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CHAPTER 2

MATHEMATICAL MODELS AND NUMERICAL
METHODS

SECTION 2.1

POPULATION MODELS

Section 2.1 introduces the first of the two major classes of mathematical models studied in the
textbook, and is a prerequisite to the discussion of equilibrium solutions and stability in Section

2.2. In Problems 1-8 we find the desired particular solution and sketch some typical solution
curves, with the desired particular solution highlighted.
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1. Separating variables gives J dx = I dt . By the method of partial fractions

and so the general solution of the differential equation is In|x|-In|x-1|=t+C, or
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Section2.1 101

Separating variables gives J dx = j dt. By the method of partial fractions

1
x(10-x)

J. x(lg—x)dxzi-"%_x—llo dleiO(IA )f - X_lP) ’

and so the general solution of the differential equation is In|x|—In|x -10|=10t+C, or

N XlO =Ce'™ . The initial condition x (0) =1 implies that C = ~ g+ leading to the
particular solution _ Lo ,or 9x =e'™ (10— x), or finally
10-x 9
1Oe10t 10

X(t) = el 1 g :1+9e—10t .

Separating variables gives J' (1+x)1(1—x)dx =J dt. By the method of partial fractions
,[ édx:_lj L——dx=——( Ir] x—1-1In x+i]> :
(x+1)(x-1) 29 x-1 x+1 2 |

and so the general solution of the differential equation is In|x —1|-In|x+1|=-2t+C, or

-1 - . L 1 .
ﬁ:Ce’Zt. The initial condition x(0) =3 implies that that C = 5 leading to the
+
. oox=1 1 , -2t ;
particular solution ="e",0r 2(x-1)=(x+1)e", or finally
X+1 2
-2t 2t
x(t): 2+e_2t _ 2e2t +1.
2—¢e 2e” -1
—Preplem-3- Problem 4
3
2
o 1
X0
-1
-2
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102 POPULATION MODELS

4.

Separating variables gives J dx = j dt . By the method of partial

1
(3+ 2x)(3— 2x)
fractions,

1 1 1 1 1
‘[(3+2X)(3—2X)dng.[ 3+2X_3—2X dX:E(lFI:S-I—Z*—lI’lI 3—2}9 ,

and so the general solution of the differential equation is In[3+2x|-In[3—2x|=12t +C,

3+2X
3-2x

or Ce''. The initial condition x(0) =0 implies that C =1, leading to the

. . 342X .
particular solution 3+2 =e'®, or 3+2x=(3-2x)e*, or finally
- 2X

32 -3 _3(e* -1)

x(t)=

2612t+2 2(e12t+1)

Separating variables gives .[ dx = J- — 3dt. By the method of partial fractions,

X(x—5)

1 11 1 1 Cn x—
J.x(x—S)dxz_SJ x_x—SdX_ 5("]>r I| 5)

and so the general solution of the differential equation is — é(ln|x| —In|x - 5|) =-3t+C,

or XX—5 =Ce™ . The initial condition x(0) =8 implies that C = 2 leading to the
particular solution ﬁ = %e“" ,or 3x =8(x-5)e*, or finally

—40e™ 40
X(t) T3_getht g_3g 5t
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Problem 5 Problem 6
10 . 10 .
5 5
X
0 0
-5 -5
0 0.25 0.5 0 0.25 0.5
t

t

Separating variables gives J' x(xl 5)dx :J 3dt. Using the partial fraction expansion

found in Problem 5, we find the general solution — é(ln|x| —In|x —5|) =3t+C,or

X —_ . N 2 .
e Ce ™. The initial condition x(0) =2 implies that C = 3 leading to the
particular solution XL5 = Ze‘15t ,or 3x =2(x—5)e™", or finally
(t)= 10e T 10
3+2e 243

Separating variables gives .[ dx = I —4dt. By the method of partial fractions,

x(x—7)
J (x 7 N 7.[_ X—7 (In|>4 Inj x %

and so the general solution of the differential equation is In|x|—In|x—7|=28t+C, or

N . L 11 .
i Ce*". The initial condition x(0) =11 implies that C = =", leading to the

: X :
particular solution _= ZeZS‘ ,or 4x =11(x-7)e’*, or finally
X_

X(t) = —77e* 77
4-11e®  11-4e "
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POPULATION MODELS

Problem 7 Problem 8

30 "
¥ 20
X 10
0

,10 L

0 0.1 0 0.01 0.02
t t

Separating variables gives J' y

————dx =| 7dt. By the method of partial fractions,
(x—13)dx ) y part !

Iﬁdx:_éj )%_x—113 dx:_l%%( I -t x-13 .

and so the general solution of the differential equation is In|x|-In|x —13|=-91t +C , or

X - . . 17 .
13" Ce™™. The initial condition x(0) =17 implies that C =", leading to the
: : X 17 o o1t o6
particular solution P 4x =17(x-13)e™", or finally
X_

“(t) = —221e% 221
4-17e°% 17— 4™

e

Substitution of P(0)=100 and P'(0) =20 into P'=k P yields k =2, so the

differential equation is P’ = 2+/P . Separation of variables gives j %/_dP :J' dt,
2 P

which upon integrating is v/P =t+C. Then P (0)=100 implies C =10, so that

P(t)=(t+10)". Hence the number of rabbits after one year is P (12) = 484 .

e

. : ko : : SR
Giventhat P'=-0P Cop yﬁghﬁ’@idﬁs Bearsse&aé%ldggt%; ,\/ﬁ]régbles and integration as in



Problem 9 yields 2+/P = —kt + C . The initial condition P (0) =900 gives C =60, and
then the condition P (6) = 441 implies that k = 3. Therefore 2 P = -3t +60, so that

P =0 after t =20 weeks.

Copyright © 2015 Pearson Education, Inc.
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(a) Substituting our assumptions that B = \/i and 6 = =% |nto the general population
s
k, —k
equation gives Z—T = %) -P=k P . Separation of variables leads to

2

J LdP :J k dt, which upon integrating is 2J/P =kt+C , or P:(&+C\ . The

JP L2
initial condition P (0) = P, then gives C = /P, .

2
(b) Our assumption implies that C = /P, =10, so that P =(% +10) . Measuring t in

2

)

months, we conclude from P (6) =169 that k =1, so that p = 't +10 "' . Hence there

2
are p (12) =256 fish after 12 months.

Separating variables in our assumption that P’ = kP? gives J édP = J k dt, which upon

: : 1 1 I 1
integrating leads to — b =kt+C,or P= C Kt Now P (0)=12 implies that C = 12"

. 1
. Then P (10) =24 gives k="_"—,s0

where t is measured in years, so that P = 240

1-12kt

240
that P(t) :m. Thus P(t) =48 when t =15, that is, in the year 2003. Finally, under

these assumptions the alligator population will grow without bound as t approaches 20
years, that is, the year 2008.

(a) Substituting our assumptions that B =k,P and & =k,P into the general population

equation gives dP _ [(k —k )P 1P =kP?, where k =k —k >0 by our assumption that
dt |_ 1 2 J 1 2

B >3 . Solving as in Problem 12 leads to P = ﬁ The initial condition P (0) =P,

implies that C _4 ,so that P(t) = . As t—>—1 we find that P (t) - .

P, 1-kPt kP,

6
Copyright © 2015 Pearson Education, Inc.



(b) Our assumption that P, =6 gives P(t)= 1 6kt Then, with t measured in months,

we conclude from P (10) =9 that k = L, so that P (t) = 8 _-180 . From this

180 1-(t30) 30-t
we can see that doomsday occurs after 30 months.

Copyright © 2015 Pearson Education, Inc.



106 POPULATION MODELS

dP . . . P
14 Now ' -~ = kP? with k < 0, and solving once again leads to P(t)= . Ith . Ast—o o
™Mo

the rabbit population P approaches zero, because k is negative.

15.  Writing P _ bP(g - P\ shows that the limiting population M is a Then the facts that

dt Lb J b

2 BP (aR)P a
B, =aP, and D, =aP, give = , =, =M. WithProblems 16 and 17 in
D bP b
0 0
: B, D,
mind, we note also that a=— and b=—=k.
PO PO
. . D, 6 1 o .
16.  The relations in Problem 15 give k == = = and a limiting population of

P2 120> 2400

0

v BoPy _ 8:120
0

5 =160 rabbits. By Equation (7), proved below in Problem 32, the

_ 160-120 _ 19200 Setting P (t) = 0.95M =152

120+(160-120)e™  120+40e™**

15

solution is P (t)

rabbits yields t ~ 27.69 months.

D 12 1
17.  The relations in Problem 15 give k =—2 =— - =~ and a limiting population of
ions i giv P2 2407~ 2400 imiting populati
M = ByRy _ 9:240 =180 rabbits. The solution is then
D, 12
p (t) 180 .240 43200

" 240+(180—240)e™ 120 60e "’

15

again by Equation (7). Setting P (t)=1.05M =189 rabbits yields t ~ 44.22 months.

18. Writing P _ aP(P _b) shows that the limiting population M is b . Then the facts that

dt L aJ a

DRy = (ZFE)EPO = g =M . With Problems 19 and 20 in

0 0

B, =aP? and D, = aP, give

i = _O = 70 = k
mind, we note also th%l,;otp))yright (5%1% Peardon Education, Inc.



19.

P P

L : B
The relations in Problem 18 give k="2=—"—="—"—and M = =22

P2 100° 1000
Problem 33 below then gives the solution

Copyright © 2015 Pearson Education, Inc.
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p(1)= 90-100 ___ 9000
100+(90-100)e* 100 -10e***

100

Setting P (t)=10M =900 rabbits yields t ~ 24.41 months.

The relations in Problem 18 give k = B _ 1 1 and M = Df 12110 120.
P2 110> 1100 B, 11
Problem 33 below then gives the solution
120-110 13200
(t)

T110+(120-110)e®®  110+10e%%

1100

Setting P (t) = 0.1M =12 rabbits yields t ~ 42.12 months.

: : : . dP .
Separating variables in our assumption that —~ = kP(ZOO— P) gives

dt
J mdP = | kdt. By the method of partial fractions |
1 11 1 1 ) )
jP(zoo_p) ‘goof p+200_PdP—200\InP In200-P ,

and so the general solution of the differential equation is InP —1In |200 - P| =200kt , or

P =200kt +C, or
|200 - P| 200-P

In =Ce™ . The initial condition P (0) =100 (taking

t =0 in 1960) implies that C =1. Further, P'(0) =1, when substituted into the original

differential equation along with P (0) =100, implies that 1=k -100(200 -100), or

1 _ . . .
k= . Substituting these values into the general solution gives =e" or
10000 200-P
200

P =¢"*(200-P), or P(t) = ey Finally, in the year 2020 the country’s

200

population will be P(60) = T g5 ~163.7 million.

We work in thousandscgllg )p/)relg (%% Z%rlg E% atraslé% A= altloo% ’fl% .the total fixed population.



Substituting this together with B, =50 and pP’(0) =1 into the logistic equation gives

1=k -50(100-50), or k =0.0004. If t denotes the number of days until 80 thousand
people have heard the rumor, then Eq. (7) in the text gives
50-100
50+ (100-50)e 0%’

and we solve this equation to find t ~ 34.66. Thus the rumor will have spread to 80% of
the population in a little less than 35 days.

Copyright © 2015 Pearson Education, Inc.



108 POPULATION MODELS

23. (a) The given differential equation implies that
x' = 0.8x —0.004x* = 0.004x (200 - x),
which is positive for 0 < x <200 and negative for x > 200 ; thus the maximum amount
that will dissolve is M =200¢g.

(b) Since the given equation conforms to Equation (6) in the text, the solution is given
there by Equation (7), with M =200, B, =50, and k = 0.004 :

X ( t) 10000

" 50+150e %

Substituting x =100, we solve for t =1.25In 3~ 1.37sec .
24.  Our assumptions imply that N'(t) = kN (15— N'), where we measure N in thousands of

people. Substituting N (0)=5 and N'(0)=0.5 gives k =0.01. With N in place of P,

this is the logistic initial value problem in Equation (6) of the text (using M =15), so its
solution is given by Equation (7):
15-5 15

5+(15-5) 1+2e %

For another 5000 people to develop the syndrome means that a total of 10,000 people are

. . I In4
afflicted, thatis, N =10. Upon substituting, we solve for t = 0—15 ~9.24 days.

25.  (a) Following the suggestions (and thus taking t = 0 in 1925), we estimate the rate of
population growth in 1925 to be

P(1)-P(-1 _
P/(0) - (1)-P( ) _25.38 24.63 _  ooc
2 2

million people annually. The corresponding estimate for the year 1975, corresponding to
t=>50,is

P(51)-P(49) 48.04-47.04
2 - 2
million people annually. Substituting these values, together with P (0) = 25 and

P'(50) = 0.5

P (50) = 47.54, into the logistic equation (3) leads to the system of equations
0.375 =25k ( M — 25)
0.5=47.54k (M —47.54)

As in Example 3 in the text, we solve these equations to find M =100 and k = 0.0002.
Then Equation (7) givg3 ShR RaRy B8 PIRGIPBducation, Inc.



(t)= 10025 _ 2500
25+ (100 - 25) 25+ 75e %

-0.0002-100t
e

(b) We find that P =75 when t =50In9 ~110, that is, in 2035 A.D.

Copyright © 2015 Pearson Education, Inc.
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: . : . dpP
Our assumptions lead to the differential equation E =0.001P> =3 P for the rodent

population P(t). Substituting P(0)=100 and P'(0) =8 gives § =0.02, and so
dP

a 0.001P? —0.02P =0.001P (P - 20).

Separating variables gives J dP :J 0.001dt . By the method of partial

P(P-20)
fractions

1 - 1¢1 1 - 1 Cof
IP(P—ZO)dP_ 20) p P20 =gl MP-20-nH .

and so the general solution of the differential equation is

1
20 n| 0| n 0.001t +C,

P20 t P-20 . . L
or In |T| :5+C,or 5 =Ce'” . The initial condition P (0) =100 implies that

P-20 4 _ _
C= 4, so that 0_4 e'®, and then solving for P gives P(t)= 100

. Finally,

5 P 5 5— 4"

setting P (t) =200 leads to t =50In 2 ~5.89 months.

: . . . dpP .
Our assumptions lead to the differential equation E =kP? —0.01P for the animal

population P(t). Substituting P (0) =200 and P'(0) =2, we find that k =0.0001, SO
that

dP

q 0.0001P? —0.01P = 0.0001P (P - 100) :

Separating variables gives J dP :J 0.0001dt . By the method of partial

P ( P— 100)
fractions

1 1,1 1 1
—  —dP=—""| T -—"_—_dP= In P-100 —1 ,
IP(P—lOO) 100) p ~p_100 9P =100l 1 P~100 ~In§
Copyright © 2015 Pearson Education, Inc.



and so the general solution of the differential equation is

ﬁlnw —100|—InP =0.0001t +C,
rIn [P=100 = 1(t)0 +C,or P-100_ Ce'™ . The initial condition P (0) =200 gives
/
c-1 , and so P=100 1o , leading to the general solution P (t)= —200
2 P 2 2-¢""

Copyright © 2015 Pearson Education, Inc.
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28.

29.

30.

(a) Setting P =1000 gives t =100In 2 ~58.78 months.

(b) Doomsday occurs as the denominator 2 —e"*® approaches zero, that is, as t
approaches 1001In 2 = 69.31 months, since the population P becomes infinite then.

Our alligator population satisfies the equation

% =0.0001x* —0.01x = 0.0001x ( x —100) .

With x in place of P, this is the same differential equation as in Problem 27, and so our
x—100

general solution is =Ce"™  as found there.

(a) The assumption x(0) = 25 gives C = -3, leading to x(t) = % , which

+3

approaches zero as t increases without bound. Thus the alligator population faces
extinction in this event.

300
3 _ et/lOO )

(b) If instead x(0) =150, however, then we find that C = i , leading to x(t) =

Now find that x(t) grows without bound as t approaches 100In3~110 months, that is,

doomsday occurs at this time.

Here we have the logistic equation
%—T =0.03135P —0.0001489P? = 0.0001489P (210.544 - P),

where k = 0.0001489 and P =210.544. With B, =3.9 as well, Eq. (7) in the text gives

P(1) = (210.544)(3.9) - 821.122
(t) - 39 + (210544 _ 39) e—(0.0001489)(210.544)t 39_+ 206.644870'0313&

(a) This solution gives P(140) ~127.008 , fairly close to the actual 1930 U.S. census
figure of 123.2 million.

21.122

(b) As t grows without bound, P(t) approaches § =210.544 million.

(c) Since the actual U.S. population in 2000 was about 281 million—already exceeding
the maximum population predicted by the logistic equation—we see that that this model
did not continue to hold throughout the 20th century.

Separating variables in the differential equation gives j %} dP = j B.e* dt, with general

Copyright © 2015 Pearson Education, Inc.



B

solution InP =~ 2e* +C. The initial condition P(0)=P givesC=InP +

B,

0 0
o (04

Copyright © 2015 Pearson Education, Inc.
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leading to the desired solution P(t) =P expr‘B—Q (1—e‘°“)-|, with limiting population

0
a

P, exp( OLQ) as t grows without bound.

L)
31.  Substituting P(0)=10° and P'(0)=3x10° into the differential equation

P'(t)=B,e P yields B, =0.3. Hence the solution given in Problem 30 is

0.3 o : :
Pt=P expr— 1-e* —|. The fact that P(6) = 2P now yields the equation

o e
(), 0

0.3(1—e‘6°‘)—a In2=0,

which we seek to solve for the constant oo . We let f ((x) denote the left-hand side

0.3(1-e"*)—a In2 of this equation and apply Newton’s iterative formula
f(a
A
n+l n f ,(a )
with initial guess o, =1 (suggested by a plot of f (a)), leading quickly to o ~0.3915.

Therefore the limiting cell population as t grows without bound is

B _03
P, exp( O‘OJ =10° exp[o_sglsj ~2.15x10°.

Thus the tumor does not grow much further after 6 months.

1
P(M-P)

method of partial fractions |

1
dp="{InP-InM-P),

32.  Separating variables in the logistic equation gives J dP = I kdt. By the

1
M —P

1 1,1
IP(l\/l—P)dp:ﬁJ P

and so the general solution is

ﬁ(lnP—lnN ~P|)=kt+C,

or In
condition

=kMt +C , or =Ce"™ | The initial P(0)=P gives

Copyright © 2015 Pearson Education, Inc.



M - P| M-P °

M - PR,

If the initial population P, is less than the limiting population M, then

C= M 0 - Moreover, in this event P < M for all t, since the logistic equation itself
—To

shows that the only solution P (t) that takes on the value M is the constant solution

Copyright © 2015 Pearson Education, Inc.
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P(t)=M . Itfollows that if B, <M, then the solution of the logistic initial value

: P P _ . .
problem is = e™ . Similarly, if P,>M , then P> M for all t, leading to
M-P M-=PR,

P . i . :
=—20 "™ ‘which is equivalent to the solution for the preceding
P-M P-M

case P, <M . Solving either of these for P yields
P(M-P)=P, (M —P)e",

the solution

or

(Re™+M-R)P=MRe"™,
or finally

kMt
p(t) = MPe _ MP |
pe +M-P P+(M_P)e—kMt
0 0
kM
0 0 0 0

33. (@) Separating variables in the extinction-explosion equation gives
1

J de :J k dt. By the method of partial fractions
I#dp=i L ‘—ldP=ilnP—M|—lnP ,
P(P—M)
MJP—M P M(I )

and so the general solution is

1
—(InP-M|=InP)=kt+C,
M(n| |~In ) +

P-M P-M
or In% =kMt+C, or % = Ce™ . The initial condition P (0) = P, gives

C-= |—F‘3— ﬂ| . If the initial population P, is less than the threshold population M, then
0
C= M F:P" . Moreover, as in Problem 32, in this case P <M forallt. Thus for B, <M
0
the solution of the extinction-explosion initial value problem is M P _ M—;PO e™,
0
P-M B -M

Similarly, if Copyright © 2015 Pearson Education, Inc.



P,> M ,then P> M forall t, and so the = e
solution is P R

Solving either of these equivalent expressions for P yields
P,(P-M)=P(P,-M)e"™,

or
P+(M-P)e™ P=MP,

Copyright © 2015 Pearson Education, Inc.
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35.
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or finally
— IVIPO
P(t)_ PO +(M _Po)ekMt'

(b) If B, <M, then the coefficient M — P, is positive and the denominator increases

without bound, so P(t)— 0 as t - Butif P, > M, then the denominator

P, — (P, — M e approaches zero—so P (t)— +oo —as t approaches the positive value

1

P . . .
mln P OM from the left. Thus the population either becomes extinct or explodes.

Differentiation of both sides of the logistic equation P’ =kP (M —P) yields
P!I _ d_P d_P

T dPdt

= k-(M=P)+kP-(-1) -kP(M -P)

=k(M -2P)-kP(M -P)

=2k2P(M—%Pj(M—P), ?
as desired. The conclusions that P">0 if 0<P <M ,that P"=0 if P=1M , and that
P"<0if 1M <P <M are then immediate. Thus it follows that each of the curves for
which B, <M has an inflection point where it crosses the horizontal line P=, M .

Any way you look at it, you should conclude that the larger the parameter k >0, the
faster the logistic population P (t) approaches its limiting population M:

To examine the question geometrically, we will assume that M =10 and that k, =1 and
dP dP

k, =2, leading to the logistic equations " "= P(10-P) and o 2P(10-P). We

draw slope fields and solution curves for each of these equations, using the same initial
values P(0) in both cases:

Copyright © 2015 Pearson Education, Inc.
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Problem 35 (k=1) Problem 35 (k=2)

20

RN
P10 \ Pol
// e / /S
ey YN
/,'// “ff/ ’/ / /
Wy

| |
\

|\ o
15 ‘\\_j\\ \ 15|\

5 / 5 / // /" ay |

20

0 0
0 1 0 1
t t
These diagrams suggest that the larger the value of k, the more rapidly the population
P (t) approaches the limiting population M.
To look at things analytically, we examine the distance between the solution (7) in the
text of the logistic initial value problem and the limiting population M:
v MR _M[R MR MR, MM R
—kMt —kMt kMt
o+~ o) ot (=) 0(6 —1)+M
P M Pe ‘ P M Pe P
For fixed M, t, and P, this distance decreases as k increases; thus, the larger the value of
k, the more rapidly P(t) approaches M.
Finally, numerically, we tabulate values of P(t), t=0,0.1,0.2,...,0.9,1, for the two
solutions illustrated graphically above, using P, = 0.1 in both cases. Once again the
evidence is that the larger value of k leads to the more rapid approach to M:
k=1
t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P(t) | 0.1 |0.267 | 0.695 | 1.687 | 3.555 | 5.999 | 8.030 | 9.172 | 9.679 | 9.879 | 9.955
k=2
t | o o102 03] 0405060708/ 09/ 10
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0.1

0.695

3.555

8.03

9.679

9.955

9.994

9.999

9.999

10.00

10.00
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With x=e™*" | P, =5.308, P, =23.192, and P, =76.212, Equation (7) in the text takes

the forms
PM _p
P+(M-P)x
PRM _P’
P+(M-P)x* °
from which we get
PM
Br(M-R)x="p"
B +(M=R)xt= LY
2
or
(P (M=P )
_ P.(M-R)
(i) i
2 Po M_Pz
X =
P, (M-PR)
Thus
R’(M-P) PR (M-P)
RP(M-R) P(M-R)
or 0 2 1 1 0 2

PP(M-P) =P*(M-P)(M-P).
Expanding gives

P,P,M?-2P,PP,M + P,P’P, = P*M?* - P? (P0 + PZ)M +P,P%P,,

in which we cancel the final term on each side and solve for
.. P(2PP -PP PP
(i) - (*— - — -

M:L QL)QL 12
POPZ_P12 .

Substitution of the given values P, =5.308, P, =23.192, and P, =76.212 now gives

M =188.121. The first equation in (i) and x = e yield

(iii) (=L MR

Copyright © M5 Pefns(JMEdlﬁoQtion, Inc.



Now substitution of t, =50 and our numerical values of M, P, P, and P, gives

k =0.000167716 . Finally, substitution of these values of k and M (and P,) in the
logistic solution (7) gives the logistic model of Eq. (11) in the text.

Copyright © 2015 Pearson Education, Inc.



116 POPULATION MODELS

In Problems 37 and 38 we give just the values of k and M calculated using Equations (ii) and (iii)
in Problem 36 above, the resulting logistic solution, and the predicted year 2000 population.
25761.7

76.212 + 261.815e

37  k=0.0000668717 and M =338.027, so that P(t)= oo » Which

predicts that P =192.525 in the year 2000.

38.  k=0.000146679 and M =208.250, so that P(t) = >3 1925112296;;—0-030545& , which
predicts that P = 248.856 in the year 2000.
Problem 39
39.  Separating variables gives 120
I%} dP :J(k+bc032nt)dt, or
b 115
InP=kt+ —sin2nt+C . The initial
2n
condition P(0) = P, impliesthat C=InF,, P | /\/

so the desired particular solution is i /\/
P=F, exp(kt +Lsin 2nt) . Of course the /\/
21 105

natural growth equation P’ =kP with the ' /\/
same initial condition has solution /\/
Kt 100 :
P(t)=Pe . The results of both growth 0 1 ) 3 4 5
patterns are indicated in the graph shown t

with the typical numerical values P, =100, k =0.03, and b =0.06 . Under the periodic

growth law the population oscillates about the curve representing natural growth. We see
that the two agree at the end of each full year.

SECTION 2.2
EQUILIBRIUM SOLUTIONS AND STABILITY

In Problems 1-12 we identify the stable and unstable critical points as well as the funnels and
spouts along the equilibrium solutions. In each problem the indicated solution satisfying

x (0) = x, is derived by separation of variables, and we show typical solution curves

corresponding to different values of X, .
Copyright © 2015 Pearson Education, Inc.



1.

The unstable critical point x = 4 leads to a spout along the equilibrium solution x(t)=4.

: : . 1 . :
Separating variables gives = — —dx= _dt,or In |x - 4| =t+C, where C is an arbitrary

X—4

Copyright © 2015 Pearson Education, Inc.
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constant. Thus the general solution is x = Ce' +4, where C is an arbitrary nonzero

constant. The initial condition x (0) = x, then gives x,=C +4, or C =x,—4. Thus the

solution is given by x(t)=(x,—4)e'+4.

Problem 1 Problem 2
8 - ' 6 : .
X4 X 3
0 0
0 1 2 3 4 5 0 1 2 3 4 5
t t
2. The stable critical point x = 3 leads to a funnel along the equilibrium solution x(t)=4.
: : . 1 : .
Separating variables gives J . dx = J dt, or In|x—3|=—t+C, where C is an arbitrary
constant. Thus the general solution is x = Ce™ + 3, where C is an arbitrary nonzero
constant. The initial condition x(0) = x, then gives x, =C +3, or C = x,—3. Thus the
solution is given by x(t)=(x,—3)e™ +3.
3. The stable critical point x = 0 leads to a funnel along the equilibrium solution x(t)=0.

The unstable critical point x = 4 leads to a spout along the equilibrium solution x(t)=4.

1 1 .
47y dx = | 4dt. Integrating

Separating variables gives I W« X —

4de:J dt,orJ

. x—4 . .
gives In |x - 4|— In |x| =4t+C,or T = Ce", where C is an arbitrary nonzero constant.

The initial condition (814! §i¢84>¥eatbon Bdualign g X=2 _ %o=4 ¢ o finally



the solution x(t) =

_4x

Xo + (4_ Xo)e4t .
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Problem 3 Problem 4

8 : 6 ' '

4 3
X X

0 0

—4 X N -3
0 T 7 3 Z 5 0 1 2 3 4 5
t t

4. The stable critical point x = 3 leads to a funnel along the equilibrium solution x(t) =3.

The unstable critical point x = 0 leads to a spout along the equilibrium solution x(t)=0.

1

Separating variables gives j 3 >
X — X

dx=j dt, or .[ Xlg—%dx:J—?,dt. Integrating

. X -3 _ . .
gives In|x—3|-In|x|=-3t+C, or L = Ce™™, where C is an arbitrary nonzero

constant. The initial condition x(0) = x, gives % =3 =C, leading to X=3_ %3 g

X, X X,
3X,
or finally the solution x(t)= .
y (t) X, +(3—%,)e™
5. The stable critical point x =—-2 leads to a funnel along the equilibrium solution

x(t)=-2. The unstable critical point x =2 leads to a spout along the equilibrium

solution x(t)=2. Separating variables gives J. dx :J dt, or

x*—4
L—de= 4dt . Integrating gives In x—2|—ln|x+2|:—4t+C,0r

J X—2 X+2
X—2

ATE —4t . . . . B
1D Ce™, where %Bspgﬂﬁpérgagg%%% %OJ?J%tgt%h, rpcg initial condition x(0) = x,



-2 . —2 -2 _ . .
=< _¢ , leading to X2 Kol , or finally the solution

gives

Xo +2 X+2 X, +2
_ 4t
X(t) =2 (Xo+2)+{(x, =2)e *

(x +2)—(x —2)e"’

0 0
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Problem 5 Problem 6
3
X0
=3
1 2 3 4 g Q 1 2 3 4 g
t t

The stable critical point x = 3 leads to a funnel along the equilibrium solution x(t) = 3.

The unstable critical point x = -3 leads to a spout along the equilibrium solution

dx:jdt,orjxis—%dx:_' 6dt.

x(t)=-3. Separating variables gives j 5 1 -
— X

. . X+3 . .
Integrating gives In|x+3/—In|x-3|=6t+C, or ;): Ce®™, where C is an arbitrary

L . . X, +3 .
nonzero constant. The initial condition x(0) = x, gives —°—+—3 =C, leading to
XO —_

X+3_ X3 , or finally the solution X }
-3 x,-3

X 73)+(x +3)e  ©
£3 X,)+ (X, +3)e’

>

The lone critical point x = 2 is semi-stable; solutions with x, > 2 approach +« ast

increases, whereas those with x, <2 approach 2 as t increases. Separating variables

gives J dx = J dt,or — _=-t+C, where C is an arbitrary nonzero constant.

X—2

1
(x-2)

The initial condition x (0) = x, gives

! 5 =C, leading to

0

1 1 1-t(x, -2
=—t+ = A—) , or finally the solution
X—2 Xo =2 Copfyright © 2015 Pearson Education, Inc.



X, =2 X (2t—1)-4t
1-t(x =2)  (x =2)t-1
0

Copyright © 2015 Pearson Education, Inc.
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Problem 7 Problem 8
4 of
X 2 X 3
0 0
Q 1 2 3 4 ] Q 1 2 3 4 ]
t t
8. The lone critical point x = 3 is semi-stable; solutions with x, <3 approach —oo as't
increases, whereas those with x, >3 approach 3 as t increases. Separating variables
gives dx=- dt,or 1 t+C , where C is an arbitrary nonzero constant.
'[ (x— 3)2 '[ X-3
The initial condition x(0) = x, gives C :%3, leading to
-
1+t(x, =3 . .
L =t+ L = JO—) , or finally the solution
X—3 X, —3 X, —3
X, =3 X, (3t +1)-9t
K(t) =34 o= _ Yo(3ril0t
1+t(x -3) (x =3)t+1
0 0
9. Factoring gives x* —5x+4 = (x—4)(x—1). The stable critical point x =1 leads to a

funnel along the equilibrium solution x(t)=1. The unstable critical point x = 4 leads to
a spout along the equilibrium solution x(t) = 4. Separating variables gives

1 dx= dt,or L—de: 3dt. Integrating gives

J.(x—4)(x—1) I -[x—4 x—1 J.

| | | | Copyright © 2015 Pgspn Bduqggfign. Inc. 3¢ , ¢ or



))((;41: Ce™, where C is an arbitrary nonzero constant.
The initial condition x(0) = x, gives X, =4 =C, leading to x4 _ X4 e, or finally
X, —1 Xx=1 Xx,-1
41X JH(x, —4)e *
(1-%)+(x-4)e"

the solution x(t) =

Copyright © 2015 Pearson Education, Inc.
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11.
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Problem 9 Problem 10
8
5
X
2
-1
1 2 3 4 R q) 1 2 3 4 4
T T

Factoring gives 7x — x* =10 = —(x—5)(x—2). The stable critical point x=>5 leads to a
funnel along the equilibrium solution x(t) =5. The unstable critical point x = 2 leads to

a spout along the equilibrium solution x(t)=4. Separating variables gives

—L - dt, or Lo s Integrating gives

J.(x—5)(x—2) -f '[X—Z X-5 -[

X—2 . .
In|x—2|-In|x-5|]=3t+C, or e Ce™, where C is an arbitrary nonzero constant.

o - . . —2 =2 .
The initial condition x(0) = x, gives X, =2 =C, leading to X _ %= o , or finally
X, —5 X-5 X,-5
3t

2(5—x, +5(x, —2)e

the solution x(t) = "

(5_X0)+(Xo —2)e
The unstable critical point x =1 leads to a spout along the equilibrium solution x(t)=4.

- . . . 1
—— s Ux=| dt, and integrating gives —— , =-t+C,
(x-1) J Jrang g 2(x -1y’
1
where C is an arbitrary constant. The initial condition x(0) = x, gives ———=C,

2(%,~1)°

Separating variables gives J

Copyright © 2015 Pearson Education, Inc.
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i 1 2 (Xn_l)
leading to =—t+ or (x=1) = 0.
] x—1)° 2(%,—~1)° (1) 1-2t(x, -1)°
x(t):li\/L,
1-2t(%, —1)°

Copyright © 2015 Pearson Education, Inc.
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12.

Problem 11 Problem 12

6 . . .
4
X2
0
-2

1 2 3 4 R 0 1 2 3 4 5
t t

The stable critical point x = 2 leads to a funnel along the equilibrium solution x(t)=2.

dx = | dt, and integrating gives %: t+C,

1
(2-x)’ 2(2-x)

where C is an arbitrary constant. The initial condition x(0) = x, gives TR C,
X

Separating variables gives J

2
2
2_
2(2-x) 2(2-%) 2t(2- %) +1

, or finally the

2 X,

J2t(2-%,) +1

solution x(t) =2+

In each of Problems 13-18 we present the figure showing the slope field and typical solution
curves, and then record the visually apparent classification of critical points for the given
differential equation.

13.

The critical points x =2 and x =-2 are both unstable.
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Problem 13 Problem 14
| | 4 J J J J
2 — 2
X o} X0

1 S T
t

14.  The critical points x = +2 are both unstable, whereas the critical point x =0 is stable.

15.  The critical points x =2 and x = -2 are both unstable.

Problem 15 Problem 16
| J J |
2 ; -
\
X ol X
-2 -2 -
,4 L 74 F ]
t

16.  The critical point x = 2 is unstable, while the critical point x =-2 is stable.

17.  The critical points x =2 and x =0 are unstable, while the critical point x = -2 is stable.

Copyright © 2015 Pearson Education, Inc.
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Problem 17 Problem 18

18.  The critical points x =2 and x = -2 are unstable, whereas the critical point x =0 is
stable.

19.  The critical points of the given differential equation are the roots of the quadratic

equation 1—10 x(10—x)—h =0, that is, x> ~10x +10h =0. Thus a critical point c is given

in terms of h by

N .
10+ 1200 oh o, e 1on

It follows that there is no critical point if h > —, only the single critical point ¢ =0 if

SAN N

h= g , and two distinct critical points if h < 5 , so that 10 — 25h > 0. Hence the

bifurcation diagram in the hc-plane is the parabola (¢ —5)2 = 25-10h that is obtained
upon squaring to eliminate the square root above.

20.  The critical points of the given differential equation are the roots of the quadratic

equation 10—0x(x ~5)+s=0, thatis, X’ —5x+100s =0. Thus a critical point c is given

in terms of s by

Copyright © 2015 Pearson Education, Inc.
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. - o 1 . - . S .
It follows that there is no critical point if s> 1_6 , only the single critical point ¢ = 5 if

1 e . s 1
S= E , and two distinct critical points if s < E , S0 that 1-16s > 0. Hence the

bifurcation diagram in the sc-plane is the parabola (2¢ —5)° = 25(1—16s) that is
obtained upon elimination of the radical above.

() If k=—-a’, where a>0, then kx— x° =—a’x—x*=—x(a*+x*)=0 only x=0,so

the only critical pointis c=0. If a> 0, then we can solve the differential equation by
writing

- a’ -1 X
i »

x(a2+x2)dx=J e XA

2

1 X _ . .
or Inx— 5 In (a2 + x2) =-a’t+C,or i Ce™*", where C is an arbitrary nonzero
+

—2a%

constant. Solving for x* gives x? =1 from it follows that x - 0 as t — o, so

_ Ce—2§ t

the critical point ¢ =0 is stable.
(b) If k=a®, where a >0, then kx - x* = +a’x - x* = —x(x +a)(x—a) = 0 if either
x =0 or x=+a=+k . Thus we have the three critical points c=0 and ¢ = +Jk : this

observation, together with part (a), yields the pitchfork bifurcation diagram shown in Fig.
2.2.13 of the textbook. If x(0) = 0, then we can solve the differential equation by
writing

&’ 2 1 1

Ix(x—a)(x+a) J X X—a X+a -[

2 2
X" —a 02 . .
or 2Inx+In(x—-a)+In(x—a)=-2a’t,or —— = Ce™", where C is an arbitrary
X
2 J
i 2 2 a _* k
nonzero constant. Solving for x° gives x° = . ,and so X =
1_0972at
v Vo e

follows that if x(0)=0,then x> k if x>0 and x -~ k if x<0. This implies
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22.

that the critical point ¢ = 0 is unstable, while the critical points ¢ = ++k are stable.

If k =0, then the only critical point ¢ =0 of the equation x'=x is unstable, because the

solutions x(t) = x,e" diverge to infinity if x, #0. If k =+a >0, then

X+a’x® = x(1+ azxz) =0 only if x =0, so again ¢ =0 is the only critical point. If

k=-a?<0,then Xx—a’x® = x(l—a2x2)= x(1-ax)(1+ax)=0 if x=0 or

either

Copyright © 2015 Pearson Education, Inc.
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1 B Problem 22
X 1 ,—l_
=+ =4 . Hence the bifurcation

a

diagram of the differential equation x’ = x + kx®
looks as shown.

23. (@) If h<kM , then writing the differential
equation as Co

X' =kx(M —x)—hx:kaM —E]—x},

still a logistic equation but with the reduced

limiting population M — E :

(@

(b) If h>kM , then the differential equation can k
be rewritten in the form x’ = —ax —bx?, with a
ax,
and b both positive. The solution of this equation is x(t) = (a+bx)e® , S0 it is
+ — bx
0 0

clear that x(t) >0 as t — oo.

24.  Separating variables gives J dx = J kdt. By the method of partial

1
(N=x)(x=H)

fractions,

1 1 1 1 1
IN

I(N—x)(x—H)dXzN—H —x T x—H T TN-H

and so the general solution of the differential equation is given by

L X Ckeec,or X0 Ccef™ M where Ciis an arbitrary nonzero
N-H [x-N x=N

constant. The initial condition x(0) = x, gives C = )X(O#\I , SO that
-

N-H)t

== =S ™M) and solving for x leads to the solution

N (x, —H)-H (x,-N)e <N
t): - - —K(N=H)t
(x —H)=(x =N)e

0 0
in the text.
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25. In the first alternative form that is given, all of the coefficients within parentheses are
positive if H < x, <N . Hence it is clear that x(t) » N as t — oo, which confirms (17).

In the second alternative form, all of the coefficients within parentheses are positive if
X, < H . Hence the denominator is initially equal to N —H >0, but decreases as t

Copyright © 2015 Pearson Education, Inc.
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27.

28.

29.
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. 1 N —x )
increases, and reaches the value Owhen t =t = In 0 > 0. Meanwhile the

" k(N-H) H-x

numerator is initially (N - H)x, , but approaches (H —N)(H - x,)<0 as t >t,.
Conclusion (18) follows.

If 4h =kM ?, then Equations (13) and (14) in the text show that the differential equation

2
k(M — x\ with the single critical point x =" . This equation is

(2 ) 2
readily solved by separation of variables, but clearly x’ is negative whether x is less than

takes the form x' =—

or greater than —_

Separation of variables in the differential equation x’ = —k[(x - a)2 + sz yields

=a—btan| bkt tan‘la_xg\
x(t) ( + b J

It follows that x(t) — —oo in a finite period of time.

Aside from a change in sign, this calculation is the same as that indicated in Equations
(13) and (14) in the text.

This is simply a matter of analyzing the signs of x’ in the various cases x<a, a<x<b,
b<x<c,and c> x. Alternatively, plot slope fields and typical solution curves for the
two differential equations using typical numerical values suchas a=-1, b=1, and
c=2.

SECTION 2.3
ACCELERATION-VELOCITY MODELS

This section consists of three essentially independent subsections that can be studied separately:
resistance proportional to velocity, resistance proportional to velocity-squared, and inverse-
square gravitational acceleration.

1.

The velocity v of the car (in km/hr) is related to the time t (in seconds) by the initial value
problem v' =k (250-v), v(0)=0, v(10) =100. Separating variables gives

-1
J 250 —v

dv = J kdt, and integration yields In|250 —v|=kt+C , or 250 —v =Ce, or

finally v = Ce" + 250 , where C is an arbitrary nonzero constant. The initial condition

v(0)=0 gives C = —gggyﬁgm@tzbﬁ%gg,(%ﬁgggca%q,tngcpondition v(10) =100
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250

impli k=" In
implies that 10 (150

) 0.0511. Finally, solving the equation v (t) =200 fort

. In50
est=-— ~31.5sec.
g 250k

: I . d
2. (a) The solution of the initial value equation d_\t/ =—kv, v(0) =V, is v(t)=vee™. Then

x(t)= v(t)dt=_ve“dt=- % ¢ 1 ¢, and the initial condition x(0)=x gives
0 k 0
C=x +". Thus x(t) Yoy x Yo _y +y9(1—e‘k‘).

° K k ° kK % k

() _ [ !o(l_e—kt)wzxo Vo

limx 't =!|m X + + ‘ (Instructors may wish to explore how this

(b)

t—ooo

expression changes with v, and k, and what that means in the context of the problem.)

3. The velocity v of the boat (in ft/s) is related to the time t (in seconds) by the initial value
problem v’ =—kv, v(0) =40, v(10) = 20. By Problem 2a, v(t)=40"", and the

condition v (10) = 20 implies that k = 1—10 In2 ~0.0693. By Problem 2b, then, the boat

travels a distance of Y0 40 10 ~ 577 ft altogether.

k In2

4, Separating variables gives I V—lzdv = —J' kdt, or —%z —kt +C . The initial condition

1 1 1 1 v,
v(0)=v, gives C=— ,sothat - =-kt— ,orv= = . Then
Vo v Vo ot Lokt
VO
1 :
x(t) = I dt—J‘1 Eln(1+vokt)+C ,

and the initial condition x (0) = x, implies that C'=x,. Thus x(t) :%In(1+v0kt) + Xy,

so that x(t) — oo as t — . The reason for the difference in outcomes between
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5.

Problems 2 and 4 is that v> is much smaller than v when v is small, so that at low speed
the medium in Problem 4 offers less resistance than the one in Problem 2.

We are assuming that the velocity v of the motorboat satisfies the initial value problem
V' =—kv?, v(0) =40, with v(10) = 20 as well. We seek x(60). The result of Problem

Copyright © 2015 Pearson Education, Inc.
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4 gives v = Yo 40

= , and then the condition v(10) = 20 implies that
1+vpkt 1+ 40kt (10) P

_ 40 ,or k:L. Thus v(t):ﬂ,andthen
1+ 400k 400 10+t

x= [ v(t)dt=400In(t+10)+C.

t+10

It
10

The initial condition x(0) =0 implies that C = —400In10, so that x(t) =400In

follows that x (60) =400In7 ~ 778 ft .

Separating variables gives J L v = —J kdt,or —2v"? =—kt + C . The initial condition

v¥?
2 2 2
v(0)=v, gives C =——=, so that —==kt+—, or
() o9 \/% \/V \/%
2
vy=/ —2—1 —
TR
kt+ — VoKt +
)
Then
4y, 4
x=[——% dt=- 1
I(\/%kHZ)Z k( vokt+2)
NAY 2.V,
and the initial condition x(0) = x, yields x, = — +C,or C=x,+ , so that
k k
a,Jv 2[v a[v. 2 )
=— 0 + + 0 _ + 0
t X 1
O . ° ok T vke2!
k( vokt+2) k LoV

Finally, letting t — oo gives x(t) — x,+ kVO—, indeed a finite distance.

The car satisfies the initial value problem v’ =10-0.1v, v(0)=0. Separating variables

gives | dv=| dt, or In(10-0.1v) = —;—0+C. The initial condition v(0) =0

Copyright © 2015 Pearson Education, Inc.
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gives C = In10, so that |n(10_0.1V):_;—0+In10, or In(l—O.Olv):—lt—O, or

v(t)=100(1—e"*). As t— oo, we find v(t) - 100ft/sec, the answer to a. Further,
setting v (t) = 90ft/sec (that is, 90% of limiting velocity) gives t =10In10 ~ 23.0259sec .
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10.

Since x = [ 100(1—e™')dt =100t + 1000e” *+C", where the initial condition x(0) =0

/
gives C'=-1000, we find that x(23.0259) ~1402.59 ft, the answer to b.

The car now satisfies the initial value problem v’ =10-0.001v*, v(0) = 0. Separating

variables gives I ;Zdv :I dt. By the antiderivative formula
10-0.001v
1 v
du=tanh™u+C,th | sol h™ hen th
Il—u u= u-+ e general solution is tan 100" 10+C and then the

Q10 _ gt/10

Ql/0 | o-ti0

initial condition v (0) = 0 implies that C =0. Thus v(t) =100tanh ;=100

which approaches 100 ft/sec as t — oo, the answer to a, identical to that in the preceding

els _
Problem. However in this case setting v (t) = 90ft/sec gives i 0.9, or
t =5In19 =~ 14.7222sec . x=_[100tanh idt =1000Incosh ! +C', where the
Since 10 10

initial condition x(0) =0 gives C'=0, we find that x(14.7222) ~830.366ft , the answer

to b. Thus the car achieves 90% of “top end” both in a shorter time and over a shorter
distance.

1000
5000 —100v

v=>50+Ce ™" The initial condition v(0) =0 implies that or C = -50, so that

Separating variables gives | dv = | dt, or 10In(5000-100v) = —t+C , or

v(t):SO(l—e’Vlo). As t —> o, v(t) - 50ft/sec ~ 34 mph.

We need to solve two initial value problems in succession.
Over the first 20 seconds the woman’s velocity v (t) satisfies the initial value problem

. . . 1
V'=-32-0.15v, v(0)=0. Separating variables gives — dv=— dt, or
32+0.15v J
1 - .
In(32+0.15v) = -0.15t + C, or V=E(C 4% _32). The initial condition v(0) =0

gives C =32, so that v(t) = e —1)~213.333(e*** —1). Thus when her

ol
parachute opens her velocity is v(20) ~ —202.712 ft/sec. Her altitude y (t) satisfies
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y= j 213.333(e " —1)dt ~ ~1422.22¢*** — 213,333t + C',
where the initial condition y(0) =10,000 gives C'=11422.22. So her altitude is

y (20) ~ 7084.75ft at the point when her parachute opens.
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After the parachute opens, v (t) satisfies the initial value problem v’ = -32-1.5v,
v(0) ~—202.712 , where we reset time so that t = 0 when the parachute opens. Solving

as above gives v(t) =-21.3333-181.379¢ "', followed by

y(t) =6964.83+120.919e " —21.3333t. Solving the equation y(t)=0 using
technology yields t = 326.4765sec .

All told, the woman’s total; time of descent is 20 + 326.476 = 346.476sec , about 5
minutes and 46.5 seconds. Moreover, her impact speed is is 21.33 ft/sec, about 15 mph.

: . 440 . .
11. If the paratrooper’s terminal velocity was 100 mph= ?ft/sec , then Equation (7) in the

. 12 :
text yields a_ 440 ,or p= 3 -32="__. Equation (9) then becomes
p 3 440 55
440, 55 440
t)=-1200+—_ t—>_-—_ (1-e™¥*%
y(1 Pt g (1),

and solving the equation y(t) =0 via technology gives t ~12.5sec . Thus the newspaper
account is inaccurate.

12.  The mass of the drums is given by m :V—g\; = % =20slugs. With B =62.5-8 =5001bs

and F, =—vlbs, the force equation becomes

20% =—-640+500—-v =-140-v.

Its solution with v(0) =0 is v(t) =140(e°* —1), and then integration with y (0) = 0
yields y (t)=2800(e°* —1)—140t. Using these equations we find that

2
t=20In i ~15.35sec when v = 75ft/sec , and that y (15.35) ~ 648.31ft. Thus the

maximum safe depth is just under 650 ft.

Given the hints and integrals provided In the text, Problems 13-16 are fairly straightforward (and
fairly tedious) integration problems.

17. Equation (13) from the text gives
/ 9.8
v(t) 0.0011 an( . 0.0011 98) 94.3880 tan (C, —0.1038267t )

Copyright © 2015 Pearson Education, Inc.




where C .. [ [0.0011)
=tan™" 49 ~0.4788372. Thus

: | o8 |

v(t) =94.3880tan (0.4788372 —0.1038267t) .
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Then Equation (14) gives

1) -—1 cos(0.4788372 -/ 0.0011-9.8t
y(t)= n

0.0011 €0s0.4788372 c0s0.4788372
Setting v(t) =0 leads to t ~ 4.612sec , at which time y ~108.465m .

- 909.0909 In |<05(0:4788372 -0.1038271) |

18.  We solve the initial value problem v’ =-9.8 +0.0011v* , v(0) = 0 much as in Problem

17, except using hyperbolic rather than ordinary trigonometric functions. We first get
v(t) = -94.3841tanh (0.103827t),

and then integration with y (0) =108.47 gives

y () =108.47 —909.052In  cosh (0.103827t) |.

We solve y(0) =0 for t= —L Cosh rexpﬁloggiﬂz 4.7992 , and then
L 909.052

0.103827
calculate v(4.7992) = -43.489..

L . . 1
19.  Theinitial value problem for the velocity of the motorboat is v' =4 — H)vz ,v(0)=0.

Separating variables gives j+ dv = I dt, or J —]’&Zdv = J'ldt , or
4—Ev2 1-(v/40) 10

v t I . .
tanh‘lzoz 10" C. The initial condition v(0)=0 gives C =0, so that

v(t)=40tanh 1t—0 Finally, v(10) = tanh1~30.46 ft/sec and

Iimv(t) =40lim tanh t_ 40 ft/sec.

t—o t—o 10

I _ : 1
20.  The initial value problem for the velocity of the arrow is V' = -32 - %vz , v(0)=160,

with the added condition that y(0) = 0, where y is the height of the arrow. Separating

— L v=— dt,or —]71/6&@:— Lot or
J. 1 . '[ Jl—(v160)2 '[5

32+8H)v

variables gives
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tanlﬁ: —~ I5+C . The initial condition v (0) =160 implies that C = E4 “and so
v(t)= d :160tan(ﬂ - ‘\. Integrating then gives y (t) =800Inrcos(ﬂ B I\—|+C’,
dt L4 5

[ L4 )]
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- . V2,
and then the condition y(0) =0 gives 0=800In ) +C’, or C'=400In2. Altogether

Y(t)=800Inrcos(E el

4 5
calculation gives y(3.92699) = 277.26 ft.

+400In2. Solving v(t)=0 gives t =3.92699, and then

21.  The initial value problem for the velocity of the ball is v’ =—g - pv?, v(0) =v,, with the

added condition that y(0) =0, where y is the height of the ball. Separating variables

T
glvesj sdv=—[dt or [—NEZ Vp/gdv=—j gp dt, or
g+pv?
W)
1+ pgv
tan‘l( ) gv):—\/ﬁwc. The initial condition v (0) =v, implies that
v/

C= tan‘l(Mvo) ,and so

v(t)= —\/Etan rt\/@—tan‘l(v \/Eﬂ.
| | |

0

p g
N

1 )
We solve v(t) =0 for t= tan™ v \/E and substitute in Equation (17) for ¥ (t):

\/; 'y

N

cos(tan v /oo -tan v, gg/)
y =—In : —In|_sec tanv p/g)—|
max p ‘ -1 0 -1 p |_ 0 J

-1
cos(tan v, p/g)
1 2 1 [ pv?)
=—In /1+—°: —In|1+-2.
p g 2p U 0

22. By an integration simitap{gitit ©Eois PeakierELSciisoltgion of the initial value



23.

problem v’ =-32+0.075v*, v(0)=01is v(t)=—20.666 tanh (1.54919t), so the terminal

speed is 20.666 ft/sec. Then a further integration with y(0) =10000 gives

y (t) =10000 —13.333In cosh (1.54919t) .
We solve y(0) =0 fort =484.57. Thus the descent takes about 8 min 5 sec.

Before the parachute opens, the paratrooper’s descent is modeled by the initial value
problem v’ =-32+0.00075v*, v(0) =0, with y(0) =10000. Solving gives

v(t) =-206.559 tanh (0.154919t ), and then v (30) = —206.521 ft/sec . Integrating once
again gives y(t) =10000 —1333.33In (cosh 0.154919t) , with y(30) = 4727.30ft . After
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24,

25.

26.

the parachute opens, the initial value problem becomes v’ = -32 +0.075v*,
v(0) =-206.521, with y(0) =4727.30. Solving gives

v(t) = —20.6559 tanh (1.54919t + 0.00519595) ,
followed by
y (t) = 4727.30 - 13.3333In (cosh 1.54919t + 0.00519595) .

We find that y =0 when t =229.304. Thus he opens his parachute after 30 sec at a

height of 4727 feet, and the total time of descent is 30 + 229.304 = 259.304 sec , about
4 minutes and 19.3 seconds.

Let M denote the mass of the Earth. Then
(@) \/2GM /R =c implies R =0.884 x10™® meters, about 0.88 cm;

(b) \/2G -329320M /R = c implies R = 2.91x10° meters, about 2.91 kilometers.

(a) The rocket's apex occurs when v =0. We get the desired formula when we set v=0

in Eq. (23), Vv’ =V, +2GM (%—i) and solve for r.

(b) We substitute v=0, r = R+10° (note 100km =10°m), and the mks values
G =6.6726x10"", M =5.975x10*, and R =6.378x10° in Eq. (23) and solve for

Vv, =1389.21m/s ~1.389km/s .

(c) When we substitute v, =0.9,/2GM /R in the formula derived in part a, we find that
100

rmalx =—R
19

By an elementary computation (as in Section 1.2) we find that an initial velocity of
v, =16 ft/sec is required to jump vertically 4 feet high on earth. We must determine

whether this initial velocity is adequate for escape from the asteroid. Let r denote the
ratio of the radius of the asteroid to the radius R = 3960 miles of the earth, so that

3960 2640
Then the mass and radius of the asteroid are given by M, =r°M and R, =rR, in terms

of the mass M and radius R of the earth. Hence the escape velocity from the asteroid’s

surface is given by
Copyig © 2015Reqespn Edu;:/a'?gﬂ/—‘lnc.



in terms of the escape velocity v, from the earth's surface. Hence

v, ~ 36680/ 2640 ~13.9ft/sec.
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28.
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Since the escape velocity from this asteroid is thus less than the initial velocity of 16

ft/sec that your legs can provide, you can indeed jump right off this asteroid into space.
2
(a) Substitution of v? = ZGM _ k in Eq. (23) of the textbook gives

° R R

dt Vo or \/;

We separate variables and proceed to integrate: j\/Fdr = I k dt implies that

2 2 (2 V'
“r¥% =kt+=R% , since r=R when t=0. We solve for r(t)=, “kt+R¥* | and
3 3 k3 )
note that r(t) - was t — .
(b) If v, > 2GM , then Eq. (23) gives

dr .~ 2GM ([, 2GM)  Kk? k

=V= v - +o > .
dt r |\° R )| r Jr

Therefore, at every instant in its ascent, the upward velocity of the projectile in this part is
greater than the velocity at the same instant of the projectile of part (a). It's as though the
projectile of part (a) is the fox, and the projectile of this part is a rabbit that runs faster.
Since the fox goes to infinity, so does the faster rabbit.

. . dr dv . dv
(a) We proceed as in Example 4: Since v="", — can be writtenas v~ . Hence the

dt dt dr
dv GM dv GM

given differential equation g - becomes the separable equation vOIr =— , .

1
Separating variables gives jvdv =-GM j Fdr, and then integration gives
1o GM(;_;)_
2 ron

We solve for

B }
taking the negative square root because v < 0 in descent. Again we separate variables
and integrate to recover t in terms of r. Separating gives

[dt=[—=—t—=—=dr=— | [ [T ar.
Codyright 2015 Pearson I;/o%%Mon,\{r{@._ r

g:V=— ZGM[

S e
[

dt

Sy




M=)
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29.

30.

which under the substitution r =r, cos’6 becomes

312 (
— 2rcos?0de o (6 sin®cosd ) e 7 reost [
I 0 -— + = | - F E
\ 2GM 2GM 2GM ' ° ’ r

\ o)
(b) Substitution of G = 6.6726 x10 N - (nf kg)* M =5.975x10* kg,

r=R=6.378x10°m, and r, = R +10° yields t = 510.504sec , that is, about 8, minutes
1

for the descent to the surface of the earth. (Recall that we are ignoring air resistance.)
(c) Substitution of the same numeral values along with v, =0 in the original differential

equation of part (a) yields v =-4116.42 m/s ~ —4.116 km/s for the velocity at impact
with the earth’s surface, where r=R.

@:_67M1 y 0 =0, v(0)=v gives
Integration of v
g dy (y+R)2 () 0
1, GM GM 1,
Vo = - +=v
2 y+R R 2%

which simplifies to the desired formula for vZ. Then substitution of
G =6.6726x10 N -(nf kg)* M =5.975x10" kg, R=6.378x10°m, v =0, and

v, =1 yields an equation that we easily solve for y =51427.3m, that is, about 51.427
km.

GM

When we integrate v w__ &t GM'“—, r(0)=R, r'(0)=v in the usual way and
dr X (s-r)’ ’
solve for v, we get

& — 4 4y,
r R r—S R-S y

The earth and moon attractions balance at the point where the right-hand side in the

V_\/ZGMQ_ZGMQ 2GM,, 2GM, .,

acceleration equation vanishes, which is when r = L —— . If we substitute this
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value ofr, M_=7.35x10% kg, S =384.4x10°, and the usual values of the other
constants involved, then set v =0 (to just reach the balancing point), we can solve the

resulting equation for v, =11,109m/s. Note that this is only 71 m/s less than the earth
escape velocity of 11,180 m/s, so the moon really doesn't help much.
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SECTION 2.4
NUMERICAL APPROXIMATION: EULER'S METHOD

In each of Problems 1-10 we also give first the explicit form of Euler’s iterative formula for the
given differential equation y'= f (x,y). As we illustrate in Problem 1, the desired iterations are

readily implemented, either manually or with a computer system or graphing calculator. Then
we list the indicated values of y(3) rounded off to 3 decimal places.

1. For the differential equation y’ = f (x, y) with f(X,y) =-Y, the iterative formula of

Euler’s method is y,,, =y, +h(-y,). The TI-83 screen on the left shows a graphing

n+1

0. 15 =' tion of this iterative formula.

SrH+R 2 Y +Hs

After the variables are initialized (in the first line), and the formula is entered, each press
of the enter key carries out an additional step. The screen on the right shows the results

of 5 steps from x =0 to x = 0.5 with step size h = 0.1—winding up with y(0.5) ~1.181

. Similarly, using h = 0.25 gives y(0.5) ~1.125. The true value is y(})~1.213.

The following Mathematica instructions produce precisely the line of data shown:
£ [X_rY_] = -ys
glx_] = 2*Exp[-x];

y0 = 2;
h 0.25;
X 0

vyl = y0;

Dol[k = f[x,yl]; (* the left-hand slope ¥*)
yl = y1l + h*k; (* Euler step to update y ¥*)
X =x + h, (* update x *)
{i,1,2}]
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Dol[k = f[x,y2]; (* the left-hand slope ¥*)
y2 = y2 + h*k; (* Euler step to update y ¥*)
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10.

X =x+ h, (* update x *)

{i,1,5}]
Print[x," n,yllu n,y2,u ",g[O.S]]
0.5 1.125 1.180098 1.21306

Iterative formula: y,,, =y, +h(2y,); approximate values 1.125 and 1.244; true value

Iterative formula: y,,, =y, +h(y, +1); approximate values 2.125 and 2.221; true value
y(3)~2.297.

Iterative formula: Y,., = ¥, +h(X, — Y, ) approximate values 0.625 and 0.681; true value

y(3)~0.713.

Iterative formula: You =Y, + h(yn - X, —1) ; approximate values 0.938 and 0.889; true

value y(4)~0.851.

Iterative formula: y,,, = y, +h(-2x,y,); approximate values 1.750 and 1.627; true value
y(4)~1.558.

Iterative formula: y . =y, +h (—3>gfyn) ; approximate values 2.859 and 2.737; true value
y (%) ~2.647.

Iterative formula: y, , =y, +he ™ ; approximate values 0.445 and 0.420; true value
y(%)~0.405.

2
Iterative formula: y, ., =y, +h 1+4¢; approximate values 1.267 and 1.278; true value
y(3)~1.287.

Iterative formula: y_, =Yy, +h (2>§1 ynz) ; approximate values 1.125 and 1.231; true value

y(3)~1.333.

The tables of approximate and actual values called for in Problems 11-16 were produced using
the following MATLAB script (appropriately altered for each problem).
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11.

12.

% Section 2.4,
x0 = 0;

yo = 1;

% first run:

h 0.01;

X x0;

y = y0;

yl = yO0;
for n =

1:100

Problems 11-16

y =y + h*(y-2);

yl =
X =
end
second run:

= 0.005;

= x0;, y = y0;
for 1:200

[yl,y]l;
x + h;

®¥ o oo

n =

y2 = y0;

y =y + h*(y-2);

y2 =
x=
end
% exact values
x=x0 : 0.2
ye = 2 - exp(x);
% display table

[v2,y];
x + h;

: x0+1;

ya = y2(1:40:201) ;
err = 100* (ye-ya) ./ye;
[x; y1(1:20:101); ya; ye,; err]

The iterative formula of Euler's method is vy,

y(x)=2-e*. The resulting table of approximate and actual values is

Section2.4 139

y, +h(y, —2), and the exact solution is

X 0.0 0.2 0.4 0.6 0.8 1.0
y(h=001) | 1.0000 | 07798 | 05111 | 0.1833 | —0.2167 | —0.7048
y (h=0.005) | 1.0000 0.7792 0.5097 0.1806 | -0.2211 | -0.7115

y actual 1.0000 0.7786 0.5082 0.1779 | -0.2255 | -0.7183
error 0% —0.08% | -0.29% | -1.53% 1.97% 0.94%
. 1)’ , 2
Iterative formula: y_, =y +h Q’nT) ; exact solution: y(x) =1+ P
« 0.0 0.2 0.4 0.6 0.8 1.0
y (h=0.01) 2.0000 2.1105 2.2483 2.4250 2.6597 2.9864
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13.

14.

15.

16.

NUMERICAL APPROXIMATION: EULER’S METHOD

y (h=0.005) | 2.0000 2.1108 2.2491 2.4268 2.6597 2.9931
y actual 2.0000 21111 2.2500 2.4286 2.6597 3.0000
error 0% 0.02% 0.04% 0.07% 0.13% 0.23%
. x3 ) 2\Y2
Iterative formula: y,., =y, + 2hy—“ ; exact solution: y(x)=(8+x")".
X 1.0 1.2 14 1.6 1.8 2.0
y (h=0.01) 3.0000 3.1718 3.4368 3.8084 4.2924 4.8890
y (h=0.005) | 3.0000 | 31729 | 34390 | 38117 | 42967 | 4.8940
y actual 3.0000 3.1739 3.4412 3.8149 4.3009 4.8990
error 0% 0.03% 0.06% 0.09% 0.10% 0.10%
: —1
Iterative formula: y,, =y, + hY_: exact solution: y(x)= .
Xn 1-Inx
X 1.0 1.2 14 1.6 1.8 2.0
y (h=0.01) 1.0000 1.2215 1.5026 1.8761 2.4020 3.2031
y (h=0.005) | 1.0000 1.2222 1.5048 1.8814 2.4138 3.2304
y actual 1.0000 1.2230 1.5071 1.8868 2.4259 3.2589
error 0% 0.06% 0.15% 0.29% 0.50% 0.87%
. . 4
Iterative formula: y.,, =y, + h(| 3—&[“—\; exact solution: y(x) =X+ D
LX) X
X 2.0 2.2 24 2.6 2.8 3.0
y (h=0.01) 3.0000 3.0253 3.0927 3.1897 3.3080 3.4422
y (h=0.005) | 3.0000 3.0259 3.0936 3.1907 3.3091 3.4433
y actual 3.0000 3.0264 3.0944 3.1917 3.3102 3.4444
error 0% 0.019% | 0.028% | 0.032% | 0.033% | 0.032%
. . (ZXE’ ) . 6 ys3
Iterative formula: y,,, =y, +h == |; exact solution: y(x) = (X —37) :
\ Y )
X 2.0 2.2 24 2.6 2.8 3.0
y (h=0.01) 3.0000 4.2476 5.3650 6.4805 7.6343 8.8440
y (h=0.005) | 3.0000 | 4.2452 | 53631 | 64795 | 7.6341 | 8.8445
y actual 3.0000 4.2429 5.3613 6.4786 7.6340 8.8451
error 0% —0.056% | —0.034% | -0.015% | 0.002% | 0.006%

Copyright © 2015 Pearson Education, Inc.




Section2.4 141

The tables of approximate values called for in Problems 17—24 were produced using a MATLAB
script similar to the one listed preceding the Problem 11 solution above.

17.

X 0.0 0.2 0.4 0.6 0.8 1.0
y(h=0.1) | 0.0000 | 0.0010 | 0.0140 | 0.0551 | 0.1413 | 0.2925
y(h=0.02) | 0.0000 | 0.0023 | 0.0198 | 0.0688 | 0.1672 | 0.3379

y (h=0.004) | 0.0000 | 0.0026 | 0.0210 | 00717 | 01727 | 0.3477

y (h=0.0008) | 0.0000 | 0.0027 | 0.0213 | 0.0723 | 0.1738 | 0.3497

These data indicate that y(1) ~ 0.35, in contrast with Example 5 in the text, where the

initial condition is y(0)=1.

In Problems 18-24 we give only the final approximate values of y obtained using Euler's method
with step sizes h=0.1, h=0.02, h=0.004, and h =0.0008.

With x, =0 and y, =1, the approximate values of y(2) obtained are:

18.

19.

20.

21.

22.

h

0.1

0.02

0.004

0.0008

y

1.6680

1.6771

1.6790

1.6794

With x, =0 and y, =1, the approximate values of y(2) obtained are:

h

0.1

0.02

0.004

0.0008

y

6.1831

6.3653

6.4022

6.4096

With x, =0 and y, = -1, the approximate values of y(2) obtained are:

h

0.1

0.02

0.004

0.0008

y

-1.3792

-1.2843

-1.2649

-1.2610

With x, =1 and y, =2, the approximate values of y(2) obtained are:

h

0.1

0.02

0.004

0.0008

y

2.8508

2.8681

2.8716

2.8723

With x, =0 and y, =1, the approximate values of y(2) obtained are:
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0.1

0.02

0.004

0.0008

6.9879

7.2601

7.3154

7.3264
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23.

24,

25.

26.

27.

28.

With x, =0 and y, =0, the approximate values of y (1) obtained are:

h 0.1 0.02 0.004 0.0008

1.2307

y 1.2262 1.2300 1.2306

With x, =-1and y, =1, the approximate values of y(1) obtained are:

0.0008

0.1 0.02 0.004

0.9997

y 0.9585 0.9918 0.9984

Here f (t,v)=32-1.6v and t;=0, v, =0. With h=0.01, 100 iterations of

Vo =V, +hf (t,,v,) yield v(1) ~16.014, and 200 iterations with h = 0.005 yield

v(1) »15.998. Thus we observe an approximate velocity of 16.0 ft/sec after 1 second —
80% of the limiting velocity of 20 ft/sec.

With h=0.01, 200 iterations yield v(2) ~19.2056 , and 400 iterations with h = 0.005
yield v(2) ~19.1952. Thus we observe an approximate velocity of 19.2 ft/sec after 2

seconds — 96% of the limiting velocity of 20 ft/sec.
Here f (t,P)=0.0225P —0.003P* and t, =0, P, =25. With h=1, 60 iterations of

n

P.. =P, +hf(t,P,) yield P(60) ~49.3888, and 120 iterations with h = 0.5 yield

P (60) ~49.3903. Thus we observe a population of 49 deer after 5 years — 65% of the
limiting population of 75 deer. With h =1, 120 iterations yield P (120) ~ 66.1803, and

240 iterations with h = 0.5 yield P (60) ~ 66.1469. Thus we observe a population of 66

deer after 10 years — 88% of the limiting population of 75 deer.
Here f(x,y)=x+y?’-1and x =0,y =0. The following table gives the
0 0
approximate values for the successive step sizes h and corresponding numbers n of steps.
It appears likely that y(2)=1.00 rounded off accurate to 2 decimal places.

h 0.1 0.01 0.001 | 0.0001 | 0.00001
n 20 200 2000 20000 | 200000
y(2) 0.7772 | 09777 | 1.0017 | 1.0042 | 1.0044

Here f(x,y)=x+

1

2 =2, v, =0,
2 CY,op@rglclgh)‘E()@ 2015 Plarsori

The following table gives the approximate
Educat?on, Inc.g g PP




values for the successive step sizes h and corresponding numbers n of steps. It appears
likely that y(2) =1.46 rounded off accurate to 2 decimal places.
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29.

30.

31.
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h 0.1 0.01 0.001 0.0001 0.00001
n 40 400 4000 40000 400000
y (2) 1.2900 1.4435 1.4613 1.4631 1.4633
With step sizes h=0.15, h=0.03, and h = 0.006, we get the following results:
X y with h=0.15 | ywith h=0.03 | ywith h=0.006
-1.0 1.0000 1.0000 1.0000
-0.7 1.0472 1.0512 1.0521
-0.4 1.1213 1.1358 1.1390
-0.1 1.2826 1.3612 1.3835
+0.2 0.8900 14711 0.8210
+0.5 0.7460 1.2808 0.7192

While the values for h =0.15 alone are not conclusive, a comparison of the values of y

for all three step sizes with x > 0 suggests some anomaly in the transition from negative
to positive values of x.

With step sizes h =0.1 and h =0.01 we get the following results:

Clearly there is some difficulty near x = 2.

X ywith h=0.1 | ywith h=0.01
0.0 0.0000 0.0000
0.1 0.0000 0.0003
0.2 0.0010 0.0025
0.3 0.0050 0.0086
1.8 2.8200 4.3308
1.9 3.9393 7.9425
2.0 5.8521 28.3926

With step sizes h = 0.1 and h = 0.01 we get the following results:

Clearly there is some difficulty near x =0.9.

X ywith h=0.1 | ywith h=0.01
0.0 1.0000 1.0000
0.1 1.2000 1.2200
0.2 1.4428 1.4967
0.7 4.3460 6.4643
0.8 5.8670 11.8425
0.9 8.3349 39.5010
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144 NUMERICAL APPROXIMATION: EULER’S METHOD

SECTION 2.5
A CLOSER LOOK AT THE EULER METHOD

In each of Problems 1-10 we give first the predictor formula for u,,, and then the improved
Euler corrector for y,.,. These predictor-corrector iterations are readily implemented, either

manually or with a computer system or graphing calculator (as we illustrate in Problem 1). We
give in each problem a table showing the approximate values obtained, as well as the
corresponding values of the exact solution.

[—H+e s Y4 EHA 20k B, 1+H: Gt 23Y
i =Lt 2 . BEEE
1.51HH Y—Ha S Y THA 2 ek
1.6381 e I E L
1.4224 1.3188
1.241e 1.6381
1.2142 1.4224

h
1 U = Yo t h(_yn)’ Yo = Yn +E(_yn _un+1)

The TI1-83 screen on the left above shows a graphing calculator implementation of this
iteration. After the variables are initialized (in the first line), and the formulas are
entered, each press of the enter key carries out an additional step. The screen on the right
shows the results of 5 steps from x =0 to x = 0.5 with step size h =0.1 — winding up

with y(0.5) ~1.2142 — and we see the approximate values shown in the second row of

the table below.

X 0.0 0.1 0.2 0.3 0.4 0.5
ywith h=0.1 | 2.0000 1.8100 1.6381 1.4824 1.3416 1.2142
y actual 2.0000 1.8097 1.6375 1.4816 1.3406 1.2131

2. U=y, +2hyy =y +E(2y +2u )

n+ n 2 n n+
X 0.0 0.1 0.2 0.3 0.4 0.5
ywith h=0.1 | 0.5000 0.6100 0.7422 0.9079 1.1077 1.3514
y actual 0.5000 0.6107 0.7459 0.9111 1.1128 1.35901
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un+1:yn+h(yn+l); Y. =Y +hr(y +1)+(U 1+1)—|

Section 2.5

n+ n EL n n+ J
X 0.0 0.1 0.2 0.3 0.4 0.5
y with h=0.1 1.0000 1.2100 1.4421 1.6985 1.9818 2.2949
y actual 1.0000 1.2103 1.4428 1.6997 1.9837 2.2974
h
un+l = yn + h(xn - yn) ’ yn+1 = yn +E|:(Xn - yn)+(xn + h _un+l)
X 0.0 0.1 0.2 0.3 0.4 0.5
y with h=0.1 1.0000 0.9100 0.8381 0.7824 0.7416 0.7142
y actual 1.0000 0.9097 0.8375 0.7816 0.7406 0.7131
h
un+1:yn+h(yn_xn_1); y 1:y + |V(y —X —1)+(U l_X _h_l)—l
n+ n EL n n n+ n J
X 0.0 0.1 0.2 0.3 0.4 0.5
y with h=0.1 1.0000 0.9950 0.9790 0.9508 0.9091 0.8526
y actual 1.0000 0.9948 0.9786 0.9501 0.9082 0.8513
) h
un+l:yn_2Xnynh7 y 1:y + |—2X y +2(X +h)U l—|
n+ n EL non n n+ J
X 0.0 0.1 0.2 0.3 0.4 0.5
y with h=0.1 2.0000 1.9800 1.9214 1.8276 1.7041 1.5575
y actual 2.0000 1.9801 1.9216 1.8279 1.7043 1.5576
i o=y -3yhiy =y -y +3(x +h)’u |
n+l n n+1 n 2L nn n n+1J
X 0.0 0.1 0.2 0.3 0.4 0.5
y with h=0.1 3.0000 2.9955 2.9731 2.9156 2.8082 2.6405
y actual 3.0000 2.9970 2.9761 2.9201 2.8140 2.6475
—Yn . h =Y —Ups
un+l:yn+he n’ yn+1:yn+2 er+e ™
X 0.0Copyright0¢12015 Peaf3ch Edycatidh,Anc. 0.4 0.5
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y with h=0.1

0.0000

0.0952

0.1822

0.2622

0.3363

0.4053

y actual

0.0000

0.0953

0.1823

0.2624

0.3365

0.4055

Copyright © 2015 Pearson Education, Inc.




146 A CLOSER LOOK AT THE EULER METHOD

10.

2 2
0= yn+h-1+ Yoy — yn+h-M
4 8
X 0.0 0.1 0.2 0.3 04 0.5
y with h=0.1 1.0000 1.0513 1.1053 1.1625 1.2230 1.2873
y actual 1.0000 1.0513 1.1054 1.1625 1.2231 1.2874
u =y +h-2xy* y =y +h- x y*+(x +h)u?
n+l n nn n+l n n n n n+l
X 0.0 0.1 0.2 0.3 0.4 0.5
y with h=0.1 1.0000 1.0100 1.0414 1.0984 1.1895 1.3309
y actual 1.0000 1.0101 1.0417 1.0989 1.1905 1.3333

The results given below for Problems 11-16 were computed using the following MATLAB

script.

% Section 2.5, Problems 11-16

x0 = 0; y0o=1;

% first run:

h =0.01;

x = x0;

for
u
y
yl =
x
end

% second run:

= 0.005;

x0; y = y0;

y = y0; yl = y0;

= 1:100

y + h*f(x,y);

y + (h/2)*(£(x,y)+£(x+h,u));
[yl,yl;

x + h;

nns

= g

X = y2 = yO0;

= 1:200

y + h*f(x,y);

y + (h/2)*(£(x,y)+£(x+h,u));
[y2,y1;

x + h;

for

nmns

u
y
y2 =
X

end

% exact values
x0 : 0.2 : x0+1;

ye = g(x);

X =

% display table
ya = y2(1:40:201) ;

Spredictor
%$corrector

%predictor
%$corrector
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err =
X =
yl =
ya =
ye =
err =
table =

100* (ye-ya) . /ye;
sprintf('%$10.5f',x), sprintf('\n');
sprintf ('$10.5€',y1(1:20:101)), sprintf('\n');
sprintf ('$10.5f' ,ya), sprintf('\n');
sprintf ('$10.5f',ye), sprintf('\n');
sprintf ('%$10.5f' ,err), sprintf('\n');

[x; y1; ya; ye; err]
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For each problem the differential equation y’ = f (X, y) and the known exact solution y = g (x)

are stored in the files £.m and g.m — for instance, the files

function yp = £(x,y)
YP = y-2;

function ye =

ye = 2-exp(x);

g(x,y)

for Problem 11. (The exact solutions for Problems 11-16 here are given in the solutions for
Problems 11-16 in Section 2.4.)

11,
y 0.0 0.2 0.4 0.6 0.8 1.0
y(h=001) | 1.00000 | 0.77860 | 050819 | 0.17790 | —0.22551 | —0.71824
y(h %% | 100000 | 0.7860 | 050818 | 0.17789 | -0.22553 | -0.71827
yactual | 1.00000 | 0.77860 | 050818 | 0.17788 | —0.22554 | —0.71828
error 0.000% | —0.000% | —0.000% | —0.003% | 0.003% | 0.002%
12,
< 0.0 0.2 0.4 0.6 0.8 1.0
y(h=001) | 2.00000 | 2.11111 | 2.25000 | 2.42856 | 2.66664 | 2.99995
y (h :)0'005 2.00000 | 2.11111 | 2.25000 | 2.42857 | 2.66666 | 2.99999
yactual | 2.00000 | 211111 | 2.25000 | 2.42857 | 2.66667 | 3.00000
error 0.0000% | 0.0000% | 0.0001% | 0.0001% | 0.0002% | 0.0004%
13,
y 1.0 1.2 1.4 16 1.8 2.0
y(h=001) | 3.00000 | 317390 | 3.44118 | 3.81494 | 430091 | 4.89901
y (h :)0'005 3.00000 | 3.17390 | 3.44117 | 3.81492 | 4.30089 | 4.89899
yactual | 3.00000 | 3.17380 | 344116 | 3.81492 | 4.30088 | 4.89898
error 0.0000% | —0.0001% | —0.0001% | -0.0001% | —0.0002% | —0.0002%
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14,
y 1.0 1.2 14 16 18 2.0
y(h=001) | 1.00000 | 1.22296 | 150707 | 1.88673 | 2.42576 | 3.25847
y(h 2)0'005 1.00000 | 1.22297 | 1.50709 | 1.88679 | 2.42589 | 3.25878
yactual | 1.00000 | 1.22207 | 150710 | 1.88681 | 2.42593 | 3.25889
error 0.0000% | 0.0002% | 0.0005% | 0.0010% | 0.0018% | 0.0033%
15,

y 2.0 2.2 2.4 26 2.8 3.0
y(n=001) | 3.000000 | 3.026448 | 3.094447 | 3.191719 | 3.310207 | 3.444448
y (h =)°'°°5 3.000000 | 3.026447 | 3.094445 | 3.191717 | 3.310205 | 3.444445

yactual | 3.000000 | 3.026446 | 3.004444 | 3.191716 | 3.310204 | 3.444444
error | %9099 | ~0.000029% | -0.000029 | ~0.00002% | ~0.00002% | ~0.00002%
16.
y 2.0 22 2.4 26 28 3.0
y (h=001) | 3.000000 | 4.242859 | 5361304 | 6478567 | 7.633999 | 8.845112
y(h:)0'°°5 3.000000 | 4.242867 | 5.361303 | 6.478558 | 7.633984 | 8.845092
yactual | 3.000000 | 4.242870 | 5361303 | 6478555 | 7.633979 | 8.845085
error 0'08300 0'08306 0.00001% | —0.00005% | —0.00007% | —0.00007%
17,
With h = 0.1: |y(1) ~ 0.35183
With h = 0.02: | y(1) ~ 0.35030
With h = 0.004: | y(1) ~ 0.35023
With h = 0.0008: | y(1) ~ 0.35023
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X ywith h=0.1 |ywith h=0.02 | ywith h=0.004 |y with h =0.0008
0.0 0.00000 0.00000 0.00000 0.00000
0.2 0.00300 0.00268 0.00267 0.00267
0.4 0.02202 0.02139 0.02136 0.02136
0.6 0.07344 0.07249 0.07245 0.07245
0.8 0.17540 0.17413 0.17408 0.17408
1.0 0.35183 0.35030 0.35023 0.35023

In Problems 18—24 we give only the final approximate values of y obtained using the improved
Euler method with step sizes h = 0.1, h = 0.02, h = 0.004,and h = 0.0008.

18.

19.

20.

21.

Value of h | Estimated value of y(2)
0.1 1.68043
0.02 1.67949
0.004 1.67946
0.0008 1.67946
Value of h | Estimated value of y(2)
0.1 6.40834
0.02 6.41134
0.004 6.41147
0.0008 6.41147
Value of h | Estimated value of y(2)
0.1 ~1.26092
0.02 —1.26003
0.004 —1.25999
0.0008 —1.25999
Value of h | Estimated value of y(2)
0.1 2.87204
0.02 2.87245
0.004 2.87247
0.0008 2.87247
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22.

23.

24,

25.

26.

Value of h | Estimated value of y(2)
0.1 7.31578
0.02 7.32841
0.004 7.32916
0.0008 7.32920

Value of h | Estimated value of y(1)
0.1 1.22967
0.02 1.23069
0.004 1.23073
0.0008 1.23073

Value of h | Estimated value of y(1)
0.1 1.00006
0.02 1.00000
0.004 1.00000
0.0008 1.00000

Here f (t,v)=32-1.6v and t;=0, v, =0. With h=0.01, 100 iterations of

h
k.= f(tv,), k,=f(t+hyv, +hk), v, =V, +E(k1+k2)

1

yield v(1) ~15.9618, and 200 iterations with h = 0.005 yield v(1)~15.9620. Thus we

observe an approximate velocity of 15.962 ft/sec after 1 second — 80% of the limiting
velocity of 20 ft/sec.

With h =0.01, 200 iterations yield v(2) ~19.1846, and 400 iterations with h = 0.005

yield v(2) ~19.1847 . Thus we observe an approximate velocity of 19.185 ft/sec after 2
seconds — 96% of the limiting velocity of 20 ft/sec.
Here f (t,P)=0.0225P —0.003P* and t, =0, P, =25. With h=1, 60 iterations of

h

k.= f(tP,), k,= f(t+h,P, +hk), P, =P, +§(kl+k2)
yield P (60) ~49.3909, and 120 iterations with h = 0.5 yield P (60) ~49.3913. Thus

we observe an approximate population of 49.391 deer after 5 years — 65% of the
limiting population Ofgo%gﬁgﬁt © 2015 Pearson Education, Inc.



27.

28.
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With h =1, 120 iterations yield P (120) ~66.1129, and 240 iterations with h = 0.5 yield

P(120) ~ 66.1134. Thus we observe an approximate population of 66.113 deer after 10

years — 88% of the limiting population of 75 deer.
Here f(x,y)=x*+y?-1and x,=0, y,=0. The following table gives the

approximate values for the successive step sizes h and corresponding numbers n of steps.
It appears likely that y(2)=1.0045 rounded off accurate to 4 decimal places.

h 0.1 0.01 0.001 | 0.0001
n 20 200 2000 20000
y(2) | 1.01087 | 1.00452 | 1.00445 | 1.00445

Here f (x, y) =X +% y? and X, =—2, Y, =0. The following table gives the approximate

values for the successive step sizes h and corresponding numbers n of steps. It appears
likely that y(2) =1.4633 rounded off accurate to 4 decimal places.

h 0.1 0.01 0.001 | 0.0001
n 40 400 4000 40000
y(2) |1.46620 | 1.46335 | 1.46332 | 1.46331

In the solutions for Problems 29 and 30 we illustrate the following general MATLAB ode
solver.

function [t,y] = ode(method, yp, t0,b, y0, n)
[t,y] = ode (method, yp, tO0,b, y0, n)

calls the method described by 'method' for the
ODE 'yp' with function header

y' = yp(t,y)
on the interval [t0,b] with initial (column)
vector y0. Choices for method are 'euler',
'impeuler', 'rk' (Runge-Kutta), 'ode23', 'oded5'.
Results are saved at the endPoints of n subintervals,
that is, in steps of length h = (b - t0)/n. The
result t is an (n+l)-column vector from b to t1l1,
while y is a matrix with n+l rows (one for each
t-value) and one column for each dependent variable.

A 00 A o0 d° ° I 0 Jd° A° 0 o° o0 o°

=2

= (b - t0)/n;
t=¢t0 : h : b;

% step size
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t

=y0';

t';

% col. vector of t-values
% 1lst row of result matrix
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29.

for i=2: n+l % for i=2 to

i=n+l t0 = t(i-1); %$ old t

tl = t(1i); $ new t

yo = y(i-1,:)"; % old y-row-vector

[T,Y] = feval (method, yp, tO0,tl, yO0);

y = [y;Y']; $ adjoin new y-row-vector
end

To use the improved Euler method, we call as *‘method" the following function.
function [t,y] = impeuler(yp, t0,tl, yO0)

[t,y] = impeuler (yp, tO0,tl, yO0)
Takes one improved Euler step for

y' = yprime( t,y ),

from t0 to tl with initial wvalue the
column vector yO.

o0 00 o° o0 o° o° d° o°

h =+tl - t0;

kl = feval( yp, tO0, yO ),
k2 = feval( yp, t1, y0 + h*kl );
k = (k1 + k2)/2;

t = t1;

y = y0O + h*k;

Here our differential equation is described by the MATLAB function

function vp = vpboltl(t,v)
vp = -0.04*v - 9.8;

Then the commands

n = 50;

[tl,v1l] = ode('impeuler', 'vpboltl',0,10,49,n);
n = 100;

[t2,v2] = ode('impeuler', 'vpboltl',0,10,49,n);
t = (0:10)';

ve = 294*exp (-t/25)-245;

[t, v1(1:5:51), v2(1:10:101), ve]

generate the table:
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30.

( with with actual v
n=>50 n =100
0 49.0000 49.0000 49.0000
1 37.4722 37.4721 37.4721
2 26.3964 26.3963 26.3962
3 15.7549 15.7547 15.7546
4 5.5307 5.5304 5.5303
5 -4.2926 -4.2930 -4,2932
6 -13.7308 -13.7313 -13.7314
7 -22.7989 -22.7994 -22.7996
8 -31.5115 -31.5120 -31.5122
9 -39.8824 -39.8830 -39.8832
10 -47.9251 -47.9257 -47.9259
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We notice first that the final two columns agree to 3 decimal places (each difference
being less than 0.0005). Scanning the n =100 column for sign changes, we suspect that
v =100 (at the bolt’s apex) occurs just after t =4.5sec . Then interpolation between

t=4.5 and t=4.6 in the table

[t2(40:51) ,v2(40:51)]

3.9000 6.5345
4.0000 5.5304
4.1000 4.5303
4.2000 3.5341
4.3000 2.5420
4.4000 1.5538
4.5000 0.5696
4.6000 -0.4108
4.7000 -1.3872
4.8000 -2.3597
4.9000 -3.3283
5.0000 -4.2930

indicates that t = 4.56 at the bolt's apex. Finally, interpolation in

[t2(95:96) ,v2(95:96) ]

9.4000

-43.1387

9.5000

-43.9445

gives the impact velocity v(9.41) ~-43.22m/s .

Now our differential equation is described by the MATLAB function

function vp = vpbolt2(t,v)
vp = -0.0011*v.*abs(v) - 9.8;
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n = 100;

[tl,v1l] = ode('impeuler', 'vpbolt2',0,10,49,n);

n = 200;

[t2,v2] = ode('impeuler', 'vpbolt2',0,10,49,n);

t = (0:10)';

[t, v1(1:10:101), v2(1:20:201)]

generate the table

t with n =100 | with n=200
0 49.0000 49.0000
1 37.1547 37.1547
2 26.2428 26.2429
3 15.9453 15.9455
4 6.0041 6.0044
5 -3.8020 -3.8016
6 -13.5105 -13.5102
7 -22.9356 -22.9355
8 -31.8984 -31.8985
9 -40.2557 -40.2559
10 -47.9066 -47.9070

We notice first that the final two columns agree to 2 decimal places (each difference
being less than 0.005). Scanning the n =200 column for sign changes, we suspect that

v =0 (at the bolt’s apex) occurs just after t =4.6sec. Then interpolation between
t=4.60 and t = 4.65 t = 4.60 in the table

[t2(91:101) ,v2(91:101)]

indicates that T = 4.61 at the bolt’s apex.

[t2(189:190) ,v2(189:190)]

45000 | 1.0964
45500 | 0.6063
4.6000 | 0.1163
4.6500 | -0.3737
47000 | -0.8636
4.7500 | -1.3536
4.8000 | -1.8434
4.8500 | -2.3332
49000 | -2.8228
49500 | -3.3123
5.0000 | -3.8016
Finally, interpolation in
9.4000 -43.4052
9.4500 -43.7907
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gives the impact velocity v (9.41) ~ -43.48m/s.

SECTION 2.6
THE RUNGE-KUTTA METHOD

Each problem can be solved with a “template” of computations like those listed in Problem 1.
We include a table showing the slope values k, , k,, k;, k, and the xy-values at the ends of two

successive steps of size h =0.25.

To make the first step of size h = 0.25 we start with the function defined by

flx , vy 1 :=-y

and the initial values

x =0; y = 2; h = 0.25;

and then perform the calculations

kl = £[x, y]

k2 = f[x + h/2, y + h*kl/2]

k3 = £[x + h/2, y + h*k2/2]

k4 = f[x + h, y + h*k3]

y =y + (h/6)*(kl + 2*k2 + 2*k3 + k4)
X =x+h

in turn. Here we are using Mathematica notation that translates transparently to standard
mathematical notation describing the corresponding manual computations. A repetition
of this same block of calculations carries out a second step of size h =0.25. The
following table lists the intermediate and final results obtained in these two steps.

ky k> K3 kg X Approx.y | Actual y
-2 —1/75 —1.78125 | —1.55469 0.25 1.55762 1.55760
—-1.55762 | -1.36292 | -1.38725 | -1.2108 0.5 1.21309 1.21306

2.
ky ko ks kg X Approx.y | Actual y
1 1.25 1.3125 1.65625 0.25 0.82422 0.82436
1.64844 2.06055 2.16357 2.73022 0.5 1.35867 1.35914

3.
ky ko k3 kg X Approx.y | Actual y
2 2.25 2.28125 2.57031 0.25 1.56803 1.56805
2.56803 2.88904 2.92916 3.30032 0.5 2.29740 2.29744
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4.
ky ko K3 Ky X Approx.y | Actual y
-1 —-0.75 -0.78128 | -55469 0.25 0.80762 0.80760
—0.55762 | -0.36292 | —0.38725 | —0.21080 0.5 0.71309 0.71306

5.
ky ko K3 Kq X Approx.y | Actual y
0 —0.125 —0.14063 | —0.28516 0.25 0.96598 0.96597
—28402 | —0.44452 | —0.46458 | —0.65016 0.5 0.85130 0.85128

6.
ky ko K3 Ky X Approx.y | Actualy
0 0.5 —0.48438 | —0.93945 0.25 1.87882 1.87883
—0.93941 | -1.32105 | -1.28527 | —1.55751 0.5 1.55759 1.55760

1.
ky ko K3 Ky X Approx.y | Actual y
0 —0.14063 | —0.13980 | —0.55595 0.25 2.95347 2.95349
—0.55378 | -1.21679 | -1.18183 | -1.99351 0.5 2.6475 2.64749

8.
ky ko K3 Ky X Approx.y | Actualy
1 0.88250 0.89556 0.79940 0.25 0.22315 0.22314
0.80000 0.72387 0.73079 0.66641 0.5 0.40547 0.40547

9.
ky k> K3 kg X Approx.y | Actual y
0.5 0.53223 0.53437 0.57126 0.25 1.13352 1.13352
0.57122 0.61296 0.61611 0.66444 0.5 1.28743 1.28743

10.

ky ko k3 kg X Approx.y | Actual y
0 0.25 0.26587 0.56868 0.25 1.06668 1.06667
0.56891 0.97094 1.05860 1.77245 0.5 1.33337 1.33333

The results given below for Problems 11-16 were computed using the following MATLAB

script.
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% Section 2.6, Problems 11-16
x0 = 0; y0=1;

first run:

= 0.2;

=x0; y=y0; yl=y0;

for n =1:5

kl = £(x,y);

k2 f(x+h/2,y+h*k1/2) ;

k3 f(x+h/2,y+h*k2/2) ;

k4 = f(x+h,y+h*k3);

y =y +(h/6)*(kl+2*k2+2*k3+k4) ;

¥ o ooe

yl = [yl,y];
X =x + h;
end

second run:
=0.1;
=x0; y=y0; y2=y0;
for n =1:10
kl = £(x,y)
k2 f(x+h/2,y+h*k1/2) ;
k3 f(x+h/2,y+h*k2/2) ;
k4 = f(x+h,y+h*k3);
y =y +(h/6)*(kl+2*k2+2*k3+k4) ;
y2 = [y2,y];
X =x+ h;
end

E =

% exact values
x=x0 : 0.2 : x0+1;
ye = g(x);

% display table

y2 = y2(1:2:11);

err = 100* (ye-y2)./ye;

x = sprintf('%10.6f',x), sprintf('\n');

yl sprintf('%$10.6£f',yl), sprintf('\n');
y2 = sprintf('%10.6£f',y2), sprintf('\n');
ye = sprintf('%10.6£f',ye), sprintf('\n');
err = sprintf('%10.6f',err), sprintf('\n');
table = [x;yl;y2;ye;err]

For each problem the differential equation y’= f (x,y) and the known exact solution y = g(x)

are stored in the files £.m and g.m — for instance, the files
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function yp = f(x,y)

yp = y-2;

and
function ye = g(x,y)
ye = 2-exp(x);

for Problem 11.

11.

X 0.0 0.2 0.4 0.6 0.8 1.0
y (h=0.2) | 1.000000 0.778600 0.508182 0.177894 —0.225521 | —0.718251
y (h=0.1) | 1.000000 0.778597 0.508176 0.177882 —0.225540 | —0.718280

y actual 1.000000 0.778597 0.508175 0.177881 —0.225541 | —0.718282
error 0.00000% | —0.00002% | —0.00009% | —0.00047% | —0.00061% | —0.00029%
12.

X 0.0 0.2 0.4 0.6 0.8 1.0
y(h=0.2) 2.000000 2.111110 2.249998 2.428566 2.666653 2.999963
y(h=0.1) 2.000000 2.111111 2.250000 2.428571 2.666666 2.999998

y actual 2.000000 2.111111 2.250000 2.428571 2.666667 3.000000
error 0.000000% | 0.000002% | 0.000006% | 0.000014% | 0.000032% | 0.000080%
13.

X 1.0 1.2 1.4 1.6 1.8 2.0
y(h=0.2) | 3.000000 3.173896 3.441170 3.814932 4.300904 4.899004
y(h=0.1) | 3.000000 3.173894 3.441163 3.814919 4.300885 4.898981

y actual 3.000000 3.173894 3.441163 3.814918 4.300884 4.898979
error 0.00000% | —0.00001% | —0.00001% | —0.00002% | —0.00003% | —0.00003%
14.

X 1.0 1.2 1.4 1.6 1.8 2.0
y(h=0.2) | 1.000000 | 1.222957 | 1.507040 | 1.886667 | 2.425586 | 3.257946
y(h=0.1) | 1.000000 | 1.222973 | 1.507092 | 1.886795 | 2.425903 | 3.258821

y actual 1.000000 | 1.222975 | 1.507096 | 1.886805 | 2.425928 | 3.258891
error 0.0000% | 0.0001% | 0.0003% | 0.0005% | 0.0010% | —0.0021%
15.
X 2.0 2.2 2.4 2.6 29 3.0
y(h=0.2) 3.000000 3.026448 3.094447 3.191719 3.310207 3.444447
y(h=0.1) 3.000000 3.026446 3.094445 3.191716 3.310204 3.444445

Copyright © 2015 Pearson Education, Inc.




Section 2.6 159

y actual 3.000000 3.026446 3.094444 3.191716 3.310204 3.444444
error —0.000000% | —0.000004% | —0.000005% | —0.000005% | —0.000005% | —0.000004%
16.

X 2.0 2.2 2.4 2.6 2.9 3.0
y(h=0.2) 3.000000 4.243067 5.361409 6.478634 7.634049 8.845150
y(h=0.1) 3.000000 4.242879 5.361308 6.478559 7.633983 8.845089

y actual 3.000000 4.242870 5.361303 6.478555 7.633979 8.845085
error —0.000000% | —0.000221% | —0.000094% | —0.000061% | —0.000047% | —0.000039%
17.

Value of h | Estimated value of y(1)

0.2 0.350258

0.1 0.350234

0.05 0.350232

0.025 0.350232

The table of numerical results is
X ywith h=0.2 |ywith h=0.1 | ywith h=0.05 | y with h =0.025

0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.002667 0.002667 0.002667 0.002667
0.4 0.021360 0.021359 0.021359 0.021359
0.6 0.072451 0.072448 0.072448 0.072448
0.8 0.174090 0.174081 0.174080 0.174080
1.0 0.350258 0.350234 0.350232 0.350232

In Problems 18—24 we give only the final approximate values of y obtained using the Runge-

Kutta method with step sizes h=0.2, h=0.1, h=0.05, and h =0.025.

18.

Value of h | Estimated value of y(2)
0.2 1679513
0.1 1.679461
0.05 1.679459
0.025 1.679459
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19.

20.

21.

22.

23.

Value of h | Estimated value of y(2)
0.2 1.679459
0.1 6.411474
0.05 6.411474
0.025 6.411474
Value of h | Estimated value of y(2)
0.2 —1.259990
0.1 —1.259992
0.05 —1.259993
0.025 —1.259993
Value of h | Estimated value of y(2)
0.2 2.872467
0.1 2.872468
0.05 2.872468
0.025 2.872468
Value of h | Estimated value of y(2)
0.2 7.326761
0.1 7.328452
0.05 7.328971
0.025 7.329134
Value of h | Estimated value of y(1)
0.2 1.230735
0.1 1.230731
0.05 1.230731
0.025 1.230731
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24.
Value of h | Estimated value of y(1)
0.2 1.000000
0.1 1.000000
0.05 1.000000
0.025 1.000000

25.  Here f(t,v)=32-16v and t, =0, v,=0. With h=0.1, 10 iterations of

k=ft,v k=f(t+lh,v +lhk\
1 (n n) 2 |n n l|
L2 2 )
k:f(t+lh,v +lhk\ k =f t +h,v +hk
3 |n n 2| 4 (n n 3)
L2 2 )
k:lk+2k +2k +k v =V +hk
6(1 2 3 4) n+1 n

yield v (1) ~15.9620, and 20 iterations with h = 0.05 yield v (1) ~15.9621. Thus we

observe an approximate velocity of 15.962 ft/sec after 1 second — 80% of the limiting
velocity of 20 ft/sec.

With h=0.1, 20 iterations yield v(2) ~19.1847, and 40 iterations with h = 0.05 yield

v(2) ~19.1848. Thus we observe an approximate velocity of 19.185 ft/sec after 2

seconds — 96% of the limiting velocity of 20 ft/sec.
26.  Here f(t,P)=0.0225P —0.003P* and t, =0, B, =25. With h=6, 10 iterations of

k=f1t,P sz(t+lh,P+lhk\
1 (n n) 2 |n n 1|
L2 2 )
k =f(t +lh,v +lhk\\ k =f t +h,P +hk
3 |n n 2| 4 (n n 3)
L2 2 )
1
k== k +2k. hk

Copyrngﬁg é 2Jf)l1<5 Pearson Edlﬁ)catignl?lrff:.



217.

6( 1 2 3 4) n+1 n

yield P (60) ~ 49.3915, as do 20 iterations with h = 3. Thus we observe an approximate

population of 49.3915 deer after 5 years — 65% of the limiting population of 75 deer.
With h =6, 20 iterations yield P (120) ~ 66.1136, as do 40 iterations with h =3. Thus

we observe an approximate population of 66.1136 deer after 10 years — 88% of the
limiting population of 75 deer.

Here f(x,y)=x*+y?-1and x,=0, y,=0. The following table gives the

approximate values for the successive step sizes h and corresponding numbers n of steps.
It appears likely that y(2) =1.00445 rounded off accurate to 5 decimal places.
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28.

h 1 0.1 0.01 0.001
n 2 20 200 2000
y(2) 1.05722 | 1.00447 | 1.00445 | 1.00445

Here f (x, y) =X +% y? and x,=-2, y, =0. The following table gives the approximate

values for the successive step sizes h and corresponding numbers n of steps. It appears
likely that y(2) =1.46331 rounded off accurate to 5 decimal places.

h 1 0.1 0.01 0.001
n 4 40 00 40000
y(2) 1.48990 | 1.46332 | 1.46331 | 1.46331

In the solutions for Problems 29 and 30 we use the general MATLAB solver ode that was listed
prior to the Problem 29 solution in Section 2.5. To use the Runge-Kutta method, we call as
'method’ the following function.

29.

function [t,y] = rk(yp, t0,tl, yO)

% [t, y] = rk(yp, t0, t1, yO)

% Takes one Runge-Kutta step for

%

% y' =yp( t,y),

%

% from t0 to tl with initial value the
% column vector yO.

h =t1 - t0;

k1l = feval (yp, tO , yo )
k2 = feval(yp, tO0O + h/2, y0 + (h/2)*kl );
k3 = feval(yp, tO0O + h/2, y0 + (h/2)*k2 );
k4 = feval(yp, t0 + h ,y0 + h *k3 );
k = (1/6)*(k1l + 2*k2 + 2*k3 + k4);

t = tl;

y = y0 + h*k;

Here our differential equation is described by the MATLAB function

function vp = vpboltl(t,v)
vp = -0.04*v - 9.8;

Then the commands

n = 100;
[tl,v1l] = ode('rk', 'vpboltl',0,10,49,n);
n = 200;
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[t2,v] = ode('rk', 'vpboltl',0,10,49,n);
t = (0:10)';

ve = 294*exp (-t/25)-245;

[t, v1(1:n/20:14+n/2), v(1:n/10:n+l), ve]

generate the table

t with n =100 | with n=200 actual v
0 49.0000 49.0000 49.0000
1 37.4721 37.4721 37.4721
2 26.3962 26.3962 26.3962
3 15.7546 15.7546 15.7546
4 5.5303 5.5303 5.5303

5 —4.2932 —4.2932 —4.2932
6 -13.7314 -13.7314 -13.7314
7 —22.7996 —22.7996 —22.7996
8 -31.5122 -31.5122 -31.5122
9 —39.8832 —39.8832 —39.8832
10 —47.9259 —47.9259 —47.9259

We notice first that the final three columns agree to the 4 displayed decimal places. Scanning the
last column for sign changes in v, we suspect that v =0 (at the bolt’s apex) occurs just after
t =4.5sec. Then interpolation between t = 4.55 and t = 4.60 in the table

[t2(91:95) ,v(91:95)]

4.5000 0.5694
4.5500 0.0788
4.6000 | —0.4109
4.6500 | —0.8996
4.7000 | —1.3873

indicates that t = 4.56 at the bolt’s apex. Now the commands

zeros (n+l,1) ;
10/n;

Y
h

for j = 2:n+l
v(j) = y(3-1) + v(3-1)*h + 0.5*(-.04*v(j-1) - 9.8)*h*2;
end
ye = 7350* (1 - exp(-t/25)) - 245*t;
[t, y(1:n/10:n+1), yel

generate the table:
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t | approx.y | actualy

0 0 0

1 43.1974 43.1976

2 75.0945 75.0949

3 96.1342 96.1348

4 106.7424 | 106.7432
5 | 107.3281 | 107.3290
6 98.2842 98.2852

7 79.9883 79.9895

8 52.8032 52.8046

9 17.0775 17.0790

10 | -26.8540 | —26.8523

We see at least 2-decimal place agreement between approximate and actual values of .
Finally, interpolation between t =9 and t =10 here suggests that y =0 just after t = 9.4,

Then interpolation between t = 9.40 and t = 9.45 in the table
[t2(187:191) ,y(187:191)]

9.3000 4.7448
9.3500 2.6182
9.4000 0.4713
9.4500 | -1.6957
9.5000 | —3.8829

indicates that the bolt is aloft for about 9.41 seconds.

30. Now our differential equation is described by the MATLAB function

function vp = vpbolt2(t,v)
vp = -0.0011*v.*abs(v) - 9.8;

Then the commands

n = 200;

[tl,v1l] = ode('rk', 'vpbolt2',0,10,49,n);
n = 2*n;

[t2,v] = ode('rk', 'vpbolt2',0,10,49,n);
t = (0:10)';

ve = zeros(size(t)):;
ve(l:5)= 94.388*tan(0.478837 - 0.103827*t(1:5));
ve(6:11)= -94.388*tanh(0.103827* (t(6:11)-4.6119)) ;

[t, v1(1:n/20:14+n/2), v(1:n/10:n+l1), ve]
generate the table:
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t | with n=200 | with n=400 actual v
0 49.0000 49.0000 49.0000
1 37.1548 37.1548 37.1547
2 26.2430 26.2430 26.2429
3 15.9456 15.9456 15.9455
4 6.0046 6.0046 6.0045

5 -3.8015 -3.8015 -3.8013
6 -13.5101 -13.5101 -13.5100
7 —22.9354 —22.9354 -22.9353
8 —-31.8985 —-31.8985 -31.8984
9 -40.2559 —-40.2559 —40.2559
10 -47.9071 —47.9071 —47.9071

We notice first that the final three columns almost agree to the 4 displayed decimal
places. Scanning the last column for sign changes in v, we suspect that v =0 (at the
bolt’s apex) occurs just after t =4.6sec. Then interpolation between t = 4.600 and

t =4.625 in the table
[t2(185:189) ,v(185:189)]

4.6000 | 0.1165
4.6250 | —0.1285
4.6500 | —0.3735
4.6750 | —0.6185
4.7000 | —0.8635

indicates that t = 4.61 at the bolt’s apex. Now the commands

y = zeros(n+l,1);
h = 10/n;
for j = 2:n+l
v(j) = yv(3-1) + v(j-1)*h + 0.5*%(-.04*v(j-1) - 9.8)*h"2;
end
ye = zeros (size(t));
ye(l:5)= 108.465+909.091*1log(cos(0.478837 - 0.103827*t(1:5)));
ye(6:11)= 108.465-909.091*1log(cosh(0.103827* (t(6:11)-4.6119))) ;
[t, y(1:n/10:n+1), yel

generate the table:
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t Approx. y Actual y
0 0 0.0001
1 42.9881 42.9841
2 74.6217 74.6197
3 95.6719 95.6742
4 106.6232 106.6292
5 107.7206 107.7272
6 99.0526 99.0560
7 80.8027 80.8018
8 53.3439 53.3398
9 17.2113 17.2072
10 —26.9369 —26.9363

We see almost 2-decimal place agreement between approximate and actual values of y.
Finally, interpolation between t =9 and t =10 here suggests that y =0 just after t = 9.4,

Then interpolation between t = 9.400 and t = 9.425 in the table
[t2(377:381) ,y(377:381)]

9.4000 | 0.4740
9.4250 | —0.6137
9.4500 | —-1.7062
9.4750 | —2.8035
9.5000 | —3.9055

indicates that the bolt is aloft for about 9.41 seconds.
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