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n | Xn Yn

1]0.1 | —1.87392
2 0.2 | —1.36127
3 0.3 | —1.06476
4 |04 | —0.86734
5 05 | —0.72143
6 | 0.6 | —0.60353
7 0.7 | —0.50028
8 | 0.8 | —0.40303
9 | 0.9 | —0.30541
10 | 1.0 | —0.20195

Consequently the Runge-Kutta approximation to y(1) is y;p = —0.20195. Comparing this to the correspond-
ing Euler approximation from Problem 58 we have

[Vri — Ve = /0.20195 — 0.12355/ = 0.07840.

63. Applying the Runge-Kutta method with y = 3 +2,X0 = 1,y0 = 2, and h = 0.05 generates the
sequence of approximants given in the table below.

Xn Yn
1.05 | 2.17369
1.10 | 2.34506
1.15 | 2.51452
1.20 | 2.68235
1.25 | 2.84880
1.30 | 3.01404
1.35 | 3.17823
1.40 | 3.34151
1.45 | 3.50396
1.50 | 3.66568

OO0 N OOl W NS
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o

Consequently the Runge-Kutta approximation to y(1.5) is y;p = 3.66568. Comparing this to the correspond-
ing Euler approximation from Problem 59 we have

IVri — Ve = [3.66568 — 3.67185/ = 0.00617.

Chapter 2 Solutions

Solutions to Section 2.1

True-False Review:

(a): TRUE. A diagonal matrix has no entries below the main diagonal, so it is upper triangular. Likewise,
it has no entries above the main diagonal, so it is also lower triangular.
(c)2017 Pearson Education. Inc.
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(b): FALSE. An m xn matrix has m row vectors and n column vectors.
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(c): TRUE. This is a square matrix, and all entries off the main diagonal are zero, so it is a diagonal matrix
(the entries on the diagonal also happen to be zero, but this is not required).

(d): FALSE. The main diagonal entries of a skew-symmetric matrix must be zero. In this case, a;; = 4 =0,
so this matrix is not skew-symmetric.

(e): FALSE. The form presented uses the same number along the entire main diagonal, but a symmetric
matrix need not have identical entries on the main diagonal.

(f): TRUE. Since A is symmetric, A = AT. Thus, (AT)T = A = AT, so AT is symmetric.
(9): FALSE. The trace of a matrix is the sum of the entries along the main diagonal.

(h): TRUE. If A is skew-symmetric, then AT = -A. ButA and AT contain the same entries along the
main diagonal, so for AT = —A, both A and —A must have the same main diagonal. This is only possible
if all entries along the main diagonal are O.

(i): TRUE. If A is both symmetric and skew-symmetric, then A = AT = —A, and A = —Ais only possible
if all entries of A are zero.

(J): TRUE. Both matrix functions are defined for values of t such thatt > 0.

(k): FALSE. The (3, 2)-entry contains a function that is not defined for values of t with t < 3. So for
example, this matrix functions is not defined for t = 2.
(: TRUE. Each numerical entry of the matrix function is a constant function, which has domain R.

(m): FALSE. For instance, the matrix function A(t) = [t] and B(t) = [t?] satisfy A(0) = B(0), but A and
B are not the same matrix function.

Problems:
1(a). ag; =0,ap = —1l,a14 = 2,83 = 2,8 = 7,834 = 4.

1(b). (1,4) and (3, 2).

2(a). byp = =1, bg3 =4, byy =0, byg =8, bs; = -1, and b, = 9.
2(b). (1,2), (1,3), (2,1), (3,2), and (5, 1).

1 5

3. 1 3 2 x 2 matrix.
21 -1 : 2 =< 3 matrix.
4,
r 0 4] -2
-1
1 .
5. 1 J; 4 x 1 matrix.

-5

1 -3 -
6

]

|
|; 4 < 3 matrix.
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;3 x 3 matrix.
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10. tr(A) =1+
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2 -3
1 -2
0o 1

1
1.-0

7
8

3 =4

11. tr(A) = 1+2+(-3) = 0.
12. tr(A) = 2+2+(-5) = -1

13. Column vec

Row vectors: [1 —1],|{3 5].—| [ 1T 1
1 3 4

tors: 3

1

5
6 ]; 4 x 4 matrix.

-1
5

= 4 x 4 matrix.

14. Column vectors: L -1 JL -2 JL 5 J

2 7
Row vectors: [1 3 —4],[-1 —2 5],[2 6 7].
2 10 6
15. Column vectors: 5 0 3 - Row vectors: [2 10 6],[5 —1
1 2 1 2
16. A =[ 3 4 J Column vectors: L 3 JL 4 J
5 1 5 1
_ -2 0 4 -1 -1 . . -2
17. A _[ 9 —4 T 0 8 ; column vectors: 9
| & e |
-6 —6
18. B =| 3 0 |, rowvectors: -2 -4 , -6 -6 ,
L1 ol
= -
2 501
19. =L -1 7 0 2 -1 Row vectors: [250 1],[-1 70 2],[4 —6 0 3].
4 -6 0 3
20. A = [al,az,...

dimensions q x p. [

21. One example: L

2 0
0 3

01
ol
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, ap] has p columns and each column g-vector has g rows, so the resulting matrix has



C
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22. One example: l

= oI
——
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O O U1 w
O w o
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23. One example:

24. One example:

25. The only possibility here is the zero matrix: L

.

o O o
—_—

o O o
o O o

r
26. L

0 0O
00 OJ.
0 00 r _I
ltz—t 0
. 0 OJ
27. One example: 0 o 1
0 0
VA
LL +
28. One example: 3—t tr2 0
0 0 0

29. One example: £+l

30. One example: t?+1 1 1 1 1

31. One example: Let A and B be 1 x 1 matrix functions given by

A(t) = [t] and B(t) = [t].

32. Let A be a symmetric upper triangular matrix. Then all elements below the main diagonal are zeros.
Consequently, since A is symmetric, all elements above the main diagonal must also be zero. Hence, the
only nonzero entries can occur along the main diagonal. That is, A is a diagonal matrix.

33. Since A is skew-symmetric, we know that a;; = —a;; for all (i, j). But since A is symmetric, we know
that a;; = a;; for all (i, j). Thus, for all (i, j), we must have —a;;i = a;;. That is, a;; = 0 for all (i, j). That
is, every element of A is zero.

Solutions to Section 2.2

True-False Review:

(a): FALSE. The correct statement is (AB)C = A(BC), the associative law. A counterexample to the
particular statement given in this review item can be found in Problem 5.

(b): TRUE. Multiplying from left to right, we note that AB is an m x p matrix, and right multiplying AB
by the p x q matrix C, we see that ABC is an m x q matrix.

(c): TRUE. We have (A + B)T=AT+BT = A +B, so A +B is symmetric.

(c)2017 Pearson Education. Inc.
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010 0 0 3

J,B :L 00 OJ. Then A and B are skew-
-3 0 0

(d): FALSE. For example, let A = l -

1
[ 1 o

00 O

00
00
symmetric, but AB =L 0 0 -3 J is not symmetric.

0 0 0
(e): FALSE. The correct equation is (A+B)?= A> + AB+BA+B2. The statement is false since AB +BA

does not necessarily equal 2AB. For instance, ifA = 01 OO and B = OO 01 , then (A+B)? = é é
1 2
and A2 +2AB +B? = 0 0 = (A +B)2
01 10
(f): FALSE. For example, let A = 00 and B = 00 - Then AB = 0 even though A =0 and
B =0.
. _ 00 _ 00 . .
(9): FALSE. For example, let A = 10 and let B = 00 - Then A is not upper triangular,

despite the fact that AB is the zero matrix, hence automatically upper triangular.

1 0

(h): FALSE. For instance, the matrix A = 0 0

and yet A> = A,

is neither the zero matrix nor the identity matrix,

(i): TRUE. The derivative of each entry of the matrix is zero, since in each entry, we take the derivative
of a constant, thus obtaining zero for each entry of the derivative of the matrix.

(j): FALSE. The correct statement is given in Problem 45. The problem with the statement as given is
that the second term should be 2B, not B 2.

t
(k): FALSE. For instance, the matrix function A = 28 32t satisfies A = %, but A does not have
cet 0
the form 0 cet

(D: TRUE. This follows by exactly the same proof as given in the text for matrices of numbers (see part
3 of Theorem 2.2.23).

Problems:

_ =10 30 5
1(a). 5A = _56 0 3_153
1(b). -3B = 0 —12 12

-1+i -1+2i
1(c). iC =L -1+3i -1+4i 1
-1+5i -1+6i

-6 11 3
1(d). 2A =B = 1(e).’ A +3CT =

(c)2017 Pearson Education. Inc.
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—4

-2

1+ 3i
5+ 3i°

15 + 3i
12 + 3i

16 + 3i
15 + 3i
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r8 10 7—I
1(f). 3D —2E =l 1 4 9 J
7 12
[ N
12 -3-31 -1+i
1(g).D+E+F=L 3+i 3-2i 8 J
6 4+ 2i 2

1(h). Solving for G and simplifying, we have that

_ 3 1 =10 -1/2
C=-LA-B= 35 4 1112

1(i)r Solving for H angI sin|1_plifying, nghavre that H =4E - D —2F :r
-20 -8 4 0 1 12 4 —6i 2i -8 —24+6i -9-2i
L4 4 121 -v1 2 54_L 2+ 4 OJ=l1—2i 2+ 4i 7 J
16 -8 -12 31 2 -2 10+4i 6 15 —-19 —4i -20

1(j). We have KT = 2B — 3A, sorthat K = (2B —F;A)T = 2BT - 3AT . Thus,

2 -2 -1 10 3
K:ZL 1 4J—3L 6 OJ=l —-16 8J.
-1 -4 1 -3 -5 1
r—4 0 —1—I
2(a). =L 5 51
-3 -1 =2
I 11 1
2 0 8 0
2(b). 4BT=4L 1 4J=L 4 16 J
-1 -4 -4 -16
I rro 1 r_ 1
-2 -1 1+1 2+ 5+ 4+ i
2(c). —2AT+C=—2L 6 OJ+L3+i 4+iJ=[ —9+i 4+ J
r 1 —S—I r5+i 6+1' r 3+ 12+1'
10 -25 -10 4 0 1 14 -25 -9

o). se +p =1 5 5 15+l 2 51=L¢ 7 20

20 -10 -15 31 2 23 -9 -13
2(e). We have

(c)2017 Pearson Education. Inc.



[ 1[201F_1

-2 -1 1+i0 2+ —-13+i -5+2i
4AT—ZBT+iC:4l 6 oJ—zl 1 4J+iL3+i 4+iJ:L 21+ 3i —9+4iJ.
1 -3 -1 -4 5+i1 6+ i 5+ 51 -5+6i

2(f). We have

[ 11T 11
-8 12 3 9

8 -20 -4 =23 -17

sg —3p" =L 4 s wl-Lo 6 sl=l 4 o ol
16 -8 -12 3 15 6 13 —23 -18

(c)2017 Pearson Education. Inc.



129

2(g).V\f:have (1 -6i)F +iD = —I r —I r
6—-36i —16—15i 6+ 4 0 i 6—-32i —-16—-15i 6+ 2i
L 7 —5i —12 - 2i 0 J+L i 2 5i J='~ 7 —4i -12 5i J
-1+6i 17-28i 3—18i 3i 0 2i -1+9i 17-27i 3-—16i
2(h). Solving for G, we have
_ CneT— -2 6 1 . 1+i 3+i 5+i
C=AFA-DC= g 3 AT o g 64
_ 26 1 2 4-2i 6—4i
-1 0 -3 3—i 5-3i 7-5i

0 10-2i 7-4i
2—i 5-=3i 4-5i

2(i). Solve for H, we have

3 3
6 0 372 3 -—-15/2 -3 100
L3/2 3 15/2 ' —L 3/2 3/2 9/2 4 rL QO 1 OJ
=%9/2 3/2 3 6 -3 =972 0 01
[ 6 1572 972
=1 0 9/2 3 J
—-3/2 9/2 21/2
2(j). We have KT =DT +ET —FT =(D +E —F)T, so that
0 -7+3i —-1-i
K:D+E—F=l1—i 3+ 2i 8 1
8 —6-2i —4
3(a).
_ 5 10 -3
A= 2 3
3(b). | 1
9
—6
3(c). CA cannot be computed.
3. 1 r
1 3 5 i 1+ 2—4i 7+ 13i
ae=l 1 11 i 244 I P
2 4 4 —6i 10+ 18i

(c)2017 Pearson Education. Inc.
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3(e). ‘I
2 -2 3
CD =L -2 2 —3J.
4 -4 6
3(f). I 1
1 3
CTAT = 1—12L—1 1J: 6 10
2 4
3(9)- i 1-3i i 1-3i _
F2: — -1 10— 101
0 4+1i 0 4+i 0 15+ 8i
3(h). [ m 1r 1
2 -1 3 2 15
epT=ls 1 oAl o 1=l 1
4 6 -2 3 -10
3(i). [
1 3 10 2 14
ATA:[—l 1J1 1')—L222J
3 1 4 :
2 4 14 2 20
3()).
i 1-—3i 2—i 1+i _ -2+ 13-
FE= 0 4+i i 2+ 4i 1—4i 4+ 18i
4(a). r —I
1
_ 1 -1 2 ] S ]_ 6
AC= 3 14 ; - 10
4(b).
DC =[10]
4(c).
DB =[6 14 —4]
4(d). AD cannot be computed.
_2—i 1+ i 1-3i _ 1+2i 2-2i
A@-EF =i oudi 0 4+i T 1 1417

4(f). Since AT is a 3 x 2 matrix and B is a 3 x 3 matrix, the product ATB cannot be constructed.
4(g). Since C is a 3 x 1 matrix, it is impossible to form the product C - C = C2.

2—i 1+ 2—i 1+i1 _ 4-5i 1+ 7i

2 —
4. BT = T o4 i 244i T 3-4i —11+15i

(c)2017 Pearson Education. Inc.



4(i). ADT =
4(). ETA =
5. We have
and

6.

7.

8.

9. We have

I 21
1 -1 2 10
3 1 4 L2 1= 16
3
2—i  —i 1 -1 2 _ 2-4i -2  4-—6i
1+i0 2+ 4i 3 A 4  7+13i 1+3i 10+18i
/ I 1
. =3 2 7—1|_§—§||—61
ABC = (AB)C =
\ 60—3—5[—1—9J) 15
0 2
_ 15 —95 -6 1
- -9 65 15
—185 —460
119 716
I : 1\
61l 52 7 |l —3II
CAB=C(AB)= ;| 5 \ 6 0 -3 -5 L—l —9J)
-6 1 15 —95
- 15 -9 65
—-99 635
—-30 230
o= 306 g 1y 3= 0
-5 4 =2 -5 4 —38
I m 1 1 1 1 1 117 1
3 -1 4 2 3 -1 4 ~13
ac=lo 151l sl=slodisl (hi gyl s 1=l g5l
7 -6 3 -4 7 -6 3 -16
I 1 1 I 1 1
-1 2 . -1 -7
ac=L a4 7- 1 —sl 4J+(1)L 7J L 51
5 —4 -4 29
_ a b c d _ xa-+yb+zc+wd
A =X HY g HE g W h T xe+yf+zg+wh

(c)2017 Pearson Education. Inc.
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10(a). The dimensions of B should be n xr in order that ABC is defined.

10(b). The elements of the ith row of A are aji, aijz, .. .,ain and the elements of the jth column of BC are
£ s =
b1mij ) meij yoree bnmij )
m=1 m=1 m=1

(c)2017 Pearson Education. Inc.
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so the element in the ith row and jth column of ABC = A(BC)is

r r r

ai1 b1mcmj + 3aj2 b2mij + -+ Qi bnmcmj
m=1 m=1 m=1
n r n r
= ajk PkmCmj = Aikbkm  Cmj.
k=1 m=1 k=1 m=1
A2 = AA = = 1 -4
2 3 2 3 8 7
Noopas -l o—4 1 -1 _ -9 -1l
8 7 2 3 22 13
Moo afa SO Sl 1 -1 _ 31 -2
22 13 2 3 48 17
110, [ il 1T 1
0 1 0 1 0 -2 0 1

A2=AA=l—2 01JL—2 01J:L 4 -3 OJ.

r4—10*|r4—10‘|r2 4 -1 1
-2 0 1 10 4 0

0

A3:A2A:L 4 -3 OJL—Z 01J:L 6 4—3J.

r2 4—l‘|r4—10‘|r—1234‘|
4 -3 0 0O 1 0 6 4 -3

A4=A3A=L 6 4—3JL—2 01J=[—20 9 4J.

=12 3 4 4 -1 0 10 -16 3

12(a). We apply the distributive property of matrix multiplication as follows:
(A+2B)? = (A+2B)(A+2B) = A(A+2B)+(2B)(A+2B) = (A2+A(2B))+((2B)A+(2B)?) = A2+2AB+2BA+4B?,

where scalar factors of 2 are moved in front of the terms since they commute with matrix multiplication.

12(b). We apply the distributive property of matrix multiplication as follows:

(A+B+C)>=(A+B+C)A +B+C)=A(A+B+C)+B(A+B +C)+C(A +B +C)
=A2 + AB +AC +BA +B? +BC +CA +CB +C?
=A? +B2 +C?+AB +BA +AC +CA +BC +CB,

(c)2017 Pearson Education. Inc.



as required.

12(c). We can use the formula for (A + B)2 found in Example 2.2.20 and substitute —B for B throughout
the expression:

(A - B)3= A% + A(-B)A + (-B)A? + (-B)?A+ A?(-B) + A(-B)? + (-B)A(-B) + (-B)?
=A% - ABA - BA?+ B?A- A°B+ AB?+ BAB - B?,

as needed.

(c)2017 Pearson Education. Inc.
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13. We have 2 -5 2 -5
A2 = _ —-26 20
6 —6 6 —6 —24 6
s that 26 20 8 20 18 0
- - _ 00
A +4A+18lc= oy g toa —oa Y 0 18 T g o -
14. We have
I 11 11
-1 0 4 -1 0 4 -7 12 -4
AZ:L 112JL 112J:L_4 7 6J
-2 3 0 -2 3 0 5 3 =2
and
I I 11T 1
-1 0 4 -1 0 4 -1 0 4 -7 12 -4 -1 0 4 27 0 -4
p =L 11240 11 2 AL 11 2=l 24 7 Al 11 2=l 4 5 5 1
-2 3 0 -2 3 0 -2 3 0 5 3 =2 -2 3 0 2 -3 26
Therefore, we have
I 11 11 11 1
27 0 -4 -1 0 4 26 0 O 0 0 O
A3+A—26I3=L—1 25 —2J+L 112J—Lo 26 onloooJ.
2 -3 26 -2 3 0 0 0 26 0 0O
15. I 11 11 1
1 1 1 0
00 0 -1 0
A2=l010J—LO 0—1J=[011J.
0 0 1 0 0 0 0 0 1
I 1
1 x z
Substituting A =l 0 1 vy Jfor A, we have
0 0 1
I 1 11 1
1 x z 1 x z 1 0
Lo s ydllo 1 yIzlo g 11
0 0 1 0 0 1 0 0 1
that is, [ 11T 1
1 2x 2z +xy 1 10
Lo 2y 0 0

(c)2017 Pearson Education. Inc.



J =l 011 J 0 01
Since corresponding elements of equal matrices are equal, we obtain the following implications:
2y = 1 ==y =1/2,
2x =1 = x=1/2,

22 +xy = 0 =2z +(1/2)(1/2) = 0 ==z = -1/8.

|
|

1 1/2 -1/8
Thus, A=L 0 1 172 J
0 0 1

(c)2017 Pearson Education. Inc.
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x 1
, . x 1 _ _ x 1 . X2 =2 X+Yy
16. In order that A= = A, we require 2y y 2y thatis, oy _ 2y 24y
x 1 . X2—-x—-2 x+y-1 _ . .
2y or equivalently, ox—2y+2 y2—y-2 = 0,. Since corresponding elements of equal ma-

trices are equal, it follows that

xX2-x-2=0=x=-lorx=2, and
y2—y—-2=0==y=-lory=2.
Two cases arise from x+y —1 = 0:

(@): If x=-1,then y =2.
(b): If x=2, theny = -1. Thus,

_ -1 1 . 2 1
A= o 5 o A= o 4
17.
01 0 -1 _ i 0 _ 1 0 .
B = =1 — 10
0102= 1 o i 0 0 —i 0 -1 ’
o -i 1 0 _ 0i 01
Op03= i 0 0 -1 i 0 =1 1 0 =1i01.
1 0 0 1 0 1 0 —i .
B _ . =io
9301 = 5 _1 10 - -10 : i 0 2
18.
[A,B] = AB — BA
1 -1 3 1 3 1 1 -1
T~ 2 1 42 T 42 2 1
-1 -1 5 =2
10 4 8 -2
- -6 1 _
= 26 “02
19.
[Al,Az] = A1A2— A2A1
10 01 0 10
= 01 0 0 - 0 0 1
0 1 0 1
= 90 " 00 = 0,, thus A; and A, commute.

[A1,As] = A1Az - AsA;

1 0
0

(c)2%17%earson E%ucgtion. In%. 0



— =0,, thus A; and Az commute.
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[A2, Az] = AsAz— AsA;

01 0 0 00

-1

A,.

0 i
i 0
0 -1
1 0
i 0

0 0 1 0 1 0
_ 10 _ 00 _
0 0 0 1 0
Then [As, As] = —[A2, As] = _é 2 =0,. Thus, A, and A; do not commute.
20.
[A1,A2] = A1A2— AcA;
1 0§ 0 -1 _1 0
4 1 0 1 0 4 1
1 i 0 1 -i 0
4 0 =i 4 0 i
_ 1 2i O: 1 i 0 - Al
4 0 -2 2 0 —i
[A2,Az] = AsAz— AsA, 1
_1 0 1 i 0
4 1 0 0 —i 4 0
1 o0 1 0 —i
“4 i 0 4 —-i O
_ 1 0 2i _ 1 0 i = AL
4 21 0 2 10
[Az, A1l = AsA1— AlA3
1 i 0 o0oi _10
4 0 -—i i 0 4 i
_ 1 0 -1 _1 01
4 -1 0 4 1 0
1.0 -2 _1 0 -1 _
4 2 0 2 1 0
21.

(c)2017 Pearson Education. Inc.
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[A,[B,C]] +[B,[C,All +[C,[A,B]]

=[A,BC —CB] +[B,CA —AC] +[C,AB — BA]

= A(BC- CB) — (BC - CB)A+ B(CA- AC) — (CA - AC)B+ C(AB - BA) - (AB - BA)C

= ABC - ACB- BCA+ CBA+ BCA- BAC - CAB+ ACB+ CAB - CBA- ABC+ BAC = 0.

22.
Proof that A(BC) = (AB)C: Let A = [a;j] be of size m xn, B = [bji] be of size n x p, and C = [ci] be
of size p x q. Consider the (i, j)-element of (AB)C:

LR i p

[(AB)C];; = T ainbk GG = ain " brkekj = [ABO)]5j.
k=1 h=1 h=1 k=1

(c)2017 Pearson Education. Inc.
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Proof that A(B+ C)=AB +AC: We have

[A(B +C)ij = - ajk (bkj + Ckj)
1

x
1l

\s

= (ajjbkj + ajkCkj)
1
n

= ajkhbkj +  ajkCyj
k=1 k=1

(ENdl

[AB + AC]ij.

23.
Proof that (AT)T =A: Let A =[aj;]. Then AT =[a;i], so (AT)" =[a;i]" =aij = A, as needed.
Proof that (A +C)T = AT+ CT: Let A = [aijT] and C = [cj;]. Then [(A +C)']ij = [A+C]ji =
[Alji +[Clji = aji + ¢ji = [AT]ij +[CT];j = [AT +CT]ij. Hence, (A +C)T = AT +CT.
24. We have

=z

(IA)ij = dikakj = diiaij = aij,

k=1

forl<i<=mand 1<j=<p. Thus, ImAmxp = Am xp.

25. Let A =[ajj] and B = [bjj] be n > n matrices. Then

n n n n

=]
=]

tr(AB)=" awbik = bwaki =  bixak = tr(BA).
k=1 =1 k=1 =1 i=1 k=1
1
26(2). BTAT= 0 ~1 1 L1 !
@) = 4 1 -3 s T
I 1 I 1
-9 1 —4 64 6

o 1l o0 1 5

26(b). C'BT = =
l3 5J -4 1 -3 [—20 -16 —18J

-2 =2 8 12 8

26(c). Since D isa 3x3 matrir and A isa 1>«|'3 matrix, it is not possible to compute the expression DT A.

-2 0 1
27(a). ADT= -3 -1 6 L 10 21= 35 2 7
5 7 41
I 1 I 1
-9 1 82 1 -22 16

01|—903—2 |115—2

27(b). First note that CTC = = . Therefore,
l 3 5 115 =2 l—zz 5 34 —16J
-2 =2 16 -2 -16 8
82 1 =22 16 82 1 =22 16 7465 —59 —2803 1790
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. _| 1105 2l 1 1 5 |_| 59 31 185 g2 |
N | I 11 |
—22 5 34 -16 -2 5 34 -16 —2803 185 1921 —1034

16 -2 -16 8 16 -2 -16 8 1790 -82 -1034 580
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I 1 11T 1
0 1 0 -4 -1 5

-2

27(c).DTB:L 10 2 A7 1=l 2 2

5 7 -1 -1 -3 —48 -10
28(a). We have [ ‘|
-X -y z
S:[Sl,Sz,Ss]:l 0 Yy 227 J,
X -y z
o)
[ 1 11T
2 21 -X =y z -X =y 7z
AS =L 2 5 2 JL 0 y 2z J=L 0 y 14z J=[sl,52, 7s3].
1 2 2 X =y z X =y 7z
28(0) [ N . 1
-x 0 X -X -y Tz 2x2 0 0 |
STAS=ST(AS):L—y y —-ydL 0 'y 14z4=L 0 32 o 1
7z 22z X -y 7z 0 0 4222
but ST AS = diag(1, 1,7), so we have the following
v
2 _ — )
2Xc =1 =—=x=4+
%
y?=1==y=+_
%
622 =1 ==z = £
29(a). We have [ " 1
1 -4 0 0 2x y
AS:l—4 7OJL0x —2yJ
0 0 5 z 0 0
) 0 2 9
=l 0 —x —18yJ
5z 0 0
= [581, —=So, 983].
29(b). We have
I 1 11T 1
0 0 z 0 -2x 9y 522 0 0
stas =L 2x  «x oJL 0 -x —18yJ:L 0 -5x2 O J,
y -2y 0 5z 0 0 0 0 45y2
so in order for this to be equal to diag(5, —1,9), we must have
572 =5, —5x2 = —1, 45y% =9,

Thus, we must have 72 =1, x? =1 and y> = L. Therefore, the values of x, y, and z that we are looking for
1 1
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are Xx=# ., y=+ ., and z =+l
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I

30(a).

f— — [——

2
0
0
0
7
30(b). L 0
0

oO~NoOo oo nNOo
~NoOoO o ODNOOoO

31. Suppose A isan nxn scalar matrix with trace k. If A = alp, then tr(A) = na =k, so we conclude that
a=k/n. So A = Kl,, a uniquely determined matrix.

32. We have
BT = 7 —la+ay =taTen =8
—-(A +A")
2 2 2
and -
1 1 1
C'T= _-A-AT) = (AT-A)=- A-AT)=-C
2 2 2
Thus, B is symmetric and C is skew-symmetric.
33. We have
_1 T 1 _ AT _1 1.7 } _} T —
B+C—§(A+A)+§(A A)—§A+§A +2A 2A A.
34. We have
/r4 101[4 1> rs 821r4 411
:E(A+AT)=%\L9—2 344 -1 —2 5J }Ls -4 8 d=L4 -2 41
2 2 2 5 b (0] 3 b 2 2 8 10 1 4 b
and \
/[ 1 I 1 I 11 1
1 -1 4 9 0 -10 -2 0 -5 -1
7(A AT) = \lg -2 3J l—l -2 5J/ LlO 0—2J:[5 0—1J.
2 5 55 0 35 2 5 2 0 1 1 0
35. /[ 11 1\ I 11T )
; 1 -53 13 7 1 2 -210 1 -1 5
i, ISy _ZJ/ I R
2
7 =2 1 2 12 5 1 6
/f 1 [° 1\ 1 f 1
-5 3 3 -4 =2
\L3 L o e s i .
7 -2 6 34 6 2 4 6 0 2 -3 0
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36(a). If A is symmetric, then AT = A, so that
B = %(A+AT) = %(A+A) = %(ZA) =A
and

1 1
C=3A -AT) = S(A - A) = z(on) = Op.
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36(b). If A is skew-symmetric, then AT = —A, so that
_1 Ty 1 A= Loy
B=sA+A)=,A+(=A)=3(0n)=0n

and

C=Z(A-AT)= %(A —(-A) = %(ZA) = A

NI

37. If A = [a;j] and D = diag(dy, dy,..., dy), then we must show that the (i, j)-entry of DA is djajj. In

index notation, we have
n

(DA);j = - didikakj = didiiaij = diajj.
k=1
Hence, DA is the matrix obtained by multiplying the ith row vector of A by dj, where 1 <i < n.
38. If A =[ajj] and D = diag(dy, dy,..., dy), then we must show that the (i, j)-entry of AD is dja;j. In

index notation, we have
n

(AD)ij = aidjdig = ay;djdy; = aijd;.
k=1
Hence, AD is the matrix obtained by multiplying the jth column vector of A by d;, where 1 < j < n.

39. Since A and B are symmetric, we have that AT = A and BT = B. Using properties of the transpose
operation, we therefore have
(AB)" = BTAT = BA = AB,

and this shows that AB is symmetric.

40(a). We have (AAT)T = (AT)T AT = AAT, so that AAT is symmetric.
40(b). We have (ABC)"=[(AB)C]" =CT(AB)"=CT(BTAT) =CTBTAT, as needed.

_ 1 cost
41. A(t)y= _ sint 4
_ —2e 2t
42. A(t) = cost
[ cost —sint O J
43. A (t)=L sint cost 1 .
0 3 0
t 2t
a0 A= &, %€ 2

2et 8e2t 10t

45. We show that the (i, j)-entry of both sides of the equation agree. First, recall that the (i, j)-entry of
AB is ., aikbkj, and therefore, the (i, j)-entry of 4 (AB) is (by the product rule)
dt

n n
-
ékbkj + aikbkj.

a
ikDkj + aikbyj =
k=1 k=1 k=1

The former term is precise the (i, j)-entry of the matrix %—’IT\B, while the latter term is precise the (i, j)-entry
of the matrix A?ﬁ. Thus, the (i, j)-entry of %t(AB) is precisely the sum of the (i, j)-entry of d2B and the
(i, J)-entry of A%2. Thus, the equation we are proving follows immediately.
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1

46. We have
Loet et g= & €t i_ e -le 1 -1 _ e—-1 1-1/e
o 2et bet 2t —Get 0 2e —b/e 2 =5 2¢—2 5-5/e
47. We have
72 cost g= SNt an_  sin/2) sin0 _ 1 0 _ 1
0 sint —cost O — cos(7z/2) —co0s0 0 -1 1
48. We have
1 et g2t 12 et 1 2t 2
dt== fe 33 1
o 2et 4e? 52 2t 22t 53 O
e—1 £=1 173
_ e e/2 13 _ 1 12 0 _ )
2¢e 282 5/3 2 2 0 2¢—2 282 -2 5/3
49. We have
1 e”t sin 2t le?t  —Zcos2t
[ t 1
Lt2—5 tet Jdt=L3—5t te —e — o
0 sec’t 3t-sint tan t %t2+cost
r e? cos 2 —I rl 1—I r e2—1 1—cos2
2 2 2 T2 2
=L _uis 0 T-lo s d=l i 1
tan 1 %+cosl 0 1 tan 1 %+cosl
50. A(t)dt= -5dt  gipdt  eStdt = -5t tan (1) et
2t R
51. e M=
sint cost O —cost sint 0
52. l —cost sint t Jdt:L —sint —cost t2/2 J
0 3t 1 0 3t2/2 t
et e_t et _e—t
53. et et U= o _get
g2t sin 2t le2t  _lcos2t
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| - e dg=L &
54. t 5 te dt = 133

2
-5t tet—et J

sec’t 3t-sint tan t gt2+cost

Solutions to Section 2.3

True-False Review:

(a): FALSE. The last column of the augmented matrix corresponds to the constants on the right-hand
side of the linear system, so if the augmented matrix has n columns, there are only n — 1 unknowns under
consideration in the system.
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(b): FALSE. Three distinct planes can intersect in a line (e.g. Figure 2.3.1, lower right picture). For
instance, the xy-plane, the xz-plane, and the plane y =z intersect in the x-axis.

(c): FALSE. The right-hand side vector must have m components, not n components.

(d): TRUE. If a linear system has two distinct solutions X; and x,, then any point on the line containing
X1 and X; is also a solution, giving us infinitely many solutions, not exactly two solutions.

(e): TRUE. The augmented matrix for a linear system has one additional column (containing the constants
on the right-hand side of the equation) beyond the matrix of coefficients.

(f): FALSE. Because the vector (X1, Xz, X3,0,0) has five entries, this vector belongs to R®. Vectors in R®
can only have three slots.

(9): FALSE. The two column vectors given have different numbers of components, so they are not the
same vectors.

Problems:
1.
2:1-3(-1)+4-2 =13,
1+ (-1)-2= -2,
5:-1+ 4(-1)+2=3.
2.
2+ (-3)-2-1= -3,
3:2-(-3)-7-1=2,
2+ (-3)+1=0,
2-2+2(-3)—4-1= —6.
3.
1-t)+(2+3t)+(3-2t) =6,
l1-t)-2+3t)-2(3-2t)= -7,
51-t)+(2+ 3t)- (3- 2t) =4.
4.

s+ (s—-2t)- (2s + 3t) +5t= 0,
2(s - 2t) - (2s + 3t) + 7t =0,
4s +2(s — 2t) - 3(2s + 3t) + 13t= 0.
5. The two given lines are the same line. Therefore, since this line contains an infinite number of points,
there must be an infinite number of solutions to this linear system.

6. These two lines are parallel and distinct, and therefore, there are no common points on these lines. In
other words, there are no solutions to this linear system.

7. These two lines have different slopes, and therefore, they will intersect in exactly one point. Thus, this
system of equations has exactly one solution.
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8. The first and third equations describe lines that are parallel and distinct, and therefore, there are no
commonl—points on these lines. In other words, there are no s«ilutions to this linear system.

12 -3 "t 12 31
oa=l2 4 sap=toaar=L2 4 5 21

7 2 -1 3 7 2 -13

11 1 -1 3 . 11 1 -1|3
0.A= 5 4y 3 7 /b= 5 A =5 4 3 71

I ) I 1 I ]

1 2 -1 0 12 -1 0

11.A=l2 3 —ZJ,b=lOJ,A#=l2 3 =2 OJ.
5 6 -5 0 5 6 -5|0

12. It is acceptable to use any variable names. We will use Xq, X2, X3, X4:

X1— Xo +2X3+3x4 = 1,
X1+ Xy —2X3+6X4 = —1,
X1+ Xo +4X3+2x4 = 2.

13. It is acceptable to use any variable names. We will use X1, Xo, X3:

2X1+ Xo +3xz3 = 3,
4x1— Xo +2X3 = 1,
7X1+ 6Xo  +3X3

I
|
o1

14. The system of equations here only contains one equation: 4x; — 2X, — 2X3 — 3X5 = —9.
15. This system of equations has three equations: —3X, = -1, 2X;— 7Xo =6, 5X;+ 5x,=7.
16. Given Ax =0 and Ay =0, and an arbitrary constant c,

(a). we have
Az =AX +y)=Ax +Ay =0+0=0

and
Aw = A(cx) = c(Ax) = c0 = 0.

(b). No, because
AX +y)=Ax +Ay =b+b=2b=Db,

and
A(cx) =c(Ax) =cb=Db
in general. _
—4 3 X 4t

X]_ = 1 +
17.

Xy 6 —4 X2 -t

2 -t X1

18, ¢
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X2

X2

—sint

—sint

1
2t

0

X2

X1
X2
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0 -—sint 1 X1
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20.l>g2J=l —et 0 t? JLX2J+lt3 J

X3
21. We have

and

Ax +b =

22. We have

and

Ax +b =

23. We compute

and

Ax +b =

-1

-t t 0 X3 1
4ett et
X (t) = _2(4e4t) = _8e4t
_ 4t 4 1YV (_0ph 4t
2 -1 e + 0 _ 2+ (=1)(-2e")+0 _ 4e
-2 3 —2e4t 0 —2e*t +3(—2e*) + 0 —8edt
4(—2e72Y) + 2 cost —8e 2t + 2cost
x (1) = 3(-26 ) +sint —6e 2 +sint

1 -4 4e7' +2sint  , —2(cost+sint)

-3 2 3e 2t —cost 7sint+2 cost
472+ 2 sint — 4(3e 2t —cost) — 2(cos t + sint) _  —8 ™ +2cost
—3(4e 72t + 2 sint) + 2(3e 2t —cost) + 7sint+2 cost —6e 2t +sint
« 3et + 2tet
et + 2tet
1 2te+et 0 _ 2(2tet +et) — (2tet —et) + 0 _ 2te' + 3¢t
2 2tet — et 4et —(2tet +eb) + 2(2tet —eb) + 4et 2tet + et

Therefore, we see from these calculations that x = Ax + b.

24. We compute

and

r

1 0

r
—tet — et
X = L —ge_t J
tet +et —Get

1 1 11T 1 11T

0 —tet —et —tet —et

Axtb=l 2 —3 2L gt dl e 1L 2(—tet) — 3(%e 1) + 2(tet + 6eY) 1L g 1=

(c)2017 Pearson Education. Inc.
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1 -2 2 tet +6et et —te' — 2(%9e™ %) + 2(tet + 6e7 1) et tet + et — 6e”

Therefore, we see from these calculations that x = Ax + b.

Solutions to Section 2.4

True-False Review:

(a): TRUE. The precise row-echelon form obtained for a matrix depends on the particular elementary row
operations (and their order). However, Theorem 2.4.15 states that there is a unique reduced row-echelon
form for a matrix.
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(b): FALSE. Upper triangular matrices could have pivot entries that are not 1. For instance, the following
matrix is upper triangular, but not in row echelon form: 02 00 .

(c): TRUE. The pivots in a row-echelon form of an n x n matrix must move down and to the right as
we look from one row to the next beneath it. Thus, the pivots must occur on or to the right of the main
diagonal of the matrix, and thus all entries below the main diagonal of the matrix are zero.

(d): FALSE. This would not be true, for example, if A was a zero matrix with 5 rows and B was a nonzero
matrix with 4 rows.

(e): FALSE. If A is a nonzero matrix and B = —A, then A +B =0, so rank(A+ B) = 0, but rank(A),
rank(B) = 1 so rank(A)+ rank(B) = 2.

01

(f): FALSE. For example, if A = B = 0 0

rank(B) =1+1 = 2.

, then AB = 0, so rank(AB)= 0, but rank(A)+

(g): TRUE. A matrix of rank zero cannot have any pivots, hence no nonzero rows. It must be the zero
matrix.

(h): TRUE. The matrices A and 2A have the same reduced row-echelon form, since we can move between
the two matrices by multiplying the rows of one of them by 2 or 1/2, a matter of carrying out elementary
row operations. If the two matrices have the same reduced row-echelon form, then they have the same rank.

(i): TRUE. The matrices A and 2A have the same reduced row-echelon form, since we can move between
the two matrices by multiplying the rows of one of them by 2 or 1/2, a matter of carrying out elementary
row operations.

Problems:

Neither.

Reduced row-echelon form.
Neither.

Row-echelon form.
Row-echelon form.
Reduced row-echelon form.
Reduced row-echelon form.
Reduced row-echelon form.

© © N o g bk~ w DN RE

2 =4 1 1 -2 2 1 =2

4 8 ~ -1 8 T o 0,Rank(A):l.

L Mi(3) 2 A(4)

10.
2 1 1+ 1 -3 2 1 -3 3 1 -3

N - ,Rank (A) = 2.
1 -3 2 1 o 7 0 1

L P 2. A(-2) 3. My(%)
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11. 11 11 1
A

,Rank (A) = 2.

1 Ap(-1), Ag(—3) 2. Ax(—4)

12. | 11T 11 11 11T 1

2 1 4 3 26 1 1 2 1 1 2 1 1 2
1 2 3 4

L, 5 41.1 _—3 sl by 5 4dlo 5 odolo 21 0
3 -2 6 1 4 1 4 0 -1 0 0 -5 0
2r1 1 17 1
B -

2

0

OJ~L0 1 OJ,Rank(A):Z.
0 0O

1. Pz 2. An(—1) 3. App(—2), A13(—3) 4. Pz 5 My(—1) 6. A3z(5)

13.

I 11T 11T 11 11 ]
2 -1 8 8 1 -2 1 2-5 1 2-5 1 2 -5
Ls 1 20 Ly oo s by o3 30 bl o5 3ol o1 21
2 -2 1 2 —2 1 0 -1 -2 0 -1 -2 0 -5 13
I 11 11 ]
1 2 -5 12 5 12 5
5 6 7 _
Lo 1 2dilor 21l 2J,Rank(A)=3.
0 -5 13 0 0 23 00 1
1. P 2. Asi(=1), Ass(=1) 3. Aia(=2) 4 Py 5 My(=1) 6. An(5) 7. M3(1/23).
14.
fz ] f 1 f 1 f 1 f 1 I 31
L 3 2J L2—1J lz_lJ lo_7J lo_1J lo 1 1 Rank (&)= 2.
2 5 2 5 2 5 0 -1 0 -7
1 P 20 Ai(—1) 3. Aa(=2), Aiz(=2) 4. Pz 5 Ma(—1), Axs(7).
15, | 11T 11 ) b
2 -2 -1 3 1 -1 10 1 -1 10
0 0 -3 3
| 3 -, 31I1||3—2 31||2| Iallg b @1||
|1 -1 10 ~ 2 -2 -13 "~ -
1 L 1 L 1 L 1
2 -1 2 2 2 -1 2 2
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0 1 0 2

1 -11 0

0 10 1 _

0 0 1 -1 j ,Rank (A) = 4.
0 00 1
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1 Pz 20 Ap(=3), A13(—2), A1a(=2) 3. An(—1) 4 M3(1/3)
1
T 170 170 170 ]
2 -1 3 4 . -2 1 3 1 - 3 1 - 3
L1 -2 1 34<L2 -1 3 4
1 -5 U b 1 5ur>|j o 31 2d-Lo 12 21 pakay=2
0 0 0 0 0 0 0 0
1 P 2. Aa(—2), Aa(—1) 3. My(1/3)
17.
. 11T -l 1 r 1
2 1 3 4 2 L 1 0 2 1 3 ) 1 0 2 1 s 0 3
L1 0 2 1 3 2 1 3 4 242
Z3lb/J~L23157 I~0:|.—].2—4J|~01—1 2—4J
'1 0 21 03 -3 3 1 00 0 -3 1
L0 1 -1 2 1
00 01 3J
4 1 Rank (A) = 3.
-1
1 P 2. A(=2), As(=2), 3. Axg(—3) 4. Ms(—3)
18.
I 11T 11 11 ]
4 7 4 7 1 2 1 2 1 1 2 1 1 2
5 3 5 1 0 1
|3 5 3 5|1|3 |2|0—10—1|3|0 I
| | .| | _ | | .| I
LZ —22—2J LZ—ZZ—ZJ LO -6 0 —6J LO -6 0 —GJ
0 -12 0 -12
5 -2 5 =2 5 -2 5 =2 0 -12 0 -12
I 1
1 2 1 2
4 0 1 0 1
SO0 pk =2
0 00O
1 Az(-1) 2. Ap(—3), A13(—2), A14(=5) 3. Ma(-1) 4. Ax(6), A24(12)
19.
-4 2 ~1 1 =172 i 1 =172 . Rank(A) = 1.
-6 3 —6 3 0
L Mi(=3) 2. Ap(6)
20.
2 ~l 1 -1 i 1 -1 3 1 -1 4~ 1 0 zRank (A) = 2.
1 -1 3 2 0 5 0 1 0
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1. Pp

2. A1a(=3) 3. Ma(%)

4. An(1)
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1. Pz 2. Aa(—2), Az(—=3) 3. Mya(—1) 4. Azi(—=2), Axs(—1) 5.

11 11T 11
0 12 1 1 2 1 1

2 1

147
11T

1 0 5

adobla s odole o sdolog g sdilor 5l

0 0 4

1 3 7 10 0 1 0 1 7
[ 17T i
. 1 0 -5 1
~Lo 1 sdolo 1 od=iyRraka)=3
0 0 1 0 0 1

[ 11 1
3 3 6 1
L, 2> 411y

00
6 -6 12 0 00

1. Mi(%), Aw2(-2), Ai3(-6)

11T 11T 11T
-2 1 2 -5 125 10

Ms(%) 6. Agi(B), As(—3)

1
1

—7J~LO -1 3J~L0 1 —3J~L0 1 —3J,Rank (A)=2.

1 0 3 -9 0 3 -9 00

0

1 Axi(—1), Aa(=2), Az(2) 2. Ma(—-1) 3. Ax(—2), Ax(—3)

22.
23.
[
5
L > 3
-2 -1
24. [
l —
[3 -2
2 -1
4 =2

I 1[ 1 1

-1 2 1 -1 -1 102 3 100 5
07J ho 31j l|013 1J|3~|010 4J|
2 4 0 4 0 001 -1 001 -1
3 8 0 70 001 -2 000 -1
I 1[ 1

H100 5H|1000|

010 4 0100
F'o01 4 0010 | lwRak@A)=4

| J[OOOlJ

000

-
W
|
L o
& N

1. A(-3), A13( 2), Aa(—4) 2. Ax(1), A23(—1), Axa(=2) 3. Az1(—2), Az(—3), Azs(-1)

g 24 &4(—1) 5. A41(—5), A42(_4)1 A43(l)

U XL Z

I I 1[

1 -2 1 3 1 -2 1 1

IoLo o 1 zJ lo

0O 0 -1 -2
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-2 0 1

01 2J,Rank (A) =2
0 0O



1 Ap(=3), Az(—4) 2. Ma(-1) 3. Ax(-1), Axs(1)
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I 11
0

0121 0 1 0 1/3

11T 11
1 1 01 2 1

1 2

L0312J~l00—6—2J~l00 11/3J~L0011/3J

0201r00—4—1 0 0 -4 -1 0 0 0 173
0 1 0 173 0 1 0O
4 5
~loo1wsdoloo OJ,Rank(A):B.
0 0 0 1 0 0 01

1 Aa(=3), Aiz(—2) 2. Ma(—5) 3. Ax(—2), As(d) 4. M3(3) 5. Asa(-3), Asr(-5%)

Solutions to Section 2.5

True-False Review:

(a): FALSE. This process is known as Gaussian elimination. Gauss-Jordan elimination is the process by
which a matrix is brought to reduced row echelon form via elementary row operations.

(b): TRUE. A homogeneous linear system always has the trivial solution x =0, hence it is consistent.

(c): TRUE. The columns of the row-echelon form that contain leading 1s correspond to leading variables,
while columns of the row-echelon form that do not contain leading 1s correspond to free variables.

(d): TRUE. If the last column of the row-reduced augmented matrix for the system does not contain a
pivot, then the system can be solved by back-substitution. On the other hand, if this column does contain
a pivot, then that row of the row-reduced matrix containing the pivot in the last column corresponds to the
impossible equation 0 = 1.

(e): FALSE. The linear system x = 0,y =0, z = 0 has a solution in (0, 0,0) even though none of the
variables here is free.

(f): FALSE. The columns containing the leading 1s correspond to the leading variables, not the free
variables.

Problems:

For the problems of this section, A will denote the coefficient matrix of the given system, and
A# will denote the augmented matrix of the given system.

1. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

1 -5/3 1 1 -5[3 2 1 -5]3
3 915 7 0o 6'6 T 0 1'1

1 A(=3) 2. My(})

By back substitution, we find that x, = 1, and then x; = 8. Therefore, the solution is (8, 1).

2. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

4 -1/8 1+ 1 -2 2 1 -1] 2 s 1 -
~ 4 ~
2 11 2 11 0 3'-3 0
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1 Mi(y) 20 A(=2) 3. My(%)

w

By back substitution, we find that x> = -2, and thenxy, = _. Therefore, the solution is (2, —2).

N

3. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

7 =3|5 1 7 =3|5 2 1 -%|%
4 -6'10 - 0o o0'0 T 0 0'0

L A(=2) 2. My(%)

Observe that x» is a free variable, so we set xo = t. Then by back substitution, we have x; = St + 57
Therefore, the solution set to this system is

3 5
Steot teR .

4. Converting the given system of equations to an augmented matrix and using Gaussian elimination we

obtain the rollowing equivafent[matrices: —I r —I r —I
1211 1 2 1] 1 ) 121 1 5 121 1
l3513J~L0—1 -2 OJ~L012 OJ~L01 OJ.
2 6 71 0 2 5 -1 0 2 5|-1 0 0 1|-1

1 A(=3), Aiz(—2) 2. Ma(-1) 3. Ax(-2)

The last augmented matrix results in the system:

X1+ 2Xo + X3

Xo + 2X3
Xz = —1.
By back substitution we obtain the solution (-2,2, —1).

5. Converting the given system of equations to an augmented matrix and using Gaussian elimination, we
obtain the foIIowirg equivalent matricei: [ 11
3

3—10111—2—5— 1 -2 -5 =3

2
l2 1 5 4J~L2 1 5 4J~L0 5 15 10J
7 -5 -8 -3 7 -5 -8!-3 0 9 27 18

[ 11 1

1—2—5—341011

~L0 1 3 2J~L0132J.

0 9 27 18 0 00O

(c)2017 Pearson Education. Inc.



1 Ax(-1)

2. Aa(=2), Aiz(=7) 3. MZ(IE)

4. A2(2), Axs(-9)
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The last augmented matrix results in the system:

X1 + Xz=1,
Xo + 3X3 = 2.
Let the free variable x3 = t, a real number. By back substitution we find that the system has the solution
set {(1-t, 2~ 3t,t): for all real numbers t}.

6. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

11T 11T ]
35 -1/14 1 3, 1 2 1] 3 121 3
12 1|3
L 1oLy s tladibo op 4 5L 5 |
25 6|2 fS 6 2 1 4 -4 01 4| -4
11
4121\ 51213'
014 5 01 4 54
Lo oo o doLy ol

L Pz 2 Ap(-3)An(-2) 3 My(-1) 4 Axn(-1) 5 M-} |

This system of equations is inconsistent since 2 = rank(A) < rank(A*) = 3.

7. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices: 1T 1
2 1 -3

6 -3 3|12 1 - -1 12

Nl

z |
2 1

1
L > 1 4] 211 2 21 1| 44~10 0 0
(V]

0 1.
—4 2 -2 -8 —4 2 -2 -8 U U

L Mi()) 2. A(-2), Ars(4)

Since X, and X3 are free variables, let X, = s and x3 = t. The single equation obtained from the augmented
matrix is given by x; — %xz + %Xg = 2. Thus, the solution set of our system is given by

e+ St

5 E,s, t) : s, t any real numbers }.

8. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices: [ 1T
2 15 1

2 -1 3|14 3 -2 -1 1 -5 - 2 -5 -15
[3 1 -2 —1Jih2— 3 14j2~l|2 -1 3—14J|3~|0 -5 13 44J|
7 2 -3] 3 7 2 -3 3 7 2 -3 3 0 —12 32| 108
5 -1 -2 5 5 -1 -2| 5 5 -1 -2| 5 0 -11 23| 80
1 2 -5|-15 1 2 -5 -15 1 2 -5 -15

ito -12 32 108J|§VI|O -1 9 28 I|6~||0 1 -9|-28 I|
0 -5 13| 44 0 -5 13 44 0 -5 13 44

(c)2017 Pearson Education. Inc.



-11

23

80

(c)2017 Pearson Education. Inc.

-11

23

80



151

12 -5 — 2 5| - 2 5| -15
7 l 01 -9 -28 J l 01 -9 —28 J l 0 1 -9|-28 J
“Lo o -32| -9 0 0 32 0 O 1 3
0 0 —-76 -—-228 0 0 -76 —228 0 O 0 0
1 P 2. Aai(-1) 3. Awa(—2), As(=7), Awa(=5) 4. Py
5. Ap(—1) 6. Ma(=1) 7. Ax(5), Ap(1l) 8. Ma(=1) 9. Ms(3,), As(76).

The last augmented matrix results in the system of equations:

X1 — 2Xp — bxg = —15,

Xo — 9X3 = 28,
X3 = 3.
Thus, using back substitution, the solution set for our system is given by {(2, —1, 3)}.
9. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equi\ﬁalen matrices: _I r _I r _I
2 -1 - 1 1 -3 - 1 -3 -3 1 1 -3 -3
l3 2 -5 SJih?’ 2 j l|o -1 4 17J|3~l|0 1 -4 —17J|
5 6 —6|20 5 6 —6 20 9 35 0 1 3
1 1 -3 -3 2 -1 —-4|-5 2 11 0 -3 2 11
11 -3| -3 11 -3 -3 11 -3 -3
4|01 —4 —l7|5|01 —4 —17|6|01—4 —17|
0 0 -10 | —40 0 0 10| —40 00 O 0
1. Py 2. Aa(=3), Aa(—=5), Awa(=2) 3. Ma(=1) 4 Ax(—1), Au(B) 5. Ms(5;) 6. Ags(10)

The last augmented matrix results in the system of equations:

X1+ Xo — 3Xz3 = — 3,
Xo — 4xz3 = —17,
X3 = 4.

By back substitution, we obtain the solution set {(10,

—1,4)}.
10. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

11T 1
12 -1 11 12 -1 11
L2 4 2 202d-Loo o olod
5 10 -5 5 5 00 000

1. A12(=2), A13(-5)

(c)2017 Pearson Education. Inc.



The last augmented matrix results in the equation x; + 2X3 — X3 + X4 = 1. Now Xy, X3, and X4 are free
variables, so we let xo =1, X3 =35, and x4 = t. It follows that x; = 1 —2r +s —t. Consequently, the solution
set of the system is given by {(1 - 2r +s —t,r, s,t) : r, s, t and real numbers }.

(c)2017 Pearson Education. Inc.
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11. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

11T b
1 2 -1 1|1 1 2 -1 1 1 2 -1 1 1
2 -3 1—12|1|0—7 3 -3 olzllo 1 -3 3 oI
l1—5 2 -2 1J~io—7 3 -3 0J~[0—7 3 -3 oJ
4 1 -1 1 3 0 -7 3 -3|-1 0o -7 3 -3' -1
I 11T 1T ]
12 -1 1] 1 12 -1 1] 1 12 -1 11
3|01_§§ 0|4|01_§3 0|5|§8_gg‘él
~ I 7 7 ~ I 7 ~ I 7 7
L[oo ,, of7Loo 001 :
00 00 -1 00 00 0
1 A(=2), Ais(—1), Awa(—4) 2. Ma(=%) 3. A(7), Au(7) 4. Py 5. M3(-1)

The given system of equations is inconsistent since 2 = rank(A) € rank(A#) = 3.

12. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices: 1

1211—23112112321211—23
L00 1 4—32J~L00 1 4 -3 2J~L0014—32J.

2 4 -1 =10 5 O 00 -3 -12 9 -6 0000 00O

1 Ai(=2) 2. Ax(3)

The last augmented matrix indicates that the first two equations of the initial system completely determine
its solution. We see that x4, and x5 are free variables, so let x4 = s and Xs = t. Then X3 = 2 — 4X4+ 3x5 =
2—4s+3t. Moreover, X, is a free variable, say X, =r, so then x; = 3—2r—(2—4s+3t)—s+2t = 1-2r+3s—t.
Hence, the solution set for the system is

{(1-2r +3s —t,r,2—4s +3t,s, t) : r, s, t any real numbers }.

13. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices: _I [ _I [ _I
4 1 4 1 4 1 4 1 4

1 2 3
Ly 3 2|0 dobls 3 2 adolo 213 =) v delo =9 -3 6
1 4 1 4 2 -1 -1 2 0 -9 -3| -6 0 -13 -6 -17
I 11 11 11 1
1 4 1] 4 1 4 1 4 1 4 1 4 1 4 14

~Lo 12 4 sd-lo 12 4 sdilo -1 -3 -od-Lo 1 ol

(c)2017 Pearson Education. Inc.
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1. P12 Aa(—4), Aia(—2) 3. Piz 4 My(—%3) 5. Ax(l)
6. Pis 7. Mp(—1) 8. Ay(—4), Axz(—12) 9. Ms(—3,) 10. As(7), As(-2)

The last augmented matrix results in the solution (3, —1,5).

14. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the followirl1_g equivalent matrices:
1 1 1 1

2 —
1 2
I~11—1 1J~L31 52J~LO -2 8—1J
21 2 3 2 1 2|3 0 -1 4] 1
[ T 1
1 1 -1]1 11 1] 1
3 1 4
~ Lo 1—4§J~L01—4 w2 1
0 -1 41 0 0 0 32

We can stop here, since we see from this last augmented matrix that the system is inconsistent. In particular,
2 = rank(A) < rank(A*) = 3.

1. Py 2. Alg(—3?, Ais(-2) 3. Ma(—3) 4. Ax(1)

15. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

11T 11T 1
1 0 -2[-3 1 0-2-3 1 0-2-3 10 -2[-3
Ls 2 4|0l lo 2 2 odilo 1 24 odilor -4 ol
1 -4 2 -3 0 -4 4 0 0 -4 4| 0 00 0 0

1. A2(=3), Aiz(—1) 2. Mx(=3) 3. Ayx(4)

The last augmented matrix results in the following system of equations:
X1 — 2X3= =3 and | Xo — X3 =0.

Since X3 is free, let X3 = t. Thus, from the system we obtain the solutions {(2t-3,t,t) : t any real number }.

16. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices: 1T 1
6 1

2 -1 3 -1] 3 1 -2 3 -2 3 1 6

1 2

L3 2 1 -5 —6J~L3 2 1 -5 —6J~LO 8 -8 -8 —24J
1 -2 3 1 6 2 -1 3 -1 3 0 3 -3 -3| -9

1 -2 3 1 6 10 1 1 0
(c)2017| Pearson %ducation. Inc.
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0

1 -1 -1 —3J~LO 1 -1 -1 —3J.

3 -3 -3 -9 0 0

0 0 O

1. Pi3

2. Aa(=3), Aia(=2) 3. My(})

4. A2(2), Azs(-3)
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The last augmented matrix results in the following system of equations:
X1+ X3—X4=0 and Xo — X3 — X4 = —3.

Since X3 and x4 are free variables, we can let X3 =s and x4 = t, where s and t are real numbers. It follows
that the solution set of the system is given by {(t—s,s +t—3,s,1) : s, t any real numbers }.

17. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

11T 1

1 1 1 -1 4 1 1 4

|1 -2 o1 1] 2 ]iho 2 2 o0 —2|glléii_éill

e [8_2 _(2) g__ng Loo1 -1 3l

1 -1 1 1 -8 010 -1/6
[ 11 11 I 1
10 0 -1|3 100 -1 3
3||01 1 01|4||010 1—2|I5||(1)28‘i g:lﬁllo(l)gg_;”
“Loo 1—13J~L001—1 s U001 24 el'lo 01 0 1l
00 -1 -1 5 000 —2| 8 000 1]-4 000 1 —4

1. A(-1), Ais(-1), Awa(-1) 2. Ma(=3), Ma(=3), Ma(=3%) 3. Az(-1)
4. Aza(=1), Asa(l) 5. Ma(=3) 6. Au(l), As(-1), Ass(l)

It follows from the last augmented matrix that the solution to the system is given by (—1,2, -1, —4).

18. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

[ 1
I 2 -1 3 1 -1 I I -3 -2 -1 =2 I I -3 -2 -1 =2 2 I
1 -3 -2 -1 =2 2 -1 3 1 -1 O 5 7 3 3 7
I | I | |
3 1 -2 -1 1 3 1 -2 -1 1 4 2 71|-8
l 1 2 1 2 3 J l 1 2 3 J [ 3 3 5] -5 J
5 -3 =3 1 2 5 -3 =3 1 2 12 7 6 12 -8
r 1 -3 -2 -1 =2 —I r 1 0 11 4 _ 4 31 —I 10 11 4 _ 4 31
3
3'01g§b5!4'012§§lelmizé-_é-;’
| 0 10 4 2 7| -8 I |
+y 0 5 3 3 5 -5 ~ 00 -10 -4 1 -2,~ 00 1 2 - 1
0 12 / b 12| -8 5 10 5
J 0 0 -4 0 21 =12 00 -4 0 =12
00 -% -5 ¥ ¢ 00 % -f |-
r 2 1 34 1 r 2 1 34 —I 1 6 —I
100 =% 5| 2 100 -5% 5| = 0| s
010 1 37 | 42 1 37 42 7 8
0 0 1 " _
6 II 0 00 25 50 | ~ 25 i 7 I 010 25 50 | T 25 I8 II 0|75 I
- 000 2 _1 11 - 0 2 _1 1 - _1 3
(c)2017 Pearson Education. Inc.
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L P 2. Aa(—2), A1a(—3), Awa(—1), Ais(=5) 3. Ma(%) 4. Anu(3), Azs(—10), Azs(—5), Azs(—12)

5. Ms(— o) 6. Asi(- %), Asa(-1), Au(4), A35(49) 7. M4( )
8. Au(£), As(-2), Asz(-£), Ass(-5 9. Ms($2)  10. Asi(—4 ), Asa(- 10) As3(F), Ass(—1)

It follows from the last augmented matrix that the solution to the system is given by (1, —3,4, —4, 2).

19. The equation Ax = b reads
I m 11 1
1 -3 1 X1 8

Ls o 1AL, 1=l 51

2 4 -3 X3 —4

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the f0||0V\ii.ng equivalent matricfs:

1T
-3 1 L 8 5 .
- 1 -3 1| 8
I~5 —4 1 15J~L0 11 -4 —25J~L0 1 1 -5 1
2 4 -3 -4 0 10 -5 =20 0 10 —-51| =20
[ 1 [ 1 i
, 10 a7 10 4[=7 " 10 0] 1
0 1 1 0 1 1/|-5
[LO 0 —15‘30 ~ 0 0 l‘—2J~I~0 1 0 —3J.
0 0 1 -2

1. Aa(=5), A13(=2) 2. Az(-1) 3. An(3), Ax(—10) 4. Ms(—1) 5. Asi(—4), As(-1)

Thus, from the last augmented matrix, we see that x; = 1, X, = -3, and X3 = —2.

20. The equation Ax = b reads
I m 11 1
1 0 5 X1 0

Ls 2 ully 1=l 1

2 -2 6 X3 2

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the foIIowing[equivaIent matrice[s: r

11T ]
1 0 s5/0 1 0 5[0 1 0 5 0
Ls 2 mlodoblo =2 4lodobo 1 4 -1
2 —2 6 2 ?—2—42 0 =2 —4| 2
L, 105 0"
01 2 -1,
~LUUUU

1 Aa(=3), As(=2) 2. Ma(-1/72) 3. Axs(2)

Hence, we have X3 + 5%z = Q and x, + 2x3 = -1, Since Xz is a free varigble, we can_let x where S
any real number. bt fcﬁlgws 81at the “solUtion set for tHe gl\?en system Is given by {(—5t, —Zf’ 1 1) I&}

(c)2017 Pearson Education. Inc.



21. The equation Ax = b reads

m 11 1

01 -1 X1 -2
Los 11l 1=l 51
02 1 X3 5
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Converting the given system of equations to an augmented matrix using Gauss-Jordan elimination we obtain

the foIIow'Ing equivalent matﬁ'lces:r —I r
01 -1|-2 . 01 -1|-2 ) 1 . r 0101 1
0 0 6 18 01 —-1|-2
L05 1 8J~L J~LOO 1 3J~l0013J.
02 1 5 0 0 3 \ 9 0 0 3| 9 0 0 00

1. Aa(-5), Az(=2) 2. Ma(1/6) 3. Axu(l), Azs(-3)

gi%rs]egyeﬁlyi g)om th%}ast augmented matrix it follows that the solution set for the matrix equation is

22. The equation Ax = b reads r —Ir —I
- I
LZ 1 3 7JI~X2J=|~2J.
3 21 0 X3 4
Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
tain the following eqyivakent matrices:
P o caghep 11 11 1
1 -1 0 -1/2 1 -10 -1] 2 1 -1 0 -1 2 10120
2 13 72 7 2 —24%L0 1 13 24
L J~L0 3 3 9‘—2J,L0 1 1 3| -2 00 0 0 4
3 -2 1 0 \ 4 0 11 3 -2 0 3 3 9
1 A(=2), Az(—3) 2. Pz 3. Axu(l), Ax(-3)
From the last row of the last augmented matrix, it is clear that the given system is inconsistent.
23. The equation Ax = b readsr 1[ 1 r —I
| 510 SN2 2
31 -2 3 X2 8
I i 1_1 |
L 2 3 1 1 JL X3J L 3J
-2 3 5 =2 X4 -9
Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
tain the following equivglentymatrices:
P o ey 17 17 1
11 0 1] 2 1 01 2 1 1 01 2 10 -1 1 3
l31—2 3 SJihO -2 —20 jho —1J|3~|01 10—1J|
23 1 2| 3 0o 1 -1 o 2 00 O '
-2 3 5 -2 -9 0550—5 50—5 00 00| O

1 A12(—3), A13(—2), Awa(2) 2. Pz 3. Ax(—1), Ax3(2), A24(-5)

From the last augmented matrix, we obtain the system of equations: X3 — Xz+ X4 = 3, Xz + X3 = -1.
Since both x3 and x4 are free variables, we may let x3 = r and x4 = t, where r and t are real numbers.
The

solution set for the system is given by {(3+r —t,-r—-1,r,t):r,t ER}.

(c)2017 Pearson Education. Inc.



24. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination

we obtain following equivalgnt mpatrices:
fe 9 equivalnt rpa R L]

1 2 -1 3 . 1 2 -1 5 2 -1
L2 5 1 7J~LO 1 3 1 J~LO 1 3 1 J
1 1 -k -k 0 -1 1-k* -3-k 0 0 4-kK* -2-k

(c)2017 Pearson Education. Inc.
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1 A(=2), Az(—1) 2. Axs(1)

(a). If k = 2, then the last row of the last augmented matrix reveals an inconsistency; hence the system has
no solutions in this case.

(b). If k = -2, then the last row of the last augmented matrix consists entirely of zeros, and hence we have
only two pivots (first two columns) and a free variable xs; hence the system has infinitely many solutions.

(c). If k = #£2, then the last augmented matrix above contains a pivot for each variable X;, X», and X3, and
can be solved for a unique solution by back-substitution.

25. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices: _I r
0 1

l

2 1 -1 1]0 1 1 1 -1 -1 0

Jihz 1 -1 10jz~l|o -1 -3 30J|
4 2 -1 1|0 0 -2 -5 5 0
3 -1 1 k|0 0 -4 -2 k+3 |0

[ 11 11 1
0 1 0 1

1 1 1 -1 11 -1 0

w b
=N e
N
e
o oo

11 -1

3o 1 3 —3o||4~||01 3 -3 0||5~||013 —30||
-0 -2 -5 504 " L00 1 -1 0 L 001 -1 O
0 -4 -2 k+3 0 0 0 10 k=9 0 000 k+1 0

1 P 20 Ap(—2), A1a(—4), Aia(—3) 3. Ma(=1) 4. Axs(2), Au(4) 5. Az(—10)

(a). Note that the trivial solution (0, 0,0, 0) exists under all circumstances, so there are no values of k for
which there is no solution.

(b). From the last row of the last augmented matrix, we see that if k = —1, then the variable x4 corresponds
to an unpivoted column, and hence it is a free variable. In this case, therefore, we have infinitely solutions.

(c). Provided that k = -1, then each variable in the system corresponds to a pivoted column of the last
augmented matrix above. Therefore, we can solve the system by back-substitution. The conclusion from
this is that there is a unique solution, (0, 0,0, Q).

26. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices: [ 1T 1
4 1 2

11 -2| 4 11 -2 4 11 =2 0 -3
1 2 3
L35—4 16J~L02 2 4J~L01 1 2J~L01 1 2 J
2 3 -a b 0 1 4-a bh-38 0 1 4-a bh-38 0 0 3—a b-10

1 A(-3), Ais(-2) 2. Ma(y) 3. An(-1), Ax(-1)

(a). From the last row of the last augmented matrix above, we see that there is no solution if a = 3 and
b= 10.

(c)2017 Pearson Education. Inc.



(b). From the last row of the augmented matrix above, we see that there are infinitely many solutions
if a = 3 and b = 10, because in that case, there is no pivot in the column of the last augmented matrix
corresponding to the third variable x3.
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(c). From the last row of the augmented matrix above, we see that if a = 3, then regardless of the value
of b, there is a pivot corresponding to each variable X;, X, and X3. Therefore, we can uniquely solve the
corresponding system by back-substitution.

27. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalerII matrices: _I r _I
3 1 3

—-a 1 a
L 2 1 ledoblo 1424 01
~3 a+b 1 0 b—2a 10

From the middle row, we see that if a = —15, then we must have x, = 0, but this leads to an inconsistency in
solving for x; (the first equation would require x; = 3 while the last equation would require X; = _l§. Now
1 -1/2, 3 _

0 b+1 |10 ° ITh=-1,

then once more we have an inconsistency in the last row. However, if b = -1, then the row-echelon form
obtained has full rank, and there is a unique solution. Therefore, we draw the following conclusions:

suppose that a = —%. Then the augmented matrix on the right reduces to

(a). There is no solution to the system ifa=—-%orifa=—-%and b= -1.

(b). Under no circumstances are there an infinite number of solutions to the linear system.

(c). There is a unique solution ifa = —1§ and b= -1.

28. The corr(isponding augmertedl_matrix for this linear syftenrcan be reduced to row-echekin form via
1

11 1|y 11 1 v

1 1

2

L231y2J~L01—1 y2—2y1J~L01 -1 y2—2y1 J
3 5 1 vys 0 2 -2|y;-3y1 0 0 O0fy1—2y;+y3

1. A2(=2), Az(—3) 2. Ax(-2)

For consistency, we must have rank(A) = rank(A¥), which requires (yi, Yo, y3) to satisfy y; — 2y, +y; = 0.
If this holds, then the system has an infinite number of solutions, because the column of the augmented
matrix corresponding to ys will be unpivoted, indicating that y; is a free variable in the solution set.

29. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following row-equivalent matrices. Since a;; = 0:

a1z by a2 b

ap ap |[bp 1 1 a,. an 2 1 32 2
b ~ agpail —azidiz | Aiibp—apiby 0 ~ Az

azg ax b 0 s an A | ap

ay

[

1. Ml(llan), Alg(—agl) 2. Definition of A and A,

(a). If A =0, then rank(A) = rank(A*¥) = 2, so the system has a unique solution (of course, we are assuming
a;; = 0 here). Using the last augmented matrix above, ?‘n Xo = %i, so that x, = AAZ. Using this, we can

solve X + 22X, = 2L for x; to obtain x; = %!, where we have used the fact that Ay = agby — azobs.

1 a2 by

(b). If A=0and a;; =0, then the augmented matrix of the system is au | a0 it follows that
(c)2017 Pearson Education.”Inc.



0 0 Az
the system has (i) no solution if A, = 0, since rank(A) < rank(A*) = 2, and (ii) an infinite number of
solutions if A, = 0, since rank(A*) < 2.
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(c). An infinite number of solutions would be represented as one line. No solution would be two parallel

lines. A unique solution would be the intersection of two distinct lines at one point.
30. We first use the partial pivoting aigorI'{hm to reduce 1he irugmented matrix of thf system:
1

1211 3513 3 5 1

L3 5 1[3

26 ol Ly o 11 dobo s a3l ol
26 7 1

0 8/3 19/3 -1

1
7
[ 1 [ 1

3 5 1 3 5 1 3

3 4

~ L 0 8/3 19731 -1 J~ L 0 8/3 19/3 -1 J
0 1/3 2/3 0 0 0 -1/8 1/8

1. P 2. Aa(=1/3), Aiz(=2/3) 3. Py 4. Ay3(—1/8)

Using back substitution to solve the equivalent system vyields the unique solution (—2,2, —1).

31. We first rse the partial pivotipf] algorithm to reduce thf aulgmented matrix of the systeml'
-1 3| 14 7 2 -3 3 7 2 -3

ls 1 -2 _1Jih3 1 -2|-1 le |0 /7 —-5/7 | -16/7 J|
7 2 -31 3
5

2 -1 3 —11/7 27/7| 92/7
5 -1 -2 5 -1 -2 o —17/7 U7 | 20/7
702 -3 72 -3 3
so —1/7 w7 20/7 | |o —-17/71 17| 20/7 |
| O W7 217 97 Ty 0 0 6417 | 192/17
0 /7 -5/7 -16/7 0 0 —12/17 -36/17
702 -3 3
5 [ 0 —17/7 17 | 20/7
0 0  64/17  192/17
0 0 0 0

1. Pi3 2. A1p(=3/7), A1a(=2/7), A4(=5/7) 3. Py
4. Ax3(—11717), Apa(1/17) 5. Ag4(3/16)

Using back substitution to solve the equivalent system yields the unique solution (2, —1, 3).

32. We first uie the partial plvotln% algierlthm to reduce thejugTented matrix of the systeT:

-1 -4] 5 5 6 -6 -20 6 -6 20
l3 2 -5 BJik3 2 -5 J|2|!O -8/5 —1/5 | -4 J|
5 6 —6120 2 -1 -4 -17/5 -8/5| -3
1 E -3 -3 1 1_3f —3 -1/5 -9/5| -7
5 6 -6 6 -6 20
gto -17/5 -8/5 | -3 ﬁ‘h I|o -17/5  —8/5 -3 I|
0 -8/5 -7/5 -4 0 0 -—11/170 —44/17

(c)2017 Pearson Education. Inc.



L 1

0 -5 -=9/5 -7

0  —29/17 -116/17
[ 19 1
5 6 -6 20 5 6 -6 20
5| 0 -17/5 —8/5 -3 |6| 0 -17/5 -8/5 -3 |
~E 0 0 —29/17 —116/17J ~[! 0 0 —29/17 —116/17J :
0 0  —11/17 —44/17 0 o0 0 0

(c)2017 Pearson Education. Inc.
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1. P13 2. Ap(=3/5), A13(=2/5), A14(=1/5) 3. Py
4. Ags(=8/17), Apa(~1/17) 5. Pay 6. Asu(—11/29)

Using back substitution to solve the equivalent system vyields the unique solution (10, —1,4).

33. We first usTthe partial pivoting algorithm to reduce the augmented matrix of the system:
2 -1 —-1] 2 S I R I T 2 2
1 2
L4 3 =2 —1J~L2 -1 -1 2J~LO -5/2 0 5/2J
1 4 1 4 1 4 1| 4 0 1374 3/2 17/4

[ 11 1

4 3 2| -1 4 3 -2 | -1

3 4

Lo 1 snlumd Lo wa a2l sl
0 -5/2 0 5/2 0 0 15/13 75/13

1. P 2. Aip(=1/2), Ais(~1/4) 3. Pz 4. Ag(10/13)

Using back substitution to solve the equivalent system vyields the unique solution (3, —1,5).
34.

(a). Let [ ‘|
ail 0 0 C 0 bl
apg azp 0 ... 0 b,
A# = dsz; az2 azz ... 0 b3
dn1 adn2 an3z .- dnn bn

represent the corresponding augmented matrix of the given system. Since a;;X; = by, we can solve for x;
easily:
J
X1 =, (a1 =0).
! an

Now since a1 X1+ azaXo = b, by using the expression for x; we just obtained, we can solve for x;:

X, = by, —asihy
a11az?

In a similar manner, we can solve for X3, X4, ..., Xn.

(b). We solve instantly for x; from the first equation: x; = 2. Substituting this into the middle equation,
we obtain 2-2 —3-x, = 1, from which it quickly follows that x, = 1. Substituting for x; and X, in the
bottom equation yields 3-2 + 1 — x3 = 8, from which it quickly follows that x3 = —1. Consequently, the
solution of the given system is (2, 1, —1).

35. This system of equations is not linear in X1, X, and X3; however, the system is linear in x3, X%, and Xz,
so we can first solve for x3, x3, and x3. Converting the given system of equations to an augmented matrix
and using Gauss-JFrdan elimination WEIOthﬂ'n the following eqtlivaFnt matrices: ‘I

4231211—11221112

Ll—l 1 2J~L4 2 312J~L0_6 -1 4J

(c)2017 Pearson Education. Inc.
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I 11 11 1
1 - 2 1 - 2 10 0] 1
3 4 5
Lo 4 24l 41 Lo 1 2 —1J~L01—J i
0 6 -1 4 0 6 -1 4 00 5 10
I 1
10 0] 1 100 1
6 7
~log cal g dolbo g o2l
o0 1 2 00 1|2

1 P 2 Au(=4), Ais(=3) 3. Py 4 My(1/4)
5. Axi(l), Axz(—=6) 6. Ma(1/5) 7. Aszx(1)

Thus, taking only real solutions, we have x§ = 1, x3 = 1, and xz = 2. Therefore, x; = 1, X, = #1, and
X3 = 2, leading to the two solutions (1,1,2) and (1, —1,2) to the original system of equations. There is no

contradiction of Theorem 2.5.9 here since, as mentioned above, this system is not linear in X1, X2, and Xs.
36. Reduce the augmented matrix of the system:

11 11 1
3 02 -10 1 1 =200 1 o 10 30
2 1 1/0
L I.Lo -1 slodilo 1+ s od-Lo1 -5 0l
5 —4 1[0 0 -9 11 0 0 -9 11 0 00 —34|0
11 ;
, L0 3o T1o0o00
01 —50 01 00
~Lloo 1o d-Louie

1 A2i(—1), Aa(—=2), Az(—5) 2. Ma(=1) 3. Ax(-1), Ax(9)
4. M3(—=1/34) 5. A31(—3), A3x(5)

Therefore, the unique solution to this system is X; = X, = x3 = 0: (0, 0, 0).
37. Reduce the augmented.matrix of the system:

I 1
-1/0 1 -1 -10 1 -1 -1 -10
|3—1 20|£||3—1 20H2~||0 2 5 1o|
1 -1 -1/0 2 1 -1]0 0 3 10 5/0
I 11 11y 3 5011 1
5 2 =20 5 2 -2/0 O||1—1 30
0 0 3
[ 1T 1T Palg 2
1 -1 -1]0 10 -50 10 -5 0 0
1 40 7
s 40 1—40||5||00130|§||01—40"1000|
0 2 50 00 151,191 /0
L 11 11 o1 Loo 1| |
0 7 30 0 0 31]0 0 0 310 0000

1 Pz 2. Aa(=3), A13(—2), A1a(=5) 3. Pz 4. Aszx(-1)

(c)2017 Pearson Education. Inc.



5. Axi(1), Az3(—2), Axa(=7) 6. M3(1/13) 7. Agi(5), As2(4), Aza(—31)

Therefore, the unique solution to this system is X; = X, = x3 = 0: (0, 0, 0).

38. Reduce the augmented matrix of the S)fstem:
11 1
2 -1 =110 0 ) 1 1 4 0
L5 -1 20J~L5 -1 20J~LO -6 -18 OJ
1 1 4 0 2 -1 -1 0 0 -3 -9]0
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410, 1010

3
~Lo 1 3\0J~L013

0 -3 -9 0 0 0O
1. Pz 2. Aa(-5), A13(—2) 3. Mx(=1/6) 4. A (1), A23(3)

ol

0

It follows that x; + X3 = 0 and X, + 3x3 = 0. Setting Xz = t, where t is a free variable, we get x, = —3t and
X1 = —t. Thus we have that the solution set of the system is {(—t, =3t,t) : t €R}.

39. Reduce the augmented matrix -pf the system:
[° T T | 1
1+2i 1-—i 1 i 1+ =i 0 5 1 1—-i -1 0
L i 1+i  —i OJ~L1+2i 1—i 1 OJ~L1+2i 1—i 1 OJ
fi 1 1+3i 0 r2i 1 1+3i|0 2i 1 1+3i QI
. 1 1—i -1 ‘O . 1 1—i -1 ‘O 1 1-i -1 0
~L0 -2-2i 1+2i|0 A~ L0 —-2-2I 1+2i 0J L 0 -5+8i OJ
0 -1-2i 1+5i|0 3i 0 0 1 i 0
A ﬁ [ B | 9
1 1-i —1 1 1-i -1]0 o 1 00]0
S ey 1 OJvL010‘OJ.
0 O —5+8| J LO 1 3i |V U 01U

0 1

1 Py 2 Mi(-) 3 An(—1-2i), As(=2i) 4 Ax(-1) 5. An( +2i)
6. Pos 7. Ma(—ghg) 8. Aar(—1+i), Az(l), Asx(-3i)

Therefore, the unique solution to this system is X; = X, = x3 = 0: (0, 0, 0).

40. Reduce the augn]entedmatrix of th&i syitem: —I r —I
3 2 1|0 . 1 % 1|0 , 1 %2 110
L6—120J~L6—120J~L0 —500J
12 6 4 0 12 6 4 0 -0 -2 00
I 11 1
1 2 1o 10*%'o0
3 4
~ LO 1 0'0 J~ L0 1 00 J
0 -2 0 0 0 0010
1. My(173) 2. Ap(=6), Ai3(—12) 3. Mp(=1/5) 4. A21(—2(3), Az3(2)
e 5 AT T S e o B 300 R Y54 e
41. Reduce the augmented matrix of thg system:
i T of o 1
2 1 -8]|0 3 -2 -5 1 -3 30
|3—2—50|,£I|2 1—80|3||5—§:80||
5 -6 -3|0 5 -6 —-3|0 3 -5 110
LS -5 1 0J L3 -5 1 0J L J
(c)2017 Pearson Education. Inc.
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1 P 2. Au(—1) 3. A12(—2), A13(=5), A1a(—3) 4 Mx(1/7) 5. Axn(3), A2(—9), Az(—4)

From the last augmented matrix we have: X; — 3xz3 = 0 and X, — 2x3 = 0. Since X3 is a free variable, we let

X3 = t, where t.is a real _number. [t _follows that x, = 2t and x; = 3t. Thus, the solution set for the given
syisten’ i8 given by 7(3t 2t4) t € I!Q}. 2 ! g

42. Reduce the augmented matrix of the system:

. . . 1T o
1 1+ 1—-1 1|0 L 1 1+ 1-1 0 ) 1 1+1 1-1 0
l i 1 i 0J~l0 2—i -1 0J~l0 2—i -1 0J
1-2i -1+i 1-3i 0 0 -4+2i 2 0 0 0 0 0
_ e 2ol
1 1+i 1-i|0 1 0 = |0
3 4
~Lo 1 % 0J~Lo == | OJ.
0 0 0 0 0 0 0 0

Lo A(-i), As(-1+2i) 2. Ap(2) 3. Ma(5Y) 4 An(-1-1)

From the last augmented matrix we see that x3 is a free variable. We set x3 = 5s, where s € C. Then
X1 =2(i —3)s and Xz = (2 +1i)s. Thus, the solution set of the system is {(2(i— 3)s, (2 +1i)s, 55) : s € C}.

43. Reduce the augmented matrix of the system:

T 1
1 -1 1]0 1 -1 10
-1 10

|o 3 20|i|0 3 20|g||0 12/30||

|3 o -10] |0 3 —40] Lo —4| 0 |
5 1 -10 0 6 —6 0 o & —6lo
I 1T T 1
10 5/3|0 10 530 1000
3[012/3 OJil012/3 0J5l0100J
00 —60 00 1|0 00101}
0 0 -10 0 00 -10 0 0000

1. A13(=3), Aua(=5) 2. Mz(1/3) 3. Axu(l), Azs(—3), Aza(-6)
4. M3(—=1/6) 5. A31(—5/3), Az2(—2/3), A34(10)

Therefore, the unique solution to this system is X; = X, = x3 = 0: (0, 0, 0).
44. Reduce the augmented matrix of the system:

2 -4 6|0 1 -2 301 r1—2301
0 0/0

ls -6 90J1l3 -6 90J2~l0 J
1 -2 3|0 2 -4 6|0 0 0 0]0
5 —10 15 0 5 —10 15|0 0 000

1 Mi(172) 2. A12(=3), A13(—2), Awa(-5)

(c)2017 Pearson Education. Inc.



From the last matrix we have that x; — 2x3 + 3x3 = 0. Since x, and X3 are free variables, let x, = s and
let x3 =t, where s and t are real numbers. The solution set of the given system is therefore {(2s — 3t, s, t) :
s, t ER}.
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45. Reduce the augmented matrix of the system:

. 11 .
4 -2 -1 -1.0 1 -3 1 -4]0 1 -3 1 —-40
L3 1 — 30J~1L3 1 -2 3/o0d2 0 10 -5 15 0 4
rb -1 =2 1 U‘I r5 -1 =2 1 O‘I r O 14 -7 2110
1

1 -3 1 —-410 -3 1 -4 0

: N .1 -3 1 -40
~lo 2 -1 3 0J~[o 2 -1 3 0J~L0 1 =172 3/2 |0 1,
0 2 -1 30 0 0 0 0|0 v v v (U

1 Ax(-1) 2. A12(=3), Az(=5) 3. M2(1/5), M3(1/7)
4. Asz(~1) 5. Mp(1/2)

From the last augmented matrix above we have that x, — §x3+ %x4 = 0and x; —3xy+X3—4x4 = 0. Since X3
and x4 are free variables, we can set x3 = 2s and x4 = 2t, where s and t are real numbers. Then x, =s —3t
and x; = s — t. It follows that the solution set of the given system is {(s—t,s —3t, 2s, 2t) : 5, t ER}.

46. Reduce Ihe augmented matrix oflthelsystem: —I r —I
2 1 -1 1]0 1 1 1 -1]0 1 1 1 -1]0
|111—1o|iﬁz 1 -1 1o|3|0—1—3 30||
3 -1 1 =210 3 -1 1 =210
| L3 12100 Ly 4 5 400
4 2 -1 10 0 -2 -5 5|0
[ 110 110 1
1 1 1 -11]0 1 0 =2 2|0 1 0 -2 210
3I0 4 -2 10|4||01 3 —30I5||89]g = 8||
1o Tpoo 10 -0 |7 OOJOO
00 -3 30 1 0700
0 -2 -5_ 5]0
I ) 11 11 ]
1 - 0 0|0 1
00 00
6I013—30I7I010 oo|s|01o oolglo |
I - || | _ 1 I
o0 1 -1)0 001 -1[0
J]oo 10 -12 0] Jooo -1 0| L001 1‘0J[ 1

1. Py 2. A12(—2), A13(—3), Aua(—4) 3. Ma(-1) 4 Ax(-1), Axs(4), Ax(2)
5 P 6. M3(—1/3) 7. Az(2), Asz(—3), Azs(—10) 8. Mu(—1) 9. Aus(1)

From the last augmented matrix, it follows that the solution set to the system is given by {(0,0,0,0)}.

47. The equation Ax =0 is
2 -1 X1 0

3 4 X2 0]

Reduce the augmented matrix of the system:
2 -1/0 1 1 -Yj0o 2 1 -0 3 1 -0 4 100

(c)2017 Pearson Education. Inc.
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[EEY N

2~ ~
3 40 o #lo 0

1 My(172) 2. Ap(=3) 3. Mp(2/11) 4. Ap(1/2)
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From the last augmented matrix, we see that x; = X, = 0. Hence, the solution set is {(0,0)}.
48. The equation Ax =0 is

1—i 2i x; - 0

1+i =2 X2 0
Reduce the augmented matrix of the system:

1-i 2|0 . 1 -1+i 0 2 1 -1+i 0
1+i -2 0 1+i -2 0 0 0 0

L Mi(%) 20 Ap(-1-1)

It follows that X, + (=1 + i = 0. Since X, is a free varigble, we can let x, = t, where t is a complex
number. The so)fﬁtlon( set to )tﬁg system |nstheﬁ gslven by (?ta— i),t):t E& 2 P

49. The equation Ax =0 is
1+i 1-2i X1 _ 0
-1+ 2+ X2 0

Reduce the augmented matrix of the system:
I+i 1-2i[0 1 1 -3

“1+i 2+il0 T -1+ 2+i

0
0

0 2 1 -3

o~ 0 o0

L M) 20 Ap(l - )

It follows that x; — 1+T3ix2 = 0. Since X, is a free variable, we can let X, = r, where r is any complex
number. Thus, the solution set to the given system is {(1+T3'r, r):r eClL

50. The equation Ax =0 is

[ m 11 1
1 23 9x 0
Lo 1 odl I=lol

1 11 X3 0
Reduce the augmented matrix of the system:

T T 1T 170 1
1 2 3|0 L 1 2 3|0 ) 1 2 30 . 1 2 30
L2 —100J~L0—5 —6 0J~L0 -1 =2 0J~LO 1 ZOJ
1 1 10 0 -1 -2 0 0 5 —-61|0 0 5 -6 0
I 11 1
1 0 -1|0 1 0 —-1|0 1 000

4 5 6
~L01 20J~L01 20J~L01 OJ.
00 40 00 10 0 0 10

1 A12(=2), Aiz(=1) 2. Pz 3. Ma(-1) 4 Az(—2), Ax(5) 5. M3(1/74) 6. Az(1), Asx(-2)

From the last augmented matrix, we see that the only solution to the given system is X; = X = X3 = 0:
{(0,0,0);.
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51. The equation Ax =0 is

L1 o 21 2] 2 =|
Lxs ] L
13 2 2 X
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Reciuce the augmented matrjx oltthe system:
1 170 170 1
11 1 =110 L 111 -1]0 ) 101 -2 0 1 0 0 —-3|0

L—10—1 20J~L01 J~L010 10J~L010 10J.
13 2 20 0 2

1 Ap(l), Ai(=1) 2. Ax(-1), Axa(—2) 3. Asz(-1)

From the last augmented matrix, we see that X4 is a free variable. We set x4 = t, where t is a real number.
The last row of the reduced row echelon form above corresponds to the equation X3+ X4 = 0. Therefore,
X3 = —t. The second row corresponds to the equation X, +X4 = 0, so we likewise find that x, = —t. Finally,
from the first equation we have x; — 3x4 = 0, so that x; = 3t. Consequently, the solution set of the original

system is given by {(3t, -t, -t,t) : t eR}.

52. The equation Ax =0 is
I R | B
2-31i 1+ i—1 X1
L3+2i -1 +i —1—iJszJ:LOJ.
5—i 2i -2 X3 0
Reduge the augmented matrix of thig system:
ie . . . LSI SILe —1+5i —5—i 1 r —1+5i —5— 1
2-31 1+ |—1Ol 1TT021TT0
o= Ly 0 0 |0
L3+2i -1+i —-1-i OJ~L3+2i -1+i —-1-i|0V U U 0 0
5-i 2i -2 0 5—i 2i -2
L M (&2
13 ) 2 AlZ(_g - 2')1 Al3(_5 + ')

From the last augmented matrix, we see that x; + ~353'x,+ =z'x3 = 0. Since x, and x3 are free variables,

we can let xsg {=(r](ir_ag% X3 = E"S) \f/:;)]re’rfsg) a:ng Ss &z_aré}(.:omplex numbers. It follows that the solution set of

the system 1 +3(5
53. The equation Ax =0 is [ " 11 1
1 3 0 X1 0
L 3 ol Il ol
1 4 0 X3 0
Reduce the aygmented matrix of the system:
i° 1r 1T 1T
1 3 00 0/0 1 3 0|0 1 0 0O
0300 % 0100 °
L2 5 olod 10200 103000 144 ool
1 4 0 0 0 0 00

1. A(2), A3(—1) 2. Pz 3. A2(—3), Axs(—3)

From the last augmented matrix we see that the solution set of the system is {(0,0,t) : t € R}.

54. The equation Ax =0 is
(c)2017 Pearson Education. Inc.
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Reduce the augmented matrix of the system:

1 1 1 1 —I
1 0 30 1 0 30 1030 10 3|0
3 -1 70'Lh0_1 -2 0}2“0120J|3l0120
2 1 sloytfo 1 20 f% o120 |*4loo 0o
1 1 sod Lo 1 20 0120 0 0 00
-1 1 -10 0 1 20 0120 0000

1 A2(=3), A1z(—2), Aua(—1), Ais(1) 2. Ma(=1) 3. Azxs(—1), A2s(—1), Axs(—-1)

From the last augmented matrix, we obtain the equations X; + 3xz = 0 and X, + 2x3 = 0. Since X3 is a
free variable, we let x3 = t, where t is a real number. The solution set for the given system is then given by
{(=3t, -2t,t) : t R}

55. The equation Ax =0 is r ‘l r _I
1 -101 X 0
X
L 3—205J| 21:[0].
— X3
-1 2 01 X4 0
Reduce the augmented matrix of the system:
[ 11 [
1 -101j0 | 1 010210030
L3—2050J~L0 1020J~L01020J.
-1 2 010 0 1020 0 00 O0fO
1 A2(—=3), As(l) 2. Ax(l), Axs(-1)

From the last augmented matrix we obtain the equations X; + 3x4 = 0 and X, + 2x4 = 0. Because x3 and

Xq are free, we let x5 = tand x4 = s, where s and t are real numbers. It follows that the solution set of the
system 'Is {(—%s, 287, ss s, t %Rf.

56. The equation Ax =0 is
] 10 -3 o1r"11 r01
X
L 5 0 o 0J| 21:[0].
20 60 L;‘(j 0

Reduce the augmented matrix of the system:

[
10 -30 10 300
L

1 1
1 1

L

30 -9 0/02~LO O O0O0O
2 0 6 00 00 O0O0O

(c)2017 Pearson Education. Inc.



1. A(=3), A13(2)

From the last augmented matrix we obtain X; — 3xg = 0. Therefore, X, X3, and x4 are free variables, so
we let X = r, X3 = s, and x4 = t, where r, s, t are real numbers. The solution set of the given system is
therefore {(3s,r,s,t):r,5,t ER}.
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57. The equation Ax =0 is

o N | I I
2+ 1 i 3-2i X1 0
l i 1—i 4+3iJLX2J=lOJ.

3—i 1+i 1+5i X3 0

Reduce the augmented matrix of the srstem:

2+i i 3-2i|0 i 1-i 43I0 1 -1-i 3-3i 0
L i a-i aesilodelosi i s-2ilode bas [ 3-2i o
3—i1 1+i 1+50 0 3—i 1+i 1+5 0 3—i1 1+i 1+5 |0
, 1 -1-i 3-4i |0 1 -1-i 3-4i |O _ 10 2532

17
Lo 144 7+s|odLo 1 o od- Lo 1 sl
0 5+3i -4+20i O 0 5+3i -4+20i O 00 10 O
11 0 2582 g 1000
6 17 7

Lo 30 od-Lo 100l

00 1 0 0 0 1|0

L Pp 2 Mi(-i) 3. Ap(=2-i), Ais(=3+i) 4. Ma(13') 5. An(l +i), Axs(—5 —3i)

6. M3(—i/10) 7. Axu( 25332, Ayp( 2F7Y)

From the last augmented matrix above, we see that the only solution to this system is the trivial solution.

Solutions to Section 2.6

True-False Review:

(a): FALSE. An invertible matrix is also known as a nonsingular matrix.

(b): FALSE. For instance, the matrix 21 21 does not contain a row of zeros, but fails to be invertible.

(c): TRUE. If A is invertible, then the unique solution to /rx =b islx =A"1b.

10
and B :L 0 0 J then AB = I,, but A is not even a
0 1

1 00

(d): FALSE. For instance, if A = 00 1

square matrix, hence certainly not invertible.

(e): FALSE. For instance, if A =1, and B = —1,, then A and B are both invertible, but A +B = 0, is
not invertible.
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(f): TRUE. We have
(AB)B!At=1, and B !AYAB)=I,,

and therefore, AB is invertible, with inverse B—1A™L,

(9): TRUE. From A? = A, we subtract to obtain A(A-1)= 0. Left multiplying both sides of this equation
by A7 (since A is invertible, A~ exists), we have A—1 = A0 = 0. Therefore, A = I, the identity matrix.

(h): TRUE. From AB = AC, we left-multiply both sides by A~* (since A is invertible, A~ exists) to
obtain A"*AB = A~!AC. Since A~*A =1, we obtain IB=1C, or B =C.
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(i): TRUE. Any 5 x 5 invertible matrix must have rank 5, not rank 4 (Theorem 2.6.6).
(J): TRUE. Any 6 x 6 matrix of rank 6 is invertible (Theorem 2.6.6).

Problems:
1. We have
apn1= 49 7T =9 _ @AM +O(-3) BH(E9+O@ _ 10 =1,
3 7 -3 4 BT +(M)(-3) B)(-9 + (N4 0 1
2. We have
apa1= 2 -1 11 _ @QED+HEDE) OM+EDE - 10 = 1,.
3 -1 -3 2 GED+ D3 ) +(-D(@) 01
3. We have d -b
a b 1 d —b _ 1 a
b
c d ad—bc -C a ad—bc c d —-Cc a
1 ad — bc 0
" ad —he 0 ad — bc
_ 10
01
= Iy,
and 1 d -b a b d b a b
ad—bc —-C a c d _ad—bc —-c a c d
1 ad — bc 0
" ad —hc 0 ad — bc
_ 1 0
-0 1
=|2.
4. We have r
351 8 —29 3
AAT =L 2 10 5 19 21
rz 6 2 -8 1 —I
[(3)(8)+(5)(_5)+(1)(2) (3)(—29) + (5)(19) + (1)(—8) (3)(3) + (5)(—2) + (1)(2) [
=L )@ +((-5)+1)(2) (D1)(-29)+(2)(19) +(1)(-8) (1)B) +(2)(-2) +(1)(1)
[(2)(8) +(fi)(—5)+(7)(2) (2)(=29) + (6)(19) +(7)(—8) (2)(3) +(6)(—2) + (7)(1)
1 00
0 0 1
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5. We have

[Al2] =

1 2|1 0

1 3 01

1 2 10 2 10

01 -11 ~ 01
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Therefore,
- _ 3 -2
A= -1 1
1. A(-1) 2. Au(-2)
6. We have
1 1+ij2 0 1 1 1+i| 1 0 2 1 1+i| 1
A= 25 "1 o 1 0 -1 |-1+i 1 0 1 [1-—i
3 1 0 -1 1+ —
=l A
~ o lit-t o1 [2/ ]
Thus,
4 =1 1+i
ATE 0 T
1. Alz(—l+i) 2. Mz(—l) 3. A21(—1—i)
7. We have
1 =y 0 1 1 -1 |1 0 2 1 -i|1 o0
Al2l=5 1 200 1 0 1—-i|1-i 1 0 1|1
3 1 0f1+i 2H _ -
AL IRV A WIS
Thus,
—1+i
ATl = 11' 14i

1 Ap@ —i) 2 Ma(1/(L—1i) 3. Ax(i)

8. Note that AB = 0, for all 2 x 2 matrices B. Therefore, A is not invertible.

9. We have
. 11 11
1 -1 21 00 1 -1 2\ 1 00 1 -1 2\ 1
[Allg]=1L 2 1 12/0 1 0 ! 7/-2 1 042L0 1 2|-4
4 -3 10|00 0 1J~L0 32 —4 0 1 0 3 (] =2
r 101!
. 1 0 4/-3 0 1 . 1 0 0| -43 -4 13
01 2, -4 0 1 01 0|-24 -2
~ LO 0 1,10 1 -3 J~ LO 0 1 10 1 10
Thus,
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1. A12(=2), A1a(=4) 2. Pz 3. Ax(1), Axz(=3) 4. Azi(—4), Az2(-2)

10. We have

; 1[ 1[ 1
351100 1 110 10 2 1|0 10
[A/ls]=L1 2 10 1 0 351100
26/UUJ.JL267001JL0—1—21—30J
0 2 50 -2 1
I 11 1
, t21, 0 10 ~10-3 2-50 _ 1008 -29 3
01 2/-1 30
~L025 0 -2 1J~L01 2 -1 30J~L01 -5 19 —2J=[I3/A_l]
0 1 2 -8 1 001 2 -8 1
Thus,

8 -29 3 |
A_lzl -5 19 -2 J.
2 -8 1

1. P 2. Apa(—3), Aiz(—2) 3. Ma(-1) 4. Ax(—2), Axs(—2) 5. Axu(3), As2(-2)

11. This matrix is not invertible, because the column of zeros guaranteesthat the rank of the matrix is less
than three.

12. We have r _I r _I r
1
4 2 =131 0 O 3 2 4,0 0 1 1 1 11/0 -1 1
[A/l5] Loy Zorodilyt 201 0dezlar o 1o
3 2 4/0 0 1 4 2 =131 0 0 4 2 -13|1 0 0
1 1 11/0 -1 1 1 1 11|10 -1 1 1 0 -18|0 2 -1
4 5
-1 -2910
~L0 -2 =571 4—4J~L0 1 29 0 -3 2J~L01 2 0 -3 2J
0 -2 =57 1 4 -4 0 0 1 1 -2 0
Ll 0 18| =34 -1 J
LLlo 1 o —29 55 2d=[3A™.
0 0 1 1 -2 0
Thus,
18 —-34 -1
A—lzl -29 55 2J.
1 -2 0
1. Pis 2. Ani(—1) 3. A12(—2), Aiz(—4) 4. My(-1)
5. Azi(—1), Ax(2) 6. Az(18), Azx(—29)
13. We have _I r _I
1 2 -3|/1 0 O 1 2 -3 1 0 0 1 2 -3 0 0
! 2 01 2 -1 1 ol
-1 1.1 I by 3 1] 1§ 1
As]=L 2 6 —2/0 1 0d~Lo 2 4] 21 0d~Lo s 1| 101
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1073 -10 10 -7 3 -1 0
slog 2021 2o0dilor 2 211 ol
2
00 -5 4 -3 1 00 1/ -¢ & -t
1008 4 —11
5 0
fvo 10| % ?J=[|3/A—1].
Th
us, L n _7]
A_l:[ 53 j-o gJ
3 % 5
5 10 5
L A(=2), As(l) 2. Ma(%) 3. Ax(—2), Axs(—3) 4. Ma(—3) 5. Aau(7), As(—2)
14. We have —I r —I r —I
L1 00 1 2] 1 00
I -
1 i 2710 0J~Lo -i =2 -1-i 1 0J~Lo 1 =2 1—i i oJ
[Afls]=L 1+i -1 2i /0 1 0 0 0 1" -2 01 00 1' -2 01
2 21 5|0 0 1 _I r _I
10 0] =i 10 100 i 10
3 4
~Lo 1 —2if1-i i od-Lo 1 ol 1-5s i 2|J:[I3/A_1].
00 1 -2 01 00 1| -2 0 1
Thus,
-i 1
A*lzl 1-5i i 2|J
-2 0 1
1 Ap(=1-1i), Aiz(—=2) 2. Ma(i) 3. Axi(-i) 4. As(2i)
15. We have
I 11 - 1
2 1 3[/1 00 1 -12/010 1 -1 2[0 10
2 131004
[A/|3]:L1—12010 L3 3410 0 1 ~LO 3 =11 -2 0J
3 34'001 0 6 —-2'0 -3 1

1
1.
I -1 2/ 0 10"
1
3
o
0

Since 2 = rank(A) < rank(A*) = 3, we know that A~* does not exist (we have obtained a row of zeros in
the block matrix on the left.

1. P 2. Apa(=2), Aiz(=3) 3. Ax(-2)

16. We have
Ang- 1712 31000]1|1—1 2 3 1ooo1|
sl 2 0 3 -4 Qc)Z@Bl?Qea@son Educafon.iné. -1 -10]-2 1 0 0
3 -1 7 8/0 0 1 O 0 2 1 -1,-3 010
1 0 3 5/0 0 0 1 0 1 1 2/ -1 0 0 1
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6. A41(10), Ap(3), Agz(5)

2. P
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17. We have
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Thus,
oo,
|_g %_i ?|
Al=. 9 h 3 g L
L, 5 oo
-5 -5 § 0
1 Pz 20 Apa(—2), Aia(—3) 3. Ma(%) 4. Ax(2), Ax(2), Axa(-5)
5. Pa 6. Ma(—=%) 7. Asi(—1), Aza(-3) 8 Ma(=%) 9. Ap(l), As(-%)
18.Wehaver _I
I12001000"1 2.0 0/ 1000,
_!'34000100"':'0 -200/-3100
] ooss6/00104 L 0|
-0 07 80001 0 01 ¢&| oot
1 20 o0l 10 00 5 7
[o 20 0 -31 o009 f 78 0001 1
0 0 1 v 0O 0 0 1 0 0 0| -2 1 00
3!0 00 -2 00—71J3~l|0—2o 0[-3 1 ooJ|
. . 0O 01 0 00 -4 3
0 00 -2|] o0 -1 1
r 5‘ ‘5 1 5 5
I1000—2 1 0 oI
s 0100 28 - 0 o 1
- 2 |=naa
i0010 o o 4 3
o001 0 0 I -3
Thus, r _I
-2 1 0 0
3 1
At=l 2 2z 0 O
lo 0 4 3J'
0 0 7 -3

1. Aa(=3), Ma(k) 2. Asa(=7) 3. Axu(l), Ais(3) 4. Ma(—3), Mag(-3)

19. To|determine the tﬂrﬁ co—lJmn [vecto} of A~ without determining the whole [inverse, we solv% thd
-1 =2 0 -1 =2 3|0

system L -1 1 1 JL y J zl 0 J The corresponding augmented matrix L -1 1 10 J

-1 -2 -1 z 1 B -1_-2 -1 1
1 2 =3 0
can be row-reduced to L 01 -2 0 J Thus, back substitution yields z = -,y = -1, and x=- 2.
3 4 6 12
00 1'-4
—5/12
Thus, the third column vector of A1 isL -1/6 J
-1/4
20. To deterﬁme the secold colufn Jecto] of A™ without determining the whold inverse, we solvg the
-1 4 X 0 2 -1 4 0
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linear system L 5 1 2 JL y J :l 1 J The corresponding augmented matrix L 5 1 2 1 Jcan

1 -1 3 z 0 1 -1 30
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1 - 3] 0
be row-reduced to L 0 1 -2] 0 J Thus, back-substitution yields z = -1,y = -2, and x = 1. Thus,
0 0 1 —[1 ]
1
the second column vector of A™1 isl -2 4
-1
— 7 P—
21. We have A = 26 720 , b= 28 , and the Gauss-Jordan method yields A™* = 2 10
-1 3
Therefore, we have
;
— Alp — £ =10 -8 _  —48
X=ATb= 3T 2 T 1
Hence, we have X1 = —48 and x, = 14.
1 3 1 1 -5 3
22. We have A = 5 5 b = 3 and the Gauss-Jordan method yields A~ = 2 1
Therefore, we have
x = Adlp = 5 3 1 _ 4
2 -1 3 -1
So we have X1 = Ai—and Xo = —1—.| r 1 r 1
11 -2 -2 7 5 -3
23. We have A -L 01 1 J b L 3 J and the Gauss-Jordan method yields A~ =[ -2 -1 1 J
2 4 -3 1 2 2 -1
Therefore, we have r 1r 1 r 1
7 5 -3 -2 —
x:Aflb:l -2 -1 1 1L 3J=L 2 J
2 2 -1 1 1

Hence, we have X; = -2, X, = 2, and Xz = 1.

1 =2i 2 1 4i 2i
— — i -1 —
24. We have A = 2 i 4i b= _; . and the Gauss-Jordan method yields A" = ,_ . o+i 1
Therefore, we have
_ 1 4i 2i 2 1 2+ 8i
— 1y — ———— - —
XZATD=008 -2+ 1 - To2+8i -4+
Hence, we have x; = 1 and x, = ;‘8*:.
3 4 5 1 -79 27 46

25. We have A =l 2 10 1 J b=l 1 J and the Gauss-Jordan method yields A~ =L 12 -4 -7 J
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4 1 8 1 38 —-13 =22

Therefore, we have r —Ir —I r _I
—79 27 46 1 -6

x:A_lb:l 12 -4 —7JL1J:l 1J.
38 —-13 -22 1 3

Hence, we have x; = -6, X, = 1, and X3 = 3.
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I 1 T 1 I
1 1 2 12 -1 3 5
26. We have A | 1 2 -1 J b -l 24 J and the Gauss-Jordan method yields A™* = L 3 3 -3 J
2 -1 1 —36 5 -3 -1
Therefore, we have [ ][ ] [ ]
1 3 5 12 10
x:A_lb:lL 3 3 3| 24 |=] 18]
125 3 -1 —36 2
Hence, x; = =10, x> = 18, and X3 = 2.
27. We have
0 1 0 -1
AAT = _ (O +(@1)3) OED+0@©O - 10 _ I,
-1 0 1 0 (-DO)+0)(1) (-1D(-1D)+ (0)0) 0 1
so AT = AL,
28. We have - -
J J
3/2 /2 3/2 /2
T — L EY
AAT= i \}3/2 1/2 7%,/2
_ (\/3/2)9{ 3/2) + 9[2)(1/2) (\/3/2)(—1/2) + (Juz)(\/jgz) - é 2 =1,
(-1/2)(¥ 372) + (Y 3/2)(172)  (~1/2)(-1/2) + (" 3/2)(" 3/2)
so AT = AL
29. We have
cos sin cosa —Sina
T— * « sin cos
AA —sina  CcoS« e “
_ cos? o + sin a (cos a)(—sin ) + (sin &)(cos &) 10 _ I
T (=sina)(cos &) + (cos a)(sin a) (=sina)? + cos? « o1 — '@
so AT = AL,
30. We have
1 1 —-2xX  2x? 1 1 2X 2x?
AAT = 2x  1-2x2 —-2x —-2x 1-2x2 2x
L2 e o1 Le2x2 o oy 1
1
1 1+ 4x2 + 4x4 0 0
= —L 0 1+ 4x2+ 4x4 0 J=I3,
Lt s axt 0 0 1+ 432+ 4
so AT = AT 31. For part 2, we have
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B A HAB) =B YA AB=B'I,B=B'B=I,,

and for part 3, we have
ADHTAT=AAHT =1 =1,.
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32. We prove this by induction on k, with k = 1 trivial and k = 2 proven in part 2 of Theorem 2.6.10.
Assuming the statement is true for a product involving k — 1 matrices, we may proceed as follows:

(AtAz- - A) = (A1A2 A DA ) ET=ATYAA A )T
— k K 1 2 k—1
A1 1 -1 — -1 - -1 -
Kk (Ak—l"'Az A ):Ak Ay Ay A

In the second equality, we have applied part 2 of Theorem 2.6.10 to the two matrices A3 A, --- Ax— and Ay,
and in the third equality, we have assumed that the desired property is true for products of k — 1 matrices.

33. Since A is skew-symmetric, we know that AT = —A. We wish to show that (A™)T = —A~. We have
A=A =(AT=~(ATY,

which shows that A~ is skew-symmetric. The first equality follows from part 3 of Theorem 2.6.10, and the
second equality results from the assumptionthat A~ is skew-symmetric.

34. Since A is symmetric, we know that AT = A, We wish to show that (AT = A~L. We have
AT = (AN T=AT,
which shows that A~ is symmetric. The first equality follows from part 3 of Theorem 2.6.10, and the second
equality results from the assumption that A is symmetric.
35. We have
(Ih = AU+ A + A + A = 1,1, + A% + A% +A%) — AS(I,+ A% + A + A)

=In+AP + A% + A7 AP A% A - A= - A=,
where the last equality uses the assumptionthat A2 = 0. This calculation shows thatl, — A% and I, +
A3 + A5 + A% are inverses of one another.
36. We have

(=AY +A+A2 + A= 1,1, +A +A2 +A%) — A(l,+A + A2 + Ad)

=ln+A+A2 +AT A A2 A A =1, A =,
where the last equality uses the assumptionthat A* = 0. This calculation shows thatl, — A and I, + A +
A? + A3 are inverses of one another.
37. We claim that the inverse of A'® is B®. To verify this, use the fact that ASB2=1 to observe that

ASB? = AS(AS(ASB3)B3)B3= AS(A%IB%)B3 = AS(ASB®)B3= A%IB3 = ASBS=1.
This calculation shows that the inverse of AS is BY.
38. We claim that the inverse of A° is B2, To verify this, use the fact that A3B~ =1 to observe that
AB2 = A3A3AB HB HB 1 =A3AIB H)B I =A3AB HB T =A%IB 1 =AB 1 =1.
This calculation shows that the inverse of A° is B 2.

39. We have
B = Bl, = B(AC)=(BA)C=1,C =C.

40. YES. Since BA = I,,, we know that A~* = B (see Theorem 2.6.12). Likewise, since CA = 1,,, A~ =C.
Since the inverse of A is unique, it must follow that B = C.
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41. We can simply compute

aj; a2
1 ap —ap ay aym = 1 Adxdil — aredny Azpai2 — dA1zdn2
A —ap ai; A —aziapn + apjag; —agzae +apax
— 1 djjdpy — ajgazy 0 — 1 0 =1,
A 0 ajad — aipaz 01
Therefore,
1
ain an _1 ax —ai2
dz1 a2 A —an ai

42. Assume that A is an invertible matrix and that Ax; = b; for i = 1,2,...,p (where each bj is given).
Use elementary row operations on the augmented matrix of the system to obtain the equivalence

[A/bl bz b3 bp] ~ [In/cl Cr C3 ... Cp].

The solutions to the system can be read from the last matrix: X; = cj foreach i =1,2,...,p.

43. We have r 1[ 1
1 -1 1 1 -1 2 1 -1 1 1 -1 2

1
sdolo 1221 4 21|

21—| [0 2 5/-2 6 O1

N

L2—141
1 1 6

|
[REN
o1

L 1030 L, 100[ 0 9 -5
~L012—1 4—1J~L010—1 8—5J.
0 0 1 0 -2 2 0 0 1 0 -2 2
Hence,
X1 = (O, —1,0), Xy = (9, 8, —2), X3 = (—5, —5, 2)
1 A1p(=2), Az(-1) 2. Axn(l), Axs(=2) 3. Az1(=3), As2(-2)
4a.

(a). Let ej denote the ith column vector of the identity matrix 1., and consider the m linear systems of
equations
AXj = ej

fori=1,2,..., m. Since rank(A)=m and each e; is a column m-vector, it follows that
rank(A*) = m = rank(A)

and so each of the systems AX; = ej above has a solution (Note that if m < n, then there will be an infinite
number of solutions). If we let B = [X1,Xo,..., Xm], then

AB = A [X1,X2,..., Xm] = [AX1,AX2, ..., AXn] = [€1,€2,..., €m] = I
L Jsuch that

a d
(b). A right inverse for A in this case is a 3 x 2 matrix b e
c f
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a+3b+c d+3e+f
2a+7b+4c 2d+7e+4f _—
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Thus, we must have
a+3b+c=1 d+3e+f =0 2a+7b+4c=0, 2d+7e+4f=1.
3 1

1
> 7 4 for a, b, and

The first and third equation comprise a linear system with augmented matrix
1 31 1

0

c. The row-echelon form of this augmented matrix is . Setting c=1t, we have b= -2 — 2t

01 2 -2

and a = 7+5t. Next, the second and fourth equation above comprise a linear system with augmented matrix

1 3 0 . . 1 3 0 .
5 7 ﬁ 1 for d, e, and f. The row-echelon form of this augmented matrix is 0 1 ZJT 1 Setting

f =s, wehave e=1 :|23 and d = -3 +5s. Thus, right inverses of A are precisely the matrices of the form
7+ 5t -3+5s
L -2-2t 1-2s J
t S

Solutions to Section 2.7

True-False Review:

(a): TRUE. Since every elementary matrix corresponds to a (reversible) elementary row operation, the
reverse elementary row operation will correspond to an elementary matrix that is the inverse of the original
elementary matrix.

(b): FALSE. For instance, the matrices 2 0 and Lo are both elementary matrices, but their
01 0 2
2 0
product, 0 2 , IS not.

(c): FALSE. Every invertible matrix can be expressed as a product of elementary matrices. Since every
elementary matrix is invertible and products of invertible matrices are invertible, any product of elementary
matrices must be an invertible matrix.

(d): TRUE. Performing an elementary row operation on a matrix does not alter its rank, and the matrix
EA is obtained from A by performing the elementary row operation associated with the elementary matrix
E. Therefore, A and EA have the same rank.

(e): FALSE. If Pjj is a permutation matrix, then P3 = In, since permuting the ith and jth rows of I

twice yields 1,. Alternatively, we can observe that Pi2j = |, from the fact that Pﬁl = Pjj.

1 0

(f): FALSE. For example, consider the elementary matrices E; = 0 7

and E, =
11

7
0 7 7

o

have ELE, = and ExEq =

1 30

(g): FALSE. For example, consider the elementary matrices E; =[ 0
0

[ 1 I 1

1 3 6 1 30

1
0
Then we have E1E2:l 0 2 Jand ExE = L 01 2 J

1
0 01 0 01
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(h): FALSE. The only matrices we perform an LU factorization for are invertible matrices for which the
reduction to upper triangular form can be accomplished without permuting rows.
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(i): FALSE. The matrix U need not be a unit upper triangular matrix.

(1): FALSE. As can be seen in Example 2.7.8, a 4 x4 matrix with LU factorization will have 6 multipliers,
not 10 multipliers.

Problems:
g 1 1 [ 1
"0 10 00 1 100
Permutation Matrices: P, =L 1 0 0 J P;=L0 1 0 J P23 zl 0 0 1 J
U 0 4 1 0 0 1 0
[ 1 [ 1 T 1
k 0 O 1 0 0 1 0 O

Scaling Matrices: Ml(k):L 010 J Mz(k):L 0 k O J Mg(k):L 010 J

0 0 1 0 0 1 0 0 k
Row Combinations: r —I r —I r _I
1 00 1 00 1 00
Alz(k):L k 1 0 J Als(k):L 0 1 0J7 A23(k)=L 0 1 OJ,
0 0 1 k 0 1 0 k 1
I 1 I 1 I 1
1 0 1 k 1 0
Az]_(k): L 0 1 0 J, A31(k): L 01 0 J, A32(k): L 0 1 k J
0 0 1 0 0 1 0 0 1
2 We havp 11 11 11 11 11 1
-4 -1 L -1 -8 ) 1 8 . 1 8 . 1 8 . 1 8
Lo adilo sdol o adil? 30200 1Lo o]
-3 7 -3 7 -3 7 0 31 0 0

L Ag(=1) 2 My(-1) 3. Ap@) 4 My(y) 5. Ag(-31)

Elementary Matrices: Az3(31), Ma(%), Aa(3), Mi(—1), Agi(—1).

3. We have
3 5 1 1 -2 2 1 -2 3 1 =2

1 -2 7 3 5 7 0 11 T o0 1

1L P 2. Aa(-3) 3. My(4y)

Elementary Matrices: My(5;), A12(-3), P12.

4, We have
58 2 1 13 -1 , 1 3 -1 3 13 -1
13 -1 "~ 58 2 7 0 -1 717 01 -1
1L P 2 Ap(-5) 3. My(-Y)

P

¥ = 1
earsonTaucatoh:



Elementary Matrices: Ma(—1), A12(=5), P12.

S Wefpe 1T 1T 1T 1
3 4 1 1 3 2 1 3 2 1 2

-1 3 2 3
o213 2 3 4 .
L2 13J~L3 -1 4J~Lo -5 —1J~Lo—5 —1J~L011J.
1 32 0 -10 -2 0 0 0 000
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1 Pz 20 Apa(—2), Aia(—3) 3. Ax(—2) 4. Mp(—%)

Elementary Matrices: My(— %), As3(—2), A13(—3), A1a(—2), Pys.

6. We ha
T 1T 1T 1T 1
1 2 3 4 L 1 2 3 4 5 1 2 3 4 . 1 2 3 4
L2 3 4 5J~LO -1 =2 —3J~LO 1 2 3J~LO 1 2 3J.
3 4 5 6 0 -2 -4 -6 0 -2 -4 -6 0 00O

1 A12(=2), Aiz(=3) 2. Mz(-1) 3. Ax(2)

Elementary Matrices: Ays(2), Ma(=1), A13(=3), A12(=2).
7. We reduce A to the identity matrix:

1. Ax(-1) 2. Au(-2)

The elementary matrices corresponding to these row operations are E; =
We have EsE{A= |5, so that
A=ElET _ 10 1 2
12 1 01 -
which is the desired expression since E;* and E,* are elementary matrices.
8. We reduce A to the identity matrix:

-2 -3 1 -2 -3 2 1 1 3 1 1 4 1 0 5 10
5 7 11 -2 -3 0 -1 0 -1 0 1-

1 Ap(@) 2 P 3 Ap() 4 Axu(l) 5 Ma(-1)

The elementary matrices corresponding to these row operations are

1 0 01 10 1
E]_: 21,E2: 10;E3: 21,E4— 01|E5— 0 -1

[EEN
[EN
o

We have E5E4E3E2E1A: l5, so
A=Elgt.1_—1_-1 1 1 0 1 -1 1 0
1 2 BEs By B o -21 0 1 0 -1 °

_ 10 0
To-21 1
which is the desired expression since each E;* is an elementary matrix.
9. We reduce A to the identity matrix:

3 -4 1 -1 2 2 1 -2 3 1 -2 4 1 -2 5 10
-1 2 3 —4 3 —4 0 2 0 1 0 1°
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182

1.

P, 2. My(

—-1) 3. A(=3) 4 M%) 5 An(2)

The elementary matrices corresponding to these row operations are

_ 01 _ -1 0 _ 10 10 1 2
El - 1 0 ’ E2 - 0 1 ’ E3 - _3 1 ’ E4 - 0 % ’ E5 - O 1
We have EsE4E3zE-E1A= 15, S0
4 01 10 10 10 1 -2
A=E "E,"E, 'E, E, = 1 0 01 3 1 0 2 0 1 '
which is the desired expression since each Ei_l is an elementary matrix.
10. We reduce A to the identity matrix:
4 -5 1 1 4 2 1 4 3 1 4 4 10
1 4 4 =5 0 -21 01 0 1
1. P 2. Ap(—4) 3. Ma(—3) 4 Au(-9)
The elementary matrices corresponding to these row operations are
_ 01 _ 10 _ 1 0 1 -4
El - 1 0 ) E2 - -4 1 ) E3 - 0 _27]_1 ’ E4 - 0 1
We have E4E3zE>E1A= |5, SO
A= EflEflE_lE_l _ 01 10 1 0 1 4,
12 == T 100 4 1 0 -21 0 1
which is the desired expression since each Ei_l is an elementary matrix.
11. We reduce A tT the identityinati,ix: 1 r 1 r 1
1 -1 0 N 1 -1 0 5 1 -1 0 5 1 -1 0
0 4 2
LZ 22J~L3 13J~L0 42J~L0 42J
3 13 0 4 3 0 01
1 -1 0 1 -1 0 1 00
4 5 6
~Lo 1;J~Lo 10J~L010J.
0 01 0 01 0 01
L A(-2) 2. Aa(-3) 3. Ax(—1) 4. Mp(%) 5. As(-%) 6. Axn(l)

The elementary matrices corresponding to these row operations are

(c)2017 Pearson Education. Inc.
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We have EcEsE4E3E-E1A = I3, SO

A:Fl_llEzC:lES_EﬁZ_llEs_OlEil—lrl 0 O—Irl 0 O—Irl 0 —Irl
=|~2 1 OJLO 1 OJLO 1 OJLO 4 OJLO 1

NiE O
[
o
o

|
=
o O
[I———

0 01 3 01 011 0 01 0 0

[EEN
o
o
[EEN

which is the desired expression since each E;* is an elementary matrix.
12. We reduce_A to the identity matrix:

T 1 1
-4 =2 L 1 -1 3 ) 1 -1 3 . 1 -1 3
L 1+ -1 311 0 —4 —2J~L0 —4 —2J~Lo —4 —2J
-2 2 2 -2 2 2 0 0 8 0 0_ 1
[ I T 1T 1
1 -1 3 1 -1 0 6 1 -1 0 , 100
o oid-lo ol gillosol
0 01

1. P 2. A2 3. Ma(y) 4. A2 5. Az(-3) 6. Ma(=3) 7. Axn(D)

The elementary matrices correspondin% to these row operations are

1 I 1
0 0

10 10 0 100 1
Elzll 0 oJ, E2=l0 1 oJ, E3=l0 1 OJ, E4=l0 1 2J,

0 01 2 01 00 3 0 01

[ 1 I 1

10 -3 1 00 110
E=Lo1 od g=lo -1 od g =Lo1 ol

0 0 1 0 0 1 0 01
We have E-EcEsE4E3E-E1A= I3, SO

A= —1E—1E—1 —1E—1E—1E—1
IElO?LOS‘FF 50607Ir100—|r10 O—Ir103—lr1 OO—Irl 10—I
=l100JL OlOJL01OJL01—2JL01OJLO —4 OJLO 1OJ,
0 01 -2 0 1 0 0 8 0 0 1 0 01 0 01 0 01

which is the desired expression since each Ei_1 is an elementary matrix.
13. We reduce A to the identity matrix:
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123 123 , 1 0 3
Losgoldolosod 1 2 sl Ly ;1 ol
Lo 1 o0
3 45 3 45 0 -2 —4 0 —2 -4
I I v 1
41035103J61100
01 042
~L01loJ~001 010J.
001
00 —4 o

L Ma(}) 2. Aia(=3) 3. An(—2) 4 Ap(2) 5 Ms(—%) 6. Ag(-3)
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The elementary matrices correspondirﬁ; to these row operations are r _I
0 100 1 -2 0
Elle%OJ, =L o10d g=lo 101
0 0 1 -3 0 1 0 01
r 1 1 ] 1 —I
1 00 10 O 1 0 -3
E4=L01OJ, s=L0 1 o4, x=L0 1 OJ.
0 21 0 0 — 0 0 1
We have EgEsE4E3E-E A = I3, SO
A= —1E —1 —1
E E- E
F120(?;fF15060—”120—”1 001r10 O—Ir103—I
= 080Jl010JL010JL0 10JL01 OJL01OJ,
0 01 3 01 0 01 0 -2 1 0 0 —4 0 01
which is the desired expression since each Ei_l is an elementary matrix.
14. We reduce A to the identity matrix:
2 -1 1 1 3 2 1 3 3 1 3 4 10
1 3 2 -1 0 -7 0 1 0 1
1 Po 2. Aa(=2) 3. Ma(=%) 4. Ax(-3)
The elementary matrices corresponding to these row operations are
_ 01 _ 10 _ 1 0 1 -3
El - 1 O y E2 - _2 1 y E3 - O _% y E4 - 0 1
Direct multiplication verifies that E4E3E;E;A = Is.
15. We have
3 -2 1 3 =2 —U
-1 5 0o B ==
1. An(3)
Hence, E; = A1»(1). Then Equation (2.7.3) reads L = E™1 = App(—-1) = ;1 0 . Verifying Equation
3 1 3 — 1
3
(2.7.2):
10 3 =2 3 =2
LU = = =A
-3 1 (U -1 5
16. We have 5
> 1
23 1 2 3 5 10
> 51

Then ,
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0 - =U =
13 le:Z
==L =
1 0 2 2
LU = =
;1 o0 =% 5
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1. An(-3)
17. We have
31 1 3 1 5 1 0
~ 0 é_l. :U:;stl: == = g 1
5 2 3
Then
1 0 3 3 3 1
LU = % 1 0t = 5 9 = A.
1. An(-3)
18. Wle have _I r _I r _I
3 -1 2 3 -1 2 3 1 2
1 2

L 6 -1 1J~L0 1 —3J~L0 1 3 d=U=my1=2,mzg=—-1,mgz =4
-3 5 2 0 4 4 0 0 16

Hence,

[ 1 [ 1
0o 3

1 00 10

11 1
-1 2 3 -1 2

L=l 210J and LU=L 21OJLO 1—3J=L 6 -1 1J:A.

-1 4 1 -1 4 1 0 0 16 -3 5 2

1. A2(—2), Az(1) 2. Axs(—4)

19. have
Vile 5 2 11 r5 2 11 r5 2 1"
L _0 2 3d:ly 52 s51z2lg 3 51 =U==my=—2,Ms =3, Ma = —2.
15 2 -3 0 -4 -6 U U 4
Hence,
) I 11 11 )
1 00 1 00 2 1
L=l o 1 0d aw w=l 2 1 o0dlg2sl=l g 2 sd-a
3 -2 1 3 -2 1 00 4 15 2 -3

1 A2, Aiz(—3) 2. Ax(2)

2% We have 1 r 1

1 -1 2 '
2 0 3 -4 (c)2017 Pearson Education. Inc.
3 -1 7 8
1 3 4 §



|1||o 2 -1 -10 Ilgvl

0
0 2 1 41 0 0 2 9 0 0 2
11 ] Lo o 4 2] Lo 0o o
0 4 2 2
1 A12(=2), Aa(=3), Awa(—1) 2. Ax(—1), A2a(—2) 3. Asa(-2)
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Hence,
M1 =2, M31=3,Myg1=1M3z=1 Myo=2 mMyz= 2.
Hence,
I 1 I 1T 1T 1
1 0 0 O 0 1 1 -1 2 3
I I I 1 | | |
L = 2128 and LU = 1000 0—1 2 3 ,= 2 0 3 4 = A.
l J l 2 1 0 Jl 2 -1 -10 l
1 2 21 31 1 0 0 0 2 9 3 -1 7 8
1 2 2 1 0 0 0 4 1 3 4 5
21. We have
11T 11 11T 1

1 A12(=2), A3(4), A1a(=3) 2. Ax(2), A2a(-2) 3. As(-1)

Hence,
My =2, Ma1=—4, My1=3, Mz2=—2, My2=2, mMy3=1
Hence
[ 1 [ II 11 1
1 000 1 00 2 2 -3 1 2
10
L=I 2 10 IandLU= II0 |=| 4 -1 1 1I=A
| ool | .ol [ A
-3 1 2
3 211 3 211 0 5 -1 -3 6 15 2
0 4 =3
22. We have 0 0 5
12 1 1 2 10
23 T 0 -1 =U=—=mypy=2=L= 5 1
1. A2(-2)
We now solve the triangular systems Ly = b and Ux =y. From Ly = b, we obtain y = _73 . Then
-11
Ux =y yields x = 7
23. We_have
11 11T 1
-3 5 1 -3 5 1 3 5

! (c)2517 Pearson Education. Inc.
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J~LO 11 —13J~ L0 11 —13J=U==~m21=3,m31=2,m32=1.
0 11 -8 0 O 5

anN

2
2

1. A(-3), Az(—2) 2. Ax(-1)
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[ 1
1 00
Hence, L =l 310 J We now solve the triangular systems Ly = b and Ux =y. From Ly = b, we
r271: I
1 3
obtain y :L 2 J Then Ux =y vyields x =l -1 J
-5 -1
24. \We have
11 11 1
2 2 1 . 2 2 1 ) 2 2 1

L 6 3 —1J~LO -3 —4J~LO -3 —4J=U==>m21:3,m31:—2,m32:—2.
-4 2 2 0 0 -4 0 0 -4

L AR(-3).Au@) 2 An()

[ 1 |
1 0 0
Hence, L=L 3 10 J We now solve the triangular systems Ly = b and Ux =y. From Ly = b, we
[ 27121
1 -1/12
obtain y=l -3 J Then Ux =y yieldsx:L 1/3 J
) 1/2
25. We have
[ 11 11 1
4 3 00 4 3 00 4 3 00 4 3 0 O
|81 20|i|0—5 2o||2~||o -5 20||3~||0 -5 2 Oj—u
-05 364 LO 5 3642 L O 0O 5642 L 0 065 e
6 0 0 =5 7 0 0 -5 7 0 0 -5 7 0 0 0 13

\ 1 Aw(=2) 2. Axn(l) 3. Asu(l) \

| 1 0 00 |
- _ _ _ 2 1 00
The only nonzero multipliers are my; = 2, mz> = -1, and my3z = -1. Hence, L = - 0 1 10" We
[0 O] -1 1
2
. . -1
now solve the triangular systems Ly = band Ux =y. From Ly = b, we obtain y =1 _1 j Then Ux =y
4
677/1300
yields x = l 26. We have
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We now solve the triangular systems
Ly; = b;, UXi =i

fori =1,2,3. We have

Lyi=bi==vy; = 131 . Then Ux; =y ==X = —Tl;.‘r ;
_ _ _ 2 —-6.5 |
Ly,=bo=vy, = 15 - Then Ux, =y, ==X, = _j¢ i
5 -3
Ly3: b3 == Yy3 = 11 - Then UX3 =Y3 =—>X3 = -11

27. We have
1T 11T 1
2 -1 4 2 1 4 2

1 2

r

-1 4
l 3 14J~L013 10J~L013 1OJ=U.
5 =7 1 0 13 11 0 0 1

1. An(3), Aiz(B) 2. Ax(-1)

Thus, my; = -3, m3; = -5, and mz, = 1. We now solve the triangular systems

Ly; = bj, UX; =i

fori=1,2,3. We have[ | [ 1
1 —29/13

Ly, =e; =V =l 3 J Then Ux; =y; ==X :[ —-17/13 J;

[z [ 2]
0

18/13

Ly2= € ==V =L 1 J Then Ux, =Y, ==X =l 11713 J;

[ -1 [ 1]
0

-14/13

Ly3= €3 —=VY3 =[ 0 J Then Uxs =Y3 ==X3 =[ —-10/13 J
1 1

28. Observe that if P; is an elementary permutation matrix, then P; X = P; = P]. Therefore, we have

Pl=(PP...P) =P Pt PP T=pPTPT  PT .. .PT =(PP,...P) " =P".
k k—1 2 1 k k—1 2 1

29.

(a). Let A be an invertible upper triangular matrix with inverse B. Therefore, we have AB = I,. Write
A =[a;j] and B = [bjj]. We will show that bj; = 0 for all i > j, which shows that B is upper triangular. We

have "

aikbij = dij.
k=1
Since A is upper triangular, ajx = 0 whenever i > k. Therefore, we can reduce the above summation to

=2
aikbij = dij.
(c)2017 Pearson Education. Inc.



k=i

Let i = n. Then the above summation reduces to annbnj = dnj. If j = n, we have apnbnn = 1, so
ann = 0. For j < n, we have annbnj =0, and therefore bn; = 0 for all j < n.
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Next let i =n — 1. Then we have
an—l,n—lbn—l,j + an—l,nbnj = 5n—1,j-

Setting J = n—1and using the fact that b, n—4 = 0 by the above calculation, we obtain an— n—1bn— n— =1,
SO @n—1,n— = 0. For j < n —1, we have an—1,n—1bn—,j = 0 so that bp— j = 0.

Next let i = n—2. Then we have an— n—bn—2j+an—2n—1bn—,j+an— nbnj = dn— j. Setting j =n-2
and using the fact that bn—4 n— =0 and bnn— =0, we have apn— n—2bn—2n— =1, so that ah,—n— = 0.
For j < n —2, we have an— n—bn— j = 0 so that bh— j = 0.

Proceeding in this way, we eventually show that b;; = 0 for all i > j.

For an invertible lower triangular matrix A with inverse B, we can either modify the preceding argument,
or we can proceed more briefly as follows: Note that AT is an invertible upper triangular matrix with inverse
BT. By the preceding argument, BT is upper triangular. Therefore, B is lower triangular, as required.

(b). Let A be an invertible unit upper triangular matrix with inverse B. Use the notations from (a). By
(@), we know that B is upper triangular. We simply must show that bj; = 0 for all j. From annbnn = 1
(see proof of (a)), we see that if an, = 1, then by, = 1. Moreover, from ap—1 n—bn—1.n—1 = 1, the fact
that an—4 n— = 1 proves that b, n—1 = 1. Likewise, the fact that an— n—2bn—2n— = 1 implies that if
an—2,n— = 1, then by n— = 1. Continuing in this fashion, we prove that bj; = 1 for all j.

For the last part, if A isan invertible unit lower triangular matrix with inverse B, then AT is an invertible
unit upper triangular matrix with inverse BT, and by the preceding argument, BT is a unit upper triangular
matrix. This implies that B is a unit lower triangular matrix, as desired.

30.

(a). Since A is invertible, Corollary 2.6.13 implies that both L, and U, are invertible. Since L;U; = L,U,,
we can left-multiply by L;* and right-multiply by U;™ to obtain L;*L; = U,UT™.

(b). By Problem 29, we know that L, is a unit lower triangular matrix and U is an upper triangular
matrix. Therefore, Lz_lLl is a unit lower trianqular matrix and U,U 1_1 is an upper triangular matrix. Since
these two matrices are equal, we must have L, L, =1, and U,U 1_1 = l,. Therefore, Ly =L, and U; = U,.
31. The system Ax = b can be written as QRx = b. If we can solve Qy = b for y and then solve Rx =y
for x, then QRx = b as desired. Multiplying Qy = b by Q" and using the fact that Q" Q = I,,, we obtain
y = QT b. Therefore, Rx =y can be replaced by Rx = QT b. Therefore, to solve Ax = b, we first determine
y = Q" b and then solve the upper triangular system Rx = Q' b by back-substitution.

Solutions to Section 2.8

True-False Review:

(a): FALSE. According to the given information, part (c) of the Invertible Matrix Theorem fails, while
part (e) holds. This is impossible.

(b): TRUE. This holds by the equivalence of parts (d) and (f) of the Invertible Matrix Theorem.

(c): FALSE. Part (d) of the Invertible Matrix Theorem fails according to the given information, and

therefore part (b) also fails. Hence, the equation Ax = b does not have a unique solution. But it is not

valid Jto conclude }hat the eduatiof] has infinitely many solutions; it could have no solutions. For instance, if
1 0

A =l 010 Jand b=[ 0 J there are no solutions to Ax = b, although rank(A) = 2.
0 0O 1

(d): FALSE. An easy counterexample is the matrix 0, which fails to be invertible even though it is upper
triangular. Since it fails to be invertible, it cannot e row-equivalent to 1, by the Invertible Matrix Theorem.
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Problems:

1. Since A is an invertible matrix, the only solution to Ax = 0 is x = 0. However, if we assume that
AB = AC, then A(B — C) = 0. If x; denotes the ith column of B — C, then x; = 0 for each i. That is,
B —C =0, or B=C, as required.

2. If rank(A) = n, then the augmented matrix A* for the system Ax = 0 can be reduced to REF such
that each column contains a pivot except for the right-most column of all-zeros. Solving the system by
back-substitution, we find that x =0, as claimed.
Ax = 0_has only the ftrivial tion, REF(A contams ivot in every column. Therefore, the

ﬁnear system Ax = ?) can %e solved % subs%tutl for every I% P F' Therefore, Ax = b does have a
solution.

Now suppose there are two solutions y and z to the system Ax = b. Thatis, Ay = b and Az = b.
Subtracting, we find

A(y - Z) = 0!

and so by assumption, y —z = 0. That is, y = z. Therefore, there is only one solution to the linear system
Ax =b.

4. If A and B are each invertible matrices, then A and B can each be expressed as a product of elementary
matrices, say
A = E1E,... Ex and B =E,E,...E,

Then
AB = EiE;...EXEE,... E|,

so AB can be expressed as a product of elementary matrices. Thus, by the equivalence of (a) and (e) in the
Invertible Matrix Theorem, AB is invertible.

5. We are assuming that the equations Ax =0 and Bx = 0 each have only the trivial solution x = 0. Now
consider the linear system
(AB)x= 0.

Viewing this equation as
A(Bx) =0,

we conclude that Bx = 0. Thus, x = 0. Hence, the linear equation (AB)x= 0 has only the trivial solution.

Solutions to Section 2.9

Problems: r ‘l r ‘l r 1‘|

I 2 21 5 ol | 6 -1l

1. AT -5B = _ =
I | | | | I
2 5 5 -15 -3 20
L 1L 1L 1
6 0 0 5 6 -5
I 1
[—3 0
_ 2 Zj_
22.C'B= -5 -6 3 1 1 3 1= 6 -2
0 1

3. Since A is not a square matrix, it is not possible to compute AZ.

_ e 4 4 -2 B
4 _4p_pT— 8 —16 -8 24 ; B
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—24

=17

—18

-1
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5. We have r 1
-3 0
AB = -2 4 2 6 I 2 2 |: 16 8
-1 -1 5 0 l 1 —SJ 6 -—17
0 1
Moreover,
tr(AB) = —1.
6. We have
T _ -2 . 4 -52
(ACYAC) = 5~ =2 26 = 5 g76
I 1 I 1
12 0 —24 48 24 72
7 -8 I -2 4 2 6 I 24 —-24 —56 —48 I

-8
. (-4B)A = =
l—4 12J -1 -1 5 0 l -4 -28 52 —24J

0 -4 4 4 -20 0

8. Using Problem 5, we find that

aB)yi= ¥ 8 __1 -17 -8
6 —-17 320 —6 16
9. We have r 1
-5
T -6
c'c= -5 -6 3 1 3 1 =071,
1
and
tr(CTC) =71
10.
(a). We have |
1 2 3 [ 3 b 3a—5 2a+4b
AB = 5, 5 7 -4 2305 o 14 sa+ob

In order for this product to equal I, we require

3a—5=1 2a+4b=0, 7a-14=0, b5a+9b=1.

We quickly solve this for the unique solution: a =2 and b= —1.

(b). We have | 1 | 1
3 - Ly s 101 2

Ba =L —4 21 Lo 2 21
20 -1 257 0 -1 -1

(c)2017 Pearson Education. Inc.
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11. We compute the (i, j)-entry of each side of the equation. We will denote the entries of AT by aTij, which
equals aji. On the left side, note that the (i, j)-entry of (ABT)T is the same as the (j, i)-entry of ABT, and

n n n
(,i)-entry of ABT =~ ajubl; = ajkbik = bia',

(c)2017 Pearson Education. Inc.
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and the latter expression is the (i, j)-entry of BAT. Therefore, the (i, j)-entries of (ABT)" and BAT are
the same, as required.

12.
(a). The (i, j)-entry of A? is

2
djkak;j -
k=1

(b). Assume that A is symmetric. That means that AT = A. We claim that A? is symmetric. To see this,
note that
(AT = (AA)T = ATAT = AA = A%,

Thus, (A%)T = A? and so A? is symmetric.

13. We are assuming that A is skew-symmetric, so AT = —A. To show that BTAB is skew-symmetric, we
observe that

(BTAB)T =BTAT(BT)' =BTATB =BT (-A)B = —-(BT AB),

as required.
14. We have
2
2 3 9 _ 00
A= -3 0 0
so A is nilpotent.
15. We have r 1
0 0 1
A2 :l 0 0O J
0 0O
and [ 1
0 0 1 011 0 0O
A3—A2A:LOOOJ|—001J=|—OOOJ,
0 0O 0 0O 0 0O
so A is nilpotent.
16. We have
—3e73t  _2sec?ttant
A )= 612 -sint
6/t -5
17. We have
—7t t3/3 . -7 173
! 6t— t2/2 3t4/4+ 23 1172 11/4

t+t2/2 2 sin(xt/2) 32 Urm

0 T 0
et t—t*/4 e—1 3/4
18. Since A(t) is 3 x2 and B(t) is 4 x 2, it is impossible to perform the indicated subtraction.

19. Since A(t) is 3 x2 and B(t) is 4 x 2, it is impossible to perform the indicated subtraction.
(c)2017 Pearson Education. Inc.



193

20. From the last equation, we see that xz = 0. Substituting this into the middle equation, we find that

X2 = 0.5. Finally, putting the values of x, and Xz into the first equation, we find X; = —6 — 2.5 = —8.5.
Thus, there is a unique solution to the linear system, and the solution set is
{(—8.5,0.5,0)}.
21. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
rowlechelon form. This gi\rfs ur —I r —I r —I
5—127111120 11 20 11 20 7

L—Z 6 9 0J~L—2 6 9 OJ L0 28 49 14J L0 1 7/ 1/2J
-7 5 =3 -7 -7 5 =3|-7 0 82 137 42 0 82 137 | 42

4

~LO 1 7/4 1/2J~LO 1 7/4 1/2J.
0 0 -13/2 1 0 0 1 -=2/13

From the last row we conclude that x3 = —2/13, and using the middle row, we can solve for x,: we have

X+ -5 = 2, soxp, = 2 = 2. Finally, from the first row we can get x;: we have x;+11- 2 +20- —% =

7,and so x; = 2. So there is a unique solution:

21 10 2

13'13' 13

L An2) 2. Ap@), A7) 3. My(1/28) 4. Ays(—82) 5. My(—2/13)

22. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to

row-echfio: form. This givles LlS 11 171 1

2—11112—11212—11312—11
L10 15J~LO—2 24J~LO 1 -1 —2J~L01— —2J.

4 4 0 12 0 -4 4 8 0 -4 4 8 00 0 O

From this row-echelon form, we see that z is a free variable. Set z = t. Then from the middle row of the
matrix, y =t — 2, and from the top row, x + 2(t- 2) —t=1 or x = —t + 5. So the solution set is

{(~t+51t-21:teR}= {(5-2,0) +t(-1,1,1) : t ER}.

1 Awa(—1), As(—4) 2. Ma(=1/72) 3. Ays(4)

23. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to

[t)w-echelon form. This giv'as LF —I r —I r
1 -2 -1 L1 -2 -1 -2 -1 3 2 -1 3
L 2 4 5 s{slilo o 3 13J [0 0 313J [o 0 1 13
3 6 -6 812 0 0 -3 -1|2 0O 0 00O \ 5 0 0 0 O

The bottom row of this matrix shows that this system has no solutions.
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194

1. Ap(2), Ais(=3) 2. Ax(l) 3. My(1/3), M3(1/3)

24. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to

rclw—echelon form. This gives us—l r
3 0 -1 2 -1] 1 1 3 1 -3 2

11T
-1 1

ll 3 1 -3 2—1Jil3 o -1 2 -1 1}&“0
4 -2 -3 6 -1] 5 4 -2 -3 6 -1| 5 0
-2 0

o o o0 1 4 -2 o o 0 1 4
1 3 1 -3 2| -1 1 3
3 h 0 -27 -12 33 -21 12 jill 0 27
0 28 14 -36 18| —18 0 1
r 0 0 0 ~|1 r 4 =2 0 0
1 3 1 -3 2| -1 1 3 1 -3
1 2 -3 -3|-6 1 2 -3 -3

5|IO 7 -12 33 -—21 12 =6||0 0 42 —48 -102

0 - 0

L 11

0 0 0 1 4]-2 000 1 4

1 -3

-12 33
2 -3
0 41
-1
—6 I7

-150 |~
-2

3 -3 2 -1
-9 -4 11 -7 4J|
-14 -7 18 -9| 9
0 0 1 4|-=2
2| -1
-21 12J|
-3 -6
4| =2
131 -3 2 -1
I012 -3 -3| -6
i001—8 vy s
7 T 71|77
000 1 4 =2

We see that x5 = t is the only free variable. Back substitution yields the remaining values:

41 15 2 33 2 16
X5 =1 Xq= —4t—2, x3=—7—7t, xzz—?—7t, X1 —7+7t
So the solution set is -
2 16 2 33 41 L,'S
—— + - - _t—-_ -t —-4t-2t
7 t, 7 t, 7 teRrR
16 33 15 2 2 41 teER
= t - = _ - _Z _ 7=
7 7 H 7 H 41 l 7, 7, 7 y 2,0
1. Pip 2. A1p(—3), A1z(—4) 3. My(3), M3(=2) 4. Ax(l) 5. Pz 6. Ap(27) 7. M3(1/42)

25. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to

row-echelon form. This gives us

1111 -3 6 r1111—36
1112 58], J]oo o 1 -2 2
[2314-917 5101 -1 23 35
2223 -8 14 00 0 -1 2 -2

(c)2017 PPearsOn EducatiOn| 1Bc.
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From this row-echelon form, we see that xs = t and x3 = s are free variables. Furthermore, solving this
system by back-substitution, we see that

Xsg =1 X4=2t+2, Xz=5§ Xo=s—-t+1, X3 =2t-25+3.
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So the solution set is
{(2t-2s+3,s —t+1,5 2t+2,t):s, t eR} = {t(2,-1,0,2,1) +s(-2,1,1,0,0) +(3,1,0,2,0) : s, t € R}.

1. A(-1), Az(—2), Aua(—2) 2. Axn(l) 3. P

26. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

1 -3 2i 1+ 1 =3 2i 1 2 1 -3 2i 1

—2i 6 2'=2 7 0 6-6i —2'-2+2i ~ 0 1 -@a+i'-"
6 3

L ApQ) 2. Ma(gls)

From the last augmented matrix above, we see that Xz is a free variable. Let us set xz = t, where t is
a complex number. Then we can solve for x, using the equation corresponding to the second row of the

row-echelon form: x, = —X+ L(1+i)t. Finally, using the first row of the row-echelon form, we can determine
3 6

that x; = 3t(1- 3i). Therefore, the solution set for this linear system of equations is
{(%t(l— 3i), —% + %(1 + i)ttt eCy.

27. We reduce the corresponding linear system as follows:
1 -k|6 1 1 -k 6
2 3'k 0 3+2' k-12

If k = —3, then each column of the row-reduced coefficient matrix will contain a pivot, and hence, the linear
system will have a unique solution. If, on the other hand, k = —, then the system is inconsistent, because
the last row of the row-echelon form will have a pivot in the right-most column. Under no circumstances
will the linear system have infinitely many solutions.

28. First observe that if k = 0, then the second equation requires that xz = 2, and then the first equation
requires Xp = 2. However, X; is a free variable in this case, so there are infinitely many solutions.

Now suppose that k = 0. Then multiplying each row of the corresponding augmented matrix for the
linear system by 1/k vyields a row-echelon form with pivots in the first two columns only. Therefore, the
third variable, Xs, is free in this case. So once again, there are infinitely many solutions to the system.

We conclude that the system has infinitely many solutions for all values of k.

29. Since this linear system is homogeneous, it already has at least one solution: (0, 0,0). Therefore, it only
remains to determine the values of k for which this will be the only solution. We reduce the corresponding

matrix as follows:
11 11T
0 10 0 )

10 k -1 . k k2 1 172 -1/2 0
L k 1 -1 OJ~ L10k 10 -10 OJ~ L 10k =10 0J
10
2 1 -1 0 1 172 -1/2 0 10k k2 -k 0
[ 1 3 [
1 1/2 -1/2 |0 1 1/2 172 0
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1 1/2 1/2 0 -
~L0 10 -5k 5k —10 OJ5~LO 1 -1 OJ~lO -1 OJ.
1

0 k% —5k 4k 0 0 k?-5k 4k 0 0 0 k2-k O
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L My(k), Ma(10), M3(1/2) 2. Pz 3. Aga(—10K), Ajs(—10k) 4. Ma(gpisr) 5. Ass(Bk —k?)

Note that the steps above are not valid if k = 0 or k = 2 (because Step 1 is not valid with k =0 and Step
4 is not valid if k = 2). We will discuss those special cases individually in a moment. However if k = 0, 2,
then the steps are valid, and we see from the last row of the last matrix that if k = 1, we have infinitely
many solutions. Otherwise, if k =0, 1,2, then the matrix has full rank, and so there is a unique solution to
the linear system.

If k = 2, then the last two rows of the original matrix are the same, and so the matrix of coefficients of
the linear system is not invertible. Therefore, the linear system must have infinitely many solutions.

If Kk =0, we reduce the orli_qinal linear system as follows:

10 0 =110 L 1 0 -1/710 O 5 1 0 —-1/710 O s 10 1/10 | O
l0 1 -1 0J~L01 -1 OJ~L01 -1 OJ~L01 -1 OJ.
2 1 -1 0 21 -1 |0 01 -4/510 00 15 0

The last matrix has full rank, so there will be a unique solution in this case.

1. My(1/10) 2. Ai3(=2) 3. Ags(-1)

To summarize: The linear system has infinitely many solutions if and only if k = 1 or k = 2. Otherwise,
the system has a unique solution.

30. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to

row-echelon form. This gfves us
11 11 1
0 1 0 1

-k k210 1 -k k? k? -k k? 0
1 2 3
L1 0 k0J~LO k k—k? OJ~L0 1 -1 1J~L0 1 -1 1J.
0 1 -1 1 0 1 -1 1 0 k k-=k*|0 0 0 2k—-k* -k

1. Alg(—l) 2. P23 3. A23(—k)

Now provided that 2k —k? = 0, the system can be solved without free variables via back-substitution, and
therefore, there is a unique solution. Consider now what happens if 2k —k? = 0. Then either k = 0 or k = 2.
If k =0, then only the first two columns of the last augmented matrix above are pivoted, and we have a free
variable corresponding to x3. Therefore, there are infinitely many solutions in this case. On the other hand,
if kK = 2, then the last row of the last matrix above reflects an inconsistency in the linear system, and there
are no solutions.

To summarize, the system has no solutions if k = 2, a unique solution if k =0 and k =2, and infinitely
many solutions if k = 0.

31. No, there are no common points of intersection. A common point of intersection would be indicated by
a solution to the linear system consisting of the equations of the three planes. However, the corresponding
augmented matrix can be row-reduced_as follows: _I r _I

4 12 1 4

1 2 1|4

1 2
L01—1 1J~L01—1 1J~L01—1 1J.
13 0O 01 -1 -4 0 0 0|-5
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The last row of this matrix shows that the linear system is inconsistent, and so there are no points common
to all three planes.
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1 Awi(-1) 2. Ax(-1)

32.

(a). We have
4 7 1 1 774 2 1 7/4 3 1 7/4

-2 5 -2 5 T o012 T 0 1

1. Mi(1/4) 2. Ap(2) 3. My(2/17)

(b). We have: rank(A)= 2, since the row-echelon form of A in (a) consists two nonzero rows.
(c). We have

4 711 0 1 1 774|144 0 o 1 7/4|1/4 0 3 1 7/4|1/4 O
-2 5|0 1 -2 5 0 1 0 17/2|1/2 1 0 1 |1/17 2/17
4 1 0|5/34 -7/34
0 1| 1/17  2/17
1. My(1/74) 2. Ap(2) 3. Ma(2/17) 4. Ap(—7/4)
Thus,
5
Al= 3 T
1 2
17 17
33.
(a). We have

2 =7 1 2 -1 2 1 =172
-4 14 0 0 0 (VI

1 Ap(2) 2. My(1/2)

(b). We have: rank(A)= 1, since the row-echelon form of A in (a) has one nonzero row.
(c). Since rank(A) < 2, A is not invertible.
34.

(a*We have —I r 1 r
3 ) 1

-1 6 L 1 -1/3 2 /3 2 5 1 1/3 2 . 1 -1/3 2

197

L0 23J~LO 2 3J~LO_2 3J~LO 2 3J~LO 1 3/2J.
0 0

3 =50 1 -5/3 0 0 —-4/3 =2 0 0 0 0

1 My(1/3), M3(1/3) 2. Agz(—1) 3. Ags(2/3) 4. Mp(1/2)
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(b). We have: rank(A)= 2, since the row-echelon form of A in (a) consists of two nonzero rows.
(c). Since rank(A) < 3, A is not invertible.

35,

(a). We havle 1T 17 1T :
2 100 1 20 0 1 20 0
1200
oo el 2200 ko 50 oo a0 ol
L I Loosgal LO O3 41 0 01 -]

0 4 3 0. 0 1 -1 0 03 4
[ 1°T 1

120 0 120 0
o 1o 0|5||010 o|I
~1001—1J~L001_1J-

000 7 000 1

1. P 2. Ap(—2), Ass(—1) 3. Py 4 Ma(—1/3), Az(—3) 5. My(1/7)

(b). We have: rank(A) = 4, since the row-echelon form of A in (a) consists of four nonzero rows.

(¢). We have

21001000]1[120001oo]g[1 2 0 001001
L12000100J~L21001000JLo—so 0/1 -2 00
003 40010 oo34-o|010 0 03 4/0 0, 10
00430001 004 3loh o1 0 01 -10 ol-11

: 2 0 "0l0 1 00 17270 0 0 1 "0 0

3|Lo—3o 01 -2 00 4|L010 0|-1/3 2/3 0 OJI

0 03 40 0 10 000 7| 0 0 4 -3

100 0|23 -1/3 0 0 1000 2/3 -1/3 0 0
5H01o 0|-1/3 2/3 0 0 |5|01oo—1/3 2/3 0 o |
L001—1 0 0 -1 1J~L0010 0 0 —3/7 4/7J
0001 O o a7 =31t

0 00 1 0 0 4/7 =3/7

1 P 20 Awa(—2), Asa(—1) 3. Py 4. Aza(—3), Ma(=17/3) 5. My(1/7), A2a(=2) 6. Ags(l)

Thus, [ 1
2/3  -1/3 0 0
A_1:| ~1/3 2/3 0 0
- 0 0 =3/7 47 -
0 0 a/7  =3/7

36.
(a). We have
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3 0 0 1
1

[O 2—1J~L0

1 -1 2 1

_I
0 O

2
2 -1 -
-1 2

I 11
1 0 0 1 0
0o 2 -1 °
0 -1 2J~[0_1
0 2
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1. My(173) 2. Ais(=1) 3. Py 4. Ax(2) 5. My(=1), M3(1/3)

(b). We have: rank(A)= 3, since the row-echelon form of A in (a) has 3 nonzero rows.

(c). We have
11 11 )
.1 0 0300 1 0 0 13 00
' 0 2 -1/ 0 10
3 0 0/100
Lo 2 -1/010d- Lt -t 2001 |4 5 3/ o 1 0l
1 -1 20 U0 1 0 -1 2|-1/3 0 1
[ 11
1 0 0 13 00 1 00 13 )0
3[0 -1 2/-13 0 1 " o0 -1 2 -1/3 ) 14
~LYo 2 10 0 10" ~% v 3|23 L 2
[ 11 .
5L10 0 1/3 0 0J6L100 /3 0 0
RLo 1 213 o -142Lg 1 0 -1/9 273 1/3 1.
0 0 1|-2/9 1/3 2/3 0 0 1 —2/9 1/3 273

1 Mi(1/3) 2. Ais(—-1) 3. Pis 4. Ax(2) 5. Ma(—1), M3(1/3) 6. Agx(2)

Hence,
/3 0 0
A_lzl -1/9 2/3 1/3J.
—2/9 1/3 2/3
37.
(a). We have
I 11 11 11 11 1
-2 -3 1 1 42 142 14 2 142
! 055 05 5
[ 1 a2l by g A 083 00 2] |4, 1
0 5 3 0 01
0 5 3

1. P, 2. A2 3. Axs(=1) 4. My(1/5), Ms(=1/2)

(b). We have: rank(A)= 3, since the row-echelon form of A in (a) consists of 3 nonzero rows.

(c). We have

: 171 11 :
-2 =3 11 0 OJ 1[ 4 2/0 1 O J ) Ll 4 2 1 0
L ] 4 210 1 04~ -2 -3 1/1 0 0+~ 0551 2 04
0 5 3/0 0 1 0 5 3|0 0 1 O b 3|0 0 1
[ 170 .
. Ll 4 2 0 1 0 J4 Ll 4 2 0 1 0
~ 0 5 5 1 2 0 ~Lo 1 1/1/5 2/5 o J
O 0 -2 -1 -2 1 O 1| 1/2 1 —-1/2
[ [’ 1
0 1 00 1/5 7/5 -1

0 —-2|-4/5 -=3/5 6
1 1] 1/5  2/&)2017 ®earson Education. Inc.
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1| 172

1

T-Lo 1o
-1/2 0 01
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1 P 2. Ap(2) 3. Ax(-1) 4. My(1/5), M3(-=1/2) 5. Ax(—4) 6. Axu(2), As2(-1)
Thus,

1/5 7/5 -1
A—lzl -3/10 -3/5 1/2 J.
1/2 1 -1/2

38. We use the Gauss-Jordan method to find A™2:

. 11 1T 1
1 -13/100 1 -13 100 1 -1 3 1 00
L4 -3 13/0 1 0 0 1 1/-4 10
1 l4UUlJ~LO 21—101J~L0 11 -4 10J
0 -1 7 -2 1
[ 171 11 1
, 1L -13 10 0 104 -31 0 _ 100 25 -7 4
0 1 1|-41 o0 01 1 -4 1 0
lo o1 72 -1 ]_ o001 -72 -1]_1lgqo 3 -1 1l
[ 00 1|-7 2 -1

1 A12(—4), Aiz(-1) 2. Axs(=2) 3. M3(=1) 4 Axn(l) 5. Az(—4), A2(-1)

Thus, Ir T
25 —7 4
A=l 3 -1 11
-7 2 -1
Now Xx; = A 1e; for each i. Sil
1 1 1
25 -7 4

x1=A_1e1=L 3J, X2:A_162:l —1J, X3:A_183:L 1J

=7 2 -1

39 -7 2
Therefore,
v =Alp =_L "2 -5 1 1 -2 _1 12 _1 4
39 -7 2 2 ~ 39 -3 39 3 13 1
2 — - 1
oy =Alp,—_L1 2 -5 4 __ 1 -2 _1 23
39 -7 2 3 39 22 39 22
and
-2 - - 1 1
X3:A—lb3:__1 2 =5 2 __1 21 _ 1 21 _ 1 7
40. (a). We 39 7 39 24
have 2 5
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and

—24

13 -8

AIB)YB A =ABB HA=AI,LA=AIA=,

BAAB) =B }(AAHB=B'I,B=B B =1,.
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Therefore,
BAT=A"B.
(b). We have
(A—lB)—l — B—l(A—l)—l — B_]'A,
as required.

41(a). We have B4 = (S™LAS)(S1AS)(SLAS)(SLAS) = STIA(SS 1)A(SS HA(SS)AS = STAIAIAIAS =
STIA4S, as required.

41(b). We can prove this by induction on k. For k = 1, the result is B = S™tAS, which was already

given. Now assume that BX = S7IAKS. Then Bk*1 = BBX = STIAS(S1AKS) = STIA(SS1)AKS =
STIAIAKS = STIAK*1S which completes the induction step.

42.
(a). We reduce A to the identity matrix:
47 1 1 % 21 7 3 17 4 10
-2 5 7 -2 5 7 01 7 01
#
2
0 4

L Mu(%) 2 Ap@ 3. Ma(E) 4 An(-D)

The elementary matrices corresponding to these row operations are
0 _ 10 k 0 _ 1 -
1 B2T o Lot Bs= o 1
17

E1:

[@ RN

We have E4E3E-E A= 15, so that

4 0 10 1 0 1
0 1 -2 1 0o 7 0

(I

el _—1_—1 _
A_El E2 E; B, =

which is the desired expression since E;* is an elementary matrix for each i.

(b). We can reduce A to upper triangular form by the following elementary row operation:

4 7 1 4 7
-2 5 0 3
1. Ap(d)
Therefore we have the multipliermy, = —15. Hence, setting

[EN
o
o b
~

NS

we have the LU factorization A = LU, which can be easily verified by direct multiplication.

43.
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which is the desired expression since Ei_1 is an elementary matrix for each i.

1L

O O«
O O+
B R

1 0 0O

7

3

3
0 0 01

(b). We can reduce A to upper triangular form by the followin%elementary row (?erations:

|
l

2

1
0
0

[ —
4
[

o
0O L Iw
w
N
[ —

14
P
o
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L A(-3) 2. As(-%)

Therefore, the nonzero multipliers are mp, = %1and M3y = i‘g. I:lence, setting _I

100 2 1 0
|f100| o 2 o 0|
L=- 2 and U= 2 )
0 0 3 1 0 00 -4

we have the LU factorization A = LU, which can be easily verified by direct multiplication.

44.
(a). We reduce A toThe Iidentity matrix:_I [ 1T 1T 1
3 0 0 1 1 2 1 1 2 1 1 2 1 -1 2
1 2 3 4 -
_ — — 2
1L0 2—1J~Lo 2—1J~Lo 2—1J~Lo 1—§J~Lo 1—21J
1 -1 2 3 0 0 0 -3 -6 0 3 -6 o 0 -9
I 11T ST 11T 1
1 -1 2 10 5 10 0 1 00
5 6 - 7 8
~Lo 1—;J~L01—21J~L01—21J~L010J.
0 0 1 00 1 00 1 0 0 1
L Pz 2. Ai(=3) 3. Ma(%) 4 Ax(—3) 5. M3(-%)
6. Ai(l) 7. Asi(-3) 8. Ag(3)
The elementarly matrices efrrespondlr'g to these r0\1v operatloirs are 1 r 1
0 0 1 10 1 0 0 1 00
2
E1=l01OJ, E2=L 010J, E3:l010J, E4=l0 10J
1 0 0 -3 0 1 0 0 1 0 -3 1
I 1 I 1 I | I 1
1 0 0 1 1 0 1 0 -3 1 0 0
1 0 5
e =L o gJ, E=lo1old g=lo1 ol g=lo1 2l
0 0 =2 0 0 1 00 1 0 0 1
We have
E8E7E6E5E4E3E2E1A= |3
so that
ATREETR R RS [ 1
0 0 1 1 0 O 1 00 1 0 O
L010JL010JL020JL010J---
1 00 3 01 0 0 1 0 3 1
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[EEN
o
[EEN

|
[REN
o
[EEN
o

Njw
[EEN
o
o

--L01 OJLO 10Jl01OJl01—

00 -3 0 01 00 1 00 1

1

1
2

which is the desired expression since Ei_1 is an elementary matrix for each i.

(b). We can reduce A to rpper triangulaxI forin by the followirg ellementary rowI operations:
3 0 3 0 30 O

Lo 2 1Ly 2 2ol 2 —31J.

1 -1 2 0 -1 2 0 0
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1L Ai(-3) 2 Axs(3)

Therefore, the nonzero multipliers are mqiz= %and Mo3 = —12. Hence, settingI
1
1 00 30 O

L:LO 1 04 and U=l02—1J,
1 1 3

— 1 0 0

wl

2

we have the LU factorization A = LU, which can be verified by direct multiplication.
45,
(a). We reduce A to the identity matrix:

I 11 11 1
-2 -3 1 L 1 4 2 5 1 4 2 5 1 4 2 . 1 4 2
L o 420l 500 bos sdilos sdolo sl
0 5 3 0 5 3 0 5 -3 0 1 -8 0 5 5
[ 1T 1T 11 1
. 1 4 2 . 1 4 2 . 1 0 34 o 1 0 34 o 1 0 0
105 e delos wlilos lilos iloaol

1. P 2. Ap(2) 3. Ags(—1) 4 Py 5 Ax(-5)
6. Msy(55) 7. Axi(—4) 8. Ap(B) 9. Agi(—34)

The elementary matrices correspondingI to these row operations are

_I
010 1 00 1 0 0
E1=[100J, E2=l210J E3=[0 10J,
0 01 0 01 0 -1 1
[ 1 I 1
1 00 1 0 0 1 0 O
E4=l001J, E5=l0 1 J, E6:lO©OJ,
010 0 -5 1 a5 =
1 1 1 1 1 1
1 -4 0 1 00 1 0 -34
E; =L 0 1 OJ, Eg =L 0 1 8J, Eq =L 0 1 (s
0 0 1 0 0 1 0 0 1
We have
E9E8E7E6E5E4E3E2E1A= |3
so that

A:E—lE—l -1 -1 -1 -1 —1 -1 -
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S B E B B [ 1
0 1 00 1 00 1 00
OJI~—210JI~010Jl001J
1r OO‘H' 011II Ol(zI
1 00 1 0 0 1 4 0 10
01 0dLQ 1 odLQ
Lo 1 oll
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which is the desired expression since E;- ! is an elementary matrix for each i.
(b). We can reduce A til upper trlanguJIar frjm by the follojivmgl,elementary row Qloeratlons

-2 -3 1 -2 -3 -2 -3 1
L 1 4 22! L o ° o L 0 3 3 1
0 5 3 0 5 3 0o 0 -2
Therefore, the nonzero multipliers are mi, = —1? and myz = 2. Hence, setting
1 00 -2 -3 1
Lzl—% 1 od ad u=l o s ?’J,
021 o b -2

we have the LU factorization A = LU, which can be verified by direct multiplication.
46(a). Using the distributive laws of matrix multiplication, first note that

(A+2B)? = (A+2B)(A+2B) = A(A+2B)+2B(A+2B) = A2+A(2B)+(2B)A+(2B)?= A2+2AB+2BA+4B2.
Thus, we have

(A +2B)3

(A + 2B)(A+ 2B)?

A(A + 2B)2+ 2B(A + 2B)?

= A(A%+ 2AB + 2BA + 4B?) +2B(A? + 2AB + 2BA + 4B?)
=A% + 2A%B + 2ABA + 4AB2 + 2BA? + 4BAB + 4B%A + 8B3,

as needed.

46(b). Each occurrence of B in the answer to part (a) must now be accompanied by a minus sign. Therefore,
all terms containing an odd number of Bs will experience a sign change. The answer is

(A - 2B)®= A% - 2A’B - 2ABA - 2BA? + 4AB? + 4BAB + 4B?%A - 8B3.

47.The answer is 2%, because each term in the expansion of (A + B)K consists of a string of k matrices,
each of which is either A or B (2 possibilities for each matrix in the string). Multiplying the possibilities
for each position in the string of length k, we get 2K different strings, and hence 2K different terms in
the expansion of (A + B)K. So, for instance, if k = 4, we expect 16 terms, corresponding to the 16 strings
AAAA, AAAB, AABA, ABAA, BAAA, AABB, ABAB, ABBA, BAAB, BABA, BBAA, ABBB, BABB,
BBAB, BBBA, and BBBB. Indeed, one can verify that the expansion of (A + B)*is precisely the sum of
the 16 terms we just wrote down.

48. We claim that

A 0 _ A0
0 B! 0 B
To see this, simply note that
A 0 At 0 _ 1y 0 _ |
0 B 0 B ~ 0 Iy —'mm
and A 0
Al 0 ot - Wh 0O _
0 B - 0 Im - In+m-
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49. For a 2 x 4 matrix, the leading ones can occur in 6 different positions:

o -
= %
*

*

o
o*
= *
*

o~
O‘)&
O‘)&
= %
oo
o
= *
*

o o
o O
o
[EENE

For a 3 x 4 matrix, the Ieading] ones can occur in 4 different positions:

_I
¥ ox % 1 + x x P 0 1 + «
LO 1 «# »4LQO 1 +# » 2 LQO 01 42 LQO 0 1 4
0 0 1 =« 0O 0 0 1 0 0 0 1 0 0 0 1
r a 4 x 6 matrix, thejlegding ones can occur i different positions:
lio]_ * % e—lrd ] rllF *****—Irl*****—l
IO ¥4 % *IIle ¥ *IIO]_ T ae||01 P *I
l0 0 1 + « J’lO 0 1 + =« *J’lO 0 1 » « *J’lO 0 0 1 « *j’
0 0 0 1 « 0 000 1 « 0 0 00O 0 0 0 0 1 =«
I 1[ 1T 11 1
1 % % # % 1 % % % # % 1 % % % % % 1 % x % % %
IO P $||le ¥ ¥ *IIOOJ.* ¥ *IIOOJ.* * *I
l0 0 0 1 +« *J’lO 0 0 01 *J’lO 0 0 1 +« *J’lO 0 0 1 « *J’
0 0 0O 1 0 000 01 0 0 0O * 0 0 00 01
I 11 11 11 1
I]_* P ) *II]_ ¥ % % *IIO]_ ¥ x ¥ *IIO]_ ¥ ox ¥ *I
0 * 0 0 0 1 =« 0 0 1 + = « 0 0 1 + » «
|~0 0 0 01 *J’|~O 0 0 01 *J’lO 0 0 1 +« »«J’lo 0 0 1 « *J’
0 00 0 01 0 00 0 0 1 0 0 0O ¥ 0 0 0 0 0 1
I 11 11 1
- | - I |
0 0 1 + + =+« 0 0 0 1 + =«
|00001*|,|00001*|,|88(1);**|
0O 0 00 01 o
looooo1]l JL00001*J
0 0 0 0 0 1

For an m > n matrix with m < n, the answer is the binomial coefficient

n!
C(n, m) = r: = m

This represents n “choose” m, which is the number of ways to choose m columns from the n columns of the
matrix in which to put the leading ones. This choice then determines the structure of the matrix.

50. We claim that the inverse of A is B5. To prove this, use the fact that AB = 1 to observe that
AOB® = A2AZA2A%(A’B)BBBB = A2A’A2A’IBBBB = A’A%’A%(A’B)BBB
= A’A’A?IBBB = A’A?(A’B)BB = A?A?IBB = A?(A’B)B= A?IB = A°B =1,
as required.
51. We claim that the inverse of A° is B®. To prove this, use the fact that A3B2=1 to observe that
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A’B® = A’A3(A®B?)B?B*= A’A%IB?B? = A®(A°B?)B*= A’IB? = A’B® = I,

as required.
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