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CHAPTER 1 
 

FIRST-ORDER DIFFERENTIAL EQUATIONS 
 

SECTION 1.1 
 

DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS 
 

The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of dif- 

ferential equations, and to show the student what is meant by a solution of a differential equation. 

Also, the use of differential equations in the mathematical modeling of real-world phenomena is 

outlined. 

 
Problems 1-12 are routine verifications by direct substitution of the suggested solutions into the 

given differential equations.  We include here just some typical examples of such verifications. 

3.         If y1  cos 2x and y2   sin 2x , then y1
   2sin 2x y2

  2cos 2x , so

y1
  4 cos 2x  4 y1  and y2

  4sin 2x  4 y2 .  Thus y1
 4 y1  0 and y2

  4 y2   0 .

 

4.         If y   e
3x

 

3x
 

and y   e
3x 

, then y   3e
3x   

and y    3e
3x 

, so y  9e
3x  
 9 y and

y2
  9e  9 y2 .

5.         If y  e
x 
 e

 x 
, then y  e

x 
 e

 x 
, so y  y   ex  

 e
 x   ex  

 e
 x   2 e

 x 
. Thus

y  y  2 e
 x 

.

 

6.         If y   e
2 x and y   x e

2 x 
, then y   2 e

2 x 
, y  4 e

2 x 
, y  e

2 x  
 2x e

2 x 
, and

y2
   4 e 2 x  4x e 2 x 

.
 Hence 

 

 

    2 x       


 

 

2 x       


 

 

2 x 
 
 

and 

y1
 4 y1

  4 y1       4 

e 

 4  2 e  4  e         0

 

y2
  4 y2

  4 y2     4 e 
 

2 x 

 

 4x e 2 x   4 
 

e
2 x 

 

 2x e 2 x   4 x e
2 x     0.
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8.         If y1  cos x  cos 2x and y2   sin x  cos 2x , then y1
   sin x  2sin 2x,

y1
   cos x  4 cos 2x, y2

  cos x  2sin 2x , and y2
   sin x  4cos 2x. Hence

 

 
 

and 

 

y1
 y1 

 

 

y2
  y2 

  cos x  4 cos 2x  cos x  cos 2x
 
 

  sin x  4cos 2x  sin x  cos 2x

 

 3cos 2x 
 

 
 

 3cos 2x.

 
 

 
1
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11.       If y  y1  x
2 

, then y   2 x
3  

and y  6 x
4 

, so

 

x
2 
y  5x y  4 y  x

2 6 x
4   5x 2 x

3   4  x2     0.

 

If y  y2 

 

 x
2 

ln x , then 

 

y  x
3 
 2 x

3 
ln x 

 

and 

 

y   5 x
4 
 6 x

4 
ln x , so

 

x
2 
y  5x y  4 y   x

2 5 x
4 
 6 x

4 
ln x  5x  x

3  
 2 x

3 
ln x  4  x

2  
ln x

 5 x
2 
 5 x

2   6 x
2 
10 x

2 
 4 x

2  ln x 

 

 0.

 

13.       Substitution of y  e
rx  

into 3y  2 y gives the equation 3r e
rx

   2 e
rx 

, which simplifies

to 3 r  2. Thus r  2 / 3.

 

14.       Substitution of y  e
rx  

into 4 y  y gives the equation 4r
2 
e

rx
   e

rx 
, which simplifies to

4 r
2  
 1. Thus r  1/ 2 .

 

15.       Substitution of y  e
rx  

into y  y  2 y   0 gives the equation r
2
e

rx 
 r e

rx 
 2 e

rx  
 0 ,

which simplifies to r
2 
 r  2  (r  2)(r 1)  0. Thus r  2 or r  1.

 

16.       Substitution of y  e
rx  

into 3 y  3 y  4 y  0 gives the equation 3r
2
e

rx 
 3r e

rx 
 4 e

rx  
 0

, which simplifies to 3r
2 
 3r  4  0 .  The quadratic formula then gives the solutions

r  3  57   6 .

 

 

The verifications of the suggested solutions in Problems 17-26 are similar to those in Problems 

1-12.  We illustrate the determination of the value of C only in some typical cases.  However, we 

illustrate typical solution curves for each of these problems. 

17. C  2 18. C  3
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Problem 17 
4 

 

 
 
 
 
 
 

y  
0

 

 
 
 
 
 
 

 
−4 

Problem 18 
5 

y   
0 

 

−5

 

 
 

19.       If y  x  Ce
x 
1, then y 0  5 gives C 1  5 , so C  6 .

 

20.       If y  x  C e
 x 
 x 1, then y 0 10 gives C 1 10 , or C  11.

 
10 

 
 
 

5 
 

 
y    

0
 

 
 
 

−5 
 
 
 

−10 

Problem 19  
20 

 

 
 
 
 
 
 

y    
0
 

 
 
 
 
 
 

 
−20 

Problem 20

 

 
 

21. C  7 .

22.       If y(x)  ln  x  C  , then y 0  0 gives ln C  0 , so C 1.
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10 

 
 
 

5 
 

 
y    

0
 

 
 
 

−5 
 
 
 

−10 

Problem 21 Problem 22 
5 

 

 
 
 
 
 
 

y  
0
 

 
 
 
 
 
 

 
−5

 

 
 

23.       If y(x)   1  x
5 
 C x

2 
, then y 2 1 gives  1 32  C  1   1 , or C  56 .

 

24. C  17 .

Problem 23 
30 

Problem 24 
30

20                                                                                                      20 (1, 17)

 
10                                                                                                      10 

 

y    
0                                                 

(2, 1)                                            y    
0
 

−10 −10

−20 −20

−30  
0                    1                    2                    3 

x 

−30  
0   0.5   1   1.5   2   2.5   3   3.5   4   4.5   5 

x

 

25.       If y  tan  x3   C  , then y 0 1 gives the equation tan C 1.  Hence one value of C is

C   / 4 , as is this value plus any integral multiple of  .
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Problem 25 
4 

Problem 26 
10

 
 
 

2                                                                                                         5 
 
 

y  
0                                                                                                  

y    
0
 

(, 0)

 

 
 

−2                                                                                                       −5 
 
 

−4 
−2            −1              0              1              2 

x 

−10  
0                               5                              10 

x

 

26.       Substitution of x  

C   . 

and y  0 into y   x  C cos x yields 0    C  1 , so

27.       y  x  y 
 
 

28.       The slope of the line through  x, y and  x 2,0 is 

 
 

 

y  
  y 0   

 2 y  x , so the differen- 
x  x / 2 

tial equation is xy  2 y .

 

 

29.       If m  y is the slope of the tangent line and m is the slope of the normal line at (x, y),

then the relation m m  1 yields m  1 y   y 1   x  0 .  Solving for y then

gives the differential equation 1 y y  x . 
 

30.       Here m  y and m  D (x
2  
 k)  



2x , so the orthogonality relation m m  1 gives

the differential equation 2xy    1. 
 

31. The slope of the line through  x, y and ( y, x) is 

tial equation is (x  y) y  y  x. 

y   x  y  y  x , so the differen-

 
In Problems 32-36 we get the desired differential equation when we replace the “time rate of 

change” of the dependent variable with its derivative with respect to time t, the word “is” with 

the = sign, the phrase “proportional to” with k, and finally translate the remainder of the given 

sentence into symbols. 

32.       dP dt  k   P 33. dv dt  kv
2
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34. dv dt  k 250  v 35. dN  dt  k  P  N 

 

36. dN  dt  kN  P  N 

 

 

37.       The second derivative of any linear function is zero, so we spot the two solutions

y  x 1 and y(x)  x of the differential equation y  0 .

 

 

38.       A function whose derivative equals itself, and is hence a solution of the differential equa-

tion y  y , is y(x)  e
x 
.

 

39.       We reason that if y  kx
2 

, then each term in the differential equation is a multiple of x
2 

.

The choice k 1 balances the equation and provides the solution y(x)  x
2 
.

 

40.       If y is a constant, then y  0 , so the differential equation reduces to y
2  
 1 .  This gives

the two constant-valued solutions y(x)  1 and y(x)  1.

 

41.       We reason that if 

The choice k   1
 

y  ke
x 
, then each term in the differential equation is a multiple of e

x 
. 

balances the equation and provides the solution y(x)   1 e
x 

.

 

42.       Two functions, each equaling the negative of its own second derivative, are the two solu-

tions y  x  cos x and y(x)   sin x of the differential equation y   y .

 

43.       (a) We need only substitute x(t) 1 C  kt  in both sides of the differential equation

x  kx
2  

for a routine verification.

(b) The zero-valued function x(t)  0 obviously satisfies the initial value problem

x  kx
2 
, x(0)  0 .

 

44.       (a) The figure shows typical graphs of solutions of the differential equation 
 

(b) The figure shows typical graphs of solutions of the differential equation 

x   1  x
2 

. 
 

x   1  x
2
.

We see that—whereas the graphs with k   1
 appear to “diverge to infinity”—each solu-

tion with k   1
 appears to approach 0 as t  . Indeed, we see from the Problem

 

43(a) solution x(t) 1 C  1 t 
 

that x(t)   as t  2C .  However, with k   1
 

 

it is
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clear from the resulting solution x(t) 1 C  1 t  that x(t) remains bounded on any

bounded interval, but x(t)  0 as t   .
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Problem 44a 
5 

Problem 44b 
6

 

4                                                                                                            
5 

 

4 
3 

x                                                                                                  x 
3 

 

2 
2 

 
1                                                                                                            

1 

 
0                                                                                                            0 

 

 
 

45.       Substitution of P  1 and P  10 into the differential equation P  kP
2  

gives k   1  , so

 

Problem 43(a) yields a solution of the form P(t) 1 C   1   t  .  The initial condition

P(0)  2 now yields C   1 , so we get the solution

 
P(t) 

 

     1   

1 
 

  t   
2   100 

 

 
 100  

. 
50  t

We now find readily that P  100 when t  49 and that P  1000 when t  49.9 .  It ap-

pears that P  grows without bound (and thus “explodes”) as t approaches 50. 

46.       Substitution of v  1 and v  5 into the differential equation v  kv
2

 gives k   1  , so

Problem 43(a) yields a solution of the form v(t) 1 C  t 25 .  The initial condition

v(0)  10 now yields C   1  , so we get the solution

 
v(t) 

 

     1   

 1  
 

 t   
10    25 

 

 
  50   

. 
5  2t

We now find readily that v 1 when t  22.5 and that v  0.1 when t  247.5 .  It ap- 

pears that v approaches 0 as t increases without bound.  Thus the boat gradually slows, 

but never comes to a “full stop” in a finite period of time. 

47.       (a) y(10)  10 yields 10 1 C 10 , so C  101 10 .

 

(b) There is no such value of C, but the constant function 
 

y(x)  0 satisfies the condi-

tions y  y
2  

and y(0)  0 .
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(c) It is obvious visually (in Fig. 1.1.8 of the text) that one and only one solution curve 

passes through each point (a,b) of the xy-plane, so it follows that there exists a unique

solution to the initial value problem y  y
2 
, y(a)  b .

 

48.       (b) Obviously the functions u(x)  x
4
 and v(x)  x

4
 both satisfy the differential equa-

tion xy  4 y. But their derivatives u(x)  4x
3

 and v(x)  4x
3

 match at x  0 , where

both are zero.  Hence the given piecewise-defined function y  x is differentiable, and

therefore satisfies the differential equation because u  x
x  0 , respectively). 

and v  x do so (for 
 
 

4
 

x  0 and

(c) If a  0 (for instance), then choose C   fixed so that C a   b .  Then the function
 

C x
4 

 

if x  0
y  x    



C
 
x if x  0

satisfies the given differential equation for every real number value of C . 

 

SECTION 1.2 
 

INTEGRALS AS GENERAL AND PARTICULAR SOLUTIONS 
 
This section introduces general solutions and particular solutions in the very simplest situation

— a differential equation of the form y  f  x— where only direct integration and evaluation

of the constant of integration are involved.  Students should review carefully the elementary con- 

cepts of velocity and acceleration, as well as the fps and mks unit systems. 

1.         Integration of y  2x 1 yields y(x)   2x 1 dx  x
2 
 x  C .  Then substitution of

x  0 , y  3 gives 3  0  0  C  C , so y  x  x
2 
 x  3 .

 

2.         Integration of y   x  2
2

 yields y  x   x  2
2  

dx   1  x  2
3  
 C .  Then substitution

of x  2 , y  1 gives 1  0  C  C , so y  x   1  x  2
3  
1.

 

3.         Integration of  y  x  yields y  x   x dx   2 x
3/2  

 C .  Then substitution of x  4 ,

y  0 gives 0  16  C , so y  x   2  x3/2   8 .
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4.         Integration of y  x
2  

yields y  x   x
2

dx  1 x  C .  Then substitution of x 1,

y  5 gives  5  1 C , so y  x  1 x  6 .
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3 

2 

2 

0 

0 
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5.         Integration of y   x  2
1 2  

yields y  x    x  2    dx  2 x  2  C .  Then substitu-

tion of x  2 , y  1 gives 1  2 2  C , so y  x  2 x  2  5 .

 
 

6.         Integration of y  x x
2
 

1 2  

 9     yields y  x   x x
2

 

1 2  

 9     dx   1    x 
3 2 

 9 
 

 C .  Then

 

substitution of 
 

x  4, 
 

y  0 gives 0  1 (5)
3  
 C , so y  x 1    2 

3 
 9

3/2 
125



 

.

 

7.         Integration of y  
  10   
x2 1 

 

yields 

 

y  x  
  10   

dx  10 tan
1 

x  C .  Then substitution of 
x2 1

x  0 , y  0 gives 0 10 0  C , so y  x  10 tan
1 

x .

 

8.         Integration of y  cos 2x yields y  x  cos 2x dx   1 sin 2x  C .  Then substitution of

x  0 , y  1 gives 1  0  C , so y  x   1 sin 2x 1.

 

9.         Integration of y  
     1   

1 x
2

 

 

yields 
 

y(x)  
     1     

dx  sin
1 

x  C .  Then substitution of 

1 x
2

x  0 , y  0 gives 0  0  C , so y  x  sin1 x .

 

10.       Integration of y  xe
 x

 yields

y  x   xe
 x 

dx   ue
u 

du  u 1 eu  
   x 1 e x  

 C ,

using the substitution u  x together with Formula #46 inside the back cover of the

textbook.  Then substituting x  0 , y  1 gives 1  1 C, so y(x)    (x 1) e
 x 
 2.

 

 

11.       If a t   50 , then v t    50dt  50t  v0   50t 10 .  Hence

x t   50t 10 dt  25t 2 10t  x 

 

 25t
2 
10t  20 .

 

12.       If a t   20 , then v t    20 dt  20t  v0   20t 15 .  Hence

x t   20t 15 dt  10t 2 15t  x 

 

 10t
2 
15t  5 .
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0 

13.       If a t   3t , then v t  


3t dt   3 t 2  v
 
  3 t 2  5 .  Hence        2               0        2 

          3   2                  1   3                                1   3x t    2 
t   5 dt  

2 
t  5t  x0   

2 
t  5t .

14.       If a t   2t 1, then v t   2t 1 dt  t
2 
 t  v  t

2 
 t  7 .  Hence

          2
 

        1   3
  

1                                  1   3        1

x  t    t   t  7 dt  
3 
t  

2 
t  7t  x0   

3 
t  

2 
t  7t  4 .
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15.       If a t   4 t  3
2 
, then v t   4t  3

2  
dt   4 t  3

3  
 C   4 t  3

3  
 37 (taking

C  37 so that v 0  1).  Hence

 

x t   
 

 4 t  3
3  
 37 dt   1 t  3

4  
 37t  C   1 t  3

4  
 37t  26 .

16.       If a t   
    1     

, then v t  
t  4 

that v 0  1).  Hence 

    1     
dt  2 

t  4 

 

t  4  C  2 
 

t  4  5 (taking C  5 so

                         
  

 4        
3/2

 
 

 4       
3/2                       29

x t    2  t  4  5 dt  
3 t  4  5t  C  

3 t  4  5t  
3

 

(taking C   29 3 so that x 0 1).

 

17.       If a t   t 1
3 

, then v t   t 1
3 

dt   1 t 1
2  
 C   1 t 1

2  
  1 (taking

C  
2
 so that v 0  0 ).  Hence 

 

x t       1 t 1
2  
  1 dt   1 t 1

1  
 1 t  C   1 t 1

1  
 t 1

   2                            2              2                            2                      2                      
 

(taking C   1
 

 

so that x 0  0 ).

 

18.       If a t   50sin 5t , then v t    50sin 5t dt  10cos5t  C  

10cos5t 

that v 0  10 ).  Hence 

x t    10cos5t dt  2sin 5t  C  2sin 5t 10 

(taking C  0 so

(taking C  10 
 

so that x 0  8 ).

 

 

Students should understand that Problems 19-22, though different at first glance, are solved in 

the same way as the preceding ones, that is, by means of the fundamental theorem of calculus in
 

the form x t   x t0   t
 v s ds 

 

cited in the text.  Actually in these problems x t   0
 v s  ds

, since t
0 and x t0 are each given to be zero.

 
 

19.       The graph of v t 
 

5          if 0  t  5 
shows that v t   

 

, so that

 5t  C  if 0  t  5 
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2             2 

10  t if 5  t  
10

x t            
 1 .  Now C   0 because x 0  0 , and continuity of

10t  1 t
2 
 C

 
if 5  t 10               

1

        2                 2

x t  requires that x t   5t and x t   10t  1 t
2 
 C agree when t  5 .  This implies

 

that C    25 , leading to the graph of 

2                 2 

x t  shown.
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(5, 2 

 
 
 
5) 

 

     

     

 

     

     

   
 

 
(5, 1 
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Alternate solution for Problem 19 (and similar for 20-22): The graph of v t  shows

 
5          if 0  t  5 

that v t   

 

.  Thus for 0  t  5 , 
 

x t   
 

v s  ds 
 
is given by

10  t 
t 

if 5  t  10                                               0

0  
5ds  5t , whereas for 5  t 10 we have

 

x t   
 

v s ds  
 

t 

5 ds  
 

10  s ds

0                                0                      5 
 

st            s
2           t

2       
75 t

2       
25

 25  10s    25 10t           10t          .
 

 
 

The graph of 




x t  is shown. 


s5 

2     2              2     2

 
 

20.       The graph of v t 
t 

shows that v t   
if 0  t  5  

, so that

 

 

 1 t
2 
 C 

 

 

if 0  t  5 
5   if 5  t  10

x t   
2                1

 

5t  C2 

 

if 5  t  10 
.  Now C

1 
 0 because x 0  0 , and continuity of x t 

requires that x t    1 t
2  

and x t   5t  C2 agree when t  5 .  This implies that

C2    
2 , leading to the graph of x t  shown.

Problem 19 
40 

Problem 20 
40

 
 
 

30                                                                                                       30 
 

x 
20 x 

20

 
 
 

10                                                                                                       10 
 
 

0 
0           2           4           6           8          10 

t 

0 
0           2           4           6           8          10 

t

 
 

21.       The graph of v t 
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t 
shows that v t   

10  t 

if 0  t  5 if 5  t  10  

, so that

 1 t
2 
 C 

if 0  t  5

x t   
2                1 .  Now C   0 because x 0  0 , and continuity of

10t  1 t
2 
 C

 
if 5  t 10               

1

        2                 2
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x t  requires that x t    1 t
2  

and x t   10t  1 t
2 
 C agree when t  5 .  This implies

2 

that C2   25 , leading to the graph of 

2                 2 

x t  shown.

 

22.       For 0  t  3 , v(t)   5 t , so x t    5 t
2 
 C .  Now C   0 

because x 0  0 , so x t    5 t
2

3                                    6                1                          1                                                                                             6

on this first interval, and its right-endpoint value is x 3  15 .

For 3  t  7 , v t   5 , so 

            15

 
x t   5t  C2 

 

Now 
 

x(3)  15
 

 

implies that C2    
2  

, so 

55
x  t   5t  

2 
on this second interval, and its right-endpoint value is x 7  

2  .

For 7  t 10 , v  5   5 t  7 , so v t    5 t  50 .  Hence x t    5 t
2 
 50 t  C 

 

, and

3                                                       3           3 6              3               3

x(7)  55
 implies that C3     

6 .  Finally, x t  1 (5t
2

 100t  290) on this third inter-

val, leading to the graph of x t  shown.

Problem 21 
40 

Problem 22 
40

 
 
 

30                                                                                                       30 
 

x 
20 x 

20

 
 
 

10                                                                                                       10 
 
 

0 
0           2           4           6           8          10 

t 

0 
0           2           4           6           8          10 

t

23. v t   9.8t  49 , so the ball reaches its maximum height ( v  0 ) after t  5 seconds.  Its

 

maximum height then is y 5  4.95
2  
 495  122.5 meters .

 

24. v  32t and y  16t
2 
 400 , so the ball hits the ground ( y  0 ) when t  5 sec , and

then v  325  160 ft/sec . 
 

25. a  10 m/s
2  

and v   100 km/h  27.78 m/s , so v  10t  27.78 , and hence 

x t   5t
2 
 27.78t .  The car stops when v  0 , that is t  2.78 s , and thus the distance
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traveled before stopping is x 2.78  38.59 meters .

 

26. v  9.8t 100 and y  4.9t
2 
100t  20 .
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(a) v  0 when t  100 9.8 s , so the projectile's maximum height is

y 100 9.8  4.9 100 9.8
2  
100 100 9.8  20  530 

 

meters.

 

(b) It passes the top of the building when 

t  100 4.9  20.41 seconds. 

y t   4.9t
2 
100t  20  20 , and hence after

 

(c) The roots of the quadratic equation y t   4.9t
2 
100t  20  0 

 

are t  0.20, 20.61.

Hence the projectile is in the air 20.61 seconds. 

27. a  9.8 m/s
2 
, so v  9.8t 10 and y  4.9t

2  
10t  y .  The ball hits the ground when

y  0 and v  9.8t 10  60 m/s , so t  5.10 s .  Hence the height of the building is 
 

y   4.9 5.10
2  
10 5.10  178.57 m . 

 

28. v  32t  40 and y  16t
2 
 40t  555 .  The ball hits the ground ( y  0 ) when

t  4.77 s , with velocity v  v 4.77  192.64 ft/s , an impact speed of about 131 mph. 
 

29.       Integration of dv dt  0.12t
2 
 0.6t with v 0  0 gives v t   0.04t

3 
 0.3t

2 
.  Hence

v 10  70 ft/s .  Then integration of dx dt  0.04t3  0.3t 2
 with x 0  0 gives

x t   0.01t
4 
 0.1t

3 
, so x 10  200 ft .  Thus after 10 seconds the car has gone 200 ft

and is traveling at 70 ft/s. 

30.       Taking x0   0 and v0   60 mph  88 ft/s , we get v  at  88 , and v  0 yields t  88 a .

Substituting this value of t, as well as x  176 ft , into x   at
2   

2  88t leads to

a  22 ft/s
2 

.  Hence the car skids for t  88 22  4s . 
 

31.       If a  20 m/s
2  

and x0   0 , then the car's velocity and position at time t are given by

v  20t  v0 and x  10t
2

  v0t .  It stops when v  0 (so v0   20t ), and hence when

x  75  10t
2 
 20t  t  10t

2 
.  Thus t  7.5 s , so

 

v0   20  7.5  54.77 m/s  197 km/hr . 
 

32.       Starting with x   0 and v   50 km/h  510
4  

m/h , we find by the method of Problem

30 that the car's deceleration is a  25 310
7  

m/h
2 
.  Then, starting with x0   0 and
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0                                                                                                                   0 2 v   100 km/h  10
5 

m/h , we substitute t  

v 

a into x   1 at
2

  v0t and find that

x  60 m 

skids. 

when v  0 . Thus doubling the initial velocity quadruples the distance the car
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33.       If v0   0 and y0   20 , then v  at and y   1 at
2

  20 .  Substitution of t  2 , y  0

yields a  10 ft/s
2 

.  If v   0 and y0   200 , then v  10t and y  5t
2 
 200 .  Hence

y  0 when t  40  2  10 s and v  20  10  63.25ft/s .

 

34.       On Earth: v  32t  v0 , so t  v0   32 at maximum height (when v  0 ).  Substituting

this value of t and y  144 in y  16t
2  
 v t , we solve for v   96ft/s as the initial speed

0                                              0 

with which the person can throw a ball straight upward. 

On Planet Gzyx: From Problem 33, the surface gravitational acceleration on planet

Gzyx is a  10 ft/s
2 
, so v  10t  96 and y  5t

2 
 96t .  Therefore v  0 yields

t  9.6s and so ymax   y 9.6  460.8ft is the height a ball will reach if its initial velocity

is 96 ft/s . 
 

35.       If v0   0 and y0   h , then the stone’s velocity and height are given by v  gt and

y  0.5gt
2 
 h , respectively.  Hence y  0 when t  2h g , so

 

v  g 
 

2h  g    
 

2gh .

 

 

36.       The method of solution is precisely the same as that in Problem 30.  We find first that, on

Earth, the woman must jump straight upward with initial velocity v0   12 ft/s to reach a

maximum height of 2.25 ft.  Then we find that, on the Moon, this initial velocity yields a 

maximum height of about 13.58 ft. 

37.       We use units of miles and hours.  If x0   v0   0 , then the car’s velocity and position after

t hours are given by v  at and x   1 at
2 
, respectively.  Since v  60 when t  5 6 , the

velocity equation yields . Hence the distance traveled by 12:50 pm is 

x   1 72  5 6
2  
 25 miles . 

 

38.       Again we have v  at and x   1 at
2 
.  But now v  60 when x  35 .  Substitution of

a  60 t (from the velocity equation) into the position equation yields

35   1 60 t  t2  
 30t , whence t  7 6 h , that is, 1:10 pm. 

 

39.       Integration of y  9 vS  1 4x2 yields y  3 vS  3x  4x3   C , and the initial condi-

tion y 1 2  0 gives C  3 vS  .  Hence the swimmers trajectory is
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y  x  3 vS 3x  4x
3 
1 .  Substitution of y 1 2 1 now gives v

S  
 6mph .

 

40.       Integration of y  3116x
4 yields y  3x  48 5 x5 

 C , and the initial condition

y 1 2  0 gives C  6 5 .  Hence the swimmers trajectory is
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y  x  1 5 15x  48x5   6 ,
 

and so his downstream drift is y 1 2  2.4miles .

 

41.       The bomb equations are a  32 , v  32t , and s   s  16t
2  
 

800 

with t  0 at the

instant the bomb is dropped.  The projectile is fired at time t  2, so its corresponding 
2

equations are a  32 , v  32t  2  v
0 
, and sP   s  16 t  2 v0 t  2for t  2

(the arbitrary constant vanishing because sP 2  0 ).  Now the condition

s  t   16t
2 
 800  400 gives t  5 , and then the further requirement that sP 5  400

yields v0   544 / 3  181.33 ft/s for the projectile’s needed initial velocity.

42.       Let x(t) be the (positive) altitude (in miles) of the spacecraft at time t (hours), with t  0

corresponding to the time at which its retrorockets are fired; let v t   xt be the veloc-

ity of the spacecraft at time t.  Then v0   1000 and x0   x 0 is unknown.  But the

(constant) acceleration is a  20000 , so v t   20000t 1000 and

x t   10000t
2 
1000t  x .  Now v t   20000t 1000  0 (soft touchdown) when

t   1  h (that is, after exactly 3 minutes of descent).  Finally, the condition

0  x    1    10000   1   1000  1    x 
 

yields 
 

x0   25miles for the altitude at which the

retrorockets should be fired. 

43.       The velocity and position functions for the spacecraft are vS t   0.0098t and

x  t   0.0049t
2 
, and the corresponding functions for the projectile are

v  t    1  c  310
7 

and x  t   310
7 
t .  The condition that xS   xP when the spacecraft

overtakes the projectile gives 0.0049t
2  
 310

7 
t , whence 

 3 10 7                                    6.12245 10 9 

t               6.1224510
9 
s                                   194 years . 

0.0049                               (3600)(24)(365.25)
 

Since the projectile is traveling at   1 
 

 

the speed of light, it has then traveled a distance of

about 19.4 light years, which is about 1.836710
17   

meters. 

44.       Let a  0 denote the constant deceleration of the car when braking, and take 
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   

60 

81 

x0   0 for

the car’s position at time t  0 when the brakes are applied. In the police experiment 

with v0   25 ft/s, the distance the car travels in t seconds is given by
 

x t 
1 

at
2 
 

88 
 25t , 

2         60

with the factor  88
 used to convert the velocity units from mi/h to ft/s.  When we solve

 

simultaneously the equations x t   45 and xt   0 
 

we find that a   1210   14.94 ft/s
2  

.
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With this value of the deceleration and the (as yet) unknown velocity v0  of the car in- 

volved in the accident, its position function is
 

x(t) 
 1 


1210 

t 2  v t .
 

 
 

The simultaneous equations 
 

110
 

   
2    81 

x t   210 and 

 

0 

 

x(t)  0 

 

 
 

finally yield

v0   9       
42  79.21ft/s , that is, almost exactly 54 miles per hour.

 

SECTION 1.3 
 

SLOPE FIELDS AND SOLUTION CURVES 
 
The instructor may choose to delay covering Section 1.3 until later in Chapter 1.  However, be- 

fore proceeding to Chapter 2, it is important that students come to grips at some point with the 

question of the existence of a unique solution of a differential equation –– and realize that it 

makes no sense to look for the solution without knowing in advance that it exists. It may help 

some students to simplify the statement of the existence-uniqueness theorem as follows: 

Suppose that the function f (x, y) and the partial derivative f y are both con-

tinuous in some neighborhood of the point a,b .  Then the initial value problem
 

dy 


dx 

 

f  x, y  , 
 

y a  b

 

has a unique solution in some neighborhood of the point a. 
 

 

Slope fields and geometrical solution curves are introduced in this section as a concrete aid in 

visualizing solutions and existence-uniqueness questions. Instead, we provide some details of 

the construction of the figure for the Problem 1 answer, and then include without further com- 

ment the similarly constructed figures for Problems 2 through 9. 
 

 

1. The following sequence of Mathematica 7 commands generates the slope field and the 

solution curves through the given points.  Begin with the differential equation 

dy / dx  f  x, y , where 
 

f[x_, y_] := -y - Sin[x] 

Then set up the viewing window 
 

a = -3; b = 3; c = -3; d = 3; 

The slope field is then constructed by the command 
 

dfield = VectorPlot[{1, f[x, y]}, {x, a, b}, {y, c, d}, 

PlotRange -> {{a, b}, {c, d}}, Axes -> True, Frame -> True, 

FrameLabel -> {TraditionalForm[x], TraditionalForm[y]}, 

AspectRatio -> 1, VectorStyle -> {Gray, "Segment"}, 

VectorScale -> {0.02, Small, None},
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FrameStyle -> (FontSize -> 12), VectorPoints -> 21, 

RotateLabel -> False] 

The original curve shown in Fig. 1.3.15 of the text (and its initial point not shown there) 

are plotted by the commands 
 

x0 = -1.9; y0 = 0; 

point0 = Graphics[{PointSize[0.025], Point[{x0, y0}]}]; 

soln = NDSolve[{y'[x] == f[x, y[x]], y[x0] == y0}, y[x], 

{x, a, b}]; 

curve0 = Plot[soln[[1, 1, 2]], {x, a, b}, PlotStyle -> 

{Thickness[0.0065], Blue}]; 

Show[curve0, point0] 

(The Mathematica NDSolve command carries out an approximate numerical solution of 

the given differential equation.  Numerical solution techniques are discussed in Sections 
2.4–2.6 of the textbook.) 

The coordinates of the 12 points are marked in Fig. 1.3.15 in the textbook.  For instance 

the 7
th 

point is 2.5,1 .  It and the corresponding solution curve are plotted by the com- 

mands 
 

x0 = -2.5; y0 = 1; 

point7 = Graphics[{PointSize[0.025], Point[{x0, y0}]}]; 

soln = NDSolve[{y'[x] == f[x, y[x]], y[x0] == y0}, y[x], 

{x, a, b}]; 

curve7 = Plot[soln[[1, 1, 2]], {x, a, b}, 

PlotStyle -> {Thickness[0.0065], Blue}]; 

Show[curve7, point7] 

The following command superimposes the two solution curves and starting points found 

so far upon the slope field: 
 

Show[dfield, point0, curve0, point7, curve7] 

We could continue in this way to build up the entire graphic called for in the problem. 

Here is an alternative looping approach, variations of which were used to generate the 

graphics below for Problems 1-10: 
 

points = {{-2.5,2}, {-1.5,2}, {-0.5,2}, {0.5,2}, {1.5,2}, 

{2.5,2}, {-2,-2}, {-1,-2}, {0,-2}, {1,-2}, {2,-2}, {-2.5,1}}; 

curves = {}; (* start with null lists *) 

dots = {}; 

Do [ 

x0 = points[[i, 1]]; 

y0 = points[[i, 2]]; 

newdot = Graphics[{PointSize[0.025],Point[{x0, y0}]}]; 

dots = AppendTo[dots, newdot]; 

soln = NDSolve[{y'[x] == f[x, y[x]],y[x0] == y0}, y[x], 

{x, a, b}]; 

newcurve = Plot[soln[[1, 1, 2]], {x, a, b}, 

PlotStyle -> {Thickness[0.0065], Black}];
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AppendTo[curves, newcurve], 

{i, 1, Length[points]}]; 

Show[dfield, curves, dots, PlotLabel -> Style["Problem 1", Bold, 

11]]
 

Problem 1 

3 

 

Problem 2 

3
 

 

2                                                                                 2 
 

 

1                                                                                 1 

 
y    0                                                                           y    0 

 

 

 1                                                                                1 
 

 

 2                                                                                2 
 

 3 
 3       2       1      0        1        2        3 

 

x 
 

Problem 3 

3 

 3 
 3       2       1      0        1        2        3 

 

x 
 

Problem 4 

3

 

 

2                                                                                 2 
 

 

1                                                                                 1 

 
y    0                                                                           y    0 

 

 

 1                                                                                1                     
 

 

 2                                                                                2            
 

 3 
 3       2       1      0        1        2        3 

 

x 

 3 
 3       2       1      0        1        2        3 

 

x



Copyright © 2015 Pearson Education, Inc. 
 

  

  

 

  

 
   

  

    

 

Section 1.3   19 
 

Problem 5 

3 
Problem 6 

3

 

 

2                                                                                 2 
 

 

1                                                                                 1 

 
y    0                                                                           y    0 

 

 

 1                                                                                1 
 

 

 2                                                                                2 
 

 3 
 3       2       1      0        1        2        3 

 

x 
 

Problem 7 

3 

 3 
 3       2       1      0        1        2        3 

 

x 
 

Problem 8 

3

 

 

2                                                                                 2 
 

 

1                                                                                 1 

 
y    0                                                                           y    0 

 

 

 1                                                                                1 
 

 

 2                                                                                2 
 

 3 
 3       2       1      0        1        2        3 

 

x 

 3 
 3       2       1      0        1        2        3 

 

x
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Problem 9 

3 
Problem 10 

3

 

 

2                                                                                 2 
 

 

1                                                                                 1 

 
y    0                                                                           y    0 

 

 

 1                                                                                1 
 

 

 2                                                                                2 
 

 3 
 3       2       1      0        1        2        3 

 

x 

 3 
 3       2       1      0        1        2        3 

 

x

11.       Because both f  x, y  2x
2 
y

2
 and D  f  x, y  4x

2 
y are continuous everywhere, the

existence-uniqueness theorem of Section 1.3 in the textbook guarantees the existence of a
unique solution in some neighborhood of x 1.

12.       Both f  x, y  x ln y and f y  x  y are continuous in a neighborhood of 1,1 , so the

theorem guarantees the existence of a unique solution in some neighborhood of x 1.

13.       Both f  x, y  y
1/3  

and f y   1  y
2/3 are continuous near 0,1 , so the theorem guar-

antees the existence of a unique solution in some neighborhood of x  0 .

14.       The function f  x, y  y
1/3  

is continuous in a neighborhood of 0, 0 , but f y   1  y
2/3

is not, so the theorem guarantees existence but not uniqueness in some neighborhood of 

x  0 .  (See Remark 2 following the theorem.) 

15.       The function f  x, y    x  y 
1/2   

is not continuous at 2, 2 because it is not even defined

if y  x .  Hence the theorem guarantees neither existence nor uniqueness in any neigh-

borhood of the point x  2 .

16.       The function f  x, y    x  y 
1/2   

and f y   1  x  y 
1/2   

are continuous in a neigh-
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borhood of 2,1 , so the theorem guarantees both existence and uniqueness of a solution

in some neighborhood of x  2 .
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17.       Both f  x, y   x 1 y and f y    x 1 y
2   

are continuous near 0,1 , so the the-

orem guarantees both existence and uniqueness of a solution in some neighborhood of 

x  0 . 

18.       Neither f  x, y   x 1 y nor f y    x 1 y
2   

is continuous near 1, 0 , so the

existence-uniqueness theorem guarantees nothing. 

19.       Both f  x, y   ln 1 y
2  and f y  2 y 1 y

2 are continuous near 0, 0 , so the

theorem guarantees the existence of a unique solution near x  0 .

20.       Both f  x, y  x
2 
 y

2
 and f y  2 y are continuous near 0,1 , so the theorem guar-

antees both existence and uniqueness of a solution in some neighborhood of x  0 .

 

21.       The figure shown can be constructed using commands similar to those in Problem 1,

above.  Tracing this solution curve, we see that y 4  3 .  (An exact solution of the dif-

ferential equation yields the more accurate approximation 
 

Problem 21 
5                                                                                 5 

4                                                                                 4 

y 4  3 e
4  
 3.0183 .) 

 

Problem 22

3       
   4, ?                                                                

3

2                       

1 

y    0 

 1                                
 0, 0 

 

 2 

 3 

 4 

 5 

2 

1 

y    0 

 1 

 2 

 3           4, ?  

 4 

 5 

 
 
 
 
 

 4, 0 

 
 
 

22.       Tracing the curve in the figure shown, we see that y 4  3.  An exact solution of the

differential equation yields the more accurate approximation y 4  3.0017 .
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23.       Tracing the curve in the figure shown, we see that y 2 1.  A more accurate approxi-

mation is y 2 1.0044 .
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Problem 23 

2 
 

 
 

1 
 
 

y     0                                
 0, 0 

 

 

 
 
 
 
 

 2, ?  

 

 

2 
 

 
 

1 
 
 

y     0    
  2, 0 

 

Problem 24  
 
 
 

 2, ? 

 

 
 

 1                                                                                 1 
 

 

 2 

 2           1          0            1            2 
 

x 

 2 

 2           1          0            1            2 
 

x

24.       Tracing the curve in the figure shown, we see that y 2 1.5 .  A more accurate approx-

imation is y 2 1.4633 .

 

 

25.       The figure indicates a limiting velocity of 20 ft/sec — about the same as jumping off a 

6 4 -foot wall, and hence quite survivable.  Tracing the curve suggests that v t   19 

ft/sec when t is a bit less than 2 seconds.  An exact solution gives t  1.8723 then. 
 

 

26.       The figure suggests that there are 40 deer after about 60 months; a more accurate value is 

t  61.61.  And it’s pretty clear that the limiting population is 75 deer.
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Problem 25 
40 

 
150 

Problem 26
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27.       a) It is clear that y  x satisfies the differential equation at each x with x  c or x  c ,and

by examining left- and right-hand derivatives we see that the same is true at x  c .  Thus

y  xnot only satisfies the differential equation for all x, it also satisfies the given initial

value problem whenever c  0 .  The infinitely many solutions of the initial value prob-

lem are illustrated in the figure.  Note that f  x, y  2 y is not continuous in any

neighborhood of the origin, and so Theorem 1 guarantees neither existence nor unique- 

ness of solution to the given initial value problem.  As it happens, existence occurs, but 

not uniqueness.
 

b) If b  0 , then the initial value problem y  2 y , y 0  b 
 

has no solution, because

the square root of a negative number would be involved.  If b  0 , then we get a unique

solution curve through 0, bdefined for all x by following a parabola (as in the figure, in

black) — down (and leftward) to the x-axis and then following the x-axis to the left.  Fi-

nally if b  0 , then starting at 0, 0
 

and then branch off on the parabola 

nitely many solutions in this case. 

we can follow the positive x-axis to the point c,0

y   x  c
2 
, as shown in gray.  Thus there are infi-
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Problem 27a  
Problem 28

 
 
 
 
 
 
 

 
y                                                                                            

y 
 

 
 
 
 
 
 
 
 
 

x                                                                                            x 
 

28.       The figure makes it clear that the initial value problem xy  y , y a  b has a unique

solution if a  0 , infinitely many solutions if a  b  0 , and no solution if a  0 but

b  0 (so that the point a,b lies on the positive or negative y-axis).  Each of these con-

clusions is consistent with Theorem 1. 

29.       As with Problem 27, it is clear that y  x satisfies the differential equation at each x with

x  c or x  c , and by examining left- and right-hand derivatives we see that the same is 

true at x  c . Looking at the figure on the left below, we see that if, for instance, b  0 , 

then we can start at the point a,b and follow a branch of a cubic down to the x-axis, 

then follow the x-axis an arbitrary distance before branching down on another cubic.

This gives infinitely many solutions of the initial value problem y  3y
2/3 

, y a  b that

 

are defined for all x.  However, if b  0 , then there is only a single cubic y   x  c
3

passing through a,b , so the solution is unique near x  a (as Theorem 1 would pre- 

dict).
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(a, +1) 
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Problem 29 
 

 
 
 
 

1 
 
 
 

y                                                                                       y 
 
 
 

 
−1 

 
 
 

 
x 

Problem 30 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
x

 

30.       The function y  x satisfies the given differential equation on the interval c  x  c   ,

since y x   sin  x  c  0 there and thus

  1 y
2   
   1 cos

2  x  c    sin
2  x  c  sin  x  c  y .

 

Moreover, the same is true for x  c and x  c  
 

(since 
 

y
2  
 1 and 

 

y  0 there), and at

x  c, c  by examining one-sided derivatives.  Thus y  x satisfies the given differen-

tial equation for all x.
 

If  b 1, then the initial value problem 

 

y    1 y
2  

, y a  b 

 

has no solution, because

the square root of a negative number would be involved.  If b 1, then there is only one

 

curve of the form y  cos  x  c through the point a,b , giving a unique solution.  But if

b  1, then we can combine a left ray of the line y  1, a cosine curve from the line

y  1 to the line y  1, and then a right ray of the line y  1. Looking at the figure,

we see that this gives infinitely many solutions (defined for all x) through any point of the 

form a, 1 . 
 

 

1               if x  c  / 2 


31.       The function y  x  sin  x  c if c  / 2  x  c  / 2 satisfies the given differential
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
1               if x  c   / 2

equation on the interval c  
 x  c  

 
, since 

 

y x  cos  x  c  0 
 

there and thus

 
 

1 y
2  


2                2 

1 sin2  x  c 

 

 

cos2  x  c  cos  x  c  y .
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Moreover, the same is true for x  

2 

 

and x  c  

2 

 

(since 
 

y
2  
 1 and 

 

y  0 there), and

at x  
 

, c  


2        2 

 

by examining one-sided derivatives.  Thus y  x
 

satisfies the given dif-

ferential equation for all x.
 

If  b 1, then the initial value problem 
 

y 
 

1 y
2  

, y a  b 

 

has no solution because

the square root of a negative number would be involved.  If b 1, then there is only one

 

curve of the form y  sin  x  c through the point a,b ; this gives a unique solution.

But if b  1, then we can combine a left ray of the line y  1, a sine curve from the

line y  1 to the line y  1, and then a right ray of the line y  1. Looking at the

figure, we see that this gives infinitely many solutions (defined for all x) through any 

point of the form a, 1 . 
Problem 31 Problem 32

 

 
 
 
 

1 
 
 
 

y                                                                                         y          
(a, b) 

 

 
 
 

−1                                                                                                0 
 
 
 

 
x                                                                                       x 

 

32.       The function y  x satisfies the given differential equation for x
2  
 c , since

y x  4x  x
2  
 c  4x   y 

 

there. Moreover, the same is true for 
 

x
2  
 c 

 

(since

y  y  0 there), and at x    c 
 

by examining one-sided derivatives.  Thus y  x
 

satis-

fies the given differential equation for all x. 

Looking at the figure, we see that we can piece together a “left half” of a quartic for x 

negative, an interval along the x-axis, and a “right half” of a quartic curve for x positive.

This makes it clear that the initial value problem y  4x   y , ya  b has infinitely
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many solutions (defined for all x) if b  0 .  There is no solution if b  0 because this 

would involve the square root of a negative number.
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33.       Looking at the figure provided in the answers section of the textbook, it suffices to ob-

serve that, among the pictured curves y  x / cx 1for all possible values of c,

 

    there is a unique one of these curves through any point not on either coordinate axis; 

    there is no such curve through any point on the y-axis other than the origin; and 

    there are infinitely many such curves through the origin (0,0).
 

But in addition we have the constant-valued solution y  x  0 that “covers” the x-axis.

It follows that the given differential equation has near a,b
 

    a unique solution if a  0 ; 

    no solution if a  0 but b  0 ; 

    infinitely many different solutions if a  b  0 . 

Once again these findings are consistent with Theorem 1. 
 

 

34.       (a) With a computer algebra system we find that the solution of the initial value problem

y  y  x 1, y 1  1.2 is y  x  x  0.2e
x1 

, whence y 1  0.4778.  With the

same differential equation but with initial condition y 1  0.8 the solution is

y  x  x  0.2e
x1 

, whence y 1  2.4778

 

(b) Similarly, the solution of the initial value problem y  y  x 1, 
 

y(3)  3.01 is

y  x  x  0.01e
x3 

, whence y 3  1.0343 .  With the same differential equation but

with initial condition y 3  2.99 the solution is y  x  x  0.01e
x3 

, whence

y 3  7.0343 .  Thus close initial values 

apart. 

y 3  3 0.01 yield y 3 values that are far

 

35.       (a) With a computer algebra system we find that the solution of the initial value problem

y  x  y 1, y 3  0.2 is y  x  x  2.8e
 x3 

, whence y 2  2.0189 .  With the

same differential equation but with initial condition y 3  0.2 the solution is

y  x  x  3.2e
 x3 

, whence y 2  2.0216 .

 

(b) Similarly, the solution of the initial value problem 
 

y  x  y 1, y 3  0.5 is

y  x  x  2.5e
 x3 

, whence y 2  2.0168 .  With the same differential equation but
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with initial condition y 3  0.5 the solution is y  x  x  3.5e
 x3 

, whence

y 2  2.0236 .  Thus the initial values 

y 2  2.02 . 
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y 3  0.5 that are not close both yield
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Of course it should be emphasized to students that the possibility of separating the variables is 

the first one you look for.  The general concept of natural growth and decay is important for all 

differential equations students, but the particular applications in this section are optional.  Torri- 

celli’s law in the form of Equation (24) in the text leads to some nice concrete examples and 

problems. 
 

 

Also, in the solutions below, we make free use of the fact that if C is an arbitrary constant, then 

so is 5  3C , for example, which we can (and usually do) replace simply with C itself.  In the

same way we typically replace e
C

 

zero constant. 

by C, with the understanding that C is then an arbitrary non-

 

1.         For 
 

y  0 
dy 

separating variables gives       2xdx , so that ln y  x
2 
 C , or

 

y  x  e 

 

 x2 C 

 

 Ce 

 

 x2
 

 

, where C is an arbitrary nonzero constant. (The equation also has

the singular solution y  0 .)

 

 

dy                                    1        2
2.         For y  0 separating variables gives 

 

1 

   2x dx , so that      x 
y                                     y 

 C , or

y  x    
2             

.  (The equation also has the singular solution 
x   C 

y  0 .)

 

3.         For 
 

y  0 
dy 

separating variables gives  y  
  sin x dx , so that ln

 

 

y   cos x  C , or

y  x  e
cos xC  

 Ce
cos x 

, where C is an arbitrary nonzero constant. (The equation also

has the singular solution y  0 .)

 

 

4.         For 
 

y  0 
 

separating variables gives 
dy 


y 

   4    
dx , so that ln 

1 x 
y  4 ln 1 x  C , or

y  x  C 1 x
4 
, where C is an arbitrary nonzero constant. (The equation also has the

singular solution y  0 .)

 

 

5.         For 1  y  1 and
  

x  0 separating variables gives
     dy    


    1   

dx , so that
  

1 y
2 
 

2  x

 

sin
1  

y 
 

y  1 and 

 

x  C , or 
 

y  1.) 

y  x  sin  x  C  .  (The equation also has the singular solutions
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6.         For 
 

x, y  0 
 dy  

separating variables gives   
y 
  3 

 

x dx , so that 2 
 

y  2x
3/2 
 C , or

 

y  x  

 

x
3/2 
 C

 
 
2 

.  For 

 

x, y  0 
 

we write 
dy 

 3

  

x  y  , leading to

                  
dx

  dy   
   3 

 y 

 

x dx , or 2  y  2 x
3/2  

 C , or 
2 

y  x            x        C   . 
                 

 

 

7.         For 
 

y  0 
 

separating variables gives 
 dy  

 y
1/3        

 

4x
1/3 

dx , so that   3  y
2/3  

 3x
4/3  

 C , or

 

y  x  
 

2x
4/3 
 C 

3/2 

.  (The equation also has the singular solution 

 

y  0 .)
                    

 

 

8.         For y  
 
 k , k integer, separating variables gives  cos y dy   2x dx , so that

 

sin y  x
2 
 C , or y  x  sin

1  x2 
 C  .

 

9.         For y  0 separating variables and decomposing into partial fractions give

dy 

    2    

dx 
    1    

 
  1    

dx , so that ln
  

y  ln 1 x  ln 1 x  C , or
 y      1 x

2
  1 x 

 

1 x

y  C 
 1 x 
1 x 

 

, where C is an arbitrary positive constant, or y  x  C 
1 x 

, where C is an 
1 x

arbitrary nonzero constant.  (The equation also has the singular solution y  0 .)

 

 

10.       For 
 

y  1 and 

 

x  1 separating variables gives 
     1     

dy 

1 y 
2

 

     1     
dx , so that 

1 x
2

1  
 
 1  

 C , or 1 y  
      1      

 
     1 x      

, or finally
1 y 1 x    1   

 C 
1 x 

1 C 1 x

 
     1 x       

   
1 x 1 C 1 x  x C 1 x 

                    ,y  x
1 

1 C 1 x
1 C 1 x 1 C 1 x

 

where C is an arbitrary constant.  (The equation also has the singular solution 
 

y  1.)
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3                           2 

1/ 2 

dy                                 1      x
2

11.       For y  0 separating variables gives     x dx , so that         
y                                 2 y 

 C , or 
2

 

y  x  
 

C  x
2
 

1/ 2 

, where C is an arbitrary constant.  Likewise y  x   C  x
2 
  

for
                

y  0 .  (The equation also has the singular solution 
 

y  0 .)
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12.       Separating variables gives 
    y     

dy 
y2 1 

 

x dx , so that 
1 

ln  y
2 
1   

 1 
x

2 
 C , or 

2                    2

 

y
2 
1  Ce

x   
, or 

 

y    
 

Ce
x   
1 , where C is an arbitrary nonzero constant.

 

 

13.       Separating variables gives 
 

C is an arbitrary constant. 

y
3
 

dy    cos x dx , so that 
y4 1 

1 
ln  y

4 

4 
1  sin x  C , where

 

14.       For x, y  0 separating variables gives 1 y dy   1 x dx , so that

y  
 2 

y
3/2  

 x  
 2 

x
3/2  

 C , where C is an arbitrary constant. 
3                3 

 

 

15.       For 
 

x  0 and y  0, 
  2  2      1             1     1  

separating variables gives          dy         dx , so that

2                                                 y
2        

y
4
 x    x

2

 
 2 
 

 1   
 ln x  

1 
 C , where C is an arbitrary constant. 

y    3y
3                          

x 
 

 

16.       Separating variables gives
  

tan y dy 
     x    

dx , so that  ln cos y  
 1 

ln 1 x
2   C , or

            1 x
2                                                                  

2

sec y  C 1 x
2  

, or y  x  sec
1 C 1 x2  , where C is an arbitrary positive constant.

 

17.       Factoring gives y 1 x  y  xy  1 x 1 y , and then for y  1 separating varia-

bles gives    
   1    

dy 
1 y 

 

1 x dx , so that ln 1 y  x  
1 

x
2 
 C , where C is an arbitrary 

2

constant.  (The equation also has the singular solution y  1.)

 

18.       Factoring gives x2 y  1 x2   y2   x2 y2   1 x2  1 y2  , and then 

for 

x  0 separating

 

variables gives 
    1     

dy 
1 y2

 

 1  
1dx , so that tan

1  
y 

x
2

 

1 
 x  C , or 

x

y  x  tan 
 
C  

1 
 x 

 
, where C is an arbitrary nonzero constant.

 
       

x      
 

 
 

 19.       For 
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y  0 
               


 

 

1             
x
 

separ

ating 

varia

bles 

gives 

 y 
dy  

 e 

dx , 

so 

that 

ln
 

 
 

 
y  e

x 
 C , or

y  C exp ex  , where C is an arbitrary positive constant, or finally y  C exp ex  ,

where C is an arbitrary nonzero constant.  The initial condition y 0  2e implies that

C  exp e0   2e , or C  2 , leading to the particular solution y  x  2exp ex  .
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20.       Separating variables gives 
    1     

dy 
1 y2

 

 

 3x
2
dx , or tan

1 
y  x

3 
 C .  The initial condi-

 

tion
 
y 0 1 implies that C  

 
, leading to the particular solution

 
y  x  tan 

 
x

3 
 
  

.

4                                                                          
        

4 
 

 
 
 

21.       For 

 
 

 
x  4 

 

 
 
 

separating variables gives 

 
 

 

 2 y dy  

           
 

 

      x      
dx , so that 

x
2 
16

y
2    
 x

2 
16  C .  The initial condition y 5  2 implies that C 1, leading to the

 

particular solution 

 

y  x    1

 

x
2  
16 .

 

 

22.       For 
 

y  0 
1 

separating variables gives   dy   4x
3 
1dx , so that ln y  x

4 
 x  C , or

 

y  Ce
x   x 

, where C is an arbitrary positive constant, or 

 

y  Ce 

 

x4 x 
 

, where C is an arbi-

 

trary nonzero constant. The initial condition y 1  3 implies that C  3 , leading to

 

the particular solution y  x  3ex   x .

 

 

23.       Rewriting the differential equation as 
dy 

 2 y 1, we see that for 
dx 

y  
 1 
2 

 

separating vari-

ables gives    
    1     

dy 
2 y 1 

dx , so that  
1 

ln 2 y 1  x  C , or 
2 

 

2 y 1  Ce
2 x 

, where C is

 

an arbitrary positive constant, or finally 2 y 1  Ce
2 x 

, which is to say y  
 1 
Ce

2 x  
1 ,

 

where C is an arbitrary nonzero constant.  The initial condition y 1 1 implies that

C  
 1 

, leading to the particular solution
 

y  x  
 1   1 

e
2 x  
1

 
 

 1 
e2 x2  

1 .
e2                                                                                                                      2 

 
e2                       2 

 
 
 

24.       For 

               
 

 

1 
y  0 and 0  x   , separating variables gives  y 

dy   cot x dx , so that

lny  ln sin x  C , or y  C sin x , where C is an arbitrary positive constant.  The initial

 

condition
 

y 
   

 


implies that C  
 

, leading to the particular solution
 
y  

 
sin x .

    
    
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2 

2 

 

25.       Rewriting the differential equation as x 
dy 

 2x
2 
y  y , we see that for 

dx 

 

x, y  0 separating

1                   1 
variables gives  y 

dy   2x  
x 

dx , so that ln
 

 

y  x
2 
 ln x  C , or 

 

y  C x e
x   

, where

 

C is an arbitrary positive constant, or 
 

y  Cxe
x
 

 

, where C is an arbitrary nonzero con-
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stant.  The initial condition 
 

x2 1
 

y 1 1 implies that C  
 1 

, leading to the particular solution 
e

y  x  xe     . 
 

 

26.       For 
 

y  0 
 

separating variables gives 
 1  

dy 
y 

2x  3x
2 
dx , so that  

1 
 x

2 
 x

3 
 C , or 

y

y  
     1       

.  The initial 

condition 
x2  x3  C 

 

y 1  1 implies that C  1 , leading to the par-

 

ticular solution y  x        
1       

. 
1 x

2 
 x

3

27.       Separating variables gives  e
y
dy   6e

2 x
dx , so that e

y  
 3e

2 x  
 C , 

or 

y  ln 3e2 x   C  .

The initial condition 

y  x  ln 3e
2 x  
 2 . 

y 0  0 implies that C  2 , leading to the particular solution

 

 

28.       For 
 

x  0 and y  
 
 k , k integer, separating variables gives  sec

2  
y dy   

 1    
dx ,

 
 

so that tan y 

2 
 

x  C , or 

 

y  x  tan
1 

 

x  C  .  The initial condition 

2 

y 4  

4 

x 
 

im-

plies that C  1 , leading to the particular solution y  x  tan
1  x 1 .

 

 

29.       (a) For 

 

 

y  0 

 

 

separation of variables               6 

 

Problem 29c

 

gives the general solution 
 1  

dy    dx 
y                          4

, so that  
1 
 x  C , or 

y 
y  x  

   1   
. 

C  x              2

(b) Inspection yields the singular solu-
 

tion y  x  0 that corresponds to no           
y  

0
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value of the constant C. 

(c) The figure illustrates that there is a           −2 

unique solution curve through every 
point in the xy-plane.                                      −4 

30.       The set of solutions of  y
2  
 4 y is the 

 

−6 
−6        −4        −2          0           2           4           6

union of the solutions of the two differ-                                             x
ential equations y  2 y , where y  0

 

.  For 
 

y  0 

 

separation of variables applied to 

 

y  2 
  1   

y gives   
y 

dy   2 dx , so that
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y  x  C , or y  x   x  C 
2 
; replacing C with C gives the solution family indicated

 

in the text. The same procedure applied to y  2 
 

y  leads to

y  x  x  C 
2  
  x  C 

2 
, again the same solution family (although see Problem 31

and its solution).  In both cases the equation also has the singular solution 

which corresponds to no value of the constant C. 

y  x  0 ,

(a) The given differential equation  y
2  
 4 y 

a,b if b  0 , simply because  y
2  
 0 . 

 

has no solution curve through the point

 

(b) If b  0 , then we can combine branches of parabolas with segments along the x-axis 
(in the manner of Problems 27-32, Section 1.3) to form infinitely many solution curves 

through a,b that are defined for all x. 

(c) Finally, if b  0 , then near a,b there are exactly two solution curves through this 

point, corresponding to the two indicated parabolas through a,b , one ascending, and 

one descending, with increasing x.  (Again, see Problem 31.) 

31.       As noted in Problem 30, the solutions of the differential equation dy  dx
2  
 4 y consist

of the solutions of dy dx  2 y  together with those of dy  dx  2 
 

y , and again we

 

must have 
 

y  0 .  Imposing the initial condition y a  b , where b  0 , upon the general

 

solution y  x   x  C 
2

 found in Problem 30 gives b  a  C 
2 
, which leads to the two 

2

values C  a  b , and thus to the two particular solutions y  x   x  a  b  .  For

these two particular solutions we have ya  2 b , where corresponds to

dy dx  2 y  and corresponds to dy  dx  2 
 

y .  It follows that whereas the solu-

tions of dy  dx
2  
 4 y through a,b contain two parabolic segments, one ascending

and one descending from left to right, the solutions of dy dx  2 y  through a,b (the

black curves in the figure) contain only ascending parabolic segments, whereas for

dy  dx  2 y the (gray) parabolic segments are strictly descending.  Thus the answer to

the question is “no”, because the descending parabolic segments represent solutions of

dy  dx
2  
 4 y 

to parts (a)-(c): 

but not of dy dx  2 y .  From all this we arrive at the following answers



Copyright © 2015 Pearson Education, Inc.  

(a) No solution curve if b  0 ; 

(b) A unique solution curve if b  0 ; 

(c) Infinitely many solution curves if b  0 , because in this case (as noted in the solution

for Problem 30) we can pick any c  a and define the solution
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 x  c
2

 

2         2 


dy 
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0        if x  c

y  x  


. 
if x  c

Problem 31 
 
 
 
 

75 
 

 
 

50 

y 

 
25 

 

 
 

0 

Problem 32 
4 

 
 
 
 
 

 
1 

 

y  
0

 

 
−1

 

 
 

−15      −10       −5          0           5          10         15 
x 

−4 
−4                                                                            4 

x

 
 

32.       For 
 

y 1 separation of variables gives  
   1      

dy  
y   y

2 
1 

 

dx . We take the inverse secant

function to have range 

0, 
  

 
  

, 
 

, so that  
 d  

sec
1  

y  
       1       

,
  

y 1.  Thus if

    
                                                 y    y

2 
1

 

y  1, then the solutions of the differential equation are given by x  sec
1 

y  C , or

y  x  sec x  C  , where C  x  C  

2 

 

.  If instead 
 

y  1, then the solutions are given

 

by x  sec
1 

y  C , or y  x  secC  x , where C   x  C  

2 

 

.  Finally, the equa-

tion also has the singular solutions 

answers for (a)-(c): 

y  x  1 and y  x  1.  This leads to the following

(a) If 1 b 1 , then the initial value problem has no solution, because the square root of 

a negative number would be involved.

(b) As the figure illustrates, the initial value problem has a unique solution if b 1.

 

(c) If b 1 (and similarly if b  1), then we can pick any c  a 

1                  if x  c 

 

and define the solution
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y  x




sec  x  c

 

if c  x  c  
 . 
2

So we see that if b  1, then the initial value problem has infinitely many solutions.



Copyright © 2015 Pearson Education, Inc. 
 

0 

0 

N 0            0 6 

 e 

Section 1.4   35 
 

 

33.       The population growth rate is k  ln 30000 25000 10  0.01823, so the population of

the city t years after 1960 is given by P t   25000e
0.01823t 

.  The expected year 2000 pop-

ulation is then P 40  25000e
0.0182340  

 51840 .

 

 

34.       The population growth rate is k  ln 6 10  0.17918 , so the population after t hours is

given by P t   P e
0.17918t 

.  To find how long it takes for the population to double, we

therefore need only solve the equation 2P  P e
0.17918t for t, finding

 

t  ln 2
0          0 

0.17198  3.87 hours.

 

 

35.       As in the textbook discussion of radioactive decay, the number of 
14

C  atoms after t years

is given by N t   N e0.0001216t 
.  Hence we need only solve the equation

 
1            N  

e
0.0001216t 

for the age t of the skull, finding t  
     ln 6       

 14735 
0.0001216 

 

years.

 

36.       As in Problem 35, the number of 
14 

C atoms after t years is given by 

N t   5.010
10 

e
0.0001216t 

.  Hence we need only solve the equation

4.61010   5.01010 

e0.0001216t
 

for the age t of the relic, finding

t  ln 5.0 4.6 0.0001216  686 years.  Thus it appears not to be a genuine relic of the

time of Christ 2000 years ago. 

37.       The amount in the account after t years is given by At   5000e
0.08t 

.  Hence the amount

in the account after 18 years is given by A18  5000e
0.0818  

 21,103.48 dollars.

 

 

38.       When the book has been overdue for t years, the fine owed is given in dollars by 

At   0.30e
0.05t 

.  Hence the amount owed after 100 years is given by

A100  0.30e
0.05100  

 44.52 dollars.

 

 

39.       To find the decay rate of this drug in the dog’s blood stream, we solve the equation
1              5k 

2 
(half-life 5 hours) for k, finding k  ln 2 5  0.13863 .  Thus the amount in
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0 

0 

2 

0 

the dog’s bloodstream after t hours is given by At   A e
0.13863t 

.  We therefore solve the

equation A1  A e
0.13863  

 50 45  2250 for A
0 
, finding A0   2585 mg, the amount to

anesthetize the dog properly. 

40.       To find the decay rate of radioactive cobalt, we solve the equation 1   e
5.27k (half-life

5.27 years) for k  ln 2 5.27  0.13153 .  Thus the amount of radioactive cobalt left af-

ter t years is given by At   A e
0.13153t 

.  We therefore solve the equation
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A t   A0e  0.01A0 for t, finding t  ln100 0.13153  35.01 years.  Thus it will

be about 35 years until the region is again inhabitable. 

41.       Taking t  0 when the body was formed and t  T now, we see that the amount Q t  of

238 U in the body at time t (in years) is given by Q t   Q e
kt 

, where 

k  ln 2 4.5110
9  .  The given information implies that  

   Q(T)    
 0.9 .  Upon sub- 

Q0  Q(T )

stituting Q t   Q0e 
kt we solve readily for e

kT  
 19 9 , so that

T  1 k  ln 19 9  4.8610
9 

.  Thus the body was formed approximately 4.86 billion 

years ago. 

42.       Taking t  0 when the rock contained only potassium and t  T now, we see that the

amount Q t of potassium in the rock at time t (in years) is given by Q t   Q
0
e 
kt 

,

where k  ln 2 1.2810
9  .  The given information implies that the amount At  of

argon at time t is At    1 [Q  Q t ] and also that AT   Q T  .  Thus

9       0

Q0  Q(T )  9Q(T ) .  After substituting Q T   Q0e 
kT we readily solve for

T  ln10  ln 2  1.2810
9   4.2510

9  
.  Thus the age of the rock is about 1.25 billion 

years. 

43.       Because A  0 in Newton’s law of cooling, the differential equation reduces to T   kT

, and the given initial temperature then leads to T t   25e
kt 

.  The fact that T 20  15

yields k  1 20 ln 5 3 , and finally we solve the equation 5  25ekt
 for t to find

t  ln 5 k  63 min.

 

44.       The amount of sugar remaining undissolved after t minutes is given by At   A0e 
kt ; we

find the value of k by solving the equation A1  A0e   0.75A0  for k, finding

k   ln 0.75  0.28768 .  To find how long it takes for half the sugar to dissolve, we solve

the equation At   A ekt    1  A for t, finding t  ln 2 0.28768  2.41 min.

0                 2     0 
 

45.       (a) The light intensity at a depth of x meters is given by I  x  I e
1.4 x 

.  We solve the

equation I  x  I e
1.4 x  

  1 I for x, finding x  ln 2 1.4  0.495 meters.
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0                                  0 

0                     2    0
 

(b) At depth 10 meters the intensity is I 10  I e
1.410  

 (8.3210
7 

)I 
 

, that is, 0.832 of

one millionth of the light intensity I
0  

at the surface.

 

(c) We solve the equation 

meters. 

I  x  I e
1.4 x  

 0.01I 

 

for x, finding x  ln100 1.4  3.29



Copyright © 2015 Pearson Education, Inc. 
 

Section 1.4   37 
 

 

46.       Solving the initial value problem shows that the pressure at an altitude of x miles is given

by  p  x  29.92e
0.2 x

 inches of mercury.

 

(a) Hence the pressure at altitude 10000 ft is p 10000 5280  20.49 inches of mercury,

and likewise the pressure at altitude 30000 ft is 

ry. 

p 30000 5280  9.60 inches of mercu-

(b) To find the altitude where p  15 inches of mercury we solve the 29.92e
0.2 x  

 

15 

for

x¸ finding x  ln 29.92 15 0.2  3.452 miles 18, 200 ft .

 

47.       If N t  denotes the number of people (in thousands) who have heard the rumor after t

days, then the initial value problem is N   k 100  N  , N 0  0 .  Separating variables

leads to ln 100  N   kt  C , and the initial condition N (0)  0 gives C  ln100 .

Then 100  N  100e
kt 

, so N t   100 1 e
kt  .  Substituting N 7  10 and solving for

k gives k  ln 100 90 7  0.01505 .  Finally, 50,000 people have heard the rumor after

t  (ln 2) / k  46.05 days, by solving the equation 100 1 e
kt   50 

 

for t.

 

48.       Let N8 t and N5 t be the numbers of 238 U and 235 U atoms, respectively, at time t (in

billions of years after the creation of the universe).  Then N8 t   N0e 
kt and

N5 t   N0e 
ct , where N

0   
is the initial number of atoms of each isotope.  Also,

 

k  ln 2
 

4.51 and c  ln 2
 
0.71 from the given half-lives.  Since 

N
8 t  137.7 at 

N5 t 

present, dividing the equations for N8 t and N5 t shows that e (ck )t  137.7 at pre-

sent, and solving for t gives t  ln137.7 c  k   5.99 .  Thus we get an estimate of 

about 6 billion years for the age of the universe. 
 

49.       Newton’s law of cooling gives 
dT 

 k 70  T  , and separating variables and integrating 
dt
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lead to ln T  70  kt  C .  The initial condition T 0  210 gives C  ln140 , and

then T 30  140 gives ln 70  30k  ln140 , or k  ln 230 , so that

T t   e
kt C  

 70  140e
kt  

 70 .  Finally, setting T t   100 gives 140ekt   70  100 , or

t  ln 14 3 k  66.67 minutes, or 66 minutes and 40 seconds.
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50.       (a) The initial condition implies that At   10e
kt 

.  The fact that At  triples every 7.5

years implies that 30  A(15 )  10e
15k  2 

, which gives e
15k  2  

 3 , or k  
 2ln 3 

 ln 3
2 15 

.
 

2                                                                                                                       
15 

k   t                      tThus At   10e    10 3
2  15 

.

 

(b) After 5 months we have A5 10 3
2/3  

 20.80 pu .

 
(c) 

 

At   100 

 

gives 10 3
2t 15  

 100 , or t  
15 

 
ln 10 

 15.72 years. 
2    ln 3

51.       (a) The initial condition gives At   15e
kt 

, and then A5 10 implies that 15e
kt  

 10 ,

or e
kt  
 

 3 
, or k  

 1 
ln 

 3 
.  Thus

2              5    2 
 

At   15exp
 
 

 t 
ln 

 3  
 15

 3 

 

 
t 5 

 

 
t 5 

 15
      

.
   

5    2 
        

2 
             

3 


                                     
 

8 5  

(b) After 8 months we have A8  15
 2 
   

 
t 5

 

 

 7.84 su . 
 
 

 1 
 

(c) At  1 when At   15
 2 
   

 1, that is t  5 
ln(

15 
) 
 33.3944 .  Thus it will be safe 

ln( 2 )

to return after about 33.4 months. 

52.       If L t  denotes the number of human language families at time t (in years), then

L t   e
kt

 for some constant k.  The condition that L 6000  e
6000k  

 1.5 gives

k  
   1   

ln 
 3 

.  If “now” corresponds to time t  T , then we are given that 
6000    2

L T   e
kT  3300 , so T  

 1 
ln 3300  6000 

ln 3300 
 119887.18 .  This result suggests

k                         ln(3 2) 

that the original human language was spoken about 120 thousand years ago. 

53.       As in Problem 52, if L t  denotes the number of Native American language families at

time t (in years), then L t   e
kt

 for some constant k, and the condition that

L 6000  e
6000k  

 1.5 gives k  
   1   

ln 
 3 

.  If “now” corresponds to time t  T , then we 
6000    2

 are given that 
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L T   e
kT  
 150 , so T  

 1 
ln150  6000 

 ln 150  
 74146.48 .  This result

k                       ln(3 2) 

suggests that the ancestors of today’s Native Americans first arrived in the western hemi- 

sphere about 74 thousand years ago.
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54.       With A y constant, Equation (30) in the text takes the form  
dy 

 k   y , which we 
dt

readily solve to find 2   y  kt  C .  The initial condition y 0  9 yields C  6 , and then

y 1  4 yields k  2 .  Thus the depth at time t (in hours) is 

takes 3 hours for the tank to empty. 

y t   3  t 
2 
, and hence it

55.       With A   32
 and a   (1 12)2 

, and taking g  32 ft/sec
2 
, Equation (30) reduces to

162 y    y , which we solve to find 324   y  t  C .  The initial condition y 0  9

leads to C  972 , and so y  0 when t  972 sec , that is 16 min 12 sec.

 

56.       The radius of the cross-section of the cone at height y is proportional to y, so A y is

 

proportional to y
2 
.  Therefore Equation (30) takes the form y

2 
y  k   y , and a general

solution is given by 2 y
5  2  

 5kt  C .  The initial condition y 0 16 yields C  2048 ,

 

and then 

 

y 1  9 
 

gives 5k 1562 .  Hence y  0 when t  
 C  

 
 2048 

 1.31 hr .

5k    1562 

57.       The solution of  y  k   y is given by 2   y  kt  C .  The initial condition y 0  h

(the height of the cylinder) yields C  2 h .  Then substituting t  T 
2 

 

and 
 

y  0 gives

 

k  2
  

h T .  It follows that
 
y  h 


1 

 t  
 

.  If r denotes the radius of the cylinder, then
     

T 


        
 

2                                  2

          2                   2    
  t             t  

V   y    r y   r h1 
T 
  V

0 1 
T 
  .

                         

58.       Since x  y
3 4 

, the cross-sectional area is A y   x2  
  y3 2 

.  Hence the general equa-

 

tion A y  y  a 
 

2gy 
 

reduces to the differential equation yy  k 
 

with general solu-

 

tion 
1 

y
2  
 kt  C .  The initial condition 

2 

 

y 0 12 

 

gives C  72 , and then 

 

y 1  6

yields k  54 .  Upon solving for y we find that the depth at time t is 

Hence the tank is empty after t  144 108 hr , that is, at 1:20 p.m. 

y t   144 108t .
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59.       (a) Since x
2  
 by , the cross-sectional area is A y   x2  

 by .  Hence equation (30)

 

becomes 

 

y1/ 2 y  k   a  b
 

2g , with general solution 
2 

y
3 2  

 kt  C .  The initial 
3

condition y 0  4 gives C  16 3 , and then y 1 1 yields k  14 3 .  It follows that

 

the depth at time t is y t   8  7t 
2 3 

.
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(b) The tank is empty after t  8  7 hr , that is, at 1:08:34 p.m.
 

(c) We see above that  k  
 a   
 b 

 

2g  
14 

. Substitution of a   r 2 

3 

 

and b 1 and

 

g  32 3600
2  

ft hr
2

 yields r  
 1     7  

ft 
60   12 

 

 0.15 in 
 

for the radius of the bottom hole.

 

60.       With 
 

g  32 ft sec
2 and a   (  1 )2 , Equation (30) simplifies to A y  

dy 
  


 

y .  If z

12                                                                                                     
dt       18 

denotes the distance from the center of the cylinder down to the fluid surface, then
 

y  3  z 
 

and A y  10 9  z
2

 

1 2  

, with 
dz       dy 

      . Upon substituting, then, the equa- 
dt        dt

tion above becomes 10 9  z
2

 

1 2   dz 

dt 
 
  
3  z 

1 2 
 

18 
, or 180 3 z 

 

dz    dt , or

120 3  z 
1 2  
  t  C .  Now z  0 when t  0 , so 120 3

3  2 
.  The tank is empty when

 

z  3 (that is, when y  0 ), and thus after t  
120 

63 2  33 2   362.90 sec .  It therefore 


takes about 6 min 3 sec for the fluid to drain completely. 
 

61. A y   8 y  y2  as in Example 6 in the text, but now  a  


144 

 

in Equation (30), so

that the initial value problem is 188 y  y2  y   y , y 0  8 .  Separating variables

gives  18 y3 2 
 8y

1 2 dy   dt , or 18
 2 

y
5  2 

 
16 

y
3 2  

 t  C , and the initial condition
 

 
5           3       


                        

gives C  18
 2 

8
5  2 

 
16 

8
3 2  

.  We seek the value of t when
 

 
 

y  0 , which is given by
 

5          3       


                      
C  869 sec = 14 min 29 sec . 

62.       Here A y    1 y2  and the area of the bottom hole is a  104 , so Equation (30)

leads to the initial value problem   1 y
2     dy 

 10
4

dt 

 

29.8 y , 

 

y 0 1, or

y
1/2  

 y
3/2     dy 

 1.410
4 

dt 

 

10 .  Separating variables yields

2 y1/2   
2 

y5/2 

5 

 

  1.410
4

 

 

10 t  C.
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The initial condition y 0 1 implies that C  2  
 2 
 

 8 
, so 

5    5 

 

y  0 after

t  
       8 5        

 3614 sec = 1 hr 14 sec .  Thus the tank is empty at about 14 seconds 

1.410
4    

10 

after 2 pm.
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63.       (a) As in Example 6, the initial value problem is   8 y  y
2     dy 

  k   y , 
dt 

y0  4 ,

where k  0.6r
2
 2g  4.8r

2 
.  Separating variables and applying the initial condition just

as in the Example 6 solution, we find that 
 16 

y
3 2 
 

2 
y

5 2  
 kt  

 448 
.  When we substi- 

3           5                     15
tute y  2 (ft) and t  1800 

sec 
(that is, 30 min) we find that k  0.009469 .  Finally,

y  0 when t  
 448 

 3154 sec  53 min 34 sec .  Thus the tank is empty at 1:53:34 p.m. 
15k

 
(b) The radius of the bottom hole is r 

 

inch. 

 

  k   
 0.04442 ft  0.53 in , thus about half an 

4.8

 

64.       The given rate of fall of the water level is     1   
 4  in  hr    

 

ft sec .  With

dt                         10800

A y   x2
 

2
 

(where y  f  x ) and a   r 
2 , Equation (30) becomes 

2

x    
  r 2 

10800 
2gy  8 r 2

 

 

y , or y  
      x         

.  Hence the curve is of the form 
10800 8r 2

y  kx
4 

, and the diagram shows that y  4 when x 1 , which means that k  4 .  Final-

 

ly, rewriting 
 

y  4x
4  

as 

 

y  2x
2

 shows that  
       1        

 2 , and so the radius r of the 
10800 8r 2

bottom hole is given by  r  
       1        

 
     1   

 

ft =     1     
in  

 

0.02888 in , that is,

 
about 1 35 in . 

 
 

65.       The temperature T t 

4  10800    240  3         20  3 
 
 
 
 

of the body satisfies the differential equation 

 

 
 
 
 

dT 
 k 70  T  . 

dt

Separating variables gives     
   1    

dT 
70  T 

k dt , or (since T t   70 for all t)

ln T  70  kt  C .  If we take t  0 at the (unknown) time of death, then applying the 

initial condition T 0  98.6 gives C  ln 28.6 , and so T t   70  28.6e
kt 

.  Now sup- 

pose that 12 noon corresponds to t  a .  This gives the two equations 

T a  70  28.6eka   80
 
 

 

which simplify to 
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, 
T

 


a

 



1


 


 

7

0

 



 

2

8

.

6

e


k



a



1



 

 



 

7

5 
 

 
2
8
.
6
e


k

a

 

 


 
1
0 

. 
2
8
.
6

e
ka 

e
k  
 5
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These latter equations imply that e
k  
 5 10 1 2 , so that k  ln 2 .  Finally, we can sub- 

stitute this value of k into the first of the previous two equations to find that 

a  
 ln 2.86 

 1.516 hr  1 hr 31 min , so the death occurred at 10:29 a.m. 
ln 2 

66.       (a) Let t  0 when it began to snow, and let t  t0  at 7:00 a.m.  Also let x  0 where the

snowplow begins at 7:00 a.m.  If the constant rate of snowfall is given by c, then the

snow depth at time t is given by y  ct .  If v  dx dt denotes the plow’s velocity (and if

we assume that the road is of constant width), then “clearing snow at a constant rate” 

means that the product yv is constant.  Hence the snowplow must satisfy the differential 

equation
 

 
 
 

where k is a constant. 

k 
 dx 

 
1 

, 
dt    t

1 
(b) Separating variables gives  k dx   t 

dt , or kx  ln t  C , and then solving for t

gives t  Ce
kx 

.  The initial condition x t0   0 gives C  t
0 .  We are further given that

x  2 when t  t0 1 and x  4 when t  t0  3 , which lead to the equations

 

t  1  t e
2k

 

. 
t   3  t e

4k

 
Solving each these for t0 

 

shows that t   
   1    

 
    3    

, and so e4k 
0        

e2k  1    e4k  1 

 

1  3e2k
 

 

1 , or

e4k   3e2k   2  0 , or e2k  1e2k   2  0 , or e2k   2 , since k  0 .  Hence the first of 

the 

two equations above gives t0 1  2t0 , so t0   1.  Thus it began to snow at 6 a.m. 
 

67.       We still have t  t0e , but now the given information yields the conditions

 

t  1  t e
4k

 
 

t   2  t e
7k

 

 

 
 
 
 
4k          7kat 8 a.m. and 9 a.m., respectively.  Elimination of t0 gives the equation 2e  e   1  0 ,

which cannot be easily factored, unlike the corresponding equation in Problem 66.  Let-

ting u  e
k
 gives 2u

4  
 u

7  
1  0 , and solving this equation using MATLAB or other

technology leads to three real and four complex roots.  Of the three real roots, only
u  1.086286 satisfies u 1 , and thus represents the desired solution.  This means that
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k  ln1.086286  0.08276 .  Using this value, we finally solve either of the preceding pair 

of equations for t0   2.5483 hr  2 hr 33 min .  Thus it began to snow at 4:27 a.m.
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68.       (a) Note first that if  denotes the angle between the tangent line and the horizontal, then 

  
 
  , so cot  cot 

  
  

 
 tan   y x .  It follows that

 

2                                
 

2       


          

sin  
         sin         

 
        1        

 
        1        

.
sin

2   cos
2  1 cot

2  1 y x
2

Therefore the mechanical condition that  
sin   

be a (positive) constant with v 
v 

 
2gy

implies that  
            1   

 

is constant, so that y 1  y
2   2a

 
 

for some positive
 

2gy 1  y
2                                                                            

constant a. Noting that y  0 because the bead is falling (and hence moving in the direc-

tion of increasing x), we readily solve the latter equation for the desired differential equa-
 

tion y  
 dy 


2a y 

.

dx           y 
 

(b) The substitution 

 
 

y  2a sin
2 
t , dy  4a sin t cos t dt 

 
 

now gives

 

 

4a sin t cos t dt 
 

Integration now gives 

 

2a  2a sin
2 
t 

2a sin
2 
t 

 

 

dx 

 

cos t 

sin t 

 

 

dx , dx  4a sin
2 
t dt

 

x     4a sin2 t dt  2a
 

1 cos 2t dt  2a 
 
t  

1 
sin 2t 

 
 C  a 2t  sin 2t   C ,

                                        2         


 

 

and we recall that 

                 

y  2a sin
2 

t  a 1 cos 2t  .  The requirement that 

 

 

x  0 when t  0

implies that C  0 .  Finally, the substitution   2t 
tions 

yields the desired parametric equa-

x  a   sin  , y  a 1 cos  .

 

of the cycloid that is generated by a point on the rim of a circular wheel of radius a as it 
rolls along the x-axis.  [See Example 5 in Section 9.4 of Edwards and Penney, Calculus: 
Early Transcendentals, 7

th 
edition (Upper Saddle River, NJ: Pearson, 2008).] 

 

69.       Substitution of v  dy  dx 
 

in the differential equation for y  y  x gives a 
dv 


dx 

 

1 v
2  

,

 

and separation of variables then yields
      1     

dv 
 1 

dx , or sinh
1 

v  
 x 
 C , or
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a a 

 

dy            x        
   

1 v
2                 a                            a      

1

 sinh     C1  .  The fact that 
dx            a        

y0  0 implies that C
1 
 0 , so it follows that

dy 
 sinh 

  x  
, or

 
y  x  a cosh 

  x  
 C .  Of course the (vertical) position of the x-axis

                                   
dx                                              

can be adjusted so that C  0 , and the units in which T and  are measured may be ad-
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2 

x 

x 

x 
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justed so that a 1 .  In essence, then, the shape of the hanging cable is the hyperbolic co-

sine graph y  cosh x .

 

 

SECTION 1.5 
 

LINEAR FIRST-ORDER EQUATIONS 
 

1.         An integrating factor is given by   exp  1dx  e
x 
, and multiplying the differential

equation by  gives e
x 
y  e

x 
y  2e

x 
, or D  ex   y   2ex .  Integrating then leads to

ex  y   2ex dx  2ex   C , and thus to the general solution y  2  Ce
 x 

. Finally, the in-

itial condition y 0  0 implies that C  2 , so the corresponding particular solution is

y  x  2  2e
 x 

. 

 

2.         An integrating factor is given by   exp   2 dx  e
2 x 

, and multiplying the differen-

tial equation by  gives e
2 x 

y  2e
2 x 

y  3 , or D e2 x  y   3. Integrating then leads to

e
2 x 

 y  3x  C , and thus to the general solution y  3xe
2 x 
 Ce

2 x 
.  Finally, the initial

condition y 0  0 implies that .., so the corresponding particular solution is

y  x  3xe
2 x 

. 

 

3.         An integrating factor is given by   exp  3dx  e
3x 

, and multiplying the differential

equation by  gives D  y  e3x   2x . Integrating then leads to y  e
3x  
 x

2 
 C , and

thus to the general solution y  x   x
2  
 C e3x .

 

4.         An integrating factor is given by   exp   2x dx  e
 x2  

, and multiplying the differen-

tial equation by  gives D  y  e
 x2  

  1.  Integrating then leads to 

x2
 

 

y  e
 x    

 x  C , and

thus to the general solution y  x   x  C  e   .
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x 

 

5.         We first rewrite the differential equation for 

 

x  0 as y  
 2 

y  3 .  An integrating factor 
x

is given by   exp

 2 

dx 
 
 e

2 ln x  
 x

2 
, and multiplying the equation by  gives

  x     


           

x
2 
 y  2xy  3 , or D   y  x2   3x2 .  Integrating then leads to y  x

2  
 x

3 
 C , and thus
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x 

x 
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to the general solution y  x  x  
C 

. Finally, the initial condition 
x

2
 

4
 

 

y 1  5 implies that

C  4 , so the corresponding particular solution is y  x  x    
2  

. 
x

 

6.         We first rewrite the differential equation for 

 

x  0 as y  
 5 

y  7x .  An integrating fac- 
x

tor is given by   exp

 5 

dx 
 
 e

5ln x  
 x

5 
, and multiplying the equation by  gives

  x     


           

x
5 
 y  5x

4 
y  7x

6 
, or D  y  x5   7x6 .  Integrating then leads to y  x

5  
 x

7 
 C , and

 

thus to the general solution y  x  x
2 
 

 C 
x

5
 

 

.  Finally, the initial condition 

 

y 2  5 im-

 

plies that C  32 , so the corresponding particular solution is y  x  x
2 
 

32 
. 

x
5

 

7.         We first rewrite the differential equation for 
 

x  0 as y  
 1  

y  
 5   

.  An integrating 
2x          x

factor is given by   exp

  1  

dx 
 
 e

ln x 2  

  

x , and multiplying the equation by 
  2x     


             

 

gives x  y  
  1    

y  5 , or D
  y 


x   5 . Integrating then leads to  y 

 

x  5x  C ,

2   x                    
x

 

and thus to the general solution 

 

y  x  5 x  
 C   

. 
x

 

 

8.         We first rewrite the differential equation for 

 

x  0 as y  
 1  

y  4 .  An integrating fac- 
3x

 

tor is given by
 
  exp


  1  

dx 
 
 e

ln x 3  
 3  x , and multiplying the equation by 

  3x     


 
 

gives 

             

3  x  y  
1 

x
2 3 

y  4 3  x , or 
3 

 

D  y  3  x   4 3  x . Integrating then leads to

y  3  x  3x4 3  C , and thus to the general solution y  x  3x  Cx
1 3 

.

 

 

9.         We first rewrite the differential equation for 

 

x  0 as y  
 1 

y  1 .  An integrating factor 
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x

is given by   exp


 

 1 
dx 
 
 

 1 
, and multiplying the equation by  gives

    x     
    

x
 

              

1 
y  

 1  
y  

 1 
, or D

  
y  

1  
 

 1 
.  Integrating then leads to

 
y  

1 
 ln x  C , and thus to

x        x
2              

x
 x      

x 
    

x                                                 x
        
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x 

x 
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the general solution y  x  x ln x  Cx . Finally, the initial condition y 1  7 implies

that C  7 , so the corresponding particular solution is y  x  x ln x  7x .

 

 

10.       We first rewrite the differential equation for 
 

x  0 as y  
 3  

y  
 9 

x
2 

.  An integrating

2x       2

factor is given by   exp

  3  

dx 
 
 e

3ln x 2  
 x

3 2 
, and multiplying by  gives

  2x     


             

x
3 2 

 y  
 3 

x
5 2 

y  
 9 

x
1 2 

, or      
  

3 2 


 
9  1 2

2              2             
Dx

 
y  x     x   .  Integrating then leads to 

2

y  x
3 2  

 3x
3 2 
 C , and thus to the general solution y  x  3x

3 
 Cx

3 2 
.

 
 

11.       We first collect terms and rewrite the differential equation for
 

 

x  0 as
 
y  

 1 
 3

 
y  0

 
x      


         

.  An integrating factor is given by

  exp 
  1 

 3
 
dx
 
 e

ln x3x  
 xe

3x 
,

  x      
    


               

and multiplying by  gives xe
3x 

 y  e3x  
 3xe

3x  y  0 , or D  y  xe
3x   0 .  Inte-

grating then leads to y  xe
3x  

 C , and thus to the genral solution y  x  Cx
1

e
3x 

.  Final-

ly, the initial condition y 1  0 implies that C  0 , so the corresponding particular solu-

 

tion is y  x  0 , that is, the solution is the zero function.

 

 

12.       We first rewrite the differential equation for 

 

x  0 as y  
 3 

y  2x
4 
.  An integrating fac- 

x

tor is given by   exp

 3 

dx 
 
 e

3ln x  
 x

3 
, and multiplying by  gives

  x     


           
 

x
3 
 y  3x

2 
y  2x

7 
, or D  y  x

3   2x
7 
.  Integrating then leads to y  x

3  
 

 1 
x

8 
 C , and 

4

 

thus to the general solution y  x  
 1 

x5  Cx3 
.  Finally, the initial condition 

4 
y 2  1

 

implies that C  56 , so the corresponding particular solution is y  x  
 1 

x5  56x3 
. 
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x 

4
 

13.       An integrating factor is given by   exp  1dx  e
x 
, and multiplying by  gives

 

e
x 
 y  e

x 
y  e

2 x 
, or D  y  e

x   e
2 x 

.  Integrating then leads to y  e
x  
 

 1 
e

2 x 
 C , and 

2

 

thus to the general solution y  x  
 1 

ex   Ce x 
.  Finally, the initial condition 

2 
y 0  1
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   

2 

x 
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implies that C  
 1 

, so the corresponding particular solution is 
2 

y  x  
 1 

ex   
1 

e x 
, that 

2        2

is, y  cosh x .

 

 

14.       We first rewrite the differential equation for 

 

x  0 as y  
 3 

y  x
2 
. An integrating factor 

x

is given by   exp


 

 3 
dx 
 
 x

3 
, and multiplying by  gives

 
x
3 
 y  

 3  

y  x
1 

, or
    x     

                                                                        
x

4
 

Dx 
 
y  x 

 

3 
 
 x

1 

              

.  Integrating then leads to 

 
y  x

3
 

 
 ln x  C , and thus to the general so-

lution y  x  x
3 
ln x  Cx

3 
.  Finally, the initial condition y 1  10 implies that C  10 ,

 

so the corresponding particular solution is y  x  x
3 
ln x  10x

3 
.

 

 

15.       An integrating factor is given by   exp  2x dx  e
x2  

, and multiplying by  gives
 

2                                        2                             2 

 

x2                        x2 x
2            1  x

2

ex    y  2xex
 y  xex

 , or Dx  y  e   xe 
 

1
 

.  Integrating then leads to 
 

 
2

 

y  e     e    C 
2

, and thus to the general solution y  x      Ce x
 

2 
. Finally, the initial condition

y 0  2 implies that C 
5 

, so the corresponding particular solution is 
2

y  x  
1 
 

5
 

2    2 

 

e
 x   

.

16.       We first rewrite the differential equation as y  cos x y  cos x .  An integrating factor

is given by   exp  cos x dx  e
sin x 

, and multiplying by  gives

e
sin x 

 y  e
sin x cos x y  e

sin x 
cos x , or D   y  esin x   esin x cos x . Integrating then leads to

y  e
sin x  

 e
sin x 

 C , and thus to the general solution y  x  1 Ce
 sin x 

.  Finally, the initial

 

condition y    2 implies that C  1, so the corresponding particular solution is

y  x  1 e
 sin x 

. 
 

 
 

17.       
We first 
rewrite 
the 
different

ial equation for 
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

 

 
 
 
 

x  1 as 

 

 
 
 

y  
  1    

y  
 cos x 

.  An 

integrat-
1 x 1 x

 

ing factor is given by
 
  exp





   1   
dx 
 
 1 x , and multiplying by  gives 



   
1 x     



1 x y  y  cos x (which happens to be the original differential equation), or

D
x     

y  1 x
 

 cos x .  Integrating then leads to y  1 x  sin x  C , and thus to the
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

x 
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general solution y  x  
 sin x C 

.  Finally, the initial condition 
1 x 

 

y 0  1 implies that

 

C  1, so the corresponding particular solution is y  x  
1 sin x 

. 
1 x

 

18.       We first rewrite the differential equation for 

 

x  0 as y  
 2 

y  x
2 
cos x .  An integrating 

x

 

factor is given by
 
  exp



 

 2 
dx 
 
 x

2 
, and multiplying by  gives

    x     


              

x
2 
 y  

 2 
x

3
 

 

y  cos x , or D  y  x
2   cos x .  Integrating then leads to 

 

y  x
2  
 sin x  C

, and thus to the general solution y  x  x
2 sin x  C  .

 

 

19.       For x  0 an integrating factor is given by   exp  cot x dx  e
ln(sin x )  

 sin x , and mul-

tiplying by  gives sin x  y  cos x y  sin x cos x , or Dx  y  sin x  sin x cos x .  In-

 

tegrating then leads to y  sin x  
 1 

sin
2 

x  C , and thus to the general solution 
2

y  x  
 1 

sin x  C csc x . 
2 

20.       We first rewrite the differential equation as 
 

x2 

y  1 x y  1 x .  An integrating factor is

given by   exp  1 x dx  e 
x
 

2  , and multiplying by  gives

      

 
x2                                                                x2                                                          x2

 
 
x2                                                         x2

 x                                            x                                       x         x   x   

e     2   y  1 x e 2  y  1 x e 2  , or D
x  

y  e 2       1 x e 2  .  Integrating

              
x2                                x2 

 x                     x   

then leads to y  e     2
 

x2 

 e 2    C , and thus to the general solution

y  x  1 Ce 
 x    

2  .  Finally, the initial condition y 0  0 implies that C  1, so the 

x2
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x 

corresponding particular solution is y  x  1 e 
 x    

2  .

 

 

21.       We first rewrite the differential equation for 

 

x  0 as y  
 3 

y  x
3 
cos x .  An integrating 

x

factor is given by   exp


 

 3 
dx 
 
 e

3ln x  
 x

3 
, and multiplying by  gives

    x     


              

x
3 
 y  3x

4 
y  cos x , or D  y  x3   cos x .  Integrating then leads to
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2                
3 


          



3 2                                             1 2                                       1 2  

2                             2 

2 

3 

3 

2 

x 
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y  x
3  
 sin x  C , and thus to the general solution y  x  x

3 
sin x  Cx

3 
. Finally, the

initial condition y 2   0 , so the corresponding particular solution is y  x  x
3 
sin x .

 

22.       We first rewrite the differential equation as y  2xy  3x
2
e

x
 .  An integrating factor is

given by   exp   2x dx  e
 x2  

, and multiplying by  gives e
 x2  

 y  2xe
 x2 

y  3x
2 
,

 

or Dx  y  e
 x2 

  3x
2 
.  Integrating then leads to 

 

y  e
 x    

 x   C , and thus to the general

 

solution y  x   x
3  
 C e

 x2  

. Finally, the initial condition y 0  5 implies that C  5 ,

 

so the corresponding particular solution is y  x  x
3  
 5e

 x2  

.

 

 

23.       We first rewrite the differential equation for
 

 

x  0 as
 
y  

 
2  

 3  
y  4x

3 
.  An integrat-

      
x 


 

 

ing factor is given by
 
 

  exp



         

2  
 3 

dx 
 
 exp 2x  3ln x  x

3
e

2 x 
, and multiplying

      x     


 

by  gives 

                

x3e2 x  y  2x3   3x4 e2 x y  4e2 x , or 

 

D  y  x
3

e
2 x   4e

2 x 
.  Integrating

then leads to y  x
3

e
2 x  
 2e

2 x  
 C , and thus to the general solution y  x  2x

3 
 Cx

3
e
2 x 

.

 

 

24.       We first rewrite the differential equation as y    
3x    

y      
x    

.  An integrating factor 
x

2 
 4       x

2 
 4

is given by   exp

    3x   

2 
dx 
 
 exp 

 3
 
ln  x2

 

 4   x
2

 

 4
 
3 2  

, and multiplying by

 
 x   4            2                 

 gives  x
2  
 4    y  3x x

2  
 4   y  x  x

2  
 4  , or

D   y 


3/2                                    1/2 

x   4        x  x   4     .  Integrating then leads tox                      
 

3 2        1 

y   x
2 
 4     

          
 

3 2  

x   4      C , and thus to the general solution                              
 

y  x   
 1 
 C  x

2 
 4

  
3 2 

  
Finally, the initial condition 

 

y 0  1 implies that C  
16 

, so                             . 
 

1              2

 
3 

3 2 
the corresponding particular solution is y  x  

116 x  4    .
3                           
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

 

25.       We first rewrite the differential equation as 

 

y 
3x3 

y 
x2 1 

6x 

x
2 
1 

 
3 

x
2 

e 2
 

 

.  An integrating

     3x
3            

factor is given by   exp  dx  .  Long division of polynomials shows that 
x

2 
1

 

 

3x
3
 

x
2 
1 

 

 

 3x 

 

 

3x 

x
2 
1 

                 
 

, and so
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


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              3x  
 

           3        3
 

                3 2 
 3 

x2

  exp 


3x 


dx   exp 


x2  


ln  x2  

1   x
2  
1


e2      .

 
      x2  1 

 

          2        2                

Multiplying by  gives 
 

3 2 
 

 

 
3 

x2 

 

 
 
5 2

 

 

 
3 

x2 

 

 
 
5 2

 x2  1 e2       y  3x3 x2  1 e2     y  6x  x2  1   ,

 

or (as can be verified using the product rule twice, together with some algebra)

D    y   x2  1

 

3/2 
3 

x2 
e2 

 6x  x2  1

 

5/2 
 

.  Integrating then leads to

x                             
                            

 
3/2 

y   x  1 

 

 
 

3 
x

2 

e2
 

 
 
 

  6x x
2  
1

 
 
 
5/2 

 
 
 

dx  2 x
2  
1

 
 
 
3/2 

 
 

 
 C ,

 
and thus to the general solution 

 

y  2  C x
2  
1

 
3/2 


 

 
3 

x
2 

e 2
 

 
. Finally, the initial condi-

tion y 0  1 implies that C  3 , so the corresponding particular solution is

 

y  2  3 x
2  
1

 
3/2 


 
3 

x
2 

e 2     .

 
The strategy in each of Problems 26-28 is to use the inverse function theorem to conclude that at

points  x, y
 

where 
dy 

 0 , x is locally a function of y with 
dx 

dx 
 
dy 

 1 .  Thus the given differ- 
dy  dx

ential equation is equivalent to one in which x is the dependent variable and y as the independent 

variable, and this latter equation may be easier to solve than the one originally given.  It may not 

be feasible, however, to solve the resulting solution for the original dependent variable y. 

26.       At points  x, ywith 1 4xy
2  
 0 and y  0 , rewriting the differential equation as

dy         y
3

 


 
shows that 

dx    1 4xy
2 

               , or (putting x for 
dx 

) 
 

x 
4 

x   
1  

, a linear

dx    1 4xy2
 dy         y3

 dy           y        y
3

equation for the dependent variable x as a function of the independent variable y.  For

y  0 , an integrating factor is given by   exp
 4 

dy 
 
 y

4 
, and multiplying by 

  y     


 
 

gives 

 
 

y
4 
 x  4 y

3 
x  y , or 

           

D   x  y
4   y . Integrating then leads to 

 

x  y
4  
 

 1 
y

2 
 C , 

2

1      C
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and thus to the general (implicit) solution x  y      
2  
   

4  
. 

2 y      y
 
 

27.       At points  x, y
 

with 
 

x  ye
y  
 0 , rewriting the differential equation as 

dy 
 

     1   
dx     x  ye y

 

shows that 
dx 

 x  ye
y 
, or (putting x for  

dx 
) 

 

x  x  ye
y 
, a linear equation for the

dy                                                dy 

dependent variable x as a function of the independent variable y.  An integrating factor is
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          



2                                        

2 

2 



x 


x 
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given by   exp  1dy  e
 y 

, and multiplying by  gives e
 y 
 x  e

 y 
x  y , or

Dy 
 

x  e  y 
 

 y .  Integrating then leads to 

 

x  e
 y

  
 1 

y
2 

2 

 

 C , and thus to the general (im-

 

plicit) solution
 
x  y   

 1 
y

2 
 C 

 
e

y 
.

 
2           


              

 
 

28.       At points  x, y
 

with 1  2xy  0 , rewriting the differential equation as 
dy 


dx 

1 y
2

 

1 2xy

 

shows that 
dx 

 
1 2 xy 

, or (putting x for  
dx 

) x  
  2 y    

x  
   1     

, a linear equation

dy     1 y
2
 dy          1 y

2
 1 y

2

for the dependent variable x as a function of the independent variable y. An integrating 

factor is given by   exp
 
  

  2 y    
dy 
 
 exp  ln 1 y

2   
   1     

, and multiplying      
1 y

2
                              1 y2

                     

1                 2 y                  1     x              1

by  gives  x 
1 y2

 
2  

x 
1 y

2         1 y
2 

2  
, or Dy  

1 y
2   

 

1 y
2

 

2  
.  Integrating, 



by means of either the initial substitution 

leads to 

y  tan or the use of an integral table, then

 

    x     

       1       

dy  
 1     y     

 tan
1  

y  C 
 

,
 

1 y
2

 
 
1 y

2  2 
 

1 y
2                                      

 
and thus to the (implicit) general solution 

 

x  y  
 1 
 y  1 y

2   tan
1  

y  C  .
 

29.       We first rewrite the differential equation as y  2xy  1 .  An integrating factor is given

by   exp   2x dx  e
 x2  

, and multiplying by  gives e
 x2  

 y  2xe
 x2  

y  e
 x2  

, or

Dx 
 

y  e  x2 

 e
 x2

 

 

.  Integrating then leads to 
 

y  e  x2
   e

 x
2  

dx .  Any antiderivative of

 

e
 x 

 

differs by a constant (call it C) from the definite integral 

 

e
t2  

dt , and so we can 
0

 

write 
 

y  e 
 

 x2
   e

t2  

dt  C .  The definition of erf  x
 

then gives

 
 

y  e 

 

 
 x2

 

 

 
 

0 

 

erf  x  C , and thus the general solution 

 

 

y  x  e 

 

x2    


 


erf  x  C  .
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2                                                                                         2                   
 

 

30.       We first rewrite the differential equation for 

 

x  0 as y  
 1  

y  cos x .  An integrating 
2x

factor is given by   exp


 

 1  
dx 
 
 x

1 2 
, and multiplying by  gives

    2x     


                



Copyright © 2015 Pearson Education, Inc. 
 







 P x dx 

                                                           

 Q  x  P  x e          

Q  x e         dx 



x 



                     
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x
1 2 

 y  
1 

x
3 2 

y  x
1 2 

cos x , or 
2 

D  x
1 2 

 y   x
1 2 

cos x . Integrating then leads to

x
1 2 

 y   x
1 2 

cos x dx .  Any antiderivative of 

x 

x
1 2 

cos x differs by a constant (call it C) 
 

x

from the definite integral 1 
t
1 2 

cos t dt , and so we can write 
 

x
 

x1 2  y 
1 

t
1 2 

cos t dt  C

, which gives the general solution y  x  x1 2 
 1 

t
1 2 

cos t dt  C .  Finally, the initial 


condition y 1  0 

x 

implies that C  0 , and so the desired particular solution is given by

y  x  x1 2 
 

1 
t
1 2 

cos t dt .

 
31.       (a) The fundamental theorem of calculus implies, for any value of C, that

 

y  x  Ce           P  x  P  x y
 

 

 x ,
c                                                                        c

 

and thus that yc
  x  P  x yc  x  0 .  Therefore 

 

y
c   

is a general solution of

dy 
 P  x y  0 . 

dx 

(b) The product rule and the fundamental theorem of calculus imply that
 

   P xdx                           P x dx             P x dx 

y   x   e            Q  x  e           e           P  x  

 


Q  x e 

P x dx  
dx

p                                                                                                                                                
 

   P xdx                                P xdx 

                     
                     

 Q  x  P  x yp  x ,
 

and thus that yp  x  P  x yp  x  Q  x .  Therefore 
 

yp  is a particular solution of

dy 
 P  x y  Q  x . 

dx 

(c) The stated assumptions imply that 

y x  P  x y  yc
  x  yp  x  P  x

 
 
 
 

 

yc  x  yp  x

   yc
  x  P  x yc  x    yp  x  P  x yp  x

 

 
 
 
 
 

proving that 
 0  Q  x

 Q  x , 
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y  x is a general 

solution of 

 

 
 
 
 

dy 
 P  x y  Q  x . 

dx

32.       (a) Substituting yp  x into the given differential equation gives 

 Acos x  B sin x   Asin x  B cos x  2sin x ,
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that is 
 

 

 A  Bsin x   A  B cos x  2sin x ,
 

for all x.  It follows that A  B  2 and 
 

A  B  0 , and solving this system gives A 1

and B  1 . Thus yp  x  sin x  cos x .

 

(b) The result of Problem 31(a), applied with P  x  1, implies that

 

y
c  x  Ce 

 

 1dx 
 

 Ce x
 

 

is a general solution of 
dy 

 y  0 .  Part (b) of this problem im- 
dx 

dy
plies that yp  x  sin x  cos x is a particular solution of  y  2sin x .  It follows 

dx

 

from Problem 31(c), then, that a general solution of 
dy 

 y  2sin x is given by 
dx

y  x  y c  x  yp  x  Ce
 x  
 sin x  cos x .

 

(c) The initial condition y 0  1 implies that 1  C 1 , that is, C  2 ; thus the desired

 

particular solution is y  x  2e
 x  
 sin x  cos x .

 

33.       Let x t denote the amount of salt (in kg) in the tank after t seconds.  We want to know

 

when 

x t 

x t  10 .  In the notation of Equation (18) of the text, the differential equation for 

is

 

dx 
 rc  

 ro  x  5L s 0 kg L  
 5L s  

 x kg ,
dt     

i   i      
V 1000 L

 

or  
dx 

  
 x   

. Separating variables gives the general solution 
 

x t  Ce
t 200 

, and the

dt       200

initial condition x 0  100 implies that C  100 , and so x t  100e
t 200 

.  Setting

x t  10 gives 10  100e
t  200 

, or t  200ln10  461 sec , that is, about 7 min 41 sec.

 

34.       Let x t denote the amount of pollutants in the reservoir after t days, measured in mil-

lions of cubic feet (mft
3
). The volume of the reservoir is 8000 mft

3
, and the initial

amount x 0 of pollutants is 0.25% 8000  20mft
3 
.  We want to know when
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3 

x t  0.10% 8000  8mft
3 
.  In the notation of Equation (18) of the text, the differen-

 

tial equation for x t  is

 

dx 
 rc  

 r
o  x  500 mft3 

 

day 0.05%  
500 mft   day 

 x mft3   
 1 
 

 x  
,

dt     
i   i      

V 8000 mft
3
 4   16
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or  
dx 

 
 1 x  

 1 
.  An integrating factor is given by   e

t 16 
, and multiplying the differ-

dt    16       4

ential equation by  gives e
t 16 

 
dx 

 
 1 

e
t 16 

x  
 1 

e
t 16 

, or
 
D et 16 

 x  
 1 

e
t 16 

.  Integrat-

dt    16            4                 
t                               

4

ing then leads to e
t 16 

 x  4e
t 16  

 C , and thus to the general solution x  4  Ce
t 16 

.  The

initial condition x 0  20 implies that C  16 , and so x t  4 16e
t 16 

.  Finally, we

find that x  8 when t  16ln 4  22.2 days.

 

35.       The only difference from the Example 4 solution in the textbook is that V  1640 km
3  

and

r  410 km
3   

yr for Lake Ontario, so the time required is 
 

t  
V 

ln 4  4 ln 4  5.5452 years. 
r

36.       (a) Let x t  denote the amount of salt (in kg) in the tank after t minutes.  Because the

volume of liquid in the tank is decreasing by 1 gallon each minute, the volume after t min
is 60  t gallons. Thus in the notation of Equation (18) of the text, the differential equa-

tion for x t  is 
 

dx             ro 

 

 

 
 3gal  min 

dt 
 rici   

V 
x  2 gal  min 1 lb gal  

60  t  gal 
x lb ,

 

or  
dx 

 
   3    

x  2 .  An integrating factor is given by   exp




 

    3    
dt 
 
 60  t 

3 
, 



dt    60  t    
60  t    



and multiplying the differential equation by  gives 
 

60  t
3  dx 

 360  t 
4  

x  2 60  t 
3 

, 
dt 

or D 60  t 
3 
 x  2 60  t

3 
.  Integrating then leads to 

 

60  t
3 
 x   2 60  t 

3 
dt  60  t 

2  
 C ,

 

and thus to the general solution x t   60  t   C 60  t 
3 
.  The initial condition

 

x 0  0 implies that C  
   1    

, so the desired particular solution is 
3600 
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x t  60  t  
  1    

60  t
3 
. 

3600
 

(b) By part (a), xt  1 
   3    

60  t
2 
, which is zero when t  60  20  3 .  We ig- 

3600

nore t  60  20  3 because the tank is empty after 60 min.  The facts that

xt  
 6   

60  t  0 for 0  t  60 and that t  60  20   

3 
3600 

 

is the lone critical point
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of x t over this interval imply that x t  reaches its absolute maximum at

t  60  20  3  25.36 min  25min 22s .  It follows that the maximum amount of salt 

ev- er in the tank is
 

x  60  20  3 

 

 20   3  
   1  

  
20  3 

 

3         40  3 

            23.09 lb .                                
3600 

                  
3 

37.       Let x t denote the amount of salt (in lb) after t seconds.  Because the volume of liquid

in the tank is increasing by 2 gallon each minute, the volume after t sec is 100  2t 

lons.  Thus in the notation of Equation (18) of the text, the differential equation for 

is 

gal- 

x t 

dx             ro 

       3gal  s  

dt 
 rici   

V 
x  5gal  s 1 lb gal  

100  2t  gal 
 x lb ,

 

or  
dx 

 
     3      

x  5 .  An integrating factor is given by 
dt    100  2t

  exp




      3     
dt 
 
 100  2t 

3 2 
, and multiplying the differential equation by 



gives    
100  2t    



100  2t 
3 2 
 
dx 

 3100  2t
1 2 

x  5100  2t 
3 2 

, 
dt 

or D 100  2t
3 2 
 x  5100  2t

3 2 
.  Integrating then leads to 

 

100  2t 
3 2 
 x   5100  2t 

3 2 
dt  100  2t 

5 2 
 C ,

 

and thus to the general solution x t  100  2t  C 100  2t 
3 2 

.  The initial condition

x 0  50 implies that 50  100  C 100
3 2 

, or C  50000 , and so the desired particu- 

50000
lar solution is x t  100  2t 

 

100  2t
3 2  

. Finally, because the tank starts out with

300 gallons of excess capacity and the volume of its contents increases at 2 gal s , the 

tank is full when t  
 300 gal 

 150s .  At this time the tank contains 
2 gal s 

50000
x 150  400 

 

400
3 2  

 393.75lb of salt.
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38.       (a) In the notation of Equation (16) of the text, the differential equation for x t  is

 

dx 
 rc  r c

 

 

 5gal  min 0 lb gal  
5gal min 

 x lb ,

dt     
i   i         o   o

 100gal
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or  
dx 

  
 1  

x . Separating variables leads to the general solution 
 

x t  Ce
t 20 

, and the

dt       20

initial condition x 0  50 implies that C  50 .  Thus x t  50e
t 20 

.

 

(b) In the same way, the differential equation for y t  is

 

dy 
 5gal  min 

  x  
lb gal

 
 5gal  min 

   y  
lb gal

 
 

 5x  
 

 5 y  
,

dt                       
 
100

                        
200

     
100    200

                                                        

in light of the (constant) volumes of liquid in the two tanks.  Substituting the result of part
 

(a) gives
 dy 

 
 1  

y  
 5 

e
t 20 

.  An integrating factor is given by   exp




 1  
dt 
 
 e

t 40 
, 



dt    40       2    
40    



and multiplying the differential equation by  gives e
t 40 

 
dy 

 
 1  

e
t 40 

y  
 5 

e
t 40 

, or
 
 

t 40
 

 
5  t 40

 

 
 
t 40

 

dt    40             2 

5  t 40
 

 
 
t 40

Dt 
e  y  

2 
e
 

.  Integrating then leads to e  y   2 
e      dt  100e

 
 C ,

and thus to the general solution y t  100e
t 20 

 Ce
t 40 

.  The initial condition

y 0  50 implies that C  150 , so that y t  100e
t 20 

 150e
t 40 

.

 
(c) By part (b),

 
 

yt  5e
t 20  

 
15 

e
t 40  

 5e
t 20 

1 
 3 

e
t 40  

, from which we see that

4                       
     

4       


               

yt  0 when t  40ln 
4 

.  Furthermore, 
3 

 

yt  0 for 0  t  40ln 
4 
3 

 

and 

 

yt  0 
 

for

t  40ln 
4 

, which implies that 
3 

y t  reaches its absolute maximum at t  40ln 
4 
 11.51 

3

min.  The maximum amount of salt in tank 2 is therefore 
2

y 
 

40ln 
4  

 100 
 3 

 150  
3 
 

 3 
 75  56.25lb .

        
3 
             

4 
             

4    4
 

                          

39.       (a) In the notation of Equation (18) of the text, the differential equation for 
 

dx 
 rc  

 ro  x  10 gal  min 0  10 gal  min 
  x   

,
 

x t  is

dt     
i   i       

V 


100 

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or  
dx 

 
 1  

x  0 . Separating variables leads to the general solution 
 

x t  Ce
t 10 

, and

dt    10

the initial condition x 0  100 implies that C  100 .  Thus x t  100e
t 10 

. In the same

 

way, the differential equation for y t  is

 

dy 
 10 gal  min 

  x   
 10 gal  min 

  y   
,
 

dt                         
 
100 

                         
100 


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because the volume of liquid in each tank remains constant at 2 gal.  Substituting the re-
 

sult of part (a) gives dy 
 

 1 
 

y  10et 10 
.  An integrating factor is given by

dt    10

  exp

  1  

dt 
 
 e

t 10 
, and multiplying the differential equation by  gives

  10    


            

e
t 10 

 
dy 

 
 1 

e
t 10 

y  10 , or
 

 

 

D et 10 
 y   10 .  Integrating then leads to e

t 10 
 y  10t  C ,

dt    10                          
t

and thus to the general solution y t  10t  C  et 10 
.  The initial condition y 0  0

implies that C  0 , so that y t  10te
t 10 

.

 
(b) By Part (a),

 
 

yt  10
 
 

 t  
e
t 10  

 e
t 10  

 e
t 10 10  t  , which is zero for t  10 .

   
10                   


                          

Furthermore, yt  0 for 0  t  10 , and yt  0 for t  10 , which implies that y t 

reaches its absolute maximum at t  10 min.  The maximum amount of ethanol in tank 2

is therefore y 10  100e
1  
 36.79 gal.

 

40.       (a) In the notation of Equation (16) of the text, the differential equation for x0 t is

 

dx0   rc  r c
 

 

 1gal  min 0  1gal  min 
  x0  ,

dt      
i   i         o   o                                                                                          

 

or  
dx

0    
 x

0  . Separating variables leads to the general solution x
 

 

t  Ce
t 20 

, and the

dt         2                                                                                      
0

initial condition x 0  1 implies that C  1.  Thus x t  e
t 20 

.

 

(b) First, when n  0 , the proposed formula predicts that x t  e
t 2 

, which was verified

in part (a).  Next, for a fixed positive value of n we assume the inductive hypothesis
 

xn t 
t

n
e
t 2 

n!2
n
 

 

and seek to show that 

 

xn1 t 
t

n1
e
t 2

 

n 1!2n1  ; this will prove by mathemat-

ical induction that the proposed formula holds for all n  0 .
 

The differential equation for x
n1 t is

 

dxn 1   1gal  min 
  xn    1gal  min 

  xn 1   
xn   

 xn 1  ,
 

dt                         
 

2 
                        

2  
     

2       2
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                                  

because the volume of liquid in each tank remains constant at 2 gal.  Our inductive hy- 

pothesis then gives

dx        1 t
net 2        

x tnet 2        
1

       n 1               
 

    n 1                                 x

 

 
 

or  
dx n1       1 

x
 

dt 

t
n 
e
t  2   

 
2 n!2

n   
  

2 
            

n!2
n1       

2 n1 
,  

 
 

1         t 2
 

 
     




dt      2 

n1  
n!2

n1 
.  An integrating factor is given by   exp dt   e 

2 
, and

multiplying the differential equation by  gives
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n   t 2                          n 

e
t 2 

 
n
 

 
dxn 1 

dt 
 

 1 
e

t 2 
x 

2 
 

 t  e    
e

t 2 
n1       

n!2
n1

 

    t   
           , 

n!2n1

or D et  2 
 x  

   t      
.  Integrating then leads to 

n!2
n1

t
n1 t

n1

e
t 2 
 x                          C                      C ,

n1 
n 1  n!2n1

 n 1!2n1

 

      t
n1                       

and thus to the general solution xn1 t   
n  1!2n1  

 C  e
 

.  The initial condition

xn1 0  0 implies that C  0 , so that 
 

t
n1 

 

 
 

t
n1

e
t 2

 
 
 

as desired. 

xn1 t  
n  1!2n1

 

e
t 2

                     , 
n  1!2n1

(c) Part (b) implies that 
 

 
n1

 

 
 
t 2

x t  
   1     

 
1 

tne
t  2 

 ntn1e
t  2  

 
 t   e      

2n  t  ,n                
n!2

n     
2

      
n!2

n1

                                 
 

which is zero for t  2n .  Further, xn
 t  0 for 0  t  2n 

 

and xn
 t  0 for t  2n ,

which means that xn t achieves its absolute maximum when t  2n .  It follows that

n    n            n   n 

M   x 2n  
2n e    

 
 n e    

.

n           n                           
n!2

n                   
n! 

(d) Substituting Sterling’s approximation into the result of part (c) gives 

n
n
e
n                        

1 
M                                   .n        

n
n
e
n

 2 n 2 n

41.       (a) Between time t and time t  t , the amount At (in thousands of dollars) increases

by a deposit of 0.12S t t 
 

(12% per year of annual salary) as well as interest earnings of

0.06At t 
 

(6% per year of current balance). It follows that 
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A  0.12S t t  0.06At t ,

 
leading to the linear differential equation 

 

dA 
 0.06A  3.6e

t 20 
. 

dt 

 

dA 
 0.12S  0.06A  3.6e

t 20 
 0.06A , or 

dt

(b) An integrating factor is given by   exp   0.06 dt   e
0.06t 

, and multiplying the 

differential equation by  gives e0.06t  
dA 

 0.06e0.06t A  3.6et 20e0.06t   3.6e0.01t 
, or 

dt
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D
t e0.06t  A 3.6e 0.01t .  Integrating then leads to e 0.06t  A  360e 0.01t  C , and thus to

the general solution At  360e
0.05t  

 Ce
0.06t 

.  The initial condition A0  0 implies

that C  360 , so that At   360 e0.06t  
 e

0.05t  .  At age 70 she will have

A40  1308.283 thousand dollars, that is, $1,308,283. 
 

 

42.       Since both m and v vary with time, Newton’s second law and the product rule give 

m 
dv 

 v 
dm 

 mg .  Now since the hailstone is of uniform density 1, its mass m t
dt        dt

 

equals its volume 
4        4       3       4k 

3 

r
3  
      kt            t

3 
, which means that 

3           3                 3 

dm 
 4 k3

t
2 
.  Thus the 

dt

velocity v t of the hailstone satisfies the linear differential equation

4k 
3       

dv                     4k 
3 

t
3          

 4 k 
3
t

2
v           t

3 
g , or 

dv 
 

 3 
v  g .  An integrating factor is given by

3       dt 3                 dt     t

  exp

 3 

dt 
 
 t

3 
, and multiplying the differential equation by  gives

  t    


          

t
3 
 
dv 

 3t
2
v  gt

3 
, or

 

 

D t3 
 v   gt

3 
.  Integrating then leads to t

3 
 v  

 g 
t

4 
 C , and thus

dt                              
t                                                                                                                                

4 

to the general solution v t  
 g 

t  Ct
3 

. The initial condition v 0  0 implies that 
4

C  0 , so that v t  
 g 

t , and therefore dv 
 

 g 
.

4                            dt     4 

 
43. (a) First we rewrite the differential equation as y  y  x .  An integrating factor is given 

by   exp  1dx  e
x 
, and multiplying the differential equation by  gives

e
x 
 y  e

x 
y  xe

x 
, or D e x   y   xex .  Integrating (by parts) then leads to

ex  y   xex dx  xex  ex  C , and thus to the general solution y  x  x 1 Ce
 x 

.

Then the fact that lim e
 x  
 0 implies that every solution curve approaches the straight 

x

line y  x 1 as x  .

 (b) The initial condition 
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0                                 1 

0 

0 

y 5  y0 

 

imposed 

upon the 

general 

solution in 

part (a) 

im-
 

plies that y   5 1 Ce5 
, and thus that C  e

5  y  6 .  Hence the solution of the ini-

tial value problem  y  x  y , y 5  y0   is y  x  x 1  y0  6 e 
 x5 

 

.  Substituting

x  5 , we therefore solve the equation 4  ( y  6)e10   y with

 

y1  3.998,3.999,4,4.001,4.002 

for the desired initial values 

y
0  
 50.0529,28.0265,6.0000,16.0265,38.0529 ,
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respectively. 
 

 

44. (a) First we rewrite the differential equation as y  y  x .  An integrating factor is given 

by   exp  1dx  e
 x 

, and multiplying the differential equation by  gives

e
 x 
 y  e

 x 
y  xe

 x 
, or D e x  y   xe x .  Integrating (by parts) then leads to

e x  y   xe x dx  xe x  e x  C , and thus to the general solution y  x  x 1 Ce
x

.  Then the fact that  lim e
x  
 0 

x
implies that every solution curve approaches the straight

line y  x 1 as x   .

 

(b) The initial condition y 5  y0 

 

imposed upon the general solution in part (a) im-

plies that y   5 1 Ce5 
, and thus that C  e

5  y  4 .  Hence the solution of the initial

value problem  y  x  y , y 5  y0   is y  x  x 1  y0  4 e 
x5 

 

.  Substituting

x  5 , we therefore solve the equation 6   y  4 e10  
 y 

 

with

 

 
 

for the desired initial values 

 

y1  10,5,0,5,10

 

 
respectively. 

y0   3.99982,4.00005,4.00027, 4.00050,4.00073 ,

 

45.       The volume of the reservoir (in millions of cubic meters, denoted m-m
3
) is 2.  In the nota-

tion of Equation (18) of the text, the differential equation for x t  is

 

dx 
 rc  

 ro  x  0.2 m-m
3
 

 

month  10 L m3   0.2 m-m3
 

 

month  
x 

L m
3  

,

dt     
i   i       

V
  

2          


             

or  
dx 

 
 1  

x  2 .  An integrating factor is given by   e
t 10 

, and multiplying the differ- 
dt    10

ential equation by  gives e
t 10 

 
dx 

 
 1 

e
t 10 

x  2e
t 10 

, or
 
D et 10 

 x   2e
t 10 

.  Integrating

dt    10                               
t

then leads to e
t 10 

 x  20e
t 10  

 C , and thus to the general solution x t  20  Ce
t 10 

.

 

The initial condition 
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x 0  0 implies 

that C  

20 , 
and so 

x t   20 1 e
 t 10  , which

shows that indeed lim x t   20 (million liters).  This was to be expected because the 
t

reservoir’s pollutant concentration should ultimately match that of the incoming water, 

namely 10 L m
3 

.  Finally, since the volume of reservoir remains constant at 2 m-m
3
, a

 

pollutant concentration of 5L m
3

 

 

is reached when 
x t  

 5 , that is, when 
2

10  20 1 e t 10  , or t  10 ln 2  6.93months .
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46.       The volume of the reservoir (in millions of cubic meters, denoted m-m
3
) is 2.  In the nota-

tion of Equation (18) of the text, the differential equation for 
 

dx 
 rc  

 ro  x
 

x t  is

dt     
i   i      

V

 0.2 m-m
3
 

month 10 1 cos t L m
3   0.2 m-m

3
 

month 
x 

L m
3 

,

                                                               2          
 

 

or  
dx 

 
 1 

             
 

x  2 1 cos t .  An integrating factor is given by   e
t 10 

, and multiplying

dt    10 

the differential equation by  gives e
t 10 

 
dx 

 
 1 

e
t 10 

x  2e
t 10 1 cos t  , or

 

  t 10
 

 

    2 t 10 1   cos 
 dt    10

Dt    e  x    e       t  .  Integrating (by parts twice, or using an integral table) then

leads to 
 

e
t 10 

 x 


 

 

2e
t 10 

 2e
t 10 

cos t dt  20e
t /10 

 
   2e          1  

cos t  sin t 
 
 C ,

                                   1  
2  
1

2 10                  


 
 

and thus to the general solution 

10                                        

x t   20  
 200   1  

cos t  sin t 
 
 Ce

 t 10 
.
 

101 
 

10                  


 

 
The initial condition 

 
 

x 0  0 

                      

implies that C  20  
 20 

 

 

 20  
102 

, and so

101            101 

x t   20  
 200   1  

cos t  sin t 
 
 20  

102 
e t 10

101 

10

          
101

                      

 
 20  

101 102e
t 10 

 cos t 10sin t  . 
101

 

This shows that as t  ,
 

 

x t 

is more and more like 20  

 200   1  
cos t  sin t 

 
, and

101 

10                  


                      

thus oscillates around 20 (million liters).  This was to be expected because the reservoir’s 

pollutant concentration should ultimately match that of the incoming water, which oscil- 

lates around 10 L m
3 

.  Finally, since the volume of reservoir remains constant at 2 m-m
3
,

 

a pollutant concentration of 5L m
3

 

 
is reached when 

x t  
 5 , that is, when 

2

10  
 20  

101 102e
t 10 

 cos t 10sin t  . 
101 
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To solve this equation for t requires technology.  For instance, the Mathematica com- 

mands 
 

x = (20/101)(101 - 102 Exp[-t/10] + Cos[t] + 10Sin[t]); 

FindRoot[ x == 10, {t, 7}] 

yield t  6.47 months.
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SECTION 1.6 
 

SUBSTITUTION METHODS AND EXACT EQUATIONS 
 
It is traditional for every elementary differential equations text to include the particular types of 

equation that are found in this section.  However, no one of them is vitally important solely in its 

own right.  Their main purpose (at this point in the course) is to familiarize students with the 

technique of transforming a differential equation by substitution.  The subsection on airplane 

flight trajectories (together with Problems 56–59) is included as an application, but is optional 

material and may be omitted if the instructor desires. 

 
The differential equations in Problems 1-15 are homogeneous, and so we solve by means of the

substitution v  y  x 

other means, as well. 

indicated in Equation (8) of the text. In some cases we present solutions by 
 
 

 

1 
 y

 

1.         For 
 

x  0 and 
 

x  y  0 
 

we rewrite the differential equation as dy 
 

 x y 
      x .

dx     x  y 
1 

 y 

x

Substituting v  
 y then gives v  x 

dv 
 

1 v 
, or x 

dv  
1 v 

 v 
1 2v  v

2
 
 

.  Sepa-

x                            dx 1 v dx    1 v 1 v

     v 1                   1            1       2rating variables leads to  dv  
v

2 
 2v 1 

dx , or 
x 

ln v 
2 

 2v 1   ln x  C , or

v
2 
 2v 1  Cx

2 
, where C is an arbitrary positive constant, or finally v

2  
 2v 1  Cx

2

 

, where C is an arbitrary nonzero constant.  Back-substituting 
 y 

x 

 
for v then gives the so-

lution 
  y   

 2 
 y 
1  Cx

2 
, or

  

y
2 
 2xy  x

2  
 C .

 
 
 

 
2.         For 

   
   

 

 
x, y  0 

x 
 

 
 

we rewrite the differential equation as 

 

 
 
 

dy 
 

 1 
 
 x 
 

 y 
.  Substituting v  

 y

dx    2   y    x                               x

then gives v  x 
dv 

 
 1  

 v , or x 
dv 

 
 1  

.  Separating variables leads to

dx    2v dx    2v

 

 2v dv  
1 

dx , or v
2  
 ln x  C , where C is an arbitrary constant.  Back-substituting 

x
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 y  
for v then gives the solution 

x 
y

2  
 x

2 ln x  C  .

Alternatively, the substitution v  y
2 
, which implies that v  2 y  y , gives xv  x

2  
 2v ,

or v  
 2 

v  x , a linear equation in v as a function of x.  An integrating factor is given by 
x
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  exp


 

 2 
dx 
 
 

 1  
, and multiplying by 


gives  

 1  
 v  

 2 
v  

 1 
, or

    x
     

x
2

 
 

x
2                

x
3            

x
              

  1         1
  1                                      2

Dx  
x2  

 v   
x 

.  Integrating then gives  v  ln x  C , or v  x 
x

2
 

ln x  C  , or finally

y
2  
 x

2 ln x  C  , as determined above. 
 
 

3.         For 
 

x, y with 
 

xy  0 
 

we rewrite the differential equation as dy 
 

 y 
 2  y 

.  Substitut-

 

 

ing v  
 y 

x 

 

then gives v  x 
dv 

 v  2 
dx 

 
 

v , or 

 

x 
dv 

 2 
dx 

dx     x         x 
 

v .  Separating variables leads to

  1   

  
v 

dv  
2 

dx , or 2 
x 

 

v  2 ln x  C , or v  ln x  C  .  Back-substituting 
 y 

x 
2

 

 

for v

then gives the solution y  x ln x  C   .

 

 

 
4.         For 

 
 

x  0 and 

 

 

x  y  0 we rewrite the differential equation as 
1 

 y 
dy 

 
 x y 

      x .  sub-

 
 
 

dv    1 v
2
 

dx     x  y 
1 

 y 

x

stituting v  
 y then gives v  x 

dv 
 

1 v 
, or x      

 

. Separating variables leads

x 

 1 v             1
 

dx 

1            1
 
1 v dx     1 v 

2                                                      y

to  
1 v

2  
dv   dx , or tan 

x 
v    ln 1 v 

2 
  ln x  C .  Back-substituting for v 

x

         


    
then gives tan1  y 

 
1 

ln 1  
y 

   ln x  C .

x    2            x   
 

 

1 
 y

 

5.         For 
 

x  0 and 
 

x  y  0 
 

we rewrite the differential equation as dy 
 

 y 
 
 x y 

 
 y 
      x

dx     x   x  y     x 
1 

 y 

x

.  Substituting v  
 y then gives v  x 

dv 
 v 

1 v 
, or x 

dv  v  
1 v 

 v 
2v

2
 
 

.  Sepa-
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x 

1 v 
dx        1 v          dx 

1               1 
1 v 1 v

rating variables leads to  v
2    

dv  2 dx , or     ln v  2ln x  C .  Back- 
x               v

substituting  
 y for v then gives  

 x 
 ln 

 y  2ln x  C , or ln 
 y 

 

 2 ln x  
 x 
 C , or

 

 
ln xy 

x                                y         x                                    x                   y 

 
 x 
 C . 

y
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6.         For 

 

 

x  2 y  0 

 

 
and 

 
 

x  0 we rewrite the differential equation as 

y 

dy 
 

    y     
     x      .

 
 

 

dv        v
 

dx     x  2 y 
 

 

2v
2

 

1 2 
 y 

x

Substituting v  
 y then gives v  x 

dv 
 

   v     
, or x 

 

            v 
 

.  Separat-

x 

1 2v 
dx    1 2v 

2 
dx    1 2v 

 
1

 

1 2v

ing variables leads to  v
2      

dv   dx , or v 
x 

 2 ln v  2ln x  C .  Back-

substituting  
 y 

x 

 

for v then gives  
 x 
 2 ln 

 y 

y x 

 

 2ln x  C , or x  2 y ln y 
 

 Cy .

 

 
7.         For

 
 

x, y  0
 
 
we rewrite the differential equation as

 
2 

dy 
 
  x 

 

 
 y 

.  Substituting v  
 y

dx             x                                x 
2                                                     2

then gives v  x 
dv 

 
 1 

 

 v , or
 
x 

dv 
 
 1 

 

.  Separating variables leads to
   

dx       
   

dx       

 

 v
2 

dv  
1 

dx , or v
3  
 3ln x  C .  Back-substituting  

 y 
 

for v then gives

x                                                                     x 
3

  y   
 3ln x  C , or 

   
y

3  
 x

3 3ln x  C  .

 

Alternatively, the substitution v  y
3 
, which implies that v  3y

2 
y , gives 

1 
xv  x

3 
 v , 

3

or v  
 3 

v  3x
2 
, a linear equation in v as a function of x.  An integrating factor is given 

x

by   exp
 

 3 

dx 
 
 x

3 
, and multiplying the differential equation by  gives

   x     


             

x
3 
 v  3x

4
v  3x

1 
, 

or 

 

D  x
3 
 v   3x

1 
. Integrating then gives 

 
x
3 
 v  3ln x  C ,

and finally back-substituting y
3  

for v yields y
3  
 x

3 3ln x  C  , as determined above.

 

 

8.         For 
 

x  0 we rewrite the differential equation as dy 
 

 y 
 e

y  x 
.  Substituting v  

 y 
 

then
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         

 

gives v  x 
dv 

 v  e
v 
, or 

dx 

dx     x 

x 
dv 

 e
v 
.  Separating variables leads to    e

v 
dv 

dx 

x 

1 
dx , or 

x

 

e
v  
 ln x  C , that is, v   ln C  ln x  .  Back-substituting 

 y 

x 

 

for v then gives the

solution y  x ln C  ln x  .
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x 

 4 

1  
 y

 

2 

   

2               

x 

Section 1.6   65 
 

 
9.         For

 
 

x  0 we rewrite the differential equation as
 dy 

 
 y 
 
  y 

.  Substituting v  
 y

dx     x    
                                   

x

then gives v  x 
dv 

 v  v
2 
, or

 x 
dv 

 v
2 
.  Separating variables leads to  

 1 
dv  

 1 
dx

dx                       dx v
2                     

x

, or  
1 
 ln x  C .  Back-substituting  

 y 
 

for v then gives the solution y  
      x       

.

v                                                    x                                                       C  ln x 
 

 

10.       For 
 

x, y  0 
 

we rewrite the differential equation as dy 
 

 x 
 3

 y 
.  Substituting v  

 y

dx     y       x                                x 

dv    1            1 2v
2

then gives v  x 
dv 

 
 1 
 3v , or 

dx    v 

 

x           2v             .  Separating variables leads to 
dx    v                v

     v      
dv 

1 2v 

1 
dx , or 

x 

1 
ln 1 2v

2   ln x  C , or 2v
2  
 Cx

4  
1.  Back-substituting

 y  
for v then gives the solution 2 y

2  
 Cx

6 
 x

2 
. 

x 

Alternatively, the substitution v  y
2 
, which implies that v  2 y  y , gives 

1 
x  v  x

2 
 3v , or v  

 6 
v  2x , a linear equation in v as a function of x.  An integrat-

2 
 

ing factor is given by
 

x 

  exp



 

 
 6 

dx 
 
 x

6 
, and multiplying the differential equation

    x     


              

by  gives x
6 
 v  6x

7
v  2x

5 
, 

or 

D  x6   v   2x5 .  Integrating then gives

x
6 
 v   

1 
x
4 
 C , or 2v  x

2  
 Cx

6 
.  Finally, back-substituting 

2 

the solution 2 y
2  
 x

2 
 Cx

6 
, as determined above. 

 

y
2  

for v then gives

 

11.       For x
2 
 y

2  
 0 and x  0 we rewrite the differential equation as 

y
dy 

 
   2 xy   



    2  

x   .  Substituting v  
 y  

then gives v  x 
dv  

  2v   
 

, or

dx     x2  y2
 

2 

   
   
 x 

x                            dx 1 v
2

dv       2v            v  v
3 1 v

2                      
1

x                 v 
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

2 

   

dx    1 v2
 

 

1 v
2
 

.  Separating variables leads to 
 

v  v
3
 

dv   dx , or (after 
x

 

decomposing into partial fractions) 
1 
   

2v   
dv 

v    v
2 
1 

1 
dx , or 

x

ln v  ln v2  
1  ln x  C , or  

   v     
 Cx .  Back-substituting  

 y 
 

for v then gives the
 

 
 

solution
 

 

 

y 
 Cx 



 

 

  y 


v
2 
1 



1  , or finally
 

x 
 

y  C x2   y2  .

x         
 

x 
      


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 
x 


y 




2 

2 

 


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12.       For x, y  0 we rewrite the differential equation as

 
dy     y 

 

4x
2 
 y

2          
y 

 
2 

 x 

                          
dx     x            y            x 

4   
 y 

1 .

 

Substituting v  
 y 

 

then gives v  x 
dv 

 v 

 

 4  
1 , or 

 

x 
dv 



 

 4            4 v 2 

1               .  Sep-

x                            dx             v
2

 dx       v
2                          

v

 

arating variables leads to 
     v     

dv 
4  v

2
 

1 
dx , or 4  v

2 
1 2  

 ln x  C , or

 

4  v
2  
ln x  C 

2                                  y 
.  Back-substituting 

x 

 

for v then gives the solution

4x
2 
 y

2  
ln x  C   .

 

13.       For x  0 we rewrite the differential equation as 
 

dy     y      x 
2  
y 

2     
 y 

                        
dx     x           x           x 

 

 
 

1 
  y   

. 
   

 

Substituting v  
 y 

x 

 

then gives v  x 
dv 

 v 
dx 

 

1 v
2  

, or 

 

x 
dv 


dx 

 

1 v
2  

.  Separating vari-

 

ables leads to 
     1     

dv 
1 v

2
 

1 
dx , or (by means of either the substitution v  tan or 

x

an integral table) ln v  v
2  
1  ln x  C , or finally v 

 

v
2 
1  Cx .  Back-

 

substituting  
 y 

x 

 

for v then gives the solution  y 

 

y
2 
 x

2  
 Cx

2 
.

14.       For x  0 and y  0 we rewrite the differential equation as

 

dy        x       x 
2 
y 

2        
 x 

                          
dx        y           y              y 

 
2 

  x 
   
   

 
 

1 .

 

Substituting v  
 y 

 

then gives v  x 
dv 

  
1 


 

 1             v 2 1 1 
1                   , or

x 
dv       v 

2 
1 1 v 

2 
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dx       v       v
2

 v 
 

             v                         
1

x                                   .  Separating variables leads to 
dx                 v v

2 
1  1 v

2 
dv   dx . 

x

 

The substitution u  1 v2
  

gives
              v              

dv  
 1            1          

du , which un-

  
v

2 
1  1 v

2  2   u 1   u 

der the further substitution w  1
 

u  becomes

 1 
 w 

dw   ln w   ln 1


 

u  C   ln 1

 

1 v
2   

.
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

x 




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Thus  ln 1
 

1 v
2

 

 




 

 ln x  C , or 

 
2 

   

x 1
 

1 v
2     
 C .  Back-substituting 

 y 

x 

 

for v then

gives the solution x 1



y 
1    

 x 

  C , or x 



x2  y2   C .

 

Alternatively, the substitution v  x
2 
 y

2 
, which implies that v  2x  2 y  y , gives

1 
v 

2 

  1   
v .  Separating variables leads to   

v 
dv   2 dx , or 2

 

 

v  2x  C .  Back-

 

substituting 
 

x
2 
 y

2  
for v then gives the solution 

 

x
2  
 y

2  
 x  C , as determined above.

 

15.       For x  0 and x  y  0 we rewrite the differential equation as 
 

y
dy     y 3x y  3  

 y          x
                                   .

dx       x  x  y
 
 

dv
 

x 
 
 

3  v
 

1 
 y 

x 
 

3v  v
2

Substituting v  
 y 

x 

 

then gives v  x 
dx 

 

 v 
 

 
1 v 

 
1 v 

 

, or

 

x 
dv 

dx 

3v  v2 

              v 
1 v 

   1 v   

4v  2v2 

. 
1 v 

1            1                2

Separating variables leads to  
4v  2v

2  
dv   dx , or 

x 
ln 4v  2v 

4 
  ln x  C , or

x
4 4v  2v

2   C , or simply x
4 2v  v

2   C .  Back-substituting  
 y

 
 

for v then gives the

 

solution x
2 2xy  y

2   C .

 

 

The differential equations in Problems 16-18 rely upon substitutions that are generally suggested 

by the equations themselves. 
 

16.       The expression x  y 1 suggests the substitution v  x  y 1 , which implies that

 

y  v  x 1, and thus that y  v 1 .  Substituting gives v 1  v , or v 
 

v 1, a

separable equation for v as a function of x.  Separating variables gives     
   1     

dv     dx
 

  
v 1        


 

. Under the substitution v  u
2

 

 

long division is 



Copyright © 2015 Pearson Education, Inc.  



the integral on the right becomes     
 2u   

du , which after 

1 u

2  
  2    

du  2u  2 ln 1 u  2 
1 u 

v  2 ln 1 v  .

Finally, back-substituting x  y 1 for v leads to the solution
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

   



 
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2   x  y 1  2 ln 1 x  y 1  x  C .

 

17.       The expression 4x  y suggests the substitution v  4x  y , which implies that

y  v  4x , and thus that y  v  4 .  Substituting gives v  4  v
2 

, or v  v
2  
 4 , a sep- 

1
arable equation for v as a function of x. Separating variables gives  

v
2 
 4 

dv   dx , or

1 
tan

1  v 
 x  C , or v  2 tan 2x  C  .  Finally, back-substituting 4x  y 

2         2 

 

for v leads to

the solution y  2 tan 2x  C  4x .

 

18.       The expression x  y suggests the substitution v  x  y , which implies that  y  v  x ,

 

and thus that y  v 1 .  Substituting gives v v 1  1 , or v  
 1 
1  

 v 1 
, a separa- 

v            v

 

ble equation for v as a function of x. Separating variables gives 
   v    

dv 
v 1 

 

dx , or (by

 

long division) 1 
  1    

dv 
v 1 

 

dx , or v  ln v 1  x  C .  Finally, back-substituting

x  y for v gives y  ln x  y 1  C .

 

 

The differential equations in Problems 19-25 are Bernoulli equations, and so we solve by means

of the substitution v  y
1n

 

another solution.) 

indicated in Equation (10) of the text.  (Problem 25 also admits of

 

19.       We first rewrite the differential equation for 
 

x, y  0 as y  
 2 

y  
 5  

y
3 
, a Bernoulli 

x        x
2

equation with n  3 .  The substitution v  y
13 

 y
2  

implies that y  v
1 2  

and thus that

y       
1 

v
3 2

v .  Substituting gives  
1 

v
3 2

v  
 2 

v
1 2  

 
 5  

v
3 2 

, or v  
 4 

v   
10 

, a lin-
2                                               2              x            x

2
 x          x

2

ear equation for v as a function of x. An integrating factor is given by

  exp


 

 4 
dx 
 
 x

4 
, and multiplying the differential equation by  gives

    x     


              

 1  
v  

 4 
v   

10 
, or D

 
 

  1  
 v 
 
  

10 
.  Integrating then leads to  

 1  
 v  

 2 

 
 

 C , or

x
4             

x
5                 

x
6
 

x  
x4               x6

 

x
4                

x
5
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         
5

v  
 2 
 Cx

4  
 

 2 Cx   
.  Finally, back-substituting 

x                   x 
5
 

y 
2 

 

for v gives the general solution

y
2  
 

 2 Cx   
, or 

x 
y

2  
 

     x      
. 

2  Cx
5
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2                                   2                                                                                  2 

   

   

x 

x 

Section 1.6   69 
 

20.       We first rewrite the differential equation for y  0 as y  2xy  6xy
2 

, a Bernoulli equa-

tion with n  2 .  The substitution v  y
12  

 y3
 

 

implies that y  v
1 3  

and thus that

y  
 1 

v
2 3

v .  Substituting gives 
3 

1 
v
2 3

v  2xv
1 3  
 6xv

2 3 
, or v  6xv  18x , a linear 

3

equation for v as a function of x.  An integrating factor is given by 

  exp  6x dx  e
3x2  

, and multiplying the differential equation by  gives
 

e
3x   

 v  6xe
3x  

v  18xe
3x   

, or D e3x2   

 v  18xe
3x2  

.  Integrating then leads to

 

e
3x   

 v  3e
3x   

 C , or v  3  Ce
3x   

.  Finally, back-substituting 
 

y
3  

for v gives the general

 

solution 
 

y
3  
 3  Ce 3x2  

.

 

21.       We first rewrite the differential equation as y  y  y
3 
, a Bernoulli equation with n  3 .

 

The substitution v  y
13 

 y
2  

implies that 

 

y  v
1 2  

and thus that y       
1 

v
3 2

v .  Sub- 
2

stituting gives  
1 

v
3 2

v  v
1 2  

 v
3 2 

, or v  2v  2 , a linear equation for v as a func- 
2 

tion of x.  An integrating factor is given by   exp  2 dx  e
2 x 

, and multiplying the

differential equation by  gives e
2 x 
 v  2e

2 x
v  2e

2 x 
, 

or 

D  e2 x  v   2e2 x .  Integrat-

ing then leads to e
2 x 
 v  e

2 x  
 C , or v  1 Ce

2 x 
.  Finally, back-

substituting 

y 
2 for

 

v gives the general solution 

 

y
2  
 1 Ce

2 x 
, or y

2  
 

     1       
. 

Ce
2 x 

1

 

22.       We first rewrite the differential equation for 

 

x  0 as y  
 2 

y  
 5  

y
4 

, a Bernoulli equa- 
x        x

2

tion with n  4 .  The substitution v  y
14  

 y
3

 implies that y  v
1 3  

and thus that

y       
1 

v
4 3

v .  Substituting gives  
1 

v
4 3

v  
 2 

v
1 3  

 
 5  

v
4 3 

, or v  
 6 

v   
15 

, a line-
3                                              3              x            x

2
 x          x

2

ar equation for v as a function of x. An integrating factor is given by

  exp


 

 6 
dx 
 
 

 1  
, and multiplying the differential equation by  gives

    x
     

x
6
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              

 1  
 v  

 6  
v   

15 
, or D

 
 
  1  

 v 
 
 15x

8 
.  Integrating then leads to

x
6                

x
7                 

x
8

 
x  

x6        

         
7 1  

 v  
15 

x
7 
 C , or v  

 15 
 Cx

6  
 

 Cx   15 
.  Finally, back-substituting 

 

y
3  

for v
x

6                
7 7x                   7x 

7

 

gives the general solution y
3  
 

 Cx  15 
, or 

7x 
y

3  
 

    7 x      
. 

Cx
7 
 15
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   

x 







3 

x 

1 2  

1 2  
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23.       We first rewrite the differential equation for 

 

x  0 as y  
 6 

y  3y
4 3 

, a Bernoulli equa- 
x

tion with n  4 3 .  The substitution v  y
14 3  y1 3  

implies that y  v
3  

and thus that

y  3v
4

v .  Substituting gives 3v
4

v  
 6 

v
3  
 3v

4 
, or v  

 2 
v  1, a linear equation 

x                              x

for v as a function of x. An integrating factor is given by   exp


 

 2 
dx 
 
 

 1  
, and

    x
     

x
2

              

 1         2            1    1   
  1 

multiplying the differential equation by  gives 
 

 1       1 

v      v       , or 
x

2             
x

3                 
x

2
 

 
2

 

Dx  
x2  

v    
x2

 

 
1 3 

.  Integrating then leads to v      C , or v  x  Cx 
x

2             
x 

.  Finally, back-substituting  y

 

for v gives the general solution y
1 3 

 x  Cx
2 
, or y  x  Cx

2        
.

 

 

24.       We first rewrite the differential equation for 
 

x  0 as 

 

y  y  
e
2 x 

2x 

 

y
3 
, a Bernoulli

equation with n  3 .  The substitution v  y
13 

 y
2  

implies that 
2 x

 

y  v
1 2 

, and thus that 

e
2 x

y       
1 

v
3 2

v .  Substituting gives  
1 

v
3 2

v  v
1 2  

  
e     

v
3 2 

, or v  2v         , a lin- 
2                                               2                            2x                                 x 

ear equation for v as a function of x. An integrating factor is given by 

  exp  2 dx  e
2 x 

, and multiplying the differential equation by  gives

e
2 x 
 v  2e

2 x
v  

 1 
, or 

x 
D e2 x 

 v  
 1 

.  Integrating then leads to e
2 x 
 v  ln x  C , or

v  C  ln x e2 x 
.  Finally, back-substituting 

e
2 x 

y 
2 for v gives the general solution

y
2  
 C  ln x e2 x 

, or y
2  
 . 
C  ln x

 

 

25.       We first rewrite the differential equation for 
 

x, y  0 as y  
 1 

y  
      1        

y
2 

, a Ber-

x       1 x4

noulli equation with n  2 .  The substitution v  y
12  

 y3
 

 

implies that y  v
1 3  

and

 

thus that y  
 1 

v
2 3

v .  Substituting gives
 1 

v
2 3

v  
 1 

v
1 3  
 

      1        
v
2  3 

, or
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
1 2  

3                                            3              x 1 x4

v  
 3 

v  
      3        

, a linear equation for v as a function of x.  An integrating factor is
 

x       1 x4

given by   exp

 3 

dx 
 
 x

3 
, and multiplying the differential equation by  gives

  x     


           
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 

v                  1 2  



1 2  

x 

1 2  

2 

x 
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x3  v  3x2v  
     3x        

, or D
 x3  v   

     3x        
.  Integrating then leads to

1 x4
 1 x4

 

4   1 2 

x
3 
 v  

 3 
1 x

4

 
1 2                                    31x   C 

 C , or v                           .  Finally, back-substituting 

 

y
3  

for v gives

         
 

4   1 2 
 
2x

3

 

the general solution 

 

y
3  


31x    C 
. 

2x
3

Alternatively, for x  0 , the substitution v  xy , which implies that v  xy  y and that

y  
 v 

, gives
 2 

v1 x
4 
  

 x .  Separating variables leads to
  

v
2 

dv 
       x 

3 

dx ,
x             x2

  

 

4   1 2 
 

          
1 x4 

1 2 

or  
1 

v
3  


1 
1 x

4 
1 2                            

3       
31x  C 

 C , or v                            .  Back-substituting xy for v then gives

3        2                                                2 
4   1 2 

 

the solution 

 

y
3  


31x   C 

2x
3
 

 

, as determined above.

 

As with Problems 16-18, the differential equations in Problems 26-30 rely upon substitutions that 

are generally suggested by the equations themselves.  Two of these equations are also Bernoulli 

equations. 
 

 

26. The substitution v  y
3 
, which implies that v  3y

2 
y , gives v  v  e

 x 
, a linear equa- 

tion for v as a function of x.  An integrating factor is given by   exp  1dx  e
x 
, and

multiplying the differential equation by  gives e
x 
 v  e

x
v  1 , or D ex   v   1 . Inte-

grating then leads to e
x 
 v  x  C , or v   x  C  e x 

.  Finally, back-substituting y
3  

for v

gives the general solution y
3  
  x  C  e x 

.

 

Alternatively, for 
 

y  0 we can first rewrite the differential equation as

y  
1 

y  
 1 

e
 x 

y
2 

, a Bernoulli equation with n  2 .  This leads to the substitution 
3       3

v  y
12   y3 

used above.

 

27.       The substitution v  y
3 
, which implies that v  3y

2 
y , gives xv  v  3x

4 
, or (for x  0 )
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v  
 1 

v  3x
3 
, a linear equation for v as a function of x.  An integrating factor is given by 

x

  exp


 

 1 
dx 
 
 

 1 
, and multiplying the differential equation by  gives

    x     
    

x              

1 
 v  

 1  
v  3x

2 
, or D

 
 
 1 

 v 
 
 3x

2 
.  Integrating then leads to

 
 
1 
 v  x

3 
 C , or

x         x
2

 x  
x    

                                                      
x

       
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v  x
4  
 Cx .  Finally, back-substituting y

3  
for v gives the general solution y

3 
 x

4 
 Cx ,

4                 1 3 
or  y   x  Cx  .

 

Alternatively, for 
 

x, y  0 we can first rewrite the differential equation as

y  
 1  

y  x
3 
y
2 

, a Bernoulli equation with n  2 .  This leads to the substitution 
3x

v  y
12   y3 

used above.

 

28.       The substitution v  e
y 

, which implies that v  e
y 
y , gives xv  2 v  x3e2 x  , or

v  
 2 

v  2x
2
e

2 x 
, a linear equation for v as a function of x.  An integrating factor is given 

x

by   exp


 

 2 
dx 
 
 

 1  
, and multiplying the differential equation by  gives

    x
     

x
2

              

 1  
 v  

 2 
v  2e

2 x 
, or D

 
 

  1  
 v 
 
 2e2 x .  Integrating then leads to  

 1  
 v  e

2 x  
 C , or

x
2                

x
3
 x  

x2                                                               x2

         

v  x
2
e

2 x  
 Cx

2 
.  Finally, back-substituting e

y
 

 
for v gives the general solution

e
y  
 x

2
e

2 x  
 Cx

2 
, or y  ln  x2e2 x   Cx2  .

 

29.       The substitution v  sin
2  

y , which implies that v  2sin y cos y y , gives xv  4x
2  
 v ,

 

or (for x  0 ) v  
 1 

v  4x , a linear equation for v as a function of x.  An integrating fac- 
x

 

tor is given by
 
  exp



 

 1 
dx 
 
 

 1 
, and multiplying the differential equation by 

    x     
    

x 
1          1  

              

 1                                                      1

gives  v      v  4 , or 
x         x

2
 

D     v   4 . Integrating then leads to 
       

 v  4x  C , or 
x

v  4x
2  
 Cx .  Finally, back-substituting sin

2  
y for v gives the general solution 

sin
2  

y  4x
2 
 Cx . 

 

 

30.       It is easiest first to multiply each side of the given equation by e
y 

, giving 

x  e y e y y  x  e y . This suggests the substitution v  e y , which implies that v  e y y



Copyright © 2015 Pearson Education, Inc.  

, and leads to  x  v v  x  v , which is identical to the homogeneous equation in Prob-

lem 1.  The solution found there is v
2  
 2xv  x

2  
 C .  Back-substituting e

y
 

gives the general solution e
2 y  
 2xe

y  
 x

2  
 C 

for v then

Each of the differential equations in Problems 31–42 is of the form M dx  N dy  0 , and the

exactness condition M y  N x is routine to verify.  For each problem we give the principal

steps in the calculation corresponding to the method of Example 9 in this section.
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31.       The condition Fx   M implies that F  x, y   2x  3y dx  x
2

  3xy  g  y , and then

the condition Fy   N implies that 3x  g y  3x  2 y , or g y  2 y , or g  y  y
2 

.

Thus the solution is given by x
2 
 3xy  y

2  
 C .

 

32.       The condition Fx   M implies that F  x, y   4x  y dx  2x
2

  xy  g  y , and then the

condition Fy   N implies that x  g y  6 y  x , or g y  6 y , or g  y  3y
2 
.

Thus the solution is given by 2x
2 
 xy  3y

2  
 C 

 

33.       The condition
 
F

x  
 M

 
implies that

 
F  x, y   3x

 
 2 y  dx  x

 
 xy

 
 g  y , and then

2              2                  3             2 

the condition Fy   N implies that 4xy  g y  4xy  6 y
2

 , or g y  6 y
2

 , or

g  y  2 y
3 
.  Thus the solution is given by x

3 
 2xy

2 
 2 y

3  
 C .

 

34.       The condition
 
F

x  
 M

 
implies that

 
F  x, y   2xy

 
 3x  dx  x

 
 x y

 
 g  y , and

2             2                  3          2    2 

then the condition Fy   N implies that 2x
2 
y  g y  2x

2 
y  4 y

3
 , or g y  4 y

3
 , or

g  y  y
4 

.  Thus the solution is given by x
3 
 x

2 
y

2 
 y

4  
 C .

 

 

35.       The condition 

 

Fx   M 
 

implies that 

 

F  x, y   x
3

  
 y 

x 

 

dx 
1 

x
4 

4 

 

 y ln x  g  y , and then

the condition Fy   N implies that ln x  g y  y
2

  ln x , or g y  y
2

 , or

g  y  
 1 

y3 
.  Thus the solution is given by 

3 

1 
x

4 
 

1 
y

3 
 y ln x  C . 

4        3

 

36.       The condition Fx   M implies that F  x, y   1 ye
xy 

dx  x  e
xy

  g  y , and then the

condition Fy   N implies that xe
xy  
 g y  2 y  xe

xy
 , or g y  2 y , or g  y  y

2 
.

Thus the solution is given by x  e
xy  
 y

2  
 C .

 

37.       The condition Fx   M implies that F  x, y   cos x  ln y dx  sin x  x ln y  g  y ,
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and then the condition 

 

Fy   N 
 

implies that 
 x 
 g y  

 x 
 e y 

y                  y 

 

, or 

 

g y  e
y
 

 

, or

g  y  e
y 
.  Thus the solution is given by sin x  x ln y  e

y  
 C .
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38.       The condition 

 

Fx   M 
 

implies that 

 

F  x, y   x  tan1
 y dx  

1 
x

2 

2 

 

 x tan
1

 

 

y  g  y ,

 

and then the condition 
 

Fy   N implies that  
   x     


1 y2

 

g y 
 x y 

, or 
1 y2

 

g y  
    y     

, or 
1 y

2

g  y  
 1 

ln 1 y
2  .  Thus the solution is given by 

1 
x

2 
 x tan

1  
y  

 1 
ln 1 y

2    
 C . 

2                         2

 

39.       The condition
 
F

x  
 M

 
implies that

 
F  x, y   3x y

 
 y  dx  x y

 
 xy

 
 g  y , and

2    3           4                  3    3             4 

then the condition
 
F

y  
 N

 
implies that 3x y

 
 4xy

 
 g y  3x y   y

 
 4xy

 
, or

3    2                 3                                    3    2           4                 3 
 

g y  y
4 
, or g  y  

 1 
y5 

.  Thus the solution is given by 
5 

x
3 
y

3 
 xy

4 
 

1 
y

5  
 C . 

5

40.       The condition Fx   M implies that

F  x, y   e
x 
sin y  tan y dx  e

x 
sin y  x tan y  g  y ,

 

and then the condition Fy   N 
 

implies that

 

 
 

or g y  0 , or 

e
x 
cos y  x sec

2  
y  g y  e

x 
cos y  x sec

2  
y , 

g  y  0 .  Thus the solution is given by e
x 
sin y  x tan y  C .

 

 

41.       The condition 
 

Fx   M 
 

implies that 

 

F  x, y  
2x 


y 

3y
2

 

x
4

 

 

dx 
x2         y2 

       g  y  , and then 
y     x3

x
2        

2 y                     x
2        

2 y      1                         1
the condition F

y  
 N implies that      

y
2

 
3  
 g y     

2  
   

3  


x                      y      x 
, or 

y 
g y  

y

 
, or 

 

g  y  2 

 
y .  Thus the solution is given by 

 

2        y2 

       2 
y     x

3
 

 

y  C .

 

42.       The condition Fx   M implies that

 

F  x, y  y
2/3  

 3 
x5/2 y dx  xy2/3  x3/2 y  g  y , 

2

 

and then the condition 
 

F
y  
 N implies that  

2 
 

xy
5/3 

 

 x
3/2 

 

 g y  x 
 
3/2  

 2 
xy 

 
5/3 

 

, or
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3                                                3

g y  0 , or g  y  0 .  Thus the solution is given by xy
2/3 

 x
3/2 

y  C .

 

 

In Problems 43-48 either the dependent variable y or the independent variable x (or both) is miss- 
ing, and so we use the substitutions in equations (34) and/or (36) of the text to reduce the given 

differential equation to a first-order equation for  p  y .
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43.       Since the dependent variable y is missing, we can substitute  y  p and  y  p as in 

Equation (34) of the text.  This leads to xp  p , a separable equation for p as a function
 

of x.  Separating variables gives 
dp 

 
dx 

, or ln p  ln x  ln C , or  p  Cx , that is,

p         x 
 

y  Cx .  Finally, integrating gives the solution 
 

y  x  Ax
2 
 B . 

 

y  x  
 1 

Cx2  B , which we rewrite as 
2

 

 

44.       Since the independent variable x is missing, we can substitute  y  p and 

 

y  p 
dp 

dy 

 

as in

 

Equation (36) of the text.  This leads to yp 
dp 

 p
2  
 0 , or , a separable equation for p as 

dy

 

a function of y. Separating variables gives 
dp 

    
dy 

, or ln p   ln y  ln C , or 
p            y

p  
 C 

, that is,  
dy 

 
 C 

.  Separating variables once again leads to 


 

y dy   C dx , or

y               dx     y

1 
y

2  
 Cx  D , or 

2 
x  y  

 1   
y2  

 D 
, which we rewrite as 

2C         C 

 

x  y  Ay
2 
 B .

 

45.       Since the independent variable x is missing, we can substitute  y  p and 

 

y  p 
dp 

dy 

 

as in

 

Equation (36) of the text.  This leads to p 
dp 

 4 y  0 , or 
dy 

 

p dp   4 y dy , or

1 
p

2  
 2 y

2 
 C , or  p 

2 

 

2C  4 y
2  
 2 

 

C  y
2

 

 

(replacing 
C  

simply with C in the last 
2

 

step).  Thus
 dy 

 2
  

C  y
2  

.  Separating variables once again yields
       dy       


  

dx ,

 

dx 
 

or     
      dy        





2 

 

dx , upon replacing C with k 2 .  Integrating gives
 

C  y
2        

 
2  k 

2 
 y

2        

x    
      dy        

 
 1 

sin
1  y 

 D ; solving for y leads to the solution
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 
2  k 

2 
 y

2         2         k
 
 

 
or simply 

 

y  x  k sin 2x  2D  k sin 2x cos2D  cos2x sin 2D , 

y  x  Acos2x  B sin 2x .  (A much easier method of solution for this equa-

tion will be introduced in Chapter 3.) 

 
46.       Since the dependent variable y is missing, we can substitute  y  p and  y  p as in

Equation (34) of the text.  This leads to xp  p  4x , a linear equation for p as a function
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of x which we can rewrite as Dx  x  p  4x (thus, no integrating factor is needed), or

 

x  p  2x
2 
 A , or p  2x  

 A 
, that is, 

x 

dy 
 2x  

 A 
.  Finally, integrating gives the solu- 

dx             x

tion y  x  x
2 
 Aln x  B .

 

 

47.       Since the dependent variable y is missing, we can substitute  y  p and  y  p as in

Equation (34) of the text.  This leads to p  p
2 
, a separable equation for p as a function

 

of x.  Separating variables gives 
dp 

p
2        x dx , or  

 1 
 x  B , or 

p 
p   

   1    
, that is, 

x  B

dy 
  

   1    
.  Finally, integrating gives the solution 

dx       x  B 

 

y  x  A  ln x  B .

Alternatively, since the independent variable x is also missing, we can instead substitute
 

y  p and y  p 
dp 

dy 

 

as in Equation (36) of the text.  This leads to p 
dp 

 p
2 
, or 

dy

dp 

 p  
  dy , or ln p  y  C , or

 

 

p  Ce
y 
, that is, 

dy 
 Ce

y 
.  Separating variables once 

dx

again leads to  e
 y 

dy  C  dx , or e
 y  

 Cx  D , or 
 

y   ln Cx  D   ln 

C 
 

x  
 D  

  ln C  ln 
 

x  
 D  

.         C 
       

C 


                                           
 

Putting 

 

A   ln C 
 
and 

 

B  
 D 

C 

 
gives the same solution as found above.

 
48.       Since the dependent variable y is missing, we can substitute  y  p and  y  p as in

Equation (34) of the text.  This leads to x
2 
p  3xp  2 , a linear equation for p as a func- 

3        2
tion of x.  We rewrite this equation as p     p       , showing that an integrating factor is 

x        x
2

given by   exp

 3 

dx 
 
 x

3 
. Multiplying by  gives

  

x3  p  3x2 p  2x , or
  x     


           

D  x3 
 p   2x , or 

 

x
3 
 p  x

2 
 C , or p  

 1 
 

 C 
, that is, 

x    x
3

 

C
 

dy 
 

 1 
 

 C 
.  Finally, inte- 

dx     x    x
3

grating gives the solution  



Copyright © 2015 Pearson Education, Inc.  

y  x  ln x  
A 
 B . 

x
2

 

y  x  ln x      
2  
 D , which we rewrite as 

2x



Copyright © 2015 Pearson Education, Inc. 
 

  x 

  2 



Section 1.6   77 
 
 

49.       Since the independent variable x is missing, we can substitute  y  p and 

 

y  p 
dp 

dy 

 

as in

 

Equation (36) of the text.  This leads to py 
dp 

 4 p
2  
 yp , or 

dy 
y 

dp 
 p  y , a linear 

dy

equation for p as a function as a function of y which we can rewrite as Dy  y  p  y , or

y  p  
 1 

y
2 
 C , or 

 y 
2  
C 

p             , that is, 
dy      y 

2  
C 

            .  Separating variables leads to

2                            2 y dx        2 y

   2 y    
dy 

y2  C 

 

dx , or 
 2 ydy  

  y2 
 C 

 ln  y2 
 C   B .  Solving for y leads to the solution

y
2 
 C  e

xB  
 Be

x 
, or finally y  x    

 

A  Be
x  

.

 

 

50.       Since the dependent variable y is missing, we can substitute  y  p and  y  p as in
 

Equation (34) of the text.  This leads to p   x  p
2 
, a first-order equation for p as a

function of x which is neither linear nor separable. However, the further substitution
 

v  x  p , which implies that 
 

p  v 1, yields v 1  v
2 

, or 
dv 

 1 v
2 
, a separable 

dx 
dv

equation for v as a function of x.  Separating variables gives  1 v
2  
  dx , or

 

arctan v  x  A , or v  tan  x  A .  Back-substituting x  p for v then leads to
 

p  tan  x  A  x , or 
dy 

 tan  x  A  x .  Finally, integrating gives the solution 
dx

y  x  ln sec  x  A  
1 

x2  B 
2 

 

 

51.       Since the independent variable x is missing, we can substitute  y  p and 

 
 
 
 
 

y  p 
dp 

dy 

 
 
 
 

 
as in

 

Equation (36) of the text.  This leads to 

 

pp  2 yp
3 
, or 

 

p  2 yp
2 
, or 

 1  
dp 

p 

 

2 y dy ,

or  
 1 
 y

2 
 C , or 

p 
p   

    1     
, that is, 

y2  C 

1 

dy 
  

    1     
.  Separating variables once 

dx        y2  C

again leads to y
2  C dy   dx , or y3  Cy  x  D , or finally the solution 

3
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y
3 
 3x  Ay  B  0 . 

 

 
52.       Since the independent variable x is missing, we can substitute  y  p and 

 

 
 
 

y  p 
dp 

dy 

 
 
 
 

as in

 

Equation (36) of the text.  This leads to 

 

y
3 
pp  1, or 

 

 p dp  
 1  

dy , or 
y

3
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1 
p

2  
  

 1   
 A , or p

2  
 

 Ay  1 
, or 

Ay
2 
1 

p                 , that is, 
dy       Ay

2 
1 

                . Separat-

2            2 y
2

 y
2                                           y dx           y

 

ing variables once again yields 
       y       

dv 

Ay
2 
1 

 

dx , or x  
 1 
A 

 

Ay
2 
1  C , which we

 

rewrite as 
 

Ax  B 
 

Ay
2 
1 , leading to the solution 

 

Ay
2  
  Ax  B

2  
 1 .

 

 

53.       Since the independent variable x is missing, we can substitute  y  p and 

 

y  p 
dp 

dy 

 

as in

 

Equation (36) of the text.  This leads to pp  2 yp , or  dp   2 y dy , or 

 

p  y
2 
 A ,

 

that is, 
dy 

 y
2 
 A .  Separating variables once again yields 

dx 

    1     
dy 

y2  A 

 

dx , or

Aarctan 
 y 
 x  C , or 

A 

 y 
 tan  Ax  B , or finally the solution 

A 

 

y  x  A tan  Ax  B .

 

54.       Since the independent variable x is missing, we can substitute  y  p and 

 

y  p 
dp 

dy 

 

as in

 

Equation (36) of the text.  This leads to 
 1              3 

ypp  3p2 , or        dp        dy , or 
p             y

 

ln p  3ln y  C , or 

 

p  Cy
3 
, that is, 

dy 
 Cy

3 
.  Separating variables once again yields 

dx

 

the solution 
 1  

dy 
y 

C dx , or  
 1   

 Cx  D , or 1  2 y
2 Cx  D , which we re- 

2 y2

write as y
2 B  x  1.

 

 

55.       The proposed substitution v  ax  by  c 
 

implies that y  
 1 
v  ax  c , so that 

b

y  
 1 
v  a .  Substituting into the given differential equation gives 

b 

1 
v  a  F v , 

b

 

that is 
dv 

 bF v  a , a separable equation for v as a function of x. 
dx
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56.       The proposed substitution v  y
1n

 

  1  
1

 

implies that y  v
1 1n  

and thus that

dy 
 

  1    
v1n 

dv 
 

  1    
v

n 1n  dv 
.  Substituting into the given Bernoulli equation

dx    1 n          dx 1 n           dx

yields  
   1    

v
n  1n  dv 

 P  x v1 1n  
 Q  x vn  1n 

, and multiplication by  
 1 n   

 

then

1 n           dx v
n 1n

leads to the linear differential equation v  (1  n)P  x v  1 nQ  x v .
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Problems 57-62 illustrate additional substitutions that are helpful in solving certain types of first- 

order differential equation. 
 

57.       The proposed substitution v  ln y 
 

implies that 

 

y  e
v 
, and thus that 

dy 
 e

v   dv 
.  Substi- 

dx        dx

tuting into the given equation yields ev   dv 
 P  x ev   Q  x vev 

.  Cancellation of the fac- 
dx

 

tor e
v
 

 

then yields the linear differential equation 
dv 

 Q  x v  P  x . 
dx

58. By Problem 57, substituting v  ln y 

xv  2v  4x
2 

, which we rewrite (for 

into the given equation yields the linear equation 

x  0 ) as v  
 2 

v  4x .  An integrating factor is 
x

given by   exp

 2 

dx 
 
 x

2 
, and multiplying by  gives

  

x2  v  2xv  4x3 , or
  x     


           

D x
2  
 v   4x

3 
.  Integrating then leads to 

 

x2  v  x4   C , or v  x
2 
 

 C 
.  Finally, back- 

x
2

substituting ln y for v gives the solution ln y  x
2 
 

 C  

, or
 

y  exp
 

x
2 
 

 C  
.

x2                                    x2 
 

 
 
 

59.       The substitution  y  v  k 

            
 

 

implies that  
dy 

 
 dv 

, leading to 
dx    dx

dv 
 

 x v k 1 
 

 x v k 1 
.

dx     x  v  k   3 x  v  k  3

 

Likewise the substitution x  u  h 

 

implies that u  x  h 

 

and thus that  
dv 

 
 dv du 

 
 dv 

dx  du dx    du
 

(since 
du 

 1), giving 
dx

dv 
 
u h v k 1 

 
 u v h k 1 

.
du    u  h  v  k   3 u  v  h  k  3

 

Thus h and k must be chosen to satisfy the system 

h  k 1  0 
, 

h  k  3  0 

which means that h  1 and k  2 .  These choices for h and k lead to the homogene- 

ous equation 
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1 
 v 

dv 
 

 u v 
      u ,

du    u  v 
1 

 v 

u
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which calls for the further substitution p  
 v 

, so that v  pu and thus  
dv 

 p  u 
dp 

.

 
 

Substituting gives 

u 

p  u 
dp 

 
1 p 

, or 

du             du

du 
 

u 
dp 

1 p 
 

1 p    p  p
2

 

                      

 
 

1 2 p  p
2 

.

du    1 p 1 p 1 p

 
Separating variables yields

 
 

     1 p     
dp 


 

1 
du , or  

1 
ln 1 2 p  p

2   ln u  C ,

 1 2 p  p
2                 u 

 

2 

2              

   

or  p2  
 2 p 1u2  

 C .  Back-substituting 
v
 

  v 

for p leads to 
 2 

v 
1 

u
2  
 C , or

u                        
 

u 

 

u     

v
2  
 2uv  u

2  
 C .  Finally, back-

substituting plicit solution 

x 1 for u and y  2 for v gives the im-

 
 
 

which reduces to 

 y  2
2  
 2  x 1  y  2   x 1

2  
 C , 

 

y
2 
 2xy  x

2 
 2x  6 y  C .

 

60.       As in Problem 59, the substitutions x  u  h ,  y  v  k give

dv 
 

  2 v k u h 7   
 

  2v u 2k h 7   
.
 

du    4 u  h  3v  k  18    4u  3v  4h  3k 18
 

Thus h and k must be chosen to satisfy the system 

h  2k  7  0 
, 

4h  3k 18  0 

which means that h  3 and k  2 .  These choices for h and k lead to the homogeneous 

equation
 

 

dv 
 

 2v u  


du    4u  3v 

2 
v 
1 

u      , 

4  3 
v
 

u

 
which calls for the further substitution p  

 v 
, so that v  pu and thus  

dv 
 p  u 

dp 
.

 
 

Substituting gives 

u 

p  u 
dp 

 
 2 p 1 

, or 

du             du
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 

du    4  3p 
 

dp     2 p 1    4 p  
3p

2 

 
 

3p
2  
 2 p 1

u                                                       .
du    4  3p 4  3p 4  3p

 
Separating variables yields 

tions gives 

     4 3 p     
dp 

3p2  2 p 1 

 

1 
du .  Now the method of partial frac- 

u
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4  3p
 

1       1         15            1

 3p
2 
 2 p 1 

dp  
4 

so the solution is given by 

           dp     ln  p 1  5ln 3p 1  ln C  , 
p 1   3p 1        4

ln  p 1  5ln 3p 1  ln C  4 ln u ,

or u
4  
 

 C p 1 
.  Back-substituting  

v 

 

 

for p gives

3p 1
5

 u 
 

 v 
  


 

u
4  


C       1
         

Cu 
4 v u 

,


3 

v 
1




3v  u
5

or 3v  u
5  
 C v  u , and finally, back-substituting 

the implicit solution 

 

x  3 for u and 
 

y  2 for v yields

3y  x  3
5  
 C  y  x  5 . 

 

 

61.       The expression x  y appearing on the right-hand side suggests that we try the substitu-
 

tion v  x  y , which implies that  y  x  v , and thus that 
dy 

 1 
 dv 

.  This gives the 
dx         dx

separable equation 1 
dv 

 sin v , or 
dx 

dv 
 1 sin v . Separating variables leads to 

dx

     1      
dv 

1 sin v 

 

dx . The left-hand integral is carried out with the help of the trigono-

metric identities  

 

     1      
 

1 sin v 
 sec

2 
v  sec v tan v ;

1 sin v cos
2 

v

the solution is given by  sec2 v  sec v tan v dv   dx , or 

 

x  tan v  sec v  C .  Finally,

back-substituting x  y for v gives the implicit solution x  tan  x  y  sec x  y  C .

However, for no value of the constant C does this general solution include the “basic” so-
 

lution y  x  x  
 

.  The reason is that for this solution, v  x  y is the constant  
 

, so

2 
that the expression 1 sin v 

2 
(by which we divided above) is identically zero.  Thus the
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solution y  x  x  

2 

 

is singular for this solution procedure.

62.       First we note that the given differential equation is homogeneous; for x  0 we have
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x 
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3 

3 
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 
  y 

dy       y 2 x 3 y 3 


 y   
 2    

x 
 

                                  ,

dx       x 2 y
3 
 x

3  x        
   
 x 

 

and substituting v  
 y 

x 

 
as usual leads to 

 
dv 

 
 
 
 

2  v3 

 
 
 
 

v4  2v

v  x 
dx 

or 

 v                          , 
2v3 1    2v3 1

dv    v4  2v 
x                    v 2v

3 
1 


v4  v 

,

dx 

2v
3 
1              1 

2v
3 
1      2v

3 
1    2v

3 
1

or 
 

v
4 
 v 

dv   dx , after separating variables.  By the method of partial fractions, 
x

2v 3 1 

dv 
   2v 1  

 
1 
 

  1   
dv  ln v2  

 v 1  ln v  ln v 1 ,
 v4  v 

 v2  v 1 v    v 1

yielding the implicit solution 

ln v2  
 v 1  ln v  ln v 1   ln x  C ,

 

or x v2  
 v 1 v 1  Cv , that is, 

 

x v3  
1  Cv .  Finally, back-substituting  

 y
 
 
for v

 

                     y 
gives the solution x 1   C 

y 
, or

  

x
3 
 y

3  
 Cxy .


 

x 
      

        x 

1                                  dy 1 dv

63.       The substitution y  y
1 
 

v 
, which implies that

 

2
 

 y1
    

2           
, gives 

dx            v  dx

  
 1 dv 




    
 

 1   



    
 

 1  
          ,y 

1       
v

2  
dx

 A x  y1       
v 
 B  x  y1

    C  x
v

which upon expanding becomes 

                                  

 

y  
 1  dv 

 A x 
 

y 
2 
 2 

 y1   
 1   

 B  x y
 

 

 B  x 
1 
 C  x

1       
v

2  
dx

   1               
v     v2               1                      

v
                       
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  A x y 
2 
B x y C x   A x 

 
2 

 y1   
 1   

 B  x 
1 

.1                           1                                          
v     v2             v

 

 

The underlined terms cancel because 

               

y
1  

is a solution of the given equation

dy 
 A x y2  B  x y  C  x , resulting in 

dx

 
 1 dv 

 A x 2 
 y1   

 1   
 B  x 

1 
,

v
2  

dx
     

v     v2             v
               
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dx 

2         4 

dv 
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or 
dv 

dx 

 

  A x 2vy
1  
1  B  x v , that is, 

 

 B  2 Ay
1  v   A , a linear equation for 

dx

v as a function of x. 
 

 

In Problems 64 and 65 we outline the application of the method of Problem 63 to the given Ric- 

cati equation. 
 

64.       Here 

 

A x  1, 

 

B  x  0 , and C  x  1 x
2 
.  Thus the substitution 

 

y  y1  
1 
 x  

1 
v          v

 

leads to the linear equation 
dv 

 2xv  1 .  An integrating factor is given by 
dx

  exp   2x dx  e
 x2  

, and multiplying by  gives e
 x

2  

 
dv 

 2xe
 x

2 

v  e
 x

2  

, or

Dx 
 

e
 x2

 

 v
 

 e
 x2

 

 

.  In Problem 29 of Section 1.5 we saw that the general solution of this

 

linear equation is v  x  ex
 

2  
C 


           
erf  x , expressed in terms of the error function 

2             

erf  x introduced there.  Hence the general solution of our Riccati equation is given by 
 

1

y  x  x  e
 x

 

2  
C 


           
erf  x   . 

2             

 

65.       Here A x  1, B  x  2x , and C  x  1 x
2 
.  Thus the substitution

 

y  y1  
1 
 x  

1 
v          v 

 

yields the trivial linear equation 
dv 

 1, with immediate solution 
dx

v  x  C  x .  Hence the general solution of our Riccati equation is given by 

y  x  x  
   1    

. 
C  x 

66.       Substituting y  x  Cx  g C  into the given differential equation leads to

Cx  g C  Cx  g C  , a true statement.  Thus the one-parameter family 

y  x  Cx  g C  is a general solution of the equation. 
 

 

67.       First, the line y  Cx  
1 

C
2  

has slope C and passes through the point  1 C, 1 C2  ; the

4 

same is true of the parabola 

 

 

y  x
2
 

2         4 

at the point  1 C, 1 C
2  , because

dy                 
 1
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 2x  2  
2 
C  C .  Thus the line is tangent to the parabola at this point.  It follows 

dx

that y  x
2

 is in fact a solution to the differential equation, since for each x, the parabola
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                  

  x   

                      



                   

2 


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has the same values of y and  y as the known solution y  Cx  
1 

C
2 
.  Finally, 

4 

 

y  x
2   

is

 

a singular solution with respect to the general solution y  Cx  
1 

C
2 
, since for no value 

4

of C does Cx  
 1 

C
2 

4 

 

equal 
 

x
2   

for all x.

68.       Substituting C  k ln a into ln v  1 v2   k ln x  C 

 

gives

ln v  1 v
2   k ln x  k ln a  ln  x a

k 
,

 

or v 
 

that is 

 

1  v
2  
  x a 

k 
, or  x a

k  
 v

 

 1 v
2 , or  x a

2k  
 2v  x a

k  
 v

2  
 1 v

2 ,

       2k          


k             


k                   k 
v  

 1 

  x 

1
   x 

 
 1 

  x 

 
  x  

 .

2  
 

a 
                

a 


2  
 

a 
       

a 


                             

 

69.       With a  100 and k  
 1  

, Equation (19) in the text is
   x  

y  50 

9 10                        11 10 

 
              

.

10                                                          
 
100 

        
100 

     


We find the maximum northward displacement of plane by setting

        
1 10               

  
 

1 10 
y x  50  

9 
  

x  



 
11 

  
x  

  0 ,

10  100  10 100 


 
1 10                     1 2

which yields 
  x   

 
  9 

 

.  Because

100 

        
11


 

         
11 10                  

     
9 10 

y x  50    
9 
  

x  

  

11 
  

x  

   0

100  100  100  100 

for all x, this critical point in fact represents the absolute maximum value of y.  Substitut- 
9  2                    11 2

 

  9          9     
ing this value of x into y  x gives ymax   50     

      
   3.68 mi .

 11       11  
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70.       With k  
 w 

 
 10  

 
 1  

, Equation (16) in the text gives ln v 
 
 
 

1 v
2    

 1 
ln x  C ,

v0        500    10                                                                                   10

where v denotes 
 y 

.  Substitution of 
x 

C  ln 2  2001 10  , which gives 

 

x  200 , y  150 , and v  
 3 
4 

 

yields
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2 

x            x 

                    

2 



2 

10 


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  y 

ln       1 
 y    

  
 1  

ln x  ln 2  200
1 10  .

                    
                 2  
                    

Exponentiation and then multiplication of the resulting equation by x finally leads to

y    x
2 
 y

2  
 2  200x

9
 

1 10 

, as desired. Note that if x  0 , then this equation yields

          
y  0 , confirming that the airplane reaches the airport at the origin. 

 

 

71.       Equations (12)-(19) apply to this situation as with the airplane in flight. 

(a) With a  100 and k  
 w 

 
 2 
 

 1 
, the solution given by Equation (19) is 

v0        4    2 
1 2                        3 2  x  

y  50  
  x   

.  The fact that
 y 0  0 means that this trajectory goes


 
100 

       
100 

   


through the origin where the tree is located. 




 
 

      

(b) With k  
4 
 1 , the solution is 

 

y  50 1  
 x  

  , and we see that the dog hits the

4                                                   100 
 

bank at a distance y 0  50ft 
 

north of the tree. 
 

     
1 2 

 

 
 
 

5 2 

     
(c) With k  

6 
 

3 
, the solution is 

x 
y  50        

   
x  
  .  This trajectory is as-

4    2                                      100          100 

ymptotic to the positive x-axis, so we see that the dog never reaches the west bank of the 

river. 
 

 

72.       We note that the dependent variable y is missing in the given differential equation

ry  1  y
2 

3 2  

   , leading us to substitute  y   , and  y    . This results in
             

rp 1  2 
3 2  

, a separable first-order differential equation for  as a function of x. 
 

r
Separating variables gives  

1  2 
3 2 

d   dx , and then integral formula #52 in the

back of our favorite calculus textbook gives  
   r   

 x  a , that is, 

1  2
 

r 2 2   1   2  x  a 
2 
.  We solve readily for  2  

 
 x a    

, so that 
r2   x  a 

2

 

dy 
  2  


       x a      

. Finally, a further integration gives
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dx               r
2 
  x  a

2

 

y  
   x a     

dx  

r
2 
  x  a

2

 

 

r2   x  a
2  
 b ,
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x 

86   SUBSTITUTION METHODS AND EXACT EQUATIONS 
 

 

which leads to  x  a
2  
  y  b

2  
 r

2 , as desired. 
 
 
 

CHAPTER 1 Review Problems 
 
The main objective of this set of review problems is practice in the identification of the different 

types of first-order differential equations discussed in this chapter.  In each of Problems 1–36 we 

identify the type of the given equation and indicate one or more appropriate method(s) of solu- 

tion. 
 

1.         We first rewrite the differential equation for 

 

x  0 as y  
 3 

y  x
2 
, showing that the 

x

equation is linear.  An integrating factor is given by   exp
 

 3 

dx 
 
 e

3ln x  
 x

3 
, and

   x     


             

multiplying the equation by  gives x
3 
 y  3x

4 
y  x

1 
, or D  x3  y   x1 .  Integrat-

ing then leads to x
3 
 y  ln x  C , and thus to the general solution y  x

3 ln x  C .

 

 

2.         We first rewrite the differential equation for 
 

x, y  0 as 
y 


y

2
 

x  3 

x
2
 

 

, showing that the

equation is separable.  Separating variables yields  
 1 
 ln x  

 3 
 C , and thus the gen- 

y              x
 

eral solution y  
      1       

 
           x           

.

ln x  
 3 
 C 

x 

3  x C  ln x

xy y 
2   y      y 

3.         Rewriting the differential equation for x  0 as y 
x

2
 

        
x     x 

shows that the

equation is homogeneous. Actually the equation is identical to Problem 9 in Section 1.6;
 

the general solution found there is y  
      x       

. 
C  ln x

 

 

4.         Rewriting the differential equation in differential form gives 

M dx  N dy  2xy
3  
 e

x dx  3x
2 
y

2 
 sin y dy  0 ,

and because 

y 

 

M  x, y  6xy
2  


 

 
N  x, y , the given equation is exact.  Thus we ap- 

x
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ply the method of Example 9 in Section 1.6 to find a solution of the form F  x, y  C .

 

First, the condition
  

F
x  
 M

  

implies that
 
F  x, y   2xy

  

 e  dx  x y   e
 
 g  y ,

3          x                   2    3          x
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

x 



  2 
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and then the condition
 
F

y  
 N

 
implies that 3x y

 
 g y  3x  y

 
 sin y , or

2    2                                    2    2 

g y  sin y , or g  y  cos y .  Thus the solution is given by x
2 
y

3 
 e

x  
 cos y  C .

 

 

5.         We first rewrite the differential equation for 
 

x, y  0 as 
y 


y 

2x  3 

x
4
 

 

, showing that the

 

equation is separable.  Separating variables yields 
1 

dy    
 2 x 3 

dx , or 
y               x

4

 

ln y
 
  

 1  
 

 1  
 C  

1 x 
 C , leading to the general solution

 
y  C exp

 1 x  
,

x
2        

x
3                       

x
3
   

x3    

        

where C is an arbitrary nonzero constant. 
 

6.         We first rewrite the differential equation for 
 

x, y  0 as 
y 


y

2
 

1 2x 

x
2
 

 

, showing that the

 

equation is separable.  Separating variables yields 
 1  

dy 
y 

1 2 x 
dx , or 

x
2

 
 1 
  

1 
 2 ln x  C , that is  

 1 
 

1 2 x ln x Cx 
, leading to the general solution 

y       x                                 y               x 

y  
           x            

. 
1 2x ln x  Cx 

 

7.         We first rewrite the differential equation for 

 

x  0 as y  
2 

y   
1 

, showing that the 
x        x

3

equation is linear.  An integrating factor is given by   exp

 2 

dx 
 
 e

2ln x  
 x

2 
, and

  x     


 
 

multiplying the equation by  gives 

 

x
2 
 y  2xy  

 1 
, or

 

           

D  x
2  
 y   

 1 
.  Integrating

x           
x                             

x
 

then leads to 
 

x
2 
 y  ln x  C , and thus to the general solution y  

 ln x C 
. 

x
2

 
8.         We first rewrite the differential equation for

 
 

x  0 as
 dy 

 
  y 

 2 
 y 

, showing that is it

   
dx               x

 

homogeneous.  Substituting v  
 y 

x 
then gives v  x 

dv 
 v

2 
 2v , or 

dx 
x 

dv 
 v

2 
 3v .  Sep- 

dx

1                1
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3 

arating variables leads to  dv 
v

2 
 3v 

dx .  Upon partial fraction decomposition the 
x

solution takes the form  
1 

ln v  
1 

ln v  3  ln x  C , or 
3           3 

v 3 

v 

 

 C x  , where C is an

arbitrary positive constant, or v  3  Cvx
3 
, where C is an arbitrary nonzero constant.
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Back-substituting 
 y 

x 
for v then gives the solution  

 y 
 3  C 

 y 
x

3 
, or 

x              x 

 

y  3x  Cyx
3 
, or

 

finally y     
3x    

. 
1 Cx

3

 

Alternatively, writing the given equation as 
dy 

 
 2 

y  
 1  

y
2 

dx    x       x
2

 

 

shows that it is a Bernoulli

equation with n  2 .  The substitution v  y
12  

 y
1  

implies that y  v
1  

and thus that

y  v
2

v .  Substituting gives v
2

v  
 2 

v
1 
 

 1  
v
2 

, or v  
 2 

v   
 1  

, a linear equa-
x          x

2
 x          x

2

tion for v as a function of x.  An integrating factor is given by   exp


 

 2 
dx 
 
 x

2 
,

    x     


 
 

and multiplying the differential equation by  gives 

              

1 
v  

2 
v   

1 
, or 

x
2             

x
3                 

x
4

  1  

  

  
 1  

. Integrating then leads to
  1  

 v  
 1   

 C , or v  
 1  

 Cx
2 
.  Finally,

D
x  

x
2    

v        
x

4
  

x
2               

3x
3                                   

3x
         

 

back-substituting 

 
 

y
1  

for v gives the general solution 

 
1 
 

 1  
 Cx

2 
, or

 

y  
      1      

 
   3x    

, as found above.
 

y    3x

1  
 Cx

2 

3x 

1 Cx3

 

9.         We first rewrite the differential equation for 
 

x, y  0 as y  
 2 

y  6xy
1 2 

, showing that it 
x

is a Bernoulli equation with n  1 2 .  The substitution v  y
1 2   

implies that y  v
2

 and

 

thus that y  2vv .  Substituting gives 2vv  
 2 

v
2  
 6xv , or v  

 1 
v  3x , a linear equa-

x                             x

tion for v as a function of x.  An integrating factor is given by   exp

 1 

dx 
 
 x , and

  x     


 

multiplying the differential equation by  gives 

 
xv  v  3x

2 
, or 

           

D  xv  3x
2 
.  Inte-

 

grating then leads to xv  x
3 
 C , or v  x

2 
 

C 
.  Finally, back-substituting 

x 

 

y
1 2   

for v
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gives the general solution
 y

1 2  
 x

2 
 

C 
, or

 
y  

 
x

2 
 

C   
.

x              
        

x 


           
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dx 
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x 
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
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10.       Factoring the right-hand side gives 
dy 

 1 x
2  1 y

2  , showing that the equation is

 
separable. Separating variables gives 

 

    1     
dy 

1 y2
 

 

1 x
2 
dx , or tan

1  
y  x  

1 
x

3 
 C , 

3

 

or finally
 

y  tan 
 

x  
1 

x
3 
 C 

 
.

      
3           


                   

 
11.       We first rewrite the differential equation for

 
 

x, y  0 as
 dy 

 
 y 
 3

  y 
 
, showing that it

dx     x      
   

 

is homogeneous.  Substituting v  
 y 

x 
then gives v  x 

dv 
 v  3v

2 
, or 

dx 
x 

dv 
 3v

2 
.  Sepa- 

dx

1             3               1                                       1
rating variables leads to  

v
2  

dv   dx , or     3ln x  C , or v                 .  Back- 
x               v                                C  3ln x

substituting  
 y 

x 
for v then gives the solution  

 y 
 

      1       
, or 

x    C  3ln x 
y  

      x       
. 

C  3ln x

 

Alternatively, writing the equation in the form y  
 1 

y  
 3  

y
2 

x        x
2

 

 

for 
 

x, y  0 shows that it

is also a Bernoulli equation with n  2 .  The substitution v  y
1  

implies that y  v
1  

and

 

thus that y  v
2

v .  Substituting gives v
2

v  
 1 

v
1 
 

 3 
v
2 

, or v  
 1 

v   
 3 

 

, a lin-

x          x
2

 

ear equation for v as a function of x. An integrating factor is given by 
x          x

2

  exp

 1 

dx 
 
 x , and multiplying the differential equation by  gives

 
xv  v   

3

  x     
                                                                                                                

x 
 

, or 

           

D  xv      
3 

.  Integrating then leads to 
x                          

x 

 

xv  3ln x  C , or v  
3ln x C 

.  Final- 
x

ly, back-substituting y
1  

for v gives the same general solution as found above.

 

 

12.       Rewriting the differential equation in differential form gives 

6xy
3  
 2 y

4 dx  9x
2 
y

2 
 8xy

3 dy  0 ,

and because 

y 

 

6xy
3  
 2 y

4   18xy
2 
 8 y

3  

 
9x

2 
y

2 
 8xy

3  , the given equation is 
x
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exact.  We apply the method of Example 9 in Section 1.6 to find a solution in the form

F  x, y  C . First, the condition Fx   M implies that

 

F  x, y   6xy
3 
 2 y

4 
dx  3x

2 
y

3 
 2xy

4 
 g  y ,

 

and then the condition 
 

F
y  
 N

  

implies that 9x y
  

 8xy
 
 g y  9x y

  

 8xy
  

, or

g y  0 , that is, g  y
2    2                 3                                    2    2                 3 

 

is constant.  Thus the solution is given by 3x
2 
y

3 
 2xy

4  
 C .
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x 

   

x 

  2 

3 
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13.       We first rewrite the differential equation for 
 

y  0 as  
 y 

 5x
4 
 4x , showing that the 

y
2

 

equation is separable.  Separating variables yields 
 1  

dy 
y 

 

5x
4 
 4x dx , or

 
 1 
 x

5 
 2x

2 
 C , leading to the general solution 

y 
y  

         1          
. 

C  2x
2 
 x

5

 

 
14.       We first rewrite the differential equation for

 
 

x, y  0 as
 dy 

 
 y 
 
  y 

 
, showing that it is

dx     x    
   

 

homogeneous.  Substituting v  
 y 

x 
then gives v  x 

dv 
 v  v

3 
, or 

dx 
x 

dv 
 v

3 
.  Separat- 

dx

 

ing variables leads to 
 1 

dv      
 1 

dx , or 
v                 x 

  1   
 ln x  C , or v 

2v
2

 

2
 

2  
 

      1        
.  Back- 

C  2 ln x 
2

substituting  
 y 

for v then gives the solution 
  y   

 
      1        

, or
 

y
2  
 

      x        
.

   
x                                                    C  2 ln x C  2 ln x

 
Alternatively, writing the equation in the form y  

 1 
y   

 1 
x          x

3
 

 

y
3  

for 
 

x, y  0 shows that

it is also a Bernoulli equation with n  3 .  The substitution v  y
2

 implies that y  v
1 2 

 

and thus that y       
1 

v
3 2

v .  Substituting gives  
1 

v
3 2

v  
 1 

v
1 2  

  
 1 

v
3 2 

, or

2                                               2              x              x
3

v  
 2 

v  
 2 

x       x
3
 

 

, a linear equation for v as a function of x.  An integrating factor is given by

  exp

 2 

dx 
 
 x

2 
, and multiplying the differential equation by  gives

  x     


           

x
2 
 v  2x  v  

 2 
, or 

x 

 

D  x
2  
 v  

 2 
.  Integrating then leads to 

 
 

x
2
v  2 ln x  C , or

v  
 2ln x C 

.  Finally, back-substituting 
x

2
 

found above. 

 

y
2 

 

for v gives the same general solution as

 

15.       This is a linear differential equation. An integrating factor is given by 
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  exp  3dx  e
3x 

, and multiplying the equation by  gives e
3x 
 y  3e

3x 
y  3x

2 
, or

Dx e3x  y  3x
2

 . Integrating then leads to e
3x

  y  x
3

  C , and thus to the general solu-

tion y  x3  
 C e3x  .

 

16.       Rewriting the differential equation as y   x  y 
2

 suggests the substitution v  x  y ,

which implies that  y  x  v , and thus that y  1  v .  Substituting gives 1  v  v
2 

, or

v  1  v
2 

, a separable equation for v as a function of x.  Separating variables gives
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

x 

3               

2               

3 
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   1    
dv 

1 v 

 

dx , or (via the method of partial fractions) 
1 
ln 1 v  ln 1 v   x  C , 

2

or ln 
 1 v 
1  v 

 2x  C , or 1 v  Ce
2 x 1 v .  Finally, back-substituting x  y for v gives

the implicit solution 1 x  y  Ce
2 x 1 x  y . 

 

 

17.       Rewriting the differential equation in differential form gives 

ex  
 ye

xy dx  e y  
 xe

xy dy  0 ,

and because 

y 

 

e x  
 ye

xy   xye
xy  

 
e y  

 xe
xy  , the given equation is exact.  We ap- 

x

ply the method of Example 9 in Section 1.6 to find a solution in the form F  x, y  C .

First, the condition Fx   M implies that

F  x, y   e
x 
 ye

xy 
dx  e

x 
 e

xy  
 g  y ,

 

and then the condition 
 

F
y  
 N

  

implies that xe
 
 g y  e

  

 xe
  

, or
 
g y  e

  

, or

xy                                 y              xy                                       y 

 

g  y  e
y 
. Thus the solution is given by e

x  
 e

xy  
 e

y  
 C . 

 

 
18.       We first rewrite the differential equation for

 
 

x, y  0 as
 dy 

 2 
 y 
 
  y 

 
, showing that it

dx       x    
   

 

is homogeneous.  Substituting v  
 y 

x 
then gives v  x 

dv 
 2v  v

3 
, or 

dx 
x 

dv 
 v  v

3 
. 

dx

1               1
Separating variables leads to  dv 

v  v 
dx , or (after decomposing into partial frac- 

x 
2

tions)     
2 
 

  1    
 

  1    
dv 

 2 
dx , or ln 

         v    

 2 ln x  C , or
 v    1 v 

 

2
 

1 v          x 
 

1 v 1 v

         v           
 Cx

2 
, or v

2  
 Cx

2 1 v 1 v .  Back-substituting  
 y 

1 v 1 v                                                                          x 
2
 

 

for v then gives the

solution 
  y 

 Cx
2 

1 
 y 

1 
 y  

, or finally
 

y
2  
 Cx

2  x  y   x  y   Cx
2  x2 

 y
2  .

 
x 
            

x 
      

x 


                                
 

Alternatively, rewriting the differential equation for 

 

 

x  0 as 

 

 

y  
 2 

y   
 1 

x          x
3
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   

  y
3  

shows

that it is Bernoulli with n  3 .  The substitution v  y
13 

 y
2  

implies that y  v
1 2 

, and

 

thus that y       
1 

v
3 2

v .  Substituting gives  
1 

v
3 2

v  
 2 

v
1 2  

  
 1 

v
3 2 

, or

2                                               2              x              x
3

v  
 4 

v  
 2 

x       x
3
 

 

, a linear equation for v as a function of x.  An integrating factor is given by
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  exp

 4 

dx 
 
 x

4 
, and multiplying the differential equation by  gives

  x     


           

x
4 
 v  4x

3
v  2x , or 

 

D x
4  
 v   2x .  Integrating then leads to 

 

 

x
4 
 v  x

2  
 C , or

v  
 1   

x
2 
 C  .  Finally, back-substituting 

x
4
 

 

y
2 

 

for v gives the general solution 
 

2

 1  
 

 1  
x

2  
 C   

 1  
 

 C 
, or C  x

4   1  
 

 1   
 

 x   
x

2  
 y

2  , or (for C  0 )

y2         x4 

x2        x4  
y

2
 

x
2     

y
2

             

y
2  
 

 1 
x

2  x
2  
 y

2   Cx
2 x

2  
 y

2  , the same general solution found above.  (Note that 

the case C  0 in this latter solution corresponds to the solutions  y   x , which are sin-

gular for the first solution method, since they cause v  v
3

 to equal zero.)

 

19.       We first rewrite the differential equation for 
 

x, y  0 as  
 y 

 2x
3 
 3x

2 
, showing that 

y
2

 

the equation is separable.  Separating variables yields 
 1  

dy 
y 

 

2x
3 
 3x

2 
dx , or 

 
2

 
 1 
 x

2 
 x

3 
 C , leading to the general solution 

y 
y  

        1          
 

       x          
. 

x2  x3  C     x5  Cx2 1

 

 

20.       We first rewrite the differential equation for 

 

x  0 as y  
 3 

y  3x
5 2 

, showing that the 
x

equation is linear.  An integrating factor is given by   exp

 3 

dx 
 
 e

3ln x  
 x

3 
, and

  x     


           

multiplying the equation by  gives x
3 
 y  3x

2 
y  3x

1 2 
, or D   x3  y   3x1 2 .  Inte-

grating then leads to x
3 
 y  2x

3 2 
 C , and thus to the general solution y  2x

3 2 
 Cx

3 
.

 

 

21.       We first rewrite the differential equation for 

 

x  1 as y    
1   

y     
1    

, showing that 
x 1       x

2 
1

the equation is linear.  An integrating factor is given by   exp




   1   
dx 
 
 x 1 , and 



    
x 1    



multiplying the equation by  gives  x 1 y  y  
  1    

, or 
x 1 

 

D
x  x 1 y  

  1    
.  In- 

x 1
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

tegrating then leads to  x 1 y  ln  x 1  C , and thus to the general solution 

y  
  1    

ln  x 1  C  . 
x 1
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22.       Writing the given equation for 

 

x  0 as 
dy 

 
 6 

y  12x
3 
y

2 3  
shows that it is a Bernoulli 

dx    x

equation with n  2 3 .  The substitution v  y
12 3  

 y
1 3  

implies that y  v
3  

and thus that

y  3v
2
v .  Substituting gives 3v

2
v  

 6 
v

3  
 12x

3
v

2 
, or v  

 2 
v  4x

3 
, a linear equation

x 
 

for v as a function of x. An integrating factor is given by
 

x 

  exp



 

 
 2 

dx 
 
 x

2 
, and

    x     


              

multiplying the differential equation by  gives x
2 
 v  2x

3
v  4x , 

or 

D  x2   v   4x

. Integrating then leads to x
2 
 v  2x

2  
 C , or v  2x

4  
 Cx

2 
.  Finally, back-substituting

y
1 3  

for v gives the general solution y
1 3  
 2x

4 
 Cx

2 
, or y  2x 

4 
 Cx

2  .

 

 

23.       Rewriting the differential equation in differential form gives 

e y  
 y cos x dx   xe

y  
 sin x dy  0 ,

and because 

y 

 

e y  
 y cos x  e

y  
 cos x 

 
 xe

y  
 sin x , the given equation is exact. 

x

We apply the method of Example 9 in Section 1.6 to find a solution in the form

F  x, y  C . First, the condition Fx   M implies that

 

F  x, y   e
y  
 y cos x dx  xe

y  
 y sin x  g  y ,

 

and then the condition 
 

Fy   N 
 

implies that xe
y  
 sin x  g y  xe

y
 

 

 sin x , or

g y  0 , that is, g is constant. Thus the solution is given by xe
y  
 y sin x  C .

 

 

24.       We first rewrite the differential equation for x, y  0 as  
 y 

 x
3 2 

 9x
1 2 

, showing that 
y

2

 

the equation is separable.  Separating variables yields 
 1  

dy 
y 

 

x
3 2 

 9x
1 2 

dx , or 
 

1 2 

 
 1 
 2x

1 2 
 6x

3 2 
 C , leading to the general solution 

y 
y  

         x             
. 

6x2  Cx1 2  2

 

 

25.       We first rewrite the differential equation for 

 

x  1 as y  
  2    

y  3, showing that the 
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

x 1

equation is linear.  An integrating factor is given by   exp




   2   
dx 
 
  x 1

2 
, and 



    
x 1    




multiplying the equation by  gives  x 1
2  

y  2  x 1 y  3 x 1
2 

, or
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D   x 1
2  
 y  3 x 1

2 
. Integrating then leads to  x 1

2  
 y   x 1

3  
 C , and thus

 
to the general solution 

 

y  x 1 
    C      

. 

 x 1
2

 

 

26.       Rewriting the differential equation in differential form gives 

9x
1 2 

y
4 3 
12x

1 5 
y

3 2 dx  8x
3/2 

y
1/3 
15x

6/5 
y

1/2 dy  0 , 
 

and because

 
9x

1 2 
y

4 3 
12x

1 5 
y

3 2   12x
1 2 

y
4 3 
18x

1 5 
y

1 2  


y 

 
8x

3/2 
y

1/3 
15x

6/5 
y

1/2  , 
x

the given equation is exact.  We apply the method of Example 9 in Section 1.6 to find a

solution in the form F  x, y  C .  First, the condition Fx   M implies that

 

F  x, y   9x
1 2 

y
4 3 
12x

1 5 
y

3 2 
dx  6x

3 2 
y

4 3 
10x

6 5 
y

3 2 
 g  y ,

 

and then the condition Fy   N 
 

implies that

8x
3 2 

y
1 3 
15x

6 5 
y

1 2 
 g y  8x

3/2 
y

1/3 
15x

6/5 
y

1/2 
, 

or g y  0 , that is, g is constant. Thus the solution is given by 

6x
3 2 

y
4 3 
10x

6 5 
y

3 2  
 C . 

 

 

27.       Writing the given equation for 
 

x  0 as dy     1           x 
2 

    y       y
4

 

 

shows that it is a Bernoulli

dx    x           3

equation with n  4 .  The substitution v  y
3  

implies that 
2
 
y  v

1 3  
and thus that

y       
1 

v
4 3

v .  Substituting gives  
1 

v
4 3

v  
 1 

v
1 3  

  
 x   

v
4 3 

, or v  
 3 

v  x
2 
, a line- 

3                                              3              x               3                      x 
ar equation for v as a function of x. An integrating factor is given by

  exp


 

 3 
dx 
 
 x

3 
, and multiplying the differential equation by  gives

    x     


              

x
3 
 v  3x

4
v  x

1 
, 

or 

 

D  x
3 
 v   x

1 
.  Integrating then leads to 

 
x
3 
 v  ln x  C , or

v  x
3 ln x  C  .  Finally, back-substituting 

y  x
1 ln x  C 

1 3 
. 

y
3  

for v gives the general solution

 

 

28.       We first rewrite the differential equation for 
 

x  0 as 

 

y 
1       2e2 x 

y         , showing that the 
x          x

equation is linear.  An integrating factor is given by   exp

 1 

dx 
 
 x , and multiply-
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ing the equation by  gives x  y  y  2e
2 x 

, or D  x  y  2e
2 x 

. Integrating then leads

to x  y  e
2 x 
 C , and thus to the general solution y  x

1 e2 x  
 C  .

 

 

29.       We first rewrite the differential equation for 
1 

x    
2 

as  y  
   1     

y  2x 1
1 2 

, show- 
2x 1

ing that the equation is linear. An integrating factor is given by

  exp




    1    
dx 
 
 2x 1

1 2 
, and multiplying the equation by  gives 



   
2x 1    



2x 1
1 2  

y  2x 1
1 2  

y  2x 1, 

or 

D  2x 1
1 2 
 y  2x 1.  Integrating then

 

leads to 2x 1
1 2 
 y  x

2 
 x  C , and thus to the general solution 

y  x
2  
 x  C 2x  1

1 2 
. 

 

30.       The expression x  y suggests the substitution v  x  y , which implies that  y  v  x ,

 

and thus that y  v 1 .  Substituting gives v 1  v , or v  v 1, a separable equa-

tion for v as a function of x.  Separating variables gives     
   1     

dv 
  

dx .  The further

  
v 1        



substitution v  u
2

 (so that dv  2u du ) and long division give

 

    1     
dv 

v 1 

 

  2u   
du 

u 1 

 

2  
  2    

du  2u  2 ln u 1  2 
u 1 

 

v  2 ln 
 

v 1 ,
 

leading to 2 v  2 ln  v 1  x  C .  Finally, back-substituting x  y 
 

for v leads to the

 

implicit general solution 
 

x  2 x  y  2 ln  x  y 1  C .

 

31.       Rewriting the differential equation as y  3x
2 
y  21x

2
 shows that it is linear. An inte-

grating factor is given by   exp   3x
2 
dx  e

 x3  

, and multiplying the equation by 
 

gives e 
 

 y  3x e    y  21x e , or D e
 

3 

 y   21x e 
3 

. Integrating then leads to

 x3
 2    x3

 2    x3                                        x 

x 

2    x
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3                                           3 3 
 

e
 x 

 

 y  7e
 x

 

 

 C , and thus to the general solution 
 

y  7  Ce
x  

.

 
Alternatively, writing the equation for 

 

y  7 

 

as 
 dy  

 3x
2
dx 

y  7 

 
shows that it is separa- 

 
3

ble.  Integrating yields the general solution ln  y  7  x
3 
 C , that is, 

found above. 

y  Ce
x
  7 , as

(Note that the restriction y  7 in the second solution causes no loss of generality.  The

general solution as found by the first method shows that either y  7 for all x or y  7

for all x. Of course, the second solution could be carried out under the assumption
y  7 as well.)
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32.       We first rewrite the differential equation as 
dy 

 x  y
3 
 y  , showing that the equation is 

dx

 

separable. For 

 

y  1 separating variables gives 
1    

dy     x dx , and the method of 
y3  y

partial fractions yields 
 

1                   1          1               1 

 

 

y
2 
1

 y3  y

 

   y    2 y 1

  

2 y 1               y

dy                         dy  ln              ,

   y 
2  
1    1 

leading to the solution ln                  x
2 
 C , or 

 

y
2 
1  Cy

2
e

x   
, or finally

y         2 

y  
      1        

. 
2

 

Ce
x   
1

 
Alternatively, writing the given equation as 

dy 
 xy  xy

3  
shows that it is a Bernoulli 

dx

equation with n  3 .  The substitution v  y
2

 for y  0 implies that y  v
1 2  

and thus

 

that y       
1 

v
3 2

v .  Substituting gives  
1 

v
3 2

v  xv
1 2  

 xv
3 2 

, or v  2xv  2x , a

2                                               2 
linear equation for v as a function of x.  An integrating factor is given by 

  exp   2x dx  e
 x2  

, and multiplying the differential equation by  gives
 

e
 x 

 

 v  2xe
 x  

v  2xe
 x

 

 

, or D e x

 

2  

 v  2xe
 x2

 

 

.  Integrating then leads to

e
 x   

 v  e
 x   

 C , or v  Ce
x   
1.  Finally, back-substituting 

general solution as found above. 

 

y
2 

 

for v gives the same

33.       Rewriting the differential equation for x, y  0 in differential form gives

3x
2  
 2 y

2 dx  4xy dy  0 ,

and because 

y 

 

3x
2  
 2 y

2   4 y 
 

4xy , the given equation is exact.  We apply the 
x

method of Example 9 in Section 1.6 to find a solution in the form F  x, y  C . First, the
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

condition Fx   M implies that 
 

F  x, y   3x
2 
 2 y

2 
dx  x

3 
 2xy

2 
 g  y ,

 

and then the condition 
 

Fy   N implies that 4xy  g y  4xy , or g y  0 , that is, g is

constant.  Thus the solution is given by x
3 
 2xy

2  
 C .

 
Alternatively, rewriting the given equation for 

 

x, y  0 as 

 

dy        3  x     1  y 
   

 
shows that it

dx       4 y    2 x

is homogeneous.  Substituting v  
 y then gives v  x 

dv 
  

 3  
 

1 
v , or

x                            dx 4v    2
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dv        3     3         3  6v
2 4v                  1

x            
dx       4v 

v              .  Separating variables leads to 
2             4v  6v

2 
 3 

dv   dx , or 
x

ln 6v
2  
 3  3ln x  C , or 2v

2  
1 x3  

 C .  Back-substituting  
 y

 
 

for v then gives the

 


solution 2 



 

  y 


   
   

 


1



 

 

x
3  
 C , or finally 2 y

2 
x  x

3 
 C , as found above.

Still another solution arises from writing the differential equation for x, y  0 as

dy 
 

 1  
y   

3x 
y
1 

, which shows that it is Bernoulli with n  1.  The substitution 
dx    2x           4

 

v  y
2
 

 

implies that 
 

y  v
1 2   

and thus that y  
 1 

v
1 2

v .  Substituting gives 
2

1 
v
1 2

v  
 1  

v
1 2  
  

3x 
v
1 2 

, or v  
 1 

v   
3x 

, a linear equation for v as a function of x. 
2             2x              4                      x           2

 

An integrating factor is given by
 
  exp


 1 

dx 
 
 x , and multiplying the differential

  x     


           

3x
2 

 
3x

2

equation by  gives 
 

x3 

x  v  v         , or 
2 

D  x  v         . Integrating then leads to 
x                                

2

x  v        C .  Finally, back-substituting 
2 

y
2  

for v leads to the general solution

x  y
2  
  

 x   
 C , that is, 2xy

2 
 x

3 
 C , as found above. 

2 
 

34.       Rewriting the differential equation in differential form gives 

 x  3y dx  3x  y dy  0 ,
 

and because 

y 

 

 x  3y  3 

 

 
3x  y , the given equation is exact.  We apply the 

x

method of Example 9 in Section 1.6 to find a solution in the form F  x, y  C . First, the

condition Fx   M implies that 
 

1 
F  x, y      x  3y dx     x   3xy  g  y  , 

2
 

and then the condition Fy   N implies that 3x  g y  3x  y , or g y   y , or
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   g  y 1 
y

2 
. Thus the solution is given by 

2 

1 
x

2 
 3xy  

1 
y

2  
 C , or 

2                  2

x
2 
 6xy  y

2  
 C .
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Alternatively, rewriting the given equation for 

 

 

x, y  0 as 

 

1 3
 y 

dy 
         x

 

 

 
shows that it is

dx       y 
 3 

x

homogeneous.  Substituting v  
 y then gives v  x 

dv 
 

1 3v 
, or x 

dv v2  6v 1 
                    .

x                            dx     v  3 dx          v  3

      v 3                 1                     2Separating variables leads to  dv 
v

2 
 6v 1 

dx , or ln  v 
x 

 6v 1  2ln x  C

 

, or x
2 v

2  
 6v 1  C .  Back-substituting  

 y
 

 

for v then gives the solution

 

 y
2 
 6xy  x

2  
 C 

 

found above.

 

 

dy       2x
35.       Rewriting the differential equation as            y 1 shows that it is separable.  For 

dx     x
2 
1

   1                 2 x                                        2y  1 separating variables gives  dy 
y 1 

dx , or ln  y 1  ln  x 
x

2 
1 

1  C ,

leading to the general solution y  C x2  1 1. 
 

2x            2x
Alternatively, writing the differential equation as y            y             shows that it is 

x
2 
1       x

2 
1

 

linear.  An integrating factor is given by
 
  exp





 
  2 x   

dx 
 
 

   1    
, and multiply- 




 

1                2x 

x
2 
1 

2x 
    

x
2 
1

ing the equation by  gives  

x
2 
1 

y  2  
y 

x
2  
1      x

2  
1

2 
, or

D 
    1    

y 
 
 

    2 x     
. Integrating then leads to

     1     
y   

   1     
 C , or thus to the

x    2
         

2            
2                                                                                 2                               2

 x  1     x   1 x  1 x  1

general solution y  1 C  x2  1 found above.

 
 36.
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                              

Rewriting the 
differential 
equation for 0 
 x   , 0  y 

 1 as  
   dy     

 cot x dx y  y 

 

shows

 

that it is separable.  The substitution y  u
2  

gives

 

     1      
dy 

y  y 

 

   2    
du   ln 1 u   ln  

1
1 u 

y  ,

leading to the general solution  ln 1 y   ln sin x  C , or sin x 1 y   C , or final-

ly  y  C csc x  1
2 
.
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Alternatively, writing the differential equation for 0  x   , 0  y  1 as

dy 
 cot x y  cot x

dx 
y  shows that it is Bernoulli with n  

 1 
.  The substitution 

2

v  y
1 2   

implies that y  v
2

 and thus that y  2v  v .  Substituting gives

2v  v  cot x v2  
 cot x v , or v  

 1 
cot x v  

 1 
cot x , a linear equation for v as a 

2                  2

function of x. An integrating factor is given by   exp
 1 

2 
cot x dx 

 


 

sin x , and mul-

                   
tiplying the differential equation by  gives

sin x  v  
 1 
 sin x cot xv  

 1 
 
sin x cot x ,

 
 

or D  


 

 

sin x  v  
 1 

2                             2 
 

sin x  cot x .  Integrating then leads to    sin x  v 


 

 

sin x  C , or

x                   2

v  1 C csc x .  Finally, back-substituting 
2

 
y

1 2   
for v leads to the general solution

y  1 C csc x  found above. 


