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n xn yn 

1 0.1 −1.87392 

2 0.2 −1.36127 

3 0.3 −1.06476 

4 0.4 −0.86734 

5 0.5 −0.72143 

6 0.6 −0.60353 

7 0.7 −0.50028 

8 0.8 −0.40303 

9 0.9 −0.30541 

10 1.0 −0.20195 
 

Consequently the Runge-Kutta approximation to y(1) is y10  = −0.20195.  Comparing this to the correspond- 

ing Euler  approximation from Problem  58 we have 
 

|yRK  − yE| = |0.20195 − 0.12355| = 0.07840. 
 

 

63.   Applying  the Runge-Kutta method  with  y  = 
 

sequence of approximants given in the table  below. 

3x 

y   
+ 2, x0 = 1, y0   = 2, and  h  = 0.05 generates  the

 

n xn yn 

1 1.05 2.17369 

2 1.10 2.34506 

3 1.15 2.51452 

4 1.20 2.68235 

5 1.25 2.84880 

6 1.30 3.01404 

7 1.35 3.17823 

8 1.40 3.34151 

9 1.45 3.50396 

10 1.50 3.66568 
 

Consequently the Runge-Kutta approximation to y(1.5) is y10  = 3.66568. Comparing this to the correspond- 

ing Euler  approximation from Problem  59 we have 
 

|yRK  − yE| = |3.66568 − 3.67185| = 0.00617. 
 
 
 

Chapter 2 Solutions 
 

 

Solutions to Section 2.1 

 
True-False Review: 

 

(a): TRUE. A diagonal  matrix  has no entries below the main diagonal,  so it is upper  triangular. Likewise, 

it has no entries above the main diagonal,  so it is also lower triangular. 

https://testbankpack.com/p/solution-manual-for-differential-equations-and-linear-algebra-4th-edition-by-goode-isbn-0321964675-9780321964670/
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(b): FALSE. An m × n matrix  has m row vectors and n column vectors.
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1 −3 −2 

3 6 0 
2 7 4 

−4 −1 5 

 

⎢ 

⎢ 

1 
⎥

 

⎥ 

× 
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(c): TRUE. This is a square matrix, and all entries off the main diagonal are zero, so it is a diagonal matrix 

(the  entries on the diagonal  also happen  to be zero, but  this is not required). 
 

(d): FALSE. The main diagonal entries of a skew-symmetric matrix  must be zero. In this case, a11  = 4 = 0, 

so this matrix  is not skew-symmetric. 
 

(e):  FALSE. The  form presented uses the  same number  along the  entire main  diagonal,  but  a symmetric 

matrix  need not have identical entries  on the main diagonal. 

(f ):   TRUE. Since A is symmetric, A = AT . Thus,  (AT )T   = A = AT , so AT  is symmetric. 
 

(g): FALSE. The trace of a matrix  is the sum of the entries along the main diagonal. 

(h): TRUE. If A  is skew-symmetric, then AT  = −A.  But A  and  AT  contain  the same entries  along the 

main  diagonal,  so for AT = −A, both  A and  −A must  have the  same main diagonal.  This  is only possible 

if all entries along the main diagonal  are 0. 
 

(i): TRUE. If A is both symmetric  and skew-symmetric,  then  A = AT = −A, and A = −A is only possible 

if all entries of A are zero. 
 

(j): TRUE. Both  matrix  functions  are defined for values of t such that t > 0. 
 

(k):  FALSE. The  (3, 2)-entry  contains  a function  that is not  defined  for values  of t with  t ≤ 3.  So for 

example,  this matrix  functions  is not defined for t = 2. 

(l): TRUE. Each  numerical  entry of the matrix  function  is a constant function,  which has domain  R. 

(m): FALSE. For instance,  the matrix  function  A(t) = [t] and B(t) = [t2] satisfy A(0)  = B(0),  but  A and 

B  are not the same matrix  function. 
 

Problems: 
 

1(a). a31  = 0, a24  = −1, a14  = 2, a32  = 2, a21  = 7, a34  = 4. 
 

1(b). (1, 4) and (3, 2). 
 

2(a). b12 = −1, b33 = 4, b41 = 0, b43 = 8, b51 = −1, and b52 = 9. 
 

2(b). (1, 2), (1, 3), (2, 1), (3, 2), and (5, 1). 
        

1    5  
 

3. −1    3 
; 2 × 2 matrix.

    
2    1    −1  

 

;  2 
  

3 matrix.

4. 
0   4   −2 
⎡ 
−1  
⎤

5.  
⎢

 
⎣ 

 
⎡ 

 

6.  
⎢

 
⎣ 

 
⎡ 

 

7.  ⎣ 

1 ⎥
; 4 × 1 matrix. ⎦ 

−5 
⎤ 

 

⎥
; 4 × 3 matrix. ⎦ 

 

0   −1    2 
⎤

 
1       0   3 ⎦; 3 × 3 matrix. 

−2    −3    0
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2 3 4 5 

3 4 5 6 

4 5 6 7 

5 6 7 8 

 

19.  B = ⎣ −1 7   0 2 ⎦. 

4 −6    0 3 

 

⎢ 
2       1       0       1 

⎥
 

⎢ ⎥ 

⎢ ⎥ 

 
 
 
⎡ 

0   −1    −2    −3  
⎤

 

8.  
⎢ 1       0   −1    −2  ⎥

; 4 × 4 matrix. 

− 

125

⎣                   ⎦ 

3       2       1   −0 
⎡              ⎤ 

9.  
⎢

 ⎣ 

⎥
; 4 × 4 matrix. ⎦

 
 

10.  tr(A) = 1 + 3 = 4. 
 

11.  tr(A) = 1 + 2 + (−3) = 0. 
 

12.  tr(A) = 2 + 2 + (−5) = −1.

 
13.  Column  vectors: 

    
1  
  

3 

 

, 

    
−1  

 

. 
5

Row vectors:  [1  − 1], [3 5].
⎡   

1 
⎤ ⎡

 3 
⎤ ⎡ 

−4  
⎤

14.  Column  vectors:  ⎣ −1  ⎦ , ⎣ −2  ⎦ , ⎣ 5 ⎦.

2              6              7 

Row vectors:  [1 3  − 4], [−1   − 2 5], [2  6 7].

 
15.  Column  vectors: 

    
2  
 

 

5    
,
 

      
10  

  

−1 

    
6  
 

 
,    

3 

 
. Row vectors:  [2 10 6], [5  − 1 3].

⎡ 
1   2 

⎤
 

⎡ 
1 
⎤

 
⎡ 

2 
⎤

16.  A = ⎣ 3   4 ⎦.  Column  vectors:  ⎣ 3 ⎦ , ⎣ 4 ⎦. 

5   1                                          5           1 
    

−2       0       4   −1    −1  
 

; column vectors:  

    
−2  

 

, 

        
0  

  

, 

        
4  

  

, 

     
−1  

 

, 

     
−1  

 

.17.  A = 
9   −4    −4       0       8 

⎡ 
−2    −4  

⎤
 

⎢ −6    −6  ⎥ 

9          −4           −4              0             8

18.  B = 
⎢

 ⎢ 3       0 
⎥

; row vectors:  
    
−2    −4  

 
, 

    
−6    −6  

 
, 

    
3   0  

 
, 

    
−1    0  

 
, 

    
−2    1  

 
. ⎥

⎣ −1       0 ⎦ 
−2       1

⎡   
2       5   0   1 

⎤
 

 
 
Row vectors:  [2  5  0 1], [−1  7  0 2], [4  − 6  0 3].

 

 

20.   A  = [a1, a2, . . . , ap]  has p columns  and  each column  q-vector  has  q rows, so the resulting  matrix  has 

dimensions  q × p. 
⎡ 

2   0       0 
⎤

 

21.  One example:  ⎣ 0   3       0 ⎦. 
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0 0 −1  

2 3 1 2 

0 5 6 2 

0 0 3 5 

0 0 0 1 

 

⎢ . ⎥ 

⎡              ⎤ 
 

22.  One example:  
⎢              ⎥

 
⎣              ⎦
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⎦ 

⎢ 
0       0 

⎥
 

⎣ 
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⎡   

1       3   −1       2 
⎤

23.  One example:  
⎢ −3       0       4   −3  ⎥

.
 ⎢   

1   −4       0       1 
⎥

 
−2       3   −1       0

⎡ 
3   0   0 

⎤
 

24.  One example:  ⎣ 0   2   0 ⎦. 

0   0   5 

 
 
 
 
⎡ 

0   0   0 
⎤

25.  The only possibility  here is the zero matrix:  ⎣ 0   0   0 ⎦. 

0   0   0
⎡ 

0   0   0 
⎤

 

26.  ⎣ 0   0   0 ⎦. 

0   0   0 

 
 
 
 
⎡ 

t2 − t   0 
⎤

27.  One example:  
⎢

 
⎣ 

0       0 ⎥
. ⎦ 

0       0

 
28.  One example: 

 

1   √
3−t 

√
t + 2    0  

  
.

0            0        0

 
29.  One example: 

     
   1   
t2+1      . 

0
 

30.  One example:  
    

t2 + 1   1   1   1   1  
 
. 

 

31.  One example:  Let A and B  be 1 × 1 matrix  functions  given by 
 

A(t) = [t]         and         B(t) = [t2]. 
 

 
32.   Let A be a symmetric  upper  triangular matrix. Then  all elements  below the main  diagonal  are zeros. 

Consequently,  since A  is symmetric, all elements  above  the main  diagonal  must  also be zero.  Hence,  the 

only nonzero entries can occur along the main diagonal.  That is, A is a diagonal  matrix. 
 

33.  Since A is skew-symmetric, we know that aij  = −aji  for all (i, j). But  since A is symmetric, we know 

that aij  = aji for all (i, j). Thus,  for all (i, j), we must  have −aji  = aji.  That is, aji = 0 for all (i, j). That 

is, every element of A is zero. 

 
Solutions to Section 2.2 

 

 

True-False Review: 
 

(a):  FALSE. The  correct  statement is (AB)C = A(BC), the  associative  law.  A counterexample to  the 

particular statement given in this review item can be found in Problem  5. 
 

(b): TRUE. Multiplying  from left to right, we note that AB  is an m × p matrix, and right multiplying  AB 

by the p × q matrix  C, we see that ABC is an m × q matrix. 
 

(c): TRUE. We have (A + B)T = AT + BT = A + B,  so A + B  is symmetric.
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−10 30 5 

−5 0 −15 
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⎡   

0   1   0 
⎤

 
⎡   

0   0   3 
⎤

(d):   FALSE. For  example,  let  A  = 
 

⎡ 
0   0       0 

⎤
 

⎣ −1    0   0 ⎦ , B   = 

0   0   0 

⎣   0   0   0 ⎦.    Then  A  and  B  are  skew- 

−3    0   0

symmetric, but  AB  = ⎣ 0   0   −3  ⎦ is not symmetric. 

0   0       0 
 

(e): FALSE. The correct equation  is (A+B)2 = A2 +AB +BA+B2. The statement is false since AB +BA
 

does not necessarily equal 2AB. For instance,  if A = 
    

1    2  
  

   
1    0  

  

0   0 

 

and B = 

   
0    1  

  

0   0 

 

, then (A+B)2
 

   
1    1  

 
 

=   
0   0

and A2  + 2AB  + B2  = = (A + B)2. 
0   0 
    

0    1  
 

 

 

    
1    0  

 

(f ):   FALSE. For  example,  let A =    
0   0 

B = 0. 

and  B  = 
0   0    

.  Then  AB  = 0 even though  A = 0 and

 
(g):  FALSE. For  example,  let  A  = 

    
0    0  

  

1   0 

 
and  let  B  = 

    
0    0  

  

0   0 

 
.   Then  A  is not  upper  triangular,

despite  the fact that AB  is the zero matrix, hence automatically upper  triangular. 
    

1    0  
 

(h):  FALSE. For  instance,  the  matrix  A  =    
0   0 

and yet A2  = A. 

is neither  the zero matrix  nor the  identity  matrix,

 

(i): TRUE. The  derivative of each entry of the  matrix  is zero, since in each entry, we take the derivative 

of a constant, thus  obtaining zero for each entry  of the derivative  of the matrix. 

(j):  FALSE. The  correct  statement is given in Problem  45.  The  problem  with  the  statement  as given is 

that the second term  should be  dA B,  not B dA .dt                   dt 
    

2et        0                               dA(k):  FALSE. For  instance,  the  matrix  function  A = 
0     3et

 
satisfies  A = 

dt 
, but  A  does not  have

 

the form 

   
cet        0 

0     cet      .

 

(l): TRUE. This  follows by exactly  the same proof as given in the  text for matrices  of numbers  (see part 

3 of Theorem  2.2.23). 
 

Problems: 
 

1(a). 5A =                             . 
 

1(b). −3B = 

   
−6      −3     3     

. 
0   −12    12

⎡ 
−1 + i     −1 + 2i  

⎤
 

1(c). iC = ⎣ −1 + 3i    −1 + 4i  ⎦. 

−1 + 5i    −1 + 6i 
    

−6     11       3  
 

1(d). 2A − B = 
 

 

1(e). A + 3CT   = 
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1 + 3i 15 + 3i 16 + 3i 

5 + 3i 12 + 3i 15 + 3i 

 

. −2    −4    −2 

 
.
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⎦ − ⎣ 1 2 5 ⎦ − ⎣ 

 3 1 2  
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⎡ 

8   10    7  
⎤

 

1(f ). 3D − 2E = ⎣ 1    4     9  ⎦. 

1    7    12 
⎡  

12      −3 − 3i    −1 + i  
⎤

 

1(g). D + E + F = ⎣ 3 + i     3 − 2i          8      ⎦. 

6        4 + 2i          2
 

1(h). Solving for G and simplifying, we have that 
 

3 
G = − 

2 
A − B =

 

 

 
       

1     −10    −1/2  
  

. 
3/2      −4     17/2

 
1(i). Solving for H  and simplifying, we have that H = 4E − D − 2F =

⎡ 
8    −20      −8  

⎤
 
⎡ 

4   0   1 
⎤  ⎡ 

12        4 − 6i     2i  
⎤

 
⎡  

−8       −24 + 6i    −9 − 2i  
⎤

⎣ 4          4       12 

16     −8    −12 
2 + 2i       −4i        0 

−2       10 + 4i    6 

⎦ = ⎣ 1 − 2i      2 + 4i            7       ⎦ . 
15       −19 − 4i       −20

 
1(j). We have KT = 2B − 3A, so that K = (2B − 3A)T = 2BT − 3AT  . Thus,

⎡   
2       0 

⎤ ⎡ 
−2    −1  

⎤
 
⎡   

10   3 
⎤

K = 2 ⎣ 1       4 ⎦ − 3 ⎣ 6       0 ⎦ = ⎣ −16    8 ⎦ .

 
 

⎡ 
−4       0   −1  

⎤
 

2(a). −D = ⎣ −1    −2    −5  ⎦. 

−3    −1    −2 

−1    −4 1   −3 −5    1

⎡   
2       0 

⎤
 
⎡   

8         0 
⎤

2(b).  4BT = 4 ⎣ 1       4 ⎦ = ⎣ 
−1    −4 

4       16 ⎦. 

−4    −16

⎡ 
−2    −1  

⎤
 
⎡ 

1 + i    2 + i  
⎤

 
⎡  

5 + i      4 + i   
⎤

2(c). −2AT  + C = −2 ⎣ 6       0 ⎦ + ⎣ 3 + i    4 + i  ⎦ = ⎣ −9 + i     4 + i   ⎦.

1   −3 
⎡ 

10   −25    −10  
⎤

 

5 + i    6 + i 
⎡ 

4   0   1 
⎤

 

3 + i     12 + i 
⎡ 

14   −25      −9  
⎤

2(d). 5E + D = ⎣ 5          5       15 ⎦ + ⎣ 1   2   5 ⎦ = ⎣ 6          7       20 ⎦.

 

 
2(e). We have 

20   −10    −15 3   1   2 23     −9    −13
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⎡ 
−2    −1  

⎤
 
⎡   

2       0 
⎤ ⎡ 

1 + i    2 + i  
⎤

 
⎡ 
−13 + i    −5 + 2i  

⎤

4AT   − 2BT + iC = 4 ⎣ 6       0 ⎦ − 2 ⎣ 1       4 ⎦ + i ⎣ 3 + i    4 + i  ⎦ = ⎣ 21 + 3i    −9 + 4i  ⎦ .

1   −3 −1    −4 5 + i    6 + i 5 + 5i     −5 + 6i

2(f ). We have  
⎡ 

8    −20      −8  
⎤

 

 
⎡ 

12    3    9 
⎤

 

 
⎡ 
−4    −23    −17  

⎤

4E − 3DT   = ⎣ 4          4       12 ⎦ − ⎣ 
16     −8    −12 

0     6    3 ⎦ = ⎣ 
3    15   6 

4     −2         9 ⎦ . 
13   −23    −18
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6 0 3/2   
⎤

 
⎡ 

3     −15/2 −3    
⎤

 
⎡ 

1 0 0 

3/2 3 15/2 ⎦ − ⎣ 3/2       3/2 9/2    ⎦ + ⎣ 0 1 0 
9/2 

6 

3/2 

15 

3 

/2     9/2 

 

⎤ 
6        −3 −9/2 0 0 1 

 
  

0 9/2        3 

−3/2 9/2     21/2 
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2(g). We have (1 − 6i)F  + iD = 
⎡ 

6 − 36i    −16 − 15i      6 + i    
⎤

 
⎡ 

4i    0     i   
⎤

 
⎡ 

6 − 32i    −16 − 15i     6 + 2i   
⎤

⎣  7 − 5i      −12 − 2i          0 

−1 + 6i     17 − 28i     3 − 18i 

⎦ + ⎣ i     2i    5i  ⎦ = ⎣ 
3i     i     2i 

7 − 4i          −12              5i      ⎦ . 
−1 + 9i     17 − 27i     3 − 16i

 

2(h). Solving for G, we have 
 

 

G = A + (1 − i)CT = 

 

    
−2    6       1  

 
 

−1    0   −3 

 
 
 
+ (1 − i) 

 

    
1 + i    3 + i    5 + i  

 
 

2 + i    4 + i    6 + i

= 

   
−2    6       1  

   

+ 
−1    0   −3 

       
2       4 − 2i    6 − 4i  

 
 

3 − i    5 − 3i    7 − 5i

= 

      
0       10 − 2i    7 − 4i  

   

. 
2 − i     5 − 3i     4 − 5i 

 

 

2(i). Solve for H , we have 

3 
H = 

2 
D −

 ⎡ 

3 

2 
E + 3I3

 ⎤

 

= ⎣                                                                 ⎦ 
 

⎡ 
 

= ⎣                          ⎦ . 
 

 
 

2(j). We have KT = DT   + ET   − F T   = (D + E − F )T , so that 
 

⎡   
0       −7 + 3i    −1 − i  

⎤
 

K = D + E − F = ⎣ 1 − i     3 + 2i          8      ⎦ . 
8       −6 − 2i       −4 

 

3(a).  
 
AB  = 

       
5    10    −3  

 
 

27   22       3

3(b). 
 

⎡   
9 
⎤ 

BC  = ⎣   8 ⎦ 
−6

 
3(c). CA  cannot  be computed. 

 

3(d).
⎡   

1   3 
⎤ 

  
2
  

i     1 + i
 

⎡ 
2 − 4i     7 + 13i   

⎤

AT E = ⎣ −1    1 ⎦ 
2   4 

− 
−i    2 + 4i 

= ⎣   −2         1 + 3i    ⎦ 
4 − 6i    10 + 18i
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3 
⎤ 

  
1       1   2  

        
⎡

 10 2 14 
⎤ 

1 ⎦      
− 

3 = ⎣ 
1   4 2 2 2 ⎦ 

4   14 2 20  

 

= 

1 
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3(e). 
 

⎡   
2   −2       3 

⎤

CD = ⎣ −2       2   −3  ⎦ . 
4   −4       6 

3(f). 
 

⎡   
1   3 

⎤

CT AT  = 
   

1    −1    2  
  
⎣  −1    1  ⎦ = 

   
6    10  

 
 

2   4 

3(g).  
 

F 2  = 

     
i    1 − 3i  

     
i    1 − 3i  

 
  

= 

   
−1    10 − 10i  

 

0    4 + i 0    4 + i 0    15 + 8i

3(h). 
 

⎡ 
2   −1       3 

⎤ ⎡   
2 
⎤

 

 

⎡   
15 
⎤

BDT = ⎣ 5       1       2 ⎦ ⎣ −2  ⎦ = ⎣ 14 ⎦

4       6   −2             3 −10

 
3(i). ⎡   

1 

AT A = ⎣ −1 

2 

3(j). 
 

    
i    1 − 3i  

       
2 − i     1 + i

 
           

−2 + i     13 − i

F E = 
0    4 + i −i    2 + 4i 1 − 4i    4 + 18i

4(a). 
 

⎡     ⎤ 
   

1   −1    2  
                               

6
AC  = 

3       1   4 
⎣ −1  ⎦ =  

10 
2

4(b).  
DC = [10]

4(c).  
DB  = [6  14  − 4]

 
4(d). AD  cannot  be computed.

 
4(e). EF  = 

    
2 − i     1 + i 

−i    2 + 4i 

     
i    1 − 3i  

   

= 
0    4 + i 

    
1 + 2i     2 − 2i     

. 
1        1 + 17i

 

4(f ). Since AT  is a 3 × 2 matrix and B  is a 3 × 3 matrix, the product AT B  cannot  be constructed. 

4(g). Since C is a 3 × 1 matrix, it is impossible to form the product C · C = C2.
 

4(h). E2  = 

    
2 − i     1 + i 

−i    2 + 4i 

    
2 − i     1 + i 

−i    2 + 4i 

 

= 

   
4 − 5i       1 + 7i       

. 
3 − 4i    −11 + 15i
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2 − 4i −2 4 − 6i 

7 + 13i 1 + 3i 10 + 18i 

 

−1 2 

1 
 

⎛ 

4 

 ⎜ 

⎦ 
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4(i). ADT = 

⎡    
1    −1    2  

 
 

3       1   4    
⎣

 

2 
⎤

 

−2  ⎦ = 

3 

    
10  

 
 

16    
.

 
4(j). ET  A = 

 
5.  We have 

    
2 − i       −i 

1 + i    2 + 4i 

    
1 

3                    
=

 

 
. 

 
⎡ 
−2       8 

⎤⎞

ABC = (AB)C =    

   
−3    2       7   −1  

  
⎢ 8   −3 ⎥⎟ 

   
−6    1  

 

⎜        
6   0   −3    −5

 ⎢ 
−1    −9  

⎥⎟         
1   5⎝                                           ⎣          ⎦⎠ 

0       2 

= 

     
15    −95  

    
−6    1  

 

 
 
 

 
and 

−9       65           1   5 

= 

   
−185    −460  

 
 

119       316 
 

⎛ 

 

 
 
 
 
⎡ 
−2       8 

⎤⎞
   
−6    1  

   
⎜

     
−3    2       7   −1  

  
⎢ 8   −3  ⎥⎟

CAB = C(AB) =  
1   5    

⎜ 
6   0   −3    −5

 ⎢ 
−1    −9  

⎥⎟

⎝ 
 

   
−6    1  

      
15    −95  

  

⎣          ⎦⎠ 
0       2

=      
1   5 −9       65

= 

   
−99    635  

   

. 
−30    230 

 
6.

 

Ac = 
       

1    3  
        

6  
 

 
       

1  
 

 
= 6  

 

+ (−2) 
   

3  
               

0 
=              .

−5    4        −2 
 

7. ⎡ 
3   −1    4 

⎤ ⎡   
2 
⎤

 

−5 

 
⎡ 

3 
⎤ 

4 

 
⎡ 
−1  
⎤ 

−38 

 
⎡ 

4 
⎤ 

 

 
⎡ 
−13  

⎤

Ac = ⎣ 2       1   5 ⎦ ⎣ 3 ⎦ = 2 ⎣ 2 ⎦ + 3 ⎣ 1 ⎦ + (−4) ⎣ 5 ⎦ = ⎣ −13  ⎦ .

7   −6    3         −4 
 

8. 

7                −6 3              −16

⎡  
−1       2  

⎤ 
       

5  
  

⎡ 
−1  
⎤

 
⎡   

2 
⎤

 
⎡ 
−7  
⎤

 
 

 
9.  We have 

Ac = ⎣ 4       7 

5   −4         
−1

 
= 5 ⎣ 4 ⎦ + (−1) ⎣ 

5 
7 ⎦ = ⎣ 

−4 

13 ⎦ . 
29

 

Ac = x 

   
a  
  

e 

    
b 

+ y     
f 

   
c 

+ z     
g 

   
d 

+ w     
h 

    
xa + yb + zc + wd 

=   
xe + yf + zg + wh     

.
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10(a). The dimensions  of B  should be n × r in order that ABC is defined. 
 

10(b). The elements of the ith  row of A are ai1, ai2, . . . , ain and the elements  of the jth column of BC  are 
 

r                       r                                 r, 
b1mcmj , 

, 
b2mcmj ,   . . .  , 

, 
bnmcmj ,

m=1 m=1 m=1
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so the element in the ith  row and jth column of ABC = A(BC) is 

 
r                              r                                         r 

ai1  

, 
b1mcmj  + ai2  

, 
b2mcmj  + · · · + ain 

, 
bnmcmj

m=1 

 
n 

m=1 

     
r 

 

 
n  

    
r 

m=1 

 

= 
, 

aik 

k=1 

, 
bkmcmj 

m=1 

= 
,

 
k=1 

, 
aikbkm 

m=1 

cmj .

11(a).  

 

A2  = AA  = 

   
1    −1  

    
1    −1  

 
  

= 

   
−1    −4  

  

.

2       3        2       3                8       7
 

A3  = A2A = 
   
−1    −4  

    
1    −1  

 
 
= 

   
−9    −11  

  

.

8       7        2       3 22       13

 

A4  = A3A = 
   
−9    −11  

    
1   −1  

  

=
 
   
−31    −24  

  

.

22       13        2       3 48       17

11(b). ⎡   
0       1   0 

⎤ ⎡ 
0       1   0 

⎤
 
⎡ 
−2       0       1 

⎤

A2  = AA  = ⎣ −2       0   1 ⎦ ⎣ −2       0   1 ⎦ = ⎣ 4   −3       0 ⎦ .

4   −1    0 
⎡ 
−2       0       1 

⎤ ⎡
 

4   −1    0 

0       1   0 
⎤

 

2       4   −1 
⎡    

4   −3       0 
⎤

A3  = A2A = ⎣ 4   −3       0 ⎦ ⎣ −2       0   1 ⎦ = ⎣ 6       4   −3  ⎦ .

2       4   −1 
⎡    

4   −3       0 
⎤ ⎡

 

4   −1    0 

0       1   0 
⎤

 

−12       3       4 
⎡    

6         4   −3  
⎤

A4  = A3A = ⎣ 6       4   −3  ⎦ ⎣ −2       0   1 ⎦ = ⎣ −20         9       4 ⎦ .

−12       3       4 4   −1    0 10   −16       3

 

12(a). We apply  the distributive property of matrix  multiplication as follows: 
 

(A+2B)2 = (A+2B)(A+2B) = A(A+2B)+(2B)(A+2B) = (A2+A(2B))+((2B)A+(2B)2) = A2+2AB+2BA+4B2, 
 

where scalar factors  of 2 are moved in front of the terms since they commute  with matrix  multiplication. 
 

12(b). We apply  the distributive property of matrix  multiplication as follows: 
 

(A + B + C)2  = (A + B + C)(A  + B + C) = A(A + B + C) + B(A + B + C) + C(A + B + C) 

= A2  + AB  + AC + BA  + B2  + BC + CA + CB + C2
 

= A2  + B2  + C2  + AB  + BA  + AC + CA + BC + CB, 
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as required. 

12(c). We can use the formula for (A + B)3 found in Example  2.2.20 and substitute −B for B  throughout 

the expression: 
 

(A − B)3 = A3  + A(−B)A + (−B)A2 + (−B)2A + A2(−B) + A(−B)2 + (−B)A(−B) + (−B)3
 

= A3  − ABA − BA2 + B2A − A2B + AB2 + BAB − B3, 
 

as needed.
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0 0 

1 0 

0 1 

 

0 −1 0 

0 0 −1 

0 0 0 
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13.  We have 
 

 

A2  = 

   
2    −5  

    
2    −5  

 
  

= 

   
−26    20  

   

,

 

 
so that 

 
 

 
14.  We have 

 
 
 

A2  + 4A + 18I2 = 

6   −6 
 

    
−26    20  

 
 

−24     6 

6   −6 
 

 

+ 

    
8     −20  

 
 

24   −24 

−24     6 
 

    
18    0 

+    
0    18 

 

 
    

0    0  
 

 
=   

0   0    
.

⎡ 
−1    0   4 

⎤ ⎡ 
−1    0   4 

⎤
 
⎡ 
−7    12   −4  

⎤

A2  = ⎣ 1   1   2 ⎦ ⎣ 1   1   2 ⎦ = ⎣ −4     7        6 ⎦

 

 
and 

−2    3   0 −2    3   0 5    3    −2

⎡ 
−1    0   4 

⎤ ⎡ 
−1    0   4 

⎤ ⎡ 
−1    0   4 

⎤
 
⎡ 
−7    12   −4  

⎤ ⎡ 
−1    0   4 

⎤
 
⎡ 

27       0   −4  
⎤

A3  = ⎣ 1   1   2 ⎦ ⎣ 1   1   2 ⎦ ⎣ 1   1   2 ⎦ = ⎣ −4     7        6 ⎦ ⎣ 1   1   2 ⎦ = ⎣ −1     25   −2  ⎦ .

−2    3   0 
 

Therefore,  we have 

−2    3   0 −2    3   0 5    3    −2 −2    3   0 2   −3     26

⎡ 
27       0   −4  

⎤
 
⎡ 
−1    0   4 

⎤
 
⎡ 

26    0     0  
⎤

 
⎡ 

0   0   0 
⎤

A3  + A − 26I3 = ⎣ −1     25   −2  ⎦ + ⎣ 
2   −3     26 

1   1   2 ⎦ − ⎣ 
−2    3   0 

0    26    0 

0     0    26 

⎦ = ⎣ 0   0   0 ⎦ . 
0   0   0

15. ⎡ 
1             

⎤  ⎡ ⎤   ⎡ 
1   1   0 

⎤

A2  = ⎣ 0 

0 

⎦ − ⎣ ⎦ = ⎣ 0   1   1 ⎦ . 
0   0   1

⎡ 
1   x   z 

Substituting A = ⎣ 0    1    y 

0    0    1 

⎤ 
 

⎦ for A, we have

⎡ 
1   x   z 

⎤ ⎡ 
1   x   z  

⎤
 
⎡ 

1   1   0 
⎤

⎣ 0    1    y 

0    0    1 

⎦ ⎣ 0    1    y 

0    0    1 

⎦ = ⎣ 0   1   1 ⎦ , 
0   0   1

that is, ⎡ 
1   2x   2z + xy  

⎤
 
⎡ 

1   1   0 
⎤

⎣ 0     1         2y 0     0          1 
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⎦ = ⎣ 0   1   1 ⎦ . 0   0   1
 

Since corresponding  elements  of equal matrices  are equal, we obtain  the following implications: 
 

2y = 1 =⇒ y = 1/2, 

2x = 1 =⇒ x = 1/2, 

2z + xy = 0 =⇒ 2z + (1/2)(1/2) = 0 =⇒ z = −1/8. 

⎡ 
1   1/2    −1/8  

⎤
 

Thus,  A = ⎣ 0     1         1/2  ⎦. 

0     0             1
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1 0  
      

0
 

1 

0 1 0 0 

 

1 0  
      

0
 

0 

0 1 1 0 
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16.  In order that A2  = A, we require 

 

 
       

x   1 

−2    y 

 
        

x   1
 

−2    y 

 

 
       

x   1 
= 

−2    y 

 
 

 
, that is, 

 

 
       

x2 − 2        x + y 

−2x − 2y    −2 + y2        =

      
x   1 

−2    y 

 

, or equivalently, 

      
x2 − x − 2       x + y − 1 
−2x − 2y + 2    y2  − y − 2 

 

= 02. Since corresponding  elements of equal ma-

trices are equal, it follows that  

 
x2 − x − 2 = 0 =⇒ x = −1 or x = 2,  and 

y2  − y − 2 = 0 =⇒ y = −1 or y = 2.

Two cases arise from x + y − 1 = 0: 

(a): If x = −1, then  y = 2. 

(b): If x = 2, then y = −1. Thus, 
 

 
A = 

 
 
 
 
    

−1    1  
 

 
−2    2 

 

 
 
 
 
 
or   A = 

 
 
 
 
        

2       1  
 

 
. 

−2    −1

 

17.    
0   1  

       
0   −i 

  

= 

   
i       0  

   

= i 

    
1       0  

   

= iσ  .
σ1σ2 =    

1   0         i       0 0   −i 0   −1             
3

   
0   −i 

     
1       0  

   

= 

   
0    i 

            
0    1  

 
 

= i                  = iσ  .σ2σ3 =    
i       0 0   −1              i    0 1   0             

1

   
1       0  

    
0    1  

         
0    1  

 
    

0   −i 
  

= iσ  .
σ3σ1 = 

0   −1 1   0     
=

 −1    0 
= i     

i       0             2

18.  
[A, B] = AB  − BA 

   
1    −1  

    
3    1  

  

 
 
   

3    1  
    

1    −1  
 

=   
2       1 4   2    

−   
4   2        2       1

= 

   
−1    −1  

 
 

10       4 

   
5    −2  

 
 

−   
8   −2

   
−6    1  

   

= 0  .
 

=      
2   6           2

 

19.  
[A1, A2] = A1A2 − A2A1 

  

 
 
   

0    1  
    

1    0  
 

= 
    

0    1  
 

 

−   
0   0        0   1 

   
0    1  

 

=   
0   0    

−   
0   0 

= 02,    thus  A1   and A2   commute.

[A1, A3] = A1A3 − A3A1 

  
 

   
0    0  

    
1    0  
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= 
    

0    0  
 

 

−   
1   0        0   1 

   
0    0  

 

=   
1   0    

−   
1   0 

= 02,    thus  A1   and A3   commute.
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= 

= 
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[A2, A3] = A2A3 − A3A2 
   

0    1  
    

0    0  
  

 

   
0    0  

    
0    1  

 

=   
0   0 1   0    

−   
1   0        0   0

   
1    0  

 
 

=   
0   0 

   
0    0  

 
 

−   
0   1 

   
1       0  

 
 

= 
0   −1 

 
= 02.

    
−1    0  

 

Then [A3, A2] = −[A2, A3] =  
 

20. 

0   1     
= 02.  Thus,  A2   and A3   do not commute.

[A1, A2] = A1A2 − A2A1

1 
    

0    i 
= 

    
0    −1  

 
 
− 1 

    
0   −1  

    
0    i

4     i    0        1       0 4     1       0         i    0

1 
    

i       0  
 

 
=                − 1 

   
−i    0  

 

4     0   −i 4       0    i

1 
   

2i        0  
 

 
=                    = 1 

    
i       0  

 
 
 
= A3.

4     0    −2i 2     0   −i

 

[A2, A3] = A2A3 − A3A2 

1 
   

0    −1  
     

i       0  
 

 
− 

 
1 
    

i       0  
    

0    −1  
 

4     1       0 0   −i 4     0   −1         1       0

1 
    

0    i 
= 

4     i    0 

1 
      

0    −i  
 

 
− 

4     −i    0

1 
    

0     2i  
 

 
=                  = 1 

    
0    i 

 
= A1.

4     2i    0 2     i    0

 

[A3, A1] = A3A1 − A1A3 

1 
     

i       0  
       

0    i 
= 

4     0   −i      i    0 

 
 

1 
    

0    i 
− 

4     i    0 

      
i       0  

  

0   −i

1 
       

0    −1  
 

 
− 1 

   
0    1  

 

4     −1       0 4     1   0

= 
1 

    
0   −2  

  

=
 1 

   
0    −1  

 
 
 
= A2.

4     2       0 2     1       0

 

21. 
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[A, [B, C]] + [B, [C, A]] + [C, [A, B]] 

= [A, BC − CB] + [B, CA − AC] + [C, AB  − BA] 

= A(BC − CB) − (BC  − CB)A + B(CA − AC) − (CA − AC)B + C(AB − BA) − (AB − BA)C 

= ABC − ACB − BCA + CBA + BCA − BAC − CAB + ACB + CAB − CBA − ABC + BAC   = 0. 

 
22. 

Proof that A(BC) = (AB)C: Let A = [aij ] be of size m × n, B = [bjk] be of size n × p, and C = [ckl] be 

of size p × q. Consider  the (i, j)-element of (AB)C:
 

p 

[(AB)C]ij  = 
,

 
k=1 

    
n , 

aihbhk 

h=1 

 
n 

ckj  = 
, 

aih 

h=1 

    
p

 
, 

bhkckj 

k=1 

 

 
= [A(BC)]ij .
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Proof that A(B + C) = AB  + AC:  We have 

 
n 

[A(B + C)]ij  = 
, 

aik(bkj  + ckj ) 

k=1 

n 

= 
,

(aijbkj  + aikckj ) 

k=1 

n                    n 

= 
, 

aikbkj  + 
, 

aikckj

k=1 k=1

= [AB + AC]ij . 

 
23. 

Proof that (AT )T   = A:  Let A = [aij ]. Then  AT = [aji], so (AT )T   = [aji]T  = aij  = A, as needed. 
Proof that (A + C)T    = AT + CT :  Let  A  = [aij ]  and  C  = [cij ].   Then  [(A + C)T ]ij   = [A + C]ji   = 
[A]ji  + [C]ji  = aji + cji  = [AT ]ij  + [CT ]ij  = [AT  + CT ]ij . Hence, (A + C)T   = AT + CT . 

24.  We have 
m 

(IA)ij = 
, 

δikakj  = δiiaij  = aij , 

k=1 

for 1 ≤ i ≤ m and 1 ≤ j ≤ p. Thus,  ImAm×p  = Am×p. 

25.  Let A = [aij ] and B = [bij ] be n × n matrices.  Then
 

n 

tr(AB) = 
,

 
k=1 

    
n , 

akibik 

i=1 

⎡ 

 
n 

= 
,

 
k=1 

⎤ 

    
n , 

bikaki 

i=1 

 
n 

= 
,

 
i=1 

    
n , 

bikaki 

k=1 

 

 
= tr(BA).

 

26(a). BT AT  = 

       
0    −7    −1  

 
 

−4       1   −3     
⎣

 

⎡ 
−9       1 

⎤
 

−3 

−1  ⎦ = 

6 

       
1  
 

 
. 

−7 

⎡ 

 
 

 

−4       64         6 
⎤

26(b). CT BT = 
⎢ 0       1 ⎥ 

    
0   −7    −1  

  

= 
⎢ −4         1     −3  ⎥

.
⎢   

3       5 
⎥ 

−4       1   −3
 ⎢ 

−20    −16    −18  
⎥

⎣          ⎦ 
−2    −2 

⎣                   ⎦ 
8       12         8

 

26(c). Since DT   is a 3 × 3 matrix and A is a 1 × 3 matrix, it is not possible to compute  the expression DT A. 
⎡ 
−2    0       1 

⎤

27(a). ADT = 
   
−3    −1    6  

  
⎣ 1   0   −2  ⎦ = 

  
35   42   −7  

 
. 

5   7   −1
⎡ 
−9       1 

⎤
 

⎡   
82       1   −22       16 

⎤

27(b). First  note that CT C = 
⎢ 0       1 ⎥ 

  
−9    0   3   −2  

  

= 
⎢ 1       1         5     −2  ⎥

.  Therefore,
⎢   

3       5 
⎥ 

1   1   5   −2
 ⎢ 

−22       5       34   −16  
⎥

⎣          ⎦ 
−2    −2 

⎣                         ⎦ 
16   −2    −16         8

⎡   
82       1   −22       16 

⎤ ⎡
 82       1   −22       16 

⎤
 
⎡   

7465   −59    −2803       1790 
⎤
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(CT C)2  = 
⎢ 1       1         5     −2  ⎥ ⎢ 1       1         5     −2  ⎥ 

= 
⎢ −59       31         185       −82  ⎥ 

.
⎢                         ⎥ ⎢                         ⎥   ⎢                                 ⎥
⎣ −22       5       34   −16  ⎦ ⎣ −22       5       34   −16  ⎦ ⎣ −2803     185       1921   −1034  ⎦

16   −2    −16         8 16   −2    −16         8 1790   −82    −1034         580
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0       x 
⎤ ⎡ 

−x  −y 7z   
⎤

 
⎡ 

2x2
 0 0 

y     −y ⎦ ⎣   0       y 14z  ⎦ = ⎣  0 3y2
 0 

 

2 

3 

6 

 
 
 

⎡ 
−2    0       1 

⎤ ⎡
 

 
 

0   −4  
⎤

 

 
 
⎡  

−1         5 
⎤
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27(c). DT B = ⎣ 1   0   −2  ⎦ ⎣ −7       1 ⎦ = ⎣ 2         2 ⎦.

 

 
28(a). We have 

5   7   −1 −1    −3 −48    −10 
 
⎡ 
−x   −y   z   

⎤

S = [s1, s2, s3] = ⎣ 

 
so 

0       y    2z  ⎦ , 
x   −y    z

⎡ 
2   2   1 

⎤ ⎡ 
−x   −y   z   

⎤
 
⎡ 
−x   −y   7z   

⎤

AS  = ⎣ 2   5   2 ⎦ ⎣ 
1   2   2 

0       y    2z 

x   −y    z 

⎦ = ⎣ 0       y    14z 

x   −y    7z 

⎦ = [s1, s2, 7s3].

28(b). 
 

⎡ 
−x                                                              

⎤

ST AS  = ST (AS) = ⎣ −y 

z    2z       z 

 
x   −y    7z 

⎦ , 
0       0     42z2

 

but  ST AS  = diag(1, 1, 7), so we have the following 

√  

2x2 = 1 =⇒ x = ± 
  2

 

√  

3y2  = 1 =⇒ y = ± 
  3

 

√  

6z2  = 1 =⇒ z = ± 
  6 

. 
 

29(a). We have 
 

⎡   
1   −4    0 

⎤ ⎡
 

 

0   2x        y  
⎤

AS  = ⎣ −4       7   0 ⎦ ⎣ 
0       0   5 

0    x   −2y  ⎦ 
z     0          0

⎡ 
0    −2x         9y  

⎤
 

= ⎣  0      −x  −18y  ⎦ 
5z         0           0 

= [5s1, −s2, 9s3]. 

29(b). We have 
 

 
⎡ 

0          0   z  
⎤ ⎡ 

 

 

0    −2x         9y  
⎤

 

 

 
⎡ 

5z2                0      0    
⎤

ST AS  = ⎣ 2x       x   0 

y     −2y    0 

⎦ ⎣ 0      −x  −18y 

5z         0           0 

⎦ = ⎣ 0     −5x2          0    ⎦ , 
0             0   45y2

 

so in order for this to be equal to diag(5, −1, 9), we must  have 
 

5z2  = 5,        −5x2  = −1,         45y2  = 9. 
 

Thus,  we must  have z2  = 1, x2 = 1 , and y2  = 1 . Therefore,  the values of x, y, and z that we are looking for                          5                             5  
1               

     
1
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are x = ± 
5 

, y = ± 5 
, and z = ±1.



(c)2017 Pearson Education. Inc.  

2 0 0 0 

0 2 0 0 

0 0 2 0 

0 0 0 2 

 

⎝⎣ 9   −2 3 ⎦ + ⎣ −1 −2 5 

 2       5 5 0 3 5 

 

8   −4 8 ⎦ = ⎣ 4 −2 4 ⎦ 

2       8 10  1 4 5  

 

⎢ . 

n 

1                         1 

1                         1 

⎥ 

− 
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⎡              ⎤ 

 

30(a). 
⎢              ⎥

 
⎣              ⎦ 

 

 
⎡ 

7   0   0 
⎤

 

30(b). ⎣ 0   7   0 ⎦. 

0   0   7 
 

31.  Suppose A is an n × n scalar matrix  with trace k.  If A = aIn, then tr(A) = na = k, so we conclude that 

a = k/n. So A = k In, a uniquely  determined matrix.

32.  We have 
 
 
BT = 

 
 

1                   
  

T 

(A + AT ) 

 
 
=  (A + AT )T   =   (AT + A) = B

 
and 

2                           2                         2 

 
 

1                   
  T

CT   = (A − AT ) =   (AT − A) = −  (A − AT ) = −C.

2                           2                         2 
 

Thus,  B  is symmetric  and C is skew-symmetric. 

33.  We have
 

 
 
 

34.  We have 

 
B + C = 

 

1 
(A + AT ) +  

2 

 

1 
(A     AT ) = 

1 
A + 

2                      2 

 

1 
AT + 

2 

 

1 

2 
A −

 

 

1 
AT = A. 

2

 

B = 
1 

(A + AT ) = 
1 

2                      2 

⎛⎡  
4   −1    0 

⎤  ⎡
 4       9   2 

⎤⎞
 

⎦⎠ = 
1 

⎡ 
8       8    2  

⎤
 

2 
⎣

 

⎡ 
4       4   1 

⎤

and 

 
1 

 

1 

⎛⎡  
4   −1    0 

⎤  ⎡
 

 

4       9   2 
⎤⎞

 

 

1 

⎡ 
0    −10    −2  

⎤
 

 
⎡ 

0   −5    −1  
⎤

C =    (A − AT ) =  ⎝⎣  9   −2    3 ⎦ − ⎣ −1    −2    5 ⎦⎠ = ⎣ 10         0   −2  ⎦ = ⎣ 5       0   −1  ⎦ .

2                      2         
2       5   5 0       3   5 

2      
2          2       0 1       1       0

35. 

1 

⎛⎡  
1   −5    3 

⎤  ⎡
 1   3       7 

⎤⎞
 

1 

⎡   
2   −2    10 

⎤
 
⎡   

1   −1    5 
⎤

B =   ⎝⎣  3       2   4 ⎦ + ⎣ −5    2   −2  ⎦⎠ = ⎣ −2       4     2 ⎦ = ⎣ −1       2   1 ⎦ .
2         

7   −2    6 

1 

⎛⎡  
1   −5    3 

⎤
 

3   4       6 
⎡   

1   3       7 
⎤⎞

 

2      
10       2   12 

1 

⎡ 
0   −8    −4  

⎤
 

5       1   6 
⎡ 

0   −4    −2  
⎤

C =   ⎝⎣  3       2   4 ⎦ − ⎣ −5    2   −2  ⎦⎠ = ⎣ 8       0       6 ⎦ = ⎣ 4       0       3 ⎦ .
2         

7   −2    6 3   4       6 
2     

4   −6       0 2   −3       0
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− 

 

36(a). If A is symmetric, then AT  = A, so that 
 

1                      1                    1
 

 
and 

B =    (A + A
T 
) =  

2                      2 
(A + A) =  

2 
(2A) = A

C = 
1 

(A     AT ) = 
1
 

2                      2 

1 
(A − A) = 

2
 (0n) = 0n.
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k=1 

dt 

dt 

dt 

− 
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36(b). If A is skew-symmetric, then AT  = −A, so that 

 
 

 
and 

B = 
1 

(A + AT ) = 
1 

2                      2 

 

C = 
1 

(A     AT ) = 
1 

2                      2 

 

(A + (−A)) = 
 

 
 
(A − (−A)) = 

1 

2 
(0n) = 0n

 

 
1 

(2A) = A. 
2

 

37.   If A = [aij ] and  D = diag(d1, d2, . . . , dn), then  we must  show that the  (i, j)-entry  of DA  is diaij .  In 

index notation, we have 
n 

(DA)ij  = 
, 

diδikakj  = diδiiaij  = diaij . 

k=1 

Hence, DA  is the matrix  obtained  by multiplying the ith  row vector  of A by di, where 1 ≤ i ≤ n. 

38.   If A = [aij ] and  D = diag(d1, d2, . . . , dn), then  we must  show that the  (i, j)-entry  of AD  is djaij .  In 

index notation, we have 
n 

(AD)ij  = 
, 

aikdjδkj  = aijdjδjj  = aijdj . 

k=1 

Hence, AD  is the matrix  obtained  by multiplying the jth column vector  of A by dj , where 1 ≤ j ≤ n. 

39.   Since A and  B  are symmetric,  we have that AT  = A and  BT = B.  Using properties  of the  transpose 

operation, we therefore  have
 

 
and this shows that AB  is symmetric. 

(AB)T = BT AT = BA  = AB,

40(a). We have (AAT )T   = (AT )T AT = AAT , so that AAT  is symmetric. 

40(b). We have (ABC)T = [(AB)C]T  = CT (AB)T = CT (BT AT ) = CT BT AT , as needed. 
         

1        cos t  
 

41.  A (t) =  . − sin t     4
   
−2e−2t

42.  A (t) =  
cos t     

.

⎡ 
cos t  − sin t   0 

⎤

43.  A (t) = ⎣ sin t    cos t    1 ⎦. 

0           3        0
     

et       2e2t       2t
44.  A (t) =  

2et      8e2t      10t   
.

 

45.   We show that the  (i, j)-entry  of both  sides of the  equation  agree.  First,  recall that the (i, j)-entry  of

AB  is 
     n

 aikbkj , and therefore,  the (i, j)-entry of  d (AB) is (by the product rule)

 
n , 

a 
 

 
n                    n , 

ikbkj  + 
, 

aikbkj .
 

k=1 

ikbkj  + aikbkj  = a
 
 

k=1 

 
k=1

 

The former term is precise the (i, j)-entry of the matrix   dA B, while the latter term is precise the (i, j)-entry 

of the matrix  A dB . Thus,  the (i, j)-entry of  d (AB) is precisely the sum of the (i, j)-entry of dA B  and the 
dt                                                   dt                                                                                           dt 

(i, j)-entry of A dB . Thus,  the equation  we are proving  follows immediately.
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1 1/2 0 

2 2 0 

 

e e2/2 1/3 

2e 2e2
 5/3 

 

  

3 

2 

1 1 

2 

t                   t          
t 

⎦ 

2 2 

⎡    
e 

3                                                            1 
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46.  We have 
 

   1       
et         e−t 

 

 
 
dt =

 

 
 
    

et         −e−t 

 

 

1   = 

    
e     −1/e  

 
 

 

    
1    −1  

 
 

− 

 

 

= 

    
e − 1    1 − 1/e  

  

.

0         
2et      5e−t

 
2et      −5e−t       

 
0

 2e    −5/e 2   −5 2e − 2   5 − 5/e

47.  We have 
 

   π/2    
cos t  

 
 

 

 
 
dt = 

 

       
sin t 

 
  

 π/2   
=

 

 

       
sin(π/2) 

 

       
sin 0 

− 

 

    
1  
 

 
= 

 

        
0  
 

 
− 

 

    
1  
 

 
=           .

0               
sin t − cos t    

 0
 − cos(π/2) − cos 0 0             −1              1

48.  We have 
 

   1       
et         e2t         t2

 

 

     
et        1

 

 
 
2t      t3

dt = = 
 

2 
e         

3        
 
1

0         2et      4e2t      5t2
 2et      2e2t       5 t3    

 
0  

     
e − 1       e  −1 

 
 
1/3  

 

=                         −                      = 
2e − 

2 

2   2e2 − 
. 

2   5/3

49.  We have 

   1 

⎡
 

 

e2t              sin 2t    
⎤

 

 
 

2t 
2 

 

− 
2 

cos 2t  
⎤

⎣ t2 − 5         tet
 

0           sec2 t   3t − sin t 

⎦ dt = ⎣ 
3   − 5t     te − e          

 
0 

tan t     3 t2 + cos t

⎡   
e2 

 

cos 2 ⎤  ⎡ 1 1   
⎤   ⎡ e2 −1 

1−cos 2      
⎤

2                
−  

2 2      − 2                            2                      2

= ⎣ −14/3           0 
tan 1     3  + cos 1 

⎦ − ⎣ 0    −1 
0      1 

⎦ = ⎣ −14/3           1        ⎦ . 
tan 1     1  + cos 1

 

50.  
    

A(t)dt = 
      

−5dt   
   

  1     dt    
   

e3tdt  
  

= 
   
−5t    tan−1(t)    1 e3t   

 
. 

 
51. 

         
2t 
3t2

 

 

 
dt = 

    
t2

 

t3
 

t2+1                                                                       3 

 
.

    
⎡  

sin t    cos t   0 
⎤

 
⎡ 
− cos t    sin t      0    

⎤

52. ⎣ − cos t   sin t   t 

0          3t     1 

⎦ dt = ⎣ − sin t   − cos t   t2/2  ⎦. 
0         3t2/2        t

 
53. 

        
et         e−t 

2et      5e−t
 

 
dt = 

    
et         −e−t 

2et      −5e−t       .

    
⎡  

e2t              sin 2t    
⎤ ⎡  1 e2t           − 1 cos 2t  

⎤
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2 

 

54. 
⎣ t2 − 5         tet

 ⎦ dt = ⎣ 
2 

t 3 

3   
− 

2 

5t      tet  − et       ⎦.

sec2 t   3t − sin t tan t     3 t2 + cos t

 

Solutions to Section 2.3 
 

 

True-False Review: 
 

(a):  FALSE. The  last  column  of the augmented matrix  corresponds  to  the  constants on the  right-hand 

side of the  linear  system,  so if the  augmented matrix  has n columns,  there  are only n − 1 unknowns  under 

consideration in the system.
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(b):  FALSE. Three  distinct planes  can  intersect in a line (e.g.   Figure  2.3.1,  lower right  picture).  For 

instance,  the xy-plane, the xz-plane, and the plane y = z intersect in the x-axis. 
 

(c): FALSE. The right-hand side vector  must  have m components, not n components. 
 

(d): TRUE. If a linear system has two distinct solutions  x1   and x2,  then any point on the line containing 

x1   and x2   is also a solution,  giving us infinitely  many  solutions,  not exactly  two solutions. 

(e): TRUE. The augmented matrix  for a linear system has one additional column (containing the constants 

on the right-hand side of the equation) beyond the matrix  of coefficients. 

(f ):   FALSE. Because the vector  (x1, x2, x3, 0, 0) has five entries,  this  vector  belongs to R5.  Vectors  in R3 

can only have three slots. 
 

(g):  FALSE. The  two  column  vectors  given have  different  numbers  of components,  so they  are  not  the 

same vectors. 
 

Problems: 
 

1. 

2 · 1 − 3(−1) + 4 · 2 = 13, 
 

1 + (−1) − 2 = −2, 
 

5 · 1 + 4(−1) + 2 = 3. 

 

2. 

2 + (−3) − 2 · 1 = −3, 
 

3 · 2 − (−3) − 7 · 1 = 2, 
 

2 + (−3) + 1 = 0, 
 

2 · 2 + 2(−3) − 4 · 1 = −6. 

 

3. 

(1 − t) + (2 + 3t) + (3 − 2t) = 6, 
 

(1 − t) − (2 + 3t) − 2(3 − 2t) = −7, 
 

5(1 − t) + (2 + 3t) − (3 − 2t) = 4. 

 

4. 

s + (s − 2t) − (2s + 3t) + 5t = 0, 
 

2(s − 2t) − (2s + 3t) + 7t = 0, 
 

4s + 2(s − 2t) − 3(2s + 3t) + 13t = 0. 

 

5.  The  two  given lines are the same line.  Therefore,  since this  line contains  an infinite  number  of points, 

there  must  be an infinite  number  of solutions  to this linear system. 
 

6.  These  two lines are parallel  and  distinct, and  therefore,  there  are no common  points on these lines.  In 

other  words, there are no solutions  to this linear system. 
 

7.  These  two lines have different slopes, and  therefore, they will intersect in exactly  one point.   Thus,  this 

system of equations  has exactly  one solution.
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1 2 −3  
⎤

 
⎡ 

1 
⎤

 
⎡ 

1 2   −3 1 

2 4 −5  ⎦ , b = ⎣ 2 ⎦ , A # = ⎣ 2 4   −5 2 

7 2 −1 3 7 2   −1 3 

 

x 

x 

x 

2 

= 

. 
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8.   The  first  and  third  equations  describe  lines that are  parallel  and  distinct, and  therefore,  there  are  no 

common points on these lines.  In other  words, there are no solutions  to this linear system.
⎡ 

 

9.  A = ⎣ 
 

    
1    1       1    −1  

 
 

 

 
 
 
    

3  
        

#
 

⎤ 
 

⎦. 
 

    
1   1       1   −1    3  

  

.
10.  A = 

2   4   −3       7 
, b = 

2    
, A    =

 2   4   −3       7   2

⎡ 
1   2   −1  

⎤
 

⎡ 
0 
⎤

 
⎡ 

1   2   −1    0 
⎤

11.  A = ⎣ 2   3   −2  ⎦ , b = ⎣ 0 ⎦ , A#  = ⎣ 2   3   −2    0 ⎦.

5   6   −5                    0 5   6   −5    0

 

12.  It is acceptable  to use any variable  names.  We will use x1, x2, x3, x4: 
 

x1 − x2 +2x3 + 3x4 =   1, 

x1 + x2 −2x3  + 6x4 = −1, 

3x1 + x2 +4x3 + 2x4 =   2. 

 

13.  It is acceptable  to use any variable  names.  We will use x1, x2, x3: 
 

2x1 +  x2     +3x3 =   3, 

4x1 −   x2     +2x3 =   1, 

7x1 + 6x2    +3x3 = −5. 

 
14.  The system  of equations  here only contains one equation:  4x1 − 2x2 − 2x3 − 3x5 = −9. 

15.  This system  of equations  has three  equations:  −3x2  = −1,    2x1 − 7x2 = 6,     5x1 + 5x2 = 7. 

16.  Given Ax  = 0 and Ay  = 0, and an arbitrary constant c, 
 

(a). we have
 
 
and 

Az = A(x  + y) = Ax + Ay  = 0 + 0 = 0 
 
 

Aw  = A(cx) = c(Ax) = c0 = 0.

(b). No, because 

and 

in general. 

 
A(x  + y) = Ax + Ay  = b + b = 2b = b, 

A(cx) = c(Ax) = cb = b

 

      
 
 

17.        1 
= 

   
−4       3  

       
x1 

   
4t  

 
 

+           .

             6   −4         x2               t
2

 

      
 
 

18.        1 

        
t2        −t 

      
x1



(c)2017 Pearson Education. Inc. 
 

x 

x 

x 

  
2 

 

      
 
 

19.        1   
2 

− sin t     1 
         

0        e2t 
= 

− sin t    0 

x2 

    
x1 

x2 

 

    
0  
 

 
+   

1    
.
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x 

2 

= 

− 
= 

 
 
 

⎡ 
 
⎤ 

1 

 
 
⎡  

0      − sin t   1 

 
 
⎤ ⎡ 

x1  

⎤ 

 
 
⎡  

t 
⎤ 
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20.  ⎣  x  
 
 
⎦ = ⎣ −et

 0        t2
 

2
 

⎦ ⎣ x2 ⎦ + ⎣ t3  ⎦.

x3 

21.  We have 

−t      t       0 x3                 1 

         
4e4t 

 

        
4e4t

 
 

and 

x
 
(t) =  

−2(4e4t) 
=   

−8e4t

 

Ax + b = 
       

2   −1  
       

e4t
 

   
0  
 

 
+ 

   
2e4t  + (−1)(−2e4t) + 0  

 
 

       
4e4t 

=                  .

 

 
22.  We have 

−2       3 −2e4t                   0 −2e4t  + 3(−2e4t) + 0  −8e4t

   
4(−2e−2t) + 2 cos t  

 
 

   
−8e−2t  + 2 cos t  

 

 
 

and 

x
 
(t) =  

3(− 2e−2t 
) + sin t    

=
 −6e−2t  + sin t

 
Ax + b = 

       
1    −4  

    
4e−2t  + 2 sin t  

 
 
 

+ 

   
−2(cos t + sin t)  

 

−3       2 3e−2t  − cos t 7 sin t + 2 cos t

        
4e−2t  + 2 sin t − 4(3e−2t  − cos t) − 2(cos t + sin t) 

=   
−3(4e−2t  + 2 sin t) + 2(3e−2t  − cos t) + 7 sin t + 2 cos t 

   
−8e−2t  + 2 cos t  

 
 

=    
−6e−2t  + sin t     

.

23.  We compute 
 
 
 

and 

 

 
x = 

    
3et  + 2tet

 

et  + 2tet

 
Ax + b = 

       
2       1  

       
2tet  + et             

     
0 

+ 

        
2(2tet  + et) − (2tet  − et) + 0  

    
2tet  + 3et 

=                        .

−1       2 2tet  − et
 4et

 −(2tet  + et) + 2(2tet  − et) + 4et
 2tet  + et

 

Therefore,  we see from these calculations  that x = Ax + b. 
 

24.  We compute
 
 
 

 
and 

⎡ 
 

x = ⎣ 
−tet − et          

⎤
 

−9e−t              ⎦ 
tet  + et  − 6e−t

⎡ 
1       0   0 

⎤ ⎡
 

 

−tet
 

⎤ ⎡ 
−et    

⎤   ⎡
 

 

−tet
 

⎤ ⎡ 
−et    

⎤   ⎡
 

 

−tet − et

Ax+b = ⎣ 2   −3    2 ⎦ ⎣ 9e−t
 ⎦+⎣  6e−t

 ⎦ = ⎣ 2(−tet) − 3(9e−t) + 2(tet  + 6e−t)  ⎦+⎣  6e−t
 ⎦ = ⎣ −9e−t
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1   −2    2 tet  + 6e−t                     et
 −tet − 2(9e−t) + 2(tet  + 6e−t) et                        tet  + et  − 6e−

 

Therefore,  we see from these calculations  that x = Ax + b. 
 

Solutions to Section 2.4 

 
True-False Review: 

 

(a): TRUE. The precise row-echelon form obtained  for a matrix  depends on the particular elementary row 

operations (and  their  order).   However,  Theorem  2.4.15 states  that there  is a unique  reduced  row-echelon 

form for a matrix.
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2 

7 
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(b): FALSE. Upper triangular matrices  could have pivot entries that are not 1. For instance,  the following    

2    0  
 

matrix  is upper  triangular, but  not in row echelon form: 
0   0    

.

 

(c):  TRUE. The  pivots  in a row-echelon  form of an  n × n  matrix  must  move down  and  to the right  as 

we look from one row to the  next  beneath it.  Thus,  the  pivots  must  occur on or to the right of the main 

diagonal  of the matrix, and thus all entries  below the main diagonal  of the matrix  are zero. 
 

(d): FALSE. This would not be true,  for example, if A was a zero matrix  with 5 rows and B was a nonzero 

matrix  with 4 rows. 

(e):  FALSE. If A  is a nonzero  matrix  and  B  = −A, then A + B  = 0, so rank(A + B)  = 0, but  rank(A), 

rank(B) ≥ 1 so rank(A)+ rank(B) ≥ 2.

 
(f ):    FALSE. For  example,  if A  = B  = 

 

rank(B) = 1 + 1 = 2. 

    
0    1  

  

0   0 

 
,  then  AB   = 0,  so rank(AB) = 0,  but  rank(A)+

 

(g): TRUE. A matrix  of rank  zero cannot  have  any  pivots,  hence no nonzero  rows.  It  must  be the  zero 

matrix. 

(h): TRUE. The matrices  A and 2A have the same reduced  row-echelon form, since we can move between 

the  two matrices  by multiplying  the rows of one of them by 2 or 1/2, a matter of carrying  out  elementary 

row operations. If the two matrices  have the same reduced row-echelon form, then  they have the same rank. 

(i): TRUE. The matrices  A and 2A have the same reduced  row-echelon form, since we can move between 

the  two matrices  by multiplying  the rows of one of them by 2 or 1/2, a matter of carrying  out  elementary 

row operations. 

Problems: 
 

1.  Neither. 
 

2.  Reduced  row-echelon form. 
 

3.  Neither. 
 

4.  Row-echelon form. 
 

5.  Row-echelon form. 
 

6.  Reduced  row-echelon form. 
 

7.  Reduced  row-echelon form. 
 

8.  Reduced  row-echelon form. 
 

9.        
2   −4  

   
1  

        
1   −2  

   
2  

    
1   −2  

  

, Rank  (A) = 1.
−4       8     

∼
 −4       8     

∼    
0       0

 

1.  M1( 1 )     2.  A12(4) 

10.     
2       1  

    
1  

    
1   −3  

   
2  

    
1   −3  

   
3  

    
1   −3  

  

, Rank  (A) = 2.
1   −3     

∼
 2       1     

∼
 0       7     

∼    
0       1

 

1.  P12         2.  A12(−2)     3.  M2( 1 )
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0 0 1 ⎦ , Rank  (A) = 2. 

0 0 0 

 

0 1 3 

0 0 1 

0 0 4 

 

⎡ 
0 1 3 

⎣ 0 1 4 

 0 3 5 

 

1 1 2 

0 1 0 

0 −5 0 

 

0 0   −3 3 

0 0       0 1 

 

− 

− − − − 

− 

− 

− 
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11. ⎤   ⎡          ⎤ 
 

1 

⎡ 
0   1   3 

⎤
 

2

⎦ ∼  ⎣ ⎦ ∼  ⎣

 

 
1.  A12(−1), A13(−3)     2.  A23(−4) 

 

12. ⎡ 
2       1   4 

⎤
 
⎡ 

3       2   6 
⎤

 
1 

⎡ 
1       1   2 

⎤
 

2 

⎡ 
1       1   2 

⎤
 

3 

⎡ 
1       1   2 

⎤
 

4

⎣ 2   −3    4 ⎦ ∼  ⎣ 2   −3    4 ⎦ ∼  ⎣ 2   −3    4 ⎦ ∼  ⎣ 0   −5    0 ⎦ ∼  ⎣ 0   −1    0 ⎦

3   −2    6 2       1   4 
⎡ 

 

5 

2       1   4 
⎤   ⎡ 

1   1   2 
⎤

 
6 

0   −1    0 0   −5    0

∼  ⎣            ⎦ ∼  ⎣ 0   1   0 ⎦ , Rank  (A) = 2. 
0   0   0 

 
1.  P13       2.  A21(−1)     3.  A12(−2), A13(−3)     4.  P23         5.  M2(−1)     6.  A32(5) 

 

13.  
⎡ 

2   −1       3 
⎤

 

 
⎡ 

3       1       2 
⎤

 
1 

 
⎡ 

1       2       5 
⎤

 
2 

 
⎡ 

1       2       5 
⎤

 
3 

 
⎡ 

1       2       5 
⎤

 
4

⎣ 3       1   −2  ⎦ ∼  ⎣ 2   −1       3 ⎦ ∼  ⎣ 2   −1       3 ⎦ ∼  ⎣ 0   −5     13 ⎦ ∼  ⎣ 0   −1    −2  ⎦

2   −2       1 2   −2       1 0   −1    −2 0   −1    −2 0   −5     13

⎡ 
1       2       5 

⎤
 

5 

⎡ 
1   2       5 

⎤
 

6 

⎡ 
1   2       5 

⎤
 

7

∼  ⎣ 0       1       2 ⎦ ∼  ⎣ 0   1       2 ⎦ ∼  ⎣ 0   1       2 ⎦ , Rank  (A) = 3.
0   −5     13 0   0     23 0   0       1

 
1.  P12         2.  A21(−1), A23(−1)     3.  A12(−2)     4.  P23         5.  M2(−1)     6.  A23(5)      7.  M3(1/23). 

 

14.  
⎡ 

2   −1  
⎤

 

 
⎡ 

3       2 
⎤

 
1 

 
⎡ 

1       3 
⎤

 
2 

 
⎡ 

1       3 
⎤

 
3 

 
⎡ 

1       3 
⎤

 
4 

 
⎡ 

1   3 
⎤

 
5

⎣ 3       2 ⎦ ∼  ⎣ 2   −1  ⎦ ∼  ⎣ 2   −1  ⎦ ∼  ⎣ 0   −7  ⎦ ∼  ⎣ 0   −1  ⎦ ∼  ⎣ 0   1 ⎦ , Rank  (A) = 2.
2       5              2       5 2       5              0   −1 0   −7               0   0

 
1.  P12         2.  A21(−1)     3.  A12(−2), A13(−2)     4.  P23         5.  M2(−1), A23(7). 

 

15. ⎡ 
2   −2    −1    3 

⎤
 
⎡ 

1   −1       1   0 
⎤   ⎡

 
⎤   ⎡ 

1   −1       1   0 
⎤

⎢ 3   −2       3   1 ⎥ 1  ⎢ 3   −2       3   1 ⎥ 2  ⎢ ⎥ 3  ⎢ 0       1       0   1 ⎥

⎢ 
1   −1       1   0 

⎥ ∼  ⎢ 
2   −2    −1    3 

⎥ ∼  
⎢ 

⎥ ∼  ⎢                  ⎥

⎣                  ⎦ 
2   −1       2   2 

⎣                  ⎦   ⎣ 
2   −1       2   2 

⎦   ⎣                  ⎦



(c)2017 Pearson Education. Inc. 
 

1   −1 1 0 

0       1 0 1 
0 0 −3 3 

0 1 0 2 

 

4  ⎢                  ⎥ 

⎡ 
1   −1    1       0 

⎤
 

0       1   0       1 
∼  ⎢ 

0       0   1   −1  
⎥ , Rank  (A) = 4. ⎣                  ⎦ 

0       0   0       1



(c)2017 Pearson Education. Inc.  

⎣ 1   −2 1 3 ⎦ ∼  ⎣ 2 −1 3 4 ⎦ ∼  
⎣  1   −5 0 5  1 −5 0 5  

 

1 0 2 1 3 
⎤

 

2 1 3 4 2 ⎦ ∼  
2 3 1 5 7 

 ⎡ 
1 0 2 1 

4 
∼  ⎣ 0 1 −1 2 

0 0 0 1 

 

⎡ 
2 1 3 4 2 

⎣ 1 0 2 1 3 

 2 3 1 5 7 

 

0 −6 0 −6 

0 −12 0 −12 

 

2 1 2 

5 3 5 

 

2 1 2 

1 0 1 

 

1 2 1 2 

0 1 0 1 

0 0 0 0 

0 0 0 0 

 

3 

3 

⎢ ⎥ 

4 

− − − 

3 
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1.  P13         2.  A12(−3), A13(−2), A14(−2)     3.  A24(−1)     4.  M3(1/3) 
 

16. 
⎡ 

2   −1    3   4 
⎤

 

 
⎡ 

1       2   1   3 
⎤

 
1

 

 
⎡ 

1       2   1       3 
⎤

 
2

 

 
⎡ 

1       2    1       3 
⎤

 
3

0       3   1   −2  ⎦ ∼  ⎣ 0       1    1
 − 2   ⎦ , Rank  (A) = 2.

0       0   0       0 0       0    0       0

 
1.  P12         2.  A12(−2), A13(−1)     3.  M2(1/3) 

 

17. 
⎤   ⎡ 

 

1 

 
⎡ 

1   0       2   1       3 
⎤

 
2 

 
⎡ 

1   0       2       1       3 
⎤

 
3

⎦ ∼  ⎣ ⎣ 0   1   −1    2   −4  ⎦ ∼  ⎣ 0   1   −1       2   −4  ⎦

0   3   −3    3       1 

3 
⎤ 

−4  ⎦ , Rank  (A) = 3. 
1 − 
3 

0   0       0   −3       1

 

1.  P12       2.  A12(−2), A13(−2),     3.  A23(−3)     4.  M3(− 1 ) 
 

18.  
⎡ 

4       7   4       7 
⎤   ⎡ 

1 

 
⎤   ⎡ 

1         2   1         2 
⎤   ⎡ 

1                              
⎤

⎢ 3       5   3       5 ⎥ 1  ⎢ 3 ⎥ 2  ⎢ 0     −1    0     −1  ⎥ 3  ⎢ 0                              ⎥

⎢ 
2   −2    2   −2  

⎥ ∼  ⎢ 
2   −2    2   −2  

⎥ ∼  ⎢ ⎥ ∼  ⎢ 
0     −6    0     −6  

⎥

⎣                  ⎦ 
5   −2    5   −2 

⎣                  ⎦ 
5   −2    5   −2 

⎡ 
 

4 
∼  ⎢ ⎣ 

⎣                    ⎦ 
 

 

⎤ 
 
⎥ , Rank  (A) = 2. ⎦ 

⎣                    ⎦ 
0   −12    0   −12

 

 
 

1.  A21(−1)    2.  A12(−3), A13(−2), A14(−5)     3.  M2(−1)     4.  A23(6),  A24(12) 

19.     
−4    2  

    
1  

        
1   −1/2  

   
2  

    
1   −1/2  

  

,    Rank(A) = 1.
−6    3     

∼
 −6           3     

∼    
0           0

 

1.  M1(− 1 )     2.  A12(6) 
 

20.     
3       2  

    
1  

    
1   −1  

   
2  

    
1   −1  

   
3  

    
1   −1  

   
4  

    
1   0  

   

= I , Rank  (A) = 2.
1   −1     

∼
 3       2     

∼
 0       5     

∼
 0       1     

∼    
0   1           2



(c)2017 Pearson Education. Inc. 
 

5 

 

1.  P12         2.  A12(−3)     3.  M2( 1 )     4.  A21(1)



(c)2017 Pearson Education. Inc.  

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

 

⎣ 3 −6 2 7 ⎦ 
∼  

⎣ 0       0   −1    −2 

 4 −8 3 10 0       0   −1    −2 

 

4 

3 

⎥ 

− 

− 

− 

− − 

− − − 
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⎡ 
3   7     10 

⎤
 
⎡ 

1   2       1 
⎤

 
1 

⎡ 
1       2       1 

⎤
 

2 

⎡ 
1   2   1 

⎤
 

3 

⎡ 
1   0       5 

⎤
 

4

⎣ 2   3   −1  ⎦ ∼  ⎣ 2   3   −1  ⎦ ∼  ⎣ 0   −1    −3  ⎦ ∼  ⎣ 0   1   3 ⎦ ∼  ⎣ 0   1       3 ⎦

1   2       1 3   7     10 

⎡ 
1   0       5 

⎤
 

5 

0       1       7 

⎡ 
1   0   0 

⎤
 

6 

0   1   7 0   0       4

∼  ⎣ 0   1       3 ⎦ ∼  ⎣ 0   1   0 ⎦ = I3, Rank  (A) = 3.

0   0       1 0   0   1

 

1.  P13         2.  A12(−2), A13(−3)     3.  M2(−1)     4.  A21(−2), A23(−1)     5.  M3( 1 )     6.  A31(5),  A32(−3) 
 

22. ⎡ 
3       3     6 

⎤
 

1 

⎡ 
1   −1    2 

⎤

⎣ 2   −2      4 ⎦ ∼  ⎣ 0       0   0 ⎦ , Rank  (A) = 1.
6   −6    12 0       0   0

 

1.  M1( 1 ), A12(−2), A13(−6) 
 

23.  
⎡   

3       5   −12  
⎤

 

 
⎡ 

1       2       5 
⎤

 
1 

 
⎡ 

1   2       5 
⎤

 
2 

 
⎡ 

1   0       1 
⎤

 
3

⎣   2       3     −7  ⎦ ∼  ⎣ 0   −1       3 ⎦ ∼  ⎣ 0   1   −3  ⎦ ∼  ⎣ 0   1   −3  ⎦ , Rank  (A) = 2.
−2    −1         1 0       3   −9 0   3   −9 0   0       0

 
1.  A21(−1), A12(−2), A13(2)      2.  M2(−1)     3.  A21(−2), A23(−3) 

 

24. ⎡ 
1   −1    −1    2 

⎤
 
⎡ 

1   −1    −1    2 
⎤

 
⎡ 

1   0   2       3 
⎤

 
⎡ 

1   0   0       5 
⎤

⎢ 3   −2       0   7 ⎥ 1  ⎢ 0       1       3   1 ⎥ 2  ⎢ 0   1   3       1 ⎥ 3  ⎢ 0   1   0       4 ⎥ ⎢ 
2   −1       2   4 

⎥ ∼  ⎢ 
0       1       4   0 

⎥ ∼  ⎢ 
0   0   1   −1  

⎥ ∼  ⎢ 
0   0   1   −1  

⎥
⎣                  ⎦ 

4   −2       3   8 

⎣                  ⎦ 
0       2       7   0 

⎣                ⎦ 
0   0   1   −2 

⎣                ⎦ 
0   0   0   −1

⎡ 
1   0   0       5 

⎤   ⎡              ⎤

4  ⎢ 0   1   0       4 ⎥ 5  ⎢ 
∼  ⎢ 

0   0   1   −1  
⎥ ∼  ⎢ 

⎥ = I4, Rank  (A) = 4.

⎣                ⎦   ⎣              ⎦ 
0   0   0       1 

 
1.  A12(−3), A13(−2), A14(−4)     2.  A21(1),  A23(−1), A24(−2)     3.  A31(−2), A32(−3), A34(−1) 

4.  M4(−1)     5.  A41(−5), A42(−4), A43(1) 

25. 
⎡ 

1   −2    1     3 
⎤

 

 
⎡ 

1       2       1       3 
⎤

 
1 

 
⎡ 

1       2       1       3 
⎤

 
2 

 
⎡ 

1       2   0   1 
⎤

 
3

⎦ ∼  ⎣ 0       0       1       2 ⎦ ∼  ⎣ 0       0   1   2 ⎦ , Rank  (A) = 2.
0       0   −1    −2 0       0   0   0



(c)2017 Pearson Education. Inc. 
 

 
1.  A12(−3), A13(−4)     2.  M2(−1)     3.  A21(−1), A23(1)



(c)2017 Pearson Education. Inc.  

6 

2 

4 
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⎡ 
0   1   2   1 

⎤
 
⎡ 

0   1       2       1 
⎤

 
1 

⎡ 
0   1       2       1 

⎤
 

2 

⎡ 
0   1   0   1/3  

⎤
 

3

⎣ 0   3   1   2 ⎦ ∼  ⎣ 0   0   −6 −2  ⎦ ∼  ⎣ 0   0       1   1/3  ⎦ ∼  ⎣ 0   0   1   1/3  ⎦

0   2   0   1 
 

 
4 

0   0   −4    −1 
⎡ 

0   1   0   1/3  
⎤

 
5 

0   0   −4     −1 
⎡ 

0   1   0   0 
⎤

 

0   0   0   1/3

∼  ⎣ 0   0   1   1/3  ⎦ ∼  ⎣ 0   0   1   0 ⎦ , Rank  (A) = 3.
0   0   0     1 0   0   0   1

 

1.  A12(−3), A13(−2)     2.  M2(− 1 )     3.  A21(−2), A23(4)      4.  M3(3)     5.  A32(− 1 ), A31(− 1 ) 
6                                                                                                                        3                       3 

 

 

Solutions to Section 2.5 

 
True-False Review: 

 

(a):  FALSE. This  process is known as Gaussian  elimination. Gauss-Jordan elimination  is the process by 

which a matrix  is brought to reduced row echelon form via elementary row operations. 

(b): TRUE. A homogeneous  linear system always has the trivial solution  x = 0, hence it is consistent. 
 

(c): TRUE. The columns of the row-echelon form that contain leading 1s correspond  to leading variables, 

while columns of the row-echelon form that do not contain leading 1s correspond  to free variables. 

(d):  TRUE. If the  last  column  of the row-reduced  augmented matrix  for the  system  does not  contain a 

pivot,  then  the  system  can be solved by back-substitution. On the other  hand,  if this  column does contain 

a pivot,  then that row of the row-reduced  matrix  containing the pivot in the last column corresponds  to the 

impossible equation  0 = 1. 

(e):  FALSE. The  linear  system  x = 0, y = 0, z  = 0 has  a solution  in (0, 0, 0) even though  none  of the 

variables  here is free. 

(f ):    FALSE. The  columns  containing  the  leading  1s correspond  to the leading  variables,   not  the free 

variables. 
 

Problems: 
 

For the problems of this section, A will  denote the coefficient matrix of the given system, and 
A#  will  denote the augmented  matrix of the given system. 

 

1.   Converting the  given system  of equations  to an augmented  matrix  and  using Gaussian  elimination  we 

obtain  the following equivalent matrices:
    

1   −5     3 
    

1  

    
1   −5    3  

    
2  

    
1   −5    3  

   

.

3   −9    15     
∼

 0       6   6     
∼

 0       1   1

 

1.  A12(−3)     2.  M2( 1 ) 

 
By back substitution, we find that x2 = 1, and then x1 = 8. Therefore,  the solution  is (8, 1). 

2.   Converting the  given system  of equations  to an augmented  matrix  and  using Gaussian  elimination  we 

obtain  the following equivalent matrices:
    

4   −1    8  
    

1  

    
1   − 1 

 

2  
    

2  

    
1   − 1 

 

2  
   

3   

   
1    − 1           2  

 

2       1   1     
∼    

2 
4                ∼  
1   1             0 3      −3     

∼    
0 

4                    . 
1   −2



(c)2017 Pearson Education. Inc.  

7 

7 

7 

1 

2 

3 
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1.  M1( 1 )     2.  A12(−2)     3.  M2( 2 ) 4                                                                 3 

 
3                                                  3

 

By back substitution, we find that x2 = −2, and then x1 = 
2 

. Therefore,  the solution  is (
2 

, −2).
 

3.   Converting the  given system  of equations  to an augmented  matrix  and  using Gaussian  elimination  we 

obtain  the following equivalent matrices:
     

7    −3     5 
    

1  

    
7   −3    5  

    
2  

    
1   − 3       5

14   −6    10     
∼

 0       0   0     
∼

 0       0    0     
.

 
1.  A12(−2)     2.  M2( 1 ) 

 
Observe  that x2  is a free variable,  so we set x2 = t. Then  by back  substitution, we have x1 = 3 t + 5 .

Therefore,  the solution  set to this system is 

  
3 
t + 

7 

7          7 

 
 
5    
 

 

7 
, t    : t ∈ R  .

 
4.   Converting the  given system  of equations  to an augmented  matrix  and  using Gaussian  elimination  we 

obtain  the following equivalent matrices: 
⎡ 

1   2   1   1 
⎤

 
⎡ 

1       2       1       1 
⎤

 
1 

⎡ 
1   2   1       1 

⎤
 

2 

⎡ 
1   2   1       1 

⎤
 

3

⎣ 3   5   1   3 ⎦ ∼  ⎣ 0   −1    −2       0 ⎦ ∼  ⎣ 0   1   2       0 ⎦ ∼  ⎣ 0   1   2       0 ⎦ .
2   6   7   1 0       2       5   −1 0   2   5   −1 0   0   1   −1

 
1.  A12(−3), A13(−2)     2.  M2(−1)     3.  A23(−2) 

 
The last augmented matrix  results  in the system: 

 
x1 + 2x2 +  x3 =   1, 

x2 + 2x3 =   0, 

x3 = −1. 

 

By back substitution we obtain  the solution  (−2, 2, −1). 
 

5.  Converting the  given system  of equations  to an augmented  matrix  and  using Gaussian  elimination, we 

obtain  the following equivalent matrices: 
⎡ 

3   −1       0       1 
⎤

 
⎡ 

1   −2    −5    −3  
⎤

 
⎡ 

1   −2    −5    −3  
⎤

⎣ 2       1       5       4 ⎦ ∼  ⎣ 2       1       5       4 ⎦ ∼  ⎣ 0       5     15     10 ⎦

7   −5    −8    −3 7   −5    −8    −3 0       9     27     18

⎡ 
1   −2    −5    −3  

⎤
 
⎡ 

1   0   1   1 
⎤

 
4

∼  ⎣ 0       1       3       2 ⎦ ∼  ⎣ 0   1   3   2 ⎦ .
0       9     27     18 0   0   0   0



(c)2017 Pearson Education. Inc. 
 

5 

 

1.  A21(−1)     2.  A12(−2), A13(−7)     3.  M2( 1 )     4.  A21(2),  A23(−9)



(c)2017 Pearson Education. Inc.  

3 5   −1 14 

1 2       1 3 

 

0   1 4 5 

0   0 0 −9 

 

1 2 1 3 
⎤ 

0 1 4 5 ⎦ . 
0 0 0 1  

 

2    −1        1 4 ⎦ ∼  ⎣ 0       0    0 0 ⎦ . 
−4        2    −2 −8 0       0    0 0  

 

0 −12 32 108 

0 −11 23 80 

 

9 

2 2 

6 

− 2 
− 2 
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The last augmented matrix  results  in the system: 

 

x1        +  x3 = 1, 

x2 + 3x3 = 2. 
 

Let the free variable  x3 = t, a real number.   By back substitution we find that the  system  has the  solution 

set {(1 − t, 2 − 3t, t) :  for all real numbers  t}. 
 

6.   Converting the  given system  of equations  to an augmented  matrix  and  using Gaussian  elimination  we 

obtain  the following equivalent matrices:

⎡                 ⎤   ⎡ 
1   2       1   3 

⎤
 

1 

⎡ 
1       2       1       3 

⎤
 

2 

⎡ 
1   2   1       3 

⎤
 

3

⎣                 ⎦ ∼  ⎣ 3   5   −1    4 ⎦ ∼  ⎣ 0   −1    −4    −5  ⎦ ∼  ⎣ 0   1   4       5 ⎦

2   5       6    2 2   5       6   2 
⎡ 

1   2   1       3 
⎤

 
4 

0       1       4   −4 
⎡ 

 

5 

0   1   4   −4

∼  ⎣                ⎦ ∼  ⎣ 
 
 

1.  P12         2.  A12(−3), A13(−2)     3.  M2(−1)     4.  A23(−1)     5.  M4(− 1 ) 
 

This system  of equations  is inconsistent since 2 = rank(A) < rank(A#) = 3. 
 

7.   Converting the  given system  of equations  to an augmented  matrix  and  using Gaussian  elimination  we 

obtain  the following equivalent matrices:

⎡   
6       3       3     12 

⎤   ⎡
 

1 

 

1   − 1      − 1 2 
⎤   ⎡ 

1       1       1            
⎤ 

1                                2

⎣   2   −1       1       4 ⎦ ∼  ⎣ 
−4       2   −2    −8 

 

1.  M1( 1 )     2.  A12(−2), A13(4) 
 

Since x2 and x3 are free variables,  let x2 = s and x3 = t. The single equation  obtained from the augmented 

matrix  is given by x1 − 1 x2 + 1 x3 = 2. Thus,  the solution  set of our system  is given by 2              2 
 

s      t 
{(2 + 

2 
− 

2 
, s, t) : s, t any real numbers  }.

 

 
8.   Converting the  given system  of equations  to an augmented  matrix  and  using Gaussian  elimination  we 

obtain  the following equivalent matrices: 
 
⎡ 

2   −1       3     14 
⎤

 
⎡ 

3       1   −2    −1  
⎤

 
⎡ 

1       2   −5    −15  
⎤

 
⎡ 

1         2   −5    −15  
⎤

⎢ 3       1   −2    −1  ⎥ 1  ⎢ 2   −1       3     14 ⎥ 2  ⎢ 2   −1       3   −14  ⎥ 3  ⎢ 0     −5     13       44 ⎥ 
⎢ 

7       2   −3       3 
⎥ ∼  ⎢ 

7       2   −3       3 
⎥ ∼  ⎢ 

7       2   −3         3 
⎥ ∼  ⎢                      ⎥⎣                   ⎦ 

5   −1    −2       5 

⎣                   ⎦ 
5   −1    −2       5 

⎣                     ⎦   ⎣                      ⎦ 
5   −1    −2         5

⎡ 
1         2   −5    −15  

⎤
 
⎡ 

1         2   −5    −15  
⎤

 
⎡ 

1         2   −5    −15  
⎤

4  ⎢ 0   −12     32     108 ⎥ 5  ⎢ 0     −1       9       28 ⎥ 6  ⎢ 0         1   −9    −28  ⎥ 
∼  ⎢ 

0     −5     13       44 
⎥ ∼  ⎢ 

0     −5     13       44 
⎥ ∼  ⎢ 

0     −5     13       44 
⎥

⎣                      ⎦ 



(c)2017 Pearson Education. Inc. 
 

0   −11     23       80 
⎣                      ⎦ 

0   −11     23       80 

⎣                      ⎦ 
0   −11     23       80



(c)2017 Pearson Education. Inc.  

∼                                ∼                                ∼                             
. 

32 

∼                              ∼                              ∼                             
. 

13 

− 

 
 
 

⎡ 
1   2     −5      −15  

⎤
 

 
 
⎡ 

1   2     −5      −15  
⎤

 

 
 
⎡ 

1   2   −5    −15  
⎤
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7  ⎢ 0   1     −9      −28  ⎥ 8  ⎢ 0   1     −9      −28  ⎥ 9  ⎢ 0   1   −9    −28  ⎥ ⎢ 
0   0   −32      −96  

⎥   ⎢ 
0   0       32         96 

⎥   ⎢ 
0   0       1         3 

⎥
⎣                     ⎦ 

0   0   −76    −228 

⎣                     ⎦ 
0   0   −76    −228 

⎣                   ⎦ 
0   0       0         0

 

1.  P12         2.  A21(−1)     3.  A12(−2), A13(−7), A14(−5)     4.  P23 

5.  A42(−1)     6.  M2(−1)     7.  A23(5),  A24(11)      8.  M3(−1)     9.  M3(  1  ), A34(76). 
 

The last augmented matrix  results  in the system of equations: 
 

x1 − 2x2 − 5x3 = −15, 

x2 − 9x3 = −28, 

x3 =    3. 
 

Thus,  using back substitution, the solution  set for our system  is given by {(2, −1, 3)}. 
 

9.   Converting the  given system  of equations  to an augmented  matrix  and  using Gaussian  elimination  we 

obtain  the following equivalent matrices:

⎡ 
2   −1    −4       5 

⎤
 
⎡ 

1       1   −3    −3  
⎤

 
⎡ 

1       1   −3    −3  
⎤

 
⎡ 

1       1   −3      −3  
⎤

⎢ 3       2   −5       8 ⎥ 1  ⎢ 3       2   −5       8 ⎥ 2  ⎢ 0   −1       4     17 ⎥ 3  ⎢ 0       1   −4    −17  ⎥ ⎢ 
5       6   −6     20 

⎥ ∼  ⎢ 
5       6   −6     20 

⎥ ∼  ⎢ 
0       1       9     35 

⎥ ∼  ⎢ 
0       1       9       35 

⎥
⎣                   ⎦ 

1       1   −3    −3 

⎣                   ⎦ 
2   −1    −4    −5 

⎣                   ⎦ 
0   −3       2     11 

⎣                     ⎦ 
0   −3       2       11

⎡ 
1   1     −3      −3  

⎤
 
⎡ 

1   1     −3      −3  
⎤

 
⎡ 

1   1   −3      −3  
⎤

4  ⎢ 0   1     −4    −17  ⎥ 5  ⎢ 0   1     −4    −17  ⎥ 6  ⎢ 0   1   −4    −17  ⎥ ⎢ 
0   0       13       52 

⎥   ⎢ 
0   0         1         4 

⎥   ⎢ 
0   0       1         4 

⎥
⎣                    ⎦ 

0   0   −10    −40 

⎣                    ⎦ 
0   0   −10    −40 

⎣                   ⎦ 
0   0       0         0

 

1.  P14         2.  A12(−3), A13(−5), A14(−2)     3.  M2(−1)     4.  A23(−1), A24(3)      5.  M3(  1  )     6.  A34(10) 
 

The last augmented matrix  results  in the system of equations: 
 

x1 + x2 − 3x3 = −  3, 

x2 − 4x3 = −17, 

x3 =    4. 
 

By back substitution, we obtain  the solution  set {(10, −1, 4)}. 
 

10.  Converting the  given system  of equations  to an augmented matrix  and  using Gaussian  elimination  we 

obtain  the following equivalent matrices:

⎡ 
1    2    −1    1   1 

⎤
 
⎡ 

1   2       1   1   1 
⎤

 
1

⎣ 2    4    −2    2   2 ⎦ ∼  ⎣ 0   0       0   0   0 ⎦ .
5   10   −5    5   5 0   0       0   0   0

 
1.  A12(−2), A13(−5) 

 



(c)2017 Pearson Education. Inc. 
 

The  last  augmented  matrix  results  in the equation  x1 + 2x3 − x3 + x4  = 1.  Now x2, x3, and  x4  are  free 

variables,  so we let x2 = r, x3 = s, and x4 = t. It follows that x1 = 1 − 2r + s− t. Consequently, the solution 

set of the system  is given by {(1 − 2r + s − t, r, s, t) : r, s, t and real numbers  }.



(c)2017 Pearson Education. Inc.  

0   −7 3 −3 0 

0   −7 3 −3 −1 

 

0 0 0 0 1 

0 0 0 0 0 

 

0 0 0 0 1 

0 0 0 0 0 

 

7 

7 

7 

− 

− 
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11.  Converting the  given system  of equations  to an augmented matrix  and  using Gaussian  elimination  we 

obtain  the following equivalent matrices:

⎡ 
1       2   −1       1   1 

⎤
 
⎡ 

1       2   −1       1       1 
⎤

 
⎡ 

1       2    −1       1       1 
⎤

⎢ 2   −3       1   −1    2 ⎥ 1  ⎢ 0   −7       3   −3       0 ⎥ 2  ⎢ 0       1   − 3          3           0 ⎥ 
⎥⎢ 

1   −5       2   −2    1 
⎥ ∼  ⎢ ⎥ ∼  ⎢ 

0   −7        3   −3       0⎣                       ⎦   ⎣ 
4       1   −1       1   3 

⎦   ⎣                         ⎦ 
0   −7        3   −3    −1

⎡ 
1   2    −1    1       1 

⎤
 
⎡ 

1   2    −1    1       1 
⎤

 
⎡ 

1   2    −1    1    1 
⎤

3  ⎢ 0   1   − 3       3 0 ⎥ 4  ⎢ 0   1   − 3       3 0 ⎥ 5  ⎢ 0   1   − 3 3      0 ⎥

∼  ⎢ 
0   0       

7       7 

0 
⎥ ∼  ⎢ 7       7                ⎥ ∼  ⎢ 7       7            ⎥ .

⎣          0    0           ⎦   ⎣ 
0   0       0    0    −1 

−   ⎦   ⎣                    ⎦

 

1.  A12(−2), A13(−1), A14(−4)     2.  M2(− 1 )     3.  A23(7),  A24(7)      4.  P34         5.  M3(−1) 

 

The given system of equations  is inconsistent since 2 = rank(A) < rank(A#) = 3. 
 

12.  Converting the given system of equations  to an augmented matrix  and using Gauss-Jordan elimination 

we obtain  the following equivalent matrices: 
 

⎡ 
1   2       1         1   −2    3 

⎤
 
⎡ 

1   2       1         1       2     3 
1 

⎤   ⎡ 
1   2   1   1       2   3 

⎤
 

2

⎣ 0   0       1         4   −3    2 ⎦ ∼  ⎣ 0   0       1         4   −3      2 ⎦ ∼  ⎣ 0   0   1   4   −3    2 ⎦ .

2   4   −1    −10       5   0 0   0   −3    −12       9   −6 0   0   0   0       0   0

 
1.  A13(−2)     2.  A23(3) 

 

The last augmented matrix  indicates  that the first two equations  of the initial  system completely  determine 

its solution.  We see that x4 and x5 are free variables,  so let x4 = s and x5 = t. Then  x3 = 2 − 4x4 + 3x5 = 

2−4s+3t.  Moreover, x2 is a free variable,  say x2 = r, so then x1 = 3−2r−(2−4s+3t)−s+2t = 1−2r+3s−t. 
Hence, the solution  set for the system is 

 
{(1 − 2r + 3s − t, r, 2 − 4s + 3t, s, t) : r, s, t any real numbers  }. 

 

 
13.  Converting the given system of equations  to an augmented matrix  and using Gauss-Jordan elimination 

we obtain  the following equivalent matrices: 
 
⎡ 

2   −1    −2       2 
⎤

 
⎡ 

1       4       1       4 
⎤

 
1 

⎡ 
1         4       1         4 

⎤
 

2 

⎡ 
1         4       1         4 

⎤
 

3

⎣ 4       3   −2    −1  ⎦ ∼  ⎣ 4       3   −2    −1  ⎦ ∼  ⎣ 0   −13    −6    −17  ⎦ ∼  ⎣ 0     −9    −3      −6  ⎦

1       4       1       4 2   −1    −1       2 0     −9    −3      −6 0   −13    −6    −17

⎡ 
1         4       1         4 

⎤
 

4 

⎡ 
1       4       1       4 

⎤
 

5 

⎡ 
1       4       1       4 

⎤
 

6 

⎡ 
1    4    1   4 

⎤
 

7

∼  ⎣ 0       12       4         8 ⎦ ∼  ⎣ 0     12       4       8 ⎦ ∼  ⎣ 0   −1    −2    −9  ⎦ ∼  ⎣ 0    1    2   9 ⎦



(c)2017 Pearson Education. Inc. 
 

1 0   −7 −32 

0 1       2 9 

 

1 0     −7 −32 

0 1         2 9 
0 0   −20 −100 

 

0   −13    −6    −17 0   −1    −2    −9 0     12       4       8 0   12   4   8

⎡                     ⎤   ⎡ 
 

8                                                                9 

⎤   ⎡ 
1   0   0       3 

⎤
 

10

∼  ⎣                     ⎦ ∼  
⎣ 

 
0   0       1         5 

⎦ ∼  ⎣ 0   1   0   −1  ⎦ . 
0   0   1       5



(c)2017 Pearson Education. Inc.  

3 

20 

2 

2 

− 

− 

− 

− 

1 2 3 

− − 

− 

− 
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1.  P13         2.  A12(−4), A13(−2)     3.  P23         4.  M2(− 4 )     5.  A23(1) 

6.  P23         7.  M2(−1)     8.  A21(−4), A23(−12)     9.  M3(−  1  )     10.  A31(7),  A32(−2) 
 

The last augmented matrix  results  in the solution  (3, −1, 5). 
 

14.  Converting the given system of equations  to an augmented matrix  and using Gauss-Jordan elimination 

we obtain  the following equivalent matrices:

⎡ 
3   1       5   2 

⎤
 
⎡ 

1   1       1   1 
⎤

 
1 

⎡ 
1       1       1       1 

⎤
 

2

⎣ 1   1   −1    1 ⎦ ∼  ⎣ 3   1       5   2 ⎦ ∼  ⎣ 0   −2       8   −1  ⎦

2   1       2   3 2   1       2   3 0   −1       4       1

⎡ 
1       1       1    1 

3                                            1
 

⎤   ⎡ 
1   1       1     1   

⎤
 

4

∼  ⎣ 0       1   −4 2   
⎦ ∼  ⎣ 0   1   −4    1/2  ⎦ .

0   −1       4    1 0   0       0   3/2

 

We can stop here, since we see from this last augmented matrix  that the system is inconsistent.  In particular, 
2 = rank(A) < rank(A#) = 3. 

 
1.  P12         2.  A12(−3), A13(−2)     3.  M2(− 1 )     4.  A23(1) 

 

 

15.  Converting the given system of equations  to an augmented matrix  and using Gauss-Jordan elimination 

we obtain  the following equivalent matrices:

⎡ 
1       0   −2    −3  

⎤
 
⎡ 

1       0   −2    −3  
⎤

 
⎡ 

1       0   −2    −3  
⎤

 
⎡ 

1   0   −2    −3  
⎤

⎣ 3   −2       4   −9  ⎦ ∼  ⎣ 0   −2       2       0 ⎦ ∼  ⎣ 0       1   −1       0 ⎦ ∼  ⎣ 0   1   −1       0 ⎦

1   −4       2   −3 

. 

0   −4       4       0 0   −4       4       0 0   0       0       0

 

1.  A12(−3), A13(−1)     2.  M2(− 1 )     3.  A23(4) 

 

The last augmented matrix  results  in the following system  of equations: 

 
x1 − 2x3 = −3     and     x2 − x3 = 0. 

 
Since x3 is free, let x3 = t. Thus,  from the system we obtain  the solutions {(2t−3, t, t) : t any real number  }. 

 

16.  Converting the given system of equations  to an augmented matrix  and using Gauss-Jordan elimination 

we obtain  the following equivalent matrices:

⎡ 
2   −1    3   −1       3 

⎤
 
⎡ 

1       2   3       1       6 
⎤

 
1 

⎡ 
1       2       3       1         6 

⎤
 

2

⎣ 3       2   1   −5    −6  ⎦ ∼  ⎣ 3       2   1   −5    −6  ⎦ ∼  ⎣ 0       8   −8    −8    −24  ⎦

1   −2    3       1       6 2   −1    3   −1       3 0       3   −3    −3      −9

⎡ 
1       2       3       1       6 

⎤
 

3 

⎡ 
1   0       1       1       0 

⎤
 

4



(c)2017 Pearson Education. Inc. 
 

8 

∼  ⎣ 0       1   −1    −1    −3  ⎦ ∼  ⎣ 0   1   −1    −1    −3  ⎦ .
0       3   −3    −3    −9 0   0       0       0       0

 

1.  P13         2.  A12(−3), A13(−2)     3.  M2( 1 )     4.  A21(2),  A23(−3)



(c)2017 Pearson Education. Inc.  

1   1 1 −1 4 

0   1 1 0 1 
0 0 1 −1 3 

0 1 0 −1 6 

 

0 0   −2 2 −6 

0 −2       0 2 −12 

 

1 0 0   −1 3 
⎤ 

0 1 0       1 −2 ⎥ 

 

1 0 0 0 −1 

0 1 0 0 2 
0 0 1 0 −1 

0 0 0 1 −4 

 

0 10 
5 
4 

5 
2 

5 
7 −8  

⎥
 
⎥ 0 5 3 3 5 −5  
⎥

 
0 12 7 6 12 −8 

 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

 

2 

5 5 

25 

7 3 

3          7 

7 

5 5 

⎢ ⎥ ⎢ ⎥ 
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The last augmented matrix  results  in the following system of equations: 

 
x1 + x3 − x4 = 0     and     x2 − x3 − x4 = −3. 

 

Since x3 and x4 are free variables,  we can let x3 = s and x4 = t, where s and t are real numbers.  It follows 

that the solution  set of the system is given by {(t − s, s + t − 3, s, t) : s, t any real numbers  }. 
 

17.  Converting the given system of equations  to an augmented matrix  and using Gauss-Jordan elimination 

we obtain  the following equivalent matrices:

⎡ 
1       1       1   −1       4 

⎤
 
⎡ 

1       1       1   −1         4 
⎤   ⎡                   ⎤

⎢ 1   −1    −1    −1       2 ⎥ 1  ⎢ 0   −2    −2       0     −2  ⎥ 2  ⎢                   ⎥⎢ 
1       1   −1       1   −2  

⎥ ∼  ⎢ ⎥ ∼  ⎢                   ⎥

⎣                         ⎦   ⎣ 
1   −1       1       1   −8 

⎦   ⎣                   ⎦

⎡ 
1   0       0   −1    3 

⎤
 
⎡ 

1   0   0   −1       3 
⎤   ⎡                          ⎡                   ⎤

3  ⎢ 0   1       1       0   1 ⎥ 4  ⎢ 0   1   0       1   −2  ⎥ 5  ⎢ 
6  ⎢                   ⎥

∼  ⎢ 
0   0       1   −1    3 

⎥ ∼  ⎢ 
0   0   1   −1       3 

⎥ ∼  ⎢ 
0   0   1   −1       3 

⎥ ∼  ⎢                   ⎥ .⎣                     ⎦ 
0   0   −1    −1    5 

⎣                     ⎦ 
0   0   0   −2       8 

⎣                     ⎦   ⎣                   ⎦ 
0   0   0       1   −4

 

1.  A12(−1), A13(−1), A14(−1)     2.  M2(− 1 ), M3(− 1 ), M4(− 1 )     3.  A24(−1) 2                     2                     2 

4.  A32(−1), A34(1)      5.  M4(− 1 )     6.  A41(1),  A42(−1), A43(1) 
 

It follows from the last augmented matrix  that the solution  to the system  is given by (−1, 2, −1, −4). 
 

18.  Converting the given system of equations  to an augmented matrix  and using Gauss-Jordan elimination 

we obtain  the following equivalent matrices:

⎡ 
2   −1       3       1   −1     11 

⎤
 

⎢ 1   −3    −2    −1    −2       2 ⎥ 

⎡ 
1   −3    −2    −1    −2       2 

⎤
 

⎢ 2   −1       3       1   −1     11 ⎥ 

⎡ 
1   −3    −2    −1    −2       2 

⎤
 

⎢ 0       5       7       3       3       7 ⎥

⎢ 
3       1   −2    −1       1   −2  

⎥ 1  ⎢ 
3       1   −2    −1       1   −2  

⎥ 2  ⎢ 
0     10       4       2       7   −8  

⎥
⎢                              ⎥ ∼  ⎢ ⎥ ∼  ⎢                              ⎥

⎢ 
1       2       1       2       3   −3  

⎥ ⎢ 
1       2       1       2       3   −3  

⎥ ⎢ 
0       5       3       3       5   −5  

⎥
⎣                              ⎦ 

5   −3    −3       1       2       2 

⎣                              ⎦ 
5   −3    −3       1       2       2 

⎣                              ⎦ 
0     12       7       6     12   −8

⎡ 
1   −3    −2    −1    −2       2 

⎤ ⎡ 1   0       11            4      − 1 31    
⎤ ⎡ 

1   0       11            4        − 1 31    
⎤

3  

⎢ 0       1 
5   
⎥ 

4  

⎢ 0   1 
5            5           5 
7           3           3 
5           5           5 

5 

5   
⎥ 

5  

⎢ 0   1 
5            5              5 
7           3              3 
5           5             5 

5 
7 

 5   
⎥

∼  
⎢                                 

∼  
⎢ 

0   0    −10     −4        1     −22  
⎥ 
∼  
⎢ 

0   0         1       2      − 1 
11    
⎥

⎢                                   ⎢                                 ⎥   ⎢ 
5           10               5    

⎥
⎢                                   ⎢ 

0   0      −4        0       2     −12  
⎥ ⎢ 

0   0      −4        0         2     −12  
⎥

⎣                              ⎦   ⎣  

0   0   − 49      − 6 

⎦ 
24            124 
5       

−  
5 

⎣ 
0   0   − 49      − 6 

⎦ 
24            124 
5       

−  
5

⎡                 
 2              1 

− 
25            50 
 1            37

 

34    
⎤ 

25 
42

 

⎡ 
1   0   0   −  2 

 1
 

 1            34    
⎤   ⎡ 

50            25 
37            42

 

 1            6   
⎤ 

10            5 
 7            8

6  

⎢              
25

 
50      − 25

 ⎥ 
7  

⎢ 0   1   0       25
 

50      − 25
 ⎥ 

8  

⎢ 
10      − 5   

⎥

∼  
⎢               

2      − 1 11    
⎥ 
∼  
⎢ 

0   0   1         2      − 1 11    
⎥ 
∼  
⎢ 

− 1           3 
⎥
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1   0 0   0 

0   1 0   0 

0   0 1   0 

0   0   0   1 

0   0 0   0 

 1 0 0 0         1            

6 
10            5 0 1 0  7            8 

0 0 1 0   − 1           3 
0 0 0 1 1 2 

0 0 0 0 1 2 

 

9 

⎣ 4 

⎥ ⎥ ⎢ 

− 
2 

⎣                         ⎦ ⎦ 

⎢               
5           10            5 ⎢               
8              8           16

 5           10 5    ⎥   ⎢                 2                 ⎥

⎣               
5              5 − 

5    
⎦ ⎣ 0   0   0         1         1      −2  ⎦   ⎣ 1    −2  ⎦

68         191            81 
0   0   0       68 191            81 11         11

25          50        
− 

25 25          50        
− 

25 10          5

⎡                         ⎤   ⎡ 
1   0   0   0   0       1 

⎤

⎢           0     
10      

− 
5 

∼  
⎢ 

⎥ 
10  

⎢ 0   1   0   0   0   −3  ⎥ ⎥ 
∼  
⎢ 

0   0   1   0   0       4 
⎥

⎢                         ⎥   ⎢                       ⎥ ⎢                         ⎥   ⎢ 
0   0   0   1   0   −   

⎥
 

0   0   0   0   1       2
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1 −3 1 8 
⎤ 

0 1 1 −5 ⎦ 
0 10 −5 −20  

 

0 1 1 −5 

0 0 −15 30 

 

0 1 1 −5 

0 0 1 −2 

 

1 0 5 0 
⎤ 

0 1 2 −1 ⎦ . 
0 0 0 0  

 

5 

− − 

15 

− 
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1.  P12         2.  A12(−2), A13(−3), A14(−1), A15(−5)     3.  M2( 1 )     4.  A21(3),  A23(−10), A24(−5), A25(−12) 

5.  M3(−  1  )     6.  A31(− 11 ), A32(− 7 ), A34(4),  A35( 49 )     7.  M4( 5 ) 10                                    5                        5                                       5                              8 

8.  A41(   2  ), A42(−  1  ), A43(− 2 ), A45(− 68 )     9.  M5( 10 )     10.  A51(−  1  ), A52(−  7  ), A53( 1 ), A54(−1)25                       25                       5                       25                             11 10                       10                  2

It follows from the last augmented matrix  that the solution  to the system  is given by (1, −3, 4, −4, 2). 
 

19.  The equation  Ax  = b reads
⎡ 

1   −3       1 
⎤ ⎡ 

x1  

⎤
 
⎡   

8 
⎤

⎣ 5   −4       1 ⎦ ⎣ x2 ⎦ = ⎣ 15 ⎦ .

2       4   −3          x3                 −4 
 

Converting the  given system  of equations  to an augmented matrix  and  using Gauss-Jordan elimination  we 

obtain  the following equivalent matrices:
⎡ 

1   −3       1       8 
⎤

 
⎡ 

1       3       1         8 
⎤   ⎡

 
1                                                               2

⎣ 5   −4       1     15 ⎦ ∼  ⎣ 0     11   −4    −25  ⎦ ∼  ⎣

2       4   −3    −4 

⎡ 
1   0         4       7 

⎤
 

3 

0     10   −5    −20 

⎡ 
1   0   4       7 

⎤
 

4 

 
⎡ 

1   0   0       1 
⎤

 
5

∼  ⎣                   ⎦ ∼  
⎣ 

⎦ ∼  ⎣ 0   1   0   −3  ⎦ . 
0   0   1   −2

 

1.  A12(−5), A13(−2)     2.  A32(−1)     3.  A21(3),  A23(−10)     4.  M3(−  1  )     5.  A31(−4), A32(−1) 

Thus,  from the last  augmented matrix, we see that x1 = 1, x2 = −3, and x3 = −2. 

20.  The equation  Ax  = b reads
⎡ 

1       0     5 
⎤ ⎡ 

x1  

⎤
 
⎡ 

0 
⎤

⎣ 3   −2    11 ⎦ ⎣ x2 ⎦ = ⎣ 2 ⎦ .

2   −2      6         x3                 2 
 

Converting the  given system  of equations  to an augmented matrix  and  using Gauss-Jordan elimination  we 

obtain  the following equivalent matrices:
⎡ 

1       0     5   0 
⎤

 
⎡ 

1       0       5   0 
⎤

 
1 

⎡ 
1       0       5       0 

⎤
 

2

⎣ 3   −2    11   2 ⎦ ∼  ⎣ 0   −2    −4    2 ⎦ ∼  ⎣ 0       1       2   −1  ⎦

2   −2      6   2 0   −2    −4    2 

⎡ 
 

3 

0   −2    −4       2

∼  ⎣ 
 
 

1.  A12(−3), A13(−2)     2.  M2(−1/2)     3.  A23(2) 

 
Hence, we have x1 + 5x3 = 0 and  x2 + 2x3 = −1. Since x3 is a free variable,  we can let x3 = t, where t is 
any real number.  It follows that the solution  set for the given system is given by {(−5t,−2t − 1, t) : t ∈ R}. 

 



(c)2017 Pearson Education. Inc. 
 

21.  The equation  Ax  = b reads
⎡ 

0   1   −1  
⎤ ⎡ 

x1  

⎤
 
⎡ 
−2  
⎤

⎣ 0   5       1 ⎦ ⎣ x2 ⎦ = ⎣ 8 ⎦ .

0   2       1         x3                     5



(c)2017 Pearson Education. Inc.  

0 1   −1 −2 

0 0       6 18 

 

0 1   −1 −2 

0 0       1 3 

 

1   −1 0   −1 2 

2       1 3       7 2 

 

−2  ⎦ ∼  ⎣ 0 1 1   3 −2 ⎦ . 
−2 0 0 0   0 4  

 

3 9 −2  ⎦ ∼  ⎣ 0 1 

1 3 −2 0 3 

 

1 2 

1 2 
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Converting the given system of equations  to an augmented matrix  using Gauss-Jordan elimination  we obtain 

the following equivalent matrices:
⎡ 

0   1   −1    −2  
⎤   ⎡                  ⎤   ⎡

 
⎤   ⎡ 

0   1   0   1 
⎤

 
3

⎣ 0   5       1       8 ⎦ ∼  ⎣ 
0   2       1       5 

 
0   0       3       9 

⎦ ∼  ⎣  
0   0       3       9 

⎦ ∼  ⎣ 0   0   1   3 ⎦ . 
0   0   0   0

 

1.  A12(−5), A13(−2)     2.  M2(1/6)     3.  A21(1),  A23(−3) 

 
Consequently,  from the last  augmented matrix  it  follows that the  solution  set  for the matrix  equation  is 
given by {(t, 1, 3) : t ∈ R}. 

 

22.  The equation  Ax  = b reads
⎡ 

1   −1    0   −1  
⎤ ⎡ 

x1  

⎤
 
⎡ 

2 
⎤

⎣ 2       1   3       7 ⎦ ⎣ x2 ⎦ = ⎣ 2 ⎦ .

3   −2    1       0         x3                 4 

Converting the  given system  of equations  to an augmented matrix  and  using Gauss-Jordan elimination  we 

obtain  the following equivalent matrices:
⎡                     ⎤   ⎡ 

1   −1    0   −1       2 
⎤

 
⎡ 

1   −1    0   −1       2 
⎤

 
⎡ 

1   0   1   2       0 
⎤

 
3

⎣ 

3   −2    1       0   4 

⎦ ∼  ⎣ 0       3                                                     1       3 
0       1                                                     3       9

 

1.  A12(−2), A13(−3)     2.  P23         3.  A21(1),  A23(−3) 
 

From  the last row of the last augmented matrix, it is clear that the given system  is inconsistent. 
 

23.  The equation  Ax  = b reads
⎡   

1   1       0   −1  
⎤ ⎡ 

x1  

⎤
 

⎢   3   1   −2       3 ⎥ ⎢ x2  
⎥ 

⎡   
2 
⎤

 
⎢   8 ⎥

⎢   
2   3       1       1 

⎥ ⎢ 
x3

 ⎥ = ⎢ 
3 
⎥ .

⎣                   ⎦ ⎣    ⎦   ⎣     ⎦ 
−2    3       5   −2          x4                 −9 

Converting the  given system  of equations  to an augmented matrix  and  using Gauss-Jordan elimination  we 

obtain  the following equivalent matrices:
⎡   

1   1       0       1       2 
⎤

 
⎡ 

1       1       0   1       2 
⎤

 
⎡ 

1       1       0   1       2 
⎤

 
⎡ 

1   0   −1    1       3 
⎤

⎢   3   1   −2       3       8 ⎥ 1  ⎢ 0   −2    −2    0       2 ⎥ 2  ⎢ 0       1       1   0   −1  ⎥ 3  ⎢ 0   1       1   0   −1  ⎥ 
⎢   

2   3       1       2       3 
⎥ ∼  ⎢ 

0       1       1   0   −1  
⎥ ∼  ⎢ 

0   −2    −2    0       2 
⎥ ∼  ⎢ 

0   0       0   0           
⎥ .⎣                         ⎦ 

−2    3       5   −2    −9 

⎣                       ⎦ 
0       5       5   0   −5 

⎣                       ⎦ 
0       5       5   0   −5 

⎣                     ⎦ 
0   0       0   0       0

 

1.  A12(−3), A13(−2), A14(2)      2.  P23         3.  A21(−1), A23(2),  A24(−5) 
 

From  the last augmented matrix, we obtain  the system of equations:  x1 − x3 + x4 = 3, x2 + x3 = −1. 

Since both  x3  and  x4  are  free variables,  we may  let  x3 = r and  x4 = t, where r and  t are  real  numbers.   

The 

solution  set for the system  is given by {(3 + r − t, −r − 1, r, t) : r, t ∈ R}. 
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− − 

24.  Converting the given system of equations  to an augmented matrix  and using Gauss-Jordan elimination 

we obtain  the following equivalent matrices:
⎡ 

1   2     −1       3 
⎤

 
⎡ 

1       2         1           3 
1 

⎤   ⎡ 
1   2         1           3       

⎤
 

2

⎣ 2   5         1       7 ⎦ ∼  ⎣ 0       1        3             1 ⎦ ∼  ⎣ 0   1        3             1       ⎦ .

1   1   −k2    −k 0   −1    1 − k2      −3 − k 0   0   4 − k2      −2 − k
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0   −2 −5           5 ⎦ ⎣                       ⎦   ⎣ 

0 −4 −2    k + 3  0 0 0 10 k − 9 0 0 0 0 k + 1  0 

 

⎦ 

2 

⎣ 

− − − 
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1.  A12(−2), A13(−1)     2.  A23(1) 
 

 

(a). If k = 2, then the last row of the last augmented matrix  reveals an inconsistency;  hence the system has 

no solutions  in this case. 
 

(b). If k = −2, then  the last row of the last augmented matrix  consists entirely  of zeros, and hence we have 

only two pivots  (first  two columns)  and a free variable  x3; hence the system has infinitely  many  solutions. 

(c). If k = ±2, then  the last augmented matrix  above contains  a pivot for each variable  x1, x2, and x3, and 

can be solved for a unique solution  by back-substitution. 
 

25.  Converting the given system of equations  to an augmented matrix  and using Gauss-Jordan elimination 

we obtain  the following equivalent matrices:

⎡ 
2       1   −1       1   0 

⎤
 
⎡ 

1       1       1   −1    0 
⎤

 
⎡ 

1       1       1       −1    0 
⎤

⎢ 1       1       1   −1    0 ⎥ 1  ⎢ 2       1   −1       1   0 ⎥ 2  ⎢ 0   −1    −3           3   0 ⎥ ⎢ 
4       2   −1       1   0 

⎥ ∼  ⎢ 
4       2   −1       1   0 

⎥ ∼  ⎢ 
0   −2    −5           5   0 

⎥
⎣                       ⎦ 

3   −1       1      k    0 

⎣                       ⎦ 
3   −1       1      k    0 

⎣                         ⎦ 
0   −4    −2    k + 3    0

⎡ 
1       1       1       −1    0 

⎤
 
⎡ 

1   1    1      −1      0 
⎤

 
⎡ 

1   1   1     −1      0 
⎤

3  ⎢ 0       1       3       −3    0 ⎥ 4  ⎢ 0   1    3      −3      0 ⎥ 5  ⎢ 0   1   3     −3      0 ⎥ 
∼  ⎢                       

0 
⎥ ∼  ⎢ 

0   0    1      −1      0 
⎥ ∼  ⎢ 

0   0   1     −1      0 
⎥ .

 
 

 
1.  P12         2.  A12(−2), A13(−4), A14(−3)     3.  M2(−1)     4.  A23(2),  A24(4)      5.  A34(−10) 

 

 

(a). Note that the trivial  solution  (0, 0, 0, 0) exists under  all circumstances, so there  are no values of k for 

which there is no solution. 

(b). From the last row of the last augmented matrix, we see that if k = −1, then the variable x4 corresponds 

to an unpivoted column, and hence it is a free variable.  In this case, therefore,  we have infinitely  solutions. 
 

(c). Provided  that k = −1, then  each variable  in the  system  corresponds  to a pivoted  column  of the  last 

augmented matrix  above.   Therefore,  we can solve the system  by back-substitution.  The  conclusion  from 

this is that there  is a unique solution,  (0, 0, 0, 0). 
 

26.  Converting the given system of equations  to an augmented matrix  and using Gauss-Jordan elimination 

we obtain  the following equivalent matrices:

⎡ 
1   1    −2      4 

⎤
 
⎡ 

1   1        2         4 
1 

⎤   ⎡ 
1   1        2         4 

2 

⎤   ⎡ 
1   0        3          2      

⎤
 

3

⎣ 3   5    −4    16 ⎦ ∼  ⎣ 0   2       2          4 ⎦ ∼  ⎣ 0   1       1          2 ⎦ ∼  ⎣ 0   1       1           2      ⎦ .

2   3   −a    b 0   1   4 − a    b − 8 0   1   4 − a    b − 8 0   0   3 − a    b − 10

 

1.  A12(−3), A13(−2)     2.  M2( 1 )     3.  A21(−1), A23(−1) 
 

 

(a). From  the  last  row of the  last  augmented  matrix  above,  we see that there  is no solution  if a = 3 and 

b = 10. 
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(b).  From  the  last  row of the  augmented  matrix  above,  we see that there  are  infinitely  many  solutions 

if a = 3 and  b = 10, because  in that case, there  is no pivot  in the  column  of the last  augmented matrix 

corresponding  to the third variable  x3.
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2 

3 

2 

2 

a 
1 

0 

− 

0 
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(c). From  the  last  row of the  augmented  matrix  above,  we see that if a = 3, then regardless  of the  value 

of b, there is a pivot  corresponding  to each variable  x1, x2, and  x3.  Therefore,  we can uniquely  solve the 

corresponding  system by back-substitution. 
 

27.  Converting the given system of equations  to an augmented matrix  and using Gauss-Jordan elimination 

we obtain  the following equivalent matrices:
⎡   

1     −a    3 
⎤

 
⎡ 

1         a       3  
⎤

 
1

⎣   2       1       6 ⎦ ∼  ⎣ 0   1 + 2a     0  ⎦ .
−3    a + b   1 0    b − 2a    10

 

From the middle row, we see that if a = − 1 , then we must  have x2 = 0, but this leads to an inconsistency  in 

solving for x1 (the  first equation  would require x1 = 3 while the last equation  would require x1 = − 1 . Now
 

suppose  that a = − 1 .  Then  the augmented matrix  on the right  reduces  to 

   
1   −1/2     3 

0    b + 1     10 

 

.  If b = −1,

then  once more we have  an inconsistency  in the last  row.  However,  if b = −1, then  the  row-echelon form 

obtained has full rank,  and there is a unique solution.  Therefore,  we draw the following conclusions: 

(a). There  is no solution  to the system if a = − 1  or if a = − 1  and b = −1. 2                              2 

(b). Under  no circumstances are there an infinite  number  of solutions  to the linear system. 

(c). There  is a unique solution  if a = − 1  and b = −1. 
 

28.  The corresponding  augmented matrix  for this linear system  can be reduced  to row-echelon form via

⎡ 
1   1   1   y1 

⎤   ⎡ 
1   1       1         y1 

1 

⎤   ⎡ 
1   1       1             y1                 

⎤
 

2

⎣ 2   3   1   y2 

3   5   1   y3 

⎦ ∼  ⎣ 0   1   −1    y2  − 2y1 

0   2   −2    y3  − 3y1 

⎦ ∼  ⎣ 0   1   −1        y2  − 2y1         
⎦ . 

0   0       0   y1  − 2y2  + y3

 

1.  A12(−2), A13(−3)     2.  A23(−2) 
 

For consistency,  we must  have rank(A) = rank(A#), which requires  (y1, y2, y3) to satisfy y1  − 2y2  + y3  = 0. 

If this  holds,  then  the  system  has  an  infinite  number  of solutions,  because  the column  of the  augmented 

matrix  corresponding  to y3  will be unpivoted, indicating  that y3  is a free variable  in the solution  set. 

29.  Converting the  given system  of equations  to an augmented matrix  and  using Gaussian  elimination  we 

obtain  the following row-equivalent matrices.  Since a11  = 0:

    
a11      a12      b1

 

    
1  

    
1            a12

 

11 

 
 b1  

a11
 

                   
a12 

2                  a11
 

 
 b1  

a11

a21      a22      b2       
∼

 
a22a11−a21 a12 

a11 

a11b2 −a21b1 

a11 

∼             
Δ 

a11 

Δ2          
. 

a11

 

1.  M1(1/a11), A12(−a21)     2.  Definition  of Δ and Δ2 

 
(a). If Δ = 0, then rank(A) = rank(A#) = 2, so the system has a unique solution (of course, we are assuming 

a11  = 0 here).  Using the last augmented matrix  above, 
   

  Δ 
  

x2 = Δ2 , so that x2 = Δ2 . Using this, we can
a11 a11                                    Δ

solve x1 +  a12 x2 =   b1   for x1 to obtain  x1 = Δ1 , where we have used the fact that Δ1 = a22b1  − a12b2.
a11 a11                                                        Δ     

1    a12 

 
 b1 

(b). If Δ = 0 and a11  = 0, then the augmented matrix  of the system  is a11 a11 , so it follows that
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0     0      Δ2 

the  system  has  (i)  no solution  if Δ2 = 0, since rank(A) <  rank(A#)  = 2, and  (ii)  an  infinite  number  of 

solutions  if Δ2 = 0, since rank(A#) < 2.
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⎡ 
1 2   1   1 

⎣ 3 5 1 3 

 2 6 7 1 

 

7 2 −3 3 

0 −17/7 1/7 20/7 

 

0 0 64/17 192/17 

0 0 0 0 

 

0 −17/5 −8/5 −3 

0 −1/5 −9/5 −7 

 

∼  

∼  
⎥ 

. 
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(c). An infinite  number  of solutions  would be represented as one line.  No solution  would be two  parallel 

lines.  A unique solution  would be the intersection of two distinct lines at one point. 

30.  We first use the partial pivoting  algorithm  to reduce the augmented matrix  of the system:
⎤   ⎡ 

3   5   1   3 
⎤

 
1 

⎡ 
3     5        1          3 

⎤
 

2

⎦ ∼  ⎣ 1   2   1   1 ⎦ ∼  ⎣ 0   1/3     2/3        0 ⎦

2   6   7   1 0   8/3    19/3    −1

⎡ 
3     5        1          3 

⎤
 

3 

⎡ 
3     5         1         3   

⎤
 

4

∼  ⎣ 0   8/3    19/3    −1  ⎦ ∼  ⎣ 0   8/3     19/3     −1  ⎦ .
0   1/3     2/3        0 0     0     −1/8    1/8

 

1.  P12         2.  A12(−1/3), A13(−2/3)     3.  P23         4.  A23(−1/8) 
 

Using back substitution to solve the equivalent system  yields the unique solution  (−2, 2, −1). 
 

31.  We first use the partial pivoting  algorithm  to reduce the augmented matrix  of the system:
⎡ 

2   −1       3     14 
⎤

 
⎡ 

7       2   −3       3 
⎤

 
⎡ 

7        2          −3           3      
⎤

⎢ 3       1   −2    −1  ⎥ 1  ⎢ 3       1   −2    −1  ⎥ 2  ⎢ 0      1/7       −5/7    −16/7  ⎥ 
⎢ 

7       2   −3       3 
⎥ ∼  ⎢ 

2   −1       3     14 
⎥ ∼  ⎢ 

0   −11/7     27/7      92/7    
⎥

⎣                   ⎦ 
5   −1    −2       5 

⎣                   ⎦ 
5   −1    −2       5 

⎣                             ⎦ 
0   −17/7      1/7       20/7

⎡ 
7        2          −3           3      

⎤   ⎡                                 ⎤

3  ⎢ 0   −17/7      1/7       20/7 
∼  ⎢ 

0   −11/7     27/7      92/7
 
⎥ 4  ⎢                                 ⎥ ⎥   ⎢ 

0        0          64/17      192/17   
⎥

⎣                             ⎦ 
0      1/7       −5/7    −16/7 

⎣                                 ⎦ 
0        0        −12/17    −36/17

⎡ 
7        2          −3           3      

⎤
 

5  ⎢ 0   −17/7      1/7        20/7 ⎢                              ⎥ ⎣                              ⎦ 
 

 
1.  P13         2.  A12(−3/7), A13(−2/7), A14(−5/7)     3.  P24 

4.  A23(−11/17), A24(1/17)     5.  A34(3/16) 

Using back substitution to solve the equivalent system  yields the unique solution  (2, −1, 3). 
 

32.  We first use the partial pivoting  algorithm  to reduce the augmented matrix  of the system:
⎡ 

2   −1    −4       5 
⎤

 
⎡ 

5       6   −6    −20  
⎤

 
⎡ 

5        6          −6       20 
⎤

⎢ 3       2   −5       8 ⎥ 1  ⎢ 3       2   −5         8 ⎥ 2  ⎢ 0    −8/5     −7/5    −4  ⎥ 
⎢ 

5       6   −6     20 
⎥ ∼  ⎢ 

2   −1    −4         5 
⎥ ∼  ⎢                         ⎥⎣                   ⎦ 

1       1   −3    −3 

⎣                     ⎦   ⎣                         ⎦ 
1       1   −3      −3

⎡ 
5        6          −6       20 

⎤
 
⎡ 

5        6            −6              20       
⎤

3  ⎢ 0   −17/5    −8/5    −3  ⎥ 4  ⎢ 0   −17/5      −8/5           −3       ⎥ 
∼  ⎢ 

0    −8/5     −7/5    −4  
⎥ ∼  ⎢ 

0        0        −11/17     −44/17   
⎥

⎣                         ⎦ 
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0    −1/5     −9/5    −7 
⎣                                  ⎦ 

0        0        −29/17    −116/17
⎡ 

5        6            −6              20 
⎤   ⎡ 

5        6            −6              20       
⎤

5  ⎢ 0   −17/5      −8/5           −3 ⎥ 6  ⎢ 0   −17/5      −8/5           −3       ⎥

∼  ⎢ 
0        0        −29/17    −116/17  

⎥ ∼  ⎢ 
0        0        −29/17    −116/17  

⎥ .⎣                                  ⎦ 
0        0        −11/17     −44/17 

⎣                                  ⎦ 
0        0              0                0
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2 
⎤

 
⎡ 

4 3   −2 −1  
⎤   ⎡ 

4 3 
 

a11 0 0 . . .  0 b1 

a21 a22 0 . . .  0 b2 

a31 a32 a33 . . .  0 b3 

. . .  . . .  . . .  . . .  . . .  . . .  

an1 an2 an3 . . .  ann bn 

 

⎢ 

1 

⎤ 

3 4 

⎥ 

− 
− 
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1.  P13         2.  A12(−3/5), A13(−2/5), A14(−1/5)     3.  P23 

4.  A23(−8/17), A24(−1/17)     5.  P34         6.  A34(−11/29) 
 

Using back substitution to solve the equivalent system  yields the unique solution  (10, −1, 4). 
 

33.  We first use the partial pivoting  algorithm  to reduce the augmented matrix  of the system: 
⎡ 

2   −1    −1 
2                                     

−2      −1

⎣ 4       3   −2    −1  ⎦ ∼  ⎣ 2   −1    −1       2 ⎦ ∼  ⎣ 0   −5/2      0      5/2   ⎦

1       4       1       4 1       4       1       4 0    13/4     3/2    17/4

⎡ 
4       3       −2      −1 

⎤   ⎡ 
4      3         −2         −1    

⎤

∼  ⎣ 0    13/4     3/2    17/4  ⎦ ∼  ⎣ 0   13/4      3/2       17/4   ⎦ .
0   −5/2      0      5/2 0      0      15/13    75/13

 
1.  P12         2.  A12(−1/2), A13(−1/4)     3.  P23         4.  A23(10/13) 

 
Using back substitution to solve the equivalent system  yields the unique solution  (3, −1, 5). 

 

34. 
 

(a). Let 
⎡                                  ⎤ 

 

⎢                                  ⎥ 

A#  = 
⎢                                  ⎥

 ⎢                                  ⎥ ⎣                                  ⎦ 
 
 

represent the corresponding  augmented matrix  of the given system.   Since a11x1 = b1, we can solve for x1 

easily:

x  = 
 b1 

1        
a11 

 

,        (a11  = 0).

Now since a21x1 + a22x2 = b2, by using the expression for x1 we just  obtained, we can solve for x2: 
 

a11b2  − a21b1
x2 = 

 
In a similar manner,  we can solve for x3, x4, . . . , xn. 

a11 

. 
a22

(b). We solve instantly for x1 from the  first  equation:  x1 = 2.  Substituting this  into  the  middle  equation, 

we obtain  2 · 2 − 3 · x2 = 1, from which it quickly follows that x2 = 1.  Substituting for x1  and  x2  in the 

bottom equation  yields 3 · 2 + 1 − x3 = 8, from which it quickly follows that x3 = −1. Consequently,  the 

solution  of the given system is (2, 1, −1). 
 

35.  This system of equations  is not linear in x1, x2, and x3; however, the system is linear in x3, x2, and x3, 1       2 

so we can first  solve for x3, x2, and  x3.  Converting the given system  of equations  to an augmented matrix 
1       2 

and using Gauss-Jordan elimination  we obtain  the following equivalent matrices: 
⎡ 

4       2       3   12 
⎤

 
⎡ 

1       1       1     2 
⎤

 
1 

⎡ 
1       1       1       2 

⎤
 

2

⎣ 1   −1       1     2 ⎦ ∼  ⎣ 4       2       3   12 ⎦ ∼  ⎣ 0       6   −1       4 ⎦
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3       1   −1      2 3       1   −1      2 0       4   −4    −4
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3 2   −1 0 

2 1       1 0 

 

0 1   −5 0 

0 0       1 0 

 

1 0 0 0 
⎤ 

0 1 0 0 ⎦ . 
0 0 1 0  

 

0 3 1 0 

0 7 3 0 

 

0   −5 0 

1   −4 0 

0     13 0 

 

0 
⎤   ⎡ 

1 

0 ⎥ 3  ⎢ 0 ⎥ ∼  ⎢ 
0 

0 

−1 

3 

 

2 

7 

0 
⎤

 
⎡ 

1 0 0 

0 ⎥ 7  ⎢ 0 1 0 

0 
⎥

 ⎦ 
∼  ⎢ 

0 ⎣ 0 1 

0 0 0 0 

 

⎥ 

− − 

− − 

 
 
 

⎡ 
1       1       1       2 

⎤
 

3 

 
 
⎡ 

1       1       1       2 
⎤

 
4 

 
 
⎡ 

1   0       0       1 
⎤

 
5 

161

∼  ⎣ 0       4   −4    −4  ⎦ ∼  ⎣ 0       1   −1    −1  ⎦ ∼  ⎣ 0   1   −1    −1  ⎦

0       6   −1       4 0       6   −1       4 0   0       5     10

⎡ 
1   0       0       1 

⎤
 

6 

⎡ 
1   0   0   1 

⎤
 

7

∼  ⎣ 0   1   −1    −1  ⎦ ∼  ⎣ 0   1   0   1 ⎦ .
0   0       1       2 0   0   1   2

 

1.  P12         2.  A12(−4), A13(−3)     3.  P23         4.  M2(1/4) 

5.  A21(1),  A23(−6)     6.  M2(1/5)     7.  A32(1) 
 

Thus,  taking  only real solutions,  we have  x3 = 1, x2 = 1, and  x3 = 2.  Therefore,  x1 = 1, x2 = ±1, and1 

x3 = 2, leading to the  two solutions  (1, 1, 2) and  (1, 
2 

−1, 2) to the  original  system  of equations.   There  is no

contradiction of Theorem  2.5.9 here since, as mentioned above, this system is not linear  in x1, x2, and x3. 

36.  Reduce the augmented matrix  of the system:

⎡                  ⎤   ⎡ 
1       1       2   0 

⎤
 

1 

⎡ 
1       1       2   0 

⎤
 

2 

⎡ 
1   0         3   0 

⎤
 

3

⎣                  ⎦ ∼  ⎣ 0   −1       5   0 ⎦ ∼  ⎣ 0       1   −5    0 ⎦ ∼  ⎣ 0   1     −5    0 ⎦

5   −4       1   0 0   −9     11   0 

⎡ 
1   0       3   0 

⎤
 

4 

0   −9     11   0 

⎡ 
 

5 

0   0   −34    0

∼  ⎣                ⎦ ∼  ⎣ 
 

 
1.  A21(−1), A12(−2), A13(−5)     2.  M2(−1)     3.  A21(−1), A23(9) 

4.  M3(−1/34)     5.  A31(−3), A32(5) 

Therefore,  the unique solution  to this system is x1 = x2 = x3 = 0: (0, 0, 0). 

37.  Reduce the augmented matrix  of the system:

⎡ 
2       1   −1    0 

⎤
 
⎡ 

1   −1    −1    0 
⎤

 
⎡ 

1   −1    −1 −1    0 
⎤

⎢ 3   −1       2   0 ⎥ 1  ⎢ 3   −1       2   0 ⎥ 2  ⎢ 0       2       5 ⎢ 
1   −1    −1    0 

⎥ ∼  ⎢ 
2       1   −1    0 

⎥ ∼  ⎢ 
1   0 ⎥ 

5   0 
⎥

⎣                  ⎦ 
5       2   −2    0 

⎣                  ⎦   ⎣ 
5       2   −2    0 

⎦   ⎣                  ⎦ 
3   0

⎡ 
1   −1    −1    0 

⎤   ⎡ 
1 

⎤   ⎡ 
1   0   −5                                       0 

⎤

4  ⎢ 0       1   −4    0 ⎥ 5  ⎢ 0 
∼  ⎢ 

0       2       5   0 
⎥ ∼  ⎢ 

0
 

⎥ 6  ⎢ 0   1   −4 ⎥ ∼  ⎢ 
0   0       1

 
0 

0 
⎥ .

⎣                  ⎦ 
0       7       3   0 

⎣                ⎦ 
0   0     31   0 

⎣                                     ⎦ 
0   0     31                                      0

 

1.  P13         2.  A12(−3), A13(−2), A14(−5)     3.  P23         4.  A32(−1) 



(c)2017 Pearson Education. Inc. 
 

5.  A21(1),  A23(−2), A24(−7)     6.  M3(1/13)     7.  A31(5),  A32(4),  A34(−31) 

Therefore,  the unique solution  to this system is x1 = x2 = x3 = 0: (0, 0, 0). 

38.  Reduce the augmented matrix  of the system:

⎡ 
2   −1    −1    0 

⎤
 
⎡ 

1       1       4   0 
⎤

 
1 

⎡ 
1       1         4   0 

⎤
 

2

⎣ 5   −1       2   0 ⎦ ∼  ⎣ 5   −1       2   0 ⎦ ∼  ⎣ 0   −6    −18    0 ⎦

1       1       4   0 2   −1    −1    0 0   −3      −9    0



(c)2017 Pearson Education. Inc.  

0 1       3 0 

0 −3    −9 0 

 

0 −2 − 2i 1 + 2i 0 ⎦ ∼  ⎣ 
0 −1 − 2i 1 + 5i 0 

⎡ 
1   1 − i        −1        0 

6 
∼  ⎣ 0 1 3i 0 

0 0 −5 + 8i 0 

 

0 −2 − 2i 1 + 2i 0 

0 1 3i 0 

 
0 ⎦ ∼  ⎣ 0 1 0 0 ⎦ . 
0 0 0 1 0  

 

5 −6    −3 0 

3 −5       1 0 

 

5 −6 −3 0 

3 −5 1 0 

 

3 −2 −5 0 

5 −6 −3 0 

3 −5 1 0 

 

−5+8i 

1 1 

1 

3 

3 

− − 

3 4 5 

7 

0 0 
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⎡ 

1       1       4   0 
⎤

 
3 

⎡ 
1   0   1   0 

⎤
 

4

∼  ⎣                  ⎦ ∼  ⎣ 0   1   3   0 ⎦ . 
0   0   0   0 

 

1.  P13         2.  A12(−5), A13(−2)     3.  M2(−1/6)     4.  A21(−1), A23(3) 
 

It follows that x1 + x3 = 0 and x2 + 3x3 = 0. Setting  x3 = t, where t is a free variable,  we get x2 = −3t and 

x1 = −t.  Thus  we have that the solution set of the system is {(−t,−3t, t) : t ∈ R}. 

39.  Reduce the augmented matrix  of the system:
⎡ 

1 + 2i    1    i        1        0 
⎤   ⎡

 
1 i        1 + i          i       0 

⎤   ⎡
 

2 1        1 − i      −1       0 
⎤

⎣   i        1 + i       −i    0 ⎦ ∼  ⎣ 1 + 2i    1 − i        1        0 ⎦ ∼  ⎣ 1 + 2i    1 − i        1        0 ⎦

2i          1       1 + 3i    0 

⎡ 
1      1 − i         −1       0 

⎤
 

2i          1       1 + 3i    0 

⎡ 
1      1 − i         −1       0 

⎤
 

2i          1       1 + 3i    0 

⎡ 
1   1 − i        −1        0 

⎤

∼  ⎣                                                          ⎦ ∼  ⎣ 0       0       −5 + 8i    0 ⎦ 
0       1            3i         0

⎤   ⎡ 
1   1 − i    −1    0 

⎤
 
⎡ 

1   0   0   0 
⎤

 
8

⎦ ∼  ⎣ 0       1       3i 
0       0        1 

 

1.  P12         2.  M1(−i)    3.  A12(−1 − 2i), A13(−2i)     4.  A23(−1)     5.  A32(2 + 2i) 

6.  P23         7.  M3(       1      )     8.  A21(−1 + i), A31(1),  A32(−3i) 

Therefore,  the unique solution  to this system is x1 = x2 = x3 = 0: (0, 0, 0). 

40.  Reduce the augmented matrix  of the system:
⎡  

3       2   1   0 
⎤   ⎡       

2 

1                         3 
1            

⎤   ⎡      
2       1            

⎤ 
3                  2                      3       3

⎣  6   −1    2   0 ⎦ ∼  ⎣ 6   −1    2    0 ⎦ ∼  ⎣ 0   −5    0    0 ⎦

12       6   4   0 12       6    4    0 0   −2    0    0

⎡      
2       1 

3                      3       3 0 
⎤   ⎡ 

1   0    1      0 
⎤

 
4

∼  ⎣ 0       1    0    0 ⎦ ∼  ⎣ 0   1    0    0 ⎦ .
0   −2    0    0 0   0    0    0

 

1.  M1(1/3)     2.  A12(−6), A13(−12)     3.  M2(−1/5)     4.  A21(−2/3), A23(2) 

 
From the last augmented matrix, we have x1 + 1 x3 = 0 and x2 = 0. Since x3 is a free variable,  we let x3 = t, 
where t is a real number.  It follows that the solution set for the given system is given by {(t, 0, −3t) : t ∈ R}. 

 

41.  Reduce the augmented matrix  of the system:
⎡ 

2       1   −8    0 
⎤

 
⎡ 

3   −2    −5    0 
⎤

 
⎡ 

1   −3       3   0 
⎤

⎢                  ⎥ 1  ⎢ 2       1   −8    0 ⎥ 2  ⎢ 2       1   −8    0 ⎥⎢                  ⎥ ∼  ⎢ ⎥ ∼  ⎢                  ⎥

⎣                  ⎦   ⎣ ⎦   ⎣                  ⎦



(c)2017 Pearson Education. Inc. 
 

1 −3 3 0 
⎤ 

0 7 −14 0 ⎥ 

 

1 −3 3 0 
⎤ 

0 1 −2 0 ⎥ 

0       9   −18    0 
⎥

 
0       4     −8    0 

 

 
⎡                        ⎡ 

 

3  ⎢                      4  ⎢ 

⎡ 
1   0   −3    0 

⎤
 

5  ⎢ 0   1   −2    0 ⎥

∼  ⎢ 
0       9   −18    0 

⎥ ∼  
⎢ 

∼  ⎢ 
0   0       0   0 

⎥ .

⎣                   ⎦   ⎣ 
0       4     −8    0 

⎦   ⎣                ⎦ 
0   0       0   0



(c)2017 Pearson Education. Inc.  

0 3 2 0 

3 0 −1 0 

5 1 −1 0 

 

−1 1 0 

3 2 0 

 
0 3 −4 0 

0 6 −6 0 

 
0 5/3 0 

1 2/3 0 

 

0 5/3 0 

1 2/3 0 

 
0 0 −6 0 

0 0 −10 0 

 

0 0 1 0 

0 0 −10 0 

 

0 1 0 0 

0 0 1 0 

0 0 0 0 

 

−2 3 0 

0 0 0 

 
3     −6 9 0 

1     −2 3 0 

5   −10 15 0 

 

0 0 0 0 

0 0 0 0 

 

5 

5 

5 

2−i 

∼  

⎢ 
∼  ∼  

⎥ 

⎥ 

− − 

− 

∼  . 

∼                             ∼                         
. 
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1.  P12         2.  A21(−1)     3.  A12(−2), A13(−5), A14(−3)     4.  M2(1/7)     5.  A21(3),  A23(−9), A24(−4) 

 
From  the last augmented matrix  we have:  x1 − 3x3 = 0 and x2 − 2x3 = 0. Since x3 is a free variable,  we let 

x3 = t, where t is a real number.   It follows that x2 = 2t and  x1 = 3t. Thus,  the  solution  set for the given 
system is given by {(3t, 2t, t) : t ∈ R}. 

 

42.  Reduce the augmented matrix  of the system:

⎡   
1         1 + i      1 − i     0 

⎤
 
⎡ 

1      1 + i      1    i    0 
⎤

 
1 

⎡ 
1   1 + i    1    i    0 

⎤
 

2

⎣   i             1             i        0 ⎦ ∼  ⎣ 0      2 − i        −1      0 ⎦ ∼  ⎣ 0   2 − i     −1      0 ⎦

1 − 2i    −1 + i    1 − 3i    0 0   −4 + 2i       2       0 0       0          0       0

⎡ 
1   1 + i    1    i    0 

⎤
 

3
 

⎡ 
1   0    6−2i       0 

⎤
 

4

∼  ⎣ 0       1       −2−i
 0 ⎦ ∼  ⎣ 0   1    −2−i

 0 ⎦ .

0       0          0       0 0   0       0       0

 

1.  A12(−i), A13(−1 + 2i)     2.  A23(2)      3.  M2(    1    )     4.  A21(−1 − i) 
 

From  the  last  augmented  matrix  we see that x3  is a free variable.   We set  x3 = 5s,  where  s ∈ C.  Then 

x1 = 2(i − 3)s and x2 = (2 + i)s.  Thus,  the solution  set of the system is {(2(i − 3)s, (2 + i)s, 5s) : s ∈ C}. 

43.  Reduce the augmented matrix  of the system:

⎡ 
1   −1       1   0 

⎤   ⎡ 
1 

⎤   ⎡ 
1   −1        1   0 

⎤

⎢                  ⎥ 1  ⎢ 0 ⎢                  ⎥   ⎢ 
⎥ 2  ⎢ 0       1   2/3    0 ⎥ ⎥ ∼  ⎢ 

0       3    −4    0 
⎥

⎣                  ⎦   ⎣ 
 

 
⎡ 

1                        
⎤   ⎡ 

1
 

3         0                        ⎥ 4  ⎢ 0 ⎢                 ⎥   ⎢ 

⎦   ⎣                  ⎦ 
0       6    −6    0 

⎤   ⎡ 
1   0   0   0 

⎤
 

⎥ 5  ⎢ ⎥   ⎢              ⎥
⎣                 ⎦   ⎣ ⎦   ⎣              ⎦

 

 
 

1.  A13(−3), A14(−5)     2.  M2(1/3)     3.  A21(1),  A23(−3), A24(−6) 

4.  M3(−1/6)     5.  A31(−5/3), A32(−2/3), A34(10) 

Therefore,  the unique solution  to this system is x1 = x2 = x3 = 0: (0, 0, 0). 

44.  Reduce the augmented matrix  of the system:

⎡ 
2     −4      6   0 

⎤
 
⎡ 

1     −2      3   0 
⎤   ⎡ 

1                      
⎤

⎢                  ⎥ 1  ⎢ 3     −6      9   0 ⎥ 2  ⎢ 0 ⎢                  ⎥   ⎢ 
2     −4      6   0 

⎥   ⎢                ⎥
⎣                  ⎦   ⎣ ⎦   ⎣                ⎦ 

5   −10    15   0

 
1.  M1(1/2)     2.  A12(−3), A13(−2), A14(−5) 

 



(c)2017 Pearson Education. Inc. 
 

From  the  last  matrix  we have that x1 − 2x3 + 3x3 = 0.  Since x2 and  x3 are free variables,  let x2 = s and 

let x3  = t, where s and t are real numbers.  The solution set of the given system is therefore {(2s − 3t, s, t) :  

s, t ∈ R}.



(c)2017 Pearson Education. Inc.  

⎡ 
4 −2 −1 −1 0 

⎣ 3 1 −2 3 0 

 5 −1 −2 1 0 

 

1 −3 1 −4 0 
⎤ 

0 10 −5 15 0 ⎦ 
0 14 −7 21 0  

 
1 −3 1 −4 0 

⎤ 

0 1 −1/2 3/2 0 ⎦ . 
0 0 0 0 0  

 

0 −4 −2 1 0 

0 −2 −5 5 0 

 

3 −1 1 −2 0 

4 2 −1 1 0 

 

1 1   −1 0 

1 3   −3 0 

−4 −2       1 0 

 
0 0 10 −11 0 

0 0 −3 3 0 

 

0 0   − 3         3 0 

0 0     1 0   −11 0 

 

0 0 0 0 

1 0 0 0 

 

0 0 0 0 

1 0 0 0 

 

0 0 1 −1 0 

0 0 10 −11 0 

 

0 0 1 −1 0 

0 0 0 −1 0 

 

0 0 1 −1 0 

0 0 0 1 0 

 

1 2 

3 4 

5 
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45.  Reduce the augmented matrix  of the system: 

 
⎤   ⎡ 

1   −3       1   −4    0 
⎤   ⎡

 
⎦ ∼  ⎣ 3       1   −2       3   0 ⎦ ∼  ⎣ 

5   −1    −2       1   0 
⎡ 

1   −3       1   −4    0 
⎤

 
⎡ 

1   −3       1   −4    0 
⎤   ⎡

∼  ⎣ 0       2   −1       3   0 ⎦ ∼  ⎣ 0       2   −1       3   0 ⎦ ∼  ⎣

0       2   −1       3   0 0       0       0       0   0

 
1.  A21(−1)     2.  A12(−3), A13(−5)     3.  M2(1/5), M3(1/7) 

4.  A23(−1)     5.  M2(1/2) 
 

From the last augmented matrix above we have that x2 − 1 x3 + 3 x4 = 0 and x1 −3x2 +x3 −4x4  = 0. Since x3
 

2            2 

and x4 are free variables,  we can set x3 = 2s and x4 = 2t, where s and t are real numbers.  Then  x2 = s − 3t 
and x1 = s − t. It follows that the solution  set of the given system is {(s − t, s − 3t, 2s, 2t) : s, t ∈ R}. 

 

46.  Reduce the augmented matrix  of the system: 
⎡ 

2       1   −1       1   0 
⎤

 
⎡ 

1       1       1   −1    0 
⎤

 
⎡ 

1       1       1   −1    0 
⎤

⎢ 1       1       1   −1    0 ⎥ 1  ⎢ 2       1   −1       1   0 ⎥ 2  ⎢ 0   −1    −3       3   0 ⎥⎢ 
3   −1       1   −2    0 

⎥ ∼  ⎢ ⎥ ∼  ⎢                       ⎥

⎣                       ⎦   ⎣ 
4       2   −1       1   0 

⎦   ⎣                       ⎦

⎡ 
1                                   

⎤
 
⎡ 

1   0   −2         2   0 
⎤

 
⎡ 

1   0   −2         2   0 
⎤

3  ⎢ 0 ⎥ 4  ⎢ 0   1       3     −3    0 ⎥ 5  ⎢ 0   1       3     −3    0 ⎥

∼  ⎢ 
0

 ⎥ ∼  ⎢ ⎥ ∼  ⎢                      ⎥

⎣                       ⎦   ⎣                      ⎦   ⎣                      ⎦ 
0   −2    −5       5   0

⎡ 
1   0   −2         2   0 

⎤
 
⎡ 

1   0   0       0   0 
⎤   ⎡ 

1 
⎤   ⎡ 

1                         
⎤

6  ⎢ 0   1       3     −3    0 ⎥ 7  ⎢ 0   1   0       0   0 ⎥ 8  ⎢ 0 ⎥ 9  ⎢ 0                         ⎥

∼  ⎢                      ⎥ ∼  
⎢ 

⎥ ∼  ⎢ ⎥ ∼  ⎢                 ⎥ .

⎣                      ⎦   ⎣                   ⎦   ⎣ ⎦   ⎣                 ⎦
 

 
 

1.  P12         2.  A12(−2), A13(−3), A14(−4)     3.  M2(−1)     4.  A21(−1), A23(4),  A24(2) 

5.  P34         6.  M3(−1/3)     7.  A31(2),  A32(−3), A34(−10)     8.  M4(−1)     9.  A43(1) 
 

From  the last augmented matrix, it follows that the solution  set to the system  is given by {(0, 0, 0, 0)}. 
 

47.  The equation  Ax  = 0 is    
2   −1  

    
x1 

          
0  
 

 
=         .

3       4        x2                0 
 

Reduce the augmented matrix  of the system: 
   

2   −1    0  
    

1  

    
1   − 1 0  

    
2  

    
1   − 1 0  

    
3  

    
1   − 1 0  

   
4   

   
1    0    0  

 



(c)2017 Pearson Education. Inc. 
 

0 0 1 0 0 

0 0 0 1 0 

 

0 
∼  

0 
∼  

2 3       4   0     
∼    

3 
2                                          2 

4   0             0     11
 

2                ∼                   . 
1   0             0   1   0

 
1.  M1(1/2)     2.  A12(−3)     3.  M2(2/11)     4.  A21(1/2)



(c)2017 Pearson Education. Inc.  

1 − i     2i 0  
  

1  

        
1       −1 + i    0  

    
2  

    
1   −1 + i    0 

1 + i    −2 0 
∼    

1 + i −2 0 
∼    

0        0 0 

 
2 

2 2 

2 

2 

( 1+3i
 

− − 
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From  the last augmented matrix, we see that x1 = x2 = 0. Hence, the solution  set is {(0, 0)}. 

48.  The equation  Ax  = 0 is    
1 − i     2i 

1 + i    −2 

Reduce the augmented matrix  of the system: 
  

    
x1 

x2 

          
0  
 

 
=   

0    
.
 

 

 

  

.
 

 

1.  M1( 1+i )     2.  A12(−1 − i) 

 
It  follows that x1 + (−1 + i)x2 = 0.  Since x2  is a free variable,  we can  let  x2 = t, where t is a complex 
number.  The solution  set to the system  is then given by {(t(1 − i), t) : t ∈ C}. 

 

49.  The equation  Ax  = 0 is      
1 + i     1 − 2i  

       
x1 

          
0  
 

 
=         .

−1 + i     2 + i          x2                0 

Reduce the augmented matrix  of the system:
      

1 + i     1 − 2i    0  
    

1  

         
1        − 1+3i 

 

0  
   

2   

   
1    − 1+3i      0  

 

−1 + i     2 + i     0     
∼

 −1 + i     2 + i     0     
∼

 0        0        0    
.

 

1.  M1( 1−i )     2.  A12(1 − i) 
 

It  follows that x1 − 1+3i x2 = 0.  Since x2  is a free variable,  we can  let  x2 = r,  where  r  is any  complex

number.  Thus,  the solution  set to the given system  is { 
 

50.  The equation  Ax  = 0 is 

2    
r, r) : r ∈ C}.

⎡ 
1       2   3 

⎤ ⎡ 
x1  

⎤
 
⎡ 

0 
⎤

⎣ 2   −1    0 ⎦ ⎣ x2 ⎦ = ⎣ 0 ⎦ .

1       1   1         x3                 0 

Reduce the augmented matrix  of the system:
⎡ 

1       2   3   0 
⎤

 
⎡ 

1       2       3   0 
⎤

 
1 

⎡ 
1       2       3   0 

⎤
 

2 

⎡ 
1       2       3   0 

⎤
 

3

⎣ 2   −1    0   0 ⎦ ∼  ⎣ 0   −5    −6    0 ⎦ ∼  ⎣ 0   −1    −2    0 ⎦ ∼  ⎣ 0       1       2   0 ⎦

1       1   1   0 0   −1    −2    0 0   −5    −6    0 0   −5    −6    0

⎡ 
1   0       1   0 

⎤
 

4 

⎡ 
1   0       1   0 

⎤
 

5 

⎡ 
1   0   0   0 

⎤
 

6

∼  ⎣ 0   1       2   0 ⎦ ∼  ⎣ 0   1       2   0 ⎦ ∼  ⎣ 0   1   0   0 ⎦ .
0   0       4   0 0   0       1   0 0   0   1   0

 

1.  A12(−2), A13(−1)     2.  P23         3.  M2(−1)     4.  A21(−2), A23(5)      5.  M3(1/4)     6.  A31(1),  A32(−2) 
 

From  the  last  augmented  matrix, we see that the  only solution  to the given system  is x1 = x2 = x3 = 0: 

{(0, 0, 0)}. 
 



(c)2017 Pearson Education. Inc. 
 

51.  The equation  Ax  = 0 is
⎡   

1   1       1   −1  
⎤

 
⎡ 

x1  

⎤
 

x
 

⎡ 
0 
⎤

 
0

⎣ −1    0   −1       2 ⎦ 
⎢ 2   

⎥ 
= 
⎢    ⎥ 

.⎢ 
x3  

⎥ ⎢ 
0 
⎥

1   3       2       2     
⎣    ⎦   ⎣   ⎦

 
x4                 0



(c)2017 Pearson Education. Inc.  

0 ⎦ ∼  ⎣ 0        0 0 0 ⎦ . 
0 0        0 0 0  

 

0 1   0 0 

0 3   0 0 

 

1 3 0 0 

0 3 0 0 

0 1 0 0 

 

1 1 

− − − 

1 
0 0 
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Reduce the augmented matrix  of the system:
⎡   

1   1       1   −1    0 
⎤

 
⎡ 

1   1   1       1   0 
⎤

 
1 

⎡ 
1   0   1       2   0 

⎤
 

2 

⎡ 
1   0   0       3   0 

⎤
 

3

⎣ −1    0   −1       2   0 ⎦ ∼  ⎣ 0   1   0       1   0 ⎦ ∼  ⎣ 0   1   0       1   0 ⎦ ∼  ⎣ 0   1   0       1   0 ⎦ .
1   3       2       2   0 0   2   1       3   0 0   0   1       1   0 0   0   1       1   0

 
1.  A12(1),  A13(−1)     2.  A21(−1), A23(−2)     3.  A31(−1) 

 

From  the last augmented matrix, we see that x4 is a free variable.  We set x4 = t, where t is a real number. 

The  last  row of the  reduced  row echelon form above corresponds  to the  equation  x3 + x4 = 0.  Therefore, 

x3 = −t.  The second row corresponds  to the equation  x2 + x4 = 0, so we likewise find that x2 = −t.  Finally, 

from the first equation  we have x1 − 3x4 = 0, so that x1 = 3t. Consequently, the solution  set of the original 

system is given by {(3t, −t, −t, t) : t ∈ R}. 

52.  The equation  Ax  = 0 is
⎡ 

2 − 3i     1 + i       i − 1 
⎤ ⎡ 

x1  

⎤
 
⎡ 

0 
⎤

⎣ 3 + 2i    −1 + i    −1 − i  ⎦ ⎣ x2 ⎦ = ⎣ 0 ⎦ .

5 − i         2i           −2             x3                 0 
 

Reduce the augmented matrix  of this system:
⎡ 

2 − 3i     1 + i       i − 1     0 
⎤   ⎡

 
 

−1+5i 
13 

 

−5−i 
13 

⎤   ⎡     
−1+5i 

2                       13 
−5−i            

⎤ 
13

⎣ 3 + 2i    −1 + i    −1 − i    0 ⎦ ∼  ⎣ 3 + 2i    −1 + i    −1 − i
5 − i         2i           −2       0 

 

1.  M1( 2+3i
 

5 − i         2i           −2

13   
)     2.  A12(−3 − 2i), A13(−5 + i) 

 

From the last augmented matrix, we see that x1 +  −1+5i x2 +  −5−i x3 = 0. Since x2 and x3 are free variables, 13                     13 

we can let x2 = 13r and  x3 = 13s, where r and  s are complex numbers.   It follows that the  solution  set of 
the system  is {(r(1 − 5i) + s(5 + i), 13r, 13s) : r, s ∈ C}. 

 

53.  The equation  Ax  = 0 is ⎡   
1       3   0 

⎤ ⎡ 
x1  

⎤
 
⎡ 

0 
⎤

⎣ −2    −3    0 ⎦ ⎣ x2 ⎦ = ⎣ 0 ⎦ .

1       4   0         x3                 0 

Reduce the augmented matrix  of the system:

⎡   
1       3   0   0 

⎤   ⎡
 

1 

⎤   ⎡ 
1   3   0   0 

⎤
 

2 

⎡ 
1   0   0   0 

⎤
 

3

⎣ −2    −3    0   0 ⎦ ∼  ⎣ 
1       4   0   0 

⎦ ∼  ⎣ ⎦ ∼  ⎣ 0   1   0   0 ⎦ . 
0   0   0   0

 
1.  A12(2),  A13(−1)     2.  P23         3.  A21(−3), A23(−3) 

From  the last augmented matrix  we see that the solution  set of the system is {(0, 0, t) : t ∈ R}. 

54.  The equation  Ax  = 0 is
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1 0 3 

3 −1 7 

2 1 8 
1 1 5 

 
x2 

x3 

⎡                ⎤ 

⎢                ⎥ 
⎡ 

x1  

⎤
 
⎡ 

0 
⎤

⎢                ⎥ ⎢                ⎥ ⎣ ⎢                ⎥ ⎣                ⎦ 

−1       1   −1 

⎦ = ⎣ 0 ⎦ . 
0



(c)2017 Pearson Education. Inc.  

1 0 3 0 
⎤

 
⎡ 

1 0 3 0 
⎤

 
⎡ 

1 0 3 0 
⎤

 
⎡ 

1 0 3 0 

3 −1 7 0 ⎥ ⎢ 0   −1    −2    0 ⎥   ⎢ 0   1   2   0 ⎥   ⎢ 0   1   2   0 
1  ⎢ 

0       1       2   0 
⎥ 2  ⎢ 

0   1   2   0 
⎥ 3  ⎢ 

0   0   0   0 ∼  ⎢                  ⎥ ∼  ⎢              ⎥ ∼  ⎢ ⎢ 
0       1       2   0 

⎥   ⎢ 
0   1   2   0 

⎥   ⎢ 
0   0   0   0 ⎣                  ⎦   ⎣              ⎦   ⎣ 

2 1 8 0 
⎥

 
⎥ 1 1 5 0 
⎥

 ⎦ 

 

     

    

    
−1 1 −1 0 0 1 2 0 0 1 2 0 0 0 0 0 

 

. 

⎣ 

⎣ 

⎦ 

− 

⎦ 

− 
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Reduce the augmented matrix  of the system: 

⎡                                                                                     ⎤ 
 

⎢                                                                                     ⎥ 
⎢                                                                                     ⎥ 
⎢                                                                                     ⎥ 
⎢                                                                                     ⎥ 
⎣                                                                                     ⎦ 

 
 
 

1.  A12(−3), A13(−2), A14(−1), A15(1)      2.  M2(−1)     3.  A23(−1), A24(−1), A25(−1) 

 

From  the  last  augmented  matrix, we obtain  the  equations  x1 + 3x3 = 0 and  x2 + 2x3 = 0.  Since x3  is a 

free variable,  we let x3 = t, where t is a real number.  The solution  set for the given system is then given by 

{(−3t,−2t, t) : t ∈ R}. 
 

55.  The equation  Ax  = 0 is
⎡   

1   −1    0   1 
⎤

 
⎡ 

x1  

⎤
 

x
 

⎡ 
0 
⎤

⎣   3   −2    0   5 ⎦ 
⎢ 2   

⎥ 
=   0     .

 

−1       2   0   1 

 
Reduce the augmented matrix  of the system: 

⎢ 
x3  

⎥   ⎣ 

0 

⎦
 

x4

⎡   
1   −1    0   1   0 

⎤
 
⎡ 

1       1   0   1   0 
⎤

 
1 

⎡ 
1   0   0   3   0 

⎤
 

2

⎣   3   −2    0   5   0 ⎦ ∼  ⎣ 0       1   0   2   0 ⎦ ∼  ⎣ 0   1   0   2   0 ⎦ .
−1       2   0   1   0 0       1   0   2   0 0   0   0   0   0

 

 

1.  A12(−3), A13(1)      2.  A21(1),  A23(−1) 

 
From  the  last  augmented matrix  we obtain  the  equations  x1 + 3x4 = 0 and  x2 + 2x4 = 0.  Because x3  and 

x4 are free, we let x3 = t and x4 = s, where s and t are real numbers.  It follows that the solution  set of the 
system  is {(−3s, −2s, t, s) : s, t ∈ R}. 

 

56.  The equation  Ax  = 0 is
⎡   

1   0   −3    0 
⎤

 
⎡ 

x1  

⎤
 

x
 

⎡ 
0 
⎤

⎣   3   0   −9    0 ⎦ 
⎢ 2   

⎥ 
=   0     .

 

−2    0       6   0 

 
Reduce the augmented matrix  of the system: 

⎢ 
x3  

⎥   ⎣ 

0 

⎦
 

x4

⎡   
1   0   −3    0   0 

⎤
 
⎡ 

1   0       3   0   0 
⎤

 
1

⎣   3   0   −9    0   0 ⎦ ∼  ⎣ 0   0       0   0   0 ⎦ .
−2    0       6   0   0 0   0       0   0   0
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1.  A12(−3), A13(2) 

 
From  the  last  augmented  matrix  we obtain  x1 − 3x3 = 0.  Therefore,  x2, x3, and  x4  are  free variables,  so 

we let  x2 = r, x3 = s, and  x4 = t, where r, s, t are real numbers.   The  solution  set of the  given system  is 

therefore  {(3s, r, s, t) : r, s, t ∈ R}.



(c)2017 Pearson Education. Inc.  

1   0 

17 

17 

1   0 

17 

7 

17 

− − 

3 4 
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57.  The equation  Ax  = 0 is  
⎡ 

2 + i       i       3 − 2i  
⎤ ⎡ 

x1  

⎤
 

 
⎡ 

0 
⎤

⎣   i       1 − i    4 + 3i  ⎦ ⎣ x2 ⎦ = ⎣ 0 ⎦ .

3 − i    1 + i    1 + 5i          x3                 0 
 

Reduce the augmented matrix  of the system:

⎡ 
2 + i       i       3    2i    0 

⎤   ⎡
 

1 
i       1    i    4 + 3i    0 

⎤   ⎡
 

2 
1       −1 − i    3 − 3i    0 

⎤

⎣   i       1 − i    4 + 3i    0 ⎦ ∼  ⎣ 2 + i       i       3 − 2i    0 ⎦ ∼  ⎣ 2 + i         i         3 − 2i    0 ⎦

3 − i    1 + i    1 + 5i    0 3 − i    1 + i    1 + 5i    0 3 − i     1 + i     1 + 5i    0

⎡ 
1   −1 − i      3 − 4i      0 

⎤
 
⎡ 

1   −1 − i      3 − 4i      0 
⎤

 
⎡        

 25−32i      0 
⎤

 
5                                17

∼  ⎣ 0    1 + 4i     −7 + 3i     0 ⎦ ∼  ⎣ 0        1            5+31i
 0 ⎦ ∼  ⎣ 0   1     5+31i      0 ⎦

0    5 + 3i    −4 + 20i    0 0    5 + 3i    −4 + 20i    0 0   0      10i      0

⎡        
 25−32i      0 

⎤ 

6                                17 

⎡ 
1   0   0   0 

⎤

∼  ⎣ 0   1     5+31i
 0 ⎦ ∼  ⎣ 0   1   0   0 ⎦ .

0   0        1        0 0   0   1   0

 

1.  P12         2.  M1(−i)    3.  A12(−2 − i), A13(−3 + i)     4.  M2( 1−4i )     5.  A21(1 + i), A23(−5 − 3i) 

6.  M3(−i/10)     7.  A31(  −25+32i ), A32(  −5−31i ) 
17                              17 

 

From  the last augmented matrix  above, we see that the only solution  to this system is the trivial  solution. 

 
Solutions to Section 2.6 

 
True-False Review: 

 

(a): FALSE. An invertible  matrix  is also known as a nonsingular matrix. 
   

1    1  
 

(b): FALSE. For instance,  the matrix 
2   2     

does not contain  a row of zeros, but  fails to be invertible.

(c): TRUE. If A is invertible, then the unique solution  to Ax  = b is x = A−1b. 
⎡ 

1   0 
⎤

 

(d):  FALSE. For  instance,  if A = 

   
1    0    0  

 
 

0   0   1 
and  B  = ⎣ 0   0 ⎦,  then  AB  = I2, but  A  is not  even a 

0   1

square  matrix, hence certainly  not invertible. 
 

(e): FALSE. For instance,  if A = In and  B  = −In, then A and  B  are both  invertible,  but  A + B  = 0n is 

not invertible. 
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(f ):   TRUE. We have 

(AB)B−1A−1  = In     and     B−1A−1(AB) = In, 

and therefore, AB  is invertible, with inverse B−1A−1. 
 

(g): TRUE. From A2  = A, we subtract to obtain  A(A−I) = 0. Left multiplying  both sides of this equation 

by A−1  (since A is invertible, A−1  exists), we have A− I = A−10 = 0. Therefore,  A = I , the identity matrix. 
 

(h):  TRUE. From  AB  = AC,  we left-multiply both  sides by A−1   (since  A  is invertible, A−1   exists)  to 

obtain  A−1AB = A−1AC.  Since A−1A = I, we obtain  IB = IC, or B = C.
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3 5 1 
⎤ ⎡ 

8 −29 3 
⎤ 

1 2 1 ⎦ ⎣ −5 19 −2 ⎦ 
2 6 7  2 −8 1  

 

− 
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(i): TRUE. Any 5 × 5 invertible matrix must have rank  5, not rank  4 (Theorem  2.6.6). 
 

(j): TRUE. Any 6 × 6 matrix  of rank  6 is invertible  (Theorem 2.6.6). 
 

Problems: 
 

1.  We have
 

AA−1  = 
   

4    9  
        

7    −9  
 

 
 

= 

   
(4)(7) + (9)(−3)    (4)(−9) + (9)(4)  

 
 
    

1    0  
 

 
= 

 
= I2.

3   7        −3       4 (3)(7) + (7)(−3)    (3)(−9) + (7)(4)              0   1

2.  We have 
 

AA−1  = 

 
   

2   −1  
    

−1    1  
   

=
 

 
    

(2)(−1) + (−1)(−3)    (2)(1) + (−1)(2)  
 

 

 
    

1    0  
 

 
= 

 

 
 
= I2.

3   −1 −3    2 (3)(−1) + (−1)(−3)  (3)(1) + (−1)(2)              0   1

3.  We have     
a    b 

  
    1      

        
d    −b  

   

= 
   1      

     
a    

b 

       
d    −b  

 

c    d        ad − bc −c       a ad − bc     c    d −c       a

= 
   1      

     
ad − bc        0

ad − bc 
   

1    0  
 

 
=   

0   1 

0         ad − bc

 
 

and 

 

  
    1      

        
d    −b  

      
a    b 

= I2, 
 

        
    1      

        
d       b  

       
a    b 

=
ad − bc −c       a c    d         ad − bc −c       a         c    d

= 
   1      

     
ad − bc        0

ad − bc 
   

1    0  
 

 
=   

0   1 

0         ad − bc

= I2. 
 

4.  We have 
⎡ 

 

AA−1  = ⎣ 
 

⎡ 
(3)(8) + (5)(−5) + (1)(2)    (3)(−29) + (5)(19) + (1)(−8)    (3)(3) + (5)(−2) + (1)(1)  

⎤
 

= ⎣ (1)(8) + (2)(−5) + (1)(2)    (1)(−29) + (2)(19) + (1)(−8)    (1)(3) + (2)(−2) + (1)(1)  ⎦ 
(2)(8) + (6)(−5) + (7)(2)    (2)(−29) + (6)(19) + (7)(−8)    (2)(3) + (6)(−2) + (7)(1) 

⎡ 
1   0   0 

⎤
 

= ⎣ 0   1   0 ⎦ = I3. 
0   0   1 
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5.  We have  
    

1    2    1    0  
   

1   

   
1    2       1    0  

 
 

 
 

2  

    
1   0       3   −2  

  

= [I
 

 

 
A−1

[A|I2] =  
1   3   0   1     

∼
 0   1   −1    1 

∼    
0   1   −1       1 2|        ].
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0 −1 1 + i 

1 1 − i −1 

 

1       −i 1 0 

i − 1      2 0 1 

 

⎡ 
1   −1      2 1 0 0 

[A|I3] = ⎣ 2       1 11 0 1 0 

4   −3 10 0 0 1 

 

7 −2 1 0 ⎦ ∼  ⎣ 0 1   2 −4    0 1 ⎦ 

2 −4 0 1 0 3   7 −2    1 0  

 

1 0 4 −3 0 1 

0 1 2 −4 0 1 

0 0 1 10 1 −3 

 

1 0 0 −43 −4 

0 1 0 −24 −2 

0 0 1 10 1 

 

Thus,  

 
⎡ 

 

2 

1 

1 + i 
. 

− − 
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Therefore, 
 

 

A−1  = 

        
3   −2  

  

. 
−1       1

 
1.  A12(−1)     2.  A21(−2) 

 

6.  We have  
        

1       1 + i    1    0  
   

1   

   
1    1 + i         1         0  

   
2   

   
1    1 + i       1          0  

 

[A|I2] =  
1 − i       1       0   1     

∼
 0     −1      −1 + i    1     

∼
 0       1       1 − i    −1

3  

    
1 

  

= [I
 

 

A−1

 

 
Thus, 

∼    
0 

 
 

A−1  = 

2|        ]. 
 

      
−1      1 + i  

   

. 
1 − i     −1

 
1.  A12(−1 + i)     2.  M2(−1)     3.  A21(−1 − i) 

 

7.  We have  
    

1  

    
1     −i      1       0  

    
2  

    
1   −i  1      0

[A|I2] =  ∼    
0   1 − i    1 − i    1     

∼
 

0      1   1    1+i

 

3  

    
1   0   1 + i     −1+i                    

1 

 
Thus, 

∼    
0   1       1 

 2   
1+i 

2 

= [I2|A− ].

A−1  = 
                  

−1+i 
 2   
1+i 

2

 

1.  A12(1 − i)     2.  M2(1/(1 − i))      3.  A21(i) 
 

 

8.  Note that AB  = 02  for all 2 × 2 matrices  B.  Therefore,  A is not invertible. 

9.  We have

⎤   ⎡ 
1       1   2       1   0   0 

⎤
 

1 

⎡ 
1       1   2       1   0   0 

⎤
 

2

⎦ ∼  ⎣ 0       3 
0       1 

⎡                         ⎤   ⎡ 
 

3                                                                         4
 13 

⎤

∼  ⎣                         ⎦ ∼  ⎣ 
 
 

−43    −4     13 
⎤

 
A−1  = ⎣ −24    −2       7 ⎦ . 

10       1   −3 
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7 ⎦ = [I3|A−1]. 
−3
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1 2 1 0 1 0 

3 5 1 1 0 0 

2 6 7 0 0 1 

 

⎡ 
3 5 1 1 0 0 

[A|I3] = ⎣ 1 2 1 0 1 0 

2 6 7 0 0 1 

 

1 2 1 0 1 0 

0 1 2 −1 3 0 

0 2 5 0 −2 1 

 

2   −13 1 0   0 

1     −7 
2         4 

0 
0 

1   0 
0   1 

 

1 1 11 0 −1 1 
⎤ 

2 1 −7 0 1 0 ⎦ 

4 2 −13 1 0 0  

 

3 2 4 0 0 1 

2 1 −7 0 1 0 

4 2 −13 1 0 0 

 

1 1 11 0 −1 1 

0 −1 −29 0 3 −2 

0 −2 −57 1 4 −4 

 

0   1       2 −1 1 
2 

0 ⎦ 

0   3       1 1 0 1  

 

−           − − 

− 
5 

6 

− − 
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1.  A12(−2), A13(−4)     2.  P23         3.  A21(1),  A23(−3)     4.  A31(−4), A32(−2) 
 

10.  We have  
⎤   ⎡                     ⎤ 
 

1 

 
⎡ 

1       2       1   0       1   0 
⎤

 
2

⎦ ∼  ⎣ 
 

 
⎡                         ⎤   ⎡ 

1   0       3       2       5   0 
⎤

 
3                                                                         4

 

⎦ ∼  ⎣ 0   −1    −2    1   −3    0 ⎦ 
0       2       5   0   −2    1 

 

⎡ 
1   0   0       8       29       3 

⎤
 

5

∼  ⎣                         ⎦ ∼  ⎣ 0   1       2   −1       3   0 ⎦ ∼  ⎣ 0   1   0   −5       19   −2  ⎦ = [I3|A−1].
 

 
Thus, 

0   0       1       2   −8    1 0   0   1       2     −8       1

⎡   
8   −29       3 

⎤
 

A−1  = ⎣ −5       19   −2  ⎦ . 
2     −8       1 

 
1.  P12         2.  A12(−3), A13(−2)     3.  M2(−1)     4.  A21(−2), A23(−2)     5.  A31(3),  A32(−2) 

 

 

11.  This matrix  is not invertible,  because the column of zeros guarantees that the rank of the matrix  is less 

than  three. 
 

12.  We have 

⎡ 
4                                    

⎤   ⎡                        ⎤   ⎡
 

1                                                                       2
[A|I3] = ⎣ 2 

3 

⎦ ∼  ⎣ ⎦ ∼  ⎣

⎡                              ⎤   ⎡ 
1       1       11   0       1       1 

⎤
 

3                                                                                    4 

⎡ 
1   0   −18    0       2   −1  

⎤

∼  ⎣                              ⎦ ∼  ⎣ 0       1       29   0   −3       2 ⎦ ∼  ⎣ 0   1       29   0   −3       2 ⎦

0   −2    −57    1       4   −4 0   0         1   1   −2       0

⎡ 
1   0   18   −34    −1        

⎤

 
 
 

Thus, 

∼  ⎣ 0   1     0   −29     55   2 ⎦ = [I3|A−1]. 
0   0     1         1   −2    0

⎡   
18   −34    −1  

⎤
 

A−1  = ⎣ −29       55       2 ⎦ . 
1     −2       0 

 
1.  P13         2.  A21(−1)     3.  A12(−2), A13(−4)     4.  M2(−1) 

5.  A21(−1), A23(2)      6.  A31(18),  A32(−29) 

13.  We have 

⎡ 
 

1   2   −3    1   0   0 
⎤

 

 
⎡ 

1   2       3       1   0   0 
⎤

 
1 

 
⎡ 

1   2       3       1    0    0 
⎤

 
2

[A|I3] = ⎣ 2   6   −2    0   1   0 ⎦ ∼  ⎣ 0   2       4   −2    1   0 ⎦ ∼  ⎣
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−1    1       4   0   0   1 0   3       1       1   0   1
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172  

  

 
3 

⎡ 

 

⎤  ⎡ 

 4  
 

Thus,  

 
⎡ 
− 13 

5 
11            7 

10      
− 

5 

 

⎡   
1        i 2 1 0 0 

[A|I3] = ⎣ 1 + i    −1 2i 0 1 0 

2       2i 5 0 0 1 

 

0 1 −2i 1 − i i 0 

0 0 1 −2 0 1 

 

1 −1 2 0 1 0 
⎤

 

2 1 3 1 0 0 ⎦ 
3 3 4 0 0 1 

 
−1       2 0 1 0 

⎤ 

3   −1 1 −2 0 ⎦ 

0       0 −2 1 1  

 

1   −1 2 3 1 0 0 0 

2       0 3 −4 0 1 0 0 

3   −1 7 8 0 0 1 0 

1       0 3 5 0 0 0 1 

 

1 −1 2         3 1 0 0 0 

0 2 −1    −10 −2 1 0 0 

0 2 1     −1 −3 0 1 0 

0 1 1         2 −1 0 0 1 

2 

2 

2 5 

5 

3 

1 

∼  ⎣ 

− 

− 

− 

 

 
 
 

1   0   −7       3    −1    0 1   0   −7        3   −1        0 
⎤

∼  ⎣ 0   1       2   −1        1 0 ⎦ ∼  ⎣ 0   1       2    −1       1           0 ⎦

0   0   −5       4   − 3      1 0   0       1   − 4 
 3            1 
10      

− 
5

⎡ 
1   0   0   − 13 11            7   

⎤ −

5         
0   1   0

 5            10 
3            1 5 

2   ⎦ = [I3|
 
A−1].

5      
− 

10            5

0   0   1     − 4 
 

 
 

A−1  = ⎣     3 

 3            1 
10      

− 
5 

 

 
 1 

 
 

⎤ 
 

2   ⎦ .
5      

− 
10            5 

4            3            1 − 
5           10      

− 
5 

 

1.  A12(−2), A13(1)      2.  M2( 1 )     3.  A21(−2), A23(−3)     4.  M3(− 1 )     5.  A31(7),  A32(−2) 2                                                                                             5 

14.  We have  
⎤   ⎡ 

1       i       2        1        0   0 
⎤

 
1 

 
⎡ 

1    i         2       1       0   0 
⎤

 
2

⎦ ∼  ⎣ 0   −i  −2    −1 − i    1   0 ⎦ ∼  ⎣ 0   1   −2i    1 − i    i    0 ⎦

0      0       1       −2       0   1 0   0        1     −2      0   1

⎡ 
1   0        0        i      1   0 

⎤
 

3
 

⎡ 
1   0   0         i       1    0  

⎤
 

4

∼  ⎣ 
 

 
Thus, 

⎦ ∼  ⎣ 0   1   0   1 − 5i    i    2i  ⎦ = [I3|A−1]. 
0   0   1      −2       0    1

⎡  
−i    1    0  

⎤
 

A−1  = ⎣ 1 − 5i    i    2i  ⎦ . 
−2       0    1 

 
1.  A12(−1 − i), A13(−2)     2.  M2(i)      3.  A21(−i)    4.  A32(2i) 

15.  We have  
⎡ 

2       1   3   1   0   0 
⎤   ⎡

 
1 

 
⎡ 

1       1       2   0       1   0 
⎤

 
2

[A|I3] = ⎣ 1   −1    2   0   1   0 ⎦ ∼  ⎣ 
3       3   4   0   0   1 

⎡ 
1 

∼  ⎣ 0       3   −1    1   −2    0 ⎦ 
0       6   −2    0   −3    1

∼  ⎣ 0 
0 

Since 2 = rank(A) < rank(A#) = 3, we know that A−1  does not  exist (we have obtained a row of zeros in 

the block matrix  on the left. 
 

1.  P12         2.  A12(−2), A13(−3)     3.  A23(−2) 

 
16.  We have 

⎡                                ⎤   ⎡                                     ⎤ 

[A|I4] = 
⎢ ⎥ 

∼  
⎢                                     ⎥
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⎢                                ⎥   ⎢                                     ⎥ ⎣                                     ⎦



(c)2017 Pearson Education. Inc.  

0 3 5 0 0 0 1 

1 1 2 −1 0 0 1 

0 1 5 1 0 −1 2 
0 −3 −14 0 1 0 −2 

 
0 0 1 5 1 0 −1 2 

0 0 0 1 3 1 −3 4 

 1   0 0 0 27 10 −27       35 

0   1 0 0 7 3 −8       11 
0 0 1 0 −14 −5 14 −18 

0 0 0 1 3 1 −3 4 

 

0 −2 −1 −3 1 0 0 0 

2 0 2 1 0 1 0 0 
1 −2 0 2 0 0 1 0 

3 −1 −2 0 0 0 0 1 

 

1 −2 0 2 0 0 1 0 

2 0 2 1 0 1 0 0 
0 −2 −1 −3 1 0 0 0 

3 −1 −2 0 0 0 0 1 

 

0 −2 −1 −3 1 0 0 0 

0 5 −2 −6 0 0 −3 1 

 0 0 
⎤

 
⎡ 

1 0 1 

    1 

 

1 0 0 0 0 

0 1 0 −1 0 

 

1 0 

0 1 

0 0 

0 0 

 

⎢ . 

1 

2 
0 

1 0 0 

4 

2 1 

2 
0 

4 
0 

0   0 

0 

2 

2 

2 

⎥ 

 
 
 

⎡ 
1   −1       2         3       1   0   0   0 

⎤
 

 
 
⎡ 

1   0       3         5       0   0   0       1 
⎤
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2  ⎢ 0       1       1         2   −1    0   0   1 ⎥ 3  ⎢ 0   1       1         2   −1    0   0       1 ⎥ 
∼  ⎢ 

0       2       1     −1    −3    0   1   0 
⎥ ∼  ⎢ 

0   0   −1      −5    −1    0   1   −2  
⎥

⎣                                     ⎦ 
0       2   −1    −10    −2    1   0   0 

⎣                                     ⎦ 
0   0   −3    −14       0   1   0   −2

⎡ 
1                                                             

⎤ ⎡ 
1   0   0   −10    −3    0       3   −5  

⎤

4  ⎢ 0 ⎥ 5  ⎢ 0   1   0     −3    −2    0       1   −1  ⎥

∼  ⎢ 
0

 ⎥ ∼  ⎢                                     ⎥

⎣                                       ⎦   ⎣ 
0 

⎡ 
 

6  ⎢ 

⎦ 
 

 

⎤ 
 

⎥        
−1

∼  ⎢                                               ⎥ = [I4|A    ]. ⎣                                       ⎦ 
 

Thus, 
 

⎡ 
 

A−1  = 
⎢ 

 

27     10   −27       35 
⎤

 
7       3     −8       11 ⎥ ⎥

⎣ −14    −5       14   −18  ⎦ 
3       1     −3         4 

 
1.  A12(−2), A13(−3), A14(−1)     2.  P13         3.  A21(1),  A23(−2), A24(−2) 

4.  M3(−1)     5.  A31(−3), A32(−1), A34(3)      6.  A41(10),  A42(3),  A43(5) 

 
17.  We have 

⎡                                  ⎤   ⎡                                  ⎤ 

[A|I4] = 
⎢ ⎥ 

∼  
⎢                                  ⎥

⎢                                  ⎥   ⎢                                  ⎥ ⎣                                  ⎦   ⎣                                  ⎦ 
 

⎡ 
1   −2       0       2   0   0       1   0 

⎤
 
⎡ 

1   −2       0       2   0    0       1   0 
⎤

2  ⎢ 0       4       2   −3    0   1   −2    0 ⎥ 3  ⎢ 0       1      1      − 3 1           1 
4      

− 
2            

⎥ 
⎥∼  ⎢                                    ⎥ ∼  ⎢ 

0   −2    −1     −3    1    0       0   0⎣                                    ⎦   ⎣ ⎦ 
0       5   −2     −6    0    0    −3    1

⎡                
1                    1 
2                    2 

1                    1                          
⎤ 

2                    2

4  ⎢          1      − 3 1      − 1      0 ⎥ 5  ⎢ 0   1 − 3      0       1      − 1      0 ⎥

∼  ⎢          2           4      

1       
4 2      

0 
⎥ ∼  ⎢ 2           4                    4           2            ⎥

⎣          0   − 9                    1
 

9           9                    5           1 

⎦   ⎣                                     ⎦
2                    2       

−1 0   0   − 
2      

− 
4      

0   − 
4      

− 
2      

1
9           9 − 
2      

− 
4 0   − 5      − 1      1 0   0       0   − 9                    1

 −1    0

⎡ 
1   0    1       1                 1 0       0 

⎤   ⎡
 2            1           2   

⎤ 
9       

− 
9           9

6  ⎢ 0   1    1 − 3      0     1       − 1 0 ⎥ 7  ⎢ 1            5           1 −           ⎥

∼  ⎢ 
0   0    

2 4                 4            2 

0 
⎥ ∼  ⎢ 

0   0   1
  9            9           9 

0

⎣        1       1 5            1           2 

⎦   ⎣ 
1                 5            1           2 

⎦
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1 0 0 0 0 

0 1 0 −1 0 

0 0 1      1           0 
2 

0 0 0       1   − 2 

 

2 
1 

2 
1 

9 

9 

2 2 

9 9 9 

∼                                  

5 

1           2 

0 

9 9 

2               18 

0   0    0    − 9                 1
 

9      − 9 
−1        0 

2               18 

0   0   0   − 9                 1
 

9      − 9 
−1        0

⎡                         
2           1 

9      
− 

9 
2   
⎤   ⎡ 

1   0   0   0       0       2      − 1           2   
⎤

8  ⎢                         1      − 5 1   ⎥ 9  ⎢ 0   1   0   0   − 2 0   − 1           1   ⎥         
1

⎢                               
9 

9           9   ⎥ ∼  ⎢ 9 

0   0   1   0       1           1 3           9 

0   − 2
 ⎥ = [I4|A− ].

⎣                        
18 9      

− 
9   
⎦   ⎣ 9           3                         9   

⎦

1           2 
9      

− 
9           9 0   0   0   1   − 2      − 1           2           0
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1 2 0 0 1 0 0 0 
⎤   ⎡

 

3 4 0 0 0 1 0 0 ⎥ 1  ⎢ 
0 0 5 6 0 0 1 0 

⎥ ∼  ⎢ ⎦   ⎣ 
0 0 7 8 0 0 0 1 

1 2 0  0 1 0 0 0 

0 −2 0  0 −3 1 0 0 

0       0   1       6           0   0       1      0 
0       0   0   − 2           0   0   − 7      1 

 

5   5 

 1 0 0 

   
 

0 0 

0 0 

−4 3 

 

2 
− 

2 

0 0 

0 0 

 

⎢ 
− ⎥ 

4 

5 

5 

0 

⎢ 

5 5 

2 

⎢ ⎥ 

4 

1 2 

⎣ 
⎦ 

2 
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Thus, 
 

⎡   
0       2           1           2   

⎤
 

2 

A−1  = 
⎢ − 

9 

9      − 9 

0       1 

1           
3 

9 
1 
9   ⎥ .

⎣   
9           3           

0   − 
9   
⎦ 

2           1           2
 

− 
9      

− 
9           9           

0 
 

1.  P13         2.  A12(−2), A14(−3)     3.  M2( 1 )     4.  A21(2),  A23(2),  A24(−5) 

5.  P34         6.  M3(− 2 )     7.  A31(−1), A32(− 1 )     8.  M4(− 2 )     9.  A42(1),  A43(− 1 ) 
9                                                           2                                 9                                                      2 

18.  We have 

⎡ 
 

= 
⎢ 

 

1       2   0    0       1   0    0    0 
⎤

 
0   −2    0    0    −3    1    0    0 ⎥

⎢                                    
0       0   1    6

 0   0    1            
⎥

0       0   7    8       0   0    0    1 
⎡                                    ⎤   ⎡ 

1       0   0       0   −2    1       0   0 
⎤

 

2                                                                                              ⎥ 3  ⎢ 0   −2    0       0   −3    1       0   0 ⎥ 
∼  ⎢                                    ⎥ ∼  ⎢ 

0       0   1       0       0   0    −4    3 
⎥

⎣               
5                                 5 

⎦   ⎣ 
0       0   0   − 2 

⎦ 
0   0   − 7      1

⎡ 
1   0   0   0   −2 

4  ⎢ 0   1   0   0      3      − 1 

⎤ 
 

0       0 ⎥         1

∼  ⎢ 
0   0   1   0      

2 2           

4       3 
⎥ = [I4|A− ].

 
 

 
Thus, 

⎣                 0       0   −     −   ⎦ 
0   0   0   1       0       0      7      − 5

⎡ 
−2        1                    

⎤

3 

A−1  = ⎢ ⎣ 

1 
⎥ . ⎦ 

7           5 
2      

− 
2

 

1.  A12(−3), M3( 1 )     2.  A34(−7)     3.  A21(1),  A13(3)      4.  M2(− 1 ), M4(− 5 ) 
5                                                                                                                        2                     2 

 

 

19.    To  determine the third  column  vector  of A−1   without determining the  whole inverse,  we solve the⎡ 
−1    −2       3 

⎤ ⎡ 
x 
⎤

 
⎡ 

0 
⎤

 
⎡ 
−1    −2       3   0 

⎤

system  ⎣ −1       1       1 ⎦ ⎣ y ⎦ = ⎣ 0 ⎦.   The  corresponding  augmented matrix  ⎣ −1       1       1   0 ⎦

−1    −2    −1          z                1 −1    −2    −1    1

⎡ 
1   2    −3        0 

⎤

can be row-reduced  to ⎣ 0   1   − 2 0 ⎦.  Thus,  back substitution yields z = − 1 , y = − 1 , and x = −  5  .
3 

0   0       1   − 1 ⎡ 
−5/12  

⎤
 

4                    6                               12

Thus,  the third  column vector  of A−1  is ⎣ −1/6   ⎦. 

−1/4

20.   To  determine the second column  vector  of A−1   without determining the  whole inverse,  we solve the⎡ 
2   −1    4 

⎤ ⎡ 
x 
⎤

 
⎡ 

0 
⎤

 
⎡ 

2   −1    4   0 
⎤
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linear system ⎣ 5       1   2 ⎦ ⎣ y ⎦ = ⎣ 1 ⎦.  The corresponding  augmented matrix  ⎣ 5       1   2   1 ⎦ can

1   −1    3          z               0 1   −1    3   0



(c)2017 Pearson Education. Inc.  

       
7 

   1   

2+8i 

1 

 
 
 

⎡ 
1   −1       3       0 

⎤
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be row-reduced  to ⎣ 0       1   −2       0 ⎦.  Thus,  back-substitution yields z = −1, y = −2, and x = 1. Thus, 

0       0       1   −1 ⎡   
1 
⎤

 
the second column vector  of A−1  is ⎣ −2  ⎦. 

−1

 
21.   We have  A  = 

    
6    20  

 
 

2    7
 

 
, b = 

    
−8  

  

2
 

        
7 

, and  the  Gauss-Jordan method  yields A−1   =        2 

 

−10  
 

.

 

Therefore,  we have 

 

 
 

x = A−1b = 

 

 
2      

−10 
−1         3 

 

 
−8     

= 
2 

 

    
−48  

  

. 
14 

−1         3

 

Hence, we have x1 = −48 and x2 = 14.
    

1    3  
 

 
    

1  
 

 
1           

   
−5       3  

 

22.    We  have  A  = 
 

Therefore,  we have 
2   5    

,  b =
 3    

,  and  the  Gauss-Jordan  method  yields  A−  =
 

. 
2   −1

 

x = A−1b = 
   
−5       3  

    
1  
 

 
       

4  
 

 
=              .

 
 

So we have x1 = 4 and x2 = −1. 
⎡ 

1   1   −2  
⎤

 

 

 
 
⎡ 
−2  
⎤ 

2   −1         3             −1  

 
 
⎡   

7       5   −3  
⎤

23.  We have A = ⎣ 0   1       1 ⎦, b = ⎣ 3 ⎦, and the Gauss-Jordan method yields A−1  = ⎣ −2    −1       1 ⎦.

 
Therefore,  we have 

2   4   −3 1 
 

⎡   
7       5   −3  

⎤ ⎡ 
−2  
⎤

 

 

 
⎡ 
−2  
⎤ 

2       2   −1

x = A−1b = ⎣ −2    −1       1 ⎦ ⎣ 
2       2   −1 

 

Hence, we have x1 = −2, x2 = 2, and x3 = 1. 

3 ⎦ = ⎣ 
1 

2 ⎦ . 
1

       
1       −2i  

 
 

       
2  
 

 
         

4i        2i  
 

 
−24.  We have A = 

 

Therefore,  we have 
2 − i       4i 

, b = , and the Gauss-Jordan method yields A 
−i 

= 
2+8i 

. 
−2 + i    1

 

x = A−1b = 
  1     

         
4i        2i  

          
2  

   

= 
  1     

     
2 + 8i   

  

.
2 + 8i 

 

Hence, we have x1 = 1 and x2 = −4+i . 

−2 + i    1         −i 2 + 8i −4 + i

⎡ 
3    4    5 

⎤
 

⎡ 
1 
⎤

 
⎡ 
−79       27       46 

⎤

25.  We have A = ⎣ 2   10   1 ⎦, b = ⎣ 1 ⎦, and the Gauss-Jordan method yields A−1  = ⎣ 12     −4      −7  ⎦.
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Therefore,  we have 

4    1    8 1 
 

⎡ 
−79       27       46 

⎤ ⎡ 
1 
⎤

 

 

 
⎡ 
−6  
⎤

 

38   −13    −22

x = A−1b = ⎣ 12     −4      −7  ⎦ ⎣ 1 ⎦ = ⎣ 1 ⎦ .

38   −13    −22          1                 3 
 

Hence, we have x1 = −6, x2 = 1, and x3 = 3.
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176  
 
⎡ 

1       1       2 
⎤

 

 
 
⎡   

12 
⎤ 

 
 
⎡ 
−1       3       5 

⎤

26.  We have A = ⎣ 1       2   −1  ⎦, b = ⎣ 
2   −1       1 

24 ⎦, and the Gauss-Jordan method yields A−1  =   1   ⎣ 
−36 

3       3   −3  ⎦. 

5   −3    −1

Therefore,  we have ⎡   
1       3       5 

⎤ ⎡ 
12 
⎤ ⎡   

10 
⎤

x = A−1b = 
 1      

−
3       3       3

  

24     =
 

− 
18     .

12 
⎣

 
 

Hence, x1 = −10, x2 = 18, and x3 = 2. 

27.  We have 

 

5   −3 

−   ⎦ ⎣ 
−1 

⎦   ⎣      ⎦ 
−36                    2

 
AAT = 

       
0    1  

    
0    −1  

 
  

= 

    
(0)(0) + (1)(1)       (0)(−1) + (1)(0) 

    
1    0  

 
 

= 
 
= I2,

 
 

so AT = A−1. 
 

28.  We have 

−1    0        1       0 (−1)(0) + (0)(1)    (−1)(−1) + (0)(0)              0   1

 
AAT = 

   √
3/2      1/2 

−1/2    
√

3/2 

    √
3/2    −1/2 

1/2      
√

3/2

 
= 

 

 

so AT = A−1. 
 

29.  We have 

     
(
√

3/2)(
√
 3/2) + (1/2)(1/2)       (

√
3/2)(−1/2) + (1/2)(

√
3/2) 

(−1/2)(
√

3/2) + (
√

3/2)(1/2)    (−1/2)(−1/2) + (
√

3/2)(
√

3/2) 

    
1    0  

 
 

=   
0   1 

 
= I2,

 
AAT = 

      
cos α      sin α 

− sin α    cos α 

    
cos α    − sin α 

sin α      cos α

 
= 

 

 

so AT = A−1. 
 

30.  We have 

                    
cos2 α + sin2 α                   (cos α)(− sin α) + (sin α)(cos α)  

 
 

(− sin α)(cos α) + (cos α)(sin α)               (− sin α)2  + cos2 α 

   
1    0  

 
 

=   
0   1 

 
= I2,

 
 

AAT =
 
 
    1     

    
⎡

 

 

1        −2x       2x2
 

2x    1 − 2x2    −2x
 

⎤ 
 
   1     

    
⎡

 
1          2x       2x2  

⎤
 

−2x    1 − 2x2     2x

1 + 2x2 

⎣ 
2x2          2x         1 

⎦  
1 + 2x2 

⎣ 
2x2

 

⎦ 
−2x         1

 
          1            

    
⎡ 

1 + 4x2 + 4x4                 0                         0 
=                                   0              1 + 4x2 + 4x4                 0

 

⎤ 
 

= I3,

1 + 4x2 + 4x4    
⎣

 
⎦ 

0                         0              1 + 4x2 + 4x4

so AT = A−1. 
 

31.  For part  2, we have 
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n 

 
 
 

 

(B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In,

and for part  3, we have  

(A−1)T AT = (AA−1)T  = IT = In.
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32.   We prove  this  by induction on k,  with  k  = 1 trivial  and  k  = 2 proven  in part  2 of Theorem  2.6.10. 

Assuming the statement is true  for a product involving k − 1 matrices,  we may proceed as follows:
 

(A1A2 · · · Ak)−1  = ((A1A2 · · · Ak
 

 

1)A  )−1  = A
−1

(A  A
 

 

· · · A
 

 

)−1

−   k             k      1    2 

= A
−1       −1

 
k−1 

−1     −1
 

 
−1     −1

 
 
−1     −1

k  (Ak−1 · · · A2    A1    ) = Ak  Ak−1 · · · A2    A1    . 
 

In the second equality,  we have applied  part  2 of Theorem  2.6.10 to the two matrices  A1A2 · · · Ak−1  and Ak, 

and in the third  equality,  we have assumed  that the desired property is true for products of k − 1 matrices. 

33.  Since A is skew-symmetric, we know that AT = −A. We wish to show that (A−1)T  = −A−1.  We have 
 

(A−1)T  = (AT )−1  = (−A)−1  = −(A−1), 
 

which shows that A−1  is skew-symmetric. The first equality  follows from part  3 of Theorem  2.6.10, and the 

second equality  results  from the assumption that A−1  is skew-symmetric. 

34.  Since A is symmetric, we know that AT = A.  We wish to show that (A−1)T  = A−1.  We have 
 

(A−1)T  = (AT )−1  = A−1, 
 

which shows that A−1  is symmetric. The first equality  follows from part  3 of Theorem  2.6.10, and the second 

equality  results  from the assumption that A is symmetric. 
 

35.  We have 
 

(In − A3)(In + A3  + A6  + A9) = In(In + A3  + A6  + A9) − A3(In + A3  + A6  + A9) 

= In + A3  + A6  + A9  − A3  − A6  − A9  − A12 = In − A12 = In, 
 

where the last  equality  uses the  assumption that A12  = 0.  This  calculation shows that In − A3   and  In + 

A3  + A6  + A9   are inverses of one another. 
 

36.  We have 
 

(In − A)(In + A + A2  + A3) = In(In + A + A2  + A3) − A(In + A + A2  + A3) 

= In + A + A2  + A3  − A − A2  − A3  − A4  = In − A4  = In, 
 

where the last  equality  uses the assumption that A4  = 0. This calculation shows that In − A and In + A + 

A2  + A3   are inverses of one another. 

37.  We claim that the inverse of A15 is B9.  To verify this, use the fact that A5B3 = I to observe that 
 

A15B9 = A5(A5(A5B3)B3)B3 = A5(A5IB3)B3 = A5(A5B3)B3 = A5IB3 = A5B3 = I.  
 

This calculation shows that the inverse of A15 is B9. 

38.  We claim that the inverse of A9   is B−3.  To verify this, use the fact that A3B−1  = I to observe that 
 

A9B−3  = A3(A3(A3B−1)B−1)B−1  = A3(A3IB−1)B−1  = A3(A3B−1)B−1  = A3IB−1  = A3B−1  = I.  
 

This calculation shows that the inverse of A9   is B−3. 
 

39.  We have 

B = BIn  = B(AC) = (BA)C = InC = C. 
 

40.  YES. Since BA  = In, we know that A−1  = B (see Theorem  2.6.12).  Likewise, since CA = In, A−1  = C. 

Since the inverse of A is unique,  it must  follow that B = C.
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= 

1 

− 
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41.  We can simply compute

 

1  
       

a22      −a12 

Δ    −a21        a11 

    
a11      a12 

a21      a22 

         
1  

      
a22a11 − a12a21         a22a12 − a12a22 

Δ    −a21a11  + a11a21   −a21a12  + a11a22

= 
 1  

    
a11a22 − a12a21                0 

   
1    0  

 
 

= 
 
= I2.

 

 
Therefore, 

Δ             0                a11a22 − a12a21             0   1 
 

 
1

   
a11      a12  

  −
 

a21      a22 
= 

 1  
       

a22      −a12     
. 

Δ    −a21        a11

 

42.   Assume  that A  is an invertible  matrix  and  that Axi = bi  for i = 1, 2, . . . , p (where  each bi is given). 

Use elementary row operations on the augmented matrix  of the system to obtain  the equivalence 

[A|b1  b2 b3  . . .  bp] ∼  [In|c1  c2  c3   . . .  cp]. 
 

The solutions  to the system  can be read from the last matrix:  xi = ci for each i = 1, 2, . . . , p. 

43.  We have ⎡ 
1   −1    1       1   −1    2 

⎤
 
⎡ 

1   −1    1       1   −1       2 
⎤

⎣ 2   −1    4       1       2   3 ⎦ ∼  ⎣ 0       1   2   −1       4   −1  ⎦

1       1   6   −1       5   2 
⎡ 

1   0   3       0       3       1 
⎤

 
2 

0       2   5   −2       6       0 
⎡ 

1   0   0       0       9       5 
⎤

 
3

∼  ⎣ 0   1   2   −1       4   −1  ⎦ ∼  ⎣ 0   1   0   −1       8   −5  ⎦ .
 

 
Hence, 

0   0   1       0   −2       2 0   0   1       0   −2       2

x1  = (0, −1, 0),        x2  = (9, 8, −2),       x3  = (−5, −5, 2). 
 

1.  A12(−2), A13(−1)     2.  A21(1),  A23(−2)     3.  A31(−3), A32(−2) 

 
44. 

 

(a). Let ei denote  the  ith  column  vector  of the  identity  matrix  Im, and  consider  the  m  linear  systems  of 

equations 

Axi = ei 

for i = 1, 2, . . . , m.  Since rank(A) = m and each ei is a column m-vector, it follows that 

rank(A#) = m = rank(A) 

and so each of the systems  Axi = ei above has a solution  (Note that if m < n, then there will be an infinite 

number  of solutions).  If we let B = [x1, x2, . . . , xm], then 
 

AB  = A [x1, x2, . . . , xm] = [Ax1, Ax2, . . . , Axm] = [e1, e2, . . . , em] = In. 
 

⎡ 
a    d  

⎤

(b). A right inverse for A in this case is a 3 × 2 matrix  ⎣ b    e 
c f 

⎦ such that
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a + 3b + c       d + 3e + f 

2a + 7b + 4c   2d + 7e + 4f 

    
1    0  

 
 

=   
0   1    

.
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Thus,  we must  have 
 

a + 3b + c = 1,    d + 3e + f = 0,    2a + 7b + 4c = 0,    2d + 7e + 4f  = 1. 
    

1    3    1    1  
 

The first and third  equation  comprise a linear system with augmented matrix 
    

1    3    1       1  
 

 
2   7   4   0 

for a, b, and

c. The row-echelon form of this augmented matrix  is 
0   1   2   −2 

. Setting  c = t, we have b = −2 − 2t

and a = 7+5t. Next, the second and fourth equation  above comprise a linear system with augmented matrix   
1    3    1    0  

 
 

2   7   4   1 

 

for d, e, and f .  The row-echelon form of this augmented matrix  is 

   
1    3    1    0  

 
 

0   1   2   1 

 

. Setting

f = s, we have e = 1 − 2s and d = −3 + 5s.  Thus,  right inverses of A are precisely the matrices  of the form ⎡  
7 + 5t    −3 + 5s  

⎤

⎣ −2 − 2t    1 − 2s   ⎦. 

t             s 

 
 
 
Solutions to Section 2.7

 

True-False Review: 
 

(a):  TRUE. Since every  elementary matrix  corresponds  to  a (reversible)  elementary  row operation, the 

reverse elementary row operation  will correspond  to an elementary matrix  that is the inverse of the original 

elementary matrix.
 
(b):  FALSE. For  instance,  the  matrices 

    
2    0  

 
 

   
2    0  

  

0   1 

 
and 

   
1    0  

  

0   2 

 
are both  elementary matrices,  but  their

product, 
0   2    

, is not.

 

(c):  FALSE. Every  invertible  matrix  can be expressed  as a product of elementary matrices.   Since every 

elementary matrix  is invertible  and products of invertible  matrices  are invertible,  any product of elementary 

matrices  must  be an invertible  matrix. 
 

(d): TRUE. Performing  an elementary row operation  on a matrix  does not alter  its rank,  and the  matrix 

EA  is obtained from A by performing  the elementary row operation  associated  with the elementary matrix 

E.  Therefore,  A and EA  have the same rank.

(e):  FALSE. If Pij   is a permutation matrix, then  P 2 = In, since permuting the ith  and  jth rows of In

twice yields In.  Alternatively, we can observe that P 2  = In from the fact that P−1  = Pij .ij 

 
(f ):   FALSE. For example,  consider the elementary matrices  E1  = 

    
1    0  

  

0   7 

ij 

 
and E2  = 

    
1    1  

  

0   1 

 

 
. Then  we

 

have E1E2 = 

   
1    1  

  

0   7 

 

and E2E1 = 

   
1    7  

 
 

0   7    
.
 

 

 
⎡ 

1   3   0 
⎤

 

 

 
⎡ 

1   0   0 
⎤

(g): FALSE. For example,  consider  the elementary matrices  E1   = ⎣ 0   1   0 ⎦ and  E2   = ⎣ 0   1   2 ⎦.

⎡ 
1   3   6 

⎤
 

⎡ 
1   3   0 

⎤
 

0   0   1 0   0   1

Then  we have E1E2 = ⎣ 0   1   2 ⎦ and E2E1 = ⎣ 0   1   2 ⎦.

0   0   1 0   0   1



(c)2017 Pearson Education. Inc. 
 

 

(h):  FALSE. The  only matrices  we perform  an LU factorization for are invertible  matrices  for which the 

reduction to upper  triangular form can be accomplished  without  permuting rows.
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⎡ 
0 1 0 

Permutation Matrices: P12  = ⎣ 1 0 0 

  0 0 1 

 

⎡ 
0 0 1 

P13  = ⎣ 0 1 0 

 1 0 0 

 

1 8 

0 3 

0 31 

 

3 

3 

11 

11 

7 

1 2 
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(i): FALSE. The matrix  U need not be a unit  upper  triangular matrix. 

(j): FALSE. As can be seen in Example  2.7.8, a 4 × 4 matrix  with LU factorization will have 6 multipliers, 

not 10 multipliers. 
 

Problems: 
 

1. 
⎤                       ⎤          ⎡ 

1   0   0 
⎤

 
⎦ ,                                    ⎦ ,    P23  = ⎣ 0   0   1 ⎦ . 

0   1   0
⎡ 

k    0   0 
⎤

 
⎡ 

1    0    0 
⎤

 
⎡ 

1   0    0  
⎤

Scaling Matrices:  M1(k) = ⎣ 0    1   0 ⎦ ,    M2(k) = ⎣ 0   k    0 ⎦ ,    M3(k) = ⎣ 0   1    0  ⎦.

 

 
Row Combinations: 

0    0   1 

 
⎡ 

1    0   0 
⎤

 

0    0    1 

 
⎡ 

1    0   0 
⎤

 

0   0   k 

 
⎡ 

1    0    0 
⎤

A12(k) = ⎣ k    1   0 ⎦ ,    A13(k) = ⎣ 0    1   0 ⎦ ,    A23(k) = ⎣ 0    1    0 ⎦ ,

0    0   1 
⎡ 

1   k    0 
⎤

 

k    0   1 
⎡ 

1   0   k  
⎤

 

0   k    1 
⎡ 

1   0    0  
⎤

A21(k) = ⎣ 0    1    0 ⎦ ,    A31(k) = ⎣ 0   1    0 ⎦ ,    A32(k) = ⎣ 0   1   k  ⎦ .

0    0    1 0   0    1 0   0    1

2.  We have 
⎡ 
−4    −1  

⎤
 

 

⎡ 
−1    −8  

⎤   ⎡
 

 

1   8 
⎤   ⎡

 
3 

 

⎤   ⎡ 
1    8 

4 

 

⎤   ⎡ 
1   8 

⎤
 

5

⎣   0       3 ⎦ ∼  ⎣ 
−3       7 

0       3 ⎦ ∼  ⎣ 
−3       7 

0   3 ⎦ ∼  ⎣ 
−3    7 

⎦ ∼  ⎣ 0    1 
0   31 

⎦ ∼  ⎣ 0   1 ⎦ . 
0   0

 

1.  A31(−1)     2.  M1(−1)     3.  A13(3)      4.  M2( 1 )     5.  A23(−31) 
 

Elementary Matrices:  A23(31),  M2( 1 ), A13(3),  M1(−1), A31(−1).

3.  We have     
3       5  

    
1  

    
1   −2  

   
2  

    
1   −2  

   
3  

    
1   −2  

  

.

1   −2     
∼

 3       5     
∼

 0     11     
∼    

0       1

 

1.  P12         2.  A12(−3)     3.  M2(  1  ) 
 

Elementary Matrices:  M2(  1  ), A12(−3), P12.

4.  We have     
5   8       2  

    
1  

    
1   3   −1  

   
2  

    
1       3   −1  

   
3  

    
1   3   −1  

  

.

1   3   −1     
∼

 5   8       2     
∼

 0   −7       7     
∼

 0   1   −1

 

1.  P12         2.  A12(−5)     3.  M2(− 1 ) 
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7  

 

1 
 

3 
 

2 

2 1 3 

3 −1 4 

 

5 

− 

 

Elementary Matrices:  M2(− 1 ), A12(−5), P12. 

5.  We have
⎡ 

3       1   4 
⎤   ⎡

 
1

 

⎤   ⎡ 
1         3       2 

⎤
 

2
 

⎡ 
1       3       2 

⎤
 

3
 

⎡ 
1   3    2  

⎤
 

4

⎣ 2       1   3 ⎦ ∼  ⎣ ⎦ ∼  ⎣ 0     −5    −1  ⎦ ∼  ⎣ 0   −5    −1  ⎦ ∼  ⎣ 0   1    1   ⎦ .

1       3   2 0   −10    −2 0       0       0 0   0    0
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1    0  
  

 
   

0
 

1  
          

1   0  
       

1 −1  
  

 
   

1
 

0 

−2    1 1 0 −2    1        0 1 0 −1 

 

5 

5 

i 
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1.  P13         2.  A12(−2), A13(−3)     3.  A23(−2)     4.  M2(− 1 ) 
 

Elementary Matrices:  M2(− 1 ), A23(−2), A13(−3), A12(−2), P13.

6.  We have 
⎡ 

1   2   3   4 
⎤

 

 

 
⎡ 

1       2       3       4 
⎤

 
1 

 

 
⎡ 

1       2       3       4 
⎤

 
2 

 

 
⎡ 

1   2   3   4 
⎤

 
3

⎣ 2   3   4   5 ⎦ ∼  ⎣ 0   −1    −2    −3  ⎦ ∼  ⎣ 0       1       2       3 ⎦ ∼  ⎣ 0   1   2   3 ⎦ .
3   4   5   6 0   −2    −4    −6 0   −2    −4    −6 0   0   0   0

 
1.  A12(−2), A13(−3)     2.  M2(−1)     3.  A23(2) 

 
Elementary Matrices:  A23(2),  M2(−1), A13(−3), A12(−2). 

7.  We reduce A to the identity matrix: 
    

1    2  
   

1   

   
1    2  

   
2   

   
1    0  

 

1   3     
∼

 0   1     
∼

 0   1    
.

1.  A12(−1)     2.  A21(−2) 

 

The elementary matrices  corresponding  to these row operations are E1  = 

We have E2E1A = I2, so that 

 

 
        

1    0  
  

−1    1 

 
 

 
and E2  = 

 

 
    

1   −2  
 

. 
0       1

A = E
−1

E
−1

 
   

1    0  
    

1    2  
 

 
,1        2      =   

1   1        0   1 

which is the desired expression since E−1  and E−1  are elementary matrices.
 

1                     2 

8.  We reduce A to the identity matrix: 
    

−2    −3  
   

1  

    
−2    −3  

   
2  

        
1       1  

    
3  

    
1       1  

    
4  

    
1       0  

    
5  

    
1   0  

   

.
5       7     

∼
 1       1     

∼
 −2    −3     

∼
 0   −1     

∼
 0   −1     

∼    
0   1

 
1.  A12(2)      2.  P12         3.  A12(2)      4.  A21(1)      5.  M2(−1) 

 

The elementary matrices  corresponding  to these row operations are
 

 
E1  = 

    
1    0  

 
 

2   1    
,
 

 

 
E2  = 

    
0    1  

 
 

1   0    
,
 

 

 
E3  = 

    
1    0  

 
 

2   1    
,
 

 

 
E4  = 

    
1    1  

 
 

0   1    
,
 

 

 
E5  = 

    
1       0  

 
 

. 
0   −1

 

We have E5E4E3E2E1A = I2, so 

A = E
−1

E
−1

 
−1     −1     −1

1        2    E3     E4     E5      =                                                                               , 

 

which is the desired expression since each E−1  is an elementary matrix. 
 

9.  We reduce A to the identity matrix: 
        

3   −4  
   

1  

    
−1       2  

    
2  

    
1   −2  

   
3  

    
1   −2  

   
4  

    
1   −2  

   
5  

    
1   0  

   

.
−1       2     

∼
 3   −4     

∼
 3   −4     

∼
 0       2     

∼
 0       1     

∼    
0   1
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−1 0  
      

1
 

0  
      

1
 

0  
      

1
 

0 1 3 1 0 2 0 

 

0 1  
      

1
 

0  
      

1
 

0  
      

1
 

4 

1 0 4 1 0 −21 0 1 

 

1 −1 0 

0 4 2 
3 1 3 

 

2 

0 

i 

21 

0   − 

i 

2 

− − − 

− − 
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1.  P12         2.  M1(−1)     3.  A12(−3)     4.  M2( 1 )     5.  A21(2) 
 

The elementary matrices  corresponding  to these row operations are

 
E1  = 

    
0    1  

  

1   0 

 
,    E2  = 

    
−1    0  

 
 

0   1 

 
,    E3  = 

        
1    0  

  

−3    1 

 
,    E4  = 

    
1    0 

1 
2 

 
,    E5  = 

    
1    2  

 
 

0   1    
.

 

We have E5E4E3E2E1A = I2, so 
 

 

   
0    1  

    

 

 
 

−2  
  

,
A = E

−1
E
−1

 −1     −1     −1

1        2    E3     E4     E5      =   
1   0                                                                       1 

 

which is the desired expression since each E−1  is an elementary matrix. 
 

10.  We reduce A to the identity matrix: 
    

4   −5  
   

1  

    
1       4  

    
2  

    
1         4  

    
3  

    
1   4  

    
4  

    
1   0  

   

.
1       4     

∼
 4   −5     

∼
 0   −21     

∼
 0   1     

∼    
0   1

 

1.  P12         2.  A12(−4)     3.  M2(−  1  )     4.  A21(−4) 
 

The elementary matrices  corresponding  to these row operations are

 
E1  = 

    
0    1  

  

1   0 

 
,    E2  = 

        
1    0  

  

−4    1 

 
,    E3  = 

    
1         0  

 
 

 1 
21 

 
,    E4  = 

    
1   −4  

  

. 
0       1

 

We have E4E3E2E1A = I2, so 

 

A = E
−1

E
−1

 

 

 
 
−1     −1                                                                                                               

,
1        2    E3     E4      = 

 

which is the desired expression since each E−1  is an elementary matrix. 
 

11.  We reduce A to the identity matrix:

⎡ 
1       1   0 

⎤   ⎡
 

1 

⎤   ⎡ 
1       1   0 

⎤
 

2 

⎡ 
1       1   0 

⎤
 

3

⎣ 2       2   2 ⎦ ∼  ⎣ ⎦ ∼  ⎣ 0       4   2 ⎦ ∼  ⎣ 0       4   2 ⎦

3       1   3 0       4   3 0       0   1

⎡ 
1       1    0 

4
 

⎤   ⎡ 
1       1   0 

⎤
 

5
 

⎡ 
1   0   0 

⎤
 

6

∼  ⎣ 0       1    1
 ⎦ ∼  ⎣ 0       1   0 ⎦ ∼  ⎣ 0   1   0 ⎦ .

0       0    1 0       0   1 0   0   1

 

1.  A12(−2)     2.  A13(−3)     3.  A23(−1)     4.  M2( 1 )     5.  A32(− 1 )     6.  A21(1) 4                                  2 
 

The elementary matrices  corresponding  to these row operations are
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4 

2 

⎡   
1   0   0 

⎤
 

⎡   
1   0   0 

⎤
 

⎡ 
1       0   0 

⎤

E1  = ⎣ −2    1   0 ⎦ ,    E2  = ⎣ 0   1   0 ⎦ ,    E3  = ⎣ 0       1   0 ⎦ ,

0   0   1 

⎡ 
1    0    0 

⎤
 

−3    0   1 

⎡ 
1   0       0 

⎤
 

0   −1    1 

⎡ 
1   1   0 

⎤

E4  = ⎣ 0    1
 0 ⎦ ,    E5  = ⎣ 0   1   − 1 ⎦ ,    E6  = ⎣ 0   1   0 ⎦ .

0    0    1 0   0       1 0   0   1
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1 −1 0 

0 1 0 
0 0 1 

 

1   − 1   3 

0   − 4   0 

0 0   1 

 

2 

i 

8 

4 

i 

1 
− − 

− 
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We have E6E5E4E3E2E1A = I3, so
 

A = E
−1

E
−1

 
 

−1     −1
 

 

−1     −1

1        2    E3     E4     E5     E6⎡ 
1   0   0 

⎤ ⎡ 
1   0   0 

⎤ ⎡ 
1   0   0 

⎤ ⎡ 
1   0   0 

⎤ ⎡ 
1   0    0 

= ⎣ 2   1   0 ⎦ ⎣ 0   1   0 ⎦ ⎣ 0   1   0 ⎦ ⎣ 0   4   0 ⎦ ⎣ 0   1    1
 

⎤ ⎡ 
1   −1    0 

⎤
 

⎦ ⎣ 0       1   0 ⎦ ,

0   0   1 3   0   1 0   1   1 0   0   1 0   0    1 0       0   1

 

which is the desired expression since each E−1  is an elementary matrix. 
 

12.  We reduce A to the identity matrix:

⎡   
0   −4    −2  

⎤   ⎡
 1       1       3 

⎤
 

2 

⎡ 
1   −1       3 

⎤
 
⎡ 

1       1       3 
⎤

 
3

⎣   1   −1       3 ⎦ ∼  ⎣ 0   −4    −2  ⎦ ∼  ⎣ 0   −4    −2  ⎦ ∼  ⎣ 0   −4    −2  ⎦

−2       2       2 

⎡ 
 

4 

−2       2       2 

⎤   ⎡ 
1       1   0 

⎤   ⎡
 

5                                           6 

0       0       8 

⎤ 

0       0       1 

⎡ 
1   0   0 

⎤
 

7

∼  ⎣            ⎦ ∼  ⎣ 0   −4    0 ⎦ ∼  
⎣ 

0       0   1 

⎦ ∼  ⎣ 0   1   0 ⎦ . 
0   0   1

 

1.  P12         2.  A13(2)      3.  M3( 1 )     4.  A32(2)      5.  A31(−3)     6.  M2(− 1 )     7.  A21(1) 8                                                                                                     4 
 

The elementary matrices  corresponding  to these row operations are

⎡ 
0   1   0 

⎤
 

⎡ 
1   0   0 

⎤
 

⎡ 
1   0    0  

⎤
 

⎡ 
1   0   0 

⎤

E1  = ⎣ 1   0   0 ⎦ ,    E2  = ⎣ 0   1   0 ⎦ ,    E3  = ⎣ 0   1    0 ⎦ ,    E4  = ⎣ 0   1   2 ⎦ ,

0   0   1 

⎡ 
1   0   −3  

⎤
 

2   0   1 0   0    1
 

⎡ 
1       0   0 

⎤
 

0   0   1 

⎡ 
1   1   0 

⎤

E5  = ⎣ 0   1       0 ⎦ ,    E6  = ⎣ 0   − 1 0 ⎦ ,    E7  = ⎣ 0   1   0 ⎦ .

0   0       1 
 

We have E7E6E5E4E3E2E1A = I3, so 

0       0   1 0   0   1

 

A = E
−1

E
−1

 
 

−1     −1     −1
 

 

−1     −1

1        2    E3     E4     E5     E6     E7⎡ 
0   1   0 

⎤ ⎡
 

= ⎣ 1   0   0 ⎦ ⎣ 
1   0   0 

⎤ ⎡ 
1   0   0 

⎤ ⎡ 
1   0       0 

⎤ ⎡ 
1   0   3 

⎤ ⎡ 
1       0   0 

⎤ ⎡ 
1   −1    0 

⎤
 

0   1   0 ⎦ ⎣ 0   1   0 ⎦ ⎣ 0   1   −2  ⎦ ⎣ 0   1   0 ⎦ ⎣ 0   −4    0 ⎦ ⎣ 0       1   0 ⎦ ,

0   0   1 −2    0   1 0   0   8 0   0       1 0   0   1 0       0   1 0       0   1

 

which is the desired expression since each E−1  is an elementary matrix. 
 

13.  We reduce A to the identity matrix:
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⎡ 
1 2 3 

∼  ⎣ 0 1 0 

0 −2 −4 

1 0 3 
⎤   ⎡

 

0 1 0 ⎦ ∼  ⎣ 
0 0 1 

 

⎡ 
1   2   3 

⎤
 
⎡ 

1   2   3 
⎤

 
1                                      2 

⎤   ⎡ 
1       0       3 

⎤
 

3

⎣ 0   8   0 ⎦ ∼  ⎣ 0   1   0 ⎦ ⎦ ∼  ⎣ 0       1       0 ⎦

3   4   5 
 
 

4 

3   4   5 

⎡ 
1   0       3 

⎤   ⎡
 

5 

0   −2    −4 

1   0   0 
⎤

 
6

∼  ⎣ 0   1       0 ⎦ ∼  
⎣ 

0   0   −4 

0   1   0 ⎦ . 
0   0   1

 

1.  M2( 1 )     2.  A13(−3)     3.  A21(−2)     4.  A23(2)      5.  M3(− 1 )     6.  A31(−3) 8                                                                                                                                         4
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1 0 0 
⎤

 
⎡ 

1   0       0 
⎤

 
⎡ 

1 0   −3 

0 1 0 ⎦ , E5  = ⎣ 0   1       0 ⎦ , E6  = ⎣ 0 1       0 

0 2 1 0   0   − 1 
4 

0 0       1 

 

8 

i 

7 

7 

0 

3 

1 

1 

2 

5 

3 

0 

2      
1 
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The elementary matrices  corresponding  to these row operations are

⎡ 
1    0    0 

⎤
 

⎡   
1   0   0 

⎤
 

⎡ 
1   −2    0 

⎤

E1  = ⎣ 0    1
 0 ⎦ ,    E2  = ⎣ 0   1   0 ⎦ ,    E3  = ⎣ 0       1   0 ⎦ ,

 
⎡ 

 

E4  = ⎣ 

0    0    1 −3    0   1 0       0   1 

⎤ 
 

⎦ .

 

 

We have E6E5E4E3E2E1A = I3, so
 

A = E
−1

E
−1

 
 

−1     −1
 

 

−1     −1

1        2    E3     E4     E5     E6 
⎡ 

1   0   0 
⎤ ⎡ 

1   0   0 
⎤ ⎡ 

1   2   0 
⎤ ⎡ 

1       0   0 
⎤ ⎡ 

1   0       0 
⎤ ⎡ 

1   0   3 
⎤

 
= ⎣ 0   8   0 ⎦ ⎣ 0   1   0 ⎦ ⎣ 0   1   0 ⎦ ⎣ 0       1   0 ⎦ ⎣ 0   1       0 ⎦ ⎣ 0   1   0 ⎦ ,

0   0   1 3   0   1 0   0   1 0   −2    1 0   0   −4 0   0   1

 

which is the desired expression since each E−1  is an elementary matrix. 
 

14.  We reduce A to the identity matrix: 
    

2   −1  
   

1  

    
1       3  

    
2  

    
1       3  

    
3  

    
1   3  

    
4  

    
1   0  

   

.
1       3     

∼
 2   −1     

∼
 0   −7     

∼
 0   1     

∼    
0   1

 

1.  P12         2.  A12(−2)     3.  M2(− 1 )     4.  A21(−3) 
 

The elementary matrices  corresponding  to these row operations are
 

 
E1  = 

    
0    1  

  

1   0 

 

 
,    E2  = 

        
1    0  

  

−2    1 

 

 
,    E3  = 

    
1        0  

 
 

0   − 1 

 

 
,    E4  = 

    
1   −3  

  

. 
0       1

 

Direct  multiplication verifies that E4E3E2E1A = I2. 

15.  We have        
3   −2  

   
1  

    
3   −2  

  

= U.
 

−1       5     
∼           13 

1.  A12( 1 ) 

 
Hence, E1  = A12( 1 ).  Then Equation (2.7.3) reads L = E−1  = A12(− 1 ) = 

 

 

 
        

1    0  
 

 

 
 

 
.  Verifying Equation

3 

(2.7.2): 

1 
 

       
1    0  

    
3    −2  

  

3 
 

        
3    −2  

 
 

− 
3      

1

 

 
 

16.  We have 

LU = 
− 

3      
1 

13        = 
3 −1       5 

= A.

   
2    3  

   
1   

   
2         3  

 
 5                 

    
1    0  

 

  
Then 

5   1     
∼
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5 
2 

0   − 
13 

= U =⇒ 

m21 = 
2 

=⇒ L =               

.
    

1    0  
    

2         3  
 

 
   

2    3  
 

LU = 
2      

1 0   − 13 =   
5   1 

= A.
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0 1 −3  ⎦ = U =⇒ m21 = 2, m31 = −1, m32 = 4. 
0 0 16 

 

5 2 1 

0 2 5 

0 −4 −6 

 

5 2 1 
⎤

 

0 2 5 ⎦ = U =⇒ m21 = −2, m31 = 3, m32 = −2. 
0 0 4 

 

1   −1 2 3 

2       0 3 −4 

3   −1 7 8 

1       3 4 5 

2 

0 5 

5 

3 

3 3      
1 

0 

3 

− 

− 
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1.  A12(− 5 ) 
 

17.  We have     
3   1  

    
1  

    
3    1 

 
5                 

    
1    0  

 

 

 
Then 

5   2     
∼         1 

= U =⇒ m21 = 
3 

=⇒ L =               .

    
1    0  

       
3    1 

   
3    1  

 

LU = 
3      

1 
1        =   

5   2 
= A.

 

1.  A12(− 5 ) 
 

 

18.  We have

⎡   
3   −1    2 

⎤
 
⎡ 

3       1       2 
⎤

 
1 

⎡ 
3       1       2 

⎤
 

2

⎣   6   −1    1 ⎦ ∼  ⎣ 0       1   −3  ⎦ ∼  ⎣

 

 
Hence, 

−3       5   2 0       4       4

⎡   
1   0   0 

⎤
 

⎡   
1   0   0 

⎤ ⎡ 
3   −1       2 

⎤
 
⎡   

3   −1    2 
⎤

L = ⎣ 2   1   0 ⎦   and     LU = ⎣ 2   1   0 ⎦ ⎣ 0       1   −3  ⎦ = ⎣ 6   −1    1 ⎦ = A.

−1    4   1 −1    4   1 0       0     16 −3       5   2

 
1.  A12(−2), A13(1)      2.  A23(−4) 

 

 

19.  We have 

⎡    
5       2       1 

⎤   ⎡              ⎤   ⎡
 

1                                               2⎣ −10    −2       3 ⎦ ∼  ⎣ 
15       2   −3 

⎦ ∼  ⎣

Hence,  
⎡   

1       0   0 
⎤

 

 
⎡   

1       0   0 
⎤ ⎡ 

5   2   1 
⎤   ⎡

 

 

5       2       1 
⎤

L = ⎣ −2       1   0 ⎦   and     LU = ⎣ −2       1   0 ⎦ ⎣ 0   2   5 ⎦ = ⎣ −10    −2       3 ⎦ = A.

3   −2    1 3   −2    1 0   0   4 15       2   −3

 
1.  A12(2),  A13(−3)     2.  A23(2) 

 

20.  We have 

⎡ 
 ⎤   ⎡ 

1   −1       2         3 
⎤
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0 0 2 9 

0 0 4 22 

 

0 0 2 9 

0 0 0 4 

 

 
⎡ 

1   −1       2         

3 
⎤

 

 
⎡ 

1   −1       2         3 
⎤

⎢                  ⎥ 1  ⎢ 0       2   −1    −10  ⎥ 2  ⎢ 0       2   −1    −10  ⎥ 3  ⎢ 0       2   −1    −10  ⎥⎢                  ⎥ ∼  ⎢ 
0       2       1     −1  

⎥ ∼  
⎢ 

⎥ ∼  ⎢ ⎥ = U.

⎣                  ⎦   ⎣ ⎦   ⎣                     ⎦   ⎣                     ⎦ 
0       4       2         2

 
1.  A12(−2), A13(−3), A14(−1)     2.  A23(−1), A24(−2)     3.  A34(−2)
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2 1 0 0 

3 1 1 0 

1 2 2 1 

 

−1 2 3 

2 −1 −10 

0 2 9 
0 0 4 

 

1 0 0 

2 1 0 

3 1 1 

1 2 2 

 

0   −10 6 3 

0       10 2 −4 

 

0 0 4   −3 

0 0 4       2 

 

1 0 0 0 

2 1 0 0 

 

−3 1 2 

5 −1 −3 

0 4 −3 

0 0 5 

 

0 0 4 −3 

0 0 0 5 

 

− 
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Hence, 
 

 
Hence, 

 

 
m21 = 2,    m31 = 3, m41 = 1, m32 = 1, m42 = 2, m43 = 2.

⎡ 
1   0   0   0 

⎤
 

⎡           
0 
⎤ ⎡ 

1 
⎤   ⎡ 

1   −1    2       3 
⎤

L = 
⎢ ⎥   

and     LU = 
⎢ 0 ⎥ ⎢ 0 ⎥ 

= 
⎢ 2       0   3   −4  ⎥ 

= A.
⎢              ⎥                 ⎢ 

0 
⎥ ⎢ 

0
 ⎥   ⎢ 

3   −1    7       8 
⎥

⎣              ⎦                 ⎣              ⎦ ⎣ 
1         0 

⎦   ⎣                  ⎦ 
1       3   4       5

 

 

21.  We have

⎡   
2   −3    1       2 

⎤
 
⎡ 

2     −3       1       2 
⎤

 
⎡ 

2   −3       1       2 
⎤

 
⎡ 

2   −3       1       2 
⎤

⎢   4   −1    1       1 ⎥ 1  ⎢ 0         5   −1    −3  ⎥ 2  ⎢ 0       5   −1    −3  ⎥ 3  ⎢ 0       5   −1    −3  ⎥⎢                   ⎥ ∼  ⎢ ⎥ ∼  ⎢ ⎥ ∼  ⎢ ⎥ = U.
⎣ −8       2   2   −5  ⎦   ⎣ 

6       1   5       2 

⎦   ⎣                   ⎦   ⎣                   ⎦

 

 

1.  A12(−2), A13(4),  A14(−3)     2.  A23(2),  A24(−2)     3.  A34(−1) 

Hence, 
 

 
Hence, 

 

 
m21 = 2,    m31 = −4,     m41 = 3,    m32 = −2,     m42 = 2,    m43 = 1.

⎡   
1       0   0   0 

⎤            ⎡
 

⎤ ⎡ 
2 

⎤   ⎡   
2   −3    1       2 

⎤

L = 
⎢ 2       1   0   0 ⎥ 

and LU = 
⎢ ⎥ ⎢ 0 ⎥ 

= 
⎢ 4   −1    1       1 ⎥ 

= A.
⎢                  ⎥            ⎢                  ⎥ ⎢                   ⎥   ⎢                   ⎥
⎣ −4    −2    1   0 ⎦ ⎣ −4    −2    1   0 ⎦ ⎣ 0 ⎦   ⎣ −8       2   2   −5  ⎦

3       2   1   1 3       2   1   1         0 6       1   5       2

 

22.  We have     
1    2  

   
1   

   
1       2  

 
 

    
1    0  

 

2   3     
∼

 0   −1 
= U =⇒ m21 = 2 =⇒ L = 

2   1    
.

1.  A12(−2) 
 
 

We now solve the  triangular  systems  Ly  = b and  U x = y.  From  Ly  = b, we obtain  y = 
    

−11  
 

 

 

 
        

3  
  

−7 

 
 

 
.  Then

U x = y yields x =       
7    

.
 

 

23.  We have

⎡ 
1   −3    5 

⎤
 
⎡ 

1       3         5 
⎤

 
1 

⎡ 
1       3         5 

⎤
 

2
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− 
⎣ 3       2   2 ⎦ ∼  ⎣ 0     11   −13  ⎦ ∼  ⎣ 0     11   −13  ⎦ = U =⇒ m21 = 3, m31 = 2, m32 = 1.

2       5   2 0     11     −8 0       0         5

 

 

1.  A12(−3), A13(−2)     2.  A23(−1)
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0 5 3 ⎦ ⎣                  ⎦   ⎣                  ⎦   ⎣ 

0 0 −5 7 0 0 −5 7 0 0 −5 7 0 0 0 13 

 

⎢ 
0       1       1   0 

⎥
 

⎢ 

⎣ 
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⎡ 

1   0   0 
⎤

 

Hence, L = ⎣ 3   1   0 ⎦.  We now solve the triangular systems  Ly  = b and  U x = y.  From  Ly  = b, we 

2   1   1
⎡   

1 
⎤

 
⎡   

3 
⎤

obtain  y = ⎣ 2 ⎦.  Then  U x = y yields x = ⎣ −1  ⎦.

−5                                                        −1 
 

24.  We have

⎡   
2   2       1 

⎤
 
⎡ 

2       2       1 
⎤

 
1 

⎡ 
2       2       1 

⎤
 

2

⎣   6   3   −1  ⎦ ∼  ⎣ 0   −3    −4  ⎦ ∼  ⎣ 0   −3    −4  ⎦ = U =⇒ m21 = 3, m31 = −2, m32 = −2.

−4    2       2 0       0   −4 0       0   −4

 

 
 

⎡   
1       0   0 

⎤
 

1.  A12(−3), A13(2)      2.  A23(2)

Hence, L = ⎣ 3       1   0 ⎦.  We now solve the triangular systems  Ly  = b and U x = y.  From  Ly  = b, we 

−2    −2    1⎡   
1 
⎤

 
⎡ 
−1/12  

⎤

obtain  y = ⎣ −3  ⎦.  Then  U x = y yields x = ⎣ 
−2 

1/3  ⎦. 

1/2

 

25.  We have 

⎡ 
4   3       0   0 

⎤
 

 

 
⎡ 

4       3       0   0 
⎤

 

 

 
⎡ 

4       3       0   0 
⎤

 

 

 
⎡ 

4       3   0    0  
⎤

⎢ 8   1       2   0 ⎥ 1  ⎢ 0   −5       2   0 ⎥ 2  ⎢ 0   −5       2   0 ⎥ 3  ⎢ 0   −5    2    0  ⎥⎢             
6 
⎥ ∼  ⎢ 

0       5       3   6 
⎥ ∼  ⎢ 

0       0       5   6 
⎥ ∼  ⎢ 

0       0   5    

6 

⎥ = U. ⎦

 

 

1.  A12(−2)     2.  A23(1)      3.  A34(1)  
 
⎡ 

1       0       0   0 
⎤

The only nonzero multipliers  are m21 = 2, m32 = −1, and m43 = −1. Hence, L = 
⎢ 2       1       0   0 ⎥

.  We 

− 
⎣                  ⎦ 

0       0   −1    1 ⎡   
2 
⎤

 

now solve the triangular systems Ly  = b and U x = y.  From Ly  = b, we obtain  y = 
⎢ −1  ⎥

.  Then U x = y
 ⎢     ⎥

 
⎡ 

677/1300  
⎤

 

⎣ −1  ⎦ 
4

yields x = 
⎢

 
⎣ 

 

 
26.  We have 
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. ⎦ 
−9/325   ⎥ 
−37/65   

⎥
 

4/13

       
2   −1  

   
1  

    
2   −1  

  

= U =   m
  

=    4 = 
 

       
1    0  

 
 

L =                 .
−8       3     

∼
 0   −1 

⇒   21        −      ⇒ 
−4    1

 
1.  A12(4)



(c)2017 Pearson Education. Inc.  

− 
− 
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We now solve the triangular systems 
 

 
for i = 1, 2, 3. We have 

 
Lyi = bi,      U xi = yi

    
3 

Ly1 = b1 =⇒ y1  =   
11 

 

. Then  U x1  = y1  =⇒ x1  = 

      
−4  

 

; 
−11

    
2 

Ly2 = b2 =⇒ y2  =   
15     
5 

 

. Then  U x2  = y2  =⇒ x2  = 

   
−6.5  

 

; 
−15       
−3  

 

Ly3 = b3 =⇒ y3  = 
 

27.  We have 

11    
. Then  U x3  = y3  =⇒ x3  = 

. −11

⎡   
1       4   2 

⎤
 

1 

⎡ 
−1     4     2 

⎤   ⎡   
1    4     2  

⎤
 

2

⎣   3       1   4 ⎦ ∼  ⎣ 
5   −7    1 

0   13   10 ⎦ ∼  ⎣ 
0   13   11 

0   13   10 ⎦ = U. 
0    0     1

 

1.  A12(3),  A13(5)      2.  A23(−1) 
 

Thus,  m21 = −3, m31 = −5, and m32 = 1. We now solve the triangular systems 
 

Lyi = bi,      U xi = yi 

for i = 1, 2, 3. We have ⎡ 
1 
⎤ ⎡ 

−29/13  
⎤

Ly1 = e1  =⇒ y1  = ⎣ 3 ⎦.  Then  U x1  = y1  =⇒ x1  = ⎣ −17/13  ⎦;

2 
⎡   

0 
⎤

 

2 ⎡ 
18/13  

⎤

Ly2 = e2  =⇒ y2  = ⎣ 1 ⎦.  Then  U x2  = y2  =⇒ x2  = ⎣ 11/13  ⎦;

−1 ⎡ 
0 
⎤

 
−1 ⎡ 

−14/13  
⎤

Ly3 = e3  =⇒ y3  = ⎣ 0 ⎦.  Then  U x3  = y3  =⇒ x3  = ⎣ −10/13  ⎦. 
1                                                                    1 

28.  Observe  that if Pi  is an elementary permutation matrix, then  P−1  = Pi  = P T . Therefore,  we have
 

i                    i

P−1  = (P1P2  . . . Pk)−1  = P−1P−1 
. . . P−1P−1  = P T P T 

 

. . . P
T  

. . . P
T   

= (P1P2  . . . Pk)
T 

= P
T 

.

k     k−1            2        1 k    k−1            2              1

 

29. 
 

(a). Let A  be an invertible  upper  triangular matrix  with  inverse  B.  Therefore,  we have  AB  = In. Write 

A = [aij ] and B = [bij ]. We will show that bij  = 0 for all i > j, which shows that B  is upper  triangular. We 

have 
n , 

aikbkj  = δij . 

k=1 

Since A is upper  triangular, aik  = 0 whenever  i > k.  Therefore,  we can reduce the above summation to 
 

n , 
aikbij  = δij . 
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k=i 
 

Let  i = n.   Then  the above  summation reduces  to  annbnj   = δnj .   If j = n,  we have  annbnn   = 1, so 

ann = 0. For j  < n, we have annbnj  = 0, and therefore  bnj  = 0 for all j  < n.
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Next let i = n − 1. Then  we have 

 

an−1,n−1bn−1,j  + an−1,nbnj  = δn−1,j . 
 

Setting j = n−1 and using the fact that bn,n−1  = 0 by the above calculation, we obtain an−1,n−1bn−1,n−1  = 1, 

so an−1,n−1  = 0. For j  < n − 1, we have an−1,n−1bn−1,j  = 0 so that bn−1,j  = 0. 

Next let i = n−2. Then we have an−2,n−2bn−2,j +an−2,n−1bn−1,j +an−2,nbnj  = δn−2,j . Setting  j = n−2 

and  using the  fact that bn−1,n−2  = 0 and  bn,n−2  = 0, we have an−2,n−2bn−2,n−2  = 1, so that an−2,n−2  = 0. 

For j  < n − 2, we have an−2,n−2bn−2,j  = 0 so that bn−2,j  = 0. 

Proceeding  in this way, we eventually show that bij  = 0 for all i > j. 

For an invertible  lower triangular matrix  A with inverse B, we can either modify the preceding argument, 
or we can proceed more briefly as follows: Note that AT  is an invertible  upper triangular matrix  with inverse 
BT . By the preceding  argument, BT  is upper  triangular. Therefore,  B  is lower triangular, as required. 

 

(b). Let A  be an invertible  unit  upper  triangular matrix  with  inverse B.  Use the  notations from (a).  By 

(a),  we know that B  is upper  triangular.  We simply  must  show that bjj   =  0 for all j. From  annbnn  =  1  

(see proof of (a)),  we see that if ann = 1, then  bnn   = 1.  Moreover,  from an−1,n−1bn−1,n−1   = 1, the fact 

that an−1,n−1  = 1 proves that bn−1,n−1  = 1.  Likewise, the  fact  that an−2,n−2bn−2,n−2  = 1 implies that if 

an−2,n−2  = 1, then bn−2,n−2  = 1. Continuing in this fashion, we prove that bjj  = 1 for all j. 

For the last part,  if A is an invertible  unit lower triangular matrix  with inverse B, then AT is an invertible 

unit upper triangular matrix  with inverse BT , and by the preceding argument, BT  is a unit upper triangular 

matrix. This implies that B  is a unit  lower triangular matrix, as desired. 
 

30. 
 
(a). Since A is invertible, Corollary  2.6.13 implies that both  L2   and U1  are invertible.  Since L1U1  = L2U2, 
we can left-multiply by L

−1  
and right-multiply by U

−1  
to obtain  L

−1
L1  = U2U

−1
. 2                                                                 1                                   2                            1 

(b). By Problem  29, we know that L−1  is a unit  lower triangular matrix  and  U−1  is an upper  triangular
 

2                                                                                                         1 

matrix. Therefore,  L−1L1  is a unit  lower triangular matrix  and U2U−1  is an upper  triangular matrix. Since 
2                                                                                                                   1 

these two matrices  are equal, we must  have L−1L1  = In and U2U−1  = In. Therefore,  L1  = L2  and U1 = U2. 2                                              1 

31.  The system  Ax  = b can be written as QRx  = b. If we can solve Qy = b for y and then solve Rx  = y 

for x, then QRx  = b as desired.  Multiplying  Qy = b by QT   and  using the  fact that QT Q = In, we obtain 

y = QT b. Therefore,  Rx  = y can be replaced by Rx  = QT b. Therefore,  to solve Ax  = b, we first determine 

y = QT b and then solve the upper  triangular system Rx  = QT b by back-substitution. 
 

Solutions to Section 2.8 

 

True-False Review: 
 

(a):  FALSE. According  to the given information, part  (c)  of the Invertible Matrix  Theorem  fails, while 

part  (e) holds.  This is impossible. 

(b): TRUE. This holds by the equivalence  of parts  (d) and (f) of the Invertible Matrix  Theorem. 
 

(c):  FALSE. Part (d)  of the Invertible Matrix  Theorem  fails according  to the given  information, and 

therefore  part  (b)  also fails.  Hence, the  equation  Ax  = b does not  have  a unique  solution.   But  it  is not 

valid to conclude that the equation  has infinitely  many solutions;  it could have no solutions.  For instance,  if⎡ 
1   0   0 

⎤
 

⎡ 
0 
⎤

A = ⎣ 0   1   0 ⎦ and b = ⎣ 0 ⎦, there are no solutions  to Ax  = b, although  rank(A) = 2. 

0   0   0                          1 
 

(d): FALSE. An easy counterexample is the matrix  0n, which fails to be invertible  even though  it is upper 

triangular. Since it fails to be invertible, it cannot  e row-equivalent to In, by the Invertible Matrix  Theorem.
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⎢ 
1   −3  

⎥
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Problems: 

 

1.   Since A  is an  invertible  matrix, the  only  solution  to Ax  = 0  is x  = 0.   However,  if we assume  that 

AB  = AC,  then  A(B − C)  = 0.  If xi denotes  the ith  column  of B − C, then  xi = 0 for each i.  That is, 

B − C = 0, or B = C, as required. 

2.   If rank(A)  = n,  then the augmented matrix  A#   for the system  Ax  = 0 can  be reduced  to  REF  such 

that each  column  contains  a pivot  except  for the  right-most  column  of all-zeros.   Solving the system  by 

back-substitution, we find that x = 0, as claimed. 
 

3.   Since Ax  = 0 has  only the trivial  solution,  REF(A) contains  a pivot  in every column.   Therefore,  the 
linear system Ax  = b can be solved by back-substitution for every b in Rn.  Therefore,  Ax  = b does have a 

solution. 

Now suppose  there  are  two  solutions  y  and  z to  the  system  Ax  = b.  That is, Ay  = b and  Az  = b. 

Subtracting, we find 

A(y  − z) = 0, 
 

and so by assumption, y − z = 0.  That is, y = z.  Therefore,  there is only one solution  to the linear system 

Ax  = b. 
 

4.  If A and B  are each invertible  matrices,  then  A and B  can each be expressed as a product of elementary 

matrices,  say 

A = E1E2 . . . Ek          and         B = E E . . . E .
 

Then 

1    2             l 
 

 
AB  = E1E2 . . . EkE E . . . E ,1    2             l 

so AB  can be expressed as a product of elementary matrices.  Thus,  by the equivalence of (a) and (e) in the 

Invertible Matrix  Theorem,  AB  is invertible. 
 

5.  We are assuming  that the equations  Ax  = 0 and Bx  = 0 each have only the trivial solution  x = 0.  Now 

consider the linear system
 

 
Viewing this equation  as 

(AB)x = 0. 
 

 
A(Bx) = 0,

 

we conclude that Bx  = 0.  Thus,  x = 0.  Hence, the linear equation  (AB)x = 0 has only the trivial  solution. 
 

Solutions to Section 2.9 

Problems:  

⎡ 
−2    −1  

⎤
 

 

⎡ 
−15         0 

⎤
 

 

⎡ 
13     −1  

⎤

1.  AT − 5B = 
⎢ 4   −1  ⎥  ⎢ 

− 
10       10 ⎥ 

= 
⎢ −6    −11  ⎥

.

⎢   
2       5 

⎥  ⎢ 
5   −15  

⎥
 
⎢ 
−3       20 

⎥

⎣          ⎦  ⎣ 

6       0 

⎦   ⎣            ⎦ 

0         5                 6     −5

⎡ 
−3       0 

⎤

2.  CT B = 
   
−5    −6    3   1  

  ⎢
 
⎣ 

2       2 ⎥ 
= 

  
6   −20  

 
. ⎦ 

0       1
 

3.  Since A is not a square  matrix, it is not possible to compute  A2.
 

4.  −4A − BT = 

   
8    −16      −8    −24  

 
 4         4   −20         

0 

   
−3    2       1    0  

 
 

−      
0   2   −3    1 
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= 

   
11   −18      

−9    −24  
 

. 
4          2   
−17      −1
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⎥ 

3 

= . 
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5.  We have ⎡ 
−3       0 

⎤

 

AB  = 
   
−2       4   2   6  

   
⎢ ⎢ 2       2          

   
16         8  

 
 

⎥ =                    .

 

 
 

Moreover, 

−1    −1    5   0    ⎣ 1   −3  ⎦ 
0       1 

6   −17

 
 

6.  We have 

tr(AB) = −1.

 

(AC)(AC)T  = 

   
−2  

  
 
 

26 

 

−2    26 = 

       
4   −52  

  

. 
−52     676

⎡ 
12       0 

⎤
 

⎡ 
−24       48       24       72 

⎤

7.  (−4B)A = 
⎢ −8    −8  ⎥ 

   
−2       4   2   6  

   

= 
⎢ 24   −24    −56    −48  ⎥

.
⎢          ⎥                        ⎢                          ⎥
⎣ −4     12 ⎦ 

0   −4 

−1    −1    5   0 ⎣  −4    −28       52   −24  ⎦ 
4         4   −20         0

8.  Using Problem  5, we find that 

 

(AB)−1  = 

 
 
   

16         8  
  −1

 

 

 
 1  

   
−17    −8  

 
 

−

6   −17 320 −6     16

9.  We have ⎡ 
−5  
⎤

 

CT C = 
   
−5    −6    3   1  

  ⎢ −6  ⎥ 
= [71], 

 
 

and 

⎢     ⎥ ⎣     ⎦ 

1 

 
tr(CT C) = 71.

10. 
 

(a). We have 

 

 
⎡ 

   
1    2    3  

 
 

 

 

3    b 
⎤

 

 

 
 
     

3a − 5    2a + 4b  
  

.
AB  = 

2   5   7 
⎣ −4    a  ⎦ = 

a    b 
7a − 14   5a + 9b

In order for this product to equal I2, we require 
 

3a − 5 = 1,    2a + 4b = 0,    7a − 14 = 0,    5a + 9b = 1. 
 

We quickly solve this for the unique solution:  a = 2 and b = −1. 
 

(b). We have ⎡      
3    −1  

⎤ 
   

1    2    3  
  
⎡ 

1       1       2 
⎤

BA  = ⎣ −4       2 ⎦ 
2   −1 

2   5   7 
= ⎣ 0       2       2 ⎦ . 

0   −1    −1
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ij 

ki 

 

11.  We compute  the (i, j)-entry of each side of the equation.  We will denote the entries of AT  by aT , which 

equals aji.  On the left side, note that the (i, j)-entry of (ABT )T   is the same as the (j, i)-entry of ABT , and 

n                    n                    n

(j, i)-entry of ABT = 
, 

ajkbT
 = 
, 

ajkbik  = 
, 

bikaT  ,

k=0 k=0 k=0
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0 0 1 
⎤

 
⎡ 

0 1 1 
⎤

 
⎡ 

0 0 0 

0 0 0 ⎦ ⎣ 0 0 1 ⎦ = ⎣ 0 0 0 

0 0 0 0 0 0 0 0 0 
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and  the latter expression  is the  (i, j)-entry  of BAT .  Therefore,  the (i, j)-entries  of (ABT )T   and  BAT   are 

the same, as required. 
 

12. 
 

(a). The (i, j)-entry of A2   is 
n , 

aikakj . 

k=1 

 

(b). Assume that A is symmetric. That means that AT = A.  We claim that A2   is symmetric. To see this, 

note that 

(A2)T = (AA)T = AT AT = AA  = A2. 
 

Thus,  (A2)T = A2,  and so A2   is symmetric. 
 

13.  We are assuming  that A is skew-symmetric, so AT = −A. To show that BT AB  is skew-symmetric, we 

observe that
 
 

as required. 
 

14.  We have 

(BT AB)T = BT AT (BT )T   = BT AT B = BT (−A)B = −(BT AB),

 
 

 
so A is nilpotent. 

 

15.  We have 

 

A2  = 

       
3       9  

  2
 

−1    −3 

   
0    0  

 
 

=   
0   0    

,

 
 
 

 
and 

 

 
 
 
 

⎡ 
 

A3  = A2A = ⎣ 

⎡ 
0   0   1 

⎤
 

A2  = ⎣ 0   0   0 ⎦ 
0   0   0 

 

⎤ 
 

⎦ ,

 

so A is nilpotent. 
 

16.  We have 

 
 
⎡ 
−3e−3t      −2 sec2 t tan t 

⎤

A (t) = ⎣ 6t2                − sin t     ⎦ . 
6/t                 −5

17.  We have 
 

   1 

⎡   
−7t               t3/3        

⎤
 

6t − t2/2    3t4/4 + 2t3     
 1 

⎡  
−7       1/3   

⎤
 

11/2    11/4

B(t) dt = 
⎢                           ⎥   

= 
⎢                 ⎥ 

.⎢   
t + t2/2      2  sin(πt/2)  

⎥   ⎢  
3/2      2/π   

⎥

0                            
⎣                

π 

et                   t − t4/4 

⎦  
0 
⎣              ⎦ 

e − 1    3/4

 
18.  Since A(t) is 3 × 2 and B(t) is 4 × 2, it is impossible to perform the indicated subtraction. 

 

19.  Since A(t) is 3 × 2 and B(t) is 4 × 2, it is impossible to perform the indicated subtraction.
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1   −2    −1 3 0 

0       0       3 1 3 

 

1   −2    −1 3 0 

0       0       3 1 3 

 

1   −2    −1 3 0 

0       0       1 1/3 1 

 

13 

− 

− − − 

1 
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20.   From  the  last  equation,  we see that x3 = 0.  Substituting this  into  the middle  equation,  we find that 

x2 = 0.5.  Finally,  putting the  values  of x2  and  x3  into  the  first  equation,  we find x1 = −6 − 2.5  = −8.5. 

Thus,  there is a unique solution  to the linear system,  and the solution  set is 
 

{(−8.5, 0.5, 0)}. 

 
21.   To solve this system,  we need to reduce  the corresponding  augmented matrix  for the  linear  system  to 

row-echelon form.  This gives us 
⎡   

5       1       2       7 
⎤   ⎡

 
1 1   11     20       7 

⎤
 
⎡ 

1   11    20     7 
2 

⎤   ⎡ 
1   11    20      7   

⎤
 

3

⎣ −2       6       9       0 ⎦ ∼  ⎣ −2     6        9       0 ⎦ ∼  ⎣ 0   28    49    14 ⎦ ∼  ⎣ 0    1    7/4    1/2  ⎦

−7       5   −3    −7 
 
 

4 

−7     5    −3    −7 

⎡ 
1   11           20     7   

⎤
 

0   82   137   42 

⎡ 
1   11    20              7 

⎤
 

5 

0   82   137    42

∼  ⎣ 0    1          7/4    1/2  ⎦ ∼  ⎣ 0    1    7/4         1/2  ⎦ .
0    0    −13/2      1 0    0      1     −2/13

 

From  the  last  row, we conclude that x3 = −2/13, and  using the  middle  row, we can solve for x2: we have 
x2+ 7 ·

  
−  2 

   
= 1 , so x2 = 20  = 10 . Finally, from the first row we can get x1: we have x1+11· 10 +20·

   
−  2 

   
=4          13            2 26         13 13                     13

7, and so x1 = 21 . So there is a unique solution:

  
21 

, 
13 

 

10 

13 
, −

 

2 
   

. 
13

 

1.  A21(2)      2.  A12(2),  A13(7)      3.  M2(1/28)     4.  A23(−82)     5.  M3(−2/13) 
 

 

22.   To solve this system,  we need to reduce  the corresponding  augmented matrix  for the  linear  system  to 

row-echelon form.  This gives us 
⎡ 

1   2   −1     1 
⎤   ⎡ 

1       2       1   1 
⎤

 
1 

⎡ 
1       2       1       1 

⎤
 

2 

⎡ 
1   2       1       1 

⎤
 

3

⎣ 1   0       1    5 ⎦ ∼  ⎣ 0   −2       2   4 ⎦ ∼  ⎣ 0       1   −1    −2  ⎦ ∼  ⎣ 0   1   −1    −2  ⎦ .

4   4       0   12 0   −4       4   8 0   −4       4       8 0   0       0       0

 

From  this row-echelon form, we see that z is a free variable.  Set z = t. Then  from the middle row of the 

matrix, y = t − 2, and from the top row, x + 2(t − 2) − t = 1 or x = −t + 5. So the solution  set is 

{(−t + 5, t − 2, t) : t ∈ R} = {(5, −2, 0) + t(−1, 1, 1) : t ∈ R}. 

 
1.  A12(−1), A13(−4)     2.  M2(−1/2)     3.  A23(4) 

 

 

23.   To solve this system,  we need to reduce  the corresponding  augmented matrix  for the  linear  system  to 

row-echelon form.  This gives us 
⎡   

1   −2    −1       3   0 
⎤   ⎡

 
⎤   ⎡                     ⎤   ⎡                        ⎤ 
 

2                                                                3

⎣ −2       4       5   −5    3 ⎦ ∼  ⎣ 
3   −6    −6       8   2 

 

0       0   −3    −1    2 

⎦ ∼  ⎣  
0       0       0   0   5 

⎦ ∼  ⎣ ⎦ . 
0       0       0     0     1

 

The bottom row of this matrix  shows that this system  has no solutions.
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0 −27 −12 33   −21 12 

0 1 2 −3      −3 −6 

0 0 0 1         4 −2 

 3 1      −3 2 

1 2      −3 −3 

0 42   −48 −102 

 

3 1   −3 2 −1 

1 2   −3 −3 −6 

7 −12     33 −21 12 

 

1 1 1 1  −3 6 

0 0 0 1  −2 2 

0 1 −1 2  −3 5 

0 0 0 −1  2 −2 
⎡ 

1 1 1 1 −3 6 
⎤

 

 

1 1 1 1   −3 6 

1 1 1 2   −5 8 

2 3 1 4   −9 17 

2 2 2 3   −8 14 

 

0 0 0 1 −2 2 

0 0 0 0 0 0 

 

7                     7 
1        − 

−  − −    − 
7 

∼  

− 
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1.  A12(2),  A13(−3)     2.  A23(1)      3.  M2(1/3), M3(1/3) 

 
24.   To solve this system,  we need to reduce  the corresponding  augmented matrix  for the  linear  system  to 

row-echelon form.  This gives us 
⎡ 

3       0   −1       2   −1       1 
⎤

 
⎡ 

1       3       1   −3       2   −1  
⎤

 
⎡ 

1         3       1   −3       2   −1  
⎤

⎢ 1       3       1   −3       2   −1  ⎥ 1  ⎢ 3       0   −1       2   −1       1 ⎥ 2  ⎢ 0     −9    −4     11   −7       4 ⎥ ⎢ 
4   −2    −3       6   −1       5 

⎥ ∼  ⎢ 
4   −2    −3       6   −1       5 

⎥ ∼  ⎢ 
0   −14    −7     18   −9       9 

⎥
⎣                              ⎦ 

0       0       0       1       4   −2 

⎣                              ⎦ 
0       0       0       1       4   −2 

⎣                                ⎦ 
0         0       0       1       4   −2

⎡ 
1         3         1     −3         2     −1  

⎤
 
⎡ 

1         3         1   −3         2   −1  
⎤

3  ⎢ 0   −27    −12       33   −21       12 ⎥ 4  ⎢                                  ⎥ 
∼  ⎢ 

0       28       14   −36       18   −18  
⎥ ∼  ⎢                                  ⎥ ⎣                                    ⎦   ⎣                                  ⎦ 

0         0         0         1         4     −2
⎡ 

1                                                     
⎤   ⎡ 

1 −1  
⎤

 
⎡ 

1   3   1    −3         2      −1  
⎤

5  ⎢ 0 ⎥ 6  ⎢ 0 −6  ⎥ 7  ⎢ 0   1   2    −3      −3      −6  ⎥

∼  ⎢ 
0   −

 ⎥ ∼  ⎢ 
0

 
−150  

⎥ ∼  ⎢ 
0   0   1   − 8

 17            25    
⎥ . 

−      −
⎣                                  ⎦   ⎣ 

⎦   ⎣              
7            7              7    

⎦

0         0         0       1         4   −2 0   0    0          1           4       −2 0   0   0       1         4      −2

We see that x5 = t is the only free variable.  Back substitution yields the remaining  values:

41     15 2     33 2     16

x5 = t,     x4 = −4t − 2,    x3 = − 
7  
−

 

So the solution  set is 

t,     x2 = −  − t,     x  =      +    t. 
7                     7      7

 

2     16 
 

2     33 
 

41     15
− 

7 
+

 
t,                t, 

7        7      7         7 
t,−4t − 2, t  : t ∈ R

  
16 

=    t       , 
7 

 

33 

7 
, −

 

 

15 

7 
, −4, 1   +

 

 

2 
− 

7 
, −

 

 

2 

7 
, −

 

 

41 

7 
, −2, 0

 

 

: t ∈ R   .

 
1.  P12         2.  A12(−3), A13(−4)     3.  M2(3),  M3(−2)     4.  A23(1)      5.  P23         6.  A23(27)      7.  M3(1/42) 

 
25.   To solve this system,  we need to reduce  the corresponding  augmented matrix  for the  linear  system  to 

row-echelon form.  This gives us

⎡                        ⎤   ⎡ ⎤   ⎡ 
1   1       1   1   −3    6 

⎤

⎢                        ⎥ 1  ⎢ ⎢                        ⎥   ⎢ 
⎥ 2  ⎢ 0   0       0   1   −2    2 ⎥ ⎥ ∼  ⎢ 

0   1   −1    2   −3    5 
⎥

⎣                        ⎦   ⎣ ⎦   ⎣                         ⎦ 
0   0       0   0       0   0

 

 

3  ⎢ 0   1   −1    2   −3    5 ⎥ 
∼  ⎢                         ⎥ . ⎣                         ⎦ 
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From  this row-echelon form, we see that x5 = t and x3 = s are free variables.  Furthermore, solving this 

system by back-substitution, we see that 
 

x5 = t,     x4 = 2t + 2,    x3 = s,     x2 = s − t + 1,    x1 = 2t − 2s + 3.
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12                              2 

2 

2 

2 

− 

− 
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So the solution  set is 

 

{(2t − 2s + 3, s − t + 1, s, 2t + 2, t) : s, t ∈ R} = {t(2, −1, 0, 2, 1) + s(−2, 1, 1, 0, 0) + (3, 1, 0, 2, 0) : s, t ∈ R}. 

 
1.  A12(−1), A13(−2), A14(−2)     2.  A24(1)      3.  P23 

 

 

26.   To solve this system,  we need to reduce  the corresponding  augmented matrix  for the  linear  system  to 

row-echelon form.  This gives us
         

1   −3    2i       1  
    

1  

    
1      −3       2i          1 

    
2  

    
1   −3           2i              1  

   

.

−2i       6    2    −2     
∼  0   6 − 6i    −2    −2 + 2i     

∼  0       1   − 1 (1 + i)    − 1

6                           3 

 

1.  A   (2i)     2.  M (     1     ) 6−6i 
 

From  the  last  augmented  matrix  above,  we see that x3  is a free variable.    Let  us set  x3  = t, where  t is 

a complex  number.   Then  we can  solve for x2  using the equation  corresponding  to  the  second row of the 

row-echelon form: x2 = − 1 + 1 (1+ i)t. Finally,  using the first row of the row-echelon form, we can determine 
3       6 

that x1 = 1 t(1 − 3i).  Therefore,  the solution  set for this linear system of equations  is 
 

1                    1     1 
{(

2 
t(1 − 3i), − 

3 
+ 

6 
(1 + i)t, t) : t ∈ C}.

 

 
27.  We reduce the corresponding  linear system as follows:

    
1   −k   6 

    
1  

    
1      −k        6       

  

.

2       3   k 
∼    

0   3 + 2k    k − 12

 

If k = − 3 , then each column of the row-reduced  coefficient matrix  will contain a pivot,  and hence, the linear 

system  will have a unique solution.  If, on the other  hand,  k = − 3 , then the system  is inconsistent, because 

the  last  row of the  row-echelon  form will have  a pivot  in the  right-most  column.   Under  no circumstances 

will the linear system have infinitely  many  solutions. 
 

28.  First  observe that if k = 0, then the second equation  requires  that x3 = 2, and  then  the  first  equation 

requires x2 = 2. However, x1 is a free variable  in this case, so there  are infinitely  many  solutions. 

Now suppose  that k  = 0.  Then  multiplying each  row of the  corresponding  augmented matrix  for the 

linear  system  by 1/k  yields a row-echelon  form with  pivots  in the first  two  columns  only.   Therefore,  the 

third  variable,  x3, is free in this case.  So once again,  there  are infinitely  many  solutions  to the system. 

We conclude that the system has infinitely  many  solutions  for all values of k. 
 

29.  Since this linear system is homogeneous,  it already  has at least one solution:  (0, 0, 0).  Therefore,  it only 

remains  to determine the values of k for which this  will be the  only solution.  We reduce  the corresponding 

matrix  as follows:

⎡ 
10   k    −1    0 

⎤
 
⎡ 

10k     k2                 k    0 
⎤   ⎡

 
1                                                                     2 

1      1/2    −1/2    0 
⎤

⎣ k     1    −1    0 ⎦ ∼  ⎣ 10k     10      −10    0 ⎦ ∼  ⎣ 10k     
10 

−10    0 ⎦

2     1    −1    0 1      1/2    −1/2    0 10k     k2             −k   0

⎡ 
1       1/2             1/2      0 

⎤
 

3 
⎡ 

1       1/2           1/2    0 
⎤
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− 

− 

4 
⎡ 

1   1/2        1/2     0 
⎤

 
5

∼  ⎣ 0   10 − 5k    5k − 10   0 ⎦ ∼  ⎣ 0         1           −1      0 ⎦ ∼  ⎣ 0     
1 

−1       0 ⎦ .

0   k2  − 5k        4k        0 0   k2  − 5k      4k      0 0     0     k2  − k    0
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10−5k 

− − 
− 

− 

− 

− 
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1.  M1(k),  M2(10),  M3(1/2)     2.  P13         3.  A12(−10k), A13(−10k)     4.  M2(      1      )     5.  A23(5k − k2) 

 
Note that the steps  above are not  valid if k = 0 or k = 2 (because  Step  1 is not  valid with k = 0 and  Step 

4 is not  valid if k = 2).  We will discuss those  special cases individually  in a moment.   However if k = 0, 2, 

then  the  steps  are valid,  and  we see from the  last  row of the  last  matrix  that if k = 1, we have  infinitely 

many  solutions.  Otherwise,  if k = 0, 1, 2, then  the matrix  has full rank,  and so there is a unique solution  to 

the linear system. 

If k = 2, then the last  two rows of the original  matrix  are the same, and so the  matrix  of coefficients of 

the linear system is not invertible. Therefore,  the linear system must  have infinitely  many  solutions. 

If k = 0, we reduce the original linear system as follows: 
 

⎡ 
10   0   −1    0 

⎤
 
⎡ 

1   0       1/10    0 
⎤

 
1 

⎡ 
1   0       1/10    0 

⎤
 

2 

⎡ 
1   0       1/10    0 

⎤
 

3

⎣ 0    1   −1    0 ⎦ ∼  ⎣ 0   1      −1       0 ⎦ ∼  ⎣ 0   1      −1       0 ⎦ ∼  ⎣ 0   1      −1       0 ⎦ .
2    1   −1    0 2   1      −1       0 0   1    −4/5     0 0   0      1/5       0

 

The last matrix  has full rank,  so there  will be a unique solution  in this case. 

 

1.  M1(1/10)     2.  A13(−2)     3.  A23(−1) 

 

To summarize:  The linear system has infinitely  many  solutions  if and only if k = 1 or k = 2. Otherwise, 

the system  has a unique solution. 

30.   To solve this system,  we need to reduce  the corresponding  augmented matrix  for the  linear  system  to 

row-echelon form.  This gives us

⎡ 
1   −k   k2      0 

⎤
 
⎡ 

1       k       k2           0 
⎤

 
1

 

⎡ 
1       k       k2           0 

⎤
 

2
 

⎡ 
1       k        k2                 0 

⎤
 

3

⎣ 1       0      k    0 ⎦ ∼  ⎣ 0       k    k − k2      0 ⎦ ∼  ⎣ 0       1      −1       1 ⎦ ∼  ⎣ 0       1       −1           1 ⎦ .
0       1   −1    1 0       1      −1       1 0       k    k − k2      0 0       0   2k − k2      −k

 
1.  A12(−1)     2.  P23         3.  A23(−k) 

 

Now provided  that 2k − k2  = 0, the system  can be solved without  free variables  via back-substitution, and 

therefore,  there is a unique solution.  Consider now what happens  if 2k − k2 = 0. Then either k = 0 or k = 2. 

If k = 0, then only the first two columns of the last augmented matrix  above are pivoted,  and we have a free 

variable  corresponding  to x3. Therefore,  there are infinitely  many solutions  in this case.  On the other  hand, 

if k = 2, then the last  row of the last  matrix  above reflects an inconsistency  in the linear system,  and there 

are no solutions. 

To summarize,  the system  has no solutions  if k = 2, a unique  solution  if k = 0 and k = 2, and infinitely 

many  solutions  if k = 0. 

31.  No, there  are no common points of intersection.  A common point of intersection would be indicated  by 

a solution  to the linear  system  consisting  of the equations  of the three  planes.  However, the  corresponding 

augmented matrix  can be row-reduced  as follows:

⎡ 
1   2       1   4 

⎤
 
⎡ 

1   2       1       4 
⎤

 
1 

⎡ 
1   2       1       4 

⎤
 

2

⎣ 0   1   −1    1 ⎦ ∼  ⎣ 0   1   −1       1 ⎦ ∼  ⎣ 0   1   −1       1 ⎦ .
1   3       0   0 0   1   −1    −4 0   0       0   −5
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The last row of this matrix  shows that the linear system is inconsistent, and so there are no points common 

to all three planes.
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− 
− 

− 

− 
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1.  A13(−1)     2.  A23(−1) 
 

32. 
 

(a). We have 

 
 
        

4   7  
    

1  

        
1   7/4  

   
2  

    
1    7/4 

 
 
    

3   

   
1    7/4  

 

−2    5     
∼

 −2      5 
∼    

0   17/2     
∼    

0     1      
.

 

 

1.  M1(1/4)     2.  A12(2)      3.  M2(2/17) 
 
 

(b). We have:  rank(A) = 2, since the row-echelon form of A in (a) consists two nonzero rows. 
 

(c). We have 
 
        

4   7   1   0  
    

1  

        
1   7/4    1/4    0  

    
2  

    
1    7/4     1/4    0  

    
3  

    
1   7/4     1/4        0

−2    5   0   1     
∼

 −2      5       0     1     
∼

 0   17/2    1/2    1     
∼

 0     1     1/17    2/17

 

4  

    
1   0   5/34    −7/34  

  

.
 

∼    
0   1   1/17       2/17 

 

 

1.  M1(1/4)     2.  A12(2)      3.  M2(2/17)     4.  A21(−7/4) 

Thus,      
 5              7

A−1  =
 34      

− 
34        .

1              2 
17            17 

33. 
 

(a). We have 

 
 
        

2   −7  
   

1  

    
2   −7  

   
2  

    
1   −7/2  

  

.
−4     14     

∼
 0       0     

∼    
0           0

 

 

1.  A12(2)      2.  M1(1/2) 
 

 

(b). We have:  rank(A) = 1, since the row-echelon form of A in (a) has one nonzero row. 
 

(c). Since rank(A) < 2, A is not invertible. 
 

34. 
 

(a). We have 
⎡ 

3   −1    6 
⎤

 
⎡ 

1       1/3    2 
⎤

 
1 

⎡ 
1       1/3       2 

⎤
 

2 

⎡ 
1       1/3    2 

⎤
 

3 

⎡ 
1       1/3      2   

⎤
 

4

⎣ 0       2   3 ⎦ ∼  ⎣ 0       2       3 ⎦ ∼  ⎣ 0       2          3 ⎦ ∼  ⎣ 0       2       3 ⎦ ∼  ⎣ 0       1       3/2  ⎦ .
3   −5    0 1   −5/3    0 0   −4/3    −2 0       0       0 0       0         0

 
1.  M1(1/3), M3(1/3)     2.  A13(−1)     3.  A23(2/3)     4.  M2(1/2)



(c)2017 Pearson Education. Inc.  

1 2 0 0 

2 1 0 0 

0 0 3 4 

0 0 4 3 

 2 0 0 

1 0 0 

 

2 1 0 0 

1 2 0 0 

0 0 3 4 

0 0 4 3 

 

2 0 0 

1 0 0 

 

2 1 0 0 1 0 0 0 

1 2 0 0 0 1 0 0 

0 0 3 4 0 0 1 0 

0 0 4 3 0 0 0 1 

 

1 2 0 0 0 1 0 0 

0 −3 0 0 1 −2 0 0 

0 0 3 4 0 0 1 0 
0 0 1 −1 0 0 −1 1 

 

1 2 0 0 0 1 0 0 

2 1 0 0 1 0 0 0 

0 0 3 4 0 0 1 0 

0 0 4 3 0 0 0 1 

    ⎡ 

 

0 0 1 0 0 0 −3/7 4/7 

0 0 0 1 0 0 4/7 −3/7 

 

∼  

∼  ∼  

∼  

⎥ 

. 

⎣ ⎦ 
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(b). We have:  rank(A) = 2, since the row-echelon form of A in (a) consists of two nonzero rows. 

 

(c). Since rank(A) < 3, A is not invertible. 
 

35. 
 

(a). We have
⎡              ⎤   ⎡ ⎤   ⎡ 

1       2   0       0 
⎤

 
⎡ 

1       2   0       0 
⎤

⎢              ⎥ 1  ⎢ ⎢              ⎥   ⎢ 
⎥ 2  ⎢ 0   −3    0       0 ⎥ 3  ⎢ 0   −3    0       0 ⎥ ⎥ ∼  ⎢ 

0       0   3       4 
⎥ ∼  ⎢ 

0       0   1   −1  
⎥

⎣              ⎦   ⎣ 
 

⎡ 
1
 

⎦   ⎣                  ⎦   ⎣ 
0       0   1   −1 

⎤   ⎡ 
1                      

⎤ 

⎦ 
0       0   3       4

4  ⎢ 0 ⎥ 5  ⎢ 0                      ⎥

∼  ⎢ 
0   0   1   −1  

⎥ ∼  ⎢ 
0   0   1   −1  

⎥ .⎣                ⎦ 
0   0   0       7 

⎣                ⎦ 
0   0   0       1

 

1.  P12         2.  A12(−2), A34(−1)     3.  P34         4.  M2(−1/3), A34(−3)     5.  M4(1/7) 

 
(b). We have:  rank(A) = 4, since the row-echelon form of A in (a) consists of four nonzero rows. 

 

(c). We have 
⎡                            ⎤   ⎡                            ⎤   ⎡                                    ⎤ 
⎢                            ⎥ 1  ⎢ ⎢                            ⎥   ⎢ 

⎥ 2  ⎢                                    ⎥ ⎥   ⎢                                    ⎥

⎣                            ⎦   ⎣                            ⎦   ⎣                                    ⎦ 
 

1       2   0       0   0       1       0   0 
⎤

 
⎡ 

1   2   0       0       0         1         0       0 
⎤

3  ⎢ 0   −3    0       0   1   −2       0   0 ⎥ 4  ⎢ 0   1   0       0   −1/3    2/3       0       0 ⎥
⎣                                    ⎦ 

0       0   3       4   0       0       1   0 

⎣                                         ⎦ 

0   0   0       7       0         0         4   −3

⎡ 
1   0   0       0     2/3      −1/3      0         0 

⎤   ⎡ 
1   0   0   0     2/3      −1/3        0           0     

⎤

5  ⎢ 0   1   0       0   −1/3      2/3        0         0 
∼  ⎢ 

0   0   1   −1        0           0       −1        1
 
⎥ 6  ⎢ 0   1   0   0   −1/3      2/3         0           0 ⎥   ⎢                                             ⎥

⎣                                             ⎦   ⎣                                             ⎦ 
0   0   0       1       0           0       4/7    −3/7 

 

1.  P12         2.  A12(−2), A34(−1)     3.  P34         4.  A34(−3), M2(−1/3)     5.  M4(1/7), A21(−2)     6.  A43(1) 
 

Thus, ⎡  
2/3      −1/3        0           0     

⎤
 

A−1  = 
⎢ −1/3      2/3         0           0     ⎥ 

. 
 

 
36. 

 

(a). We have 

⎢   
0           0       −3/7      4/7    

⎥
 

0           0         4/7      −3/7



(c)2017 Pearson Education. Inc. 
 

1 0 0 

0 2 −1 

0 −1 2 

 

⎡ 
3       0       0 

⎤
 
⎡ 

1       0       0 
⎤   ⎡

 
1                                               2 

⎤   ⎡ 
1       0       0 

⎤
 

3 

⎡ 
1       0   0 

⎤
 

4 

⎡ 
1   0       0 

⎤
 

5

⎣ 0       2   −1  ⎦ ∼  ⎣ 0       2   −1  ⎦ ∼  
⎣ 

⎦ ∼  ⎣ 0   −1       2 ⎦ ∼  ⎣ 0   −1    2 ⎦ ∼  ⎣ 0   1   −2  ⎦ .

1   −1       2 1   −1       2 0       2   −1 0       0   3 0   0       1



(c)2017 Pearson Education. Inc.  

1 0 0 1/3 0 0 

0 2 −1 0 1 0 

1 −1 2 0 0 1 

 

⎡ 
3 0       0 1 0 0 

⎣ 0 2   −1 0 1 0 

 1 −1       2 0 0 1 

 1 0 0 1/3 0 0 

0 −1 2 −1/3 0 1 

0 2 −1 0 1 0 

 

1 0 0 1/3 0   0 
⎤ 

0 −1 2 −1/3 0   1 ⎦ 

0 0 3 −2/3 1   2  

 
1 0 0 1/3 0 0 

0 1 −2 1/3 0 − 

 

1 0 0 1/3 0 0 
⎤ 

0 1 0 −1/9 2/3 1/3 ⎦ . 
0 0 1 −2/9 1/3 2/3  

 

1 4 2 

0 5 5 

0 5 3 

 

1 4 2 

0 5 5 

0 0 −2 

 

1 4 2 

0 5 3 

 

1 4 2 0 1 0 
⎤ 

0 5 5 1 2 0 ⎦ 

0 5 3 0 0 1  

 

⎡ 
−2 −3 1 1 0 0 

⎣ 1 4 2 0 1 0 

 0 5 3 0 0 1 

 

1 4 2 0 1 0 

−2 −3 1 1 0 0 

0 5 3 0 0 1 

 
1 4 2 0 1 0 

⎤ 

0 1 1 1/5 2/5 0 ⎦ 

0 0 1 1/2 1 −1/2  

 

1 4 2 0 1 0 

0 5 5 1 2 0 

0 0 −2 −1 −2 1 

 1 0   −2 −4/5    −3/5 0 

0 1       1 1/5       2/5 0 

 

1 

− 
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1.  M1(1/3)     2.  A13(−1)     3.  P23         4.  A23(2)      5.  M2(−1), M3(1/3) 
 

 

(b). We have:  rank(A) = 3, since the row-echelon form of A in (a) has 3 nonzero rows. 
 

(c). We have

⎤   ⎡                           ⎤ 
 

1 

⎡ 
1       0       0     1/3      0   0 

⎤
 

2

⎦ ∼  ⎣ 

 
⎡ 

 

3 

⎦ ∼  ⎣ 0       2   −1        0       1   0 ⎦ 
0   −1       2   −1/3    0   1 

⎤   ⎡ 
 

4

∼  ⎣                             ⎦ ∼  ⎣ 
 

 
⎡                                ⎤   ⎡ 

 

5                                                                                          6
∼  ⎣                             1 

0   0       1   −2/9    1/3    2/3 

⎦ ∼  ⎣

 
1.  M1(1/3)     2.  A13(−1)     3.  P23         4.  A23(2)      5.  M2(−1), M3(1/3)     6.  A32(2) 

Hence, ⎡   
1/3      0       0   

⎤

 
 

 
37. 

 

(a). We have 

A−1  = ⎣ −1/9    2/3    1/3  ⎦ . 
−2/9    1/3    2/3

⎡ 
−2    −3    1 

⎤   ⎡
 1       4   2 

⎤   ⎡          ⎤   ⎡
 

2                                      3 

⎤   ⎡ 
1   4   2 

⎤
 

4

⎣              ⎦ ∼  ⎣ −2    −3    1 ⎦ ∼  
⎣ 

0       5   3 

⎦ ∼  ⎣ ⎦ ∼  ⎣ 0   1   1 ⎦ . 
0   0   1

 
1.  P12         2.  A12(2)      3.  A23(−1)     4.  M2(1/5), M3(−1/2) 

 

 

(b). We have:  rank(A) = 3, since the row-echelon form of A in (a) consists of 3 nonzero rows. 
 

(c). We have 

⎤   ⎡                         ⎤   ⎡ 
 

1                                                                         2⎦ ∼  ⎣ ⎦ ∼  ⎣

 

 
⎡                           ⎤   ⎡ 

 

3                                                                             4 
∼  ⎣                           ⎦ ∼  ⎣ 

 

 
⎡                                    ⎤   ⎡ 

1   0   0      1/5        7/5           1   
⎤

 
5                                                                                                   6



(c)2017 Pearson Education. Inc. 
 

∼  ⎣ 
0   0       1     1/2         1       −1/2 

⎦ ∼  ⎣ 0   1   0   −3/10    −3/5      1/2    ⎦ . 
0   0   1      1/2          1       −1/2



(c)2017 Pearson Education. Inc.  

⎡ 
1 −1 3 1 0 0 

⎣ 4 −3 13 0 1 0 

 1 1 4 0 0 1 

 

1 −1 3 1 0 0 

0 1 1 −4 1 0 

0 2 1 −1 0 1 

 

1 −1 3 1 0 0 

0 1 1 −4 1 0 

0 0 1 −7 2 −1 

 

1 0 4 −3 1 0 

0 1 1 −4 1 0 

0 0 1 −7 2 −1 

 

− 

− 

− 

1 

= 

1 = 

1 = 

 
 

200 
 

 

1.  P12         2.  A12(2)      3.  A23(−1)     4.  M2(1/5), M3(−1/2)     5.  A21(−4)     6.  A31(2),  A32(−1) 

Thus, ⎡  
1/5        7/5        −1    

⎤

A−1  = ⎣ −3/10    −3/5      1/2    ⎦ . 
1/2          1       −1/2 

 

38.  We use the Gauss-Jordan method  to find A−1:

⎤   ⎡                         ⎤ 
 

1 

⎡ 
1       1       3       1       0   0 

⎤
 

2

⎦ ∼  ⎣ ⎦ ∼  ⎣ 0       1       1   −4       1   0 ⎦ 
0       0   −1       7   −2    1

⎡                           ⎤   ⎡ 
 

3                                                                             4 

⎤   ⎡ 
1   0   0     25       7       4 

⎤
 

5

∼  ⎣                           ⎦ ∼  
⎣ 

⎦ ∼  ⎣ 0   1   0       3   −1       1 ⎦ . 
0   0   1   −7       2   −1

 
1.  A12(−4), A13(−1)     2.  A23(−2)     3.  M3(−1)     4.  A21(1)      5.  A31(−4), A32(−1) 

Thus, 
 
 
 
 

Now xi = A−1ei  for each i.  So 
⎡ 

 

 
 
 
 
 
 

25 
⎤

 

⎡ 
 

A−1  = ⎣ 
25   −7       4 

⎤
 

3   −1       1 ⎦ . 
−7       2   −1 
 

 
⎡ 
−7  
⎤ 

 

 
 
 
 
 
 
⎡   

4 
⎤

x1  = A−1e1  = ⎣ 3 ⎦ ,    x2  = A−1e2  = ⎣ −1  ⎦ ,    x3  = A−1e3  = ⎣ 1 ⎦ .

−7                                             2                                         −1 
 

 

A−1  =   

⎤
1  
   
−2    −5  

  

.
 

Therefore, 

39     −7       2

 

 1 
x1  = A− b1 = − 

   
−2    −5  

    
1  

            
 1 

− 

    
−12  

  

= 
 1 

    
12  

         
 1 

= 

    
4  
 

 
,

39     −7       2        2 39       −3 39      3 13     1

 

 1 
x2  = A− b2 = − 

   
−2    −5  

    
4  

            
 1 

− 

    
−23  

  

= 
 1 

    
23  

 
 
,

 
and 

39     −7       2        3 39     −22 39     22

 1 
x3  = A− b3 = − 

   
−2    −5  

    
−2  

           
 1 

− 
   
−21  

  

= 
 1 

       
21  

         
 1 

= 

       
7  
 

 
.

 
 

40. 
 

(a). We 

have 

39     −7       
2           5 

39        24 



(c)2017 Pearson Education. Inc. 
 

39     −24 13     −8

 

 
and 

(A−1B)(B−1A) = A−1(BB−1)A = A−1InA = A−1A = In 

 
(B−1A)(A−1B) = B−1(AA−1)B = B−1InB = B−1B = In.



(c)2017 Pearson Education. Inc.  

4 

4 

4 0 

0 

0 
4 

0 

i 

0 

2 

2 

1 

2 

2 

0 
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Therefore,  
(B−1A)−1  = A−1B.

(b). We have 
 

 
as required. 

 
(A−1B)−1  = B−1(A−1)−1  = B−1A,

41(a). We have B4  = (S−1AS)(S−1AS)(S−1AS)(S−1AS) = S−1A(SS−1)A(SS−1)A(SS−1)AS = S−1AIAIAIAS = 
S−1A4S, as required. 

 

41(b).  We can  prove  this  by  induction on k.   For  k  = 1, the result  is B  = S−1AS,  which  was already 

given.  Now assume  that Bk  = S−1AkS.   Then  Bk+1 = BBk = S−1AS(S−1AkS)  = S−1A(SS−1)AkS  = 

S−1AIAkS = S−1Ak+1S, which completes  the induction step. 
 

42. 
 

(a). We reduce A to the identity matrix: 
       

4   7  
    

1  

        
1    7 

   
2  

    
1     7 

   
3  

    
1    7 

   
4   

   
1    0  

 

−2    5     
∼

 −2    5 
∼           

17 

2 

∼    
0    1 

∼    
0   1    

.

 

1.  M1( 1 )     2.  A12(2)      3.  M2(  2  )     4.  A21(− 7 ) 
4                                                            17                                   4 

 

The elementary matrices  corresponding  to these row operations are 
    

1
 

E1  =     4 
0    1 

 

,    E2  = 

   
1    0  

  

2   1 

   
1     0 

,    E3  =            
2 

17 

 

,    E4  = 

   
1   − 7 

0       1    
.

We have E4E3E2E1A = I2, so that 
 

 

   
4   0  

           
1   0  

       
1     0

 

 

 

    
1    7

A = E
−1

E
−1     −1     −1

 
                           4       ,

1        2    E3     E4      =   
0   1 −2    1               17             0    1

 

which is the desired expression since E−1  is an elementary matrix  for each i. 
 

(b). We can reduce A to upper  triangular form by the following elementary row operation: 
 

       
4   7  

    
1  

    
4     7 

−2    5     
∼         17        . 

1.  A12( 1 ) 

Therefore  we have the multiplier m12  = − 1 . Hence, setting 

       
1    0  

 
 

 
 
 
 

    
4     7

L = 
− 

2      
1 

and     U =        17        , 
2

 

we have the LU factorization A = LU , which can be easily verified by direct  multiplication. 
 

43.



(c)2017 Pearson Education. Inc.  

2 0 0 

1 0 0 

 
0 0 3 4 

0 0 4 3 

 

0 0 3 4 

0 0 4 3 

 

2 0 0 

1 0 0 

 
0 0 3 4 

0 0 4 3 

 

0 0 0 

1 0 0 

 

0 0 0 

1 0 0 

 

0 0 0 

1 0 0 

 
0 0 3 4 

0 0 4 3 

 

1 2 0 0 

0 0 3 4 

0 0 4 3 

 

1 −2  0 0 

0 1  0 0 
0 0  1 0 

0 0  0 1 

1 0 0 
 

0 

0 1 0  0 

     
 

1 0 0 0 

−2 1 0 0 

0 0 1 0 
0 0 0 1 

1   0 
 

0 0 

0   1  0 0 

0   0  1 0 

 

1 0 0 0 

0 1 0 0 

0 0 1 0 

    
 

1 2 0 0 

0 1 0 0 

 

0 0 0 

1 0 0 

 

0 0 0 

−3 
0 

0 
1 

0 
0 

 

0 1 0 0 

1 0 0 0 

 

1 0 0 

0 1 0 

0 0 3 

0 0 0 

 

0 0 1 

0 0 0 

 

0 1 0 

0 0 1 

 

0 0 0  

 

3 

7 

⎢ , 

 
 

202 
 

 
(a). We reduce A to the identity matrix:

⎡ 
2   1   0   0 

⎤   ⎡ 
1 

⎢              ⎥ 1  ⎢ 2 

⎤   ⎡ 
1       2   0   0 

⎤   ⎡ 
1 

⎥ 2  ⎢ 0   −3    0   0 ⎥ 3  ⎢ 0 

⎤   ⎡ 
1                   

⎤ 

⎥ 4  ⎢ 0                   ⎥

⎢              ⎥ ∼  ⎢ ⎥ ∼  ⎢ ⎥ ∼  ⎢ ⎥ ∼  ⎢              ⎥

⎣              ⎦   ⎣              ⎦   ⎣ ⎦   ⎣              ⎦   ⎣              ⎦

 
⎡ 

1                    
⎤

 
⎡ 

1   0   0       0 
⎤   ⎡ 

1 
⎤   ⎡ 

1   0   0   0 
⎤

5  ⎢ 0 ⎥ 6  ⎢ 0   1   0       0 ⎥ 7  ⎢ 0 ⎥ 8  ⎢ 0   1   0   0 ⎥

∼  ⎢ 
0   0   1    4 ⎥ ∼  ⎢ 

0   0   1       4 ⎥ ∼  ⎢ 
0   0   1    4 ⎥ ∼  ⎢ 

0   0   1   0 
⎥ .

⎣            
3   
⎦

 
0   0   4    3 

⎣              
3   
⎦ 

0   0   0   − 7 

⎣            
3   
⎦

 
0   0   0    1 

⎣              ⎦ 
0   0   0   1

 

1.  P12         2.  A12(−2)     3.  M2(− 1 )     4.  A21(−2)     5.  M3( 1 ) 3                                                                 3 

6.  A34(−4)     7.  M4(− 3 )     8.  A43(− 4 ) 
7                                  3 

 

The elementary matrices  corresponding  to these row operations are

⎡ 
0   1   0   0 

⎤         ⎡
 

⎤         ⎡ 
1       0   0   0 

⎤         ⎡                ⎤ 

1

E1  = 
⎢ 1   0   0   0 ⎥ 

,    E2  = 
⎢ ⎥ 

,    E3  = 
⎢ 0   − 3      0   0 ⎥ 

,    E4  = 
⎢                ⎥

⎢ 
0   0   1   0 

⎥         ⎢ ⎥         ⎢ 
0       0   1   0 

⎥         ⎢                ⎥
⎣              ⎦         ⎣ 

0   0   0   1 

⎦         ⎣                ⎦         ⎣                ⎦ 
0       0   0   1

⎡ 
1   0    0    0 

⎤         ⎡                ⎤         ⎡
 

⎤         ⎡                ⎤

E5  = 
⎢ 0   1    0    0 ⎥ 

,    E6  = 
⎢ ⎥ 

,    E7  = 
⎢ ⎥ 

,    E8  = 
⎢                   ⎥ 

.
⎢ 

0   0    1      0 
⎥         ⎢                ⎥         ⎢ ⎥         ⎢ 

0   0   1   − 4   
⎥

⎣        
3            

⎦
 

0   0    0    1 

⎣                ⎦ 
0   0   −4    1 

⎣                ⎦         ⎣              
3   
⎦ 

0   0   0   − 3                                                                    1

 

We have 
 

 
so that 

 

 
E8E7E6E5E4E3E2E1A = I4

 

A = E
−1

E
−1

 
 

−1     −1
 

 

−1     −1     −1     −1

1        2    E3     E4     E5     E6     E7     E8⎡              ⎤ ⎡ 
1 

= 
⎢                 ⎥ ⎢ 2 

⎤ ⎡ 
1                      

⎤ ⎡              ⎤
 

⎥ ⎢ 0                      ⎥ ⎢              ⎥

⎢           
0 
⎥ ⎢ 

0   0   1   0 
⎥ ⎢ 

0
 ⎥ ⎢ 

0                   
⎥

⎣              ⎦ ⎣ 

1 

⎦ ⎣ 

0   0   0   1 

⎦ ⎣ 

0       0   0   1         0 

⎦ · · · 

⎡ 
 

· · · 
⎢

 

0 
⎤ ⎡

 

0 ⎥ ⎢ 

0 
⎥ ⎢ 

0 
⎤ ⎡ 

1   0   0       0 
⎤ ⎡ 

1   0   0    0  
⎤

 
0 ⎥ ⎢ 0   1   0       0 ⎥ ⎢ 0   1   0    0  ⎥ 

0 
⎥ ⎢ 

0   0   1       0 
⎥ ⎢ 

0   0   1    4   
⎥



(c)2017 Pearson Education. Inc. 
 

1 0 0 

0 1 0 

0 0 1 

0 0 4 

 

2 1 0 0 

1 2 0 0 

0 0 3 4 

0 0 4 3 

 

3 

i 

3 

⎣              ⎦ ⎣ 
1 

⎦ ⎣ 
1         0   0   0   − 7 

⎦ ⎣            
3   
⎦

 
0   0   0    1

 

which is the desired expression since E−1  is an elementary matrix  for each i. 
 

(b). We can reduce A to upper  triangular form by the following elementary row operations:

⎡              ⎤   ⎡ 
2    1    0   0 

⎤
 
⎡ 

2    1    0       0 
⎤

⎢              ⎥ 1  ⎢ 0    3 0   0 ⎥ 2  ⎢ 0    3 0       0 ⎥

⎢              ⎥ ∼  ⎢ 
0    

2 

3   4 
⎥ ∼  ⎢ 

0    
2 

3       4 
⎥ .

⎣              ⎦   ⎣ 0              ⎦ 
0    0    4   3 

⎣    0                 ⎦ 
0    0    0   − 7
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0 0 

1 0 

  
 

⎢ 
⎢ 

⎥ 

3 3 

2 

2 

2 

2 

2 2 2 

2 

2 

2 

9 

− − − 

− 

− 
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1.  A12(− 1 )     2.  A34(− 4 ) 
2                                  3 

 

Therefore,  the nonzero multipliers  are m12 = 1  and m34 = 4 . Hence, setting2 
⎡ 

1    0    0    0 
⎤

 
1

 

3 
⎡ 

2    1    0       0 
⎤

 
3

L = 
⎢  

2 
1    0    0 ⎥ ⎥ and     U = 

⎢ 0    
2      

0       0 ⎥ ,

 

0    0    4      1 
 

0    0    0   − 7

 

we have the LU factorization A = LU , which can be easily verified by direct  multiplication. 
 

44. 
 

(a). We reduce A to the identity matrix:
⎡ 

3       0       0 
⎤

 
⎡ 

1       1       2 
⎤

 
1

 

⎡ 
1       1       2 

⎤
 

2
 

⎡ 
1       1       2 

⎤
 

3
 

⎡ 
1       1       2 

⎤
 

4

⎣ 0       2   −1  ⎦ ∼  ⎣ 0       2   −1  ⎦ ∼  ⎣ 0       2   −1  ⎦ ∼  ⎣ 0       1   − 
1

 

⎦ ∼  ⎣ 0       1   − 1   ⎦

1   −1       2 3       0       0 0       3   −6 0       3    −6 0       0   − 9

⎡ 
1       1       2 

⎤
 

5
 

⎡ 
1   0       3 

6
 

⎤   ⎡ 
1   0       0 

⎤
 

7
 

⎡ 
1   0   0 

⎤
 

8

∼  ⎣ 0       1   − 1 

0       0       1 

⎦ ∼  ⎣ 0   1   − 1 

0   0       1 

⎦ ∼  ⎣ 0   1   − 1 

0   0       1 

⎦ ∼  ⎣ 0   1   0 ⎦ . 
0   0   1

 

1.  P13         2.  A13(−3)     3.  M2( 1 )     4.  A23(−3)     5.  M3(− 2 ) 
2                                                                     9 

6.  A21(1)      7.  A31(− 3 )     8.  A32( 1 ) 
2                              2 

The elementary matrices  corresponding  to these row operations are
⎡ 

0   0   1 
⎤

 
⎡   

1   0   0 
⎤

 
⎡ 

1    0    0 
⎤

 
⎡ 

1       0   0 
⎤

E1  = ⎣ 0   1   0 ⎦ ,    E2  = ⎣ 0   1   0 ⎦ ,    E3  = ⎣ 0    1
 0 ⎦ ,    E4  = ⎣ 0       1   0 ⎦

1   0   0 
⎡ 

1                 
⎤

 

−3    0   1 
⎡ 

1   1   0 
⎤

 

0    0    1 
⎡ 

1   0   − 3   
⎤

 

0   −3    1 
⎡ 

1   0    0  
⎤

E5  = ⎣ 0 ⎦ ,    E6  = ⎣ 0   1   0 ⎦ ,    E7  = ⎣ 0   1       0 ⎦ ,    E8  = ⎣ 0   1    1   ⎦ .

 

 
We have 

0   0   − 2 0   0   1 0   0       1 0   0    1

 

 
so that 

E8E7E6E5E4E3E2E1A = I3

A = E
−1

E
−1

 −1     −1
 −1     −1     −1     −1

1        2    E3     E4     E5     E6     E7     E8 
⎡ 

0   0   1 
⎤ ⎡ 

1   0   0 
⎤ ⎡ 

1   0   0 
⎤ ⎡ 

1   0   0 
⎤

 
= ⎣  0    1    0  ⎦ ⎣  0    1    0  ⎦ ⎣  0    2    0  ⎦ ⎣  0    1    0  ⎦ · · · 

1   0   0 3   0   1 0   0   1 0   3   1
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2 

2 

2 

i 

2 

⎡ 
1   0       0 

⎤ ⎡ 
1   −1    0 

⎤ ⎡ 
1   0    3 

⎤ ⎡ 
1   0       0 

⎤

· · · ⎣ 0   1       0 ⎦ ⎣ 0       1   0 ⎦ ⎣ 0   1    0 ⎦ ⎣ 0   1   − 1   ⎦ ,

0   0   − 9 0       0   1 0   0    1 0   0       1

which is the desired expression since E
−1  

is an elementary matrix  for each i. 
 

(b). We can reduce A to upper  triangular form by the following elementary row operations:
⎡ 

3       0       0 
⎤

 
⎡ 

3       0       0 
⎤

 
1 

⎡ 
3   0       0 

⎤
 

2

⎣ 0       2   −1  ⎦ ∼  ⎣ 0       2   −1  ⎦ ∼  ⎣ 0   2   −1  ⎦ .
1   −1       2 0   −1       2 0   0      3
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1 0   0 
⎤

  

0 1   0 ⎦ and 

 

1 4 2 

0 1 −8 

0 0 45 

 

45 

0   0 

1 

45 
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1.  A13(− 1 )     2.  A23( 1 ) 
3                              2 

 

Therefore,  the nonzero multipliers  are m13 = 1  and m23 = − 1 . Hence, setting 
3                                    2 

⎡                              ⎡ 
3   0       0 

⎤

L = ⎣ 
1           1

 
U = ⎣ 0   2   −1  ⎦ , 

3

3      
− 

2      
1 0   0      

2

 

we have the LU factorization A = LU , which can be verified by direct  multiplication. 
 

45. 
 

(a). We reduce A to the identity matrix:

⎡ 
−2    −3    1 

⎤   ⎡
 1       4   2 

⎤
 
⎡ 

1   4       2 
⎤

 
2 

⎡ 
1   4       2 

⎤
 

3 

⎡ 
1   4       2 

⎤
 

4

⎣   1       4   2 ⎦ ∼  ⎣ −2    −3    1 ⎦ ∼  ⎣ 0   5       5 ⎦ ∼  ⎣ 0   5       5 ⎦ ∼  ⎣ 0   1   −8  ⎦

0       5   3 

⎡ 
 

5 

0       5   3 

⎤   ⎡ 
1   4       2 

⎤
 

6 

0   5   −3 

⎡ 
1   0     34 

⎤
 

7 

0   1   −8 

⎡ 
1   0   34 

⎤
 

8 

0   5       5 

⎡ 
1   0   0 

⎤
 

9

∼  ⎣            ⎦ ∼  ⎣ 0   1   −8  ⎦ ∼  ⎣ 0   1   −8  ⎦ ∼  ⎣ 0   1    
0 

⎦ ∼  ⎣ 0   1   0 ⎦ .

0   0       1 0   0       1 0   0    1 0   0   1

 
1.  P12         2.  A12(2)      3.  A23(−1)     4.  P23         5.  A23(−5) 

6.  M3(  1  )     7.  A21(−4)     8.  A32(8)      9.  A31(−34) 
 

The elementary matrices  corresponding  to these row operations are

⎡ 
0   1   0 

⎤
 

⎡ 
1   0   0 

⎤
 

⎡ 
1       0   0 

⎤

E1  = ⎣ 1   0   0 ⎦ ,    E2  = ⎣ 2   1   0 ⎦ ,    E3  = ⎣ 0       1   0 ⎦ ,
0   0   1 

⎡ 
1   0   0 

⎤
 

0   0   1 

⎡ 
1       0   0 

⎤
 

0   −1    1 

⎡ 
1   0     0   

⎤

E4  = ⎣ 0   0   1 ⎦ ,    E5  = ⎣ 0       1   0 ⎦ ,    E6  = ⎣ 0   1     0   ⎦ ,
0   1   0 0   −5    1                                                       1

 ⎡ 
1   −4    0 

⎤         ⎡ 
1 0 0 

⎤         ⎡ 
1   0   −34  

⎤
 

E7  = ⎣ 0 1 0 ⎦ , E8  = ⎣ 0 1 8 ⎦ , E9  = ⎣ 0 1 0 ⎦ . 
0 0 1  0 0 1  0 0 1  

We have 
 
 

so that 

 
E9E8E7E6E5E4E3E2E1A = I3

 

A = E
−1

E
−1     −1

 
 

−1     −1     −1
 

 

−1     −1     −1
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1 0 0  
⎤

 
⎡ 

1 4 0 
⎤

 
⎡ 

1 

0 1 0  ⎦ ⎣ 0 1 0 ⎦ ⎣ 0 

 

1        2    E3     E4     E5     E6     E7     E8     E9⎡ 
0   1   0 

⎤ ⎡
 1   0   0 

⎤ ⎡ 
1   0   0 

⎤ ⎡ 
1   0   0 

⎤

= ⎣  1    0    0  ⎦ ⎣  −2    1    0  ⎦ ⎣  0    1    0  ⎦ ⎣  0    0    1  ⎦ · · · 
0   0   1 0   0   1 

⎡ 
1   0   0 

⎤ ⎡
 

0   1   1 0   1   0  

0       0 
⎤ ⎡ 

1   0   34 
⎤

· · · ⎣ 0   1   0 ⎦ ⎣ 1   −8  ⎦ ⎣ 0   1    0  ⎦ ,

0   5   1 0   0   45 0   0   1 0   0       1 0   0    1
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1       4   2 ⎦ 

∼  

⎣   0      5       5   ⎦ 
∼  

2       2 

⎣   0      5          5 
2          2 

0 5 3 0       5    3 0       0   −2 

 

i 

2 

2 
0 

1 2 

2 

2 
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which is the desired expression since E−1  is an elementary matrix  for each i. 
 

(b). We can reduce A to upper  triangular form by the following elementary row operations:

⎡ 
−2    −3    1 

⎤
 

⎣ 

⎡ 
−2    −3    1 

⎤   ⎡ 
−2    −3       1 

⎤
 
⎦ .

 

 

Therefore,  the nonzero multipliers  are m12 = − 1  and m23 = 2. Hence, setting

⎡   
1   0   0 

⎤
 

⎡ 
−2    −3       1 

⎤

L = ⎣ − 1 1   0 ⎦   and     U = ⎣          5
 

5   ⎦ ,

0   2   1 0       0   −2

 

we have the LU factorization A = LU , which can be verified by direct  multiplication. 
 

46(a). Using the distributive laws of matrix  multiplication, first note that 
 

(A+2B)2 = (A+2B)(A+2B) = A(A+2B)+2B(A+2B) = A2+A(2B)+(2B)A+(2B)2 = A2+2AB+2BA+4B2. 

Thus,  we have 
 

 
 
 
 
 
 
 

as needed. 

 
 

(A + 2B)3 = (A + 2B)(A + 2B)2
 

= A(A + 2B)2 + 2B(A + 2B)2
 

= A(A2 + 2AB  + 2BA + 4B2) + 2B(A2 + 2AB  + 2BA + 4B2) 

= A3  + 2A2B + 2ABA + 4AB2 + 2BA2 + 4BAB + 4B2A + 8B3,

 

46(b). Each occurrence of B in the answer to part  (a) must now be accompanied  by a minus sign. Therefore, 

all terms containing an odd number  of Bs will experience a sign change.  The answer is 
 

(A − 2B)3 = A3  − 2A2B − 2ABA − 2BA2 + 4AB2 + 4BAB + 4B2A − 8B3. 

 
47.The answer  is 2k , because  each  term  in the expansion  of (A + B)k consists  of a string  of k  matrices, 

each of which is either  A  or B  (2 possibilities  for each matrix  in the  string).   Multiplying  the possibilities 

for each  position  in  the string  of length  k,  we get  2k  different  strings,  and  hence  2k  different  terms  in 

the  expansion  of (A + B)k. So, for instance,  if k = 4, we expect  16 terms,  corresponding  to the  16 strings 

AAAA, AAAB, AABA, ABAA, BAAA, AABB, ABAB, ABBA, BAAB, BABA, BBAA, ABBB, BABB, 

BBAB, BBBA, and BBBB. Indeed,  one can verify that the expansion  of (A + B)4 is precisely the sum of 

the 16 terms we just  wrote down. 
 

48.  We claim that
 
 
 

To see this,  simply note that 

   
A       0 

0    B−1
 

 −1    
A−1       0 

=      
0      B      

.

 
 
 
 

and 

    
A       0 

0    B−1
 

 

    
A−1       0 

0      B 

    
A−1       0 

0      B 
     

A       0
 

0    B−1
 

 

= 

    
In     0 
0    Im 

 

 

= 

    
In     0 
0    Im 

 
= In+m 

 
 
 
= In+m.
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0 1 ∗  ∗  
0 0 0 1 

 

0 0 1 ∗  
0 0 0 1 

 

0 1 ∗  ∗  ∗  ∗  
0 0 1 ∗  ∗  ∗  
0 0 0 0 1 ∗  
0 0 0 0 0 1 

 

0 1 ∗  ∗  ∗  ∗  
0 0 0 1 ∗  ∗  
0 0 0 0 1 ∗  
0 0 0 0 0 1 

 

0 0 1 ∗  ∗  ∗  
0 0 0 1 ∗  ∗  
0 0 0 0 1 ∗  
0 0 0 0 0 1 
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49.  For a 2 × 4 matrix, the leading ones can occur in 6 different positions: 
 

    
1    ∗      ∗      ∗   

  

, 

   
1    ∗      ∗      ∗   

  

, 

   
1    ∗      ∗      ∗   

  

, 

   
0    1    ∗      ∗   

  

, 

                              

, 

 

0   1   ∗      ∗  0   0   1   ∗  0   0   0   1 0   0   1   ∗

 

For a 3 × 4 matrix, the leading ones can occur in 4 different positions:

⎡ 
1   ∗       ∗       ∗   

⎤
 
⎡ 

1   ∗       ∗       ∗   
⎤

 
⎡ 

1   ∗       ∗       ∗   
⎤

 
⎡ 

0   1   ∗       ∗    
⎤

 

⎣ 0   1   ∗  ∗    ⎦ , ⎣ 0   1   ∗       ∗    ⎦ , ⎣ 0   0   1   ∗    ⎦ , ⎣ 0 0 1 ∗  ⎦ 

 0   0   1 ∗  0   0   0   1 0   0   0   1 0 0 0 1  

For a 4 × 6 matrix, the leading ones can occur in 15 different positions: 
⎡ 

1   ∗       ∗       ∗       ∗       ∗   
⎤

 
⎢ 0   1   ∗       ∗       ∗       ∗   ⎥ 

⎡ 
1   ∗       ∗       ∗       ∗       ∗   

⎤
 

⎢ 0   1   ∗       ∗       ∗       ∗   ⎥ 

⎡ 
1   ∗       ∗       ∗       ∗       ∗   

⎤
 

⎢ 0   1   ∗       ∗       ∗       ∗   ⎥ 

⎡ 
1   ∗       ∗       ∗       ∗       ∗    

⎤
 

⎢ 0   1   ∗       ∗       ∗       ∗    ⎥

⎢ 
0   0   1   ∗       ∗       ∗    

⎥ , ⎢ 
0   0   1   ∗       ∗       ∗    

⎥ , ⎢ 
0   0   1   ∗       ∗       ∗    

⎥ , ⎢ 
0   0   0   1   ∗       ∗   

⎥ ,⎣                     ⎦ 
0   0   0   1   ∗      ∗  

⎣                     ⎦ 
0   0   0   0   1   ∗  

⎣                     ⎦ 
0   0   0   0   0   1 

⎣                     ⎦ 
0   0   0   0   1   ∗

⎡ 
1   ∗       ∗       ∗       ∗       ∗   

⎤
 

⎢ 0   1   ∗       ∗       ∗       ∗   ⎥ 

⎡ 
1   ∗       ∗       ∗       ∗       ∗   

⎤
 

⎢ 0   1   ∗       ∗       ∗       ∗   ⎥ 

⎡ 
1   ∗       ∗       ∗       ∗       ∗   

⎤
 

⎢ 0   0   1   ∗       ∗       ∗   ⎥ 

⎡ 
1   ∗       ∗       ∗       ∗       ∗    

⎤
 

⎢ 0   0   1   ∗       ∗       ∗    ⎥

⎢ 
0   0   0   1   ∗       ∗    

⎥ , ⎢ 
0   0   0   0   1   ∗    

⎥ , ⎢ 
0   0   0   1   ∗       ∗    

⎥ , ⎢ 
0   0   0   1   ∗       ∗    

⎥ ,⎣                     ⎦ 
0   0   0   0   0   1 

⎣                     ⎦ 
0   0   0   0   0   1 

⎣                     ⎦ 
0   0   0   0   1   ∗  

⎣                     ⎦ 
0   0   0   0   0   1

⎡ 
1   ∗       ∗       ∗       ∗       ∗   

⎤
 

⎢ 0   0   1   ∗       ∗       ∗   ⎥ 

⎡ 
1   ∗       ∗       ∗       ∗       ∗   

⎤
 

⎢ 0   0   0   1   ∗       ∗   ⎥ 

⎡ 
0   1   ∗       ∗       ∗       ∗   

⎤
 

⎢ 0   0   1   ∗       ∗       ∗   ⎥ 

⎡ 
0   1   ∗       ∗       ∗       ∗    

⎤
 

⎢ 0   0   1   ∗       ∗       ∗    ⎥

⎢ 
0   0   0   0   1   ∗    

⎥ , ⎢ 
0   0   0   0   1   ∗    

⎥ , ⎢ 
0   0   0   1   ∗       ∗    

⎥ , ⎢ 
0   0   0   1   ∗       ∗    

⎥ ,⎣                     ⎦ 
0   0   0   0   0   1 

⎣                     ⎦ 
0   0   0   0   0   1 

⎣                     ⎦ 
0   0   0   0   1   ∗  

⎣                     ⎦ 
0   0   0   0   0   1

⎡                     ⎤ ⎡ 
 

⎢                     ⎥ ⎢ 

⎤ ⎡                     ⎤ 
 

⎥ ⎢                     ⎥

⎢                     ⎥ , ⎢ ⎥ , ⎢                     ⎥

⎣                     ⎦ ⎣ ⎦ ⎣                     ⎦
 

 

For an m × n matrix  with m ≤ n, the answer is the binomial  coefficient 
     

n                  n!  
C(n, m) =     

m 
=   . 

m!(n − m)!

 

This represents n “choose” m, which is the number  of ways to choose m columns from the n columns of the 

matrix  in which to put  the leading ones.  This choice then  determines the structure of the matrix. 

50.  We claim that the inverse of A10 is B5.  To prove this,  use the fact that A2B = I to observe that 
 

A10B5 = A2A2A2A2(A2B)BBBB = A2A2A2A2IBBBB = A2A2A2(A2B)BBB 
 

= A2A2A2IBBB = A2A2(A2B)BB = A2A2IBB = A2(A2B)B = A2IB = A2B = I,  
 

as required. 

51.  We claim that the inverse of A9   is B6.  To prove this,  use the fact that A3B2 = I to observe that 
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A9B6 = A3A3(A3B2)B2B2 = A3A3IB2B2 = A3(A3B2)B2 = A3IB2 = A3B2 = I,  
 

as required. 


