
 

 

 

Solution Manual for Differential Equations with Boundary Value 

Problems 9th Edition by Zill ISBN 1305965795 9781305965799 
Full link download : 

Solution Manual:  

 

https://testbankpack.com/p/solution-manual-for-differential-equations-

with-boundary-value-problems-9th-edition-by-zill-isbn-1305965795-

9781305965799/ 

 

Chapter 2 

 
First-Order Differential Equations 

 

 
2.1 

 

 

 

 
1. 3 

y
 

2 
 

1 

 

–3 –2 –1 

–1 
 

–2 

 

–3 

 

 

 
 

 

 
 

 
x 

1 2 3 

 

2. 10 
y
 

 
5 

 
 

0 

 
 

–5 

 

 

–10 –5 0 

 

 

 

 

 

 

 
 

x 

 

 

 

 

 
5 10 

 

3. 4 
y
 

 
2 

4. y 
4 

 2  

0      x 0     x 

 

–2 
 

 

 

 

 
–4 

 

 

 

 

 
–2 

 

 

 

 

 
0 

 

 

 

 

 
2 

 

 

 

 

 
4 

 –2 

 
–4 

 

 

 

 
–4 

 

 

 

 
–2 

 

 

 

 
0 

 

 

 

 
2 

 

 

 

 
4 

 

5. y y 

Solution Curves Without a Solution 

4  
6. 4  

 

2  
 

2  

https://testbankpack.com/p/solution-manual-for-differential-equations-with-boundary-value-problems-9th-edition-by-zill-isbn-1305965795-9781305965799/
https://testbankpack.com/p/solution-manual-for-differential-equations-with-boundary-value-problems-9th-edition-by-zill-isbn-1305965795-9781305965799/
https://testbankpack.com/p/solution-manual-for-differential-equations-with-boundary-value-problems-9th-edition-by-zill-isbn-1305965795-9781305965799/
https://testbankpack.com/p/solution-manual-for-differential-equations-with-boundary-value-problems-9th-edition-by-zill-isbn-1305965795-9781305965799/


 
–4 –2 0 2 4 –4 –2 0 2 4 

 

 

36 



2.1 Solution Curves Without a Solution 37 
 

 

 
 

y 

 

 

 
x 

 

 

 
–4 –2 0 2 4 

 

9. y 
 

 

 

 

 

 

 
 

–4 –2 0 2 4 –4 –2 0 2 4 

 

11. y y 
 

 

 

 

 

 

 
 

–4 –2 0 2 4 –4 –2 0 2 4 

 

13. 
y 14. y 

3 
4
 

2 

1 
2 

0 x 

–1 

–2 

–3 

–3    –2   –1     0 1 2 3 

 

0 x 

 
–2 

 
–4 

–4 –2 0 2 4 

 

15. (a)  The isoclines have the form y = −x + c, whichare straight 3 
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lines with slope −1. 2 
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(b) The isoclines have the form x
2  

+ y
2   

= c, which are circles y 

centered at the origin. 
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16. (a) When x = 0 or y = 4, dy/dx = −2 so the lineal elements have slope −2. When y = 3 or 

y = 5, dy/dx = x − 2, so the lineal elements at (x, 3) and (x, 5) have slopes x − 2. 

 
(b) At (0, y0 ) the solution curve is headed down. If y → ∞ as x increases, the graph must 

eventually turn around and head up, but while heading up it can never cross y = 4 where 

a tangent line to a solution curve must have slope −2. Thus, y cannot approach 

∞ as x approaches ∞. 
 

17. When y < 1   x2
, y′ = x2  

− 2y is positive and the portions of 
y

 

solution curves “outside” the nullcline parabola are increasing. 2 

When y > 1 x2
, y′ = x2  

− 2y is negative and the portions of the 1 
2 

solution curves “inside” the nullcline parabola are decreasing. 0 x 
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18. (a) Any horizontal lineal element should be at a point on a nullcline. In Problem 1 the 

nullclines are x2 
− y2  

= 0 or y  = ±x.  In Problem 3 the nullclines are 1 − xy  = 0 or y 

= 1/x. In Problem 4 the nullclines are (sin x) cos y = 0 or x = nπ and y = π/2 + nπ, 

where n is an integer.  The graphs on the next page show the nullclines for the equations in 

Problems 1, 3, and 4 superimposed on the corresponding direction field. 
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(b) An autonomous first-order differential equation has the form y′ = f(y). Nullclines have 

the form y = c where f(c) = 0. These are the graphs of the equilibrium solutions of the 

differential equation. 

 

 

19. Writing the differential equation in the form dy/dx = y(1 − y)(1 + y) we see that 

critical points are y = −1, y = 0, and y = 1. The phase portrait is shown at the 
right. 
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20. Writing the differential equation in the form dy/dx = y
2 
(1 − y)(1 + y) we see that 

critical points are y = −1, y = 0, and y  = 1. The phase portrait is shown at the right. 
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21. Solving  y
2   
− 3y  =  y(y − 3)  =  0 we obtain  the critical  points  0  and  3.   From  the 

phase portrait we see that 0 is asymptotically stable (attractor) and 3 is unstable 
(repeller). 3 
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22. Solving y2 

−y3 
= y2 

(1 −y) = 0 we obtain the critical points 0 and 1. From the phase 
portrait we see that 1 is asymptotically stable (attractor) and 0 is semi-stable. 
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23. Solving (y − 2)
4 
= 0 we obtain the critical point 2. From the phase portrait we see 

that 2 is semi-stable. 
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24. Solving 10 + 3y − y
2 
= (5 − y)(2 + y) = 0 we obtain the critical points −2 and 5. From 

the phase portrait we see that 5 is asymptotically stable (attractor) and −2 is unstable 
(repeller). 5 
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25. Solving y
2 
(4 − y

2 
) = y

2 
(2 − y)(2 + y) = 0 we obtain the critical points −2, 0, and 

2. From the phase portrait we see that 2 is asymptotically stable (attractor), 0 is 
2

 

semi-stable, and −2 is unstable (repeller). 
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26. Solving y(2 − y)(4 − y) = 0 we obtain the critical points 0, 2, and 4. From the phase 

portrait we see that 2 is asymptotically stable (attractor) and 0 and 4 are unstable 
4
 

(repellers). 
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27. Solving y ln(y+2) = 0 we obtain the critical points −1 and 0. From the phase portrait 

we see that −1 is asymptotically stable (attractor) and 0 is unstable (repeller). 

 

 
28. Solving yey − 9y = y(ey − 9) = 0 (since ey is always positive) we obtain the 

critical points 0 and ln 9. From the phase portrait we see that 0 is asymptotically 
stable (attractor) and ln 9 is unstable (repeller). 
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29. The critical points are 0 and c because the graph of f (y) is 0 at these points. Since f (y) > 0 

for y < 0 and y > c, the graph of the solution is increasing on the y-intervals (−∞, 0) and 

(c, ∞). Since f (y) < 0 for 0 < y < c, the graph of the solution is decreasing on the y-interval 

(0, c). 
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30. The critical points are approximately at −2, 2, 0.5, and 1.7. Since f (y) > 0 for y < −2.2 

and 0.5 < y < 1.7, the graph of the solution is increasing on the y-intervals (−∞, −2.2) and 

(0.5, 1.7). Since f (y) < 0 for −2.2 < y < 0.5 and y > 1.7, the graph is decreasing on the 

y-interval (−2.2, 0.5) and (1.7,∞). 
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31. From the graphs of z = π/2 and z = sin y we see that 

(2/π)y −sin y = 0 has only three solutions. By inspection 
y 

we see that the critical points are −π/2, 0, and  π/2. 

 

 
 

From the graph at the right we see that 
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This enables us to construct the phase portrait shown at the right. From this portrait we see 

that π/2 and −π/2 are unstable (repellers), and 0 is asymptotically stable (attractor). 

32. For dy/dx = 0 every real number is a critical point, and hence all critical points are noniso- lated. 

 

33. Recall that for dy/dx = f(y) we are assuming that f and f′ are continuous functions of y 

on some interval I. Now suppose that the graph of a nonconstant solution of the differential 

equation crosses the line y = c. If the point of intersection is taken as an initial condition 

we have two distinct solutions of the initial-value problem. This violates uniqueness, so the 
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2 

2 

 

graph of any nonconstant solution must lie entirely on one side of any equilibrium solution. 

Since f is continuous it can only change signs at a point where it is 0. But this is a critical 

point. Thus, f(y) is completely positive or completely negative in each region Ri. If y(x) is 

oscillatory or has a relative extremum, then it must have a horizontal tangent line at some 

point (x0 , y0 ). In this case y0 would be a critical point of the differential equation, but we saw 

above that the graph of a nonconstant solution cannot intersect the graph of the equilibrium 

solution y = y0 . 

 
34. By Problem 33, a solution y(x) of dy/dx  = f(y) cannot  have relative extrema and hence must be 

monotone. Since y′(x) = f (y) > 0, y(x) is monotone increasing, and since y(x) is bounded 

above by c2, limx→∞ y(x) = L, where L ≤ c2. We want to show that L = c2. Since L is a 

horizontal asymptote of y(x), limx→∞ y′(x) = 0. Using the fact that f (y) is continuous we have 

 

f(L) = f lim y(x) = lim  f(y(x)) = lim y′(x) = 0. 
x→∞ x→∞ x→∞ 

 

But then L is a critical point of f. Since c1 < L ≤ c2, and f has no critical points between 

c1 and c2, L = c2. 

 

35. Assuming the existence of the second derivative, points of inflection of y(x) occur where y′′(x) 

= 0.  From  dy/dx  = f (y)  we have  d
2 
y/dx

2   
= f ′(y) dy/dx.  Thus, the  y-coordinate of  a point of 

inflection can be located by solving f ′(y) = 0. (Points where dy/dx = 0 correspond to 

constant solutions of the differential equation.) 

 

36. Solving y2 
− y − 6 = (y − 3)(y + 2) = 0 we see that 3 and −2 

are critical points. Now d2 y/dx2  
= (2y − 1) dy/dx = (2y − 1)(y − 

3)(y + 2), so the only possible point of inflection is at y = 
1   

, 
2 

although the concavity of solutions can be different on either side 
of y = −2 and y = 3. Since y′′(x) < 0 for y < −2 and 

1  < y < 3, 
1 2 

and y′′(x) > 0 for −2 < y < 2 and y > 3, we see that solution 

curves are  concave  down  for  y < −2 and  
1   < y < 3 and concave up 

for −2 < y < 1 
and y > 3. Points of inflection of solutions of 

autonomous differential equations will have the same y-coordinates 

because between critical points they are horizontal translations of 

each other. 

 
37. If (1) in the text has no critical points it has no  constant  solutions.   The  solutions  have neither 

an upper nor lower bound. Since solutions are monotonic, every solution assumes all real values. 
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38. The critical points are 0 and  b/a. From the phase portrait  we see that 0 is an attractor 

and  b/a  is  a  repeller. Thus,  if an initial  population satisfies  P0   >  b/a, the population 

becomes unbounded as t increases, most probably in finite time, 

i.e. P (t) → ∞ as t → T . If 0 < P0 < b/a, then the population eventually dies out, 

that is, P (t) → 0 as t → ∞. Since population P > 0 we do not consider the case P0 

< 0. 

 

 

 

39. From the equation dP/dt = k (P − h/k) we see that the only critical point of the autonomous 

differential equationis the positive number h/k. A phase portrait shows that this point is 

unstable, that is, h/k is a repeller. For any initial condition P (0) = P0 for which 0 < P0 < h/k, 

dP/dt < 0 which means P (t) is monotonic decreasing and so the graph of P (t) must cross the t-

axis or the line P − 0 at some time t1 > 0.  But P (t1) = 0 means the population is  extinct at 

time t1. 

 

40. Writing the differential equation in the form 

dv k mg 
= 

dt m 

we see that a critical point is mg/k. 

k 
− v 

From the phase portrait we see that mg/k is an asymptotically stable critical point. 

Thus, lim v = mg/k. 
t→∞ 

 
41. Writing the differential equation in the form 

dv k 
= 

 

r r 
 

  mg k mg mg 
– v 2 = − v +v 

  
  

dt m k m k k 
p   

we see that the only physically meaningful critical point is 
p   

mg/k. 

From  the  phase  portrpait  we  see  that mg/k is an asymptotically stable critical 
point. Thus, lim v = 

t→∞ mg/k. 

 

42. (a) From the phase portrait we see that critical points are α and β. Let X(0) = X0. 

If X0 < α, we see that X → α as t → ∞. If α < X0 < β, we see that X → α 

as t → ∞.  If X0  > β, we see that X(t) increases in an unbounded manner,  

but more specific behavior of X(t) as t → ∞ is not known. 
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mg
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 
mg 
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2 

 

 
1 /  

1 1 

5 

3 

 

 

(b) When α = β the phase portrait is as shown.   If X0   < α,  then X(t)   → α as 

t  → ∞. If X0  >  α, then X(t) increases in an unbounded manner. This could 
happen in a finite amount of time. That is, the phase portrait does not 

indicate that X becomes unbounded as t → ∞. 


 

 

 
 

(c) When k  = 1 and α  = β  the differential equation is dX/dt  = (α  − X)
2
. For 

X(t) = α − 1/(t + c) we have dX/dt = 1/(t + c2 ) and 

 
(α − X)

2  
= α − 

 
For X(0) = α/2 we obtain 

α − 
1 

t + c 

2 1 dX 
= 

(t + c)2 
= 

dt 
.
 

 
1 

 

For X(0) = 2α we obtain 

X(t) = α − 
t + 2/α 

. 

 
1 

X(t) = α − 
t − 1/α 

. 

x x 

 

 

 

 

 

t t 

 

 

 

 

 

For X0 > α, X(t) increases without bound up to t = 1/α. For t > 1/α, X(t) increases 

but X → α as t → ∞. 

 

2.2 

 
In many of the following problems we will encounter an expression of the form ln|g(y)| = f(x)+c. 
To solve for g(y) we exponentiate both sides of the equation. This yields |g(y)| = ef (x)+c = ecef (x)

 

which implies g(y) = ±ecef (x) .  Letting c  = ±ec   we obtain g(y) = c  ef (x) . 
 

1. From dy = sin 5xdx we obtain y = −1 cos 5x + c. 

2. From dy = (x + 1)
2 dx we obtain y = 

1
(x + 1)

3 
+ c. 

 

 / 2 

–2 /  

Separable Variables 
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3 

 1 4 4 

  1  
kt

 

c
 t

e 

 

3. From dy = −e−3x dx we obtain y = 
1 
e−3x + c. 

1 1 1 

4. From 
(y − 1)2 dy = dx we obtain −

y − 1 
= x + c or y = 1 − 

x + c 
. 

5. From  
y 

dy =  
x

dx we obtain ln |y| = 4 ln |x|+ c or y = 1c x . 

6. From 
 1 

dy = −2xdx we obtain −
1 

= −x
2 
+ c or y =

 1 
. 

y2 y x2 + c1 

7. From e−2ydy = e
3xdx we obtain 3e−2y + 2e

3x  = c. 

y −x −3x y y −x 
1 −3x 

8. From ye dy =  e + e 

1 

dx we obtain ye − e + e 

y2 

+ e = c. 
3 

x3 
1

 

9. From y + 2 + 
y

 dy = x2 
ln xdx we obtain + 2y + ln |y| = 

2 
ln |x| −x3   

+  c. 
3 9 

1 1 2 1 

10. From 
(2y + 3)2 dy = 

(4x + 5)2 dx we obtain 
2y + 3 

= 
4x + 5 

+ c. 

11. From
  1   

dy  =  −
  1 

dx or sin y dy = − cos
2 
x dx = − 1 (1 + cos 2x) dx we obtain csc y 1 sec2 x 

2 

−cos y = −2 x − 4 sin 2x + c or 4 cos y = 2x + sin 2x + c1. 

12. From 2y dy = −
 sin 3x 

dx or 2y dy = − tan 3x sec
2 
3x dx we obtain y2  

= −1 sec
2 
3x + c. 

cos3 3x 
ey −ex 

6 
 

y −1 1 x −2 

13. From  
(ey + 1)2 

y 

dy =  
(ex + 1)3 

x 

dx we obtain −(e  + 1) = 2 (e   + 1) + c. 

1/2 1/2 

14. From 
(1 + y2)1/2 

dy =   

(1 + x2)
1/2

 

dx we obtain  1 + y2 = 1 + x2 + c. 

15. From 
1 

dS = k dr we obtain S = cekr. 
S 

16. From dQ = k dt we obtain ln |Q − 70| = kt + c or Q − 70 = c e . 

Q − 70 
1

 

1 1 1 
17. From  

P − P 2 dP = + dP = dt we obtain ln |P | − ln |1 − P | = t + c so that P 1 − P 

P P t c1et 

ln = t + c or 
1 − P 1 − P 

18. From  
 1  

dN  =   tet+2
 

= c1e . Solving for P we have P = . 
1 + 1 

 
+2 t+2 

 

 
tet+2 −et+2 −t 

N 
− 1  dt we obtain ln |N | = tet − e – t + c or N = c1e . 

 y − 2 x − 1 
19. From dy = dx or 1 −  

  5 dy = 1 −
   5 

 dx we obtain 

1 
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y + 3 x + 4 y + 3 
x + 4 

5 x +4 

y − 5 ln |y + 3| = x − 5 ln |x + 4| + c or 
y + 3 

= c1ex−y. 
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1 

y 

 

20. From  
 y + 1 

dy =
 x + 2 

dx  or 1 + 
2

 5 
dy = 1 + 

 
dx we obtain 

y − 1 x −3 
 

y − 1 
 

x −3 

 

y + 2 ln |y − 1| = x + 5 ln |x − 3| + c or 
(y − 1)

2 
x−y 

 
 

(x − 3)5 
= c1e .

 
1 

21. From xdx = p dy we obtain 
1 
x

2 
= sin−1 

y + c or y = sin 
x2 

+ c . 
 

1 − y2 2
 

1 1 ex 

2 

1 −1   x 

22. From dy = 
y2 

1
 ex + e−x 

dx = 
(ex)2 + 1 

dx we obtain −
y

 = tan e + c  or 

y = − −1 x 
.
 

tan e  + c 

23. From
 1 

dx = 4 dt we obtain tan−1 x = 4t + c. Using x(π/4) = 1 we find c = −3π/4. The 
x2 + 1 

solution of the initial-value problem is tan−1 x = 4t 
3π 

3π 
or x =tan 4t − . 

4 

4 
 

1 1 1 1 1 1 1 1 

24. From 
y2 − 1 

dy = 
x2 − 1 

dx or 
2 y  −

 
1 

− 
y + 1 

dy = 
2 x − 1 

− 
x + 1 

dx we obtain 

 y − 1 
ln |y − 1| − ln |y + 1| = ln |x − 1| − ln |x + 1| + ln c or 

 c(x − 1) 
= . Using y(2) = 2 we 

y −y1+ 1x − 1x + 1 
find c = 1. A solution of the initial-value problem is = or y = x. 

y + 1 x + 1 
 

1 1 − x 1 
25. From dy = 

x2    dx = 1 
 1 

dx we obtain ln |y| = − 
x 
− ln |x| = c or xy = c e−1/x. 

x2 − 
x 

1
 

Using y(−1) = −1 we find c1  = e−1
. The solution of the initial-value problem is xy = e−1−1/x 

or y = e−(1+1/x)/x. 

26. From 
  1 

dy = dt we obtain −1 ln |1 − 2y| = t + c or 1 − 2y = c e−2t. Using y(0) = 5/2 we 

1 − 2y 2 1
 

find c1 = −4. The solution of the initial-value problem is 1 − 2y = −4e−2t or y = 2e−2t  + 
1  

. 

27. Separating variables and integrating we obtain 

dx dy 
√ − p = 0 and sin−1 x − sin−1 y = c. 

1 − x2 1 −y2 

√ 
 

Setting x = 0 and y = 3/2 we obtain c = −π/3. Thus, an implicit solution of the initial- 

− 

2 
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value problem is sin−1 
x − sin−1 

y = π/3. Solving for y and using an addition formula from 

trigonometry, we get 

π π p  π x 
√ √ 

3 1 − x
2 

y = sin sin−1  x+ 
3 

= xcos 
3 

+ 1− x2 sin = + . 
3 2 2 
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2 

 

1 
28. From 

1 + (2y)2 
dy = 

−x
 

1 +(x2)
2

 

 
dx we obtain 

 

 
1 

tan−1 
2y = −

1 
tan−1 

x
2  

+ c or tan−1 
2y + tan−1 

x
2 
= c . 

2 2 1 
 

 

Using y(1) = 0 we find c1 = π/4. Thus, an implicit solution of the initial-value problem is 

tan−1 
2y + tan−1 

x
2 
= π/4 . Solving for y and using a trigonometric identity we get 

 

2y = tan  
π 

− tan− 
1 

x
2

 

4 

1 
y = 

2 
tan 

π 1  2 

– tan− x 
4 

1 tan 4π  − tan (tan−1  
x

2
) 

=   π  

2 1 + tan 4 

1 1 − x
2

 

= 
2 1 + x2 

.
 

tan (tan−1  x2) 

 

 

 
 

29. Separating variables and then proceeding as in Example 5 we get 

 

 
dy 

= ye−x
2 

dx 

1 dy 
= e−x2 

y dx 
ˆ 

x  
  1   dy 

dt = 

4   y(t) dt 

x 

ˆ x 

e−t 
2 

dt 
4 

ˆ x   −t 

ln y(t) = e dt 
4 4 

ˆ x 2 

ln y(x) −ln y(4) = e−t    dt 
4 

ln y(x) = 
ˆ x 

e−t 
2 

dt 
4 
´ x −t2 

y(x) = e 4 
e dt
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! 

1 

 

30. Separating variables and then proceeding as in Example 5 we get 
 

 

 

 
dy 
  = y2

 

dx 

 
sin (x

2 
) 

1 dy 2 

= sin (x ) 
  

y2 dx 
ˆ ˆ 

x 1 dy
dt =

 
  

x sin (t
2
) dt 

−2 y2(t) dt −2 

– x1 
y(t)− 

ˆ x 
= sin (t

2
) dt 

 
 −1  

2 −2 

ˆ x 2 
= sin (t ) dt 

+     
y(x) y(−2) 

 −1 
+ 3 = 

y(x) 

 
−2 

ˆ x 
sin (t2

) dt 
−2 

ˆ x −1 

y(x) =   3 − sin (t
2
)dt 

−2 

 

 

 

 

 

 

 

31. Separating variables we get 

dy 
= 2x +1 

 
 

dx 2y 

2y dy = (2x +1) dx 
ˆ ˆ 

2y dy = (2x + 1) dx 

y2 
= x2 

+ x + c 

 

√ 
 

The condition y(−2) = −1 implies c = −1. Thus y2  
= x2 

+ x − 1 and y = −  x2 + x − 1 in 

order for y to be negative.  Moreover for an interval containing −2 for values of x such that 
√ 

x2 
+ x − 1 > 0 we get 

1 5 
−∞, − − . 

2 2 
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2 

 

32. Separating variables we get 

 dy 2 

(2y− 2) = 3x 
dx 

+ 4x + 2 

(2y − 2) dy= 3x
2  

+ 4x + 2 dx 
ˆ ˆ 

(2y − 2) dy = 3x
2 
+ 4x + 2 dx 

ˆ ˆ 

2 (y − 1) dy = 3x
2 
+ 4x + 2 dx 

 
(y − 1)

2 
= x3 

+ 2x2  
+ 2x + c 

√ 
The condition y(1) = −2 implies c = 4. Thus y = 1 − x3 + 2x2 + 2x + 4 where the minus 

sign is indicated by the initial condition. Now x3 
+2x2 

+2x+4 = (x + 2)  x2  
+ 1  > 0 implies 

x > −2, so the interval of definition is (−2, ∞). 

33. Separating variables we get 
 

ey dx − e−x  dy = 0 

ey dx = e−x dy 

ex dx = e−y dy 
ˆ ˆ 

ex dx = e−y dy 

ex = −e−y + c 

The condition y(0) = 0 implies c = 2. Thus e−y = 2 − ex. Therefore y = − ln (2 − ex). Now we 

must have 2 − ex  > 0 or ex  < 2. Since ex  is an increasing function this imples x < ln 2 and so 

the interval of definition is (−∞, ln 2). 

34. Separating variables we get 
 

sin x dx + y dy = 0 

ˆ ˆ 

sin x dx + 

ˆ 

y dy = 0 dx 

 

 
– cos x + 

1 2 

2 
y = c 

The condition y(0) = 1 implies c  = −1 .   Thus − cos x + 
1 y2   

= −1  or y2   
= 2 cos x − 1. 

√  2 2 2 

Therefore y = 2 cos x − 1 where the positive root is indicated by the initial condition. Now 

we must have 2 cos x − 1 > 0 or cos x > 1 
. This means −π/3 < x < π/3, so the the interval 

of definition is (−π/3, π/3). 

35. (a) The equilibrium solutions y(x) = 2 and y(x) = −2 satisfy the initial conditions y(0) = 2 
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4 

y 

2 4x 

 

and y(0) = −2, respectively. Setting x = 
1 
and y = 1 in y = 2(1 + ce

4x)/(1 − ce
4x) we 

obtain  

1 = 2 
1 + ce 1 

, 1 − ce = 2 + 2ce, −1 = 3ce, and c = − . 
  

1 − ce 3e 

The solution of the corresponding initial-value problem is 

1 − 1 e4x−1 3 − e4x−1 
y = 2 3 = 2 . 

1 + 1e4x−1 
3 

 

(b) Separating variables and integrating yields 

1 1 

3 + e4x−1 

ln |y − 2| − 
4 

ln |y + 2| + ln c1  = x 
4 

ln |y − 2| − ln |y + 2| + ln c = 4x 

ln 
c(y − 2) 

= 4x
 

+ 2 

 y −  
c 

y + 2 
= e . 

Solving for y we get y = 2(c + e4x)/(c − e4x). The initial condition y(0) = −2 implies 

2(c + 1)/(c − 1) = −2 which yields c = 0 and y(x) = −2. The initial condition y(0) = 

2 does not correspond to a value of c, and it must simply be recognized that y(x) = 2 is 

a 

solution of the initial-value problem. Setting x = 
1 
and y = 1 in y = 2(c + e4x)/(c −e4x) 

4 

leads to c = −3e. Thus, a solution of the initial-value problem is 

−3e + e4x y 
 

 

3 − e4x−1 
 

 

36. Separating variables, we have 

= 2 
−3e − e4x 

= 2 
3 + e4x−1  

.
 

dy dx 

y2 − y 
=  

x 
or

 

Using partial fractions, we obtain 
ˆ 

ˆ 
dy 

y(y − 1) 
= ln |x| + c. 

1 1 

y − 1 
− 

y 
dy = ln |x| + c 

ln |y − 1| − ln |y| = ln |x| + c 

 y − 1 
ln  

xy   
= c 

y − 1 
= ec = c . 

xy 1
 

Solving for y we get y = 1/(1 − c1x). We note by inspection that y = 0 is a singular solution 
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of the differential equation. 
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2 

 

(a) Setting x = 0 and y = 1 we have 1 = 1/(1 − 0), which is true for all values of c1. Thus, 

solutions passing through (0, 1) are y = 1/(1 − c1x). 

 
(b) Setting x = 0 and y = 0 in y = 1/(1 − c1x) we get 0 = 1. Thus, the only solution passing 

through (0, 0) is y = 0. 

 

(c) Setting x =
1   

and y = 
1 
we have 

1  
= 1/(1 − 1 c ), so c  = −2 and y = 1/(1 + 2x). 

   

2 2 2 2 1 1 
 

(d) Setting x = 2 and y = 
1  

we have 
1  

= 1/(1 − 2c1), so c1 = −3 and 
4 4 2 

y = 1/(1 + 
3 
x) = 2/(2 + 3x). 

 
37. Singular solutions of dy/dx = x 

(ex  + e−x)dy/dx = y2  
is y = 0. 

p   
1 − y2 are y = −1 and y = 1. A singular solution of 

 

38. Differentiating ln (x
2 
+ 10) + csc y = c we get 

2x dy 

x2 + 10 
− csc y cot y 

dx 
= 0, 

2x 1 cos y dy 

x2 + 10 
− 

sin y 
· 

sin y dx 
= 0,

 

or 
 

2x sin
2 
y dx − (x

2 
+ 10) cos y dy = 0. 

 
Writing the differential equation in the form 

 

dy 2xsin
2    y 

dx 
= 

(x2 + 10) cos y 

we see that singular solutions occur when sin
2 y = 0, or y = kπ, where k is an integer. 

 
39. The singular solution y = 1 satisfies the initial-value problem. 

 

 

 

 
x 

1.01 
y
 

 

–0.004 –0.002 0.002 0.004 

0.98 

0.97 
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1.01 

–0.004 –0.002 0.002 0.004 

0.99 

0.98 

1.0004 

 

1.0002 

–0.004 –0.002 0.002   0.004 

0.9998 

 

0.9996 

tan 

10 

 

 

dy 
40. Separating variables we obtain = dx. Then 

(y − 1)2 

1.02 
y
 

1 x + c − 1 
 

 

−
y − 1 

= x + c and y = 
. 

x + c 

Setting x = 0 and y = 1.01 we obtain c = −100. The solution x 

is 

y =
 x − 101 

.
 

x − 100 
 

 

dy y
 

41. Separating variables we obtain      
(y − 1)2 + 0.01 

= dx. Then 

10 tan−1 
10(y − 1) = x + c and y = 1 +

 1 x + c 
. 

10 10 

Setting x = 0 and y = 1 we obtain c = 0. The solution is x 

1x 
y = 1 + tan . 

10 10 
 

 

42. Separating variables we obtain 
dy

 
 

(y − 1)
2 

− 0.01 

with u = y − 1 and a = 
1 
, we get 

 10y − 11 

= dx. Then, y 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

5 ln 

10y − 9 

= x + c. 
 

x 
–0 

 

Setting x = 0 and y = 1 we obtain c = 5 ln 1 = 0. The 
solution is 

 10y − 11 
5 ln 

10y − 9  
= x. 

 

Solving for y we obtain  
11 + 9ex/5

 

y = 
10 + 10ex/5 

.
 

Alternatively, we can use the fact that 

ˆ
  dy 

= −
 1 

tanh−1 y − 1 
= −10 tanh−1 

10(y − 1). 

(y − 1)2 −0.01  0.1  0.1 

(We use the inverse hyperbolic tangent because |y − 1| < 0.1 or 0.9 < y < 1.1. This 

follows from the initial condition y(0) = 1.) Solving the above equation for y we get y = 

1 + 0.1 tanh (x/10). 

 

1.0004 

 
 

1.0002 

 

.004 –0.002 0.002 0.004 

0.9998   

 

0.9996 
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1 2 3 4 5 

 

 

–4 –2 2 4 

–2 

–4 

 

 

 

 
 

1 2 3     5 

2 

 

43. Separating variables, we have 

dy dy 1 1/2 1/2 

y − y3  
= 

y(1 − y)(1 + y) 
=
 y 

+ 
1 − y 

− 
1 + y 

dy = dx. 

 

Integrating, we get  

ln |y| − 

 
1 1 
ln |1 − y| − 

 
ln |1 + y| = x + c. 

2 2 

When y > 1, this becomes 

ln y − 
1 

ln(y − 1) −
 1

ln (y + 1) = ln p  
y 

= x + c. 
2 2 y2 − 1 

√ √     
Letting x = 0 a

√
nd y = 2 we find c = ln (2/ 

where x > ln ( 3/2). 

When 0 < y < 1 we have 

3 ).  Solving for y we get y1(x) = 2ex/ 4e2x − 3 , 

ln y − 
1 

ln(1 − y) −
 1

ln (1 + y) = ln p 
y

 
 

= x + c. 

2 2 1 − y2 

1 √ √    
 

 Letting x= 0 and y = 
2 

where −∞ < x < ∞. 

we find c = ln (1/ 3 ).  Solving for y we get y2 (x) = ex/ e2x + 3 , 

When −1 < y < 0 we have 

ln(−y) −
 1 

ln(1 − y) −
 1 

ln(1 + y) = ln p
−y 

= x + c. 
2 2 1 − y2 

√ √    
Letting x = 0 and y = −1 we find c = ln (1/   3 ). Solving for y we get y3 (x) = −ex/    e2x + 3 , 

where −∞ < x < ∞. 

When y < −1 we have 

ln (−y) −
 1 

ln(1 − y) −
 1 

ln (−1 − y) = ln p 
−y 

= x + c. 
2 2 y2 − 1 

√ 
Letting x = 0 and y = −2 we find c = ln (2/  3 ). Solving for y we get 

√ √ 
y4 (x) = −2ex/  4e2x − 3 , where x > ln (   3/2). 

 

y y y y 

4 4 
 

 

2 2 

x x x x 

–2 –2 
 

 
 

–4 –4 

4 

2 

 

4 –2  2 4 

  –2   

  –4   
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–4 –2 2 4 

–2 

dx2 
= 

2 
= 

2 
= 

3
 

 

 

44. (a) The second derivative of y  is 

d
2 
y dy/dx 1/(y − 3) 1 

– − − . 
(y − 1) (y − 3) (y − 3) 3 

The solution curve is concave down when d
2 
y/dx

2 
< 0 

or y > 3, and concave up when d
2 
y/dx

2  
> 0 or y < 3. x 

From the phase portrait we see that the solution curve 

is decreasing when y < 3 and increasing when y > 3. 
y 

(b) Separating variables and integrating we obtain 
 

(y − 3) dy = dx 
1 

y2 

− 3y = x + c 
2 

y
2  
− 6y + 9 = 2x + c1 

(y − 3)
2  

= 2x + c1 

√   

y = 3 ± 2x + c1 . 
 

The initial condition dictates whether to use the plus or minus sign. 
√ 

When y1 (0) = 4 we have c1  = 1 and y1 (x) = 3 + 

When y2 (0) = 2 we have c1  = 1 and y2 (x) = 3 − 

2x + 1  where (−1/2, ∞). 
√ 

2x + 1  where (−1/2, ∞). 
√ 

 

When y3 (1) = 2 we have c1   = −1 and y3 (x) = 3 − 2x − 1 where (1/2, ∞). 
√ 

 

When y4 (−1) = 4 we have c1  = 3 and y4 (x) = 3 + 2x + 3 where (−3/2, ∞). 

45. We separate variables and rationalize the denominator. Then 

dy =
 1 

·
 1 − sin x 

dx =
 1 − sin x 

dx =
 1 − sin x 

dx
 

1 + sin x 1 − sinx 1 − sin
2 
x cos2 x 

= sec
2 
x − tan x sec x  dx. 

 
Integrating, we have y = tan x − sec x + C. 

 

46. Separating variables we have 
√

y dy = sin 
√    

x dx. Then 

ˆ ˆ 
√ 

 

y dy = 

 
sin 

√ 
x dx and 

ˆ 
2 

y3/2 
=

 

3 

 
sin 

√    
xdx. 

√ √ 1 1 
 

To integrate sin x we first make the substitution u = x. Then du =  √ dx = 
 

 du and 

ˆ 

sin 
√ 

ˆ 
 

x dx = 

ˆ 

(sin u) (2u) du = 2 

2  x 2u 

u sin u du. 

 

 
 

 
 

 
 

 
–1 1 2 3 4 5 

–2 
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5 

 

Using integration by parts we find 
ˆ 

 
 

√ √ √ 

u sin u du = −u cos u + sin u = − x cos x + sin x. 

 

Thus  
ˆ 2 

y = 
√

 
 

 

 

√ √ √ 
 

 

 
 

and 

sin 
3 

x dx = −2 x cos x + 2 sin x + C 

√ √ √    
y = 3

2/3  
−  x cos   x + sin x + C . 

ˆ 
√ √ √ 

47. Separating variables we have dy/ y + y = dx/ (  x + x). To integrate dx/ x + x 

we substitute u2 
= x and get 

ˆ 
 2u  

u + u2 

 
du = 

ˆ 
 2 

1 + u 

 
du = 2 ln |1 + u| + c = 2 ln  1 + 

√ 
x + c. 

 

Integrating the separated differential equation we have 

√ √ √ 
  

  

y) = 2 ln 1 + x   + c or y) =2 llnn(1 + x  + ln  c1. 

√ 
 

Solving for y we get y = [c1 (1 + x) − 1]
2
. 

 

48. Separating variables and integrating we have 
ˆ dy 

ˆ
 

  = dx 
y2/3 

1 − y1/3 

ˆ 
y2/3 

1 − y1/3 
dy = x + c1 

−3 ln 1 − y1/3 = x + c1 

1/3 x 
ln 1 − y 

= − 
3
 + c2 

1/3 −x/3 

1 − y = c3e 

1 − y1/3 = c4e−x/3 

y1/3 = 1 + c5e−x/3 

3 

y = 1 + c e−x/3 . 



2.2   Separable Variables 61 
 

 

x 

x 4 1 

49. Separating variables we have y dy = e dx. If u = 
√

x , then u
2 
= x and 2u du = dx. Thus, 

√
x

 
ˆ ˆ 

√ 

e dx = 2ueu 

 
du and, using integration by parts, we find 

 

 

 

 

and 

ˆ ˆ 

y dy = 

 

√ 
 

 

e  x dx so 

ˆ 
1 

y2 
= 

2 

 
q 

 
√ 

2ueu  du = −2eu  + C = 2  x e 

 
√ 

 

 

x − 2e 

 
√ 

x + C, 

y = 2 
√  √    

xe x − e 
√    

x + C . 

 

To find C we solve y(1) = 4. 
q   

y(1) = 2 
√ √ √ √

 
1 e 1 − e 1 + C = 2 C = 4 so C = 4. 

q   
and the solution of the intial-value problem is y = 2 √ √ √

x 
 

x e x − e + 4 . 

 

50. Seperating variables we have ydy = xtan−1 xdx.  Integrating bothsidesandusingintegration 

by parts with u = tan−1 x and dv = x dx we have 

ˆ 

y dy = x tan−1 
x dx 

 
1 

y2 
= 

1 
x2 

tan−1 x − 
1 

x + 
1 

tan−1 x + C 
2 2 2 2 

 

y
2 
= x

2 
tan−1 

x − x + tan−1 
x + C1 

p   
y = x2 tan−1 

x − x + tan−1 
x + C1 

 
To find C1 we solve y(0) = 3. 

p  p   

y(0) = 02 tan−1 
0 − 0 + tan−1 

0 + C1  = C1  = 3 so C1 = 9, 
 √  

and the solution of the initial-value problem is y = x2 tan−1 x − x + tan−1  x + 9 . 

√ 51. (a) While y (x) = – x2  is defined at x = −5 and x = 5, y′ (x) is not defined at these 
 

2 − 25 2 

values, and so the interval of definition is the open interval (−5, 5). 

 
(b) At any point on the x-axis the derivative of y(x) is undefined, so no solution curve can 

cross the x-axis. Since −x/y is not defined when y = 0, the initial-value problem has no 

solution. 
 

52. The derivative of y = 4 1 x2 
−  

2 is dy/dx = x 1 2 − 1 . We note that xy 
1/2 = x 1 x

2 

− 1 . 

We see from the graphs of y (black), dy/dx (red), and xy1/2 
(blue), below that dy/dx = xy1/2

 

on (−∞, 2] and [2, ∞). 

4 
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4 

 
 

   
 

√ 
Alternatively, because X2 = |X| we can write 

s  x 
1  

x
2  
− , −∞ < x ≤ −2 

 
xy

1/2 
= 

√ 1 
2 

= x x2 − 1 = x   
1 2 − 

4 1 
1  2 −2 < x < 2 

x   y 4 x  
4 1  = −x 4 x − 1 , 

1 x2 − 1 , 2 ≤ x < ∞ . 

From this we see that dy/dx = xy1/2 
on (−∞, −2] and on [2, ∞). 

p  y 

53. Separating variables we have dy/ 1 + y2 sin
2 y = dx 3.5 

3 

which is not readily integrated (even by a CAS). We 

note that dy/dx ≥ 0 for all values of x and y and that 

dy/dx = 0 when y = 0 and y = π, which are equilibrium 

solutions. 

 
 

 

 
 

 
–6 –4 –2 

2.5 

2 

1.5 

1 

0.5 

 
 

 

 
 

 
x 

2 4 6 8 

 

54. (a) The solution of y′ = y, y(0) = 1, is y = ex. Using separation of variables we find that the 

solution of y′ = y [1 + 1/ (x ln x)], y(e) = 1, is y = ex−e ln x. Solving the two solutions 

simultaneously we obtain 

 

ex  = ex−e ln x, so ee  = ln x and x = ee.
e

 

 

eee 
1,656,520 , the y-coordinate of the point of intersection of the 

(b) Since y = e( )  
≈ 2.33 × 10 

two solution curves has over 1.65 million digits. 
 

55. We are looking for a function y(x) such that 

 
y2 

+ 

 
 

dy 2 

 

 

= 1. 

 

Using the positive square root gives 

 

 

 
p 

dy 

dx 

 
 
dy 

= 
p

1 − y2 

dx 

= dx 

1 − y2 

sin−1 y = x + c. 
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Thus a solution is y = sin (x + c). If we use the negative square root we obtain 

y = sin (c − x) = − sin (x − c) = − sin (x + c1). 

Note that when c = c1 = 0 and when c = c1 = π/2 we obtain the well known particular solutions 

y = sin x, y = − sin x, y = cos x, and y = −cos x. Note also that y = 1 and y = −1 are singular 

solutions. 

56. (a) 
 

 

 

 

 

 

 

 

 

p √    

(b) For |x| > 1 and |y| > 1 the differential equation is dy/dx = 

ing variables and integrating, we obtain 

y2 − 1 /   x2 − 1 .  Separat- 

dy dx 
p = √  and cosh−1 

y = cosh−1 
x + c. 

 

y2 − 1 x2 −1 

Setting x = 2 and y = 2 we find c = cosh−1 
2 − cosh−1 

2 = 0 and cosh−1 y = cosh−1 x. 

An explicit solution is y = x. 

57. Since the tension T1 (or magnitude T1)  acts at the lowest point of the cable,  we use symmetry to 

solve the problem on the interval [0, L/2]. The assumption that the roadbed is uniform (that 

is, weighs a constant ρ pounds per horizontal foot) implies W = ρx, where x  is measured in feet 

and 0 ≤ x ≤ L/2. Therefore (10) becomes dy/dx = (ρ/T1)x. This last equation is a separable 

equation of the form given in (1) of Section 2.2 in the text. Integrating and using the initial 

condition y(0) = a shows that the shape of the cable is a parabola: y(x) = (ρ/2T1)x2
+a. In terms 

of the sag h of the cable and the span L, we see from Figure 2.2.5 in the text that y(L/2) = h 

+ a. By applying this last condition to y(x) = (ρ/2T1)x2 
+ a enables us to express ρ/2T1 in 

terms of h and L: y(x) = (4h/L2
)x2 

+ a. Since y(x) is an even function of x, the solution is 

valid on −L/2 ≤ x ≤ L/2. 

 
58. (a) Separating variables and integrating, we have y 

(3y2  
+ 1) dy = −(8x + 5) dx and y3  

+ y = −4x2  
− 5x + c. 4 

Using a CAS we show various  contours of 2 

f (x, y)  =  y3   
+ y + 4x2   

+ 5x. The plots shown on 
0 x 

[−5, 5]×[−5, 5] correspond to c-values of 0, ±5, ±20, ±40, 

±80, and ±125. 2 

–4 

–4 –2 0 2 4 

 

 

–3   

–3 
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y 

(b) The value of c corresponding to y(0) = −1 is f (0, −1) = −2; 

to y(0) = 2 is f(0, 2) = 10; to y(−1) = 4 is f(−1, 4) = 67; 4 

and to y(−1) = −3 is −31. 2 

0 x 

–2 

–4 

–4 –2 0 2 4 

 
59. (a) An implicit solution of the differential equation (2y + 2)dy − (4x

3 
+ 6x) dx = 0 is 

 
y

2 
+ 2y − x

4  
− 3x

2  
+ c = 0. 

 
The condition y(0) = −3 implies that c = −3. Therefore y2 

+ 2y − x4 
− 3x2  

− 3 = 0. 

 

(b) Using the quadratic formula we can solve for y in terms of x: 

p   

y = 
−2 ± 4 + 4(x4 + 3x2 + 3)

.
 

2 
 

The explicit solution that satisfies the initial condition is then 

p 
 

y = −1 − x4 + 3x3 + 4 . 

 
(c) From the graph of the function f(x) = x

4 
+ 3x

3 
+ 4 below we see that f(x) ≤ 0 on the 

approximate interval −2.8 ≤ x ≤ −1.3. Thus the approximate domain of the function 

p p 
 

 

y = −1 − x4 + 3x3 + 4 = −1 − f (x) 

 
is x ≤ −2.8 or x ≥ −1.3. The graph of this function is shown below. 

 

 
f(x) 

 
 

–1 – f(x) 

x 

 

 

 
x 

 

 
 

–4 –2 

–2 

 
–4 

–4 –2  

–2 

 
–4 

 
–6 

 
–8 

 
–10 
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2 

4 

 

 

(d) Using the root finding capabilities of a CAS, the zeros of f are found 

to be −2.82202 and −1.3409. The domain of definition of the solution 

y(x) is then x > −1.3409. The equality has been removed since the 

derivative dy/dx does not exist at the points where f (x) = 0. The 

graph of the solution y = φ(x) is given on the right. 

 
 

–1 – f(x) 

x 

 

 

 

 

 

 

 

 

60. (a) Separating variables and integrating, we have 
y 

(−2y + y2 
) dy = (x − x2 

) dx 4 

and 2 

−y2 + 1 y3  = 
1 

x
2  

− 
1  3 

0 x
 

3 2 3 
x + c 

2
 

Using a CAS we show some contours of 

f (x, y) = 2y
3  
− 6y

2  
+ 2x

3  
− 3x

2 

. 

–4 

–6 –4 –2 0 2 4 6 

 
The plots shown on [−7, 7] ×[−5, 5] correspond to c-values of −450, −300, −200, −120, 

−60, −20, −10, −8.1, −5, −0.8, 20, 60, and 120. 

 

 

 

(b) The value of c  corresponding to y(0)  = 
3      

is 
y
 

3 27 4 

f  0, 2 = − 4 . The portion of the graph be- 

tween the dots corresponds to the  solution curve 2 

satisfying the intial condition.  To  determine the 0 

interval of definition we find  dy/dx for 2 

2y3 
− 6y2 

+ 2x3 
− 3x2  

= −
27 

. 
4

 

4 

x 

–2 0 2 4 6 

Using implicit differentiation we get y′ = (x − x2 
)/(y2 

−2y), which is infinite when y = 0 and 

y = 2. Letting y = 0 in 2y3 
− 6y2 

+ 2x3 
− 3x2 

= −27 and using a CAS to solve for x we get 

x = −1.13232. Similarly, letting y = 2, we find x = 1.71299. The largest interval of 

definition is approximately (−1.13232, 1.71299). 

 

–2 

 
–4 

 
–6 

 
–8 

 
–10 
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x3 

3 

 

y 

(c) The value of c corresponding to y(0) = −2 is 4 

f(0, −2) = −40. The portion of the graph to the 2 

right of the dot corresponds to the solution curve 0 x 

satisfying the initial condition.  To determine the 2 
–4 

interval of definition we find dy/dx for 

2y
3 
− 6y

2  
+ 2x

3  
− 3x

2 
= −40. 

 
6 

–8 

–4 –2 0 2 4 6 8 10 

Using implicit differentiation we get y′ = (x − x
2 
)/(y

2 
− 2y), which is infinite when y = 0 and 

y = 2. Letting y = 0 in 2y
3 
− 6y

2 
+ 2x

3 
− 3x

2 
= −40 and using a CAS to solve forx we 

get x = −2.29551. The largest interval of definition is approximately (−2.29551, ∞). 

 

2.3 
 

´ d −5x 

1. For y′ 
− 5y = 0 an integrating factor is e− 5 dx = e−5x so that 

for −∞ < x < ∞. 

dx 
e

 
y  = 0 and y = ce

5x 

′ ´ 2 dx 2x 
d 2x −2x 

2. For y + 2y= 0 an integrating factor is e = e so that 

−∞ < x < ∞. The transient term is ce−2x. 

dx 
e

 y = 0 and y = ce for 

′ 3x ´ dx x 
d x 4x 1  3x −x 

3. For y + y = e an integrating factor is e = e so that 

for −∞ < x < ∞. The transient term is ce−x. 

dx 
[e y] = e and y = 4 e + ce 

′ 4 ´ 4 dx 4x 
d 4x 4 4x 1 −4x 

4. For y +4y = 3 an integrating factor is e = e so that 
dx   

e   y = 3 e and y = 3 +ce 

for −∞ < x < ∞. The transient term is ce−4x. 

′ 2 2 
´ 

3x
2 

dx x
3 d h 5. 

 
 

i 2  x3
 e y = x e 

For y  + 3x y = x an integrating factor is e = e so that 

y = 
1 
+ ce−x

3 
for −∞ < x < ∞. The transient term is ce−x

3 
. 

dx and 

 

′ 3 ´ 2x dx x 2 d h 
x2 

i 3  x2 

 

6. For y   + 2xy = x an integrating factor is e = e so that 
dx  

e  y   = x e and 

y = 
1 x2 

− 1 + ce−x
2 
for −∞ < x < ∞. The transient term is ce−x

2 
. 

2 2 
 

′ 1 1 ´ (1/x) dx d 1 1 c 

7. For y + 
x 

y = 
x2 an integrating 

Linear Equations 
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factor is e 

for 0 < x < ∞. The entire solution is transient. 

= x so that 
dx 

[xy] = 
x 

and y = 
x 

ln x+ 
x
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′ 2 − ́ 2 dx −2x 
d −2x 2 −2x −2x 

8. For y −2y = x +5 an integrating factor is e = e so that 
dx  

e y = x e +5e 

and y = −1 x
2 
− 1 x − 11 + ce

2x  for −∞ < x < ∞. There is no transient term. 
2 2 4 

 

1 ´ 1 d 1 

9. For y′ − 
x 

y = xsin x an integrating factor is e− (1/x) dx = 
x 

so that     
dx 

y = sin x and 
x 

y = cx − x cos x for 0 < x < ∞. There is no transient term. 
 

′ 2 3 ´(2/x)dx 2 d 2 3 −2 

10. For y + 
x 

y = 
x 

an integrating factor is e 

for 0 < x < ∞. The trancient term is cx−2
. 

= x  so that 
dx  

x y = 3x and y = 2 +cx 

 
 

11. For y′ + 

4 
y = x2  

− 
x 

 
1 an integrating factor is e 

´
(4/x)dx = x4   so that 

d 
x4y 

dx 

 

= x6 
− x4 and 

y = 
1 
x

3 
− 1 x + cx−4 

for 0 < x < ∞. The transient term is cx−4
. 

7 5 
 

12. For y ′ − x y = x an integrating factor is e 
 

 

−´[x/(1+x)]dx = (x + 1)e −x so that 

(1 + x) 
−x −x 2x+ 3 cex 

dx  
(x + 1)e y = x(x + 1)e and y = −x − 

 
 

x + 1 
+

 

 
 

x + 1 
for −1 < x < ∞. There 

is no transient term. 
 

′ 
2 ex 

 
  

´ [1+(2/x)]dx 2  x d 2 2 

 

13. For y + 1 + y = 
x x2 an integrating factor is e = x e so that 

dx
[x exy] = e x 

1 ex 

and y = 
2 x2 + 

ce−x 

x2 for 0 < x < ∞. The transient term is 
ce−x 

x2 . 

 

14.  For y′ + 1 + 
1 

y = 
 

1 
e−x  sin 2x   an  integrating  factor  is e

´
[1+(1/x)]dx = xex so that 

 

d x 
x

 
x 

1 −x ce−x 

dx 
[xe 

y] = sin 2x and y = − 
2x

e cos 2x + 
x 

for 0 < x < ∞.  The entire solution 

is transient. 

dx 4 5 15. For x = 4y 
 

  

 
 
 

´ ln y 4
 

 
−4 so that  

d 
y−4

 

 

− 
dy y − 

an integrating factor is e−  (4/y) dy   = e = y 
x = 4y 

dy 

and x = 2y6 
+ cy4 

for 0 < y < ∞. There is no transient term. 

d 
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dx 2 
´ 

2 d 2 2 

16. For + 
dy y 

 2 

x = ey 

 2 

an integrating factor is e 
(2/y)  dy = y 

 c 

so that 

 c 
dy 

y x = y ey   and 

x = ey − 
y
 ey  +

y2 ey + 
y2 for 0 < y < ∞. The transient term is 

y
. 2 
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17. For y′ +(tan x)y = sec x an integrating factor is e´ tan x dx = sec x so that 

and y = sin x + c cos x for −π/2 < x < π/2. There is no transient term. 

d  [(sec x)y] = sec2 x 
dx 

 
18. For y′ + (cot x)y = sec

2  
x csc x an integrating factor is e 

´ 
cot x dx = eln | sin x| = sin x so that 

d 
  [(sin x) y] = sec

2
 

dx 
x and y = sec x + c csc x for 0 < x < π/2. There is no transient term. 

 

 
19. For y′ + 

x + 2 
y =

 
 

2xe−x 
´ 

an  integrating  factor  is  e 
[(x+2)/(x+1)]dx = (x + 1)ex , so 

d x + 1 x + 1 
x2 c 

  [(x + 1)ex 
y] = 2x and y =   e−x

 + e−x for  −1  <  x <  ∞. The entire 

dx 

solution is transient. 

x + 1 x + 1 

 
′ 4 5 ´ [4/(x+2)] dx 4 

20. For y + 
d 

y = 
x + 2 (x + 2)2 

an integrating factor is e = (x + 2) so that 
5 

4 2 −1 −4 

dx  
(x + 2) y = 5(x + 2) and y  = (x + 2) 

3 
+ c(x + 2) for  −2  < x <  ∞. The 

entire solution is transient. 

 
dr ´ 

21. For + r sec θ = cos θ an integrating factor is e  sec θ dθ 
dθ 

d 

 
= eln | sec x+tan x| = sec θ + tan θ so 

that 
dθ 

[(sec θ + tan θ)r] = 1 + sin θ and (sec θ + tan θ)r = θ − cos θ + c for −π/2 < θ < π/2. 

There is no transient term. 

dP ´ 
(2t−1) dt t

2

−t 
d

 
h i 

t2
−t 

22. For 
dt 

+ (2t − 1)P = 4t − 2 an integrating factor is e = e so that 
dt 

e P = 

(4t − 2)et and P = 2 + cet−t
2

 for −∞ < t < ∞. The transient term is cet−t
2 
. 

 

23. For y′+ 3 + 
1

 
 

y = 
e−3x 

x 
 
an integrating factor is e 

´ 
[3+(1/x)]dx 

 
= xe3x 

d 
so that 

 
xe3xy = 1 

x dx 
−3x ce−3x −3x 

and y = e + 
x 

for 0 < x < ∞. The transient term is ce /x. 

2 −t 
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′ 2 x + 1 
´ 

[2/(x
2 

−1)]dx x − 1 

24. For y +  y =  an integrating factor is e 
x2 − 1  x − 1 

= 
x +1 

 d  
so that 

dx 

x − 1 
y 

x + 1 
= 1 and (x − 1)y = x(x + 1) + c(x + 1) for −1 < x < 1. There is no 

transient term. 
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´ −5x 
d  −5x 

 
−5x 

25. For y′ − 5y = x an integrating factor is e −5  dx    = e so that  e 
dx 

y   = xe and 

ˆ 
1 1  1 1 

y = e
5x xe−5x dx = e5x − xe−5x − e−5x  + c = − x − + ce

5x. 
5 25 5 25 

If y(0) = 3 then c =
 1  

and y = − 
1 

x −
 1 

+
 76 

e5x. The solution is defined on I = (−∞, ∞). 

25 5 25 25 

′ ´ 3 dx 3x 
d 3x 3x 

26. For y + 3y = 2x and integrating factor is e = e so that 
dx  

e y = 2xe and 

ˆ 
y = e−3x 2xe

3x dx = e−3x 
2 2 2 
xe

3x − e
3x  + c = x −

 2 
 
+ ce−3x. 

3 9 3 9 

If y(0) =
 1 

then c =
 5 

and y =
 2 

x −
 2 

+
 5 

e−3x. THe solution is defined on I = (−∞, ∞). 

3 9 

′ 1 1 x 

3 9 9 
´(1/x)dx d x 1  x c 

27. For y + 
x 

y = 
x 

e an integrating factor is e = x so that dx 
[xy] = e and y = 

x
e + 

x
 

for 0 < x < ∞. If y(1) = 2 then c = 2 − e and y =
 1

 ex + 
 2 − e 

. The solution is defined on 

 
I = (0, ∞). 

 

28. For 
dx 

− 
1 

x = 2y an integrating factor is e− 
 

 
 

x x 

 

 
´ 1 

(1/y)dy = so that  

 

 
d 1 

x
 

 
  

 
 
 

 
= 2 and 

dy y y dy   y 

x = 2y2 
+ cy for 0 < y < ∞. If y(1) = 5 then c = −49/5 and x = 2y2 

− 
49 

y. The solution is 
5 

defined on I = (0, ∞). 

di R E 29. For 
 

   

 

 

´ ( ) Rt/L 

 

h i Rt/L 
 

 

 
E  Rt/L 

 

+ i = dt L 
L  

an integrating factor is e R/L dt  = e so that dt 
e

 i =  
L 

e 

and i =
 E 

+ ce−Rt/L for −∞ < t < ∞. If i(0) = i then c = i − E/R and i =
 E 

+ 

R 0 0 R 

E 
i0 − 

R
 e−Rt/L. The solution is defined on I = (−∞, ∞) 

dT ´ 
(−k) dt −kt 

d −kt −kt 

30. For  
dt 

−kT = −Tmk an integrating factor is e = e so that 
dt 

[e
 T ] = −Tmke 

and T = Tm+cekt for −∞ < t < ∞. If T(0) = T0 then c = T0 −Tm and T = Tm+(T0 −Tm)ekt. 

d 
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The solution is defined on I = (−∞, ∞) 

31. For y′ + 
1 1 

y = 4 + 
x x 

´ 

anintegrating factorise 
(1/x) dx   = x  sothat 

d 
[xy] = 4x + 1 and 

dx 

1 
ˆ 

1 c 
y = (4x + 1) dx = 

x x 
2x2 

+ x + c  = 2x + 1 + . 
x 
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5 

If y(1) = 8 then c = 5 and y = 2x + 1 + 
x 

. The solution is defined on I = (0, ∞). 

′ 3 x
2 ´ 4x dx 2x

2 d 2x2 

3 3x
2

 

32. For y  + 4xy =x e an integrating factor is e = e so that 
dx 

[e y] = x e and 

ˆ 

y = e−2x 2 x3e3x
2   

dx = e−2x
2 1 

x
2
e

3x
2 

−
 1 

e
3x

2 

+ c =
 1 

x
2
ex

2 

−
 1 

ex
2 

+ ce−2x
2 

. 
6 18 6 18 

 

If y(0) = −1 then c = −
 17 

and y =
 1 

x2ex
2 
−

 1 
ex

2 
−

 17 
e−2x

2 
. The solution is defined on 

18 6 18 18 

I = (−∞, ∞). 

1 ln x ´ d 

33. For y′+ 

and 

x + 1 
y = 

x + 1 an integrating factor is e  [1/(x+1)] dx   = x+1 so that [(x+1)y] = lnx 
dx 

x x c 
y = 

x + 1 
ln x − 

x + 1 
+ 

x + 1 
for 0 < x < ∞. 

x x 21 

If y(1) = 10 then c = 21 and y = 
x + 1 

ln x − 
x + 1 

+ 
x + 1 

. The solution is defined on 

I = (0,∞). 

34. For y′ + 

d 

1 
y = 

x + 1 
1 

 
1 

 

x(x + 1) 

 
´ 

an integrating  factor is  e  [1/(x+1)] dx = x + 1 so that 

dx
[(x + 1) y] = 

x 
and 

ˆ 

y = 
   1  

 
1 

dx =    1    (ln x + c) =  
ln x

 x 

 
 

c 
+ . 

x + 1 x x + 1 
+ 1 x + 1 

 

ln x e 
If y(e) = 1 then c = e and y = 

x + 1 
+ 

x + 1 
. The solution is defined on I = (0, ∞). 

′ 
´ (−sin x) dx cos x 

d cos x 

35. For y − (sin x) y = 2 sin x an integrating factor is e = e so that 
dx 

[e 

2 (sin x) ecos x and 

y] = 

ˆ 

y =e− cos x 2 
(sin x) ecos

 
x dx = e− 

cos x (−2ecos
 
x + c) = −2 + ce− 

cos x. 
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If y(π/2) = 1 then c = 3 and y = −2 + 3e− cos x. The solution is defined on I = (−∞, ∞). 
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2 

36. For y′ + (tan x)y = cos
2  

x  an integrating factor  is e 

d 

´ 
tan x dx = eln | sec x| = sec x so that 

dx 
[(sec x) y] = cos x and y = sin x cos x + c cos x for −π/2 < x < π/2. If y(0) = −1 

then c = −1 and y = sin x cos x − cos x. The solution is defined on I = (−π/2, π/2). 

 
37. For y′ + 2y = f (x) an integrating factor is e

2x  sothat 

1 

ye
2x = 

e
2x + c1 , 0 ≤ x ≤ 3 

2 

c2, x > 3. 

If y(0) = 0 then c1 = −1/2 and for continuity we must 

have c2 = 
1 

e
6 
− 1 so that 

2 2 

1 
(1 − e−2x), 0 ≤ x ≤ 3 

y = 
2

 

1 (e6  
− 1)e−2x, x > 3. 

2 
 

38. For y′ + y = f(x) an integrating factor is ex  so that 
y 

 

+ c1, 0 ≤ x ≤ 1 
 

yex = x 

−e  + c2, x > 1. 
 

 

If y(0) = 1 then c1 = 0 and for continuity we must have 

c2 = 2e so that 
 

0 ≤ x ≤ 1 
y = 

2e1−x − 1, x > 1. 

 

39. For y′ + 2xy = f(x) an integrating factor is ex
2  

so that 
y 

 
yex = 

1 
ex2 

2 
+ c1, 0 ≤ x ≤ 1 

c2, x > 1. 

If y(0) = 2 then c1 = 3/2 and for continuity we must have c2  = e+ so that 
1 3 

  

2 2 

 1 3 −x  2 , 0 ≤ x ≤ 1 
y = 2 

+ e 
3 

2 2 

  1 
e + e−x  , x > 1. 

2 2 

 
 

 

 

 

 

  

 

3 

1  

 

 
–1 

5 

 

2 
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   1 
 

  

 

) 

2 

 

40. For x y 
If 

 

y′ +  2x y = 
1 + x2

 
1x+ x 2 , 0 ≤ x ≤ 1 

, x > 1, 

1 + x2 

an integrating factor is 1 + x2 
so that 

 

 
1 + x

2  y = 

x
2 
+ c1, 0 ≤ x ≤ 1 

 
x2 

+ c2, x > 1. 
2 

y(0) = 0 then c1 = 0 and for continuity we must have c2 = 1 so that 
1 1 

– ,≤ 0 1 

y = 
2 2 (1 + x ) 2 

  3 

2 (1 + x2 
−

 

1 

2 
, x > 1. 

41. We first solve the initial-value problem y′ + 2y = 4x, 

y(0) = 3 on the interval [0, 1]. The integrating factor is 
´ 

e 2 dx  = e2x, so 

d 
  [e2xy] = 4xe2x 

dx 
ˆ 

e
2xy = 4xe

2x dx = 2xe
2x − e

2x + c 
 

y = 2x − 1 + c1e−2x. 

 
Using the initial condition, we find y(0) = −1 + c1 = 3, so c1 = 4 and y = 2x − 1 + 4e−2x, 

0 ≤ x ≤ 1. Now, since y(1) = 2 − 1 + 4e−2 
= 1 + 4e−2

, we solve the initial-value problem 

y′ − (2/x)y = 4x, y(1) = 1 + 4e−2 
on the interval (1, ∞). The integrating factor is 

´ 

e (−2/x) dx = e−2 ln x = x−2, so 
 

d 
[x−2 y] = 4xx−2  

= 
4

 

dx x 
ˆ 

x−2 y = 4 dx = 4 ln x + c 

x 
2
 

y = 4x2 
ln x + c x2. 

(We use ln x instead of ln |x| because x > 1.) Using the initial condition we find 

 

 

 
 

 

20 

 

15 

 
 

10 

 

 

  

1 

1  

 
 

–1 
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x 

 

y(1) = c2 = 1 + 4e−
2
, so y = 4x

2 
ln x + (1 + 4e−

2
)x

2
, x> 1. Thus, 

 

⎧ 
⎪⎨

2x − 1 + 4e 
 
−2x 

 

, 0 ≤ x ≤ 1 

y = 
⎪⎩ % & 

4x2 
ln x +  1+ 4e−2    x2, x > 1. 

 

 
42. We first solve the initial-value problem y′ + y = 0, 

y(0) = 4 on the interval [0, 2]. The integrating factor 
´ 

is e 
1  dx = ex, so 

d 
  [e y] = 0 
dx 

ˆ 

exy = 0dx = c1 

y = c1e−x. 

Using the initial condition, we find y(0) = c1 = 4, so c1  = 4 and y = 4e−x, 0 ≤ x ≤ 2. Now, 

 
since y(2) = 4e−2 

, we solve the initial-value problem y′ + 5y = 0, y(1) = 4e−2 
on the interval 

 
(2, ∞). The integrating factor is e 

´ 
5 

dx = e5x, so 

 
 

d '
e

5xy
( 

= 0 

dx 
ˆ 

e5xy = 0 dx = c2 

y = c2e−5x. 

 
 

Using the initial condition we find y(2) = c2e−10 
= 4e−2

, so c2 = 4e8 
and y = 4e8e−5x = 

4e8−5x, x> 2. Thus, the solution of the original initial-value problem is 

⎧ −x 

⎪⎨4e , 0 ≤ x ≤ 2 

y = 
⎪⎩

 

4x8−5x, x > 2. 

 

 

5 x 

–1 
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2 

x 

2 

e 

− 

1 

π 2 

 

43. An integrating factor for y′  − 2xy  = 1 is e−
2
x   . Thus 

 
d 

[e−x
2 

y] = e−x
2 

dx 
 

e−x
2

y = 

ˆ x 

e−t2 dt = 

√
0 

√ 
 

π 
erf(x) + c 

2 

π 2 2 

y = ex erf(x) + cex  . 
2 

√ √ 
 

From y(1) = (  π/2)e erf(1) + ce = 1 we get c = e−1  
−  π erf(1). The solution of the 

 

initial-value problem is 
√ 

π 2 y x 
 

 

 

√ 
e−1 − π 

 
 

ex2 

=   
2  

e erf(x) +   erf(1) 

√ 
2 

π 2 = ex
2 
−1  +     e  x 

(erf(x) − erf(1)). 
2 

 

44. An integrating factor for y′  − 2xy  = −1 is e−
2 

x   . Thus 

 d 
[e−x

2 

y] = −e− 
2

 

dx 
ˆ x √ − 

−t2 

dt = − 
π

 
 

 
 e x  y =− e 

0 

erf(x) + c. 
2 

√ √ 
From y(0) = π/2, and noting that erf(0) = 0, we get c = π/2. Thus 

√ √ 
2 π π 

 
 

π 
ex  (1 

√   
 

 

y = ex –  erf(x) + =     
2 2 2 

– erf(x)) = 
2  

ex  erfc (x). 

 

45. For y′ + exy = 1 an integrating factor is e
x 

. Thus 

 
d ex x 

 
 

x 
ˆ x t 

dx  
e

 
y   = ee and ee  y = ee  dt + c. 

From y(0) = 1 we get c = e, so y = e−e 
x ́  x et 

0 

1−ex . 

0 e dt +e 

46. Dividing by x2  
we have y′ 

1 
y = x. An integrating factor is e1/x. Thus 

x2 

d h
e1/xy 

i
 

dx 

 
= xe1/x and e1/xy = 

 
´ 

ˆ x 
te1/t dt + c. 

1 

2 

√ 
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From y(1) = 0 we get c = 0, so y = e−1/x 
x te

1/t dt. 
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d −  
x 2 

1 

 

47. An integrating factor for 

 

 

 

is x
2
. Thus 

 

y′ + 
2 

y = 
10 sin x 

x x3 

 

d 
x

2
y 

dx 

sin x 
= 10 

x
 

ˆ x sin t 
x2 y = 10 

0 

dt + c 
t 

 

y = 10x−2 
Si (x) + cx−2

. 

 
From y(1) = 0 we get c = −10 Si (1). Thus 

 
y = 10x−2 

Si (x) − 10x−2 
Si (1) = 10x−2 

(Si (x) − Si (1)) . 

´x 2 

48. The integrating factor for y′   −  sin x2     y = 0 is e− 0 sin t  dt. Then 

h ´ i 
e 0 sin t dt y = 0 

dx 
´x 2 

e− 0 sin t  dty = c
 

´ x 
sin t2 dt 

y = c1e 0 

p p 
  

Letting t = π/2 u we have dt = π/2 du and 

ˆ r ˆ √     
 

 

r r ! 

x 
2 π 

 
 

2/π x π    2    du = π 2 
 

sin t dt = sin u S x 
0 2  0 2 

√ √   

2 π 
√ √   

so y = c e   π/2 S 2/π x  . Using S(0) = 0 and y(0) = c = 5 we have y = 5e π/2 S 2/π x . 

 

49. We want 4 to be a critical point, so we use y′ = 4 − y. 

 
50. (a) All solutions of the form y = x5ex − x4ex + cx4 

satisfy the initial condition. In this case, 

since 4/x is discontinuous at x = 0, the hypotheses of Theorem 1.2.1 are not satisfied 

and the initial-value problem does not have a unique solution. 

1 

1 
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− 2 

2 

p 

 

(b) The differential equation has no solution satisfying y(0) = y0 , y0 > 0. 

(c) In this case, since x0 > 0, Theorem 1.2.1 applies and the initial-value problem has a 

unique solution given by y = x
5 
ex − x

4 
ex + cx

4 
where c = y0 /x

4 
− x0 ex0 + ex0 . 

0 

 

51. On the interval (−3, 3) the integrating factor is 
 

e
´ 

x dx/(x2 
−9) = e 

 
´ 
x dx/(9−x ) 

 

= e 
1 ln (9−x2

) 
p   

= 9 − x2 

 

and so  
d   hp  i 

   9 − x2 y 
dx 

 
c 

√= 0 and y =   
9 − x2 

 

52. We want the general solution to be y = 3x − 5 + ce−x. (Rather than e−x, any function that 

approaches 0 as x → ∞ could be used.) Differentiating we get 

y′ = 3 − ce−x = 3 − (y − 3x + 5) = −y + 3x − 2, 

 
so the differential equation y′ + y = 3x − 2 has solutions asymptotic to the line y = 3x − 5. 

 
53. The left-hand derivative of the function at x = 1 is 1/e and the right-hand derivative at x = 1 

is 1 − 1/e. Thus, y is not differentiable at x = 1. 

54. (a) Differentiating yc = c/x3  
we get 

 

y′ = −
 3c 

= −
 3 c 

= −
 3 

y
 

c x4 x x3 x   c 
 

so a differential equation with general solution yc = c/x3 
is xy′ + 3y = 0. Now using 

 

yp  = x3

  

xy′ + 3yp = x(3x2 
) + 3(x3 

) = 6x3

 

 

so a differential equation with general solution y = c/x3 
+ x3 

is xy′ + 3y = 6x3
. This 

will be a general solution on (0, ∞). 
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2 

 

(b) Since y(1) = 1
3 
−1/1

3 
= 0, an initial condition is y(1) = 0. 

Since y(1) = 1
3 
+2/1

3 
= 3, an initial condition is y(1) = 3. 

Ineachcase the interval ofdefinition is (0,∞). Theinitial- 

value problem xy′ +3y = 6x
3
, y(0) = 0 has solution y = x

3 

for −∞ < x < ∞. In the figure the lower curve is the 

graph of y(x) = x
3 
− 1/x

3
, while the upper curve is the 

graph of y = x
3 
−2/x

3
. 

 

 
(c) The first two initial-value problems in part (b) are not unique. For example, setting y(2) 

= 2
3 
− 1/2

3 
= 63/8, we see that y(2) = 63/8 is also an initial condition leading to the 

solution y = x3 
−1/x3

. 

´ 

55. Since e 

´ 
P (x) dx+c =ece 

´ 
P (x) dx = c1e  P (x) dx, we would have 

 

 
´ 

c1e 

ˆ 
P (x) dxy = c2 +

 

 
´ 

c1e 

 
´ 

P (x) dxf (x) dx and e 

ˆ 
P (x) dxy = c3 +

 

 
´ 

e P (x) dxf (x) dx, 

 
 

which is the same as (4) in the text. 

 
 

56. We see by inspection that y = 0 is a solution. 

 

57. The solution of the first equation is x = c1e−λ1t. From x(0) = x0 we obtain c1  = x0  and so 

 

x = x0e−λ1t. The second equation then becomes 

 
dy 

= x λ e−λ1t − λ y or 
dy 

+ λ y = x λ e−λ1t
 

dt 0   1 2 dt 2 0 1 

 

which is linear. An integrating factor is eλ2t. Thus 

 
     d h 

λ t 
i −λ t λ t (λ −λ )t 

e 2 y 
dt = x0λ1e 1 e 2 = x0 λ1e  2 1

 

eλ2 ty =  
   x0λ1      e(λ2 −λ1 )t  + c 
λ2 − λ1 

y =
 x0λ1 

e−λ1t + c e−λ2t. 

λ2 − λ1 

 

 

  

–3 

2 
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From y(0) = y0 we obtain c2 = (y0 λ2 − y0 λ1  − x0 λ1 ) / (λ2 − λ1 ). The solution is 

 

y = 
  x0 λ1      

e−λ1 t + 
y0 λ2 − y0 λ1 − x0 λ1 

e−λ2 t. 
λ2 − λ1 λ2 − λ1 

 

 
58. Writing the differential equation as 

 

et/RC . Then 

dE 1 
+ 

dt RC 
E = 0 we see that an integrating factor is 

d h
et/RC 

dt 

i 
E = 0 

 

et/RC E = c 

 
E = ce−t/RC 

 

From E(4) = ce−4/RC = E0  we find c = E0e4/RC  . Thus, the solution of the initial-value 
 

problem is  

E= E0e4/RC e−t/RC = E0e−(t−4)/RC . 

 
 

 

59. (a) (b) Using a CAS we find y(2) ≈ 0.226339. 

 

 

 

 

 

 

 

 
 

60. (a) y 
2 

1 

x 

–1 

–2 

–3 

–4 

–5 
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2 

2 2 

2 2 

2 

 

(b) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7. 

 
Using the root-finding capability of a CAS and solving y′(x) = 0 for x we see that the 

absolute maximum is (1.688, 1.742). 

 
61. (a) 

 

 

 

 

 

 

 

 

 

(b) From the graph we see that as x  →  ∞, y(x) oscillates with decrea√sing amplitudes ap- 

proaching 9.35672.  Since  lim S(x) = , we have lim y(x) = 5e 
1 

π/8 ≈ 9.357, and 
 

 
since lim 

x→∞ 

S(x) = −
1 

, we have lim 

2 

y(x) = 5e− 

 x→∞ 
√ 

π/8 ≈ 2.672. 

x→−∞ 2 x→−∞ 

 
(c) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7 and 

the absolute minimum occurs around x = −1.8. Using the root-finding capability of a 

CAS and solving y′(x) = 0 for x, we see that the absolute maximum is (1.772, 12.235) and 

the absolute minimum is (−1.772, 2.044). 

 

2.4 

 
1. Let M = 2x − 1 and N  =  3y + 7 so that  My  =  0  =  Nx.   From fx   =  2x − 1  we obtain 

f = x2 
− x + h(y), h′(y) = 3y + 7, and h(y) = 

3 y2 
+ 7y. A solution is x2 

− x + 
3 y2 

+ 7y = c. 
 

2. Let M = 2x + y and N = −x − 6y. Then My = 1 and Nx = −1, so the equation is not exact. 

 

3. Let M  = 5x + 4y and N  = 4x − 8y3  
so that My   = 4 = Nx.  From fx   = 5x + 4y we obtain 

f = 
5 x2 

+ 4xy + h(y), h′(y) = −8y3 
, and h(y) = −2y4 

. A solution is 
5 x2 

+ 4xy − 2y4  
= c. 

 

4. Let M = sin y − y sin x and N = cos x + x cos y − y so that My = cos y − sin x = Nx. From 

fx  = sin y − y sin x we obtain f  = x sin y + y cos x + h(y), h′(y) = −y, and h(y) = −1 y2 
.  A 

solution is x sin y + y cos x − 1 y2 
= c. 

 

10 
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2 

2 

y 

3 3 

2 2 

 

5. Let M = 2y
2 
x − 3 and N = 2yx

2 
+ 4 so that My = 4xy = Nx. From fx  = 2y

2 
x − 3 we obtain 

f = x
2 
y

2 
− 3x + h(y), h′(y) = 4, and h(y) = 4y. A solution is x

2 
y

2  
− 3x + 4y = c. 

 

6. Let M = 4x
3 
− 3y sin 3x − y/x

2 
and N = 2y − 1/x + cos 3x so that My = −3 sin 3x − 1/x

2 

and Nx = 1/x
2 
− 3 sin3x. The equation is not exact. 

7. Let M = x
2 
− y

2 
and N = x

2  
− 2xy so that My  = −2y and Nx  = 2x − 2y.  The equation is not 

exact. 

 

8. Let M = 1 + ln x + y/x and N = −1 + ln x so that My  = 1/x = Nx. From fy = −1 + ln x we 

obtain f = −y + y ln x + h(x), h′(x) = 1 + ln x, and h(x) = x ln x. A solution is −y + y ln x + 

x ln x = c. 

 

9. Let M = y
3 
− y

2 
sin x − x and N = 3xy

2  
+ 2y cos x so that My  = 3y

2  
− 2y sin x = Nx. From 

fx  = y
3  
− y

2 
sin x − x we obtain f = xy

3  
+ y

2 
cos x − 1 x

2  
+ h(y), h′(y) = 0, and h(y) = 0. A 

solution is xy
3 
+ y

2 
cos x − 1 x

2 
= c. 

 
10. Let M = x3  

+ y3  
and N = 3xy2  

so that My  = 3y2  
= Nx.  From fx  = x3  

+ y3  
we obtain 

f = 
1 x4  

+ xy3  
+ h(y), h′(y) = 0, and h(y) = 0. A solution is 

1 x4  
+ xy3 

= c. 
4 4 

 

11. Let M = y ln y − e−xy and N = 1/y + x ln y so that My = 1 + ln y + xe−xy  and Nx  = ln y. The 

equation is not exact. 

 

12. Let M  = 3x2 y + ey  and N  = x3 
+ xey − 2y so that My  = 3x2  

+ ey  = Nx.  From fx  = 3x2 y + ey 

we obtain f  = x
3 
y +xey +h(y), h′(y) = −2y, and h(y) = −y

2 
.  A solution is x

3 
y +xey −y

2   
= c. 

 

13. Let M = y − 6x2  
− 2xex  and N  = x  so that My  = 1 = Nx. From fx  = y  − 6x2  

− 2xex we 

obtain f  = xy  − 2x3  
− 2xex   + 2ex   + h(y), h′(y) = 0, and h(y) = 0. A solution is xy − 

2x3  
− 2xex + 2ex = c. 

14. Let M = 1 − 3/x + y and N = 1 − 3/y + x so that My = 1 = Nx. From fx = 1 − 3/x + y 

we obtain f = x − 3 ln |x| + xy + h(y), h′(y) = 1 − 
3 

, and h(y) = y − 3 ln |y|. A solution is 
y 

x + y + xy − 3 ln |xy| = c. 

15. Let M  = x2 y3  

− 1/  1 + 9x2 
and N  =  x3 y2 

so that M =  3x2 y2    
=  Nx. From 

fx  = x
2 
y

3  
− 1/  1 + 9x

2 
we obtain f  =  

1 
x

3 
y

3  
− 1 arctan (3x) + h(y), h′(y) = 0, and 

h(y) = 0. A solution is x3 y3 
− arctan (3x) = c. 

 
16. Let M = −2y and N = 5y − 2x so that My = −2 = Nx. From fx = −2y we obtain 

f = −2xy + h(y), h′(y) = 5y, and h(y) = 
5 y2 

. A solution is −2xy + 
5 y2 

= c. 
 

17. Let M = tan x − sin x sin y and N = cos x cos y so that  My  = − sin x cos y = Nx. From fx 

= tan x − sin x sin y we obtain f = ln | sec x| + cos x sin y + h(y), h′(y) = 0, and h(y) = 0. A 

solution is ln | sec x| + cos x sin y = c. 
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y x 

3 

3 5 

 

18. Let M = 2y sin x cos x − y + 2y
2 
exy

2 
and N = −x + sin

2 
x + 4xyexy

2 
so that 

M  = 2 sin x cos x − 1 + 4xy3 exy
2  

+ 4yexy
2  

= N  . 

2  xy2 
2 xy2 

′ 

From fx = 2y sin x cos x − y + 2y e we obtain f = y sin x − xy + 2e + h(y), h (y) = 0, 

and h(y) = 0. A solution is y sin
2 

x − xy + 2exy
2 

= c. 

19. Let  M  =  4t
3 
y − 15t

2  
− y  and N  =  t

4   
+ 3y

2   
− t  so that  My    =  4t

3   
− 1  =  Nt .   From ft   

= 4t
3 
y − 15t

2  
− y  we obtain f  = t

4 
y − 5t

3  
− ty + h(y), h′(y) = 3y

2 
, and h(y) = y

3 
. A 

solution is t
4 
y − 5t

3 
− ty + y

3 
= c. 

20. Let M = 1/t + 1/t
2 
− y/  t2+ y 2 and N = ye y + t/ 2 t + y2  so that 

My   = y
2  
− t

2    
/  t

2 
+ y

2   2    
=  Nt. From  ft   =  1/t + 1/t

2   
− y/  t

2  
+ y

2 
we obtain 

1 
t 

f = ln |t| − 
t 
− arctan 

y
 

+ h(y), h′(y) = yey, and h(y) = yey  − ey. A solution is 

1 t 
ln |t| − 

t 
− arctan 

y 
+ yey − ey  = c. 

21. Let M  = x2  
+ 2xy + y2  

and N  = 2xy + x2  
− 1 so that My  = 2(x + y) = Nx.  From 

fx = x2 
+ 2xy + y2 

we obtain f = 
1 x3 

+ x2 y + xy2 
+ h(y), h′(y) = −1, and h(y) = −y. The 

solution is 
1 x3 

+ x2 y + xy2 
− y = c. If y(1) = 1 then c = 4/3 and a solution of the initial-value 

3 
problem is  

1 
x

3  
+ x

2 
y + xy

2  
− y = 

4  
. 

3 3 

22. Let M  = ex  + y and N  = 2 + x  + yey  so that My   = 1 = Nx. From  fx   = ex   + y we obtain 

f = ex + xy + h(y), h′(y) = 2 + yey, and h(y) = 2y + yey − ey. The solution is ex + xy + 

2y + yey − ey = c. If y(0) = 1 then c = 3 and a solution of the initial-value problem is ex + xy 

+ 2y + yey − ey = 3. 

23. Let M = 4y + 2t − 5 and N = 6y + 4t − 1 so that My = 4 = Nt. From ft = 4y + 2t −5 

we obtain f  = 4ty + t
2   
− 5t + h(y),  h′(y)  = 6y − 1, and h(y) =  3y

2  
− y.   The solution is 4ty 

+ t2 
− 5t + 3y2 

− y = c. If y(−1) = 2 then c = 8 and a solution of the initial-value problem is 

4ty + t2 
− 5t + 3y2 

− y = 8. 

24. Let M = t/2y4    
and N = 3y2  

− t2    /y5  
so that My  = −2t/y 5 = Nt .  From ft  = t/2y4  

we 

t2 ′ 3 3 t2 
3 

  

obtain f = 
 

 

4y4 
+ h(y), h (y) = 

y3 , and h(y) = − 
2y2 

. The solution is 
t2 4y4 

−
 2y2 = c. If 

y(1) = 1 then c = −5/4 and a solution of the initial-value problem is 
4y4 − 

2y2 = −
4 

. 

25. Let M = y2 
cos x − 3x2 y − 2x and N = 2y sin x − x3  

+ ln y so that My = 2y cos x − 3x2 
= Nx. 

From fx = y2 
cos x − 3x2 y − 2x we obtain f = y2 

sin x − x3 y − x2 
+ h(y), h′(y) = ln y, and 

h(y) = y ln y − y. The solution  is  y2  
sin x − x3 y − x2  

+ y ln y − y  = c.  If  y(0) = e  then  c = 

0 and a solution of the initial-value problem is y2 
sin x − x3 y − x2 

+ y ln y − y = 0. 

26. Let M = y2 
+ y sin x and N = 2xy − cos x − 1/  1 + y2     

so that M y = 2y + sin x = Nx. From 

f   = y2  
+ y sin x we obtain f = xy2   

− y cos x + h(y), h′(y) = 
  −1  

, and h(y) = − tan−1 y. 

x 1 + y2 
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x 

y 

x 

3 

2 

 

The solution is xy
2 
− y cos x − tan−1 

y = c. If y(0) = 1 then c = −1 − π/4 and a solution of 

the initial-value problem is xy2 − y cos x tan− 
1 

y = 1 . 
π 4 

27. Equating My  = 3y
2  

+ 4kxy
3  

and Nx  = 3y
2  

+ 40xy
3  

we obtain k = 10. 
 

28. Equating My = 18xy2 
− sin y and Nx  = 4kxy2  

− sin y we obtain k = 9/2. 

 
29. Let M = −x

2 
y

2 
sin x + 2xy

2 
cos x and N = 2x

2 
y cos x so that 

My  = −2x
2 
y sin x + 4xy cos x = Nx. From fy  = 2x

2 
y cos x  we obtain f = x

2 
y

2 
cos x + h(y), 

h′(y) = 0, and h(y) = 0. A solution of the differential equation is x
2 
y

2 
cos x = c. 

30. Let M = (x
2  

+ 2xy − y
2 
)/(x

2  
+ 2xy + y

2 
) and N  = (y

2  
+ 2xy − x

2 
)/(y

2  
+ 2xy + x

2 
) so 

that My = −4xy/(x + y)
3

 = Nx. From fx   = x2 
+ 2xy + y

2 
− 2 

2 
(x 

2
 

2y
2 

′ 
y / + y) we obtain 

f = x + 
x + y 

+ h(y), h (y) = −1, and h(y) = −y. A solution of the differential equation is 

x
2 
+ y

2 
= c(x + y). 

31. We note that (My 

´ 

−N  )/N = 1/x, so anintegrating factor is e  dx/x = x. Let M  = 2xy
2 
+3x

2

 

and N = 2x2 y so that My = 4xy = Nx. From fx = 2xy2 
+3x2 

we obtain f = x2 y2 
+x3 

+h(y), h′(y) 

= 0, and h(y) = 0. A solution of the differential equation is x2 y2  
+ x3 

= c. 

´ 
dx x 

32. We note that (My − Nx)/N = 1, so an integrating factor is e      = e . Let 

M  = xyex  + y
2 
ex  + yex and N  = xex  + 2yex   so that My   = xex  + 2yex  + ex  = Nx.  From fy  

= xex + 2yex  we obtain f = xyex + y2 ex + h(x), h′(x) = 0, and h(x) = 0. A solution of the 

differential equation is xyex + y
2 
ex = c. 

 
33. We note that (Nx 

´ 

– M )/M = 2/y, so an integrating factor is e 2 dy/y = y2 
. Let M = 

6xy3
 

and N = 4y
3 
+9x

2 
y

2 
so that My = 18xy

2 
= Nx. From fx = 6xy

3 
we obtain f = 3x

2 
y

3 
+ h(y), 

h′(y) = 4y3 
, and h(y) = y4 

. A solution of the differential equation is 3x2 y3 
+ y4 

= c. 

´ 

34. We note that (My − Nx)/N = −cot x, so an integrating factor is e−  cot xdx  = csc x. Let 

M  = cos x csc x = cot x and N  = (1 + 2/y) sin x csc x = 1 + 2/y, so that My  = 0 = Nx.  From 

fx  = cot x  we obtain f  = ln (sin x) + h(y), h′(y) = 1 + 2/y, and h(y) = y + ln y
2 
.  A solution of 

the differential equation is ln (sin x) + y + ln y2 
= c. 

 

35. We note that (My 

´ 

− N )/N = 3, so an integrating factor is e  3 dx = e3x. Let 

M  = (10 − 6y + e−3x)e3x   = 10e3x  − 6ye3x  + 1 and N  = −2e3x, so that My   = −6e3x   = Nx. 

From fx = 10e3x − 6ye3x + 1 we obtain f = 
10 e3x − 2ye3x + x + h(y), h′(y) = 0, and h(y) = 0. 

A solution of the differential equation is 
10 e3x − 2ye3x + x = c. 

3 

36. We note that (Nx – My 

´ 

)/M = −3/y, so an integrating factor is  e−3 dy/y   =  1/y3 
.   Let 

M = (y2 
+ xy3 

)/y3 
= 1/y + x and N = (5y2  

− xy + y3 
sin y)/y3  

= 5/y − x/y2  
+ sin y, so that 

My  = −1/y
2  

= Nx. From fx  = 1/y+x we obtain f = x/y+ 
1 
x

2 
+h(y), h′(y) = 5/y+sin y, and 

h(y) = 5 ln|y|−cos y. A solution of the differential equation is x/y + 
1 x2 

+ 5 ln |y|−cos y = c. 
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37. We note that (My − Nx)/N = 2x/(4 + x
2
), so an integrating factor is 

´ 

e−2 x dx/(4+x2)  = 1/(4 + x2 
).  Let M  = x/(4 + x2 

) and N  = (x2 y + 4y)/(4 + x2
) = y, so 

that My = 0 = Nx. From fx = x(4 + x2
) we obtain f = 

1 
ln(4 + x2

) + h(y), h′(y) = y, and 
 

h(y) = 
1 
y

2 
. A solution of the differential equation is 

1
 

2 
ln (4 + x

2 
)+ 

1 
y

2   
= c. Multiplying both 

2 

sides by 2 the last equation can be written as ey2
 

2 2 

x
2 
+ 4 = c1. Using the initial condition 

2 

y(4) = 0 we see that c1 = 20. A solution of the initial-value problem is ey x
2 
+ 4 = 20. 

´ 

38. Wenote that (My −Nx)/N = −3/(1+x), soanintegrating factor is e−3 dx/(1+x) = 1/(1+x)3. 

Let M = (x
2 
+ y

2 
− 5)/(1 + x)

3 
and N = −(y + xy)/(1 + x)

3 
= −y/(1 + x)

2 
, so that 

My   = 2y/(1 + x)
3  

= Nx.  From fy   = −y/(1 + x)
2   

we obtain f  = −1 y
2 
/(1 + x)

2  
+ h(x), h′(x) 

= (x
2 
− 5)/(1 + x)

3
, and h(x) = 2/(1 + x)

2 
+ 2/(1 + x) + ln|1 + x|. A solution of the 

differential equation is 

y2 
2 2 

−
2(1 + x)2 

+ 
(1 + x)2 

+ 
(1 + x) 

+ ln |1 + x| = c.
 

Using the initial condition y(0) = 1 we see that c = 7/2. A solution of the initial-value 

problem is 
y

2 
2 2 7 

− 
2 (1 + x)

2  + 
(1 + x)

2  + 
1 + x 

+ ln |1 + x| = 
2

 

39. (a)  Implicitly differentiating x3  
+ 2x2 y + y2  

= c and solving for dy/dx we obtain 
2 2  dy + 4xy + 2y dy = 0 and dy 3x

2   
+ 4xy 

3x + 2x               
dx dx 

dx 
= − 

2x2 + 2y 
.
 

By writing the last equation in differential form we get (4xy + 3x
2 
)dx +(2y + 2x

2 
)dy = 0. 

(b) Setting x = 0 and y = −2 in x3 
+ 2x2 y + y2 

= c we find c = 4, and setting x = y = 1 we 

also find c = 4. Thus, both initial conditions determine the same implicit solution. 

(c) Solving x3 
+ 2x2 y + y2 

= 4 for y we get 

p  
y

 

y1 (x) = −x2 
− 4 −x3 + x4 

and p x 

y2 (x) = −x2 
+ 4 − x3 + x4 . 

Observe in the figure that y1 (0) = −2 and y2 (1) = 1. 

 

 

 
40. To see that the equations are not equivalent consider dx = −(x/y) dy. An integrating factor 

is µ(x, y) = y resulting in y dx + xdy = 0.  A solution of the latter equation is y = 0, but this 

is not a solution of the original equation. 
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2 3 

p 
 

41. The explicit solution is y = (3 + cos2 x)/(1 − x2) . Since 3 + cos
2 

x > 0 for all x we must 

have 1 − x
2 
> 0 or −1 < x < 1. Thus, the interval of definition is (−1, 1). 

42. (a) Since f = N (x, y) = xexy  + 2xy + 1/x we obtain f  = exy  + xy
2  

+ 
y 

+ h(x) so that 

y 

f   = yexy + y2  
− 

x 

 y  
+ h′(x). Let M (x, y) = yexy  + y

2  
−

 y  
. 

x 

x2 x2 

(b) Since fx = M (x, y) = y
1/2 

x−1/2 
+ x   x

2  
+ y −1 we obtain 

f = 2y1/2x1/2 + 
1 

ln x
2  

+ y + g(y) so that fy = y 
−1/2x1/2  

+ 
1 

x2  
+ y −1 + g′(y). Let 

2 
1
 

N (x, y) = y−1/2 x1/2 
+ 

2 

 

x2+ y 

2 
−1

.
 

43. First note that 

d  
p 

x2 + y2 = p
   x 

dx + p   
y

 

 
dy. 

p   
Then x dx + ydy = x2 + y2 dx becomes 

x2 + y2 x2 + y2 

x y p   
p dx + p dy = d x2 + y2 = dx. 

x2 + y2 

The left side isthe total differential of 
p   

x2 + y2 

p   
x2 + y2 and the right side is the total differential of 

x + c. Thus x2 + y2 = x + c is a solution of the differential equation. 

44. To see that the statement is true, write the separable equation as −g(x) dx + dy/h(y) = 0. 

Identifying M = −g(x) and N = 1/h(y), we see that My = 0 = Nx, so the differential 

equation is exact. 

45. (a) In differential form 
 

 
v2 

− 32x dx + xvdv = 0 
 

This is not an exact equation, but µ(x) = x is an integrating factor. The new equation 

xv2 
− 32x2   dx+x2vdv = 0 is exact and solving yields 

1 x2v2 
− 32x3 

= c. When x = 3, v = 0 and so c = −288. Solving 
1 x2v2 

− 32x3 
= − v 288 for yields the explicit solution 

2 3 
r 

x 9 

v(x) = 8 
3 

− 
x2 . 

(b) The chain leaves the platform when x = 8, and so 
r   

8 9 
v(8) = 8 − ≈ 12.7ft/s 

3 64 

46. (a) Letting 

 

 

we compute 
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2xy

 
y

2 
− x

2
 

M(x, y) 

= 
(x2 + 

y2)2

 

and

 

N(x, y) 

= 1 + 

(x2 + 

y2)2 

2x3 
− 

8xy
2

 

My = 

(x2 + 

y2)3 

=Nx, 
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so the differential equation is exact. Then we have 

∂f 2xy 

∂x 
= M (x, y) = 

(x2 + y2)2 
= 2xy(x2  

+ y2 
)−2

 

f (x, y) = −y(x2  
+ y2 

)−1  
+ g(y) = −

 y 
+ g(y) 

x2 + y2 

∂f y
2 
− x

2 

′ y
2 
− x

2
 

∂y 
= 

(x2 + y2)2 + g (y) = N (x, y) = 1 + 
(x2 + y2)2 . 

Thus, g′(y) = 1 and g(y) = y. The solution is y −
 y 

= c. When c = 0 the solution 
x2 + y2 

is x
2 
+ y

2 
= 1. 

(b) The first graph below is obtained in Mathematica using f (x, y) = y − y/(x
2 
+ y

2 
) and 

ContourPlot[f[x, y], {x, -3, 3}, {y, -3, 3}, 

Axes−>True, AxesOrigin−>{0, 0}, AxesLabel−>{x, y}, 

Frame−>False, PlotPoints−>100, ContourShading−>False, 

Contours−>{0, -0.2, 0.2, -0.4, 0.4, -0.6, 0.6, -0.8, 0.8}] 

 

The second graph uses 

 
 x 

 
s   

y3 
− cy2 

− y 
 

 

 
s   

y3 − cy2 − y 
 

= − 
c − y 

and x = 

c − y 
.
 

In this case the x-axis is vertical and the y-axis is horizontal. To obtain the third graph, 

we solve y −y/(x
2 
+y

2
) = c for y in a CAS. This appears to give one real and two complex 

solutions. When graphed in Mathematica however, all three solutions contribute to the 

graph. This is because the solutions involve the square root of expressions containing c. 

For some values of c the expression is negative, causing an apparent complex solution to 

actually be real. 

 

y x 
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1 

 

2.5 

 
1. Letting y = ux we have 

 

(x − ux) dx + x(udx + xdu) = 0 

dx + xdu = 0 

dx 
+ du = 0 

x 

ln |x| + u = c 

x ln |x| + y = cx. 

 

 

2. Letting y = ux we have 
 

(x + ux) dx + x(u dx + x du) = 0 

(1 + 2u) dx + xdu = 0 

dx du 
  + = 0 
x 1 + 2u 
1 

ln |x| + ln |1 + 2u| = c 
2 

x 2 1 + 2 y 
x 

= c1 

x2 
+ 2xy = c . 

 
 
 

3. Letting x = vy we have 

 

vy(v dy + y dv) + (y − 2vy) dy = 0 

vy2 dv + y v2− 2v + 1 

v dv 

dy = 0 

dy 

(v − 1)2 
+ 

y  
= 0 

1 

ln |v − 1| − 
v − 1 

+ln |y| = c 

ln 
x
− 1 − 

y 

1 

x/y − 1 
+ ln |y| = c 

(x − y) ln |x − y| − y = c(x − y). 

Solutions by Substitutions 
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1 

 

4. Letting x = vy we have 

 

y(v dy + y dv) − 2(vy + y) dy = 0 

y dv − (v + 2) dy = 0 

dv dy 

v + 2 
− 

y 
= 0

 

ln |v + 2| −ln |y| = c 

x 
ln 

y 
+ 2 − ln |y| = c 

x + 2y = c1 y2 . 
 
 

5. Letting y = ux we have 
 

2   2 2 2 

u x  + ux dx − x (udx + x du) = 0 

u2 dx − x du = 0 

dx du 

x 
− 

u2  = 0 

1 

ln |x| + 
u 

= c 

x 
ln |x| + 

y 
= c 

y ln |x| + x = cy. 

 
 

6. Letting y = ux and using partial fractions, we have 

 
u2x2  

+ ux2   dx + x2
(u dx + x du) = 0 

x2 u2 + 2u dx + x3 du = 0 

dx du 
  + = 0 
x u(u + 2) 

1 1 

ln |x| + ln |u| − 
2 

ln |u + 2| = c 
2 

x2u 

u + 2 
= c1

 

2 y y 
x 

x 
= c1     

x 
+ 2 

x2 y = c (y + 2x). 
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= 2 

1 

 

7. Letting y = ux we have 

 
(ux − x) dx − (ux + x)(u dx + x du) = 0 

u2 
+ 1  dx + x(u + 1) du = 0 

dx u + 1 

x 
+ 

u2 + 1 
du = 0 

 

ln |x| + 

1 

ln u
2  

+ 1 + tan−1 u = c 
2 

y
2 

y 
ln x

2   
+ 1 

x2 

+ 2 tan−1
 

x 
= c1 

ln  x
2  

+ y
2     

+ 2 tan−1 
y 

= c 
x 1 

 

 

8. Letting y = ux we have 

 
(x + 3ux) dx − (3x + ux)(u dx + x du) = 0 

u2 
− 1 dx + x(u + 3) du = 0 

dx u + 3 
+ du = 0 

x (u − 1)(u + 1) 

ln |x| + 2 ln |u − 1| − ln |u + 1| = c 

x(u− 1)
2

 

u + 1 
= c1

 

x 
y 
− 

2
 

x 

y 
= c1 

x 
+ 1 

(y − x)
2 
= c1 (y + x). 

 

 
9. Letting y = ux we have 

 

−ux dx + (x + 
√

ux)(udx + xdu) = 0 
√ 

 

(x2 
+ x2     u ) du + xu3/2 dx = 0 

u−3/2 + 
1 
u 

dx 
du + = 0 

x 

−2u−1/2 
+ ln |u| + ln |x| = c    

ln |y/x| + ln |x| 
p

x/y + c 

y(ln|y| − c)
2 
= 4x. 
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10. Letting y = ux we have  
p   

x2 − u2x2 dx − x
2 

du = 0 
p   

x 1 − u2 dx − x
2 
du = 0, (x > 0) 

dx du 
– √ = 0 

 

x 1 − u2 

ln x − sin−1 
u = c 

sin−1 u = ln x + c1 

sin−1 y 
= ln x + c 

x 
2

 

y 

x 
= sin (ln x + c2) 

y = x sin (ln x + c2). 

 
See Problem 33 in this section for an analysis of the solution. 

11. Letting y = ux we have 
 

x
3 
− u

3 
x

3   
dx + u

2
x

3
(u dx + xdu) = 0 

dx + u2xdu = 0 

dx 2 

  + u 
x 

du = 0 

ln|x| + 
1

u3 
= c 

3 

3x
3 
ln |x| + y

3 
= c1 x

3 
. 

 
Using y(1) = 2 we find c1   = 8.  The solution of the initial-value problem is 3x3  

ln |x|+y3   
= 8x3 

. 

12. Letting y = ux we have 

(x2  
+ 2u2 x2

)dx − ux2 
(u dx + x du) = 0 

x2 
(1 + u2

)dx − ux3 du = 0 

dx u du 

x 
− 

1 + u2  
= 0

 

ln |x| −
 1 

ln(1 + u2
) = c 

2 

x2 

1 + u2 
= c1

 

x4 
= c1 (x2 

+ y2 
). 

 
Using y(−1) = 1 we find c1  = 1/2. The solution of the initial-value problem is 2x4  

= y2  
+ x2 

. 
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− 

2 2 

+ 

 

13. Letting y = ux we have  

 
(x + uxeu) dx − xeu(u dx + x du) = 0 

dx − xeu du = 0 

dx u du = 0 

x 
− e 

ln |x| − eu = c 

ln |x| − ey/x = c. 
 

Using y(1) = 0 we find c = −1. The solution of the initial-value problem is ln |x| = ey/x − 1. 
 

14. Letting x = vy we have 
 

y(v dy + y dv) + vy(ln vy − ln y − 1) dy = 0 

y dv + v ln v dy = 0 

dv dy 
  + = 0 
v ln v y 

ln |ln |v|| + ln |y| = c 

y ln =
x  c1. 

y 

x 
Using y(1) = e we find c1 = −e. The solution of the initial-value problem is y ln 

y 
= −e. 

15. From y′ + 
1 

y = 
1 

y−2  
and w = y

3  
we obtain 

dw 
+ 

3 
w = 

3 
.  An integrating factor is x

3   
so 

x x dx x x 
that x

3 
w = x

3 
+ c or y

3  
= 1 + cx−3 

. 

16. From y′ y = exy
2  

and w = y−1  
we obtain

 dw 
+ w = 

dx 
−ex. An integrating factor is ex  so 

that exw = −1 e2x + c or y−1 
= −1 ex + ce−x. 

17. From y′ + y = xy4 
and w = y−3 

we obtain
 dw  

− 3w = −3x. An integrating factor is e−3x  so 

that e−3xw = xe−3x + 
1 e−3x + c or y−3 

= x
dx 1  

+ ce3x. 
3 3 

1 
18. From y′ − 1 + 

x
 

y = y2  
and w = y−1  

we obtain 
dw 

+ 1 + 
1 

w = −1. An integrating 
dx x 

factor is xex so that xexw = −xex + ex + c or y−1  
= −1 + 

1 
+ 

c
e−x. 

x x 

′ 
1 1  2 −1 dw 1 1  + 

19. From y – y = − y 
t t2 and w = y we obtain  

dt
 

t 
w = 

t2
 . An integrating factor is t so 

that tw = ln t + c or y−1  
= 

1 
ln t+ 

c
. Writing this in the form 

t 
= ln t + c, we see that the 

   

t t y 

solution can also be expressed in the form et/y = c1t. 
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w 

= (1) = 

5 5 

2 

20. From y′ +
 2 

y =
 2t 

y
4  

and w = y−3  
we obtain

 dw 
−

  2t 
= 

 −2t  
.  An 

3 (1 + t2) 
integrating factor is 

3 (1 + t2) 
1 so that w = 

 
  

dt 
1 + c or y−

3
 

 
 

1 + t2 
2 

1 + t2 

1 + t2 1 + t2 1 + t2 = 1 +c 1 + t  .
 

21. From y′ −
 2 

y = 
 3 

y
4  

and w = y−3  
we obtain

 dw 
+

 6 
w = −

 9 
.  An integrating factor 

is  x
6    

so  thaxt  x
6 

w
x2     

−9 x
5   

+ c  or  y−3     
=  −9 x−1d+x  cx−x6 

.   If  y  
x2 

1     
then  c  =  

49     
and 

y−3 = −9 x−1 + 49 x−6. 
5 5 2 5 

 

 
1  2 3 2 dw 3 3 

22. From y′ + y = y− /    and w = y / we obtain + w = . An integrating factor is e3x/2   
so 

 

dx 2 2 
that e

3x/2 
w = e

3x/2 
+ c or y

3/2  
= 1 + ce−3x/2 

. If y(0) = 4 then c = 7 and y
3/2  

= 1 + 7e−3x/2 
. 

23. Let u = x + y + 1 so that du/dx = 1 + dy/dx. Then  du – 1 = u
2

 
  1  

or du = dx. Thus 

dx 1 +u2 

tan−1 
u = x + c or u = tan (x + c), and x + y + 1 = tan (x + c) or y = tan(x + c) − x − 1. 

24. Let u = x + y so that du/dx = 1 + dy/dx. Then 
 du 

– 1 = 
 1 − u 

or u du = dx. Thus 

dx u 
1 
u

2  
= x + c or u

2  
= 2x + c1 , and (x + y)

2  
= 2x + c1 . 

 du 2 2 

25. Let u = x + y so that du/dx = 1 + dy/dx. Then − 1 = tan u or cos u du = dx.  Thus 
dx 1 u + 

1 
sin 2u = x + c or 2u + sin 2u = 4x + c1, and 2(x + y) + sin 2(x + y) = 4x + c1  or 

2 4 

2y + sin 2(x + y) = 2x + c1. 

 
26. Let u = x + y so that du/dx = 1 + dy/dx. Then 

  1 − sin u 

du 

dx 
− 1 = sin u or 

2 

 
1 

du = dx. 
1 + sin u 

Multiplying by (1 −sin u)/(1  s−in u) we have du = dx or (sec 
cos2 u 

u se−c u tan u)du = dx. 

Thus tan u − sec u = x + c or tan (x + y) − sec (x + y) = x + c. 

du 
27. Let u = y − 2x + 3 so that du/dx = dy/dx − 2. Then 

dx 
+ 2 = 2 + √ 1 

u or √   du = dx. Thus 

√
u = x + c and 2

√ 
= x + c. 

y − 2x + 3 

u 

 
 du 

28. Let u = y − x + 5 so that du/dx = dy/dx− 1. Then 

−e−u  = x + c and −e−y+x−5   
= x + c. 

+ 1 = 1 + eu  or e−udu = dx. Thus 
dx 

du 1 

29. Let u = x + y so that du/dx = 1 + dy/dx. Then 
dx 

− 1 = cos u and 
1 + cos u 

du = dx. Now 

  1 1 − cos u 1 − cos u 2 

= = = csc u − csc u cot u 

1 + cos u 1 −cos
2 u sin

2 u 
´ 

so we have 
´ 

(csc
2 u − csc u cot u) du = dx and −cot u +csc u = x + c. Thus −cot (x + y) + 

2 



2.5 Solutions by Substitutions 89 
 

 

√ 
csc (x + y) = x + c. Setting x = 0 and y = π/4 we obtain c = 2 − 1. The solution is 

csc (x + y) − cot (x + y) = x + 
√

2 − 1. 
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25 

 

 
30. Let u = 3x + 2y so that du/dx = 3 + 2 dy/dx. Then 

u + 2 

5u + 6 
du = dx. Now by long division 

du 
= 3 + 

dx 

2u 
= 

u + 2 

5u +6 
 

u +2 

 
and 

 

 

so we have ˆ 

 u +2 = 
1 

+ 
4 

5u +6 5 25u + 30 

1 
+ 

5 

and 
1 
u +

 4  
ln |25u + 30| = x + c. Thus 

5 25 

4 
 

25u + 30 
du = dx 

1 4 

5 
(3x + 2y) + 

25
 

 
ln |75x + 50y + 30| = x + c. 

Setting x = −1 and y = −1 we obtain c = 
4    

ln 95. The solution is 

1 4 4 

5 
(3x + 2y) + 

or 

ln |75x + 50y + 30| = x + 
25 25 

ln 95 

 

5y − 5x + 2 ln |75x + 50y + 30| = 2 ln 95 

 
31. We write the differential equation M(x, y)dx + N(x, y)dy = 0 as dy/dx = f(x, y) where 

M (x, y) 
f(x, y) = − 

N(x, y) 
. 

The function f (x, y) must necessarily be homogeneous of degree 0 when M and N are ho- 

mogeneous of degree α. Since M is homogeneous of degree α, M(tx, ty) = tαM(x, y), and 

letting t = 1/x we have 

1 

M(1, y/x) = 
xα  

M(x, y) or M (x, y) = xαM (1, y/x). 

Thus 
dy xαM (1, y/x) M(1,y/x) y 

dx 
= f (x, y) = − 

xαN(1, y/x) 
= − 

N(1, y/x) 
= F 

x  
.
 

32. Rewrite (5x2 
− 2y2 

)dx − xy dy = 0 as 

xy 
dy 

= 5x2 

− 2y2
 

dx 

and divide by xy, so that 

 

 
We then identify 

y
 

dy x y 

dx 
= 5 

y 
− 2 

x 
. 

y  −1 y 

F = 5 
x x 

– 2   
x 

. 
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1 

1 

4 4 

 

33. (a) By inspection y = x and y = −x are solutions of the differential equation and not 

members of the family y = x sin (ln x + c2). 
 

(b) Letting x = 5 and y = 0 in sin−1 
(y/x) = ln x + c2 we get 

y 

sin−1 
0 = ln 5 + c2 or c2  = − ln 5. Then 

sin−1 
(y/x) = ln x −ln 5 = ln (x/5). Because the range of 20 

the arcsine function is [−π/2, π/2] we must have 
15 

π x π 
– ≤ ln   ≤ 10 

2 5 2 

e−π/2 
≤ 

x
 

5 

5 

≤ e
π/2 

x 

5e−π/2 ≤ x ≤ 5eπ/2 

The interval of definition of the solution is approximately [1.04, 24.05]. 

 

34. As x → −∞, e6x → 0 and y → 2x+3. Now write (1+ce6x)/(1− ce6x) as (e−6x +c)/(e−6x −c). 

Then, as x → ∞, e−6x → 0 and y → 2x − 3. 

35. (a) The substitutions y = y1  + u and 

 

 

 
lead to 

 

 

 
dy1 du 

dy 
= 

dy1  

+ 
du 

dx dx dx 

+ = P + Q(y + u) + R(y + u)2
 

dx dx 1
 

= P + Qy1 + Ry2  
+ Qu + 2y1 Ru + Ru2

 

or 
du

 

dx 
− (Q + 2y1 R)u = Ru . 

This is a Bernoulli equation with n = 2 which can be reduced to the linear equation 

dw 

dx 
+ (Q + 2y1 R)w = −R 

by the substitution w = u−1
. 

 
2  dw 1 

 
 

(b) Identify P (x) = −4/x , Q(x) = −1/x, and R(x) = 1. Then + 4 
+ 

w = −1. 

dx x x 

An integrating factor is x3  
so that x3 w = −1 x4  

+ c or u =  −1 x + cx−3  −1
. Thus, 

2 2 
y = + u or   y = + 

x x 
− 

1 
x + cx−3     

−

 

4 

 

36. Write the differential  equation  in the  form x(y′/y)  =  ln x + ln y  and let  u  =  ln y.  Then 

du/dx = y′/y and the differential equation becomes x(du/dx) = ln x + u or du/dx − u/x = 

 

 

 

 

 

 

 

 

 
5 10 15 20 

2 

− 

1 
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(ln x)/x, which is first-order and linear. An integrating factor is e− 

(using integration by parts) 
d 1 ln x u 1 ln x 

 
´ 

dx/x = 1/x, so that 

 

 

The solution is 

        u 
dx x 

= 
x2 and 

x 
= −

x
 – 

x  
+ c. 

ecx−1 
.
 

 

ln y = −1 − ln x + cx or y = 
x

 

37. Write the differential equation as 

 

 
and let u = v

2  
or v = u

1/2
. Then 

dv 
+ 

1 
v = 32v−1

, 
dx x 

 
dv 

= 
1 

u−1/2 du 
   

dx 2 dx 
and substituting into the differential equation, we have 

1 
u−1/2 du 

+ 
1 

u1/2  
= 32u−1/2 

or 
du 

+ 
2 

u = 64. 
     

2 dx x dx x 
´ 

The latter differential equation is linear with integrating factor e (2/x) dx = x2, so 

 

 
and 

d   
x2u = 64x 2 

dx 

x
2
u = 

64 
x

3 
+ c   or v

2 
= 

64 
x + 

c 
. 

   

3 3 x2 

38. Write the differential equation as dP/dt − aP = −bP 
2 
and let u = P −1 

or P = u−1
. Then 

dp 
= −u−2 du 

, 
dt dt 

and substituting into the differential equation, we have 

−u−2  du 
− au−1  

= −bu−2 
or 

du 
+ au = b. 

dt  dt 

The latter differential equation is linear with integrating factor e 
d 

dt 
[eatu] = beat 

´ 
a dt = eat, so 

and  
b 

eatu = 
a 

eat + c 

eatP −1 = 
b 

eat +c 
a 

P −1 = 
b 

+ ce−at 

a 

P = 
1

 

b/a+ ce−at 

a 
= . 

b + c1e−at 

, 
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2 

2 

4 

 

2.6 
 

1. We identify f (x, y) = 2x − 3y + 1. Then, for h = 0.1, 

yn+1   = yn  + 0.1(2xn  − 3yn  + 1) = 0.2xn  + 0.7yn  + 0.1, 
 

and 

 

 

 

 
For h = 0.05, 

and 

 

y(1.1) ≈ y1 = 0.2(1) + 0.7(5) + 0.1 = 3.8 

y(1.2) ≈ y2 = 0.2(1.1) + 0.7(3.8) + 0.1 = 2.98 

 

 
yn+1   = yn  + 0.05(2xn  − 3yn  + 1) = 0.1xn  + 0.85yn  + 0.1, 

 

 
y(1.05) ≈ y1 = 0.1(1) + 0.85(5) + 0.1 = 4.4 

y(1.1) ≈ y2 = 0.1(1.05) + 0.85(4.4) + 0.1 = 3.895 

y(1.15) ≈ y3 = 0.1(1.1) + 0.85(3.895) + 0.1 = 3.47075 

y(1.2) ≈ y4 = 0.1(1.15) + 0.85(3.47075) + 0.1 = 3.11514 
 

2. We identify f (x, y) = x + y2 
. Then, for h = 0.1, 

yn+1   = yn  + 0.1(xn  + y
2 
) = 0.1xn  + yn  + 0.1y

2 
, 

n n 

and 

 

 

 

 
For h = 0.05, 

and 

 

 
y(0.1) ≈ y1 = 0.1(0) + 0 + 0.1(0)

2 
= 0 

y(0.2) ≈ y  = 0.1(0.1) + 0 + 0.1(0)
2  

= 0.01 

 

yn+1   = yn  + 0.05(xn  + y2 
) = 0.05xn  + yn  + 0.05y2 , 

n n 

 
 
 

y(0.05) ≈ y1 = 0.05(0) + 0 + 0.05(0)
2 
= 0 

y(0.1) ≈ y  = 0.05(0.05) + 0 + 0.05(0)
2   

= 0.0025 

y(0.15) ≈ y3  = 0.05(0.1) + 0.0025 + 0.05(0.0025)
2  

= 0.0075 

y(0.2) ≈ y  = 0.05(0.15) + 0.0075 + 0.05(0.0075)
2   

= 0.0150 
 

3. Separating variables and integrating, we have 

dy 

y  
= dx and ln |y| = x + c. 

Thus y = c1ex and, using y(0) = 1, we find c = 1, so y = ex is the solution of the initial-value 

problem. 

A Numerical Method 
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Actual Abs. %Rel. 

1 

 

h = 0.1 h = 0.05 

 

 

 

4. Separating variables and integrating, we have 
 

dy 
= 2xdx   and ln |y| = x2 

y 

 
+ c. 

 

Thus y = c ex
2 
and, using y(1) = 1, we find c = e−1

, so y = ex
2−1 is the solution of the initial- 

value problem. 

 

 
h = 0.1 h = 0.05 

n n Value Error Error  

0.00 1.0000 1.0000 0.0000 0.00 

1.10 1.1000 1.1052 0.0052 0.47 

0.20 1.2100 1.2214 0.0114 0.93 

0.30 1.3310 1.3499 0.0189 1.40 

0.40 1.4641 1.4918 0.0277 1.86 

0.50 1.6105 1.6487 0.0382 2.32 

0.60 1.7716 1.8221 0.0506 2.77 

0.70 1.9487 2.0138 0.0650 3.23 

0.80 2.1436 2.2255 0.0820 3.68 

0.90 2.3579 2.4596 0.1017 4.13 

1.00 2.5937 2.7183 0.1245 4.58 

 

x 
n 

y 
n 

Actual 

Value 

Abs. 

Error 

%Rel. 

Error 

0.00 1.0000 1.0000 0.0000 0.00 

0.05 1.0500 1.0513 0.0013 0.12 

0.10 1.1025 1.1052 0.0027 0.24 

0.15 1.1576 1.1618 0.0042 0.36 

0.20 1.2155 1.2214 0.0059 0.48 

0.25 1.2763 1.2840 0.0077 0.60 

0.30 1.3401 1.3499 0.0098 0.72 

0.35 1.4071 1.4191 0.0120 0.84 

0.40 1.4775 1.4918 0.0144 0.96 

0.45 1.5513 1.5683 0.0170 1.08 

0.50 1.6289 1.6487 0.0198 1.20 

0.55 1.7103 1.7333 0.0229 1.32 

0.60 1.7959 1.8221 0.0263 1.44 

0.65 1.8856 1.9155 0.0299 1.56 

0.70 1.9799 2.0138 0.0338 1.68 

0.75 2.0789 2.1170 0.0381 1.80 

0.80 2.1829 2.2255 0.0427 1.92 

0.85 2.2920 2.3396 0.0476 2.04 

0.90 2.4066 2.4596 0.0530 2.15 

0.95 2.5270 2.5857 0.0588 2.27 

1.00 2.6533 2.7183 0.0650 2.39 

 

x
n

 y
n

 
Actual 

Value 

Abs. 
Error 

%Rel. 
Error 

1.00 1.0000 1.0000 0.0000 0.00 

1.10 1.2000 1.2337 0.0337 2.73 

1.20 1.4640 1.5527 0.0887 5.71 

1.30 1.8154 1.9937 0.1784 8.95 

1.40 2.2874 2.6117 0.3243 12.42 

1.50 2.9278 3.4903 0.5625 16.12 

 

x 
n 

y 
n 

Actual 

Value 

Abs. 

Error 

%Rel. 

Error 

1.00 1.0000 1.0000 0.0000 0.00 

1.05 1.1000 1.1079 0.0079 0.72 

1.10 1.2155 1.2337 0.0182 1.47 

1.15 1.3492 1.3806 0.0314 2.27 

1.20 1.5044 1.5527 0.0483 3.11 

1.25 1.6849 1.7551 0.0702 4.00 

1.30 1.8955 1.9937 0.0982 4.93 

1.35 2.1419 2.2762 0.1343 5.90 

1.40 2.4311 2.6117 0.1806 6.92 

1.45 2.7714 3.0117 0.2403 7.98 

1.50 3.1733 3.4903 0.3171 9.08 
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5. h = 0.1 h = 0.05 6. h = 0.1 h = 0.05 

 

 

 

 
 

 

 

 

 

 

7. h = 0.1 h = 0.05 8. h = 0.1 h = 0.05 

 

 

 

 
 

 

 

 

 

 

9. h = 0.1 h = 0.05 10. h = 0.1 h = 0.05 

 

 

 

 

xn yn 

0.00 0.0000 

0.10 0.1000 

0.20 0.1905 

0.30 0.2731 

0.40 0.3492 

0.50 0.4198 

 

xn yn 

0.00 0.0000 

0.05 0.0500 

0.10 0.0976 

0.15 0.1429 

0.20 0.1863 

0.25 0.2278 

0.30 0.2676 

0.35 0.3058 

0.40 0.3427 

0.45 0.3782 

0.50 0.4124 

 

xn yn 

0.00 1.0000 

0.10 1.1000 

0.20 1.2220 

0.30 1.3753 

0.40 1.5735 

0.50 1.8371 

 

xn yn 

0.00 1.0000 

0.05 1.0500 

0.10 1.1053 

0.15 1.1668 

0.20 1.2360 

0.25 1.3144 

0.30 1.4039 

0.35 1.5070 

0.40 1.6267 

0.45 1.7670 

0.50 1.9332 

 

xn yn 

0.00 0.5000 

0.10 0.5250 

0.20 0.5431 

0.30 0.5548 

0.40 0.5613 

0.50 0.5639 

 

xn yn 

0.00 0.5000 

0.05 0.5125 

0.10 0.5232 

0.15 0.5322 

0.20 0.5395 

0.25 0.5452 

0.30 0.5496 

0.35 0.5527 

0.40 0.5547 

0.45 0.5559 

0.50 0.5565 

 

xn yn 

0.00 1.0000 

0.10 1.1000 

0.20 1.2159 

0.30 1.3505 

0.40 1.5072 

0.50 1.6902 

 

xn yn 

0.00 1.0000 

0.05 1.0500 

0.10 1.1039 

0.15 1.1619 

0.20 1.2245 

0.25 1.2921 

0.30 1.3651 

0.35 1.4440 

0.40 1.5293 

0.45 1.6217 

0.50 1.7219 

 

xn yn 

1.00 1.0000 

1.10 1.0000 

1.20 1.0191 

1.30 1.0588 

1.40 1.1231 

1.50 1.2194 

 

xn yn 

1.00 1.0000 

1.05 1.0000 

1.10 1.0049 

1.15 1.0147 

1.20 1.0298 

1.25 1.0506 

1.30 1.0775 

1.35 1.1115 

1.40 1.1538 

1.45 1.2057 

1.50 1.2696 

 

xn yn 

0.00 0.5000 

0.10 0.5250 

0.20 0.5499 

0.30 0.5747 

0.40 0.5991 

0.50 0.6231 

 

xn yn 

0.00 0.5000 

0.05 0.5125 

0.10 0.5250 

0.15 0.5375 

0.20 0.5499 

0.25 0.5623 

0.30 0.5746 

0.35 0.5868 

0.40 0.5989 

0.45 0.6109 

0.50 0.6228 
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RK4 

Euler 
 

2 4 6 8 10x 

RK4 

Euler 
2 4 6 8 10x 

RK4 

Euler 

2 4 6 8 10 

 

11. Tables of values were computed using the Euler and RK4 methods. The resulting points were 

plotted and joined using ListPlot in Mathematica. 
 

h = 0.25 
y 

7 

h = 0.1 
y 

7 

h = 0.05 
y 

7 

6 6 6 

5 5 5 

4 4 4 

3 3 3 

2 2 2 

1 1 1 x 

 

 

12. See the comments in Problem 11 above. 

 
h = 0.25 h = 0.1 h = 0.05 

y y y 

 

 

 

 

 

x 
1 2 3 4 5 

x 
1 2 3 4 5 

x 
1 2 3 4 5 

 

13. Using separation of variables we find that the solution of  the  differential  equation is  y  = 1/(1 

− x2
), which is undefined at x  =  1, where the graph has a  vertical asymptote. Because the 

actual solution of the differential equation becomes unbounded at x approaches 1, very small 

changes in the inputs x will result in large changes in the corresponding outputs y. This can be 

expected to have a serious effect on numerical procedures. The graphs below were obtained as 

described in Problem 11. 
 

h = 0.1 
y 

10 

 
8 

 
h = 0.05 

y 
10 

 
8 

 

6 

 
4 

 
2 

 
x 

0.2 0.4 0.6 0.8 1 

 

6 

 
4 

 
2 

 

x 
0.2 0.4 0.6 0.8 1 

 

14. (a) The graph to the right was obtained using RK4 

and ListPlot in Mathematicawith h = 0.1. 

 

 

 

 

 

 

RK4 

Euler 

 

 

 

 

 

 

RK4 

Euler 

 

 

 

 

 

 

RK4 

Euler 

RK4 

Euler 

RK4 

Euler 
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2 

2 

2 

1 

 

(b) Writing the differential equation in the form y′ + 2xy = 1 we see that an integrating 
´ 

factor is e 2xdx = ex , so 
d

 

  [ex
2 

y] = ex
2

 

dx 
and 

2  
ˆ x 2 2 

y = e−x et dt + ce−x . 
0 

This solution can also be expresse
√
d in terms of the inverse error function as 

π 2 2 

y = e−x erfi(x) + ce−x . 
2 

Letting x = 0 and y(0) = 0 we find c = 0, so the solution of the initial-value problem is 

 
y = e−x 

ˆ x 
et

2 
dt = 

0 

√ 
π 

e−x 
2
erfi(x). 

2 

(c) Using FindRoot in Mathematica we see that y′(x) = 0 when x = 0.924139. Since 

y(0.924139)  = 0.541044,  we see  from the graph in part (a)  that (0.924139, 0.541044)  is 

a relative maximum. Now, using the substitution u = −t in the integral below, we have 

 
( ) 

2
 
ˆ −x 

t2 
ˆ x ˆ x 

− (−u)
2 2 2

 

y(−x) = e− −x e   dt = e x e 
0 0 

(−du) = −e−x eu  du = −y(x). 
0 

Thus, y(x) is an odd function and (−0.924139, −0.541044) is a relative minimum. 

 

1. Writing the differential equation in the form y′ = k(y + A/k) we see that the critical point 

−A/k is a repeller for k > 0 and an attractor for k < 0. 

2. Separating variables and integrating we have 

dy 4 
= dx 

y x 

ln y = 4 ln x + c = ln x4 
+ c 

y = c x4. 

We see that when x = 0, y = 0, so the initial-value problem has an infinite number of solutions 

for k = 0 and no solutions for k 6= 0. 

3. True; y = k2/k1  is always a solution for k1 0. 

4. True; writing the differential equation as a1(x) dy + a2 (x)y dx = 0 and separating variables 

yields 

dy 
= −

 a2(x) 
dx.

 

y a1(x) 

Chapter 2 in Review 
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1 

 

d
3 
y 

5. 
dx3  = xsin y (There are many answers.) 

dr 

6. False: 
 

7. True 

= rθ + r + θ + 1 = (r + 1) (θ + 1). 
dθ 

 

8. Since the differential equation in the form y′ = 2 − |y| is seen to be autonomous, 2 − |y| = 0 

has critical points 2 and −2 so y1 = 2 and y2 = −2 are constant (equilibrium) solutions. 

dy 
9.    = ex dx 

y 

ln y = ex + c 

y = ee
x+c = ecee

x 

or y = c ee
x

 

 

10. y′ = |x| , y(−1) = 2 
( 

dy −x, x < 0 
= 

 

dx x, x ≥ 0 

1 
 

y = 
1

 

x2 
+ c1, x < 0 

x2  
+ c2, x ≥ 0 

2 
1 5 

The initial condition y(−1) = 2 implies 2 = − 
2 + c1  and thus c1  = 

2 
. Now y(x) is supposed 

to be differentiable and so continuous. At x = 0 the two parts of the functions must agree 
5 

and so c2 = c1 = 
2 

. So, 

y 

 

5 −x2
 

y = 

x2 
+ 5 

2 

, x < 0 

x 

, x ≥ 0 

 
 

 ̂x 
11. y = ecos x 

0 
dy 

 
te− cos t dt 

ˆ x 

= ecos xxe− cos x  + (− sinx)ecos x 

dx 
te− cos t dt 

0 

dy dy 

dx 
= x − (sin x) y or + (sin x) y = x. 

dx 

dy dy 2 

12. = y + 3,    = (y + 3) 

 

 1 

 

10 

 
5 

 

-4 -2 2 4 

-5   

-10   
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dx dx 
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2 

 

 
13. 

dy 
= (y − 1)

2 
(y − 3)

2
 

dx 
dy 2 

14. = y(y − 2) (y − 4) 
dx 

15. When n is odd, xn < 0 for x < 0 and xn > 0 for x > 0. In this case 0 is unstable. When n is 

even, xn > 0 for x < 0 and for x > 0. In this case 0 is semi-stable. 

When n is odd, −xn > 0 for x < 0 and −xn < 0 for x > 0. In this case 0 is asymptotically 

stable. When n is even, −xn  < 0 for x < 0 and for x > 0. In this case 0 is semi-stable. 

16. Using a CAS we find that the zero of f occurs at approximately P = 1.3214. From the graph 

we observe that dP/dt > 0 for P < 1.3214 and dP/dt < 0 for P > 1.3214, so P = 1.3214 is 

an asymptotically stable critical point. Thus, lim P (t) = 1.3214. 
t→∞ 

17. 
y
 

 

 

x 

 

 

 

 

 

 

18.  

(a) linear in y, homogeneous, exact (b) linear in x 

 
(c) separable, exact, linear in x and y (d) Bernoulli in x 

 
(e) separable (f) separable, linear in x, Bernoulli 

 
(g)  linear in x (h) homogeneous 

 
(i) Bernoulli (j) homogeneous, exact, Bernoulli 

 

(k) linear in x and y, exact, separable, 

homogeneous 

(l) exact, linear in y 

 

(m) homogeneous (n) separable 

 

19. Separating variables and using the identity cos
2 x = 

1 
(1 + cos 2x), we have 

2 y 
cos x dx = 

y2 + 1
 dy, 

1 
x + 

1 
sin 2x = 

1 
ln y

2 
+ 1  + c, 

2 4 2 
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and  

2x + sin 2x = 2 ln y2+ 1 + c. 
 

20. Write the differential equation in the form 

x 
y ln dx = 

y 

 
x 

x ln 
y 

− y 

 
 

dy. 

This is a homogeneous equation, so let x = uy. Then dx = u dy + y du and the differential 

equation becomes 

y ln u(u dy + y du) = (uy ln u − y) dy or y ln u du = −dy. 
 

Separating variables, we obtain  
dy 

ln u du = − 
y

 

u ln |u| − u = − ln |y| + c 

x x x 

y 
ln 

y 
− 

y
 = − ln |y| + c 

x(ln x − ln y) − x = −y ln |y| + cy. 
 

21. The differential equation 
dy 2 3x2 

− 
 

  

dx 
+ 

6x + 1 
y = − 

6x + 1 
y

 
is Bernoulli. Using w = y3 

, we obtain the linear equation 
dw 6 9x2

 

dx 
+ 

6x + 1 
w = − 

6x + 1 
.
 

An integrating factor is 6x + 1, so 

 d 2 

dx
[(6x + 1)w] = −9x , 

3x3 c 

and 

w = − 
6x + 1 

+
 6x + 1 

,
 

(6x + 1)y3 
= −3x3 

+ c. 

(Note: The differential equation is also exact.) 

22. Write the differential equation in the form (3y2  
+ 2x)dx + (4y2  

+ 6xy)dy = 0. Letting 

M = 3y2 
+ 2x and N = 4y2 

+ 6xy we see that My  = 6y = Nx, so the differential equation is 

exact. From fx = 3y2 
+2x we obtain f = 3xy2 

+ x2 
+h(y). Then fy = 6xy +h′(y) = 4y2 

+6xy 

and h′(y) = 4y2 
so h(y) = 

4 y3 
. A one-parameter family of solutions is 

3 

3xy2 
+x2  

+ 
4 

y3 = c. 
3 

2 
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4 

 

23. Write the equation in the form 

 

 

An integrating factor is e
ln t = t, so 

d 

 
dQ 1 

+ 
dt t 

 
4 

 
Q = t3 ln t. 

dt
[tQ] = t ln t 

1 5 
1 

t5 ln t + c 
 

and 

tQ = − 
25 

t  + 5 

1 4 1 
t4 ln t +

 c 
. 

 

24. Letting u = 2x + y + 1 we have 

Q = − 
25 

t  + 
5 t 

du dy 
= 2 + , 

dx dx 
and so the given differential equation is transformed into 

du du 2u + 1 

u 
dx 

− 2 = 1 or 

Separating variables and integrating we get 

dx 
= 

u 
.
 

u 
du = dx 

2u + 1 

1 1 1 

2 
− 

2 2u + 1 
du = dx 

1 1 
u − ln |2u + 1| = x + c 

2 4 

2u − ln |2u + 1| = 4x + c1. 
 

Resubstituting for u gives the solution 

4x + 2y + 2 − ln |4x + 2y + 3| = 4x + c1 

 

or 

2y + 2 − ln |4x + 2y + 3| = c1. 
 

25. Write the equation in the form 

dy 8x 2x 

dx 
+ 

x2 + 4 
y = 

x2 + 4 
.
 

An integrating factor is  x 2
 4

 

+ 4 , so 

d h 
x2 

dx 

i 

+ 4 y = 2x x2+ 4  
3

 

2 4 
1 

x2 
+ 

4 
+ c 

x   + 4 y = 4 
4 
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= e−
2
x 

2 2 

 

and  
y = 

1 
+ c 

4 

 

 
x2 + 4 

 
−4 

.
 

 

26. Letting M = 2r2 
cos θ sin θ + r cos θ and N = 4r + sin θ − 2r cos

2 θ we see that 

Mr = 4r cos θ sin θ + cos θ = Nθ, so the differential equation is exact. From 

fθ = 2r
2 
cos θ sin θ + r cos θ we obtain f = −r

2 
cos

2 
θ + r sin θ + h(r). Then 

fr = −2r cos
2 
θ + sin θ + h′(r) = 4r + sin θ − 2r cos

2 
θ and h′(r) = 4r so h(r) = 2r

2
. The 

solution is 

−r2 cos2θ + r sin θ + 2r2= c. 

 
27. We put the equation 

dy 
+ 4 (cos x) y = x in the standard form  

dy 
+ 2 (cos x) y =  

1 
x then 

dx ´ 

the integrating factor is e 
2 cos x dx = e2 sin x. Therefore 

dx 2 

d 
e2 sin xy 

dx 
ˆ 

x d
 

= 
1 

xe2 sin x 

2 

1 
ˆ x 

e2 sin yt  
(t)  

dt = te2 sin t dt 
 

0     dt 2 0 

z}
1
|{ 

e2 sin xy(x) −e0 y(0) = 
1 

ˆ x 

2 0 
ˆ x 

 
te2 sin t dt 

e
2 sin xy(x) − 1 = 

1
 

2 0 
te2 sin t dy 

1 
ˆ x 

y(x) = e−2  sin x  + e−2 sin x 

2 
te2 sin t dt 

0 

 

 
28. The equation 

 dy 
 
– 4xy = sin x2

 

 
is already in standard form so the integrating factor is 

´ 
dx d h i 

e− 4x  dx  = e−2x
2

 . Therefore dx e−2x 2y sin x . Because of the initial condition 

y(0) = 7 we write 

ˆ x  d h 
2 

i ˆ x 
2

 

e−2t y(t)   dt = e−2t
 

 

 

 
sin t2 dt 

0  dt 

 
e−2x

2
 

0 

z}7|{ ˆ x 
0 e−2t2 

2 

y(x) − e y(0) = 
0 

sin t dt 
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ˆ x 

y(x) = 7e2x
2 

+ e2x
2

 

0 

e−2t
2 

sin t2  dt 
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2 x 

(1) = 

0 

29. We put the equation x dy +2y = xex
2  

into standard form 
dy 2 x2

 

´ 
2 dx 

dx 
ln x2 

2 

    + y = e 
dx  x 

. Then the integrating 

factor is e  x = e = x . Therefore 

x
2 dy 

+ 2xy = x
2
ex

2 

dx 
d 

dx 
ˆx d

 

x 2y 
 

2 

= x e 

ˆ x 2 

1 dt 
t

2 
y(t)  dt = t2et   dt 

1 

x
2 
y(x) − zy}

3
|{ ˆ x t2 

t2e dt 
1 

3 1 
ˆ x 

30.  

y(x) = 
+ 

   
x2 x2 1 

t2et
2 

dt 

dy 
x + (sin x) y = 0 

dx 
dy sin x 

 

´ x sin t dy 

+ 
dx x 

y = 0 

The integrating factor is e 0 t . Therefore, 
d h ́  x sin t dt 

i 
 

 

ˆ h 
dx 

e 0 t y = 0 

x    d ´ t sin u i ˆ x 
 

       e 0 

0 dt 

´ x sin t dt 

u 
duy(t) dt = 0 dt = 0 

0 
 

z}10|{ 

e 0 t y(x) − e y(0) = 0 
´ x sin t 

y(x) = 10e−  0 t dt
 

 

31.   
dy 

+ y = f (x), y(0) = 5, where f (x) = 
dx 

 
( 

e−x, 0 ≤ x < 1 

0, x ≥ 1 

 

For 0 ≤ x < 1,  

d 
  [exy] = 1 
dx 

exy = x + c1 
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y = xe−x + c1e−x 
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Using y(0) = 5, we have c1 = 5. Therefore y = xe−x + 5e−x. Then for x ≥ 1, 

d 
  [exy] = 0 
dx 

exy = c2 

y = c2e−x 

 
Requiring that y(x) be continuous at x = 1 yields 

c2e−1 = e−1 + 5e−1
 

c2 = 6 
 

 

 

 

 
 

32.  

Therefore  
 

y(x) = 

( 
xe−x + 5e−x, 0 ≤ x < 1 

6e−x, x ≥ 1 

 
( 

dy 
+ P (x)y = ex, y(0) = −1, where P (x) = 

dx 
 

For 0 ≤ x <1, 

1, 0 ≤ x < 1 

−1, x ≥ 1 

d 
[exy] = e

2x 

dx 

exy = 
1 

e2x  + c 

12 
1 

y = ex + c e−x 

2 
1
 

Using y(0) = −1, we have c1 = −3 . Therefore y = 
1 ex − 3 e−x. Then for x ≥ 1, 

2 2 2 

d 
e−xy = 1 

dx 

e−xy = x + c2 

y = xex +c2ex 

 
Requiring that y(x) be continuous at x = 1 yields 

1 3 −1 

e + c2e = 
c  = 

e1−  3e 
2 e 

 
Therefore 

 

 

 
y(x) = 

 

 

1ex 

2 

 
  

2 −  − 
2 2 

 

– 3 e−x, 
2 

 

 
0 ≤ x < 1 

x 1 x 3 x−2 

xe − 
2 

e  − 
2
 e , x ≥ 1 

2 −2 
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33. The differential equation has the form (d/dx)[(sin x)y] = 0. Integrating, we have (sin x)y = c 

or y = c/ sin x. The initial condition implies c = −2 sin (7π/6) = 1. Thus, y = 1/ sin x, where 

the interval (π, 2π) is chosen to include x = 7π/6. 

34. Separating variables and integrating we  have 

dy 

y2 = −2(t + 1) dt 

1 2 

– 
y 

= −(t + 1) + c 

1 
y = 

(t+ 1)2 + c 

 
 
 
 
 
 

, where − c = c1 

The initial condition y(0) = −1 implies c1  = −9, so a solution of the initial-value problem is 

 

 
 

where −4 < t < 2. 

1 1 
y =   or y =  , 

(t + 1)2 − 9    t2 

+ 2t − 8 

√ 
 

35. (a) For y < 0, y is not a real number. 
 

(b) Separating variables and integrating we have 

dy √    

√
y 

= dx   and 2 

√ 
 

Letting y(x0 ) = y0   we get c = 2   y0  − x0 , so that 

y = x + c. 

√ √    
 

 

1 √ 2 
 

 

2 y = x + 2 

√ 
 

 

y0 − x0 and y = 

 
1 

4
(x + 2  y0  − x0 ) . 
√ 

 
 

Since y > 0 for y 6= 0, we see that dy/dx =2 (x + 2 y0 − x0 ) must be positive. Thus, 
√ 

the interval on which the solution is defined is (x0  − 2  y0 , ∞). 
 

36. (a) The differential equation is homogeneous and we let y = ux. Then 

(x2 
− y2 

) dx + xy dy = 0 

(x2  
− u2x2

) dx + ux2
(udx + xdu) = 0 

dx + uxdu = 0 

dx 
u du = − 

x
 

1 
u2 

= − ln |x| + c 
2 

 

 

The initial condition gives c1 

y2 

x2 = −2 ln |x| + c1. 

= 2, so an implicit solution is y
2 
= x

2
(2 − 2 ln |x|). 

1 
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(b) Solving for y in part (a) and being sure that the initial con- 
√ y 

dition is  still  satisfied, we have  y  = −   2 |x|(1 − ln |x|)
1/2 

, 

where −e ≤ x ≤ e so that 1 − ln |x| ≥ 0. The graph of 

this function indicates that the derivative is not defined at x 

x = 0 and x = e. Thus, the solution of the initial-value 
√ 

problem is y = −  2 x(1 − ln x)
1/2

, for 0 < x < e. 
 

37. The graph of y1 (x) is the portion of the closed blue curve lying in the fourth quadrant. Its 

interval of definition is approximately (0.7, 4.3). The graph of y2 (x) is the portion of the left-hand 

blue curve lying in the third quadrant. Its interval of definition is (−∞, 0). 

38. The first step of Euler’s method gives y(1.1) ≈ 9 + 0.1(1 + 3) = 9.4. Applying Euler’s method 
√ 

one more time gives y(1.2) ≈ 9.4 + 0.1(1 + 1.1  9.4 ) ≈ 9.8373. 

39. Since the differential equation is autonomous, all lineal 

elements on a given horizontal line have the same slope. 

The direction field is then as shown in the figure at the 

right. It appears from the figure that the differential 

equation has critical points at −2 (an attractor) and at 

2 (a repeller). Thus, −2 is an aymptotically stable critical 

point and 2 is an unstable critical point. 

 

 
40. Since the differential equation is autonomous, all lineal 

elements on a given horizontal line have the same slope. 

The direction field is then as shown in the figure at the 

right. It appears from the figure that the differential 

equation has no critical points. 

2 

1 

 

–2 –1 

–1 

–2 

1 2 

 


