" —12t +24

13. The integrating factor is u(t) = e—t. Therefore, (e~ty)! = 2tet, thus

(b) All solutions increase without bound.
@t)ze'[)aesjgtegrating factor is u(t) = et/?. Therefore, 2et/?)) + et/

and then y
as t — .
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The initial condition y(0) = 1 implies =2 + ¢ = 1. Therefore, c =3 and y = 3et + 2(t — 1)e’.

14. The integrating factor is u(t) = . Therefore, (e’ty)! = t, thus
‘ e
y=e 2t tdt= EéZt +ce— 2,

The initial condition y(1) = 0 implies e—*/2 + ce=*= 0. Therefore, c= =1/2, and y =
(—1)et/2.
15. Dividing the equation by t, we see that the integrating factor is u(t) = t'. Therefore,
(t'y) = —t" + ¢, thus
L_Z
4 3 —
¢4 E-t+)dt=—- + + |
Y 6 5 4 ¢

e
[~

C

The initial condition y(1) = 1/4 implies ¢ = 1/30, and y = (10¢t° — 12¢°+ 15¢* + 2)/60¢".

16. The integrating factor is u(t) = t*. Therefore, (t°y)' = cost, thus
Z

2

y=t" costdt=t’(sint+c).

The initial condition y(r) = 0 implies ¢ = 0 and y = (sint)/t".
17. The integrating factor is u(t) = e~>t. Therefore, (e-*ty)! = 1, thus
Z

y =€t 1dt=et+c)

The initial condition y(0) = 2 implies c = 2 and y = (t + 2)e™.
18, After dividing by ¢, we see that the integrating factor is u(t) = t*. Therefore, (£y) =
’ z
y=t? tsintdt=t(sint—tcost+:c).

The initial condition y(r/2) = 3 implies c= 3(n’/4) -1 and y = t=*(3(n°/4) =1 — tcost +
sint).
19.. After dividing by t°, we see that the integrating factor is u(t) = t*. Therefore, (t'y)! =
te t, thus

Z

y=t" tetdt=t"(-tet—e~t+c).
The initial condition y(-1) =0 impliesc =0and y = =(1 + t)e-i/t".
ggt ﬁﬁt]gr dividing by t, we see that the integrating factor is u(t) = tet. Therefore, (tety)! =

Z
y=t"et tetdt=t"et(tet—et+c)=t"(t—1+ce ).

The initial condition y(In 2) =1 impliesc =2andy = (¢t — 1 + 2e~?)/t.
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The solutions appear to diverge from an oscillatory solution. It appears that ao = =1. For
a > —1, the solutions increase without bound. For a < —1, the solutions decrease without bound.
(b) The integrating factor is u(t) = e-/°. From this, we get the equation yle-t/° —ye-t/°/3 =
(ve—t/°)! = 3e~t/° cost. After integration, y(t) = (27sint — 9cos t)/10 + cet’*, where (using
the initial condition) ¢ = a+9/10. The solution will be sinusoidal as long as ¢ = 0. Therefore,

ao= —-9/10.

(c) y oscillates for a = ao.

22.(a)
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All solutions eventually increase or decrease without bound. The value a. appears to be
approximately ao= -3.

(b) The integrating factor is u(t) = e~t/?. From this, we get the equation yle-t/* —ye-t/?/2 =
(ve~t/*)! = e~1/° /2. After integration, the general solution is y(t) = —3et/° +cet/?. The initial
condition y(0) = a implies y = —=3et/° +(a + 3)et/’. The solution will behave like (a + 3)et/’.

Therefore, ao= -3.
(c) y — — for a = ao.
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Solutions eventually increase or decrease without bound, depending on the initial value ao.lt
appears that a.= -1/8.

(b) Dividing the equation by 3, we see that the integrating factor is u(t) = e=*/°. From this, we
get the equation yle=*t/° — 2ye=?1/°/3 = (ye=*t/°)! = 2e—7t/°7%t/° /3. After integration, the
general solution is y(t) = et°(—(2/3)e—"/*"*/*(1/(m/2 + 2/3)) + c). Using the initial
condition, we get y = ((2 + a(3m + 4))e*/* — 2e-7/°) /(3w + 4). The solution will eventually behave
like (2 + a(3m + 4))e’°/(3m + 4). Therefore, ao= -2/(3m + 4).

(c) y — 0 for a = ao.

24.(a)
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It appears that ao=.4. As t — 0, solutions increase without bound if y > asand decrease without
bound if y < ao.

(b) The integrating factor is u(t) = tet. After multiplication by u, we obtain the equation
tety! + (t + L)ety = (tety)! = 2t, so after integration, we get that the general solution is
y =te~t + cet/t. The initial condition y(1) = a impliesy = te~t + (ea — 1)e~t/t. As t— 0, the
solution will behave like (ea — 1)e—t/t. From this, we see that ao= 1/e.

(c) y—0ast— 0fora = ao.
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It appears that ao= .4. That is, as t — 0, for y(-m/2) > a., solutions will increase without
bound, while solutions will decrease without bound for y(-m/2) < ao.

(b) After dividing by ¢, we see that the integrating factor is u(t) = . After multiplication by u, we
obtain the equation %)) + 2ty = (t°)! = sint, so after integration, we get that the

general solution is y = — cos t/t°+ c/t*. Using the initial condition, we get the solution y = c0s
t4 + ma/at. Since lime—o cos t = 1, solutions will increase without bound if a >
4 /7’ and decrease without bound if a < 4/n”. Therefore, ao= 4/n°.

(c) For ac=4/n",y=(1 - cos t)/t'— 1/2 as t — 0.
26.(a)
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It appears that ao= 2. For y(1) > ao, the solution will increase without bound as t — 0,
while the solution will decrease without bound if y(1) < ao.

(b) After dividing by sin t, we see that the integrating factor is u(t) = sin t. The equation becomes
(sint)y! + (cost)y = (ysint)! = et, and then after integration, we see that the solution is
given by y = (et + c)/ sin t. Applying our initial condition, we see that our

solution is y = (et — e + a sin 1)/ sin t. The solution will increase if 1 — e+ asin1 >0 and
decrease if 1 —e +asinl < 0. Therefore, we conclude that a. = (e — 1)/sin 1.

() If ao=(e—1)sinl, theny = (et —1)/sint. Ast— 0,y — 1.

27. The integrating factor is u(t) = et/*. Therefore, the general solution is y(t) = (4 cos t +
8 sin t)/5 + ce~t. Using our initial condition, we have y(t) = (4 cos t + 8 sin t — 9et/*) /5.
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Differentiating, we obtain

Y0 = (=4 sint + 8 cos t + 45e-t/7)/5
00 = (-4 cos t — 8 sin t — 2.25et/%) /5.

Setting y0 = 0, the first solution is t:=1.3643, which gives the location of the first stationary
point. Since y"(t.) < 0, the first stationary point is a local maximum. The coordinates of
the point are approximately (1.3643, 0.8201).

28. The integrating factor is u(t) = e'/°. The general solution of the differential equation is
y(t) = (57 — 12t)/64 + ce=“t/°. Using the initial condition, we have y(t) = (57 — 12t)/64 +
e="t/*(yo — 57/64). This function is asymptotic to the linear function g(t) = (57 — 12t)/64 as
t — . We will get a maximum value for this function when y0 = 0, if y00 < 0 there. Let us
identify the critical points first: y (t) = —3/16 + 19e~"/° /16 — 4yoe—"1/*yo /3; thus setting y'(t)

= 0, the only solutiop_is t. = ° 57—6 9 upstjtuting into the solution, the
respect?ve \)élue at this cﬁtlcal p r4t ISy?%/S)/; % Pf %4yo)/9) Setting thljg result

equal to zero, we obtain the required initial value yo = (5% 9e'/)/64 =-28.237. We can

check that the second derivative is indeed negative at this point, thus y(t) has a maximum
there and it does not cross the t-axis.

29.(a) The integrating factor is u(t) = e”*. The general solution is y(t) = 12 + (8 cos 2t +
64 sin 2t)/65 + ce—t/*. Applying the initial condition y(0) = 0, we arrive at the specific
solution y(t) = 12 + (8 cos 2t + 64 sir-2t 788e-1/")/65. As-t o, the solution oscillates
about the line y = 12.

(b) To find the value of t for which the solution first intersects the line y = 12, we need to
solve the equation 8 cos 2t +64 sin 2t—788e-t/*= 0. The value of ¢ is approximately 10.0658.
30. The integrating factor is p(t) = e~t. The general solution is y(t) = =1 -3,cos t—3sin t+

cet. In order for the solution to remain finite as t — <, we need ¢ = 0. Therefore, yomust
satisfy yo= -1 - 3/2 = -5/2.

31. The integrating factor is u(t) = e~/ and the general solution of the equation is y(t) =
—2t-4/3 —4et +ce’t*. The initial condition implies y(t) = —2t—4/3 —4et +(yo +16/3)e’/",
The solution will behave like (yo+16/3)e’t”* (for yo  —16/3). For yo> —16/3, the solutions

will increase without bound, while for yo < —16/3, the solutions will decrease without bound.
If yo = =16/3, the solution will decrease without bound as the solution will be —2t—-4/3—4et.

32. By equation (42), we see that the general solution is given by

Zt

y=et eds+ce "
0

Applying L’H pital’s rule,

‘es’/Ads et’/4

limo  =lim___ =0
t—oco  et?/4 t—co (t/2)et”/*

Therefore,y — 0ast — <.
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33. The integrating factor is u(t) = eat. First consider the case a = A. Multiplying the equation
by eat, we have (eaty)! = be‘a™ Pt which implies
z
y= e—at be(af)\)t = eat

e(a—)\)t +c = e—)\t + Ce—at_

a—A>\ a-—-»>\

Since a, A are assumed to be positive, we see that y — 0 as t — . Now if a = A above, then
we have (eaty)! = b, which implies y = e~at(bt + ¢) and similarly y — 0 as t — o,

34. We notice that y(t) = ce~t + 3 approaches 3 ast— «. We just needto find a first order
linear differential equation having that solution. We notice that if y(t) = f +g, theny® +y =
fO+f+g0+g. Here, let f=ce—tand g(t) =3. Then fO + f =0 and g% + g = 3. Therefore, y(t) =
ce—t + 3 satisfies the equation y0 +y = 3. That is, the equation y° + y = 3 has the desired
properties.

35. We notice that y(t) = ce~t+ 4 —t approaches 4 -tast — e just need to find a first

order linear differential equation having that solution. We notice that if y(t) = f + g, then y0
+y=fO0+f+g0+g. Here, letf=cetandg(t)=4-t. ThenfOo+f=0and g°+g =
-1+ 4 -t = 3 —t. Therefore, y(t) = ce~t+ 4 —t satisfies the equation y0 + y =3 —t.

That is, the equation y© + y =3 — t has the desired properties.

36. We notice that y(t) = ce—t + 2t-5 approaches 2t 5ast . -We-just need to find a first-

order linear differential equation having that solution. We notice that if y(t) = f+ g, then y©
+y =f0+f+g9+g. Here, letf=cet andg(t) =2t = 5. ThenfO+f=0 and g° +
g=2+2t—-5= 2t - 3. Therefore, y(t) = ce~t + 2t — 5 satisfies the equation

yO +y =2t — 3. That is, the equation y0 + y = 2t — 3 has the desired properties.

2

37. We notice that y(t) = ce~t + 2 t° approaches 2 # ast .—Weo just need to find a first-

order linear differential equation having that solution. We notice that if y(t) = f + g, then y©
+y=f0+f+g0+g. Here letf=cetandg(t)=2-¢. ThenfO+f=0and g0 +g
=-2t+2-t'=2 -2t - t. Therefore, y(t) = ce~t + 2 — t’satisfies the equation
y0 +y=2-2t -t Thatis, the equation y0 + y = 2 — 2t — ¢’ has the desired properties.
38. Multiplying the equation by ed* ®) we have edt t)y + gedt t)y = eat™t) g(¢), so
(edt™ly)) = eat"t)g(t) and then

Zt

y()= e U 9g(s)ds + e Ul
to
Assuming g(t) — go as t — <o, and using L’'HOpital’s rule,
Ze ‘easg(s)ds evg(t) 40

lim gat Sg(s)ds=1lim_ o =]im

t— o0 to t— oo eat t— oo Cleat a
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For an example, let g(t) =2 + e~t. Assume a = 1. Let us look for a solution of the form
y=ce-at+Ae-t+B. Substituting a function of this form into the differential equation leads to
the equation (A + aA)et +aB =2+ et , thus —A+aA =1and aB = 2. Therefore, A=
1/(a-1),B=2/aandy=ce-at+ e-t/(a— 1) + 2/a. The initial condition y(0) = yoimplies
y@&)=Wo—1/(a—-1)-2/a)e-at+e-t/(a—1)+2/a — 2/a as t — <°.
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R

39.(a) The integrating factor is e P® dt, Multiplying by the integrating factor, we have

R R

e p(t) dtyU +e p(®) dtp(t)y =0.
Therefore,

Rpwdt o
e y =0,
which implies R
y([;) = Ae~ Pp@®adt

is the general solution.

R
(b) Lety =A(t)e- PO Then in order for y to satisfy the desired equation, we need

R R R
Agyes POC—A@p()e PO+ A@R)p()e "ON = g(0).

That is, we need
R

Al(t) = g(t)e WDt

(c) From equation (iv), we see that
Z, .
A(t)=  g(t)e PDdTdr + C.
0

Therefore,
R Zt R

yey=e POL g)e POIdr+C
0

40. Here, p(t) = -6 and g(t) = t°%°.. The general solution is given by
R Z t R Z t

R
y(t) =e- p(t)dt g(r)eR p@)dtdr +C =g 6@ %e6Te —6drdr + C
Zi 0 . 0
— 6t
= e dr+c € e
0 7

41. Here, p(t) = 1/t and g(t) = 3 cos 2t. The general solution is given by
R Z t R Z t

R " R1
y)=e- POU  gr)e POIdT+C =e- % 3cos2re Tdr+C
12t o 13 3 o
- 3rcos2tdr+C COS 2t+  toin2t+C
t 0 t 4 2

42. Here, p(t) = 2/t and g(t) = sint/t. The general solution isZgiven by
_R Zy R R, fsint R2gy
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y)=e po)dt g(De P digr +¢ =ze- dt e dr+C
Z 0

: 1
Tsintdt+C = (sint—tcost+C).
t2 o T t? 0 t?
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43. Here, p(t) = 1/2 and g(t) = 3t’/2. The general solution is g'kven by
_R Zy R R, t3r? Rig

y(t) =e p@) dt g(‘[)e p(r)dr dr +C =e~ Zdt e 2 dt+C
0 2
—e 27 t3,° e/ dr+C =e Y? 3¢et/? - 12toe’-‘/Z +24et/*+ C
_ 2 _
= 3t - 12t+ 24 + Ce— /"

Modeling with First Order Equations

1. Let Q(t) be the quantity of dye in the tank. We know that
dQ

__=ratein _ rate out.
dt

Here, fresh water is flowing in. Therefore, no dye is coming in. The dye is flowing out at the rate
of (Q/150) grams /liters - 3 liters/minute = (Q/50) grams/minute. Therefore,

dQ _ Q

dt 50
The solution of this equation is Q(t) = Ce-t*. Since Q(0) = 450 grams, C = 450. We need
to find the time T when the amount of dye present is 2% of what it is initially. That is, we

need to find the time T when Q(T ) =9 grams. Solving the equation 9 = 450e-7/*, we
conclude that T = 50 In(50) = 195.6 minutes.

2. Let Q(t) be the quantity of salt in the tank. We know that
dQ

dt = rate In — rate out.

Here, water containing y grams/liter of salt is flowing in at a rate of 4 liters/minute. The salt

is flowing out at the rate of (Q,200) grams/liter -4 liters/minute = (Q/50) grams/minute.
Therefore,
dQ Q

a4 " s5p
The solution of this equation is Q(t) = 200y + Ce~t/*. Since Q(0) = 0 grams, C = —200y.
Therefore, Q(t) = 200y(1 — e~/*). As t — <, Q(t) — 200y.

3. Let Q(t) be the guantity of salt in the tank. We know that
dQ

dt =rate In — rate out.

Here, water containing 1/4 Ib/gallon of salt is flowing in at a rate of 4 gallons/minute. The
salt is flowing out at the rate of (Q/160) Ib/gallon 4 gallons/minute = (Q/40) Ib/minute.
Therefore,

dQ Q

i}
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The solution of this equation is Q(¢t) = 40 + Ce—/*. Since Q(0) = 0 grams, C =—40.
Therefore, Q(t) = 40(1—e-t/*) for 0 <t <8 minutes. After 8 minutes, the amount of salt

in the tank is Q(8) = 40(T e~'/°) .25 lbs. Starting at that time (and resetting the time
variable), the new equation for dQ/dt is given by

dQ 3Q

dt~ 80
since fresh water is being added. The solution of this equation is Q(t) = Ce—*t/*. Since we
are now starting with 7.25 Ibs of salt, Q(0) = 7.25 = C. Therefore, Q(t) = 7.25e—"t/*’. After
8 minutes, Q(8) = 7.25e~"/*"= 5,37 Ibs.

4. Let Q(t) be the quantity of salt in the tank. We know that
dQ

__=rate in _ rate out.
dt

Here, water containing 1 Ib/gallon of salt is flowing in at a rate of 3 gallons/minute. The
salt is flowing out at the rate of (Q/(200 + t)) Ib/gallon 2 gallons/minute = 2Q /(200 + t)
Ib/minute. Therefore,

dQ 2Q

@ T 00w

This is a linear equation with integrating factor u(t) = (200 + t)°. The solution of this
equation is Q(t) = 200 + t + C(200 + t)-°. Since Q(0) = 100 lbs, C = 4> 000, 000.
Therefore, Q(t) = 200 + t—(100(200)° /(200 + t)°). Since the tank has a net gain of 1 gallon
of water every minute, the tank will reach its capacity after 300 minutes. When t = 300, we
see that Q(300) = 484 Ibs. Therefore, the concentration of salt when it is on the point of
overflowing is 121 /125 Ibs/gallon. The concentration of salt is given by Q(t),/(200 +t) (since
t gallons of water are added every t minutes). Using the equation for Q above, we see that
if the tank had infinite capacity, the concentration would approach 1 Ib/gal as t — .

5.(a) Let Q(t) be the quantity of salt in the tank. We know that
dQ

__=ratein _ rate out.
dt

=

1

Here, water containing 1+ sint oz/gallon of salt is flowing in at a rate of 2 gal/minute.
4 2

The saltis flowing out at the rate of (Q /100) 0z/gallon 2 gallons/minute = (Q,/50) 0z/minute.
Therefore,
dg 1 1 Q

dt~ 2 4 50"
This is a linear equation with integrating factor u(t) = e/*. The solution of this equationis
Q(t) = (12.5 sin t — 625 cos t + 63150e—t/*) /2501 + c. The initial condition, Q(0) = 50 oz implies
C = 25. Therefore, Q(t) = 25 + (12.55sin t — 625 cos t + 63150e—t/*) /2501 oz.



42 CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS

(b)

50

40
35

30

(c)yThe amount of salt approaches a steady state, which is an oscillation of amplitude
25 2501,/5002 = 0.24995 about a level of 25 oz.

6.(a) Using the Principle of Conservation of Energy, we know that the kinetic energy of a
particle after it has fallen from a height A is equal to its potentiail/ energy at a height ¢.
Therefore, mv’/2 = mgh. Solving this equation for v, we have v = 2gh. N

(b) The volumetric outflow rate is (outflow cross-sectional area) x (outflow velocity): aa 2gh.
The volume of water in the tank at any instant is:

Zh
V (h)= A(u) du
0

where A(u) is the cross-sectional area of the tank at height u. By the chain rule,

dV  dV dh dh
-~ =AM _.
dt dh dt dt
Therefore,
dv _ A(h)@ _p -
2gh.
dt A

(c) The cross-sectional area of the cylinder is A(h) = m(1)*= m. The outflow cross-sectional
area is a = m(.1)* = 0.017. From part (a), we take a = 0.6 for water. Then by part (b), we
have dh
n = _0.006wP2gn.
dt D
This is a separable equation with solution h(t) = 0.000018gt" — 0.006 2gh(0)t + h(0).
Setting h(0) = 3 and g = 9.8, we have h(t) = 0.0001764t’— 0.046t + 3. Then h(t) = 0
implies t = 130.4 seconds.

7.(@) The equation describing the water volume is given by VO = G - 0.0005V. Thus the
equilibrium volume is V. = 2000G. The figure shows some possible sketches for V (t) when
G = 5.
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(b) The differential equation V0 = G- 0.0005V is linear with integrating factor u = e/**, The
general solution we obtain is V (t) = 20006 + ce—/***. If V (0) = 1.01V. = 2020G, then ¢ =
20G, and the solution is ¥V = 2000G + 20Ge~t/**.

(c) From part (a), 12000 = V. = 20006, thus G = 6 gallons per day.

8.(a) The differential equation describing the rate of change of cholesterol is ¢® = r(cac)+k,
where ¢, is the body’s natural cholesterol level. Thus ¢® = rc + rcn, + k; this linear equation
can be solved by using the integrating factor u = et. We obtain that c(t) = k/r + c, + de—t; also,
c(0) = k/r + cn +d, thus the integration constant is d = ¢(0) — k/r — cn. The solution

Is c(t) = cn+ k/r + (c(0) —cn —k/r)e-t. If ¢(0) = 150, r = 0.10, and ¢, = 100, we obtain
that c(t) = 100 + 10k + (50 — 10k)e—%/*°. Then c(10) = 100 + 10k + (50 — 10k)e—".

(b) The limit of c(t) as t — « is cn + k/r =100 + 25/0.1 = 350.

(c) We need that c, + k/r = 180, thus k = 80r = 8.

9.(a) The differential equation for the amount of poison in the keg is given by Q' =5-0.5 —
0.5- Q/500 =5/2 — Q/1000. Then using the initial condition Q(0) = 0 and the integrating

factor u = et/**° we obtain Q(t) = 2500 — 2500e~/**.
(b) To reach the concentration 0.005 g/L, the amount Q(T) = 2500(1 — e7/***) = 2.5 g.
Thus T = 1000 In(1000,/999) = 1 minute.

(c) The estimate is 1 minute, because to pour in 2.5 grams of poison without removing the mixture,
we have to pour in a half liter of the liquid containing the poison. This takes 1 minute.

10.(a) The equation for S is
das
—_—=rS
dt
with an initial condition S(0) = S.. The solution of the equation is S(t) = Sce™. We want

to find the time T such that S(T ) = 2S.. Our equation becomes 25, = See™” . Dividingby
So and applying the logarithmic function to our equation, we have rT = In(2). That is,T =

In(2)/r.
(b) If r =.08, then T = In(2),.08 = 8.66 years.

(c) By part (a), we also know that r =1In(2)/T where T is the doubling time. If we want the
investment to double in T = 8 years, then we need r = In(2)/8 = 8.66%.
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(d) For part (b), we get 72/8 = 9 years. For part (c), we get 72/8 = 9%. In(2) = 0.693, or
69.3 for the percentage calculation. A possible reason for choosing 72 is that it has several
divisors.

11.(a) The equation for S is given by

das
__=rS+k
dt

. : . . : k
This is a linear equation with solution S(t) = ~ (e _1).
r

(b) Using the function in part (a), we need to find kso that S(42) = 1,000, 000 assuming
r = 0.055. That is, we need to solve

1,000, 000 =

0 055(42
(8' (42)

_1).
0.055

The solution of this equation is k = $6061.

(c) Now we assume that k = 4000 and want to find r. Our equation becomes

1,000,000 = 2290 g 1y

r
The solution of this equation is approximately 6.92%.

12.(a) Let S(t) be the balance due on the loan at time t. To determine the maximum amount
the buyer can afford to borrow, we will assume that the buyer will pay $800 per month. Then

as

-7 =0.095 ~ 12(800).

The solution is given by equation (18), S(t) = See”*t — 106, 667(e”*t — 1). If the term of the
mortgage is 20 years, then S(20) = 0. Therefore, 0 = See””*” — 106, 667(e**” — 1) which
implies So = $89, 034.79.

(b) Since the homeowner pays $800 per month for 20 years, he ends up paying a total of
$192, 000 for the house. Since the house loan was $89, 034.79, the rest of the amount was
interest payments. Therefore, the amount of interest was approximately $102, 965.21.

13.(a) Let S(t) be the balance due on the loan at time t. Taking into account that ¢ is
measured in years, we rewrite the monthly payment as 800(1 +t/10) where t is now in years.
The equation for S is given by

ds

- 0.09S - 12(800)(1 + t/10).

This is a linear equation. Its solution is S(t) = 225185.23 + 10666.67t + ce’*t. The initial
condition S(0) = 100, 000 implies ¢ =—125185.23. Therefore, the particular solution isS(t)
= 225185.23 + 10666.67+ 125185.23e"%t. To find when the loan will be paid, we just

need to solve S(t) = 0. Solving this equation, we conclude that the loan will be paid off in
11.28 years (135.36 months).
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0 094

(b) From part (a), we know the general solution is given by S(t) = 225185.23 + 10666.67t + ce -
Now we want to find ¢ such that S(20) = 0. The solution of this equation is ¢ =
—72486.67. Therefore, the solution of the equation will be S(t) = 225185.23+10666.67—
72846.67¢"*. Therefore, S(0) = 225185.23 — 72486.67 = 152, 698.56.

14.(a) If Sois the initial balance, then the balance after one month is
S:= initial balance + interest - monthly payment = So +rSo —k = (1 + r)So — k.

Similarly,
S=S1+rSs—k=0QA+r)S -k

In general,
Sn = (1 + r)Sn—l -k
(b) R =1+ r gives Sn = RSn—1— k. Therefore,

S:1 = RSo—k
S: = RS1—k=R(RSo—k) —k=RSo —(R+ 1)k
Ss = RS: —k=R(R’So —(R+1)k) —k=RSo —(R°+R + 1)k

(c) First we check the base case, n = 1. We see that
S R-1

1= RSo — k =RSo k,

R -1

which implies that that the condition is satisfied for n = 1. Then we assume that

Rn —1
Sn=R"So= R—lk
to show that
sml:R"*lso—Rn Tk
R -1
We see that
Sha1 = RSn —k
Rn _1
S - k k
=RR" o _
R -1
n+1 R+l — R
= R So— R =1 k—k
n+1 Rn+l_R R—l
= R S- R-1 , Rr-1 k
+1
= Rntlc _ R —R+R -1
So R -1

n+1l Rn+l -1
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(d) We are assuming that So = 20, 000 and r = 0.08/12. We need to find k such that S» = 0.
Our equation becomes 48
S _ 48 R - 1
w8=R So — k=0.
R -1
Therefore,
(1+0.08/12)° _1 0.08 #8

k= 1+ . 20, 000,
0.08/12 12

which implies k = 488.26, which is very close to the result in Example 2.

15.(a) The general solution is Q(t) = Qoe—"t. If the half-life is 5730, then Qo/2 = Q ="
implies =5730r = In(1/2). Therefore, r = 1.2097 x 10—* per year.
(b) Therefore, Q(t) = @ e "™,

(c) Given that Q(T) = Q £2, we have the equation 1/2 = e="**"*"*T  Solving for T, we
have T =5, 729.91 years.

16. Let P (t) be the population of mosquitoes at any time t, measured in days. Then

dpP

qa- rP — 30,000.

The solution of this linear equation is P () = Poest **“(ert 4). In the absence of
predators, the equation is dR /dt = rP.. The solution of this equation is P (t) = P e™.

Since the population doubles after 7 days, we see that 2P, = Poe . Therefore, r=In2)/7 =

0.099 per day. Therefore, the population of mosquitoes at any time t is given by P (t) =
800, 000e’*°t — 303, 030(e" ™t — 1).

17.(a) The solution of this separable equation is given by y(t) = exp(2/10+t/10-2 cos t/10). The
doubling-time is found by solving the equation 2 = exp(2/10 + t/10 - 2 cos t/10). The solution
of this equation is given by T = 2.9632.

(b) The differential equation will be dy/dt = y/10 with solution y(t) = y(0)e/*". The doubling
time is found by setting y(t) = 2y(0). In this case, the doubling time is T = 6.9315.
(c) Consider the differential equation dy/dt = (0.5 +sin(2mt))y/5. This equation is separable with

solution y(t) = exp((1 + mt — cos 2mt)/10m). The doubling time is found by setting y(t) = 2.
The solution is given by T = 6.3804.

(d)
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18.(a)

(b) Based on the graph, we estimate that y. = 0.83.

(c) We sketch the graphs below for k = 1/10 and k = 3/10, respectively. Based on these
graphs, we estimate that y.(1/10) = 0.41 and y.(3/10) = 1.24.

(d) From our results from above, we conclude that y. is a linear function of k.

19. Let T (t) be the temperature of the coffee at time ¢. The governing equation is given by

dT

—z = k(T = 70).

This is a linear equation with solution T (t) = 70 + ce—kt. The initial condition T (0) = 200
implies ¢ = 130. Therefore, T (t) = 70 + 130e—*t. Using the fact that T (1) = 190, we see that
190 = 70 + 130e-* which implies k =In(12,/13)=0.08 per minute. To find when the
temperature reaches 150 degrees, we just need to solve T(t) = 70 + 130e"“*/?t= 150. The
solution of this equation is t = In(13/8)/ In(13/12) = 6.07 minutes.

20.(a) The solution of this separable equation is given by

3
3 _ 0
u

Saut + 1

Since uo = 2000, the specific solution is
2000

u®) = G5 T Iy
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(b)

2000
1800
1600
1400
1200
1000

800

600

0 200 400 ¢ 600 800 1000

(c) We look for T so that u(r ) = 600. The solution of this equation is t = 750.77 seconds.
21.(a) The differential equation for Q is

dQ Q(t)
Therefore, de

VE,“ =kr+ P —c(t)r.

The solution of this equation is c(t) = k +P/r +(co kR P7/r)e"t/V . Therefore lim¢— « c(t) =
k+ P/r.

(b) In this case, we will have c(t) = coe~"/V. The reduction times are Ts= In(2)V/r and
Two= In(lO)V/r

(c) Using the results from part (b), we have: Superior, T = 430.85 years; Michigan, T=71.4 years;
Erie, T = 6.05 years; Ontario, T = 17.6 years.

22.(a) Assuming no air resistance, we have dv/dt = —9.8. Therefore, v(t) = 9.8t + vo =
-9.8t+24 and its position at time t is given by s(t) = —4.9¢" +24t+26. When the ball reaches its
max height, the velocity will be zero. We see that v(t) = 0 implies t = 24/9.8 = 2.45 seconds.
When t = 2.45, we see that s(2.45) = 55.4 meters.

(b) Solving s(t) = —4.9¢" + 24t + 26 = 0, we see that t = 5.81 seconds. (c)

Velocity . Position
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23.(a) We have mdv/dt =-v/30 -mg. Given the conditions from problem 22, we see that
the solution is given by v(t) = #3.5 + 97.5e-*"*. The ball will reach its maximum height
when v(t) = 0. This occurs at t = 2.12 seconds. The height of the ball is given

by s(t) = 757.25-73.5t 731.25e-%"°. When t = 2.12 seconds, we have s(2.12) = 50.24
meters, the maximum height.

(b) The ball will hit the ground when s(t) = 0. This occurs when t = 5.57 seconds.
(c)

Velocity Position

40

30

20

24.(a) The equation for the upward motion is mdv/dt =— uv’ -mg where u = 1/1325. Using
the data from exercise 22, and the fact that this equation is separable, we see its solution is given
by v(t) = 56.976 tan(0.399 0.172t). -Setting v(t) = 0, we see the ball will reach its maximum height
at t = 2.32 seconds. Integrating v(t), we see the position attime ¢t is given by s(t) = 331.256
In(cos(0.399 0.172t)) +53.1. Therefore, the maximum height  is given by s(2.32) = 53.1
meters.

(b) The differential equation for the downward motion is mdv,/dt = uv'—mg. The solution
of this equation is given by v(t) = 56.98(% e°**1) /(1 + &"**t). Integrating v(t), we see that
the position is given by s(t) = 56.98t-331.279 In(1 + &"**1) + 282.725. Setting s(t) = 0, we
see that the ball will spend t = 3.38 seconds going downward before hitting the ground.
Combining this time with the amount of time the ball spends going upward, 2.32 seconds, we
conclude that the ball will hit the ground 5.7 seconds after being thrown upward.

(©)

Velocity Position

40

30

20
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25.(a) Measure the positive direction of motion downward. Then the equation of motion is
given by

dv _ -075v+mg O0<t<10

dt  —-12v+mg t > 10.

For the first 10 seconds, the equation becomes dv/dt = —v/7.5 + 32 which has solution

v(t) = 240(1 — et/"). Therefore, v(10) = 176.7 ft/s.

(b) Integrating the velocity function from part (a), we see that the height of the skydiver at
time ¢t (0 < t < 10) is given by s(t) = 240t + 1800e-%"-*-1800. Therefore, s(10) = 1074.5
feet.

(c) After the parachute opens, the equation for v is given by dv/dt =-32v/15 + 32 (as
discussed in part (a)). We will reset t to zero. The solution of this differential equation is given
by v(t) = 15 + 161.7e-"/". As t — «, v(t) — 15. Therefore, the limiting velocity is

v = 15 feet/second.

(d) Integrating the velocity function from part (c), we see that the height of the sky diver after
falling t seconds with his parachute open is given by s(t) = 15t- 75.8e—*#** + 1150.3. To find

how long the skydiver is in the air after the parachute opens, we find T such thats(T ) = 0.
Solving this equation, we have T = 256.6 seconds.

)

Ve/oc’ity

1407
1207
IUUV
807
607

40

26.(a) The equation of motion is given by dv/dx = —puv.
(b) The speed of the sled satisfies In(v/v) = —ux. Therefore, u must satisfy In(16/160) =

—2200u. Therefore, p = In(10)/2200 ft—' = 5.5262 mi—".
(c) The solution of dv/dt = —uv’ can be expressed as 1/v — 1/vo = ut. Using the fact that
1 mi/hour = 1.467 feet/second, the elapsed time is t = 36.64 seconds.

27.(a) Measure the positive direction of motion upward. The equation of motion is given
by mdv/dt =—kv — mg. The solution of this equation is given by v(t) = #g/k +

(vo + mg/k)e—kt/m, Solving v(t) = 0, we see that the mass will reach its maximum height
tm = (m/k) In[(mg+kwo)/mg] seconds after being projected upward. Integrating the velocity
gaﬂgggﬂ, we see that the position of the mass at this time will be given by the position

2
s(t) = -mgt/k + m g+ o (1 = ekt/m),
k k
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Therefore, the maximum height reached is

2
X :s‘(i,“):mvo—gm In gV +kv°.

(b) These formulas for ¢x and x», come from the fact that for § << 1, In(1 +6) =6 -1 +
$6°=L6"+. .., which is just Taylor’s formula.

(c) Consider the result for tm in part (b). Multiplying the equation by ¢, we have

#
tmg lkve 1 kv °

= 1- +
Vo 2mg 3 mg

The units on the left must match the units on the right. Since the units for tmg/ve =
(s:m/s%)/(m/s), the units cancel. As a result, we can conclude that kvo/mg is dimensionless.

28.(a) The equation of motion is given by mdv/dt = —kv —mg. The solution of this equation
is given by v(t) = -mg/k + (vo + mg/k)e—kt/m,
(b) Applying L'Hopital’s rule, as k — 0, we have

lim —mg/k +(vo + mg/k)e—kt/m = yo— gt.

k—0
(c)
lim —mg/k + (vo+ mg/k)e—kt/m = Q.
m—0
29.(a) The equation of motion is given by
dv 4, 4,
m =-6bmuav+ P TAg —-p TAg.
dt 3 3
We can rewrite this equation as
0 + 6mua, = 4ma’g o
m 3, - p).
Multiplying by the integrating factor e’at/m we have
6muat/m 0 4 7T613g 0 6uat/m

(e M3 -pe
Integrating this equation, we have

2 | —
v=e- 6uat/m ZGZg(pU _p) ebmat/m 4 ¢ = 2a ‘g(p P) + Ce—67uat/m
% ou
Therefore, we conclude that the limiting velocity is v = (2a’g(p" — p))/9u.
(b) By the equation above, we see that the force exerted on the droplet of oil is given by
Ee = —6muav + 0~ s 4

ma
P3 g pymag.
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If v = 0, then solving the above equation for e, we have

e = dnd’g(p' = p).
3F

30.(a) The equation is given by mdv/dt = - kv-mg. The solution of this equation is v(t)
= tmg/k)(1 e-kt/m). Integrating, we see that the position function is given by x(t)
= tmg/k)t + (m/k) g(I e-ki/m) + 25. First, by setting x(t) = 0, we see that the ball will
hit the ground t = 2.78 seconds after it is dropped. Then v(2.78) = 14.72 m/second will

be the speed when the mass hits the ground.

(b) In terms of displacement, we have mvdv/dx =-kv + mg. This equation comes from
applying the chain rule: dv/dt = dv/dx -dx/dt = vdv/dx. The solution of this differential
equation is given by ,

mv myg mg—kv

x(v) = - k- ?In mg

Plugging in the given values for k, m, g, we havex(v) = -2v-39.2In|0.051v-1] . Ifv = 8§,
then x(8) = 4.55 meters.

(c) Using the equation for x(v) above, we set x(v) = 25, v =8, m = 0.4, g = 9.8. Then
solving for k, we have k = 0.49.

31.(a) The equation of motion is given by mdv/dt = -GMm/(R + x)’. By the chain rule,
dv dx Mm

modt ijz'

Therefore, dv Mm
myv = -G .
dx (R +x)?

This equation is separable with solygion vZ = 2GM (R + x)-* + 2gR —2GM /R. Here we

have used the initial condition vo = 2gR. from pkysics, we know that g = GM/R 2 Using
this substitution, we conclude that v(x) = "2g R/W N

(b) By part (a), we know that dx/dt = v(x) = 2g R/ R+x. We want to solve this

differential equatio\r) with the initial condition x(0) = 0. This equation is separable with
solution x(t) = [2?—’( 2gRt + ;}23/2)]2/3 — R. We want to find the time T such that x(T ) =
240, 000. Solving this equation, we conclude that T = 50.6 hours.

32.(a) dv/dt = 0 implies v is constant, and so using the initial condition we see that v =
ucosA. dw/dt = —g implies w = —gt+c, but also by the initial condition w = —gt+u sin A.
(b) The equation dx/dt=v = u cos A along with the initial condition implies x(t) = (u
cos A)t. The equation dy/dt = w = —gt + u sin A along with the initial condition implies y(t)
= —gt’/2 + (usin A)t + h.

(c) Below we have plotted the trajectory of the ball in the cases mn/6, m/5, m/4, and m/3,
respectively.
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(d) First, let T be the time it takes for the ball to travel L feet horizontally. Using the equation
for x, we know that x(T') = (u cos A)T =L implies T = L/u cos A. Then, when the ball
reaches this wall, we need the height of the ball to be at least H feet. That is, we need y(T) =
H. Now y(t) = —16t°+ (usin A)t + 3 implies we need

2
- - >
y(T) 16m+LtanA+3_H.

(e) If L =350 and H = 10, then our inequality becomes

1, 960, 000

- >
oo+ 350tan A +32 10,

Now if u = 110, then our inequality turns into
162

- +350tan A4 = 7.
CcOosZ2A

Solving this inequality, we conclude that 0.63 rad < A < 0.96 rad.
(f) We rewrite the inequality in part (e) as

cos’ A(350tan A —7) > 1,960 OOO.

u2
In order to determine the minimum value necessary, we will maximize the function on the
left side. Letting f(A) = cos® A(350tan A — 7), we see that f1(A) = 350 cos 24 + 75sin 2A.
Therefore, f1(A) = 0 implies tan24 = —50. For 0 < A < m/2, we see that this occurs at
A = 0.7954 radians. Substituting this value for A into the inequality above, we conclude that
u’ $426.24. Therefore, the minimum velocity necessary is 106.89 ft/s and the optimal
angle necessary is 0.7954 radians.

33.(a) The initial conditions are v(0) = u cos A and w(0) = u sin A. Therefore, the solutions
of the two equations are v(t) = (u cos A)e—"tand w(t) = —g/r + (u sin A +g/r)e "t

(b) Now x(t) = R v(t) dt = u(cos A)(1 — e~"?), and

y()= w(t)dt= _at +%sina+4 1-e ) +h.

r r r2
(c) Below we have plotted the trajectory of the ball in the cases /6, /5, m/4, and /3,
respectively.



2.3. MODELING WITH FIRST ORDER EQUATIONS 33

(d) Let T be the time it takes the ball to go 350 feet horizontally. Then from above,we
see that e-7/°=1 — 70/u cos A. At the same time, the height of the ball is given by y(T) =
—-160T +(800+5u sin A)70/u cos A+3. Therefore, u and A must satisfy the inequality

7
ucos A ucos A

3 =10.

Using graphical techniques, we identify the minimum velocity necessary is 145.3 ft/s and the
optimal angle necessary is 0.644 radians.

34.(a) Solving equation (i), we have y'(x) = [(k* —)/y]/°. The positive answer is chosen
since y is an increasing function of x.

(b) y = k*sin’t, thus dy/dt = 2k” sin t cos t. Substituting this into the equation in part (a),
we have dt  cost

2k sintcost = )
dx sint
Therefore, 2k’ sin’ tdt = dx.

(c) Letting 8 = 2¢t, we have k*sin*(6/2)d0 = dx. Integrating both sides, we have x(8) =
k*(6—sin 0)/2. Further, using the fact that y = k*sin’t, we conclude that y(6) = k’sin*(6/2) =
k(1 —cos(0))/2.

(d) From part (c), we see that y/x = (1 — cos 8)/(6 —sin 8). If x=1and y = 2, the solution of
the equation is 6 = 1.401. Substituting that value of 6 into either of the equations in part (c),
we conclude that k = 2.193.

Differences between Linear and Nonlinear Equa-
tions

1. Rewriting the equation as

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
O0<t<3
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2. Rewriting the equation as 1
yO + _

(-2

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0<t<4
3. By Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
m/2 <t < 3n/2.
4. Rewriting the equation as

o 2t 3t’

+ =

Y a-pY " 4-p

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
—0 < t < —2.

5. Rewriting the equation as

o 2t 3t’
+ =
Y a-pY " 4-p
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
-2 <t<2.
6. Rewriting the equation as

1 cott
Wt _y=""

Int Int

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
l<t<m.

7. Using the fact that
it

_t-y Jp— -
(2t + 5y)?’

and =
2t + 5y Jy
we see that the hypotheses of Theorem 2.4.2 are satisfied as long as 2t + 5y 6= 0.

8. Using the fact that

y
f=@-t-y)/ and fy:_(l_tz_yz)l/z'

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as "+ y* < 1.
9. Using the fact that
f:M— _ 1-¢+y -2y In|ty|

and =
1 —t2 +y? fy y(1 - 2+ y?)? ’

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as y, t 6= 0 and 1-t*+y’* 6= 0.
10. Using the fact that

f=E+y)7 and fy =3y +y)7,
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we see that the hypotheses of Theorem 2.4.2 are satisfied for all ¢ and y values.
11. Using the fact that

1+¢ 1+ )3 -2y)
f=gy=p2 and f=""Gy-,27

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as y 6=0, 3.

12. Using the fact that
(cott)y 1

[=ey M b aey

we see that the hypotheses of Theorem 2.4.2 are satisfied as long as y = 1, t 6 i for
n=012....

13.(a) We know that the family of solutions given by equation (19) are solutions of this initial-
value problem. We want to determine if one of these passes through the point (1, 1). That is,
we want to find t > 0 such that if y = [ *(&t)]/*; then (¢, y) = (1, 1). That is, we need to

find & > 0 such that 1 = (1 t). But, %the solution of this equation is to =—1/2. Therefore
the solution does not pa3ss through (1, 1).

(b) From the analysis in part (a), we find a solution passing through (2, 1) by solving 1 =
2(2 - to). We obtain to= 1/2, and the solution is y = [ (¢t — 1/2)]/.
(c) Since we need yo= +[ (2 — t)]/%, we must have |yo| <(*)¥/.

3 3

14.(a) First, it is clear that y:1(2) = -1 = y»(2). Further,

L —t+ (4 -e)” -2
yﬂ =—-1= 2 = >

and
0 _t + (t2 _ t2)lﬁ

Y2 = 2 :
The function y: is a solution for ¢t = 2. The function y:is a solution for all t.

(b) Theorem 2.4.2 requires that fand df/dy be continuous in a rectangle about the point
(to, yo) = (2, -1). Since fy is not continuous if t < 2 and y < -1, the hypotheses of Theorem
2.4.2 are not satisfied.

(c) If y =ct + ¢, then

—t+[(t+2c)]/” —t+ (£ +4dct+ 45/
yo =c= > = 5 .

Therefore, y satisfies the equation for t = —2c.

15. The equation is separable, ydy = -4tdt. Integrating both sides, we conclude that
y?/2 = =2t + y%/2 for yo & 0. The solution is defined for y%— 4t = 0.
16. The equation is separable and can be written as dy/y’ = 2tdt. Integrating both sides,

we arrive at the solution y = yo/(1 — yot’). For yo> 0, solutions exist as long as t* < 1/y.
For yo < 0, solutions exist for all t.
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We a‘ﬁl’;g/eegyﬂ%ogomﬁgﬂarable Pd I@—@&—#\’l— teg e ¥xist a astfonlf RIGRENG hathysiges,

yo6= 0, the solution exists for t > —2—1 and if yo=0, y(¢t) =0 for all ¢.

18. The equatlon is separable and can be written as ydy = t dt/(l + t). Integrating both
sides, we arrive at the solution y = +(° Jn |1+ 6] +y 31/Z The sign of the solutlon depends

n_the sign_of the |t|aI dat Solutions, exist as 1+t + that is,
P ygIL + td. Wae can rewrl e%hls mequa?qg asql +|t | >J 59/2 qh order’ or
the solutlon to eX|st, we need t > —1 (since the term £®/(1+¢t°) has a singularity at t = -1).
Therefore, we can conclude that our solution will exist for [ev*v*/2 = 1]/ < t < .

19.

o a ] w———
. —

-

———r e a
— et |
- §

20.

Ifyo=0, theny — 0. If yo< O, then y — —o,
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If yo < y.=—0.019, then y — —. Otherwise, y is asymptoticto t — 1.

23.(a) o(t) = €, thus ¢' = 2¢°t. Therefore, ¢' —2¢p = 0. Since (cp)’ = cg’, we see that
(cp)' — 2cp = 0. Therefore, ce is also a solution.

(b) @(t) = 1/t, thus O = =1/t*. Therefore, @O + ¢°= 0. If y = ¢/t, then y© = —c/t".
Therefore, y0 + y* = —c/t*+ ¢/t = 0 if and only if ¢*—c=0; that is, if c=0or c = 1.
24. If y = ¢ satisfies 9 + p(t)p =0, then y = co satisfies y0 + p(t)y = cpO + cp(t)p =

c(¢' + p(t)p) = 0.
25. Let y = y1 +y2, then y! + p(t)y =y01+y02+ p(&)(y: +y2) =y“l+ p(t)y: + ) * p(t)y= = 0.

26(3) d . 7 .

1 1

U
y= (8)g(s) ds+c = u(s)g(s) ds +
u®) u(t) ¢ u(t)

R
Therefore, y= 1/u(t) anF:j yz'  u(gg(s) ds.
(b) Fory: = 1/u(t) = e~ PO 4t we have

C

R R
Yy +py =-p)e” PO 1 pr)e” PO =,

1 1
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(c) For Z, R Z,q
Y2 = 1 u(s)g(s)ds=e— padt e P dsg(s) ds,
nu'(t) Ly to
we have
) _R Z R R R
y2+p(t)y: = —p(te p(t)dt e P(S)dsg(s) ds +e POdte POt 4(t)
7 tto

R R
+pt)e- PO e POdg(s)ds=g(t).

to
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27. The solution of the initial value problem y0 + 2y = 1isy = 1/2 + ce=’t. For y(0) = 0

we see that ¢ = —1/2. Therefore, y(t) ="(] —e-*)for0< ¢t <1 Theny(l) ='(1, e~ 2)
Next, the soJution of y9+2 0 |s iven -’ The initjal condition y(1 1—
Jutio 1 T e b ¥ =58 )y() (

Implies ce- —2( efor c=

fort > 1.

and we conclude that y(t

28. The solution of y0 + 2y = 0 with y(0) = 1 is given by y(t) = et for& t<1. Then
y(1) = e*2 Then, for t > 1, the solution of the equation y9 +y =0isy = ce—t. Since we want

¥(1)t_ e~’, we need ce~' = e~’. Therefore, c = e~'. Therefore, y(t) = e-'e~t = e~
ort>1.

Rt S) as
29.(a) Multiplying the equation by e P , we have

R tp(s) ds 0 R tp(s) ds
eo Yy =et  g(b).

Integrating this we obtain 7

R tR s
“p(s) ds p(r) dr
e to y(t) =yo+ e to g(s) ds,
t

0

which implies
— _ ot Zt R: p(r)dr
y(t) =y e ‘peds, R g(s)ds.
R
0 to S
to

(b) Assume p(t) = po> 0 for all t = toand |g(t)| = M for all t = to. Therefore,
Zt Z¢
p(s) ds= pods = po(t — to),

to to

0

1 i i R R
which implies SN ds < - P dsz e pt-< 1 fort 2t

to to 0 0 0

Also,
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Z Z 4

t_Rtp@r)dr t Rt p(r)dr t —po(t—s)

e s g(s) ds < e s lg(s)|ds< e Mds

to to to

e DPo(t-s) t 1 e~DPo(t-to) M
<M =M - - <.
po to Po Po Po
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(c) Let p(t) = 2t+1 = 1 for all t= 0 and let g(t) = e~t". Therefore, |g(¢t)| < 1 for all ¢t = 0.
By the answer to part (a),
R, t R Z t
y(t) —e o (2s+l)ds 4 e for+1) dr o -s2 ds =e ) + g -t eSds=et.
0 0

We see that y satisfies the property that y is bounded for all time ¢t = 0.

Autonomous Equations and Population Dynamics

1.(a) The equation is separable. Using partial fractions, it can be written as

1 1/K
T+ dy = rdt.
y 1l-y/K
Integfrating both sides and using the initial condition yo = K/3, we know the solution y
satisfies
In——=rt+In K .
1-y/K 2

To find the time 7 such that y = 2yo= 2K/3, we substitute y = 2K/3 and t = t into the
equation above. Using the properties of logarithmic functions, we conclude that t = (In 4)/r.
If r = 0.025, then T = 55.452 years.

(b) Using the analysis from part (a), we know the general solution satisfies

S A

n 1-y/K

The initial condition yo = aK implies ¢ = In |aK/(1 — a)|. Therefore,
In—Y— =p¢t+In 2K |

| =rt+c

1-y/K 1-«a
In order to find the time T at which y(T ) = BK, we use the equation above. We conclude
that
T=(@1/r)In|p1 - a)/a(l - B)I.
When a =0.1, $ =0.9, r =0.025, T = 175.78 years.
2.(a) Below we sketch the graph of fforr =1 =K.

r=1, K=1
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The critical points occur at y* =0, K. Since f(0) > 0, y* = 0 is unstable. Since fI(K) < 0,
y* = K is asymptotically stable.
(b) We calculate y". Using the chain rule, we see that

K
yW=ryl In — —=1.
y

We see that y00 = 0 when y0 = 0 (meaning y = 0, K) or when In(K/y) — 1 = 0, meaning

y = K/e. Looking at the sign of y00 in the intervals 0 <y < K/eand K/e <y < K, we
conclude that y is concave up in the interval 0 <y < K/e and concave down in the interval
K/e <y < K.

3.(a) Using the substitution u = In(y/K) and differentiating both sides with respect to ¢,

we conclude that u' = y!/y. Substitution into the Gompertz equation yields u' = —ru. The
solution of this equation is u = uoe—"t. Therefore,

%z exp[In(yo/K)e~t].

(b) For K = 80.5 x 10° yo/K = 0.25 and r = 0.71, we conclude that y(2) = 57.58 x 10°.
(c) Solving the equation in part (a) for ¢, we see that

_ _1,,In(/K)
o In(bo/K)

Plugging in the given values, we conclude that T = 2.21 years.
4.(a) The surface area of the cone is given by

. P ma’h 3 P
S =mgaq h?+ad?+ma® = ma¥( (h/a)2+1+1):T-; (h/a>+1+1
21 2/3 2/3 2/3
mwa‘h 3a 3a 5
_ e ) - /3
- 3 h T h 4

Therefore, if the rate of evaporation is proportional to the surface area, then rate out =
am(3a/mh)*°V ?/°. Thus

2/3 3a %3

av 2/3
av 3_61 i Clzh =k —am =108 174 2/3_
Th

dt =ratein —rateout=k —amr 7h 3

(b) The equilibrium volume can be found by setting dV/dt = 0. We see that the equilibrium
volume is
_k**mh

V=
am 3a

To find the equilibrium height, we use the fact that the height and radius of the conical
pond maintain a constant ratio. Therefore, if he, ae represent the equilibrium values for the
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h and a, we must have he/a. = h/a. Further, we notice that the equilibrium volume can be

written as Vi
V 3 _l( B 1/2 —azhz’

3 am an a 3ee

where he = (k/am)'/*(h/a) and a. = (kamn)'/*. A(V) = —2an(3a/mh)*/°V-'/° < 0, thus
the equilibrium is asymptotically stable.

(c) In order to guarantee that the pond does not overflow, we need the rate of water in to
be less than or equal to the rate of water out. Therefore, we need k — ama® < 0.

5.(a) The rate of increase of the volume is given by

AV o aa 20n
dt —aa 2gh.

Since the cross-section is constant, dV/dt = Adh/dt. Therefore,

@:(kp

2gh)/A.

- aa
dt

(b) Setting dh/dt = 0, we conclude that the equilibrium height of water is

T
©" 29 aa

Since f(h.) < 0, the equilibrium height is stable.

6.(@) The equilibrium points are y* = 0, 1. Since f(0) = a > 0, the equilibrium solution
y* = 0 is unstable. Since f1(1) = —a < 0, the equilibrium solution y* = 1 is asymptotically
stable.

(b) The equation is separable. The solution is given by

_ Vo Vo
y(®) =" B = -
e~ =ype~d+yo  e-at4 (1 — e~at)

We see that lime—« y(t) = 1.

7.(a) The solution of the separable equation is y(t) = y.e—At.
(b) Using the result from part (a), we see that dx/dt = —axy.e—Pt. This equation is separable
with solution x(t) = xeexp[—ay.(1 — e=Ft)/B].
(c) Ast — =,y — 0 and x — xo exp(—ayo/f).
8.(a) Letting 0 = d/dt, we have
I nX—xn' —Bnx-—unx+vpx’+unx X x 2 2

z = 2 = 2 = _’Bn +vp n - —pz+vBz = —fz(1-vz).

(b) First, we rewrite the equation as z0 + Bz = Svz’. This is a Bernoulli equation with
n=2. Letw =z"n=z" Then, our equation can be written as w® — Bw = —Bv. This
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is a linear equation with solution w =v + ceft. Then, using the fact that z = 1/w, we see that
z =1/(v + ceft). Finally, the initial condition z(0) = 1 implies ¢ =1 —v. Therefore, z(t) = 1/(v
+ (1 —v)eht).

(c) Evaluating z(20) for v = 8 = 1/8, we conclude that z(20) = 0.0927.

9.(a) Since the critical points are x* = p,q, we will look at their stability. Since f(x) =
ag  ap+2ax’, we see that £1(p) = a(2p® 1 —p) and £(q) = a(2¢° —g —p). Now if p > q,
then —p < —q, and, therefore, £1(q) = a(2¢*> —q —p) < a(2¢®> — 2q) = 2aq(q — 1) < 0 since
0 < q < 1. Therefore, if p > q, f9(q) < 0, and, therefore, x* = ¢ is asymptotically stable.
Similarly, if p < g, then x* = p is asymptotically stable, and therefore, we can conclude that
x(tyminp,fgasit . — 0

The equation is separable. It can be solved by using partial fractions as follows. We can
rewrite the equation as

1/(q —p) + 1/(p—q)

dx = adt,
p—X q —Xx
which implies —x
InL_:(p - q)at + C.
q
The initial condition xo = 0 implies C*= In |p/q|, and, therefore,

Applying the exponential function zfﬂ_é)simplifying, we conclude that

x(t) = pq(eP-9 —1)
pelp—dat — g

(b) In this case, x* = p is the only critical point. Since f (x) = a(p — x)* is concave up, we
conclude that x* = p is semistable. Further, if xo = 0, we can conclude that x —p ast —
., The phase line is shown below.

| | o

p

This equation is separable. Its solution is given by

‘at
x®)=_"

pat + 1

10.(a) The critical points occur when a —y* = 0. If a < 0, there arg no critical points. If

a = 0, then y* = 0 is the only critical point. If a > 0, then y* = £ @ are the two critical
points. 0 0

N :
(b) We note that f (v) = —2y. Therefore, £,( a) < 0 which implies that & IS asymptoti-
cally stable; £/(— a) > 0 which implies — a is unstable; the behavior of £ around y* =0

implies that y* = 0 is semistable. The phase lines are shown below.
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a>0

a=-1

11.(a) First, for a < 0, the only critical point is y* = 0. Second, for a = 0, the only critical point

is y* = 0. Third, for a > 0, the critical points are at y* = 0, aXHere, A(Y) =a 3J*TIf a
< 0, then fA(y) < 0 for all y, and, therefore, y* = 0 will be asymptotically stable. Ifa =
0, then f1(0) = 0. From the behavior on either side of y* = 0, we see that y* = 0 will be
asymptotically stable,\/ If a >0, then f1((0)=a >0 Whicu/implies that y* = 0 is unstable for
a > 0. Further, /AC & = 2ad < 0. Therefore, y* = aiaré asymptotically stable for

a > 0. The phase lines are shown below.

a<0 a=0 a>0
— - - > - - -t -
0 0 ~a 0 +Va

(b) Below, we graph solutions in the case a = -1, a =0, and a = 1, respectively.

a=1

a=-1 a=0
\ - /
0 -2 -1 0 1 2

r

-2 -1
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(©)

12.(a) For a < 0, the critical points are y* =0, a. Since f'(y) =a -2y, f'(0)=a <0and f
'(a) = =u > 0. Therefore, y* = 0 is asymptotically stable and y* = a is unstable for a < 0.

For a = 0, the only critical point is y* = 0. which is semistable since f () =3/ is concave
down. For a > 0, the critical points are y* =0, a. Since f!(0) =a > 0and f'(a) = —a <0,
the critical point y* = 0 is unstable while the critical point y* =a is asymptotically stablefor
a > 0. The phase lines are shown below.

(b) Below, we graph solutions in the case a = -1, a = 0, and a = 1, respectively.

a=-1 a=0 a=1
\\2

I

-1 Ll 0 0.5 1 -1 i 0 0.5 1
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(©)

CHAPTER 2.

FIRST ORDER DIFFERENTIAL EQUATIONS

Exact Equations and Integrating Factors

1.(a) Here M(x,y) = 2x + 3 and N(x,y) = 2y — 2. Since My = Nx = 0, the equation is

exact.

(b) Since Yx= M = 2x + 3, to solve for Y, we integrate M with respect to x. We conclude
that y = x* + 3x + h(y). Then ¥, = hi(y) = N = 2y — 2 implies h(y) = y* — 2y. Therefore,
Ylx, y)=x"+3x +y'— 2y =c.

(©

2.(a) Here M(x,y) = 2x + 4y and’N. x _y} =2x— Zy:--iSi__ri‘g\e My = Ny, the equation is not

exact. R
3.(a) Here M(x.y) = 3x' - 2xy + 2/and N (x y) = 2—)?@+ 3. Since My = ~2x = Ny, the
equatlon IS exact. -

(b) Since Yx=

’_/“ -

conclude that i = x> —x°y + 2x
h'(y) = 6y” + 3. Therefore, h(y) = = .gy\\+3x and l/{,X,y‘) 7x — X’y + 2x +2y°+3y=c.

M = 3x - 2xy +fﬂto solve for 1, Yile mtegrate MWlth respect to x. We

Then ¢y = + hi(y) = N = 6y —x* + 3 implies

\ N\
\

~

N S/
-+ ‘_/'/ / ;
-/
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(©)

4.(a) Here M (x, y) = 2xy°+ 2y and N (x, y) = 2xX’y + 2x. Since My = 4xy + 2 = Ny, the
equation is exact.

(b) Since = M = 2xy° + 2y, to solve for 1, we integrate M with respect to x. We conclude
that = x’y*+2xy + h(y). Then y, = 2x°y +2x+ hi(y) = N = 2x°y + 2x implies h!(y) = 0.
Therefore, h(y) = c and ¥ (x,y) = x°y* + 2xy = c.

(c)

N

5.(a) Here M (x, y) = 4x + 2y and N (x, y) = 2x + 3y. Since My = 2 = Ny, the equation is
exact.

(b) Since Y= M = 4x + 2y, to solve for ¥, we integrate M with respect to x. We conclude that
Y = 2x° + 2xy + h(y). Then ¢, = 2x + h!(y) = N = 2x + 3y implies h'(y) = 3y.
Therefore, h(y) = 3y°/2 and (x, y) = 2x°+ 2xy + 3y’ /2 = k.
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(©)

6.(a) Here M = 4x — 2y and N = 2x — 3y. Since My = -2 and Ny = 2, the equation is not
exact.

7.(a) Here M (x,y) = exsiny—2y sinx and N(x, y) = excosy +2 cosx. Since My = eX coSy—
sin x = Ny, the equation is exact.

(b) Since Y= M = exsin y — 2y sin x, to solve for y, we integrate M with respect to x. We
conclude that ¢ = exsiny + 2y cosx + h(y). Then ¥, = excosy + 2cosx + hi(y) = N =
excosy + 2cos x implies hl'(y) = 0. Therefore, h(y) = c and ¥(x,y) = exsiny + 2y cosx = c.
(c)

8.(a) Here M = exsiny + 3y and N——sxsb—e-—sm%lheﬁefore My =excosy + 3and
Ny= =3 + ex sin y. Since My 6= Ny, therefore, the equatlon IS not exact.

9.(a) Here M(x, y) = yex cos 2x — 2 sin 2x + 2x and :N(x, y) = xexw cos 2x — 3. Since
My = eX¥ COS 2x + xye*V C0S 2x — 2xey sin 2x/— Nx, theequanon is exact.

(b) Since Yx= M = yexv cos 2x— 2e5iN 2% +2x 't solve for Y, we integrate M with respect
to x. We conclude that iy = e cos2x + x° + h(y). Then 1, = xe* cos2x + hi(y) = N =

xexy cos 2x —3 implies h'(y) = —3. Therefore, h(y) = —3y and (x, y) = e*¥ cos 2x+x° —3y =
C.
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(©)

10.(a) Here M (x, y) = y/x + 6xand N (x, y) = In x— 2. Since My = 1/x = Ny, the equation
IS exact.

(b) Since Yx= M = y/x + 6x, to solve for ¥, we integrate M with respect to x. We conclude
that y = yInx + 3x* + h(y). Then ¢y = Inx + h'(y) = N = Inx — 2 implies h'(y) = —2.
Therefore, h(y) = =2y and Y(x,y) =yInx+3x* -2y = c.

(©)

11.(a) Here M (x, y) =xIny +xy and N (x, y) =y In x + xy. Since My = x/y + x and

Nx =y/x +y, we conclude that the equation is not exact.

12.(a) Here M (x, y) = x/(x*+ y*)*and N (x, y) = y/(x’ + y°)*/°. Since My = Ny, the
equation is exact.

(b) Since Y= M = x/(x* + y°)°/*, to solve for iy, we integrate M with respect to x. We
conclude that y =  1Ax* +y°)/? + h(y). Then ¢y, = y/(x* + )2 +hl(y) = N =
y/(x* + y*)*/% implies h'(y) = 0. Therefore, h(y) =0and P(x, y) = (x> +y*)/* =corx’
+y’=k.
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(c)

13. Here M (x, y) = 2% y and N (x, y) = 2% x. Therefore, My = N, = -1 which
implies that the equation is exact. Integrating M with respect to x, we conclude that i = x*
—xy + h(y) Then ¢y = —x+ hi(y) = N = 2y — x implies h'(y) = 2y. Therefore,

and we cgnclude that = x> —xy +y® = c. The initial condition y({) = 3 |mglles
%m%foﬁ‘efﬁé%ldﬁon W vValld for' 359V fof JfoﬁNELCEf‘C'Ude that y (x+ 28 —3x2)/2.

28/3 < x< 28/3.

14. Here M (x, y) = 9x* + > 1and N (x, y) =4y + x. Therefore, My = Ny = 1 which

implies that the equation is exact. Integrating M with respect to x, we conclude that y =
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3x° +xy —x+ h(y). Then ¢, = x+ hi(y) = N = —4y + x implies h!(y) = —4y.

Therefore, h(y) = —2y*and we conclude that 1 = 3x°+ xy — x — 2y = c. The initial
condition y(l) = 0 implies ¢ = 2. Therefore, 3x’+ xy — x — 2y°= 2. Solving for y, we

conclude that y = (x — (24x° + x° — 8x — 16)1/2)/4 The solution is valid for x > 0.9846.

15. Here M (x,y) =xy*+ bx’y and N (x,y) =X’ + x’y. Therefore, My = 2xy + bx’ and Ny
= 3x” + 2xy. In order for the equation to be exact, we need b = 3. Taking this value for b,
we integrating M with respect to x. We conclude that i = x*y°/2 + X’y + h(y).

Then ¥y = X°y +x° + hi(y) = N = x° + x°y implies h'(y) = 0. Therefore, h(y) = ¢ and
Y(xy) = Xy’ /2 + X’y = c. That is, the solution is given implicitly as x’y* + 2x’y = k.
16. Here M (x,y) =ye™¥ + x and N (x, y) = bxe™v. Then My = e>¥ + 2xye™v andNx
= be™¥ + 2bxye™v. The equation will be exact as long as b = 1. Integrating M with respect
to x, we conclude that i = e°xv/2+x°/2+h(y). Theny, = xe*¥+h!(y) = N = xe*v

implies h'(y) = 0. Therefore, h(y) = 0 and we conclude that the solution is given implicitly
by the equation ¥ + x* = c.

17. We notice that ¥ (x, y) = f(x) + g(y). Therefore, ¥x = f(x) and ¥, = g'(y). That is,
Yx= M (x, yo), and 1y = N (xo, y). Furthermore, 1y = My and Yy = Nx. Based on the
hypothesis, Y.y = Pyx and My = Nx.

18. We notice that (M (x))y = 0 = (N ())x. Therefore, the equation is exact.

19.(a) Here M (x, y) = x’y’and N (x, y) = x + xy°. Therefore, My = 3x*y*and Nx=1 + y*. We
see that the equation is not exact. Now, multiplying the equation by u(x, y) = 1/xy°, the
equation becomes xdx + (1 +y°)/y’dy = 0. Now we see that for this equation M =xand N
= (1 +y")/y’. Therefore, My = 0 = Nj.
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(b) Integrating M with respect to x, we see that ¢ = x°/2 + h(y). Further, ¥, = hi(y) =

=1 +y)y'= 1/y + 1/y. Therefore, h(y) = —1/22y + In y and we conclude that the
solutlon of the equation is given |mpI|C|tIy by X -1/"+2Iny =candy =0.

(©)

20.(a) We see that My = (y cos y — sin y)/y* while Ny = 2e—xsin x — 2e-*cos x. Therefore, M,
6= Nx. However, multiplying the equation by u(x, y) = ye*, the equation becomes (ex sin
y —2ysinx)dx + (excosy + 2 cosx)dy = 0. Now we see that for this equation M =
exsiny — 2y sinx and N = excos y + 2 cos x. Therefore, My = excosy — 2 Sin x = Ny.

(b) Integrating M with respect to x, we see that ip = eX sin y + 2y cos x + h(y). Further, ¢, =
excosy +2cosx + h'(y) = N = excosy + 2cos x. Therefore, h(y) = 0 and we conclude that
the solution of the equation is given implicitly by exsiny + 2y cos x = c.

(©)

21.(a) We see that My = 1 while Nx= 2. Therefore, M, 6= N.. However, multiplying the
equation by u(x, y) = y, the equation becomes y’dx + (2xy—y’e¥)dy = 0. Now we see that
for this equation M = y* and N = 2xy — y’ev. Therefore, My = 2y = Nx.

(b) Integrating M with respect to x, we see that ¢ = xy* +h(y). Further, , = 2xy +hi(y) =

= 2xy —y°ev. Therefore, h'(y) = —y”ev which implies that h(y) = —ey(y — 2y + 2), and
We conclude that the solution of the equation is given implicitly by xy° —ev(y* =2y +2) = c.
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(©)

22.(a) We see that My = (x + 2) cos y while Nx = cos y. Therefore, My Nx. However,
multiplying the equation by u(x, y) = xeX, the equation becomes (x* + 2x)e* sin ydx +

x’ex cos ydy = 0. Now we see that for this equatlon My = (x* + 2x)ex cos y = Nx.

(b) Integrating M W|th respect to x, we see that 1 = x’exsin y + h(y). Further, ), = x’ex cos y
+ h'(y) = N = x°ex cos y. Therefore, h'(y) = 0 which implies that the solution of the
equation is given implicitly by x’ex siny = c.

(©)

23. Suppose u is an integrating factor -4 quation exact. Then multiplying the
equation by u, we have uMdx + uNdy = 0 Then We neegt (,uM )y = (uN)x. That is, we need
UyM +uMy = uxN +uNy. Then we rewrite the eQUatlon as' «H(Nx —My) = uyM —puxN . Suppose u
does not depend on x. Then px = 0. Therefore, w(Na===Mg) = uyM . Using the
assumption that (Nx — My)/M = Q(y), we can find-angintegrating factor 4 by choosing u
which satisfies uy/pu= Q. We conclude that u(y) = exp Q(y) dy is an integrating factor of
the differential equation.

24. Suppose u is an integrating factor which will make the equation exact. Then multiplying
the equation by u, we have uMdx + uNdy = 0. Then we need (uM)y = (uN)x. That is, we need
UyM +uMy = uxN +uNy. Then we rewrite the equation as u(Nx—My) = uyM—pux N . By the
given assumption, we need p to satisfy uR(xM yN )= uyM p.N . This equation is satisfied if uy =
(ux)R and px = (uy)R. Consider u = u(xy). Then pux = ply and py = ulx
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where ! = d/dz for z = xy. Therefoke, we need to choose u to satisfy u' = uR. This equation

is separable with solution u = exp( R(z) dz).
25.(a) Since (My Ny)/N = 3 is a function of x only, we know that u = e« is an integrating

factor for this equation. Multiplying the equation by yu, we have

eX(38x’y + 2xy +y’)dx + e™x(x’ + y°)dy = 0.

Then M, = e>(3x*+ 2x + 3y°) = Ny. Therefore, this new equation is exact. Integrating M
with respect to x, we conclude that i = (X’y + y°/3)e’ + h(y). Then iy = (xX* + y")e™ + hi(y)
= N = &x(x* + y°). Therefore, h'(y) = 0 and we conclude that the solution is given

implicitly by (3x’y + y*)e’* = c.
(b)

26.(a) Since (My Nx)/N = 1 13 a function of x only, we know that u = e is an
integrating factor for this equation. Multiplying the equation by u, we have

(ex—ex—yeX)dx +exdy =0.

Then My = e=* = Nx. Therefore, this new equation is exact. Integrating M with respect to x,
we conclude that y = e> e+ ye* + h(y). Thenyy =ex+ hi(y) = N = ex
Therefore, h'(y) = 0 and we conclude that the solution is given implicitly by —-ex —ex +

ye X =rc.

(b)
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R
27.(a) Since (Nx — My)/M = 1/y is a function of y only, we know that u(y) =e v dv =y

is an integrating factor for this equation. Multiplying the equation by u, we have

ydx + (x —ysiny)dy =0.
Then for this equation, My = 1 = Nx. Therefore, this new equation is exact. Integrating M

with respect to x, we conclude that ¢y = xy + h(y). Then ¢, =x+ hl(y) = N = x —ysiny.

Therefore, h'(y) = —y siny which implies that h(y) = —siny +y cosy, and we conclude that
the solution is given implicitly by xy —siny + y cosy =c.

(b)

28.(a) Since (N — M )/M = (2y= 1)/y is afunction of y only, we know that u(y) =
e’ "/ydy = % /y isy an integrating factor for this equation. Multiplying the equation by p,

e’vdx + (2xe’v — 1/y)dy= 0.
Then for this equation, My = Nx. Therefore, this new equation is exact. Integrating M with

respect to x, we conclude that ¢ = xe® + h(y). Then i, = 2xe*¥ + hi(y) = N = 2xe’v — 1/y

Therefore, hi(y) = —1/y which implies that h(y) = — In y, and we conclude that the solution
is given implicitly by xe” —Iny = c ory = e’x + cex + 1.

R
29.(a) Since (Nx — My)/M = cot y is a function of y only, we know that u(y) = e v dv =
siny is an integrating factor for this equation. Multiplying the equation by u, we have

exsin ydx + (excos y + 2y)dy = 0.
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Then for this equation, My = Nx. Therefore, this new equation is exact. Integrating M

with respect to x, we conclude that i) = exsiny + h(y). Then l/)y =excosy + hi(y) =

ex cos y + 2y. Therefore, h'(y) = 2y WhICh implies that h(y) = y°, and we conclude that the
solution is given implicitly by exsiny +y°= c.

(b)

R
30. Since (Nx My)/M = 2/y is a function of y only, we know that u(y) =e v d =y is

an integrating factor for this equation. Multiplying the equation by u, we have
(4x° + 3y)dx + (3x + 4y )dy = 0.
Then for this equation, My = Nx. Therefore, this new equation is exact. Integrating M with

respect to x, we conclude that ¢ = x* +3xy + h(y). Then ¢y, = 3x+ h'(y) = N = 3x + 4y°.

Therefore, h'(y) = 4y® which implies that h(y) = y*, and we conclude that the solution is
given implicitly by x*+ 3xy + y'=c.
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31. Since (N— M )/(xMz= yN )= 1/xy is a function of xy only, we know that u(xy) =
e '/ dy = xy is an integrating factor for this equation. Multiplying the equation by u, we
have

(3x’y + 6x)dx + (x*+ 3y*)dy = 0.
Then for this equation, My = N. Therefore, this new equation is exact. Integrating M with
respect to x, we conclude that 1 = x°y + 3x” + h(y). Then y, =x° + h'(y) = N = x° + 3)°.

Therefore, hi(y) = 3y which |mPI|es that h(y) = y°, and we conclude that the solution is
given implicitly by x’y + 3x*+ y° = c.
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(b)

32. Using the integrating factor u = [xy(2x + y)]~", this equation can be rewritten as

2 2 1 1

+ dx +  + dy =0
X 2x+yX y 2x+yy

Integrating M with respect to x, we see that p = 2 In x +|In| 2x +|y + h(]y). Then ¥y = (2x +

Y1+ hy) = N = (2x +y)" + 1/y. Therefore, h'(y) = 1/y which implies that h(y)
=Iny . Thler|efore, Y =2 Inx + In 2|x|+ y +| In y =|c. Ap|pllying the exponential
function, we conclude that the solution is given implicitly be 2x’y + x’y* = c.

Substitution Methods

1.(a) f(x, y) = (x+ 1)/y, thus f(Ax, Ay) = (Ax + 1)/Ay = (x + 1)/y. The equation is not
homogeneous.

2.(a) fixy) = (x" +1)/(/" +1), thus dx, Ay) = A'X" +1)/(Ay* +1) = (x* +1)/(y* +1).
The equation is not homogeneous.

3.(a) flx, y) = (3x°y + y°)/(3x’ — xy°) satisfies f{Ax, Ay) = f(x, y). The equation is homo-
geneous.

(b) The equation is y° = (3x’y +y°)/(3x’ — xy*) = (B(y/x) + (v/x)°)/(3 = (v/x)°). Let
y = ux. Then y! =Zu°x + u, thus u'x = (3u + u®)/(3 —%Z) —u =2u’/(3 —u®). We obtain

3-u’ 3-, 1 1

2u3 du=—4u —2|n|u|= de=|n|x|+c.

Therefore, the solution is given implicitly by —(3/4)x*/y*— (1/2) Inly/% = In|x|+ c. Also,
u = 0 solves the equation, thus y = 0 is a solution as well.
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(©)

4.a) f(x,y) =y(y +1)/x(x—1), thus f(Ax, Ay) = Ay(Ay +1) /Ax(Ax+1) By (y +1)/x(x—1).
The equation is Bot homogeneous.

5.8) f(x,y) = (" x*—=y*+y)/x satisfies f{Ax, Ay) = f(x, ). The equation is homogeneous.
. p__ P
(b) The equation is y' </ (" x> —y? +y)/x/= 1—(/x)? +y/x. Lety = ux. Then
VW=ux+u thusux= 1—uv2+u—u= 1—u? We obtain
Z 1 . 1
\ du=arcsinu= “dx=In|x|+c
1 -u? b

Therefore, the solution is given implicitly by arcsin(y/x) = In |x|+c, thus y = x sin(In |x|+c).
Also, y = x and y = —x are solutions.

(©

6.(a) f(x, y) = (x +y)’/xy satisfies f(Ax, Ay) = f(x, y). The equation is homogeneous.

(b) The equation is y! = (x* +2xy +y°)/xy = x/y+2+y/x. Lety = ux. Then y! = ulx+u,
thusux=1/u+2+u—u=L1u+2=(1+2u)/u. V%e obtain
Z

1
U _gu=%-=n |1+ 2u| = ldx=|n |x|] +c.

1+2u 2 4 X

Therefore, the solution is given implicitly by y/2x = (1/4) In |1 + 2y/x| = In |x|+ c. Also,
Yy = —x/2 is a solution.
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(©)

7.(a) flxy) =(4y—7x)/(5x-y) satisfies f(Ax, Ay) = fix, y). The equation ishomogeneous.

b) The equation is y° = (4y = 7x)/(bx — y) = x — 7)/(5 — y/x). Lety = ux. Then
}(10 )= u'x +qu, thus uo)?‘iIZ (451)i 7/( /—(u) —%1])2 (lggfy—/u — 73725 - 1{ ?Ne Obt%}in
Z Y

- 9 29 - — 29+9 29 - v o
#du: 29-29 In|1+ 29-2u|- In|=1+ 29+ 2u| = In|x|+c
uz-u-17 58 58 J

The solution is given implicitly by substituting back u = y/x. Also, y = x(1 + 29)/2 are
solutions.
(c)

P
8.) f(x y)= (4 y?-x2+y)/x satisfies f (Ax, Ay) = f(x, y). The equation is homoge-
neous. P P

(b) The equation is y! = {4 y?> —x*>+y)/x g4 (v/x)? —1+y/x. Lety = ux. Then
Yy =ulx +u, thLE uUx=4 w2 —-1+u—u=4 u?-1. XVe obtain
1 1 1
N du="Inlu+ wr—i|= “dx=Inlx|+c

4 w-1 4 X

- - - - - - p— 4
Therefore, the solution is given implicitly by In |y/x+ (y/x)?- 1] =Inx +c. Also, y = x
and y = —x are solutions.
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(©)

9.3) fx,y) = (V' + 2x)2 3x°y=2x°y)/(2x"y’=2x’y 2x") satisfies f(Ax, Ay) = f(x, ).
The equation is homogeneous.
(b) The equation is y0 = (' + 2xy° — 3x°y° — 2xX°y)/(2x°y° — 2x°y — 2x") = ((v/x)* + 2(y/x)’
—3(y/x)* — 2(y/%))/(2(y/x)* — 2(y/x) — 2). Lety = ux. Then ! = u'x + u, thus u'x = (u*
+2u® —3u® — 22)/2(22;12 —2u—2)—u=wW —u’)/(2u* —2u —2). We obtain

u

-2u-2 2
2

= - + - - = + C.
e du=-— *2Inul-In|l-u|=Inlx|+c

The solution is given implicitly by In |1 —y°/x°| + 2x/y +In| 4 =c. Also,y =x,y = —x
and y = 0 are solutions.

(©)

10.(a) flx,y) =(y+xex/v) /yex/v satisfies f(Ax, Ay) = fix,y). The equation is homogeneous.
(b) The equation is dx/dy = (y +xeX/¥)/yex’/y = ex/¥y +x/y. Let x = uy. Then x! = uly +u,
thus uQy = e-v + u — u = e~ We obtain

Z Z 1

etdu=ev= “dy=Inll+c
y

Therefore, the solution is given by x/y = In(Iny| + ¢),i.e. x =y In(In y| + ¢). Also,y =0
is a solution.
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(©)

11. The equation is homogeneous. Let y = ux; we obtain y' = ulx +u = 1/u + u,

thus udu = (1/x)dx and we obtain (y/x)’ = u’ = 2(In x + ¢). The initja) condition_gives
1/4=2(In2 + ¢),thusc =1/8 — In 2 and the solutionisy =x 2Inx+1/4-In4. The

solution exists on the interval (2e—"/°, ).
12. The equation is homogeneous. Let y = ux; we obtain y' = u'x +u = (1 +u)/(1 — u),
i.e. ux = (1+u”)/(1 —u). Integration gives
z,_ 1 . %1
=—U du=arctanu—-"In(1+u)= Tdx=In|x| +c

1+u? 2 X

P
The initial condition implies that achn(SgS) —In 1+64/25 = In5+c. The solution is
given implicitly by arctan(y/x) — In° 1+ y?/x?> = In [x| = c. The solution exists on the
interval (—128.1, 5.3), approximately.

13.() y° + (L/ty =t/

(b) Here n = 2, thus we set u = y—". The equation becomes u® —(1/t)u = —t; the integrating
factor is u = 1/t and we obtain (u/t)! = —1. After integration, we get u/t = —t + ¢, thus u
= —t’+ ct and then y = 1/(ct - t°). Also, y = 0 is a solution.

W

14.(@)y° +y =t/
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(b) Here n = 4, thus we set u = y~°. The equation becomes u® 3u = t; the tategrating factor is
u = et and we obtain (ue>t)! = te-°t. After integration, ue-’t = (t/3)e*t + e’ /9 + c,
thus u = t/3 + 1/9 + ce’t and then y = (t/3 + 1/9 + ce’)~"/°. Also, y = 0 is a solution.

(©)

15.(a) y0 + (3/t)y = £’

(b) Here n = 2, thus we set u = y=*. The equation becomes u'—(3/t)u = —t*; the integrating
factor is u = 1/t° and we obtain (u/t’) = —1/t. After integration, we get u/t’ = — Int + ¢,
thus u = —£’Int + ct’and then y = 1/(ct’ - £’ In t). Also, y = 0 is a solution.

(c)
16.(a) y0 + (2/t)y = (1/6)y°

(b) Here n = 3, thus we set u = y~*. The equation becomes u® (4/t)u—= 2/t’; the mtegrating
factor is u = 1/t* and we obtain (u/t')! = 2/t°. After integration, u/t' = 2t°/5 + c,
thus u = 2¢t='/5 + ct'and then y = (2t='/5 + ct")~"/*. Also, y = 0 is a solution.
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(©)

17.(a) y© + (4t/5(1 + &)y = (4t/5(1 + )"

(b) Here n=4,thuswe setu =y ~°. The equationbecomes u0-42t/5(1+t)u = 42t/5(1+
t*); the integrating factor is u = (1 + ¢©)-°/° and we obtain (up)! = —12t(1 + t°)-*'/°/5.
After integration, u = 1 + ¢(1 + t°)°°, thus y = (1 + ¢(1 + t°)*/*)-"/°. Also, y =0 is a
solution.

(©)

18.(a) y° + (3/t)y = (2/3)""
(b) Here n = 5/3, thus we set u = y-°/. The equation becomes u® @/t)u = 4/9: the
integrating factor is u = 1/t® and we obtain (u/t®)! = -4/9t>. After integration,

u/t’=4/9t + c, thus u = 4t/9 + ct’and then y = (4t/9 + ct’)—°/°. Also, y = 0 is a solution.
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(©)

0.5 |

19.() y° —y =y
(b) Here n = 1/2, thus we set u = y'/°. The equation becomes u®-u/2 = 1/2; the integrating

factor is u = e~%/? and we obtain (ue-t?)! = e-t/?/2. After integration, ue-t/> = —e-t/* +,
thus u = cet” — 1 and then y = (cet’* — 1)>. Also, y = 0 is a solution.
()

20.(a) y° — ry = —ky’

(b) Here, n = 2. Therefore, let u = y—'. Making this substitution, we see that u satisfies the
equation u® + ru = k. This equation is linear with integrating factor e™. Therefore, we have
(ertu)! = kert. The solution of this equation is given by u = (k + cre-"t)/r. Then, using the
fact that y = 1/u, we conclude that y = r/(k + cre-"t). Also, y = 0 is a solution.

(c) The figure shows the solutions for r = 1, k = 1.
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21.(a)y° —y = —oy’

(b) Here n = 3. Therefore, u = y—*satisfies u® + 2 u = 2¢. This equation is linear with
integrating factor ”t. Its solyt_ioq is given by u = (6 +c e-*t)/. Then, using the fact that
y'=1/u,weseethaty =+ / o + c e 2L,

(c) The figure shows the solutions for =1, o = 1.

e

.5 1

—_—
e

22.(a)y0o - ([T cost+T)y=-y
(b) Here n = 3. Therefore, u = y—*satisfies u® + 2(I'cos t + T )u = 2. This equation is linear
with integrating factor ¢’ *"t"T?  Therefore, e’ *"t TPy | = 2"t TP which implies

Z,

u =2 2sntTH ey ((Tsins + Ts)) ds + ce~2L s t+T0),
to

P
Thenu =y—* impliesy=+ 1/u.
(c) The figure shows the solutions for I' =1, T = 1.
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23.(a) Assume y:1 solves the equation: yU1 = A+ By: + Cyzl. Let y = y1 + v; we obtain
Yi+vi =yt = A+By+Cy* = A+B(1+v)+C (1 +v)" = A+Byi+Bv+Cy* +2Cyv+Cv°.
Then v0 = Bv + 2Cywv + CV’,i.e. vO — (B + 2Cy:)v = Cv*which is a Bernoulli equation
with n = 2.

(b) If y» = 4t, then y} = 4 and 4+3t-4t = 4—4t>+(4t)*. Using the previous idea, lety = y1+v;

we obtain 4 +vi = yh + v =yl = 4 — 47 + y® =3ty = 4 — 4 + (4t + v)® — 3t(4t + V),
i.e. VO = —4¢ + 16t +8tv +Vv' — 12t - 3tv = 5tv + V. Letu = v-', thengwe obtain

u® + 5tu = —1. The inRtegrating factor is i = /2, and we obtain u = —e—22 ,€>7/?ds.
t

Thus y = 4t — (e-5t"/? ? &5/ ds)-*.
24.(a) Homogeneous.

(b) Setting y = ux, we obtain y! = u'x +u = (u —3)/(9u — 2), i.e. ux =3(-1+u—
3u®)/(9u —2). After igtegratjon, we obtain the implicit solution (3/2) In(1 —y/x +3y® /x*) —
arctan((-1 + 6y/x)/ 11)/ 11 +3Inx =c.

25.(a) Linear.

(b) Consider the equation so that x = x(y). Then dx/dy = 2x+ 3eV; the integrating factor is
u = e’v, we obtain (e’vx)! = 3e’v. After integration, e’¥x = e’ + c, thus x = eV + ce~?v.
26.(a) Bernoulli.

(b) Let u = y=". The equation turns into u® + u = —4ex; integrating factor is u = ex. We
obtain (uex)! = —4e®x, after integration uex = —2ex + ¢, thus u = —2ex + ce~* and then y
=1/(ce~x — 2e¥).

27.(a) Linear.

In

(b) The integrating factor is 4 = ex™" x = xex; the equation turns into (xexy)! = xex, after
integration xexy = xex —ex+ c,and theny =1 — 1/x + ce */x.

28.(a) Exact.

(b) The equation is-( sin 2x—xy*)dx+(1 —x")ydy. We need 1 (x,y) so that i =*,sin 2x—
xy?; thus ¥(x,y) = —Lcos2x — Ix’y* + h(y). Now yy = —x’y + h!(y) = —x°y +y, thus
h(y) = y*/2. We obtain the implicitly defined solution cos 2x + 2x’y* — 2y* = c.

29.(a) Separable, linear.
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(b) Separation of variables gives dy/y = dx/ x;-after integration, we getlny =2 x +c —

i
and then y = ce® *
30.(a) Separable, exact.
(b) Write (5xy°+ 5y)dx + (5x°y + 5x)dy = 0. We need y(x, y) so that = 5xy’+ 5y; thus
¥(x, y) = 5x°y*/2 + 5xy + h(y). Now 1y = 5x°y + 5x + h'(y) = 5x°y + 5x, thus we obtain
that the solution is given implicitly as 5x°y*+ 10xy = 5xy(xy + 2) = c¢. We can see that
this is the same as xy = C.
31.(a) Exact, Bernoulli.

(b) Write (*+ 1 + In x)dx + 2xydy = 0. We need 1 (x, y) so that = y*+ 1 + In x; thus (x,
y) =y’x+xInx+h(y). Now i, = 2xy + h'(y) = 2xy, thus we obtain that the solution is
given implicitly as y’x + xInx = c.

32.(a) Linear, exact.

(b) Write (=y — 2(2 —x)")dx +(2 —x)dy = 0. We need 1(x, y) so that px= —y— 2(2 —x)°;
thus Y (x,y) = —yx+ (2 —x)°/3+ h(y). Now yp, = —x + h!(y) = 2 —x, and then h(y) = 2y.
We obtain that the solution is given implicitly as —3yx + (2 —x)°+ 6y = c.

33.(a) Separable, autonomous (if viewed as dx/dy).

(b) dy/dx = —x/ In x, thus after integration, y=—InIn x + C.

34.(a) Homogeneous.

(b) Setting y = ux, we obtain y' = u'x +u = (3u® + 2u)/(2u + 1). This implies that
u'x = (u + u®)/(1 + 2u). After integration, we obtain that the implicit solution is given by
In(y/x) +In(L+y/x) =Inx +c,ie y/x'+y/xX=C.

35.(a) Bernoulli, homogeneous.

(b) Let u = y*>. Then u' = 2py! = 4x + (5/2x)y° = 4x + (5/2x)u; we get the linear
equation u® — (5/2x)u = 4x. The integrating factor is u = x~°/, and the equation turns into
(ux-°/%)! = 4x-°/%. After integration, we get u = y* = —8x° + cx’/°.

36.(a) Autonomous, separable, Bernoulli.

(b) Let u = y*/*. Then u' = (3/4)y-/*y! = (3/4)y-/*(y*/* —y) = 3/4 — 3u/4. The
integrating factor is u = e>/*, and we get (ue’/*)! = 3e>/* /4. After integration, ue®/* =
e/ + c,and then u = y”/* =1 + ce=>/*. We get y = (1 + ce—/")"~.



