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CHAPTER 2 
 

MATHEMATICAL MODELS AND NUMERICAL 

METHODS 
 

 

SECTION 2.1 
 

POPULATION MODELS 
 
Section 2.1 introduces the first of the two major classes of mathematical models studied in the 

textbook, and is a prerequisite to the discussion of equilibrium solutions and stability in Section 

2.2.  In Problems 1-8 we find the desired particular solution and sketch some typical solution 

curves, with the desired particular solution highlighted. 
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2.         Separating variables gives 
       1        

dx 
x 10  x

 

 dt .  By the method of partial fractions

 

       1        
dx  

 1    1 
 

   1     
dx  

 1   
ln x  ln x 10  , x 10  x 10  x    x 10         10 
                        

 

and so the general solution of the differential equation is ln x  ln x 10  10t  C , or

    x     
 Ce

10t 
.  The initial condition 

x 10 

 

x 0  1 implies that C 
1 

, leading to the 
9

particular solution  
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3.         Separating variables gives 

 
 
 
 

          1           
dx 

1 x 1 x

 

 
 
 
 

dt .  By the method of partial fractions
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dx

 
 

1      1    
 

  1    
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1  
ln x 1  ln x 1  ,

  x 1  x 1
   

2    x 1 
                           

x 1            2

 

and so the general solution of the differential equation is ln x 1  ln x  1  2t  C , or

 x 1 
 Ce

2t 
.  The initial condition 

x 1 
x 0  3 implies that that C  

 1 
, leading to the 

2

particular solution  
 x 1 

 
 1 

e
2t 

, or 2  x 1   x  1 e2t , or finally 
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4.         Separating variables gives 
 

fractions, 

            1             
dx 

3  2x 3  2x

 

 dt .  By the method of partial

            1             
dx  

 1        1     
 

   1     
dx  

 1   
ln 3  2x  ln 3  2x   , 3  2x 3  2x 6  3  2x                                 

3  2x         12

 

and so the general solution of the differential equation is ln 3  2x  ln 3  2x 
 

 12t  C ,

or  
3 2 x 

 Ce
12t 

.  The initial condition 
3  2x 

 

x 0  0 

 

implies that C  1 , leading to the

 

particular solution 
3 2 x 

 e
12t 

, or 3  2 x  3  2 x  e12t  , or finally 
3  2x

 

x t 
3e

1
  
2t 
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3 e1
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1

.

2e
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5.         Separating variables gives
       1       

dx      3 dt .  By the method of partial fractions,
 x  x  5        

 

      1       
dx

 
 

1    1 
 

  1    
dx   

1  
ln x  ln x  5  ,

 x  x  5
                                                            

5    x    x  5            5

 

and so the general solution of the differential equation is  
1 
ln x  ln x  5   3t  C , 

5

or  
  x    

 Ce
15t 

.  The initial condition 
x  5 

x 0  8 implies that C  
 8 

, leading to the 
3

particular solution  
  x    
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e
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, or 3x  8 x  5 e15t 
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Problem 5 
10 

Problem 6 
10
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6.         Separating variables gives 
      1       

dx 
x  x  5

 

3 dt .  Using the partial fraction expansion

found in Problem 5, we find the general solution  
1 
ln x  ln x  5   3t  C , or 

5

   x    
 Ce

15t 
.  The initial condition 

x  5 

 

x 0  2 implies that C  
 2 

, leading to the 
3

particular solution  
  x    

 
 2 

e
15t 

, or 3x  2  x  5 e15t 
, or finally 

x  5    3

10e
15t 

x t 
3  2e

15t
 

     
10     

. 
2  3e15t

 

7.         Separating variables gives
       1       

dx      4 dt .  By the method of partial fractions,
 x  x  7        

  1       
dx 

x  x  7

 

1   1       1               1 
                                                                , 

7   x    x  7            7

 

and so the general solution of the differential equation is ln x  ln x  7  28t  C , or

   x    
 Ce

28t 
.  The initial condition 

x  7 
x 0  11 implies that C  

11 
, leading to the 

4

particular solution  
  x    

 
11 

e
28t 

, or 4 x  11 x  7 e28t 
, or finally 

x  7     4

77e
28t 
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Problem 7 
15 

Problem 8 
30
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8.         Separating variables gives 
       1        

dx 
x  x 13

 

7 dt .  By the method of partial fractions,

 

       1        
dx   

 1     1 
 

   1     
dx   

 1   
ln x  ln x 13  , x  x 13 13                          

x    x 13            13

 

and so the general solution of the differential equation is ln x  ln x 13  91t  C , or

    x     
 Ce

91t 
.  The initial condition 

x 13 

 

x 0  17 implies that C  
17 

, leading to the 
4

particular solution  
   x     

 
17 

e
91t 

,or 4x  17  x 13 e91t 
, or finally 

x  13     4

221e
91t 

x t 
4 17e

91t
 

     
221     

. 
17  4e91t

9.         Substitution of P 0  100 and P0  20 into P  k   P yields k  2 , so the

 

differential equation is 
 

P  2    1   
P . Separation of variables gives        dP   dt ,

2   P

which upon integrating is    P  t  C .  Then P 0  100 implies C  10 , so that

P t  t 10
2 

.  Hence the number of rabbits after one year is P 12  484 .

 

 

10.       Given that P   P   
 k   

P  k   P , separation of variables and integration as in 
p
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Problem 9 yields 2   P  kt  C .  The initial condition P 0  900 gives C  60 , and

 

then the condition P 6  441 implies that k  3 .  Therefore 2 P  3t  60 , so that

P  0 after t  20 weeks.



Copyright © 2015 Pearson Education, Inc. 
 

           

2 

2 

  2 

Section 2.1   105 
 
 

11.       (a) Substituting our assumptions that    
 k1   

p 
and    

 k2   

P 

 

into the general population

 
equation gives 

dP 
 
k1 k2   P  k   P .  Separation of variables leads to 

dt            P 
2

  1   
dP     k dt , which upon integrating is 2   P  kt  C , or

 
P  

 kt 
 C 


 

.  The

P                                                                                                   
 

2       
 

 

initial condition 

 

P 0  P0 

 

 

then gives C 

           

P0  .

 

 kt        
(b) Our assumption implies that C  P0   10 , so that P       10

            
.  Measuring t in 
 

2
 

months, we conclude from
 
P 6  169

  

that k  1, so that
 
P  

  t 
10


 

.  Hence there
 

2        


 
are 

 

P 12  256 

          

fish after 12 months.

 

 

12.       Separating variables in our assumption that 

 

P  kP2
 

 

gives 
 1  

dP 
P 

 

k dt , which upon

integrating leads to  
 1 
 kt  C , or 

P 
P  

    1     
.  Now 

C  kt 

 

P 0  12 implies that C  
 1  

, 
12

 

where t is measured in years, so that P  
   12     

.  Then 
112kt 

 

P 10  24 gives k  
  1   

, so 
240

 

that P t  
 240   

.  Thus 
20  t 

 

P t   48 when t  15 , that is, in the year 2003.  Finally, under

these assumptions the alligator population will grow without bound as t approaches 20 
years, that is, the year 2008. 

 
13.       (a) Substituting our assumptions that   k1P and   k2 P into the general population

 

equation gives
 dP 

 k
 

 

 k  P P  kP
2 
, where k  k   k

 
 

 0 by our assumption that

dt        
1         2                                           1         2

 

   .  Solving as in Problem 12 leads to P  
    1     

.  The initial condition 
C  kt 

 

P 0  P0

implies that C  
 1 

 

, so that P t   
    P0        .  As  t  

  1   
 

we find that 
 

P t    .

P0                                              1 kP0t 

6
 

kP0
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(b) Our assumption that P
0  
 6 gives P t  

1 6kt 
.  Then, with t measured in months,

 

we conclude from P 10  9 that k  
  1   

, so that P t  
      6        

 
 180   

. From this

180 

we can see that doomsday occurs after 30 months. 

1 t 30 30  t
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14.       Now 
dP 

 kP
2 

dt 

 

with k  0 , and solving once again leads to P t   
    P

0        .  As  t   
1 kP0t

the rabbit population P approaches zero, because k is negative. 
 

15.       Writing  
dP 

 bP 
 a 

 P 


shows that the limiting population M is  
a 

.  Then the facts that

dt          
 

b       
                                                                  

b         

2                   B0 P0
 

 

aP0 P0        a

B0   aP0 and D0   aP0 give          
D 

 

bP
2 

     M .  With Problems 16 and 17 in 
b

 

mind, we note also that a  
 B0 

0                      0 

and b  
 D0   k .

P0                            P0 
 

16.       The relations in Problem 15 give  k  
 D0    

   6    
 

   1   
 

and a limiting population of
2        

120
2

 2400

M  
 B

0 
P

0   
 8 120 

 160 rabbits.  By Equation (7), proved below in Problem 32, the
D0                 6 

 
          160 120            

 
     19200       

.  Setting
 
 
 

P t   0.95M  152
solution is P t 

 

120  160 120 et 

15
 

 

120  40e
t 15

rabbits yields t  27.69 months.

 

17.       The relations in Problem 15 give k  
 D0   

 12   
 

   1    
and a limiting population of2        

240
2

 2400

M  
 B

0 
P

0   
 9 240 

 180 rabbits.  The solution is then
D0               12  

 

 
           180 240            

 
     43200      

,P t 
 

240  180  240 et 

15
 

 

120  60e
t 15

 

again by Equation (7). Setting P t   1.05M 

 

 189 
 

rabbits yields t  44.22 
 

months.

 

18.       Writing  
dP 

 aP 
 

P  
 b 

shows that the limiting population M is  
b 

.  Then the facts that

dt          
       

a 
                                                                  

a 

 

B0   aP0 

 

 
and 

         
 

D0   aP0  give 

 

 

D0 P0 

B 

 

 
bP0 P0 

aP2 

 

 

 
 b 
 M .  With Problems 19 and 20 in 

a

 

mind, we note also that b  
 D0 

0                       0 

and a  
 B0    k .
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P 

P0                            P0 
 

19.       The relations in Problem 18 give  k  
 B0     

  10   
 

   1   
 

and M  
 D

0 
P

0   
 9 100 

 90 .

2 

0 

Problem 33 below then gives the solution 

100
2
 1000 B0                10
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           90 100             

 
       9000        

.P t 
 

100  90 100 e9t 

100
 

 

100 10e
9t 100

 

Setting P t   10M  900 

 

rabbits yields t  24.41 months.

 

20.       The relations in Problem 18 give  k  
 B0     

  11   
 

   1   
 

and M  
 D

0 
P

0   
12 110 

 120 .

2 

0 

Problem 33 below then gives the solution 

110
2
 1100 B0                  11

 
             120 110              

 
     13200      

.P t 
 

110  120 110 e120t 

1100
 

 

110 10e
6t  55

 

Setting P t   0.1M 

 

 12 rabbits yields t  42.12 
 

months.

 

 

21.       Separating variables in our assumption that 
dP 

 kP 200  P gives 
dt

        1         
dP 

P 200  P

 

k dt .  By the method of partial fractions

 

         1          
dP  

  1       1 
 

     1      
dP  

  1    
ln P  ln 200  P   , P 200  P 200  P 

 

200  P 
                           

200

 

and so the general solution of the differential equation is ln P  ln 200  P 
 

 200kt , or
 

ln 
     P       

 200kt  C , or 
200  P 

     P      
 Ce

200kt 
.  The initial condition 

200  P 

 

P 0  100 (taking

 

t  0 in 1960) implies that C  1 .  Further, P0  1 , when substituted into the original

differential equation along with P 0  100 , implies that 1  k 100 200 100 , or

k  
   1     

.  Substituting these values into the general solution gives  
    P      

 e
t 50 

, or
10000 

 

P  e
t 50 200  P , or 

200  P 

P t  
   200    

.  Finally, in the year 2020 the country’s 
1 e

t 50
 

200
population will be P 60                153.7 

1 e
6 5 

 

million.

22.       We work in thousands of persons, and so take M  100 for the total fixed population.
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Substituting this together with P0   50 and P0  1 into the logistic equation gives

1  k 50 100  50 , or k  0.0004 .  If t denotes the number of days until 80 thousand 

people have heard the rumor, then Eq. (7) in the text gives 

80  
          50 100            

, 
50  100  50 e0.04t

 
 

and we solve this equation to find t  34.66 .  Thus the rumor will have spread to 80% of 

the population in a little less than 35 days.



Copyright © 2015 Pearson Education, Inc. 
 

108   POPULATION MODELS 
 

 

23.       (a) The given differential equation implies that 

x  0.8x  0.004x
2  
 0.004x 200  x ,

 

which is positive for 0  x  200 
 

and negative for 
 

x  200 ; thus the maximum amount

that will dissolve is M  200 g .

 

(b) Since the given equation conforms to Equation (6) in the text, the solution is given

there by Equation (7), with M  200 , P0   50 , and k  0.004 : 

10000 

 
 

Substituting 

x t                       . 
50  150e

0.8t
 

x  100 , we solve for t  1.25ln 3 1.37sec .

 

24.       Our assumptions imply that N t   kN 15  N  , where we measure N in thousands of

people.  Substituting N 0  5 and N 0  0.5 gives k  0.01 .  With N in place of P,

this is the logistic initial value problem in Equation (6) of the text (using 

solution is given by Equation (7): 

 
          15 5            

 
      15       

.
 

M  15 ), so its

N t 
 

5  15  5 
e
0.0115t 

 

1 2e
0.15t

 

For another 5000 people to develop the syndrome means that a total of 10,000 people are
 

afflicted, that is, N  10 .  Upon substituting, we solve for t  
 ln 4 
0.15 

 

 9.24 days.

 

25. (a) Following the suggestions (and thus taking t  0 in 1925), we estimate the rate of 

population growth in 1925 to be 

P0  
 P 1P 1 

 
 25.38 24.63 

 0.375 
2                        2 

million people annually.  The corresponding estimate for the year 1975, corresponding to 

t  50 , is

P50  
 P 51P 49  

 
 48.04 47.04 

 0.5 
2                         2 

million people annually.  Substituting these values, together with 

 

 
 
 

P 0  25 and

P 50  47.54 , into the logistic equation (3) leads to the system of equations 

0.375  25k M  25
. 

0.5  47.54k M  47.54
 

As in Example 3 in the text, we solve these equations to find 

Then Equation (7) gives the population function 

 

M  100 and k  0.0002 .
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             100 25               

 
      2500       

.P t 
 

25  100  25 
e
0.0002100t 

 

25  75e
0.02t

 

(b) We find that P  75 
 

when t  50 ln 9  110 , that is, in 2035 A.D.
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26.       Our assumptions lead to the differential equation 
dP 

 0.001P
2  
  P 

dt 

 

for the rodent

population P t  .  Substituting P 0  100 and P0  8 gives   0.02 , and so

 

dP 
 0.001P2   0.02P  0.001P P  20 . 

dt

Separating variables gives 

fractions 

        1         
dP 

P P  20

 

0.001dt .  By the method of partial

       1         
dP   

 1      1 
 

    1     
dP  

 1   
ln P  20  ln P  , P P  20 20                           

P    P  20         20

 

and so the general solution of the differential equation is 

 1  
ln P  20  ln P  0.001t  C , 

20
 

or ln 
 P 20 

P 

 

 
 t   

 C , or 
50 

P 20 
 Ce

t  50 

P 

 
.  The initial condition 

 

P 0  100 implies that

C  
 4 

, so that
 P 20 

 
 4 

e
t 50 

, and then solving for P gives
 

P t  
   100     

.  Finally,

5                   P        5 5  4e
t /50

 

setting P t   200 leads to t  50ln 
9 
 5.89 months. 

8

 

27.       Our assumptions lead to the differential equation 
dP 

 kP
2 
 0.01P 

dt 

 

for the animal

population 

that 

P t  .  Substituting P 0  200 and P0  2 , we find that k  0.0001 , so

dP 
 0.0001P2   0.01P  0.0001P P 100 . 

dt

Separating variables gives 

fractions 

        1         
dP 

P P 100

 

0.0001dt .  By the method of partial

        1         
dP   

 1       1 
 

     1      
dP  

  1    
ln P 100  ln P  , P P 100 100                            

P    P 100         100
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and so the general solution of the differential equation is 

  1   
ln P 100  ln P  0.0001t  C , 

100
 

or ln 
 P  100 

P 

 

 
  t    

 C , or 
100 

P 100 
 Ce

t 100 

P 

 
.  The initial condition 

 

P 0  200 gives

C  
 1 

, and so
 P 100 

 
 1 

e
t 100 

, leading to the general solution
 
P t  

   200     
.

2                   P         2 2  e
t 100
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(a) Setting P  1000 gives t  100ln 
9 
 58.78 months. 

5

(b) Doomsday occurs as the denominator 2  et 100  
approaches zero, that is, as t 

approaches 100ln 2  69.31 months, since the population P becomes infinite then. 
 

 

28.       Our alligator population satisfies the equation 

dx 
 0.0001x2   0.01x  0.0001x  x 100 . 

dt 

With x in place of P, this is the same differential equation as in Problem 27, and so our
 

general solution is 
 
 

(a) The assumption 

x 100 
 Ce

t 100 
, as found there. 

x 
 

x 0  25 gives C  3 , leading to 

 

 
 
 

x t      
100     

, which 
1 3e

t 100

approaches zero as t increases without bound.  Thus the alligator population faces 
extinction in this event.

 

(b) If instead x 0  150 , however, then we find that C  
 1 

, leading to 
3 

x t  
   300    

. 
3  e

t 100

Now find that x t grows without bound as t approaches 100 ln 3  110 months, that is,

doomsday occurs at this time. 
 

 

29.       Here we have the logistic equation 

dP 
 0.03135P  0.0001489P2   0.0001489P 210.544  P , 

dt

where k  0.0001489 and P  210.544 .  With P0   3.9 as well, Eq. (7) in the text gives

P t  
                210.5443.9               

 
          821.122            

.
3.9  210.544  3.9 e(0.0001489)(210.544)t

 3.9  206.644e
0.03135t

(a) This solution gives 

figure of 123.2 million. 

 

P(140)  127.008 , fairly close to the actual 1930 U.S. census

 

(b) As t grows without bound, P t  approaches  
821.122 

 210.544 million. 
3.9

(c) Since the actual U.S. population in 2000 was about 281 million—already exceeding 

the maximum population predicted by the logistic equation—we see that that this model 

did not continue to hold throughout the 20th century. 

 

 1                  t30.       Separating variables in the differential equation gives  dP   0e    dt , with general
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solution ln P 
0 e

t 
 C .  The initial condition

 
 

P 0  P gives C  ln P  
0  ,

                                                             
0                                         0        
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leading to the desired solution P t  P exp 
 0 1 e

t  , with limiting population

0                


 0 P0 exp 
 
 as t grows without bound.

     

31.       Substituting P 0  106
 and P0  3105

 into the differential equation

Pt   0e    P yields 0   0.3 .  Hence the solution given in Problem 30 is

P  t   P exp 
 0.3

  

1 e
t  

.  The fact that

  

P 6  2P

  

now yields the equation
       0 

 
                                                       0 



0.31 e6   ln 2  0 ,
 

which we seek to solve for the constant  .  We let f  
 

denote the left-hand side

0.31 e
6   ln 2 of this equation and apply Newton’s iterative formula

 
     

 f n  

n1 n        
f   

 

with initial guess 0  1 (suggested by a plot of f   ), leading quickly to   0.3915 .

Therefore the limiting cell population as t grows without bound is 

P exp
 0   10

6 
exp 

   0.3     
 2.15 10

6 
.0             


                 

0.3915 


                                

Thus the tumor does not grow much further after 6 months. 
 

32.       Separating variables in the logistic equation gives 

 
method of partial fractions 

        1         
dP 

P M  P

 

 k dt .  By the

        1         
dP  

 1      1 
 

    1     
dP  

 1   
ln P  ln M  P  , P M  P
                         

M     P    M  P          M

 

and so the general solution is 

 1  
ln P  ln M  P   kt  C , 

M 

or ln 
    P      

 kMt  C , or  
    P      

 CekMt  .  The initial 

condition
 

 
 
 
 
 
 

P 0  P 

 
 
 
 
 

 
gives
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M  P M  P                                                                 
0

C  
     P0          .  If the initial population 
M  P0 

 

P0  is less than the limiting population M, then

C  
    P

0         . Moreover, in this event P  M 
M  P0 

 

for all t, since the logistic equation itself

shows that the only solution P t  that takes on the value M is the constant solution
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P t   M . It follows that if P0   M , then the solution of the logistic initial value

 

problem is 
    P     

 
    P

0         e
kMt 

.  Similarly, if 
M  P    M  P0 

 

P0   M , then P  M 
 

for all t, leading to

the solution  
   P     

 
    P

0         e
kMt 

, which is equivalent to the solution for the preceding 
P  M     P0  M

case P0   M .  Solving either of these for P yields 

P  M  P0   P0 M  P e 

 

 
kMt ,

 

or 

  0                                 0             0
 

 
or finally 

P ekMt   M  P  P  MP ekMt 
,

 

P t 
P e  

 

MP e
kMt 

t  
 M  P 

 

            
MP             

. 

P  M  P  ekMt

0                                                         0 

kM 

0                                 0            0                          0 
 

 

33.       (a) Separating variables in the extinction-explosion equation gives
        1         

dP 
P P  M 

 

k dt .  By the method of partial fractions

 

        1         
dP  

 1         1     
 

 1 
dP  

 1   
ln P  M

  

 ln P  , P P  M 
                         

M     P  M     P          M
 

and so the general solution is 
 

 1  
ln P  M 

M 

 

 
 

 ln P  kt  C ,

 
or ln 

P  M 

P 

 

 kMt  C , or 
P  M 

P 

 

 Ce
kMt 

.  The initial condition 

 

P 0  P0 

 
gives

 P  M   
C     0                .  If the initial population 

P0 

 

P0  is less than the threshold population M, then

C  
 M P0  .  Moreover, as in Problem 32, in this case P  M 

P0 

 

for all t.  Thus for 
 

P0   M

 

the solution of the extinction-explosion initial value problem is 
M P 

 
 M P0 e

kMt 
. 

P            P0

P M     P
0 
M  

kMt

Similarly, if 
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kMt 

P0   M , then P  M for all t, and so the 
solution is 

             e    . 
P            P0

Solving either of these equivalent expressions for P yields

P0  P  M   P P0   M  e 
kMt ,

 

or 
 

P0 

 

 

M  P0  e 

 

 
P  MP0 ,
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or finally  
 

P t  
           MP0                    . 
P  M  P  ekMt

0                          0
 

(b) If 
 

P0   M , then the coefficient 

 

M  P0 

 

is positive and the denominator increases

without bound, so P t   0 as t   But if P0   M , then the denominator

P0   P0   M  e kMt approaches zero—so P t    —as t approaches the positive value

  1   
ln 

    P0   

kM     P0  M 

 

from the left. Thus the population either becomes extinct or explodes.

34.       Differentiation of both sides of the logistic equation 
 

P  
 dP 

 
dP 

dP   dt 

P  kP  M  P  yields

  k  M  P  kP  1  kP M  P

 k M  2P  kP M  P
 

 2k 
2 
P 
 

M  
 1 

P 

M  P ,

 
        

2   


              

as desired.  The conclusions that P  0 if 0  P   1 M , that P  0 if P   1 M , and that

P  0 if  1 M  P  M are then immediate.  Thus it follows that each of the curves for

which P0   M has an inflection point where it crosses the horizontal line P  2 M .

 
35.       Any way you look at it, you should conclude that the larger the parameter k  0 , the

faster the logistic population P t  approaches its limiting population M:

 

To examine the question geometrically, we will assume that 

dP
 

 

M  10 and that k1  1 and 

dP
k

2  
 2 , leading to the logistic equations  P 10  P and 

dt 
 2P 10  P .  We 

dt

draw slope fields and solution curves for each of these equations, using the same initial

values P 0 in both cases:
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Problem 35 (k = 1) 
20 

Problem 35 (k = 2) 
20

 

 
 
 

15                                                                                             15 
 
 

P 
10 P 

10

 

 
 
 

5                                                                                               5 
 

 
 
 

0                                                                                               0 
0                                                                            1                 0                                                                            1 

t                                                                                       t 
 

These diagrams suggest that the larger the value of k, the more rapidly the population 

P t  approaches the limiting population M. 
 

To look at things analytically, we examine the distance between the solution (7) in the 

text of the logistic initial value problem and the limiting population M:
 

            MP0   

kMt 

M P0  M P0 e     MP0 

kMt 

 

     M  M P
0           . 

kMt

0 
    

0  0 
    

0  0 e 1  M

P      M    P   e                     P      M    P  e                    P
 

For fixed M, t, and 
 

P
0  

this distance decreases as k increases; thus, the larger the value of

k, the more rapidly P t  approaches M.

 

Finally, numerically, we tabulate values of P t  , t  0, 0.1, 0.2,,0.9,1 , for the two

solutions illustrated graphically above, using P0   0.1 in both cases.  Once again the

evidence is that the larger value of k leads to the more rapid approach to M: 
 

 

k  1 

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

P t  0.1 0.267 0.695 1.687 3.555 5.999 8.030 9.172 9.679 9.879 9.955 

k  2 

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
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P t  0.1 0.695 3.555 8.03 9.679 9.955 9.994 9.999 9.999 10.00 10.00 
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36.       With x  e50kM  
,
 
P0   5.308 , P1  23.192 , and P2   76.212 , Equation (7) in the text takes

the forms  
 

         P
0 
M         

 P
P0  M  P0  x 

, 
          P0 M          

 P
 

 

from which we get 

P  M  P  x2           2

P   M  P  x  
P0 M  
P

1
 

, 

P   M  P  x2  
 

P0 M 
 
 

or 

(i) 

Thus 

P2 

 
 

P M P 
x    

0                    1 
 

P1  M  P0 
. 

x
2  
 

 P0 M P2 
P2  M  P0 

P 
2 M P 

2

 

P2 M  P 
2

 
 

or 

 
 P0 M P2  

, 
P2 M  P0 

 

 
 

Expanding gives 

P P M  P 
2  
 P2 M  P M  P  .

2                                                  2                  2       2           2                          2P0 P2 M  2P0 P1P2 M  P0 P1  P2   P1  M  P1 P0   P2 M  P0 P1  P2 ,

 

in which we cancel the final term on each side and solve for
 

(ii) 
P  2 P P  P P  P P  


M     1          0    2         0   1        1   2    . 

P P  P2

 

Substitution of the given values 
 

P0   5.308 , 

 

P1  23.192 , and 

 

P2   76.212 now gives

M  188.121 .  The first equation in (i) and x  ekMt1 
yield

 
(iii) k   

 1   
ln 

 P
0 M P

1  
.

Mt
1 P

1 M  P
0 
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Now substitution of t1   50 and our numerical values of M, 
 

P
0 
, 

 

P
1 
, and 

 

P
2  

gives

k  0.000167716 . Finally, substitution of these values of k and M (and 

logistic solution (7) gives the logistic model of Eq. (11) in the text. 

P0 ) in the
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In Problems 37 and 38 we give just the values of k and M calculated using Equations (ii) and (iii) 

in Problem 36 above, the resulting logistic solution, and the predicted year 2000 population. 
 

37        k  0.0000668717 and 
 

M  338.027 , so that P t                
25761.7               

, which 
76.212  261.815e

0.0226045t

predicts that P  192.525 in the year 2000.

 

38. 
 

k  0.000146679 and 
 

M  208.250 , so that P t                
4829.73               

, which 
23.192  185.058e

0.0305458t

predicts that P  248.856 in the year 2000. 
 

 

Problem 39

39.       Separating variables gives 

 P 
dP   k  b cos2 t dt , or 

ln P  kt  
 b  

sin 2 t  C .  The initial 
2

120 
 
 
 
115

condition P 0  P0 implies that C  ln P0 , P 
110

so the desired particular solution is 

        b             P  P0 exp kt  
2 

sin 2 t  .  Of course the
 

 

105

natural growth equation P  kP with the

same initial condition has solution 
kt

 
 
100

P t   P0e .  The results of both growth 
 

0           1           2           3           4           5

patterns are indicated in the graph shown                                               t

with the typical numerical values P0   100 , k  0.03 , and b  0.06 .  Under the periodic

growth law the population oscillates about the curve representing natural growth.  We see 

that the two agree at the end of each full year. 
 

 
 

SECTION 2.2 
 

EQUILIBRIUM SOLUTIONS AND STABILITY 
 
In Problems 1-12 we identify the stable and unstable critical points as well as the funnels and 

spouts along the equilibrium solutions.  In each problem the indicated solution satisfying 

x 0  x0  is derived by separation of variables, and we show typical solution curves

corresponding to different values of x
0 
.
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1.         The unstable critical point x  4 leads to a spout along the equilibrium solution x t   4 .

Separating variables gives     
  1    

dx 
  

dt , or ln x  4  t  C , where C is an arbitrary

 x  4        
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constant.  Thus the general solution is x  Cet   4 , where C is an arbitrary nonzero

constant.  The initial condition x 0  x0  then gives x0   C  4 , or C  x0  4 .  Thus the

solution is given by x t    x0  4 e  4 .

Problem 1 
8 

Problem 2 
6

 

 
 
 
 
 
 

x 
4                                                                                                          

x 
3 

 
 
 
 
 
 

0 
0           1           2           3           4           5 

t 

0 
0           1           2           3           4           5 

t

2.         The stable critical point x  3 leads to a funnel along the equilibrium solution x t   4 .

Separating variables gives     
  1    

dx 
3  x 

 

dt , or ln x  3  t  C , where C is an arbitrary

constant.  Thus the general solution is x  Cet   3 , where C is an arbitrary nonzero

constant.  The initial condition x 0  x0  then gives x0   C  3, or C  x0  3 .  Thus the

solution is given by x t    x0  3 e  3 .

 

3.         The stable critical point x  0 leads to a funnel along the equilibrium solution x t   0 .

The unstable critical point x  4 leads to a spout along the equilibrium solution x t   4 .

 

Separating variables gives 
1     

dx     dt , or 
x

2 
 4x 

1   
 

1 
dx    4 dt .  Integrating 

x  4    x

 

gives ln x  4  ln x 
 

 4t  C , or 
x 4 

 Ce
4t 

, where C is an arbitrary nonzero constant. 
x

 

The initial condition 
 

x 0  x0  gives x0 4 
 

 C , leading to x 4 


x0 4 
 

e
4t 

 

, or finally
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x0 

          4 x0  

 

x          x0

the solution x t  
x 

 

0   4  x0 

. 
 e4t
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Problem 3 
8 

Problem 4 
6

 
 
 

 
4                                                                                                          3 

 

x                                                                                                x 
 
 

0                                                                                                          0 
 
 
 

−4 
0           1           2           3           4           5 

t 

−3 
0           1           2           3           4           5 

t

4.         The stable critical point x  3 leads to a funnel along the equilibrium solution x t   3 .

The unstable critical point x  0 leads to a spout along the equilibrium solution x t   0 .

 

Separating variables gives 
1 

 
3x  x

2  
dx   dt , or 

1   
 

1 
dx    3dt .  Integrating 

x  3    x

 

gives ln x  3  ln x 
 

 3t  C , or 
x 3 

 Ce
3t 

, where C is an arbitrary nonzero 
x

 

constant.  The initial condition 
 

x 0  x0  gives x0 3 
 

 C , leading to x 3 


x0 3 
 

e3t 
,

x0 

          3x0  

 

x          x0

or finally the solution x t  
x 

 

0   3  x0 

. 
 e3t

 

5.         The stable critical point x  2 leads to a funnel along the equilibrium solution

x t   2 .  The unstable critical point x  2 leads to a spout along the equilibrium 

1
solution x t   2 .  Separating variables gives  dx     dt , or 

x
2 
 4

   1    
 

  1    
dx 

  

4 dt .  Integrating gives ln x  2  ln x  2  4t  C , or

 x  2 x  2        

 x 2 
 Ce

4t 
, where C is an arbitrary nonzero constant.  The initial condition 

x  2 

 

x 0  x0
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4t 

gives  
 x0 2 

 C , leading to  x 2 
 

 x0 2 
e
3t 

, or finally the solution

x0  2 x  2 x0  2

      
x  2x0  2e  

x  t   2    
0
 

 x 
 

 2   x . 
 2 e4t

0                         0
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Problem 5 Problem 6

 
 
 
 
 

2                                                                                                          3 

 
x  

0                                                                                                     
x  

0 
 
 

−2                                                                                                        −3 
 

 
 
 

0           1           2           3           4           5 
t 

0           1           2           3           4           5 
t

6.         The stable critical point x  3 leads to a funnel along the equilibrium solution x t   3 .

The unstable critical point x  3 leads to a spout along the equilibrium solution

 

x t   3 .  Separating variables gives 
1 

 
9  x

2  
dx   dt , or 

1   
   

1   
dx    6 dt . 

x  3    x  3

 

Integrating gives ln x  3  ln x  3  6t  C , or 
x 3 

 Ce
6t 

, where C is an arbitrary 
x  3

 

nonzero constant.  The initial condition 

 

x 0  x0  
gives 

x
0 
3 

x0  3 

 

 C , leading to

x 3 
 

x
0  
3 

e3t  
, or finally the solution          

x  3x  3e  
 

x  3 
 

x0  3 
x  t   3 0                        0                      

. 
3  x

0    x0 
 3 e

 

7.         The lone critical point x  2 is semi-stable; solutions with x0   2 approach  as t

increases, whereas those with x0  2 approach 2 as t increases.  Separating variables

 

gives 
     1     

dx 

 x  2
dt , or  

  1    
 t  C , where C is an arbitrary nonzero constant. 

x  2

 

The initial condition 

 

x 0  x0  
gives 

1 

x0  2 

 

 C , leading to

   1    
 t  

   1     
 

1 t x0 2 , or finally the solution
x  2 x0  2 x0  2 



Copyright © 2015 Pearson Education, Inc. 
 

x  t   2  
     x

0 
2      

 
 x0 2t 14t 

.          
1 t  x 

 

 2
 

 x   2 t 1
0                             0
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Problem 7 Problem 8

 
 

6 
4 

 

 
 
 

x 
2                                                                                                          

x 
3 

 
 
 

 
0 

0 
 

0           1           2           3           4           5 
t 

0           1           2           3           4           5 
t

8.         The lone critical point x  3 is semi-stable; solutions with x0  3 approach  as t

increases, whereas those with x0   3 approach 3 as t increases.  Separating variables

 

gives
      1      

dx   
  

dt , or
    1    

 t  C , where C is an arbitrary nonzero constant.

 
 x  3

2                     
 

x  3 
 

1
The initial condition x 0  x0  gives C 

 

x0  3 
, leading to

   1    
 t  

   1     
 

1 t x0 3 , or finally the solution
x  3 x0  3 x0  3

x  t   3  
     x

0 
3      

 
 x0 3t 19t 

.          
1 t  x 

 

 3
 

 x   3 t 1
0                             0 

 

9.         Factoring gives x2   5x  4   x  4  x 1 .  The stable critical point x  1 leads to a

funnel along the equilibrium solution x t   1 .  The unstable critical point x  4 leads to

a spout along the equilibrium solution x t   4 .  Separating variables gives

          1           
dx 

  

dt , or
    1    

 
  1    

dx 
  

3dt .  Integrating gives

  x  4  x 1         x  4 x 1        

 ln x  4  ln x 1  3t  C , or 
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41x x0 
4e   

x 4 
 Ce

3t 
, where C is an arbitrary nonzero constant. 

x 1
 

The initial condition 

 

x 0  x0  
gives 

x
0 
4 

x0 1 

 

 C , leading to 
x 4 


x 1 

x
0 
4 

x0 1 

 

e
3t 

 

, or finally

3t 

the solution x t             0                                        .
1 x0    x0  4 e3t
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Problem 9 
7 

Problem 10 
8

 
 
 

 
4                                                                                                          5 

 

x                                                                                                x 
 
 

1                                                                                                          2 
 
 
 

−2 
0           1           2           3           4           5 

t 

−1 
0           1           2           3           4           5 

t

10.       Factoring gives 7 x  x2  10    x  5  x  2 .  The stable critical point x  5 leads to a

funnel along the equilibrium solution x t   5 .  The unstable critical point x  2 leads to

a spout along the equilibrium solution x t   4 .  Separating variables gives

       1          
dx 

  

dt , or
    1    

 
  1    

dx 
  

3dt .  Integrating gives

  x  5  x  2         x  2 x  5        

 

ln x  2  ln x  5  3t  C , or 
x 2 

 Ce
3t 

, where C is an arbitrary nonzero constant. 
x  5

 

The initial condition 

 

x 0  x0  
gives 

x
0 
2 

x0  5 

 

 C , leading to 
x 2 


x  5 

x
0 
2 

x0  5 

 

e
3t 

 

, or finally

 

the solution x t 
2 5 x0 5 x0  2e   

3t

5  x
0    x0 

 2 e

 

11.       The unstable critical point x  1 leads to a spout along the equilibrium solution x t   4 .

 

Separating variables gives 
     1     

dx 

 x 1
dt , and integrating gives  

      1       
 t  C , 

2  x 1
2

 

1

where C is an arbitrary constant.  The initial condition x 0  x0  gives 

 
2

 

 

2  x0 
1

2  
 C ,
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leading to  
      1       

 t  
      1        

, or  x 1
2  
 
   x0 

1    
, or finally the solution

2  x 1
2

 

x t  1 
        x0 1         

. 

2  x0 1
2

 1 2t  x0 1
2

1 2t  x0 1
2
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Problem 11 
4 

Problem 12 
6

 
 
 

4 

2 
 

x                                                                                                x  
2 

 

 

0 

0 
 
 

−2 
0           1           2           3           4           5 

t 

−2 
0           1           2           3           4           5 

t

12.       The stable critical point x  2 leads to a funnel along the equilibrium solution x t   2 .

 

Separating variables gives 
     1      

dx 

2  x
dt , and integrating gives  

      1        
 t  C , 

2 2  x
2

 

1

where C is an arbitrary constant.  The initial condition x 0  x0  gives 

 
2
 

 

2 2  x
0 

2  
 C ,

leading to  
      1        

 t  
       1        

, or 2  x
2  
 
   2 x

0     
, or finally the

2 2  x
2

 2 2  x0  2t 2  x0 
2  
1

 

solution x t  2  
        2 x0                . 

2t 2  x 
2  
1

 

 

In each of Problems 13–18 we present the figure showing the slope field and typical solution 

curves, and then record the visually apparent classification of critical points for the given 

differential equation. 

13.       The critical points x  2 and x  2 are both unstable.
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Problem 13 Problem 14

 

 

4                                                                                                          4 
 
 

2                                                                                                          2 

 
x  

0                                                                                                     
x  

0 

 
 

−2                                                                                                        −2 
 
 

−4                                                                                                        −4 

0           1           2           3           4           5 
t 

0           1           2           3           4           5 
t

14.       The critical points x  2 are both unstable, whereas the critical point x  0 is stable.

15.       The critical points x  2 and x  2 are both unstable.

Problem 15 Problem 16

 

 

4                                                                                                          4 
 
 

2                                                                                                          2 

 
x  

0                                                                                                     
x  

0 

 
 

−2                                                                                                        −2 
 
 

−4                                                                                                        −4 

0           1           2           3           4           5 
t 

0           1           2           3           4           5 
t

16.       The critical point x  2 is unstable, while the critical point x  2 is  stable.

17.       The critical points x  2 and x  0 are unstable, while the critical point x  2 is stable.
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Problem 17 
 

 
4 

 

 
2 

 

 

x  
0
 

 

 
−2 

 

 
−4 

 
0           1           2           3           4           5 

t 

Problem 18 
4 

 
 
 

2 
 

 
x  

0
 

 
 
 

−2 
 
 

 
−4 

0                 1                 2                 3 
t

18. The critical points 

stable. 

x  2 and x  2 are unstable, whereas the critical point x  0 is

 

19.       The critical points of the given differential equation are the roots of the quadratic

equation  
 1 
10 

x 10  x  h  0 , that is, 

 

x2 10x 10h  0 .  Thus a critical point c is given

in terms of h by  
 

c  
10  100 40h 

 5 
2 

 

 
 

25 10h .

It follows that there is no critical point if h  
 5 

, only the single critical point c  0 if 
2 

h  
 5 

, and two distinct critical points if h  
 5 

, so that 10  25h  0 .  Hence the 
2                                                              2

bifurcation diagram in the hc-plane is the parabola c  5
2  
 25 10h 

upon squaring to eliminate the square root above. 

that is obtained

 

20.       The critical points of the given differential equation are the roots of the quadratic

equation  
 1   

x(x  5)  s  0 , that is, 
100 

in terms of s by 

 

x2  5x 100s  0 .  Thus a critical point c is given

 

c  
 5  25 400s 

 
 5 
 

 5   
116s . 

2               2    2
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It follows that there is no critical point if s  
 1  

, only the single critical point c  
 5 

if
 

s  
 1  

, and two distinct critical points if 
16 

16                                                       2 

s  
 1  

, so that 1 16s  0 .  Hence the 
16

bifurcation diagram in the sc-plane is the parabola 2c  5
2  
 25116s

obtained upon elimination of the radical above. 

that is

21.       (a) If k  a2 
, where a  0 , then kx  x3   a2 x  x3   x a2   x2   0 only 

if 

 

x  0 , so

the only critical point is c  0 .  If a  0 , then we can solve the differential equation by 

writing

       a 2 

dx 
x a2  

 x
2 

 

1 
 

    x      
dx  

x    a   x 

 

a
2 
dt ,

 

2 

or ln x    ln a2  
 x

2   a
2
t  C , or               Ce

2a t 
, where C is an arbitrary nonzero 

2                                            a
2 
 x

2
 

2        2a2t   

constant.  Solving for x2  
gives x

2  
 

 aCe        
, from it follows that 

1 Ce2a  t  
 

 

x  0 as t  , so

the critical point c  0 is stable. 

(b) If k  a2 
, where a  0 , then kx  x3   a2 x  x3    x  x  a   x  a   0 if either

 

x  0 or  x  a    k .  Thus we have the three critical points  c  0  and  c    
 

k ; this

observation, together with part (a), yields the pitchfork bifurcation diagram shown in Fig.

2.2.13 of the textbook.  If 

writing 

x 0  0 , then we can solve the differential equation by

 

          2a 2                                           2       1          1   

dx                            dx  

 

2a
2 

dt ,

 x  x  a  x  a    x    x  a    x  a           

 

or 2 ln x  ln  x  a   ln  x  a   2a
2
t , or 

 

x
2 
 a

2
 

x
2
 

 
 Ce

2a  t 
, where C is an arbitrary

 

nonzero constant.  Solving for 
 

x2  
gives x

2  
 

      a         
, and so 

1 Ce
2a  t  

 

x  
     k       

.  

It 

1 Ce
2a2t  

follows that if x 0  0 , then x  k  if x  0 and x    k if x  0 .  This implies
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t 

2 

that the critical point c  0 is unstable, while the critical points c    k 
 

are stable.

22.       If k  0 , then the only critical point c  0 of the equation x  x is unstable, because the

solutions x t   x0e diverge to infinity if x
0  
 0 .  If k  a  0, then

x  a2 x3   x 1 a2 x2   0 only if 
 

x  0 , so again c  0 is the only critical point.  If

k  a2   0 , then x  a2 x3   x 1 a2 x2   x 1 ax 1 ax  0 if 

either 

 

x  0 or
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x       
 1          1 Problem 22

              .  Hence the bifurcation 
a           k

diagram of the differential equation 

looks as shown. 
x  x  kx3

 
23.       (a) If h  kM , then writing the differential 

equation as                                                                c 
0 

x  kx M  x  hx  kx 
 

M  
 h  

 x
 

,
 

        k 
     

                

still a logistic equation but with the reduced
 

limiting population M  
h 

. 
k 

0

(b) If h  kM , then the differential equation can                                    k
be rewritten in the form x  ax  bx2 

, with a 
 

 

           ax0  

and b both positive.  The solution of this equation is x t  
a  bx

 
 

 eat 
 

 bx , so it is

 

clear that 

0                       0 

x t   0 as t  .

 

 

24.       Separating variables gives 

 
fractions, 

            1             
dx 

 N  x  x  H 

 

k dt .  By the method of partial

            1             
dx  

    1            1     
 

   1     
dx  

    1     
ln  

x H  
,  N  x  x  H  N  H 

 

N  x    x  H         N  H      x  N

 

and so the general solution of the differential equation is given by

  1     
ln  

x H 

N  H      x  N 

 

 kt  C , or 
x H 

x  N 

 

 Ce
kN H t 

, where C is an arbitrary nonzero 
 

x0 Hconstant.  The initial condition x 0  x
0  

gives C 
 

x0  N 
, so that

x H 
 

 x
0 
H 

e
k N H t 

, and solving for x leads to the solution

x  N     x0  N  

 

x t 

 

 

N x0  
H H x0  

N e   
k ( N H )t

 x   H    x  N  e
0                           0 

in the text. 
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25.       In the first alternative form that is given, all of the coefficients within parentheses are

positive if H  x0   N .  Hence it is clear that x t   N as t  , which confirms (17).

 

In the second alternative form, all of the coefficients within parentheses are positive if

x0   H .  Hence the denominator is initially equal to N  H  0 , but decreases as t
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increases, and reaches the value 0 when t  t  
       1        

ln 
 N x0   0 . Meanwhile the

1        
k  N  H  H  x0

numerator is initially  N  H  x0 
, but approaches  H  N  H  x

0   0 as t  t1 . 

Conclusion (18) follows. 
 

 

26.       If 4h  kM 2 
, then Equations (13) and (14) in the text show that the differential equation 

2 

takes the form
 
x  k 

 M 
 x 

  

with the single critical point
 
x  

 M  

.  This equation is
 

2       
                                                         

2
 

           

readily solved by separation of variables, but clearly x is negative whether x is less than 

or greater than  
 M 

. 
2 

 

27.       Separation of variables in the differential equation x  k  x  a 
2  
 b

2  yields

 

x t  a  b tan 
 
bkt  tan1  a x0 


                     

b    
 . 

 

It follows that 

                            

x t    in a finite period of time.

 

 

28.       Aside from a change in sign, this calculation is the same as that indicated in Equations 

(13) and (14) in the text. 

 
29. This is simply a matter of analyzing the signs of x in the various cases x  a , a  x  b , 

b  x  c , and c  x .  Alternatively, plot slope fields and typical solution curves for the 

two differential equations using typical numerical values such as a  1 , b  1 , and 

c  2 . 
 

 
 

SECTION 2.3 
 

ACCELERATION-VELOCITY MODELS 
 
This section consists of three essentially independent subsections that can be studied separately: 

resistance proportional to velocity, resistance proportional to velocity-squared, and inverse- 

square gravitational acceleration. 
 

1. The velocity v of the car (in km/hr) is related to the time t (in seconds) by the initial value 

problem v  k 250  v , v 0  0 , v 10  100 .  Separating variables gives

     1      
dv 

250  v 

 

k dt , and integration yields ln 250  v 

 

 kt  C , or 250  v  Cekt 
, or

finally v  Cekt   250 , where C is an arbitrary nonzero constant.  The initial condition

v 0  0 gives C  250 , so that v  2501 ekt  , and the condition v 10  100
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0 

2                    

0 
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implies that k  
 1 

ln 
 250  

 0.0511.  Finally, solving the equation v t   200 for t
 

10    
 

150 


gives t   
 ln 50 

 31.5sec . 
250k 

 

 

2.         (a) The solution of the initial value equation 
dv 

 kv , v 0  v 
dt                           

0
 

 
 
 
 

 

is v t   v e
 kt .  Then

x t 


v t dt 


v e
kt 

dt   
v

0 e
kt  

 C , and the initial condition
  

x 0  x
  

gives
 
 
 

C  x
 

          

 
 v

0  .  Thus
 

 
0 

 

x t


 

k 

v
0 e

kt  
 x

 

 

 

 
 v

0   x
 

 
0 

 

 
 v

0 1 e
kt  .

0                                                  
   

k                             k 
 

0        
k       

0        
k

 

(b)          
         v0 


kt             

v0

lim x  t 
t

 lim 
t

x0  
k 

1 e  x0  
k 

.  (Instructors may wish to explore how this

expression changes with v
0 and k, and what that means in the context of the problem.)

 
3. The velocity v of the boat (in ft/s) is related to the time t (in seconds) by the initial value 

problem v  kv , v 0  40 , v 10  20 .  By Problem 2a, v t   40
 kt , and the 

condition v 10  20 implies that k  
 1 

ln 2  0.0693 .  By Problem 2b, then, the boat 
10

 

travels a distance of 
v0   

 40 10 
 577 ft altogether.

k       ln 2 

 
1                               1

4.         Separating variables gives  dv     k dt , or     kt  C .  The initial condition 
v                                v

 1                  1              1      1             v0  

v 0  v
0

 gives C      , so that     kt      , or v               .  Then

v0                               v             v0 
kt  

 1     1 v0kt 

v0

 

x t 
 

 v t dt  

 

    v0         dt  
 1 

ln 1 v kt  C , 
1 v kt        k             

0
 

 

1
and the initial condition x 0  x

0  
implies that C  x0 .  Thus x t  ln 1 v0kt  x0 , 

k

so that x t   as t  .  The reason for the difference in outcomes between
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Problems 2 and 4 is that v2  
is much smaller than v when v is small, so that at low speed 

the medium in Problem 4 offers less resistance than the one in Problem 2. 

 
5.         We are assuming that the velocity v of the motorboat satisfies the initial value problem

v  kv2 
, v 0  40 , with v 10  20 as well.  We seek x 60 .  The result of Problem
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  3 2                    

v 

2 



2 



Section 2.3   129 
 

 

4 gives v  
    v0          

    40     
, and then the condition v 10  20 implies that

1 v0kt 1 40kt

20  
    40      

, or k  
  1   

.  Thus v t  
 400  

, and then
1 400k 400 10  t

x   v t  dt  400ln t 10  C .

 
The initial condition 

 

x 0  0 

 

implies that C  400 ln10 , so that x t  400ln 
t  10 

.  It 
10

follows that x 60  400 ln 7  778 ft .

 

 

6.         Separating variables gives 
 

2 

  1   
dv     k dt , or 2v 

v 
2               2 

 
1 2  

 

 kt  C .  The initial condition

v 0  v
0 gives C         , so that 

v0 

 kt         , or 
v              v0

 

v t  
      2       

 

 
       4v0             .

          2   


2 

v kt  2
 

 

Then 

 
kt         

      
    0                

            0  

 

       4v                         4  v 
x          

 0             dt               
 0            

 C ,

  v0 kt  2 k   v0 kt  2
 

2   v0  
 

 
 

 
2   v0  

and the initial condition x 0  x
0  

yields x0              C , or C  x0            , so that

k 
 

      4  v                    2  v              2  v  


               0                           0                0   

k 
 

 
      2         

.

x t 
x 

k   v kt  2   
0             

k
 

x0             
k    

1 
v kt  2 

0                                                                                                   0                 
 

Finally, letting t  gives 

 

x t  x0 

2  v 
        0  , indeed a finite distance. 

k

 

7.         The car satisfies the initial value problem v  10  0.1v , v 0  0 .  Separating variables

gives     
     1       

dv 
10  0.1v 

dt , or ln 10  0.1v   
 t   

 C .  The initial condition v 0  0 
10
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gives C  ln10 , so that ln 10  0.1v   
 t   

 ln10 , or ln 1 0.01v   
 t   

, or 
10                                             10 

v t  1001 et 10  .  As t  , we find v t   100ft/sec , the answer to a.  Further, 

setting v t   90ft/sec (that is, 90% of limiting velocity) gives t  10ln10  23.0259sec .
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Since x   100 1 et 10 dt  100t 1000et 10  C , where the initial condition x 0  0

gives C   1000 , we find that x 23.0259  1402.59 ft , the answer to b.

 

 

8.         The car now satisfies the initial value problem v  10  0.001v2 
, v 0  0 .  Separating 

1
variables gives  

10  0.001v
2  

dv   dt .  By the antiderivative formula

    1     
du  tanh

1 
u  C , the general solution is tanh

1   v   
 

 t   
 C , and then the 1 u

2
 

 

100    10 
 

 
t            e

t 10 
 e

t 10

initial condition v 0  0 implies that C  0 .  Thus v t   100 tanh      100  
t 10          t 10  

, 
10          e     e

which approaches 100 ft/sec as t  , the answer to a, identical to that in the preceding 

e
t 5 
1

Problem.  However in this case setting v t   90ft/sec gives  0.9 , or 
et 5 1

 

t  5ln19 14.7222sec .  
Since 

 t                              t   
x   100 tanh 

10 
dt  1000ln cosh 

10 
 C , where the

initial condition x 0  0 gives C   0 , we find that x 14.7222  830.366ft , the answer

to b.  Thus the car achieves 90% of “top end” both in a shorter time and over a shorter 

distance. 

9.         Separating variables gives     
     1000       

dv 
5000 100v 

 

dt , or 10ln 5000 100v   t  C , or

v  50  Cet 10 
.  The initial condition v 0  0 implies that or C  50 , so that

v t  501 et 10  .  As t  , v t   50 ft/sec  34 mph . 
 

 

10.       We need to solve two initial value problems in succession.

Over the first 20 seconds the woman’s velocity v t  satisfies the initial value problem

v  32  0.15v ,  v 0  0 .  Separating variables gives     
       1        

dv   
  

dt , or

 32  0.15v           

ln 32  0.15v   0.15t  C , or v  
  1    

Ce
0.15t  

 32  .  The initial condition v 0  0 
0.15 

gives C  32 , so that v t  
 32   

e0.15t  1   213.333 e0.15t  1 .  Thus when her 
0.15

parachute opens her velocity is v 20  202.712 ft/sec .  Her altitude y t  satisfies
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y   213.333e0.15t  
1dt  1422.22e

0.15t 
 213.333t  C ,

 

where the initial condition y 0  10,000 gives C  11422.22 .  So her altitude is

y 20  7084.75ft at the point when her parachute opens.



Copyright © 2015 Pearson Education, Inc. 
 

               

  1 

Section 2.3   131 
 

After the parachute opens, v t  satisfies the initial value problem v  32  1.5v ,

v 0  202.712 , where we reset time so that t  0 when the parachute opens.  Solving 

as above gives v t   21.3333  181.379e
1.5t , followed by

y t   6964.83  120.919e
1.5t  

 21.3333t .  Solving the equation 

technology yields t  326.476sec . 

y t   0 using

All told, the woman’s total; time of descent is 20  326.476  346.476sec , about 5 

minutes and 46.5 seconds.  Moreover, her impact speed is is 21.33 ft/sec, about 15 mph. 

 

11.       If the paratroopers terminal velocity was 100 mph= 
440 

ft/sec , then Equation (7) in the 
3 

text yields  
 g 
 

 440 
, or   

  3   
 32  

12 
.  Equation (9) then becomes 

      3                 440          55 
 

y t  1200  
 440 

t  
55 

 
440  

1 e12t 55    
, 

3       12    3

and solving the equation 

account is inaccurate. 

y t   0 via technology gives t  12.5sec .  Thus the newspaper

12.       The mass of the drums is given by m  
W 
g 
 

 640 
 20slugs .  With 

32 

 

B  62.58  500lbs

and FR   v lbs , the force equation becomes 

20 
dv 

 640  500  v  140  v . 
dt

Its solution with v 0  0 is v t  140e0.05t  1 , and then integration with y 0  0

 

yields y t  2800 e0.05t  1 140t .  Using these equations we find that

t  20 ln 
28 

 15.35sec when v  75ft/sec , and that 
13 

maximum safe depth is just under 650 ft. 

 

y 15.35  648.31ft .  Thus the

 

Given the hints and integrals provided in the text, Problems 13–16 are fairly straightforward (and 

fairly tedious) integration problems. 
 

 

17.       Equation (13) from the text gives 
 

9.8
v t   tan  C   t 

0.0011 
0.0011 9.8   94.3880 tan C1   0.1038267t  ,
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where C
 

 


 tan

1    
49

 

 

0.0011 

 0.4788372 .  Thus

1                               
9.8   



                   

v t   94.3880 tan 0.4788372  0.1038267t  .
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Then Equation (14) gives 

y t   
    1      

ln 
 cos 0.4788372  0.0011 9.8t 

 

 

cos 0.4788372 0.103827t 
 909.0909ln                                                .

0.0011                   cos0.4788372                                                  cos0.4788372 

Setting v t   0 leads to t  4.612sec , at which time y  108.465m .

 

18.       We solve the initial value problem v  9.8  0.0011v2  
, v 0  0 much as in Problem

17, except using hyperbolic rather than ordinary trigonometric functions.  We first get 

v t   94.3841tanh 0.103827t  ,
 

and then integration with y 0  108.47 

 

gives

 
 
 
 

We solve
 

 

y t  108.47  909.052ln cosh 0.103827t . 
 

y 0  0 for t  
      1        

cosh1 exp
  108.47   

 4.7992 , and then
0.103827 

calculate v 4.7992  43.489 . 

       909.052 


 

 

19.       The initial value problem for the velocity of the motorboat is v  4  
 1   

v
2 
, v 0  0 . 

400
 

Separating variables gives 
       1        

dv  
4  

  1   
v

2
 

400 

 

dt , or 
     140      

dv 
1 v 40

 1  
dt , or 

10

tanh
1  v  

 
 t   

 C .  The initial condition v 0  0 
40    10 

v t  40 tanh 
 t   

.  Finally, v 10  tanh1  30.46 
10 

 

gives C  0 , so that 
 

 

ft/sec and

lim v t  40lim tanh 
 t   

 40 
 

ft/sec.

t t              10

 

20.       The initial value problem for the velocity of the arrow is v  32  
 1   

v
2 
, v 0  160 , 

800

with the added condition that y 0  0 , where y is the height of the arrow.  Separating

 

variables gives
         1         

dv   
  

dt , or
      1 160      

dv   
 1 

dt , or

       1                 
32        v

2
 

800 


1 v 160

2                     5
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4    5 4    5 

tan
1   v   

  
t 
 C .  The initial condition v 0  160 implies that C  

 
, and so

160       5 

v t  
 dy 

 160 tan 
  

 
 t  

.  Integrating then gives
 

4 

y t  800ln 

cos

  
 

 t  
 C ,

          dt                          
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and then the condition y 0  0 gives 0  800ln 
  2 

 C , or C   400 ln 2 .  Altogether 
2

y t  800 ln 

cos

  
 

 t  
 400 ln 2 .  Solving v t   0

  

gives t  3.92699 , and then




calculation gives 

          
          

y 3.92699  277.26 

 

 
ft.

 

21.       The initial value problem for the velocity of the ball is v  g  v
2 
, v 0  v , with the

added condition that y 0  0 , where y is the height of the ball.  Separating variables

dv                                          g
gives  g  v

2 
dv   dt , or  2  

dv  

            

g dt , or

1       g v 

tan
1    g v    g t  C .  The initial condition v 0  v

0 

 

implies that

1               C  tan   g v0 , and so 
 
 

v t    
 

 

 

 g 
tan 


t   g  tan

1 
 

v
 

 

 

 
.

      
                       0 

g 


 
 
 

We solve v t   0
 


 

 

for t  
   1    

tan
1 
 
v
 

          
 

 

 
and substitute in Equation (17) for 

 
 
 

y t  :

g        
  0      

g 


          

cos  tan   v    g tan   v
0     
g  

y         ln                                                           

 

 

ln sec  tan
1 

v 

 

 

  g 

1 
max        


 1                                       1 

0 

     1                         


1 

                     
0                    

cos  tan v
0     
 / g 

.

1            v
2 1          v

2 

    ln  1     0    ln 1     0  
.

             g       2           g  

 
22.       By an integration similar to the one in Problem 19, the solution of the initial value
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problem v  32  0.075v2 
, v 0  0 is v t   20.666 tanh 1.54919t  , so the terminal

speed is 20.666 ft/sec.  Then a further integration with y 0  10000 gives

 
 
 

We solve 

y t   10000 13.333ln cosh 1.54919t  . 

y 0  0 for t  484.57 .  Thus the descent takes about 8 min 5 sec.

 

 

23.       Before the parachute opens, the paratrooper’s descent is modeled by the initial value

problem v  32  0.00075v2 
, v 0  0 , with y 0  10000 .  Solving gives

v t   206.559 tanh 0.154919t  , and then v 30  206.521 ft/sec . Integrating once

again gives y t   10000 1333.33ln cosh 0.154919t  , with y 30  4727.30ft .  After
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the parachute opens, the initial value problem becomes v  32  0.075v2 
,

v 0  206.521 , with y 0  4727.30 .  Solving gives

 

 
 

followed by 

v t   20.6559 tanh 1.54919t  0.00519595 , 
 
 

y t   4727.30 13.3333ln cosh1.54919t  0.00519595 .
 

We find that y  0 when t  229.304 .  Thus he opens his parachute after 30 sec at a

height of 4727 feet, and the total time of descent is 30  229.304  259.304 sec , about 

4 minutes and 19.3 seconds. 

 
24.       Let M denote the mass of the Earth.  Then

 

(a)    2GM  R  c 
 

implies R  0.884 103  
meters, about 0.88 cm;

 

(b)    2G  329320M  R  c 

 

implies 
 

R  2.91103
 

 

meters, about 2.91 kilometers.

 

 

25.       (a) The rocket's apex occurs when v  0 .  We get the desired formula when we set v  0 

in Eq. (23), v
2  
 v

2 
 2GM 

 1 
 

 1  
, and solve for r.

 
0                                 

          
 

(b) We substitute v  0 , r  R 105
 

 

(note 100km  10
5 
m ), and the mks values

G  6.6726 10
11 

, M  5.975 10
24 

, and R  6.378 10
6  

in Eq. (23) and solve for

v0   1389.21m/s  1.389 km/s . 
 

(c) When we substitute v
0  
 0.9  2GM  R 

100 

 

 
in the formula derived in part a, we find that

rmax   
19 

R .
 

 

26.       By an elementary computation (as in Section 1.2) we find that an initial velocity of

v0   16 ft/sec is required to jump vertically 4 feet high on earth.  We must determine

whether this initial velocity is adequate for escape from the asteroid.  Let r denote the
ratio of the radius of the asteroid to the radius R  3960 miles of the earth, so that

r    
  1.5     

   1    
.

3960       2640 
 

Then the mass and radius of the asteroid are given by 

 

 

M   r3M  and 

 

 

Ra   rR , in terms

of the mass M and radius R of the earth.  Hence the escape velocity from the asteroid’s 

surface is given by
 

2GM 
 

2G  r
3
M 

 

2GM
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v
a  
                a                       r  rv

0

Ra                          rRa                              R
 

in terms of the escape velocity v
0 

 

from the earth's surface.  Hence

va   36680 / 2640  13.9 ft/sec .
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Since the escape velocity from this asteroid is thus less than the initial velocity of 16 

ft/sec that your legs can provide, you can indeed jump right off this asteroid into space. 

27.       (a) Substitution of v2   
 2GM k 

2
 


 

in Eq. (23) of the textbook gives

0              
R        R 

 

dr 
 v 

 
 

2GM 

 
 

 
 k   

.

dt                 r           r
 

We separate variables and proceed to integrate: 
 

r dr   k dt 
 

implies that 
 

2  3 

2 
r3 2   kt  

 2 
R3 2 

, since r  R when t  0 .  We solve for r t   
 2 

kt  R
3 2 

 

and

3                 3                                                                                   
 

3              


                 

note that r t    as t  . 
 

2GM
(b) If v

0  
 , then Eq. (23) gives 

R
 

dr 
 v 


 

2GM 
 

 
 

v
2  
 

 2GM  



 

k 
2                    

 k   

         .

dt                 r       
  0             

R   
        

r               r
 

                 

Therefore, at every instant in its ascent, the upward velocity of the projectile in this part is 

greater than the velocity at the same instant of the projectile of part (a).  It's as though the 

projectile of part (a) is the fox, and the projectile of this part is a rabbit that runs faster. 

Since the fox goes to infinity, so does the faster rabbit. 

28.       (a) We proceed as in Example 4:  Since v  
 dr 

,  
dv can be written as v 

dv 
.  Hence the

 
dv       GM 

dt    dt dr 

dv       GM

given differential equation    
dt         r

2
 

becomes the separable equation v               . 
dr         r

2
 

1
Separating variables gives  v dv  GM  dr , and then integration gives 

r
2

 
 
 

 
We solve for 

 

1 
v2 

2 

 

 1     1 
  GM         . 

 r    r0  

dr 
 v  

dt 

 1     1 
2GM         , 

 r    r0 

 

taking the negative square root because v  0 in descent.  Again we separate variables 

and integrate to recover t in terms of r.  Separating gives
 

         1   

 dt                    dr  

 

   r0       


 

   r    
dr ,

 1    1  2GM      r0   r
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 r    r0  
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which under the substitution r  r cos2  becomes

 

   r0  
 

 

 

2r cos
2  d


 

3/2 

0           


 

sin cos 


 

   r0      


 

 

rr    r
2
 

 

 

r cos1
 

 

 r 

2GM   0 
2GM

                                 
2GM

 0       0                     
r  
 .

 

 

(b) Substitution of G  6.6726 1011 N  m kg
2 

, 

                                  0  
 

M  5.97510
24 

kg ,

r  R  6.378 10
6 

m , and r  R  106
 yields t  510.504sec , that is, about 8 

1
 

 

minutes

for the descent to the surface of the earth.  (Recall that we are ignoring air resistance.)

(c) Substitution of the same numeral values along with v0   0 in the original differential

equation of part (a) yields v  4116.42 m/s  4.116 km/s for the velocity at impact 

with the earth’s surface, where r  R . 

dv 
  

   GM     
,  y  0

  

 0 , v 0  v
  

gives
29.       Integration of v 

dy ( y  R)
2                                   0

 

1 
v2

 

 

  
 GM   

 
GM 

 
 1 

v2
 

2           y  R      R 2  
0 ,

 

which simplifies to the desired formula for v2 
.  Then substitution of

G  6.6726 1011 N  m kg
2 

, 

M  5.97510
24 

kg , R  6.378 10
6 

m , v  0 , and

v0   1 yields an equation that we easily solve for 

km. 

y  51427.3m , that is, about 51.427

30.       When we integrate v 
dv       GM e   

  GM m    , r 0  R , r0  v
 

 

in the usual way and
 

 

solve for v, we get 

dr          r2
 S  r

2                                                                  0

 

v     
 2GM e   

 2GM e   
 2GM m   

 2GM m   v2  .
 

r            R         r  S       R  S       
0

 

The earth and moon attractions balance at the point where the right-hand side in the 

        M   S   
acceleration equation vanishes, which is when r              

 e               
.  If we substitute this 

M e     Mm
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m 
value of r, M    7.35 1022 kg , S  384.4 106 

, and the usual values of the other

constants involved, then set v  0 (to just reach the balancing point), we can solve the 

resulting equation for v0   11,109 m/s .  Note that this is only 71 m/s less than the earth 

escape velocity of 11,180 m/s, so the moon really doesn't help much.
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SECTION 2.4 
 

NUMERICAL APPROXIMATION: EULER'S METHOD 
 
In each of Problems 1–10 we also give first the explicit form of Euler’s iterative formula for the

given differential equation y  f (x, y) .  As we illustrate in Problem 1, the desired iterations are

readily implemented, either manually or with a computer system or graphing calculator.  Then

we list the indicated values of y( 1 ) rounded off to 3 decimal places.

 

1.         For the differential equation y  f (x, y) with f (x, y)   y , the iterative formula of

Euler’s method is y
n1  

 y
n  
 h  y

n  .  The TI-83 screen on the left shows a graphing

calculator implementation of this iterative formula. 
 

 
 
 
 
 
 
 
 
 
 

After the variables are initialized (in the first line), and the formula is entered, each press 

of the enter key carries out an additional step.  The screen on the right shows the results

of 5 steps from x  0 to x  0.5 with step size h  0.1—winding up with y 0.5  1.181

. Similarly, using h  0.25 gives y 0.5  1.125 .  The true value is y  1   1.213 .

 

The following Mathematica instructions produce precisely the line of data shown: 
 

f[x_,y_] = -y; 

g[x_] = 2*Exp[-x]; 

y0 = 2; 

h = 0.25; 

x = 0; 

y1 = y0; 

 
Do[k = f[x,y1];    (* the left-hand slope *) 

y1 = y1 + h*k;    (* Euler step to update y *) 

x = x + h,    (* update x *) 

{i,1,2}] 

 
h = 0.1; 

x = 0; 

y2 = y0; 
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Do[k = f[x,y2];    (* the left-hand slope *) 

y2 = y2 + h*k;    (* Euler step to update y *)
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x = x + h,    (* update x *) 

{i,1,5}] 

 
Print[x,"    ",y1,"    ",y2,"    ",g[0.5]] 

 

 
0.5     1.125     1.18098    1.21306 

2.         Iterative formula: 

y  1   1.359 . 
 
 

3.         Iterative formula: 

y  1   2.297 . 
 
 

4.         Iterative formula: 

y  1   0.713 . 
 
 

5.         Iterative formula: 

yn1  
 yn   h 2 yn  ; approximate values 1.125 and 1.244; true value 

 
 

 

yn1  
 yn   h  yn   1 ; approximate values 2.125 and 2.221; true value 

 
 

 

yn1  
 yn   h  xn   yn  ; approximate values 0.625 and 0.681; true value 

 
 

 

y
n1  

 y
n  
 h  yn  

 x
n  
1 ; approximate values 0.938 and 0.889; true

value y  1   0.851.

 

6.         Iterative formula: 

y  1   1.558 . 

yn1  
 yn   h 2 xn yn  ; approximate values 1.750 and 1.627; true value

 
 

7.         Iterative formula: 

y  1   2.647 . 

 

yn1 
 y   h 3x2 y  ; approximate values 2.859 and 2.737; true value

 

8.         Iterative formula: 

y  1   0.405 . 

yn1   yn   he 
 yn 

; approximate values 0.445 and 0.420; true value

 

 

9.         Iterative formula: 
 

y  1   1.287 . 

 

yn1  yn   h 
2 

             n  

4 

 

; approximate values 1.267 and 1.278; true value

 
 

10.       Iterative formula: 

y  1   1.333 . 

 

yn1 
 y   h 2x  y2  ; approximate values 1.125 and 1.231; true value

 

 

The tables of approximate and actual values called for in Problems 11–16 were produced using 

the following MATLAB script (appropriately altered for each problem).
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% Section 2.4, Problems 11-16 

x0 = 0; 

y0 = 1; 

% first run: 

h = 0.01; 

x = x0; 

y = y0; 

y1 = y0; 

for n = 1:100 

y = y + h*(y-2); 

y1 = [y1,y]; 

x = x + h; 

end 

% second run: 

h = 0.005; 

x = x0; y = y0; y2 = y0; 

for n = 1:200 

y = y + h*(y-2); 

y2 = [y2,y]; 

x = x + h; 

end 

% exact values 

x = x0 : 0.2 : x0+1; 

ye = 2 - exp(x); 

% display table 

ya = y2(1:40:201); 

err = 100*(ye-ya)./ye; 

[x; y1(1:20:101); ya; ye; err] 
 

11.       The iterative formula of Euler's method is yn1  
 yn   h  yn   2 , and the exact solution is

y  x   2  e
x .  The resulting table of approximate and actual values is 

 

 
 

x 0.0 0.2 0.4 0.6 0.8 1.0 

y ( h = 0.01) 1.0000 0.7798 0.5111 0.1833 –0.2167 –0.7048 

y (h = 0.005) 1.0000 0.7792 0.5097 0.1806 –0.2211 –0.7115 

y actual 1.0000 0.7786 0.5082 0.1779 –0.2255 –0.7183 

error 0% –0.08% –0.29% –1.53% 1.97% 0.94% 

 
12.       Iterative formula: 

 
yn1 

 

 yn  h 
yn  1

2 

 
; exact solution: y  x  1 

  2    
. 

2  x

 
 

x 0.0 0.2 0.4 0.6 0.8 1.0 

y ( h=0.01) 2.0000 2.1105 2.2483 2.4250 2.6597 2.9864 
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y (h = 0.005) 2.0000 2.1108 2.2491 2.4268 2.6597 2.9931 

y actual 2.0000 2.1111 2.2500 2.4286 2.6597 3.0000 

error 0% 0.02% 0.04% 0.07% 0.13% 0.23% 

 

x3                                                                                           
1 2 

13.       Iterative formula: yn1  yn  2h 
y
 ; exact solution: y  x  8  x4    .

n 

 
 

x 1.0 1.2 1.4 1.6 1.8 2.0 

y ( h = 0.01) 3.0000 3.1718 3.4368 3.8084 4.2924 4.8890 

y (h = 0.005) 3.0000 3.1729 3.4390 3.8117 4.2967 4.8940 

y actual 3.0000 3.1739 3.4412 3.8149 4.3009 4.8990 

error 0% 0.03% 0.06% 0.09% 0.10% 0.10% 

 

14.       Iterative formula: 
y 2 

yn1  yn   h 
x
 

 

; exact solution: y  x      
1     

. 
1 ln x

n 

 

x 1.0 1.2 1.4 1.6 1.8 2.0 

y ( h = 0.01) 1.0000 1.2215 1.5026 1.8761 2.4020 3.2031 

y (h = 0.005) 1.0000 1.2222 1.5048 1.8814 2.4138 3.2304 

y actual 1.0000 1.2230 1.5071 1.8868 2.4259 3.2589 

error 0% 0.06% 0.15% 0.29% 0.50% 0.87% 
 

 

15.       Iterative formula: 


yn1   yn   h 3 
2 yn  


 ; exact solution: y  x  x  

 4  
. 

x
2

       xn    
 

x 2.0 2.2 2.4 2.6 2.8 3.0 

y ( h = 0.01) 3.0000 3.0253 3.0927 3.1897 3.3080 3.4422 

y (h = 0.005) 3.0000 3.0259 3.0936 3.1907 3.3091 3.4433 

y actual 3.0000 3.0264 3.0944 3.1917 3.3102 3.4444 

error 0% 0.019% 0.028% 0.032% 0.033% 0.032% 
 

 

 2x5                                                        1 3 

16.       Iterative formula: yn1   yn   h 
    2   

; exact solution: y  x   x6  37  .

  yn   

 

x 2.0 2.2 2.4 2.6 2.8 3.0 

y ( h = 0.01) 3.0000 4.2476 5.3650 6.4805 7.6343 8.8440 

y (h = 0.005) 3.0000 4.2452 5.3631 6.4795 7.6341 8.8445 

y actual 3.0000 4.2429 5.3613 6.4786 7.6340 8.8451 

error 0% –0.056% –0.034% –0.015% 0.002% 0.006% 
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The tables of approximate values called for in Problems 17–24 were produced using a MATLAB 

script similar to the one listed preceding the Problem 11 solution above. 
 

 

17. 

x 0.0 0.2 0.4 0.6 0.8 1.0 

y ( h = 0.1) 0.0000 0.0010 0.0140 0.0551 0.1413 0.2925 

y (h = 0.02) 0.0000 0.0023 0.0198 0.0688 0.1672 0.3379 

y (h = 0.004) 0.0000 0.0026 0.0210 0.0717 0.1727 0.3477 

y (h= 0.0008) 0.0000 0.0027 0.0213 0.0723 0.1738 0.3497 

These data indicate that y 1  0.35 , in contrast with Example 5 in the text, where the

initial condition is y 0  1 .

 

 

In Problems 1824 we give only the final approximate values of y obtained using Euler's method 

with step sizes h  0.1 , h  0.02 , h  0.004 , and h  0.0008 . 

18.       With x0   0 and y0   1, the approximate values of y 2 obtained are:

 

 

h 0.1 0.02 0.004 0.0008 

y 1.6680 1.6771 1.6790 1.6794 

19.       With x0   0 and y0   1, the approximate values of y 2 obtained are:

 

 

h 0.1 0.02 0.004 0.0008 

y 6.1831 6.3653 6.4022 6.4096 

20.       With x0   0 and y0   1, the approximate values of y 2 obtained are:

 

 

h 0.1 0.02 0.004 0.0008 

y -1.3792 -1.2843 -1.2649 -1.2610 

21.       With x0   1 and y0   2 , the approximate values of y 2 obtained are:

 

 

h 0.1 0.02 0.004 0.0008 

y 2.8508 2.8681 2.8716 2.8723 

22.       With x0   0 and y0   1, the approximate values of y 2 obtained are:
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h 0.1 0.02 0.004 0.0008 

y 6.9879 7.2601 7.3154 7.3264 
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23.       With x0   0 and y0   0 , the approximate values of y 1obtained are:

 

 

h 0.1 0.02 0.004 0.0008 

y 1.2262 1.2300 1.2306 1.2307 

24.       With x0   1 and y0   1, the approximate values of y 1obtained are:

 

 

h 0.1 0.02 0.004 0.0008 

y 0.9585 0.9918 0.9984 0.9997 

25.       Here f t, v  32 1.6v and t0   0 , v0   0 .  With h  0.01 , 100 iterations of

vn1  
 vn   hf tn , vn  yield v 1  16.014 , and 200 iterations with h  0.005 yield 

v 1  15.998 .  Thus we observe an approximate velocity of 16.0 ft/sec after 1 second — 

80% of the limiting velocity of 20 ft/sec. 

With h  0.01 , 200 iterations yield v 2  19.2056 , and 400 iterations with h  0.005

yield v 2  19.1952. Thus we observe an approximate velocity of 19.2 ft/sec after 2

seconds — 96% of the limiting velocity of 20 ft/sec. 

26.       Here f t, P  0.0225P  0.003P2
 and t0   0 , P0   25 .  With h  1, 60 iterations of

P
n1  

 P
n  
 hf tn 

, P
n  yield P 60  49.3888 , and 120 iterations with h  0.5 yield

P 60  49.3903 .  Thus we observe a population of 49 deer after 5 years — 65% of the

limiting population of 75 deer.  With h  1, 120 iterations yield P 120  66.1803 , and

240 iterations with h  0.5 yield P 60  66.1469 .  Thus we observe a population of 66

deer after 10 years — 88% of the limiting population of 75 deer. 

27.       Here f  x, y   x
2  
 y

2  
 1 and x   0 , y   0 .  The following table gives the

0                  0 

approximate values for the successive step sizes h and corresponding numbers n of steps.

It appears likely that y 2  1.00 rounded off accurate to 2 decimal places.

 

 

h 0.1 0.01 0.001 0.0001 0.00001 

n 20 200 2000 20000 200000 

y 2 0.7772 0.9777 1.0017 1.0042 1.0044 

 

28.       Here f  x, y  x  
 1 

y2 

2 

 

and 

 

x0   2 , 
 

y0   0 .  The following table gives the approximate
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values for the successive step sizes h and corresponding numbers n of steps.  It appears

likely that y 2  1.46 rounded off accurate to 2 decimal places.
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h 0.1 0.01 0.001 0.0001 0.00001 

n 40 400 4000 40000 400000 

y 2 1.2900 1.4435 1.4613 1.4631 1.4633 

 

29.       With step sizes h  0.15 , h  0.03 , and h  0.006 , we get the following results: 

 

x y with h  0.15 y with h  0.03 y with h  0.006 

1.0 1.0000 1.0000 1.0000 

0.7 1.0472 1.0512 1.0521 

0.4 1.1213 1.1358 1.1390 

0.1 1.2826 1.3612 1.3835 

+0.2 0.8900 1.4711 0.8210 

+0.5 0.7460 1.2808 0.7192 
 

While the values for h  0.15 alone are not conclusive, a comparison of the values of y

for all three step sizes with 

to positive values of x. 

x  0 suggests some anomaly in the transition from negative

 

30.       With step sizes h  0.1 and h  0.01 we get the following results: 

 

x y with h  0.1 y with h  0.01 

0.0 0.0000 0.0000 

0.1 0.0000 0.0003 

0.2 0.0010 0.0025 

0.3 


1.8 

0.0050 


2.8200 

0.0086 


4.3308 

1.9 3.9393 7.9425 

2.0 5.8521 28.3926 
 

Clearly there is some difficulty near x  2 .

 

31.       With step sizes  h  =  0.1  and  h  =  0.01  we get the following results: 

 
x y with h  0.1 y with h  0.01 

0.0 1.0000 1.0000 

0.1 1.2000 1.2200 

0.2 1.4428 1.4967 

  
0.7 4.3460 6.4643 

0.8 5.8670 11.8425 

0.9 8.3349 39.5010 

Clearly there is some difficulty near x  0.9 .
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SECTION 2.5 
 

A CLOSER LOOK AT THE EULER METHOD 
 

 

In each of Problems 1–10 we give first the predictor formula for un1  and then the improved

Euler corrector for yn1 .  These predictor-corrector iterations are readily implemented, either

manually or with a computer system or graphing calculator (as we illustrate in Problem 1).  We 

give in each problem a table showing the approximate values obtained, as well as the 

corresponding values of the exact solution. 
 
 
 
 
 
 
 
 
 
 
 
 

1.         un1  
 yn   h  yn  ; 

 

yn1  yn  

 

 y
n  
 u

n1 
2

The TI-83 screen on the left above shows a graphing calculator implementation of this 

iteration.  After the variables are initialized (in the first line), and the formulas are 

entered, each press of the enter key carries out an additional step.  The screen on the right
shows the results of 5 steps from x  0 to x  0.5 with step size h  0.1 — winding up

with y 0.5  1.2142 — and we see the approximate values shown in the second row of

the table below. 

 

x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h  0.1 2.0000 1.8100 1.6381 1.4824 1.3416 1.2142 

y actual 2.0000 1.8097 1.6375 1.4816 1.3406 1.2131 

 

2.         un1  yn  2hyn ;  y
 

 

1  y  
h 
2 y

 
 

 2u  1 
n             n       

2 
n             n

 

x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h  0.1 0.5000 0.6100 0.7422 0.9079 1.1077 1.3514 

y actual 0.5000 0.6107 0.7459 0.9111 1.1128 1.3591 



Copyright © 2015 Pearson Education, Inc. 
 

h 

Section 2.5   145 
 
 

3.         un1  
 yn   h  yn   1 ;  y

 
 

1  y
 
 

h 
 y

 
 

1  u
 

 

1 1
n             n 

2    
n                        n             

 

x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h  0.1 1.0000 1.2100 1.4421 1.6985 1.9818 2.2949 

y actual 1.0000 1.2103 1.4428 1.6997 1.9837 2.2974 

 

4.         un1  
 yn   h  xn   yn  ; 

 

yn1  yn  

 

2 
 xn   yn    xn   h  un1 

 

x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h  0.1 1.0000 0.9100 0.8381 0.7824 0.7416 0.7142 

y actual 1.0000 0.9097 0.8375 0.7816 0.7406 0.7131 

 

5.         un1  
 yn   h  yn   xn  1 ;  y

 
 

1  y
 
 

h 
 y

 
 

 x  1  u
 

 

1  x
 

 

 h 1
n             n 

2    
n          n                        n           n                      

 

x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h  0.1 1.0000 0.9950 0.9790 0.9508 0.9091 0.8526 

y actual 1.0000 0.9948 0.9786 0.9501 0.9082 0.8513 

 

6.         u
n1 

 y
n 
 2x

n 
y

n
h ;  y

 
 

1  y
 
 

h 
2x y

 
 

 2  x
 

 

 h u  1 

n             n 
2     

n    n                 n                 n  

 

x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h  0.1 2.0000 1.9800 1.9214 1.8276 1.7041 1.5575 

y actual 2.0000 1.9801 1.9216 1.8279 1.7043 1.5576 

 

7.         u 
 

 y   3x2 y h ;  y 
 y   

 h 3x
2 
y
 

 

 3 x 
 

 h
2 
u    

n1 n             n    n n1 n       
2 

n    n                 n                    n1 

 

x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h  0.1 3.0000 2.9955 2.9731 2.9156 2.8082 2.6405 

y actual 3.0000 2.9970 2.9761 2.9201 2.8140 2.6475 

 

8.         un1   yn  he 

 
 yn  ;

 
y     y   

 h 
n1           n       

2 

 

e
 yn 

 

 e
un 1

 

x 0.0 0.1 0.2 0.3 0.4 0.5 
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y with h  0.1 0.0000 0.0952 0.1822 0.2622 0.3363 0.4053 

y actual 0.0000 0.0953 0.1823 0.2624 0.3365 0.4055 
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9.         un1  yn  h 
2 

             n  ; 
4 

 

yn1  yn  h 
2                   2 

             n                   n 1 

8

 

x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h  0.1 1.0000 1.0513 1.1053 1.1625 1.2230 1.2873 

y actual 1.0000 1.0513 1.1054 1.1625 1.2231 1.2874 

10. u     y  h 2x y2 
;  y  y   h  x y2   x  h u2

n1 n                     n    n n1 n                    n    n             n                 n1

 

 

x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h  0.1 1.0000 1.0100 1.0414 1.0984 1.1895 1.3309 

y actual 1.0000 1.0101 1.0417 1.0989 1.1905 1.3333 

 

The results given below for Problems 11–16 were computed using the following MATLAB 

script. 
 
 

% Section 2.5, Problems 11-16 

x0 = 0; y0 = 1; 

% first run: 

h = 0.01; 

x = x0; y = y0; y1 = y0; 

for n = 1:100 

u = y + h*f(x,y);                                  %predictor 

y = y + (h/2)*(f(x,y)+f(x+h,u));        %corrector 

y1 = [y1,y]; 

x = x + h; 

end 

% second run: 

h = 0.005; 

x = x0; y = y0; y2 = y0; 

 
for n = 1:200 

u = y + h*f(x,y);                                  %predictor 

y = y + (h/2)*(f(x,y)+f(x+h,u));  %corrector 

y2 = [y2,y]; 

x = x + h; 

end 

 
% exact values 

x = x0 : 0.2 : x0+1; 

ye = g(x); 

 
% display table 

ya = y2(1:40:201);
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err = 100*(ye-ya)./ye; 

x = sprintf('%10.5f',x), sprintf('\n'); 

y1 = sprintf('%10.5f',y1(1:20:101)), sprintf('\n'); 

ya = sprintf('%10.5f',ya), sprintf('\n'); 

ye = sprintf('%10.5f',ye), sprintf('\n'); 

err = sprintf('%10.5f',err), sprintf('\n'); 

table = [x; y1; ya; ye; err] 
 

For each problem the differential equation y  f (x, y) and the known exact solution y  g  x 

are stored in the files f.m and g.m — for instance, the files 
 

function yp = f(x,y) 

yp = y-2; 

 
function ye = g(x,y) 

ye = 2-exp(x); 
 

 

for Problem 11.  (The exact solutions for Problems 11–16 here are given in the solutions for 

Problems 11–16 in Section 2.4.) 

11. 

 

x 0.0 0.2 0.4 0.6 0.8 1.0 

y ( h  0.01) 1.00000 0.77860 0.50819 0.17790 –0.22551 –0.71824 

y ( h  0.005 

) 

 

1.00000 
 

0.77860 
 

0.50818 
 

0.17789 
 

–0.22553 
 

–0.71827 

y actual 1.00000 0.77860 0.50818 0.17788 –0.22554 –0.71828 

error 0.000% –0.000% –0.000% –0.003% 0.003% 0.002% 

 

12. 

 

x 0.0 0.2 0.4 0.6 0.8 1.0 

y ( h  0.01) 2.00000 2.11111 2.25000 2.42856 2.66664 2.99995 

y ( h  0.005 

) 

 

2.00000 
 

2.11111 
 

2.25000 
 

2.42857 
 

2.66666 
 

2.99999 

y actual 2.00000 2.11111 2.25000 2.42857 2.66667 3.00000 

error 0.0000% 0.0000% 0.0001% 0.0001% 0.0002% 0.0004% 

 

13. 
 

x 1.0 1.2 1.4 1.6 1.8 2.0 

y ( h  0.01) 3.00000 3.17390 3.44118 3.81494 4.30091 4.89901 

y ( h  0.005 

) 

 

3.00000 
 

3.17390 
 

3.44117 
 

3.81492 
 

4.30089 
 

4.89899 

y actual 3.00000 3.17389 3.44116 3.81492 4.30088 4.89898 

error 0.0000% –0.0001% –0.0001% -0.0001% –0.0002% –0.0002% 
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14. 

 

x 1.0 1.2 1.4 1.6 1.8 2.0 

y ( h  0.01) 1.00000 1.22296 1.50707 1.88673 2.42576 3.25847 

y ( h  0.005 

) 

 

1.00000 
 

1.22297 
 

1.50709 
 

1.88679 
 

2.42589 
 

3.25878 

y actual 1.00000 1.22297 1.50710 1.88681 2.42593 3.25889 

error 0.0000% 0.0002% 0.0005% 0.0010% 0.0018% 0.0033% 

 

15. 

 

x 2.0 2.2 2.4 2.6 2.8 3.0 

y ( h  0.01) 3.000000 3.026448 3.094447 3.191719 3.310207 3.444448 

y ( h  0.005 

) 

 

3.000000 
 

3.026447 
 

3.094445 
 

3.191717 
 

3.310205 
 

3.444445 

y actual 3.000000 3.026446 3.094444 3.191716 3.310204 3.444444 
 

error 
0.00000 

% 

 

–0.00002% 
 

–0.00002% 
 

–0.00002% 
 

–0.00002% 
 

–0.00002% 

 

16. 

 

x 2.0 2.2 2.4 2.6 2.8 3.0 

y ( h  0.01) 3.000000 4.242859 5.361304 6.478567 7.633999 8.845112 

y ( h  0.005 

) 

 

3.000000 
 

4.242867 
 

5.361303 
 

6.478558 
 

7.633984 
 

8.845092 

y actual 3.000000 4.242870 5.361303 6.478555 7.633979 8.845085 
 

error 
0.00000 

% 
0.00006 

% 

 

–0.00001% 
 

–0.00005% 
 

–0.00007% 
 

–0.00007% 

 

17. 
 

With  h  =     0.1: y(1)    0.35183 

With  h  =    0.02: y(1)    0.35030 

With  h  =   0.004: y(1)    0.35023 

With  h  =  0.0008: y(1)    0.35023 
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The table of numerical results is 

 

x y with h  0.1 y with h  0.02 y with h  0.004 y with h  0.0008 

0.0 0.00000 0.00000 0.00000 0.00000 

0.2 0.00300 0.00268 0.00267 0.00267 

0.4 0.02202 0.02139 0.02136 0.02136 

0.6 0.07344 0.07249 0.07245 0.07245 

0.8 0.17540 0.17413 0.17408 0.17408 

1.0 0.35183 0.35030 0.35023 0.35023 

 
In Problems 1824 we give only the final approximate values of y  obtained using the improved 
Euler method with step sizes  h  =  0.1, h  =  0.02,  h  =  0.004, and  h  =  0.0008. 
18. 

 

Value of h Estimated value of  y 2

0.1 1.68043 

0.02 1.67949 

0.004 1.67946 

0.0008 1.67946 

 

19. 

 

Value of h Estimated value of  y 2

0.1 6.40834 

0.02 6.41134 

0.004 6.41147 

0.0008 6.41147 

 

20. 

 

Value of h Estimated value of  y 2

0.1 –1.26092 

0.02 –1.26003 

0.004 –1.25999 

0.0008 –1.25999 

 

21. 
 

Value of h Estimated value of  y 2

0.1 2.87204 

0.02 2.87245 

0.004 2.87247 

0.0008 2.87247 
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22. 

 

Value of h Estimated value of  y 2

0.1 7.31578 

0.02 7.32841 

0.004 7.32916 

0.0008 7.32920 

 

23. 

 

Value of h Estimated value of  y 1

0.1 1.22967 

0.02 1.23069 

0.004 1.23073 

0.0008 1.23073 

 

24. 

 

Value of h Estimated value of  y 1

0.1 1.00006 

0.02 1.00000 

0.004 1.00000 

0.0008 1.00000 

25.       Here f t, v  32 1.6v and t0   0 , v0   0 .  With h  0.01 , 100 iterations of 
 

h
k

1  
 f t, vn  , k

2  
 f t  h, vn   hk

1  , vn1  vn   k1  k2 
2

yield v 1  15.9618 , and 200 iterations with h  0.005 yield v 1  15.9620 .  Thus we

observe an approximate velocity of 15.962 ft/sec after 1 second — 80% of the limiting 

velocity of 20 ft/sec. 

With h  0.01 , 200 iterations yield v 2  19.1846 , and 400 iterations with h  0.005 

yield v 2  19.1847 .  Thus we observe an approximate velocity of 19.185 ft/sec after 2 

seconds — 96% of the limiting velocity of 20 ft/sec. 

26.       Here f t, P  0.0225P  0.003P2
 and t0   0 , P0   25 .  With h  1, 60 iterations of

 
k

1  


 

f t, Pn  , k
2  


 

f t  h, Pn   hk
1  , 

 

Pn1  Pn  

 

k
1 
 k

2 
2

yield P 60  49.3909 , and 120 iterations with h  0.5 yield P 60  49.3913 .  Thus

we observe an approximate population of 49.391 deer after 5 years — 65% of the 

limiting population of 75 deer.
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With h  1, 120 iterations yield P 120  66.1129 , and 240 iterations with h  0.5 yield

P 120  66.1134. Thus we observe an approximate population of 66.113 deer after 10

years — 88% of the limiting population of 75 deer. 

27.       Here f  x, y   x2   y 2   1 and x0   0 , y0   0 .  The following table gives the

approximate values for the successive step sizes h and corresponding numbers n of steps.

It appears likely that y 2  1.0045 rounded off accurate to 4 decimal places.

 

 

h 0.1 0.01 0.001 0.0001 

n 20 200 2000 20000 

y 2 1.01087 1.00452 1.00445 1.00445 

 

28.       Here f  x, y  x  
 1 

y2 

2 

 

and 

 

x0   2 , 
 

y0   0 .  The following table gives the approximate

values for the successive step sizes h and corresponding numbers n of steps.  It appears

likely that y 2  1.4633 rounded off accurate to 4 decimal places.

 

 

h 0.1 0.01 0.001 0.0001 

n 40 400 4000 40000 

y 2 1.46620 1.46335 1.46332 1.46331 

In the solutions for Problems 29 and 30 we illustrate the following general MATLAB ode 

solver. 
 

function [t,y] = ode(method, yp, t0,b, y0, n) 

% [t,y] = ode(method, yp, t0,b, y0, n) 

% calls the method described by 'method' for the 

% ODE 'yp' with function header 

% 

%            y' = yp(t,y) 

% 

% on the interval [t0,b] with initial (column) 

% vector y0. Choices for method are 'euler', 

% 'impeuler', 'rk' (Runge-Kutta), 'ode23', 'ode45'. 

% Results are saved at the endPoints of n subintervals, 

% that is, in steps of length h = (b - t0)/n. The 

% result t is an (n+1)-column vector from b to t1, 

% while y is a matrix with n+1 rows (one for each 

% t-value) and one column for each dependent variable. 

 
h = (b - t0)/n;            % step size 

t = t0 : h : b; 
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t = t';                         % col. vector of t-values 

y = y0';                   % 1st row of result matrix



Copyright © 2015 Pearson Education, Inc. 
 

152   A CLOSER LOOK AT THE EULER METHOD 
 
 

for  i = 2 : n+1           % for i=2 to 

i=n+1 t0 = t(i-1);            % old t 

t1 = t(i);                   % new t 

y0 = y(i-1,:)';              % old y-row-vector 

[T,Y] = feval(method, yp, t0,t1, y0); 

y = [y;Y'];                  % adjoin new y-row-vector 

end 

To use the improved Euler method, we call as 'method' the following function. 
 

function [t,y] = impeuler(yp, t0,t1, y0) 

% 

% [t,y] = impeuler(yp, t0,t1, y0) 

% Takes one improved Euler step for 

% 

%      y' = yprime( t,y ), 

% 

% from t0 to t1 with initial value the 

% column vector y0. 

 
h = t1 - t0; 

k1 = feval( yp, t0, y0       ); 

k2 = feval( yp, t1, y0 + h*k1 ); 

k = (k1 + k2)/2; 

t = t1; 

y = y0 + h*k; 
 

 

29.       Here our differential equation is described by the MATLAB function 
 

function vp = vpbolt1(t,v) 

vp = -0.04*v - 9.8; 

Then the commands 
 

n = 50; 

[t1,v1] = ode('impeuler','vpbolt1',0,10,49,n); 

n = 100; 

[t2,v2] = ode('impeuler','vpbolt1',0,10,49,n); 

t = (0:10)'; 

ve = 294*exp(-t/25)-245; 

[t, v1(1:5:51), v2(1:10:101), ve] 

generate the table:
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t 
with 

n  50 
with 

n  100 

 

actual v 

0 49.0000 49.0000 49.0000 

1 37.4722 37.4721 37.4721 

2 26.3964 26.3963 26.3962 

3 15.7549 15.7547 15.7546 

4 5.5307 5.5304 5.5303 

5 -4.2926 -4.2930 -4.2932 

6 -13.7308 -13.7313 -13.7314 

7 -22.7989 -22.7994 -22.7996 

8 -31.5115 -31.5120 -31.5122 

9 -39.8824 -39.8830 -39.8832 

10 -47.9251 -47.9257 -47.9259 

We notice first that the final two columns agree to 3 decimal places (each difference 

being less than 0.0005).  Scanning the n  100 column for sign changes, we suspect that

v  100 (at the bolt’s apex) occurs just after t  4.5sec .  Then interpolation between

t  4.5 and t  4.6 in the table

 

[t2(40:51),v2(40:51)] 
 
 

3.9000 6.5345 

4.0000 5.5304 

4.1000 4.5303 

4.2000 3.5341 

4.3000 2.5420 

4.4000 1.5538 

4.5000 0.5696 

4.6000 -0.4108 

4.7000 -1.3872 

4.8000 -2.3597 

4.9000 -3.3283 

5.0000 -4.2930 

indicates that t  4.56 at the bolt's apex.  Finally, interpolation in

 

[t2(95:96),v2(95:96)] 
 

 

9.4000 -43.1387 

9.5000 -43.9445 

gives the impact velocity v 9.41  43.22 m s . 
 

 

30.       Now our differential equation is described by the MATLAB function 
 

function vp = vpbolt2(t,v) 

vp = -0.0011*v.*abs(v) - 9.8; 
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n = 100; 

[t1,v1] = ode('impeuler','vpbolt2',0,10,49,n); 

n = 200; 

[t2,v2] = ode('impeuler','vpbolt2',0,10,49,n); 

t = (0:10)'; 

[t, v1(1:10:101), v2(1:20:201)] 

generate the table 

 

t with n  100 with n  200 

0 49.0000 49.0000 

1 37.1547 37.1547 

2 26.2428 26.2429 

3 15.9453 15.9455 

4 6.0041 6.0044 

5 -3.8020 -3.8016 

6 -13.5105 -13.5102 

7 -22.9356 -22.9355 

8 -31.8984 -31.8985 

9 -40.2557 -40.2559 

10 -47.9066 -47.9070 

We notice first that the final two columns agree to 2 decimal places (each difference 

being less than 0.005).  Scanning the n  200 column for sign changes, we suspect that 

v  0 (at the bolt’s apex) occurs just after t  4.6sec .  Then interpolation between

t  4.60 and t  4.65 t = 4.60 in the table

 

 

[t2(91:101),v2(91:101)] 
 
 

4.5000 1.0964 

4.5500 0.6063 

4.6000 0.1163 

4.6500 -0.3737 

4.7000 -0.8636 

4.7500 -1.3536 

4.8000 -1.8434 

4.8500 -2.3332 

4.9000 -2.8228 

4.9500 -3.3123 

5.0000 -3.8016 

indicates that T  4.61 at the bolt’s apex.  Finally, interpolation in 
 

[t2(189:190),v2(189:190)] 
 

 

9.4000 -43.4052 

9.4500 -43.7907 
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gives the impact velocity v 9.41  43.48 m s . 

 

SECTION 2.6 
 

THE RUNGE-KUTTA METHOD 
 
Each problem can be solved with a “template” of computations like those listed in Problem 1.

We include a table showing the slope values k1 , k2 , k3 , k4 

successive steps of size h  0.25 . 

and the xy-values at the ends of two

 

1.         To make the first step of size h = 0.25 we start with the function defined by 
 

f[x_, y_] := -y 

and the initial values 
 

x = 0;    y = 2;   h = 0.25; 

and then perform the calculations 
 

k1 = f[x, y] 

k2 = f[x + h/2, y + h*k1/2] 

k3 = f[x + h/2, y + h*k2/2] 

k4 = f[x + h, y + h*k3] 

y = y + (h/6)*(k1 + 2*k2 + 2*k3 + k4) 

x = x + h 

in turn.  Here we are using Mathematica notation that translates transparently to standard 

mathematical notation describing the corresponding manual computations.  A repetition 

of this same block of calculations carries out a second step of size h  0.25 .  The 

following table lists the intermediate and final results obtained in these two steps. 

 

k1 k2 k3 k4 x Approx. y Actual y 

–2 –1/75 –1.78125 –1.55469 0.25 1.55762 1.55760 

–1.55762 –1.36292 –1.38725 –1.2108 0.5 1.21309 1.21306 

 

2. 

 

k1 k2 k3 k4 x Approx. y Actual y 

1 1.25 1.3125 1.65625 0.25 0.82422 0.82436 

1.64844 2.06055 2.16357 2.73022 0.5 1.35867 1.35914 

 

3. 
 

k1 k2 k3 k4 x Approx. y Actual y 

2 2.25 2.28125 2.57031 0.25 1.56803 1.56805 

2.56803 2.88904 2.92916 3.30032 0.5 2.29740 2.29744 



Copyright © 2015 Pearson Education, Inc. 
 

156   THE RUNGE-KUTTA METHOD 
 

 

4. 

 

k1 k2 k3 k4 x Approx. y Actual y 

–1 –0.75 –0.78128 –55469 0.25 0.80762 0.80760 

–0.55762 –0.36292 –0.38725 –0.21080 0.5 0.71309 0.71306 

 

5. 

 

k1 k2 k3 k4 x Approx. y Actual y 

0 –0.125 –0.14063 –0.28516 0.25 0.96598 0.96597 

–28402 –0.44452 –0.46458 –0.65016 0.5 0.85130 0.85128 

 

6. 

 

k1 k2 k3 k4 x Approx. y Actual y 

0 –0.5 –0.48438 –0.93945 0.25 1.87882 1.87883 

–0.93941 –1.32105 –1.28527 –1.55751 0.5 1.55759 1.55760 

 

7. 

 

k1 k2 k3 k4 x Approx. y Actual y 

0 –0.14063 –0.13980 –0.55595 0.25 2.95347 2.95349 

–0.55378 –1.21679 –1.18183 –1.99351 0.5 2.6475 2.64749 

 

8. 

 

k1 k2 k3 k4 x Approx. y Actual y 

1 0.88250 0.89556 0.79940 0.25 0.22315 0.22314 

0.80000 0.72387 0.73079 0.66641 0.5 0.40547 0.40547 

 

9. 

k1 k2 k3 k4 x Approx. y Actual y 

0.5 0.53223 0.53437 0.57126 0.25 1.13352 1.13352 

0.57122 0.61296 0.61611 0.66444 0.5 1.28743 1.28743 

 

10. 

 

k1 k2 k3 k4 x Approx. y Actual y 

0 0.25 0.26587 0.56868 0.25 1.06668 1.06667 

0.56891 0.97094 1.05860 1.77245 0.5 1.33337 1.33333 

 

The results given below for Problems 11–16 were computed using the following MATLAB 

script.
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% Section 2.6, Problems 11-16 

x0 = 0; y0 = 1; 

 
% first run: 

h = 0.2; 

x = x0; y = y0; y1 = y0; 

for n = 1:5 

k1 = f(x,y); 

k2 = f(x+h/2,y+h*k1/2); 

k3 = f(x+h/2,y+h*k2/2); 

k4 = f(x+h,y+h*k3); 

y = y +(h/6)*(k1+2*k2+2*k3+k4); 

y1 = [y1,y]; 

x = x + h; 

end 

 
% second run: 

h = 0.1; 

x = x0; y = y0; y2 = y0; 

for n = 1:10 

k1 = f(x,y); 

k2 = f(x+h/2,y+h*k1/2); 

k3 = f(x+h/2,y+h*k2/2); 

k4 = f(x+h,y+h*k3); 

y = y +(h/6)*(k1+2*k2+2*k3+k4); 

y2 = [y2,y]; 

x = x + h; 

end 

 
% exact values 

x = x0 : 0.2 : x0+1; 

ye = g(x); 

 
% display table 

y2 = y2(1:2:11); 

err = 100*(ye-y2)./ye; 

x = sprintf('%10.6f',x), sprintf('\n'); 

y1 = sprintf('%10.6f',y1), sprintf('\n'); 

y2 = sprintf('%10.6f',y2), sprintf('\n'); 

ye = sprintf('%10.6f',ye), sprintf('\n'); 

err = sprintf('%10.6f',err), sprintf('\n'); 

table = [x;y1;y2;ye;err] 
 

For each problem the differential equation y  f  x, y  and the known exact solution y  g  x 

are stored in the files f.m and g.m — for instance, the files
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and 

function yp = f(x,y) 

yp = y-2; 
 

 
function ye = g(x,y) 

ye = 2-exp(x);

for Problem 11. 
 

 

11. 

 

x 0.0 0.2 0.4 0.6 0.8 1.0 

y ( h  0.2 ) 1.000000 0.778600 0.508182 0.177894 –0.225521 –0.718251 

y ( h  0.1) 1.000000 0.778597 0.508176 0.177882 –0.225540 –0.718280 

y actual 1.000000 0.778597 0.508175 0.177881 –0.225541 –0.718282 

error 0.00000% –0.00002% –0.00009% –0.00047% –0.00061% –0.00029% 

 

12. 

 

x 0.0 0.2 0.4 0.6 0.8 1.0 

y ( h  0.2 ) 2.000000 2.111110 2.249998 2.428566 2.666653 2.999963 

y ( h  0.1) 2.000000 2.111111 2.250000 2.428571 2.666666 2.999998 

y actual 2.000000 2.111111 2.250000 2.428571 2.666667 3.000000 

error 0.000000% 0.000002% 0.000006% 0.000014% 0.000032% 0.000080% 

 

13. 

x 1.0 1.2 1.4 1.6 1.8 2.0 

y ( h  0.2 ) 3.000000 3.173896 3.441170 3.814932 4.300904 4.899004 

y ( h  0.1) 3.000000 3.173894 3.441163 3.814919 4.300885 4.898981 

y actual 3.000000 3.173894 3.441163 3.814918 4.300884 4.898979 

error 0.00000% –0.00001% –0.00001% –0.00002% –0.00003% –0.00003% 

 

14. 

 

x 1.0 1.2 1.4 1.6 1.8 2.0 

y ( h  0.2 ) 1.000000 1.222957 1.507040 1.886667 2.425586 3.257946 

y ( h  0.1) 1.000000 1.222973 1.507092 1.886795 2.425903 3.258821 

y actual 1.000000 1.222975 1.507096 1.886805 2.425928 3.258891 

error 0.0000% 0.0001% 0.0003% 0.0005% 0.0010% –0.0021% 

 

15. 
 

x 2.0 2.2 2.4 2.6 2.9 3.0 

y ( h  0.2 ) 3.000000 3.026448 3.094447 3.191719 3.310207 3.444447 

y ( h  0.1) 3.000000 3.026446 3.094445 3.191716 3.310204 3.444445 
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y actual 3.000000 3.026446 3.094444 3.191716 3.310204 3.444444 

error –0.000000% –0.000004% –0.000005% –0.000005% –0.000005% –0.000004% 

 

16. 

 

x 2.0 2.2 2.4 2.6 2.9 3.0 

y ( h  0.2 ) 3.000000 4.243067 5.361409 6.478634 7.634049 8.845150 

y ( h  0.1) 3.000000 4.242879 5.361308 6.478559 7.633983 8.845089 

y actual 3.000000 4.242870 5.361303 6.478555 7.633979 8.845085 

error –0.000000% –0.000221% –0.000094% –0.000061% –0.000047% –0.000039% 

 

17. 

 

Value of h Estimated value of  y 1

0.2 0.350258 

0.1 0.350234 

0.05 0.350232 

0.025 0.350232 

 
The table of numerical results is 

 

x y with h  0.2 y with h  0.1 y with h  0.05 y with h  0.025 

0.0 0.000000 0.000000 0.000000 0.000000 

0.2 0.002667 0.002667 0.002667 0.002667 

0.4 0.021360 0.021359 0.021359 0.021359 

0.6 0.072451 0.072448 0.072448 0.072448 

0.8 0.174090 0.174081 0.174080 0.174080 

1.0 0.350258 0.350234 0.350232 0.350232 

 
In Problems 1824 we give only the final approximate values of y obtained using the Runge- 

Kutta method with step sizes h  0.2 , h  0.1 , h  0.05 , and h  0.025 . 
 

 

18. 

 

Value of h Estimated value of  y 2

0.2 1.679513 

0.1 1.679461 

0.05 1.679459 

0.025 1.679459 
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19. 

 

Value of h Estimated value of  y 2

0.2 1.679459 

0.1 6.411474 

0.05 6.411474 

0.025 6.411474 

 

20. 

Value of h Estimated value of  y 2

0.2 –1.259990 

0.1 –1.259992 

0.05 –1.259993 

0.025 –1.259993 

 

21. 

 

Value of h Estimated value of  y 2

0.2 2.872467 

0.1 2.872468 

0.05 2.872468 

0.025 2.872468 

 

22. 

 

Value of h Estimated value of  y 2

0.2 7.326761 

0.1 7.328452 

0.05 7.328971 

0.025 7.329134 

 

23. 
 

Value of h Estimated value of  y 1

0.2 1.230735 

0.1 1.230731 

0.05 1.230731 

0.025 1.230731 
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24. 

 

Value of h Estimated value of  y 1

0.2 1.000000 

0.1 1.000000 

0.05 1.000000 

0.025 1.000000 

25.       Here f t, v  32 1.6v and t0   0 , v0   0 .  With h  0.1 , 10 iterations of
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n1          n

yield v 1  15.9620 , and 20 iterations with h  0.05 yield v 1  15.9621 .  Thus we

observe an approximate velocity of 15.962 ft/sec after 1 second — 80% of the limiting 

velocity of 20 ft/sec.

With h  0.1, 20 iterations yield v 2  19.1847 , and 40 iterations with h  0.05 yield

v 2  19.1848. Thus we observe an approximate velocity of 19.185 ft/sec after 2

seconds — 96% of the limiting velocity of 20 ft/sec. 

26.       Here f t, P  0.0225P  0.003P2
 and t0   0 , P0   25 .  With h  6 , 10 iterations of
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 1             2             3         4 
6 

 

n1          n

yield P 60  49.3915 , as do 20 iterations with h  3 .  Thus we observe an approximate

population of 49.3915 deer after 5 years — 65% of the limiting population of 75 deer.

With h  6 , 20 iterations yield P 120  66.1136 , as do 40 iterations with h  3 .  Thus

we observe an approximate population of 66.1136 deer after 10 years — 88% of the 

limiting population of 75 deer. 

27.       Here f  x, y   x2   y 2   1 and x0   0 , y0   0 .  The following table gives the

approximate values for the successive step sizes h and corresponding numbers n of steps.

It appears likely that y 2  1.00445 rounded off accurate to 5 decimal places.
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h 1 0.1 0.01 0.001 

n 2 20 200 2000 

y 2 1.05722 1.00447 1.00445 1.00445 

 

28.       Here f  x, y  x  
 1 

y2 

2 

 

and 

 

x0   2 , 
 

y0   0 .  The following table gives the approximate

values for the successive step sizes h and corresponding numbers n of steps.  It appears

likely that y 2  1.46331 rounded off accurate to 5 decimal places.

 

 

h 1 0.1 0.01 0.001 

n 4 40 00 40000 

y 2 1.48990 1.46332 1.46331 1.46331 

 

In the solutions for Problems 29 and 30 we use the general MATLAB solver ode that was listed 

prior to the Problem 29 solution in Section 2.5.  To use the Runge-Kutta method, we call as 

'method' the following function. 
 

function [t,y] = rk(yp, t0,t1, y0) 

 
% [t, y] = rk(yp, t0, t1, y0) 

% Takes one Runge-Kutta step for 

% 

%      y' = yp( t,y ), 

% 

% from t0 to t1 with initial value the 

% column vector y0. 

 
h = t1 - t0; 

k1 = feval(yp, t0     , y0           ); 

k2 = feval(yp, t0 + h/2, y0 + (h/2)*k1 ); 

k3 = feval(yp, t0 + h/2, y0 + (h/2)*k2 ); 

k4 = feval(yp, t0 + h  ,y0 +   h *k3 ); 

k = (1/6)*(k1 + 2*k2 + 2*k3 + k4); 

t = t1; 

y = y0 + h*k; 
 

 

29.       Here our differential equation is described by the MATLAB function 
 

function vp = vpbolt1(t,v) 

vp = -0.04*v - 9.8; 

Then the commands 
 

n = 100; 

[t1,v1] = ode('rk','vpbolt1',0,10,49,n); 

n = 200;
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[t2,v] = ode('rk','vpbolt1',0,10,49,n); 

t = (0:10)'; 

ve = 294*exp(-t/25)-245; 

[t, v1(1:n/20:1+n/2), v(1:n/10:n+1), ve] 

generate the table 

 

t with n  100 with n  200 actual v 

0 49.0000 49.0000 49.0000 

1 37.4721 37.4721 37.4721 

2 26.3962 26.3962 26.3962 

3 15.7546 15.7546 15.7546 

4 5.5303 5.5303 5.5303 

5 –4.2932 –4.2932 –4.2932 

6 –13.7314 –13.7314 –13.7314 

7 –22.7996 –22.7996 –22.7996 

8 –31.5122 –31.5122 –31.5122 

9 –39.8832 –39.8832 –39.8832 

10 –47.9259 –47.9259 –47.9259 
 

 
 

We notice first that the final three columns agree to the 4 displayed decimal places.  Scanning the 

last column for sign changes in v, we suspect that v  0 (at the bolt’s apex) occurs just after

t  4.5sec .  Then interpolation between t  4.55 and t  4.60 
 

[t2(91:95),v(91:95)] 

in the table

 

4.5000 0.5694 

4.5500 0.0788 

4.6000 –0.4109 

4.6500 –0.8996 

4.7000 –1.3873 

indicates that t  4.56 at the bolt’s apex.  Now the commands

 

y = zeros(n+1,1); 

h = 10/n; 

 
for j = 2:n+1 

y(j) = y(j-1) + v(j-1)*h + 0.5*(-.04*v(j-1) - 9.8)*h^2; 

end 

ye = 7350*(1 - exp(-t/25)) - 245*t; 

[t, y(1:n/10:n+1), ye] 

generate the table:
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t approx. y actual y 

0 0 0 

1 43.1974 43.1976 

2 75.0945 75.0949 

3 96.1342 96.1348 

4 106.7424 106.7432 

5 107.3281 107.3290 

6 98.2842 98.2852 

7 79.9883 79.9895 

8 52.8032 52.8046 

9 17.0775 17.0790 

10 –26.8540 –26.8523 

 
We see at least 2-decimal place agreement between approximate and actual values of  y.

Finally, interpolation between t  9 and t  10 here suggests that y  0 just after t = 9.4.

Then interpolation between t  9.40 and t  9.45 in the table 
 

[t2(187:191),y(187:191)] 
 

9.3000 4.7448 

9.3500 2.6182 

9.4000 0.4713 

9.4500 –1.6957 

9.5000 –3.8829 

indicates that the bolt is aloft for about 9.41 seconds. 
 

 

30.       Now our differential equation is described by the MATLAB function 
 

function vp = vpbolt2(t,v) 

vp = -0.0011*v.*abs(v) - 9.8; 

Then the commands 
 

n = 200; 

[t1,v1] = ode('rk','vpbolt2',0,10,49,n); 

n = 2*n; 

[t2,v] = ode('rk','vpbolt2',0,10,49,n); 

t = (0:10)'; 

ve = zeros(size(t)); 

ve(1:5)= 94.388*tan(0.478837 - 0.103827*t(1:5)); 

ve(6:11)= -94.388*tanh(0.103827*(t(6:11)-4.6119)); 

 
[t, v1(1:n/20:1+n/2), v(1:n/10:n+1), ve] 

generate the table:
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t with n  200 with n  400 actual v 

0 49.0000 49.0000 49.0000 

1 37.1548 37.1548 37.1547 

2 26.2430 26.2430 26.2429 

3 15.9456 15.9456 15.9455 

4 6.0046 6.0046 6.0045 

5 –3.8015 –3.8015 –3.8013 

6 –13.5101 –13.5101 –13.5100 

7 –22.9354 –22.9354 –22.9353 

8 –31.8985 –31.8985 –31.8984 

9 –40.2559 –40.2559 –40.2559 

10 –47.9071 –47.9071 –47.9071 

 
We notice first that the final three columns almost agree to the 4 displayed decimal 

places.  Scanning the last column for sign changes in v, we suspect that v  0 (at the

bolt’s apex) occurs just after t  4.6sec .  Then interpolation between t  4.600 

t  4.625 in the table 
 

[t2(185:189),v(185:189)] 

and

 

4.6000 0.1165 

4.6250 –0.1285 

4.6500 –0.3735 

4.6750 –0.6185 

4.7000 –0.8635 
 

 

indicates that t  4.61 at the bolt’s apex.  Now the commands 
 

y = zeros(n+1,1); 

h = 10/n; 

for j = 2:n+1 

y(j) = y(j-1) + v(j-1)*h + 0.5*(-.04*v(j-1) - 9.8)*h^2; 

end 

ye = zeros(size(t)); 

ye(1:5)= 108.465+909.091*log(cos(0.478837 - 0.103827*t(1:5))); 

ye(6:11)= 108.465-909.091*log(cosh(0.103827*(t(6:11)-4.6119))); 

[t, y(1:n/10:n+1), ye] 

generate the table:
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t Approx. y Actual y 

0 0 0.0001 

1 42.9881 42.9841 

2 74.6217 74.6197 

3 95.6719 95.6742 

4 106.6232 106.6292 

5 107.7206 107.7272 

6 99.0526 99.0560 

7 80.8027 80.8018 

8 53.3439 53.3398 

9 17.2113 17.2072 

10 –26.9369 –26.9363 

 
We see almost 2-decimal place agreement between approximate and actual values of y.

Finally, interpolation between t  9 and t  10 here suggests that y  0 just after t = 9.4.

Then interpolation between t  9.400 and t  9.425 in the table 
 

[t2(377:381),y(377:381)] 
 

9.4000 0.4740 

9.4250 –0.6137 

9.4500 –1.7062 

9.4750 –2.8035 

9.5000 –3.9055 

 
indicates that the bolt is aloft for about 9.41 seconds. 


