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2.1 Solution Curves Without a Solution
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38 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

(b) The isoclines have the form x* +y° = ¢, which are circles
centered at the origin.

16. (@) When x =0 or y =4, dy/dx = —2 so the lineal elements have slope —2. When y = 3 or
y =5,dy/dx = x — 2, so the lineal elements at (x, 3) and (x, 5) have slopes x — 2.

(b) At (O, yo) the solution curve is headed down. If y — oo as x increases, the graph must
eventually turn around and head up, but while heading up it can never cross y = 4 where
a tangent line to a solution curve must have slope —2. Thus, y cannot approach

©0 as x approaches oo.

17. When y < lzxz, y = Xx° — 2y is positive and the portions of
solution curves “outside” the nulicline parabola are increasing.
When y > izxz, y =X’ — 2y is negative and the portions of the
solution curves “inside” the nullcline parabola are decreasing.

18. (a) Any horizontal lineal element should be at a point on a nullcline. In Problem 1 the
nullclines are x*—y* = 0 or y = x. In Problem 3 the nullclines are 1 — xy = 0 ory
= 1/x. In Problem 4 the nullclines are (sin x) cos y =0 or x = nw and y = /2 + nm,
where n is an integer. The graphs on the next page show the nuliclines for the equations in
Problems 1, 3, and 4 superimposed on the corresponding direction field.

.........

.........
........

Problem 1 Problem 3 Problem 4



2.1 Solution Curves Without a Solution 39

(b) An autonomous first-order differential equation has the form y = f{y). Nullclines have
the form y = c where f{c) = 0. These are the graphs of the equilibrium solutions of the
differential equation.

19. Writing the differential equation in the form dy/dx = y(1 — y)(1 +y) we see that
critical points are y = —1, y = 0, and y = 1. The phase portrait is shown at the
right. Y
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20. Writing the differential equation in the form dy/dx = y* (1 — y)(1 + y) we see that
critical points are y=—1, y =0, and y = 1. The phase portrait is shown at the right.
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40 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

21. Solving y* — 3y = y(y — 3) = 0 we obtain the critical points 0 and 3. From the
phase portrait we see that 0 is asymptotically stable (attractor) and 3 is unstable
(repeller).

22. Solving y* —y’= y*(1—y) = 0 we obtain the critical points 0 and 1. From the phase
portrait we see that 1 is asymptotically stable (attractor) and 0 is semi-stable.

23. Solving (y — 2)"= 0 we obtain the critical point 2. From the phase portrait we see
that 2 is semi-stable.




2.1 Solution Curves Without a Solution

24. Solving 10 + 3y — y*= (5 — »)(2 + y) = 0 we obtain the critical points —2 and 5. From
the phase portrait we see that 5 is asymptotically stable (attractor) and —2 is unstable
(repeller). 5

24
\
6 4 2 2 4 g
~d |
25. Solving y°(4 — y*) = y*(2 — y)(2 +y) = 0 we obtain the critical points —2, 0, and
2. From the phase portrait we see that 2 is asymptotically stable (attractor), 0 is 2
semi-stable, and —2 is unstable (repeller).
.“ 0
41
-2
6 4 -2 f 3 e
-4
26. Solving y(2 — y)(4 — y) = 0 we obtain the critical points 0, 2, and 4. From the phase
portrait we see that 2 is asymptotically stable (attractor) and 0 and 4 are unstable 4
(repellers).
1 2

41



42 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

27. Solving y In(y+2) = 0 we obtain the critical points —1 and 0. From the phase portrait
we see that —1 is asymptotically stable (attractor) and O is unstable (repeller). 0

28. Solving yer — 9y = y(er — 9) = 0 (since ev is always positive) we obtain the /
critical points 0 and In 9. From the phase portrait we see that 0 is asymptotically
stable (attractor) and In 9 is unstable (repeller).

29. The critical points are 0 and ¢ because the graph of f(y) is 0 at these points. Since f(y) >0
fory < 0andy > c, the graph of the solution is increasing on the y-intervals (—oo, 0) and

(¢, ). Since f(y) <0 for 0 <y < ¢, the graph of the solution is decreasing on the y-interval
(G, ¢).




2.1 Solution Curves Without a Solution

30. The critical points are approximately at —2, 2, 0.5, and 1.7. Since f(y) > 0 for y < —2.2

and 0.5 <y < 1.7, the graph of the solution is increasing on the y-intervals (—oo, —2.2) and
(0.5, 1.7). Since f (y) <0 for —2.2 <y <0.5and y > 1.7, the graph is decreasing on the
y-interval (—2.2, 0.5) and (1.7,00).

17y NE

0.5+

-2 -1 1 2

NG
22+ 2

31. From the graphs of z = /2 and z = sin y we see that |
(2/m)y —siny = 0 has only three solutions. By inspection ,
we see that the critical points are —n/2, 0, and /2. o - 5 !

32.

33.

From the graph at the right we see that

C
2 ) <0 for y<-m/2 -
— sin 1
Y s 0 for y>mn/2 2
( [0}
2 _ >0 for —m/2<y<0 1
7/ 7MY <0 for O<y<m2 -

This enables us to construct the phase portrait shown at the right. From this portrait we see
that m/2 and —m/2 are unstable (repellers), and 0 is asymptotically stable (attractor).

For dy/dx = 0 every real number is a critical point, and hence all critical points are noniso- lated.

Recall that for dy/dx = f(y) we are assuming that fand f are continuous functions of y
on some interval I. Now suppose that the graph of a nonconstant solution of the differential
equation crosses the line y = c. If the point of intersection is taken as an initial condition
we have two distinct solutions of the initial-value problem. This violates uniqueness, so the

43
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34.

35.

36.

37.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

graph of any nonconstant solution must lie entirely on one side of any equilibrium solution.
Since f'is continuous it can only change signs at a point where it is 0. But this is a critical
point. Thus, f{y) is completely positive or completely negative in each region R;. If y(x) is
oscillatory or has a relative extremum, then it must have a horizontal tangent line at some
point (xo, yo). In this case yowould be a critical point of the differential equation, but we saw
above that the graph of a nonconstant solution cannot intersect the graph of the equilibrium
solution y = yo.

By Problem 33, a solution y(x) of dy/dx = f(y) cannot have relative extrema and hence must be
monotone. Since y'(x) = f (y) > 0, y(x) is monotone increasing, and since y(x) is bounded
above by cz, limy—« y(x) = L, where L < c.. We want to show that L = c.. Since L is a
horizontal asymptote of y(x), lim—-y’'(x) = 0. Using the fact that f(y) is continuous we have

AL) = £ lim y(x) = lim Ay(x)) = lim y'(x) = 0.

X—>0 X—>0 X—>0

But then L is a critical point of f. Since ci< L < ¢, and f has no critical points between
ciand cz, L = c..

Assuming the existence of the second derivative, points of inflection of y(x) occur where y”(x)
=0. From dy/dx = f(y) we have d’y/dx’ = f'(y) dy/dx. Thus, the y-coordinate of a point of
inflection can be located by solving f'(y) = 0. (Points where dy/dx = 0 correspond to
constant solutions of the differential equation.)

Solving y"—y — 6 = (y —3)(y + 2) = 0 we see that 3 and 2

are critical points. Now d’y/dx’ = 2y — 1)dy/dx = 2y — 1)(y — 2

3)(y + 2), so the only possible point of inflection is at y =32 : -

although the concavity of solutions can be different on either side _
ofy=—2andy = 3. Since y"(x) <0 fory < —2 and—z1 <y<3, Xx

and y“"(x) >0 for =2 <y < zland y > 3, we see that solution -5 l\ \ 5%

curves are concave down for y<—2and %<y <3 and concave up _
for —2 <y < 'agd y > 3. Points of inflection of solutions of -
autonomous differential equations will have the same y-coordinates o
because between critical points they are horizontal translations of

each other.

If (1) in the text has no critical points it has no constant solutions. The solutions have neither
an upper nor lower bound. Since solutions are monotonic, every solution assumes all real values.
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39.

40.

41.

42.

2.1 Solution Curves Without a Solution

The critical points are 0 and b/a. From the phase portrait we see that O is an attractor
and b/a is a repeller. Thus, if aninitial population satisfies Po > b/a, the population
becomes unbounded as t increases, most probably in finite time, LAk
i.e. P(t) > oast— T.If 0 <Po<b/a, then the population eventually dies out,
that is, P (t) — 0 as t — ©o. Since population P >0 we do not consider the case Po Y
<0. 0+

>
>

From the equation dP/dt = k (P — h/k) we see that the only critical point of the autonomous
differential equationis the positive number h/k. A phase portrait shows that this point is
unstable, that is, h/k is a repeller. For any initial condition P (0) = Pofor which 0 < Po< h/k,
dP/dt < 0 which means P (t) is monotonic decreasing and so the graph of P (t) must cross the t-
axis or the line P — 0 at some time t:> 0. But P (t:) = 0 means the population is extinctat
time tu.

Writing the differential equation in the form
dv. 'k mg
dt m k

we see that a critical point is mg/k. k

1%

From the phase portrait we see that mg/k is an asymptotically stable critical point.
Thus, lim v = mg/k.

t—>c0

Writing the differential equation in the form
d K r_ r_
v_k mg , =k mg_ mg, .,

dt m k m ok k NS

we see that the only physically meaningful critical point is mg/k.
P

From the phase portrait we see that k is an asymptotically stable critical
boint. Thus fim b= D e mg/ ymptotically
t—>c0 .

(@) From the phase portrait we see that critical points are a and 8. Let X(0) = Xo.
If Xo <a,weseethat X > aast— oo. Ifa< Xo< B, weseethat X — o
ast — oo. If Xo > [3, we see that X(t) increases in an unbounded manner, BT
but more specific behavior of X(t) as t — ©o is not known.

A

\

ot

A




46 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

(b) When a = B the phase portrait is as shown. If Xo < a, then X(t) — aas
t — oo. If Xo > a, then X(t) increases in an unbounded manner. This could
happen in a finite amount of time. That is, the phase portrait does not
indicate that X becomes unbounded ast — oo.

(c) When k = 1 and a = p the differential equation is dX/dt = (a — X)°.

X(t) = a — 1/(t + c) we have dX/dt = 1/(t + &) and
1 2 1 ax
(@=X'=a— -

t+c CEFo)2 T ar
For X(0) = a/2 we obtain

1
Xt =« T
For X(0) = 2a we obtain
1
X(t)=a— t—ija
X X
_z
o o
al2
27 t T7a t

For

For Xo > a, X(t) increases without bound up to t = 1/a. For t > 1/a, X(t) increases

but X — a as t — ©0.

2.2 Separable Variables

In many of the following problems we will encounter an expression of the form In|g(y)| = fAAx)+c.
To solve for g(y) we exponentiate both sides of the equation. This yields |g(y)| = /%' = ecef%

which implies g(y) = xeefY. Letting c1 = xec we obtain g(y) = cref*.
1. From dy = sin5xdx we obtain y = —* cos5x + c.

2. From dy = (x+ 1)* dx we obtain y = *(x+ 1)’ + c.



10.

11.

12.

13.

14

15.

16.

17.

18.

19.

2.2 Separable Variables

From dy = —e~"xdx we obtain y="'e~*x +c.

1 1 1
Fromm2 dy = dx we obtain -1 =x+tcory=1l——0rH .
1 4 . 4
From— dy == dxweobtainIn |y| =4 1In |x|+ cory =¢x"
y X
1 1 2 1
From dy = —2xdx we obtain —— = —x"+cory= .
y? y X2+
From e-*dy = e’xdx we obtain 3e~% + 2e’x = c.
- -~ 1 -3
y X =3x v y X X
Fromye dy= e +e  dxweobtainye—e+e +§e -c
1 2 x° 1

From V+ 2+)7 dy = X’ Inxdx we obtain ?+2y+ln|y| - gn | x| —§ *e

1 1 2 1
From (2y—+3)2dy=mz dx we obtain Sy ¥3 4x ¥ 5 +c.
1 . .
From CSCiny = —gec2 dxorsinydy=— cos’xdx=—1 (} + cos 2x) dx we obtain
1
—COSy = —2Xx — 2SiNn2x+ cor 4cosy = 2x +sin2x + ci.
sin3 .
From 2ydy = — X dx or 2y dy = —tan 3x sec’ 3x dx we obtain y* = —1 sec’3x + c.
cos3 3x 6
ey —ex % -1 1 x -2
. 1) =,(e +1) +c
From - dx we obtain —(e 2
oM o +1)2 V= (or41)3 (
y X 1/2 12
From — _dy=—__ dxweobtain 1+)* = 1+x> +c.
(1+y2)Y? (1 + x2)'/
1 .
From _dS = k dr we obtain S = cek.
S
From—2L—dQ = kdt we obtain In|Q — 70| =kt +cor Q—70=c e.
Q—70 1
1 1,1 _
From ﬁzarP: p T 1=p dP=dtweobtainIn|P|—In|l— P|=t+csothat
P P ¢ ciet
In___=t+cor ____ =ce. Solving for P we have P =
1-P 1-P 1+a
From = dN = tet™ > t+2 rtt2—ety2 —¢
N —1 dtweobtain In|[N|=tet —e —t+tcorN=cie

From dy = dx or 1— — dy= 1——"" dx we obtain

47
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

y+3 x +4 y+3 5

y=5In|y+3|=x—5In|x+4| +cor

= ciexy,



20.

21.

22.

23.

24.

25.

26.

27.

2.2 Separable Variables

From V+1dy: dx or 1+ dy= 1+ > dx we obtain
y—1 x—3 y—1 x—3
-1 x

cie

y+2In|ly—1|=x+5In|x—=3|+ca —
(x —3)
1 =1 2 1 - X2
From xdx =p dy we obtain“x” =sin=—"y+cory=sin __ *+¢

1—y? 2 2
1 1 ex 1 -1 x

From _ dy= dx

= in— = e+ c or
y2 g ex+ex (€2 +1 dx we obtain y tan

tan e +c

From ) dx = 4 dt we obtain tan-" x = 4t+c. Using x(rr/4) = 1 we find ¢ = —3m/4. The
xc+ 1
) N . . 3

solution of the initial-value problem istan-—"x=4t _~ or x =tan 4t —

3 4
4

1 1 1 1 1 1 1 1

From dy = dxor 54 — — dy=- —— —
yz_ly x2—1 2 y—-1 y+1 2 x—1 x+1

dx we obtain

nly—1 —Inly+1 =M |x =1 — In|x + 1| + In c¥r—L =E=D Using y(2) = 2 we

. . .y—-yl"'lx—lx"':L
find ¢ = 1. A solution of the initial-value problem is = ory =x.
y+1l x+1

l 1—x l . _1 1
From dy =", dx= 1 ~ dx we obtainIn |y| = = X—ln |x] =corxy=ce/x
y

X2 x !
Using y(—1) = —1 we find c¢: = e~". The solution of the initial-value problem is xy = e='="/x
ory = e~(1+1/%) /x,

1 . .
From dy = dt we obtain =1 In|1—2y| = t+cor 1 —2y = c e-*. Using y(0) = 5/2 we
2 1

1-2y
find c1= —4. The solution of the initial-value problem is 1 — 2y = —4e~*tory = 2e~t + ' . 3

Separating variables and integrating we obtain

dx d
A - p o =0 and sin-‘x—sin-'y=c
1 —x2 1 —y2

.\/

Setting x = 0 and y = 3/2 we obtain ¢ = —m/3. Thus, an implicit solution of the initial-
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

value problem is sin-'x — sin=' y = /3. Solving for y and using an addition formula from
trigonometry, we get
v,V

T p___ g X 2

B

y =sin sin-! x+ 5 = xc0s + 1— x2sin = +



2.2 Separable Variables
1 —X

dy=_______ dx we obtain
28. From X
I+ @y)? 1 +(x2)’

1
“tan—"2y = —"tan—'x*+c or tan—'2y+tan-‘x’=c .
2 2

1

Using y(1) = 0 we find c:= /4. Thus, an implicit solution of the initial-value problem is
tan-" 2y + tan-*x*= /4 . Solving for y and using a trigonometric identity we get

_ T 2
2y =tan T tan-" x

1 7T 1 2

_ 1 tanfF — tan(tan—' x°

yis
7 1+ tan 4 tan (tan=" x2)

11X

T 2T+ x2

29. Separating variables and then proceeding as in Example 5 we get

dy _

ex
dx Y

ldy _ o2
. Y dx
X d X
. ydt= et dt
sy@®dt 4

X

Iny(t) = e dt
4

Iny(x) —Iny(4) = \ et dt

A

X 2
Iny(x)= e-¢"dt
4
x —¢2

yey=es

51



52 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

30. Separating variables and then proceeding as in Example 5 we get

dy
__=y'sin(¥)
dx
ldy
T =sin ()
R y2dx

x 1 dyg = xsin(®)de

-2 y2(t) dt -2
J@E = sin@ad
2 =2
—1 1 = Ysin(®)dt
+

) ¥ =

T +3= sin (t°) dt

y(x) -2
~ 1
y(x) = 3- sin (tz)dt
-2
31. Separating variables we get
Y _ox+1 1
dx 2y -4 -3 -2/
2y dy = (2x +1) dx E:
A A -2
2ydy = (2x+ 1)dx -

y'=xX+x+c

v
The condition y(—2) = —1 implies c = —1. Thus y’ =x"+x—1andy=— xZ+x—11in
order for y to be negative. Moreover for an interval containing —2 for values of x such that

xX*+x—1>0we get _oo’_i_

5
2 2



2.2 Separable Variables

32. Separating variables we get
_d,Z 2
(2y—2) =3x +4x +2
dx

(2y —2) dy= 3% + 4x + 2 dx \\

22 -1 1 2
QCy—2)dy= 3xX*+4x+2 dx Tt
-~ ~ -2
20—1)dy= 3xX+4x+2dx -3

v —1)’=x+2x+2x+c
v
The condition y(1) = —2 implies ¢ = 4. Thus y = 1 — x3+2x2+2x+4 where the minus

sign is indicated by the initial condition. Now x° +2x*+2x+4 = (x+2) x* + 1 > 0 implies
x > —2, so the interval of definition is (=2, ©0).

33. Separating variables we get
edx —exdy=20
evdx=e xdy

exdx = e dy |

~

evdy . ; : . S—

exdx =
-5 -4 =1 -

ex= —evV+ cC

The condition y(0) = 0 implies ¢ = 2. Thus ev=2 — ex. Therefore y = — In (2 — ex). Nowe
must have 2 — ex > 0 or ex < 2. Since ex is an increasing function this imples x < In 2 and so
the interval of definition is (—oo, In 2).

34. Separating variables we get

,-'—1— [ ~-—
sinxdx+ydy=0 0.8 R
" h " 0.6 N
sin x dx + y dy = Odx I,"‘ 0.4 \
I"‘ 0.2 \
1, -1  -0.5 0.5 1
—COSX+— y=
Xtoy=c
The condition y(0) = 1 implies ¢ = =1. Thus —cosx + *y* = =% or y* = 2cosx — 1.

2 2 2
Therefore y = 2cosx — 1 where the positive root is indicated by the initial condition. Now
we must have 2cosx — 1 >0 or cosx > é This means —m/3 < x < /3, so the the interval

of definition is (—m/3, m/3).

35. (a) The equilibrium solutions y(x) = 2 and y(x) = —2 satisfy the initial conditions y(0) =2

53



54 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

and y(0) = —2, respectively. Setting x=;"and y =1iny = 2(1+ ce™)/(1 — ce’x) we

obtain 1+ ce 1
1=2 , l1l—ce=2+2ce, —1=3ce, and c=—__.

1—ce 3e
The solution of the corresponding initial-value problem is

1 _%64)(—1_ > 3 — efx-1

1+ %e4x-l 3 + edx-1

y=2

(b) Separating variables and integrating yields
1 1

Inly—2| = Inly+2|+Inc=x
4 4

Inly—=2] —In|y+2| +Inc=4x

In_(y_)_c _2=4x
y+2
-ug_ 4x
Cy+2—e

Solving for y we get y = 2(c + ') /(c — e"¥). The initial condition y(0) = —2 implies
2(c+1)/(c — 1) = —2 which yields ¢ = 0 and y(x) = —2. The initial condition y(0) =
2does not correspond to a value of ¢, and it must simply be recognized that y(x) = 2 is
a

solution of the initial-value problem. Setting x = andy =1iny=2(c+e%)/(c—e*)
leads to ¢ = —3e. Thus, a solution of the initial-value problemis

3% —3e + e4x 3 — efx-1
=2 =2 .
36. Separating variables, we have
dy dx dy
=_ or
by — ——=1In|x| +c
oy X s
Using partial fractions, we obtain
1 1
—— — dy=In|x| +c
y—1 vy
Inly—1] = In|y| =In|x| + ¢
y—1
In =c
Xy
-1
Y= =e‘=c
1
Xy

Solving for y we gety =1 /(1 — cix). We note by inspection that y = 0 is a singular solution



of the differential equation.

2.2 Separable Variables
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(@) Settingx=0andy =1 we have 1 =1/(1 — 0), which is true for all values of c.. Thus,
solutions passing through (0, 1) are y = 1 /(1 — cwx).

(b) Settingx=0andy =0iny =1/(1—cx) we get 0 = 1. Thus, the only solution passing
through (O, 0) is y =0.

(c) Settingx=" andy='wehave'=1/(1 — tc),soc =—2andy=1/(1+ 2x).
2 2 2 2 1

(d) Settingx=2andy="wehave =1/(1—2c:),soc=-2 and
4 4 2

y=1/(1 +23*X) =2/(2 + 3x).

P
37. Singular solutions of dy/dx = x 1 — y?2arey = —1andy = 1. A singular solution of
(ex + e)dy/dx =y’ is y = 0.

38. Differentiating In (x*+ 10) + cscy = ¢ we get

2x dy
Xw_ CsCy COty—dX = O,
2x 1 cosydy

7

X2+ 10 siny sinydx
or

2x sin’y dx — (x* + 10) cos y dy = 0.

Writing the differential equation in the form

dy 2xsin’ y
dx (x2+ 10) cosy

we see that singular solutions occur when sin’y = 0, or y = km, where k is an integer.

39. The singular solution y = 1 satisfies the initial-value problem. 1.017

—0.004 —0.002 0.002 0.004

0.98

0.97



2.2 Separable Variables

dy
40. Separating variables we obtain = dx. Then 102”7
v — 1)?
1 x+c—1
— =x+c and y= 4. 101
y—1
Setting x = 0 and y = 1.01 we obtain ¢ = —100. The solution . . . X
is ~0.004 —0.002 0.002 0.004
_x—101
x—100" 0.99
0.98
bl b v '
41. Separating variables we obtain = dx. Then
(y— 1)2+001 & 1.0004
1 + 1.0002
10tan—*10(y — 1) = x+c and y=1+"tan— —
10 10
Setting x = 0 and y = 1 we obtain ¢ = 0. The solution is ~0.004 -0.002 0.002 0.004 x
1x
y=1+_ tan_. 0.9998
10 10
0.9996
. . . dy
42. Separating variables we obtain = dx. Then y
(—1) —001 1.0004
with u=y —1 and a = j,, we get
A0y —11 10002
51In =x+c
10y — 9 Ww X
Settingx =0and y =1 we obtainc=5In1=0. The 0.9998
solution is
10y — 11 0.9996
5In o0 =X
10y — 9
Solving for y we obtain
11 + 9ev°
Y~ 10+ 10675
Alternatively, we can use the fact that
d l 1, _ 1 1
Y——— _—“tanh-"Y—== —10 tanh-"10(y — )
(y — 1)2 -0.01 0.1 0.1

(We use the inverse hyperbolic tangent because |y — 1] < 0.1 or 0.9 <y < 1.1. This
follows from the initial condition y(0) = 1.) Solving the above equation for y we get y =
1+ 0.1tanh (x/10).
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43. Separating variables, we have
dy dy 1 1/2 1/2

dy = dx.

= = "+ —
y—y: yA-y)1l+y) y 1—-y 1l+y

Integrating, we get 1 L

Inlyl] — Injl—y|=—In|1l+y|=x+c
2 2

Wheny > 1, this becomes

Iny—1iny—1) =2+ =np Y =x+c
2 2 y2—1

.\/
Letting x =0 6\1?dy =2wefindc=1In(2/ 3). Solving for y we get yi(x) = 2ex/ 4e> — 3,
where x > In (3/2).
When 0 <y < 1 we have

Iny—lIn(l—y)——lln(1+y):Inp_J =x+c

2 2 1 —y2
) . v v
Letting x= 0andy = we find c = In(1/ 3). Solving for y we get y:(x) = et/ e2x +3,
where —oo0 < x < o,

When —1 <y < 0 we have

1 1 —
In(—y) =~ IN(L—y) =~ In(l+y) =Inp > =+ c
2 2 1—y2
v_ v
Lettingx =0and y = —lzwe find c = In(1/ 3). Solving for y we get ys(x) = —ex/ e2X+3,
where —oo0 < x < ©o,

Wheny < —1 we have

1 1 —
In(—y) == In(L—y) ——In(-1—p)=Inp > =x+c
2 2 y2 -1

Letting x =0and y = —2 we find ¢ = In (2/ -3 ). Solving for y we get

yi(x) = —2ex/ 4e2x — 3, where x > In( 3/2).




44. (a) The second derivative of y is

dy dy/dx 1/(y — 3) 1

@~ (-1 (-3¢ (-3F
The solution curve is concave down when d’y/dx’ < 0
or y > 3, and concave up when d’y/dx* > 0 or y < 3.
From the phase portrait we see that the solution curve
is decreasing when y < 3 and increasing when y > 3.

(b) Separating variables and integrating we obtain
(v — 3)dy =dx

1
Yy _3y=x+c

Vi —6y+9=2x+c

(y—3)2=2 +c
"V

y=3% 2x+c.

2.2 Separable Variables

The initial condition dictates whether to use the p|l<? or minus sign.
When y:(0) = 4 we have ¢: =1 and y:(x) =3+ “2x+ 1 where (—1/2, ).

When y2(0) = 2 we have c: =1 and y:(x) = 3 — 3}” 1 where (—=1/2, o).

When ys(1) = 2 we have c: J

—1 and ys:(x) = 3 = 2x — 1 where (1/2, ).

When y.(—1) = 4 we have ¢: =3 and ys(x) = 3+ 2x+3 where (—3/2, ).

45. We separate variables and rationalize the denominator. Then

1—sinx

1 . 1-sinx 1—sinx
dy = - —dx = .
1+sinx 1-—sinx 1—sin"x

= sec’x —tanxsecx dx.

Integrating, we have y = tan x — sec x + C.

v -V
46. Separating variables we have "y dy =sin " x dx. Then

v v 2
ydy = 3

v v

dx

sin  xdx and VA=

dx
cos? x

sin - xdx.

1 1

To integrate sin  x we first make the substitution u = Thendu= Vv dx= ~duand

~ ~ A

Vo _
sin xdx= (sinu) 2u)du=2

2 x 2u

usinu du.
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48.
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Using integration by parts we find

VoYY

usinudu=—ucosu+sinu=—xcos x+sin x
Thus > R y

= B Yy ¥ vV

3 sin xdx=—2 xcos x+2sin x+C
and

v vV
y=37— Xxcos x+sin x+C.

V_ V_ v_
Separating variableswe havedy/ y+y =dx/( x+x). Tointegrate dx/ x+Xx

we substitute u”= x and get _
2u 2

—u+u2du= 1+udu:2|n|1+u|+c:2|n 1+ x+c

Integrating the separated differential equation we have

v v B _ _
) =2Inl+ x +c or y) 2R+ x+1Inc.

.\/
Solvingforywegety=[c: (1 + x) — 1]°.

Separating variables and integrating we have .

dy
= dx
y2/3 1 — yl/3
) y2/3
171/3 dy =X+ C1

—3Inl—yrr=x+ac

1/3 X
Inl-y -
= — 3+ C2
1/3 -x/3
11—y =cse

1 — y/8=cype™"

Y13 =1+ cge™¥/3

3
y=1+ce" .



49.

50.

51.

52.

2.2 Separable Variables

Separating variables we have ydy =e | dx. If u = "%, then u’= x and 2udu = dx. Thus,

\/
X
V_
e Ydx = 2uev du and, using integration by parts, we find
’ TN 1, v o
ydy= e ¥dx 0 2y_ 2uet du = —2ev+C=2 xex—2e *+(,
and
a
VoL
y=2 xexX—eX+C
To find C we solve y(1) = 4.
q1v/ . . V
yQ=2 "_ _ _
lel—el+Cc=2 C=4 so C=4
. L i q./ / /
and the solution of the intial-value problemisy =2 "~V 7 X

xeX—e +4,.

Seperating variables we have ydy = xtan-'xdx. Integrating bothsidesandusingintegration
by parts with u = tan-* x and dv = xdx we have

~

ydy=xtan—'x dx

= _2 l 2 1 l l 1
y="Xxtan"x— " x+  tan—"x+C

2 2 2 2

y'=xtan-'x—x+tan~' x+ C
p
y= x2tan~'x—x+tan~'x+ C

To find C: we solve y(0) = 3.
P P
y(0) = 02tan-—'0—O0+tan—'0+C:= C:=3 SO Cc.=9,
_\/

and the solution of the initial-value problemisy = x2tan-'x — x +tan=" x + 9 .
(@) While y (x) = V__ —x2 is defined at x= =5 and x = 5, Yy (x) is not defined at these

2 - 25 2
values, and so the interval of definition is the open interval (=5, 5).

(b) At any point on the x-axis the derivative of y(x) is undefined, so no solution curve can
cross the x-axis. Since —x/y is not defined when y = 0, the initial-value problem has no
solution.

2

The derivativeof y = , 1x> — * isdy/dx=x 1 2_ 1 \We note that xy /> =X 1xX" — 1|

1 4 X 4
We see from the graphs of y (black), dy/dx (red), and xy'/*(blue), below that dy/dx = xy'/
on (—oo, 2] and [2, ).
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53.

54.

55.
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vV__
Alternatively, because X2 = |X| we can write
s 000 mXiXZ_ , —00 <x< -2
2 — 1, _ Fl 41 2 1
o \/_=X 12 _ 1 =x = —2<x<2
x_y/ =
Xy 4 x41=|_;|—X4x—1,

X ¥ -1, 2<x<oo.

From this we see that dy/dx = xy'/* on (—oo, —2] and on [2, ).

P
Separating variables we have dy/ 1+y2sin’y =dx 35:

which is not readily integrated (even by a CAS). We
note that dy/dx = 0 for all values of x and y and that
dy/dx=0when y =0 andy =m, which are equilibrium
solutions.

(a) The solution of y" =y, y(0) = 1, is y = ex. Using separation of variables we find that the
solution of y = y[1+1/(xInx)], y(e) =1, isy = ex—¢Inx. Solving the two solutions
simultaneously we obtain

ex = ex~e|nx, e} ee =|nx and X = ee

e 1656520 ' the y-coordinate of the point of intersection of the
(b) Since y = el 9 % 233 x 10
two solution curves has over 1.65 million digits.

We are looking for a function y(x) such that

_y2 + d.y =1.

dx
Using the positive square root gives
pdy= =dx
1—y?

sinfy=x+c.



56.

57.

58.
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Thus a solution is y = sin (x + ¢). If we use the negative square root we obtain
y=sin(c—x)=—sin(x —¢) = —sin(x + c).

Note that when ¢ = ¢:=0 and when ¢ = c:= /2 we obtain the well known particular solutions

y=sinx, y=— sinx, y=cosx, and y = —cos x. Note also that y = 1 and y = —dare singular
solutions.
(@ yA
33—
73I T T T é X
,3_
P v

(b) For |x| >1and |y| > 1 the differential equationisdy/dx= y2—1/ x2— 1. Separat-
ing variables and integrating, we obtain

dy dx . .
P——=3~ and  cosh=" y =cosh~ x+c.

y2-1 x2 —1

Setting x = 2 and y = 2 we find ¢ = cosh-*2 — cosh-*2 = 0 and cosh-'y = cosh-"x.
An explicit solution is y = x.

Since the tension T:(or magnitude T:) acts at the lowest point of the cable, we use symmetry to
solve the problem on the interval [0, L/2]. The assumption that the roadbed is uniform (that
is, weighs a constant p pounds per horizontal foot) implies W = px, where x is measured in feet
and 0 < x < L/2. Therefore (10) becomes dy/dx = (p/T:)x. This last equation is a separable
equation of the form given in (1) of Section 2.2 in the text. Integrating and using the initial
condition y(0) = a shows that the shape of the cable is a parabola: y(x) = (p/2T:)x’+a.In terms
of the sag h of the cable and the span L, we see from Figure 2.2.5 in the text that y(L/2) = h
+ a. By applying this last condition to y(x) = (p/2T:)x’+ a enables us to expressp/2T:in
terms of h and L: y(x) = (4h/L?)x’+ a. Since y(x) is an even function of x, the solution is
validon —L/2 < x < L/2.

(a) Separating variables and integrating, we have Y
(3y*+1)dy = —(8x+5)dxand y’ +y = —4x" —5x+c. *
Using a CAS we show various contours of
f(x,y) = y' +y + 4x + 5x. The plots shown on

[—5, 5]%[—5, 5] correspond to c-values of 0, 5, £20, £40,
£80, and £125.

)

N

)
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(b) The value of ¢ corresponding to y(0) = —1is f(0, —1) = —2;
toy(0)=2is f{0,2) =10; toy(—1) =4is —1,4) =67, *
and to y(—1) = —3 is —31. 2

59. (a) An implicit solution of the differential equation (2y + 2)dy — (4x’ + 6x)dx =0 is
V'+2y—x'—3x¥ +c=0.
The condition y(0) = —3 implies that ¢ = —3. Therefore y*+2y — x'—3x* —3 =0.

(b) Using the quadratic formula we can solve for y in terms of x:

P
=2+ 4+ 4(x*+3x2+3)
2

The explicit solution that satisfies the initial condition is then
p___
y=—1- x4+3x3+4.

(c) From the graph of the function flx) = x*+ 3x°+ 4 below we see that f{x) < 0 on the
approximate interval —2.8 < x < —1.3. Thus the approximate domain of the function

p | o
Yy=—1— x44+3x3+4=—-1— f(x)

isx < —2.8 or x = —1.3. The graph of this function is shown below.

1)

f(x)




2.2 Separable Variables

(d) Using the root finding capabilities of a CAS, the zeros of fare found 1=
to be —2.82202 and —1.3409. The domain of definition of the solution - 2
y(x) is then x > —1.3409. The equality has been removed since the
derivative dy/dx does not exist at the points where f(x) = 0. The
graph of the solution y = ¢(x) is given on the right.

60. (a) Separating variables and integrating, we have

\
(—2y +y)dy = (x — x) dx al \
and 1 :{:B)
_y2+1y3= x2_1 3 0 é;ﬂ g
~ ~ X+
3 2 3

N

Using a CAS we show some contours of

4 L \
f(X, y) — 2y3 _ 6y2 + 2% — 3X2 & -, S Q

The plots shown on [—7, 7] X[—5, 5] correspond to c-values of —450, —300, —200, —120,
—-60, —20, —10, —8.1, =5, —0.8, 20, 60, and 120.

<

(b) The \3/alue of27c corresponding to y(0) =2, is \

f 0, ; = — ; The portion of the graph be-
tween the dots corresponds to the solution curve >
satisfying the intial condition. To determine the

interval of definition we find dy/dx for i
27
2y — 6y +2x° —3x" = —". i

4 2 0 2 4 6

f\/

A DM O DN

Using implicit differentiation we get y' = (x — x*)/(y" —2y), which is infinite when y = Gind
Yy =2. Lettingy = 0in 2y’ = 6y°+ 2x’— 3x’= —# and ysing a CAS to solve for xve get
x = —1.13232. Similarly, letting y = 2, we find x = 1.71299. The largest intervalof
definition is approximately (—1.13232, 1.71299).

65
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2.3 Linear Equations

y

(c) The value of ¢ corresponding to y(0) = =2 is 4t
A0, —2) = —40. The portion of the graph to the >
right of the dot corresponds to the solution curve 0 L X
satisfying the initial condition. To determine the _j
interval of definition we find dy/dx for 6 i
2)° — 6)7 + 2x° — 3x° = —40. 81

-4 2 0 2 4 6 8 10

Using implicit differentiation we get y' = (x — x*)/(y’ — 2y), which is infinite when y = @nd
y = 2. Letting y =0 in 2y° —6y° + 2x* — 3x* = —40 and using a CAS to solve forave
get x = —2.29551. The largest interval of definition is approximately (—2.29551, o).

Linear Equations

d =5x
Fory’ — 5y = 0 an integrating factor is e~ *x=e™>sothat gx ¢ Y =0andy = ce™
for —oco < x < 00,

“2dx 2 d o -2x

- Fory + 2y=0an integrating factor is e =e sothat gx € y=0andy=ce for

X

—00 < x <o0o. The transient term is ce=*x.

3x ’ dx X d X 4x 1 3x -x
. Fory+y=e anintegratingfactorise  =esothat ggleY1=€ andy=ge +ce
for —oo < x < 00. The transient term is cex.
4 “adx 4 d 4 44x 1 -ax
- Fory +4y = 5 an integrating factor is e =e sothat C; e y=3e andy=;+ce
for —oo < x <oo. The transient term is ce="x.
2 2 3x dx X dhg@yizxez e
For y + 3xy =x anintegrating factor is e = e sothat dx and
y =4+ ce~’for —oo0 < x < c0. The transient term is ce~".
3 “2xdx x2 dh i 3
X
Fory + 2xy = x an integrating factor is e = e sothat e y =xe and
dx
y=1x*— 1+ ce~for —oo < x < 00. The transient term is ce=*".
2 2
1 1 " (W) dx d 1 1 c

- — 7. Fory — +X)+=X2 an integrating

63



64

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

factor is e = x so that [xy] = andy= Inx+
] L . dx X X X
for 0 < x < c0. The entire solution is transient.
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2 - 2dx —2x d  _y 2 —2x —2x
8. Fory —2y = x +5 an integrating factor is e =e sothat ¢ yv=xe +be
andy = —1x*— 1x — 1+ ce* for —oo < x < 0o, There is no transient term.
2 2 4
1 ' 1 d1
9. Fory — ¥ =xsinx an integrating factor is e= (/) dx= sothat _ y=sinxand
X X dx x

y=cx — xcos x for 0 < x < oo, There is no transient term.

2 3 ‘(2/x)dx 2 d 2 3 =2
10. Fory + y = an integrating factor is e = x so that X = 3x and y =, +cx
X X

for 0 <x < 0o0. The trancient term is cx=’.

4 ) ’
= d
11. Fory + )_(y =X ~1anintegrating factor is e /9 =x" so that Ix X'y =x"—x*and

3

y="x"—1x+ cx~*for 0 < x < c0. The transient term is cx~*.
7 5

12. Fory  _ X y= xanintegrating factor is e - b/aw)lx = (x + 1)e =* so that
d
1+x
( —x ) —-x 2x+ 3 cex
CK(X-F:L)e y=x(x+ 1)e andy = —x — + for —1 < x < co0. There
x+1 x+1

is no transient term.

2 ex [A+@/x)1dx 2 x d , 2
13. Fory + 1+ x Y = x2 anintegrating factor is e =x e sothat dx[x eyl=ex

lex e=x ce™X
and y = 5 )_(2+ —~ for 0 < x < co. The transient term is 2

1 .
14. Fory' + 1+ y= Ee-x sin 2x an integrating factor is e [1+(1/9]dx = xex g0 that

d X X

X L ce™x
E[Xe yl=sin2xandy=—, e COs2x + . for0<x < oo. The entiresolution
X
is transient.
da .
15. FordX 4x=4ys ' Iy -—4sothat ~ y-
— x =4y
dy y anintegrating factorise- “»Y& =e = =y dy

and x = 2y°+ ¢y’ for 0 <y < oo, There is no transient term.
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dx 2 2
16. FOor__+ _x=e’ anintegrating factor is e ®» & =y sothat
v oy o
Z 2 <
x=e — e+ ,e+ ,for0<y< oo. The transient termis _,
y & ey v

d ,

dy

2

=y e and



17.

18.

19.

20.

21.

22.

23.

2.3 Linear Equations

For ' +(tan x)y = sec x an integrating factor is e " x dx = sec x so that ;_[(SGC x)y] = seé x
X

and y =sinx + c cos x for —m/2 < x < /2. There is no transient term.

Fory + (cot x)y = sec’ x csc x an integrating factor is e ¥ @ = el I'sinxl = sin x so that

d
__[(sin x) y] = sec® x and y = sec x + ¢ csc x for 0 < x < /2. There is no transient term.
dx

Fory + X712 y= 2Xe™ an integrating factor is e ‘*?/x™dx = (x + l)er, s0
d x+1 x +1 X2 N c

M x+ 1)exy] =2xandy = e~ 4 e™ for —1 < x < oo. The entire
dx x+1 x+1

solution is transient.

4 5 " [4/(x+2)] dx 4
Fory T (x + 2)2 an integrating factor is e =(x +2) sothat

4 2 =1 -4
x @ty =5x+2) andy = §(X+2) +c(x+2) for —2 <x < co. The

entire solution is transient.

For1+ rsec 6 = cos 0 an integrating factor is e *“0d0 = elnlsecx+tanxl = gac @ + tan O so
“
that dg[(sec 6 +tan B)r] = 1+ sin 6 and (sec 6 + tan 8)r = 6 — cos @ + ¢ for —m/2 < 6 < /2.
There is no transient term.
dpP ' (2t=1)de =t d htz—t !

For ™+ (2t — 1)P = 4t — 2an integrating factor is e =e sothat— e P=

2t

(4t — 2)et  and P = 2 + cet~t for —o0 < t < oo. The transient term is cet-¢ .

, 1 '
Fory+ 3+ =€ " anintegrating factor is e [3+(1/01dx = xe3* so that & xexy =1

X dx
-3x ce=3x =-3x

andy=-e + N for 0 < x < co0. The transient term isce /.
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: 2 x+1 ,[2/(x2—1)]dx x—1
24. Fory + 2 1y = —) an integrating factor is e Ry
so that d_ i:lly =land (x— 1)y = x(x+ 1)+ c(x+ 1) for —1 <x < 1. There is no
X

transient term.
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25.

26.

21.

28.

29.

30.
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d

—=5x =5x =5x

Fory” — 5y = x an integrating factor ise =° & =e sothat — e y =xe and

dx
1 1 1 1
y=e* xe-xdx=e* — xe-%x— e+4c =— X— +ce’~
5 25 5 25
1 1 1 76 ; . .
If y(0) =3thenc=" andy=—"x—" + e Thesolution is defined on I = (—00, ).
25 5 25 25
" 3dx 3x d 3x 3x
For y + 3y = 2xand integrating factor is e =e sothat -— e y=2xe and
’ 2 2
y=e3 2xexdx=e"x Txex— "e*x+c =< X 2y ce™x,
3 9 3 9

1 5 2 2 5 L .
If y(0) == then ¢ =~ and y = x — +~ e~*x. THe solution is defined on I = (—oo, c0).

3 9 3 9 9
1 1 l(l/x)dx d X 1 x €
Fory +— ¥ = € anintegrating factor is =xsothat ; [wl=e andy= e +
1 —
forO<x<oo. Ify(l)=2thenc=2 —eandy = ex+ 2 € The solution is defined on
X X
I = (0, 00).
dx 1 . . . ‘
For - x= 2y an integrating factor is e~ @/y)dy — E so that i }X =2 and
dy Y y dy y
2 2 @ - .
x=2y +cy for 0 <y <oo. If y(1) =5 then ¢ = —49/5 and x = 2y"— — y. The solution is
5
defined on I = (0O, 00).
For di R £ O Rt/L dh ReyL 1 E Res
| = — e
det L! | anintegrating factor ise ®/* ¢ -e sothat g i= e
. _E : : : . _E
and i == + ce~Rv/L for —co <t < oo, Ifi(0)=ithenc=i— E/Randi=" +
R 0 0 R
E . .
jio— _ e RvL The solution is defined on / = (—0o, o)
R
ar lde -kt d -kt
For "4t —KT = —Tnk an integrating factor is e =e sothat ofe T]=—T,ke

and T = Titcekt for —oo <t < oo, If T(0) = Tothenc= To—Tm and T = Ty +(To—Th) ext.
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The solution is defined on I = (—o0, )

1 1 ’ d
8L Fory + —y =4+ anintegrating factorise “/¥dx = x sothat E{[XJ’] =4x +1and

1 1 c

y=_ (x+1)dx= _ o4yt =2x+1+ _.
ble X be
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32.

33.

34.

35.
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5
If y() =8thenc=5andy =2x + 1+ & The solution is defined on I = (0, o0).
3x "4x dx 2x° d 2x° 3 3x°
For y + 4xy =x e anintegrating factor is e =e sothat E[e yl=xe and
2 3 3,2 2.2 1232 4 32 = 2 2 & 2 2,2
y=e " X' dx =e™™ xex — ex+c = Xxex — ex+tcex.
6 18 6 18
17 1 1 17 .. .
If y(0) = —1thenc=—""and y = x’e¥ — e — e=*". The solution is defined a
18 6 18 18
I=(—00,00).
1 In x ' d
For y'+ y= i i i LDy = x+1 so that —[(x+1)y] = Inx
y i1 % FT an integrating factor is e T
and
X X Cc
y=x+1|nx_m+m for O < x <oo.
X X 21
Ify(1)=10thenc=21andy = 1l In x T+l T x+1 The solution is defined on
I = (0,00).
1 —
Fory  + Y= an integrating factor is e “/%™dax = x + 1 so that

d x+1 1 x(x+1)

L&+ D= —and

1 In x
- 1 — c
y=—1 _dx——(lnx+c)— +
x+1 X x+1 +1  x+1

Inx e

If yle)=1thenc=eandy = . The solution is defined on I = (0, o).

d

(=sin x) dx COS X cosx

For y — (sinx) y = 2 sin x an integrating factor is e =e so that CE[G y] =

x+l+x+l

2 (sin x) e xand

y:e_ COS x 2 i
(Slnx) ecOSXdX = e~ cosx(_zeoosx+ C) = —2+ ce- cosx.



2.3 Linear Equations

If y(/2) = 1thenc =3 and y = —2 + 3e~ “*x, The solution is defined on I = (=00, c0).
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36.

37.

38.

39.
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tan x dx = eln | sec x| = sec x so that

For y' + (tan x)y = cos’ x an integrating factor is e
d

ax [(sec x) y] =cosxand y =sinxcos x + ccos xfor —m/2 <x<m/2. If y(0) = -1

then ¢ = —1 and y = sin x cos x — cos x. The solution is defined on I = (—1/2, m/2).

Fory + 2y = f (x) an integrating factor is e* sothat

@ q
yezle?l—eZX+cl, 0<x<3
IﬂCz, x> 3.

If y(0) = 0 then c:= —1/2 and for continuity we must
have c.= éee — iso that

A1

— —2X
G
y =
(e’ — e x>3.
2

0<x<3

Fory + y = f{x) an integrating factor is ex so that
I%Iex +Cy

yeX = m X
—e +c, x>1

0<x=<1

If y(0) = 1 then c¢: = 0 and for continuity we must have
c2= 2e so that

=J| E

1, 0<x<1
y:
Pl o1 -1, x>1

For y’ + 2xy = f{x) an integrating factor is ex” so that

[7]
2 m{exz +c, 0<x=<1
yex = 2
mcz x> 1.

)£ 340) & 2 thghygae 3/2 and for continuity we must have

2 2

[7]

13 0<x<1
y=_2 -3’

[l 2 ,

.1

F —et ex, x>1.
2 2

VA
1-

YA
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40. For @, If
Ya
2 —F7 ..., 0=<x=<1 |
y 1_f Xz.y EXZ . 1_
m ’ X = 4 P—— | | | | | o>
1+x2 /\\s—x
an integrating factor is 1 + x°so that |
7l 1
|?|2—x2+cl, 0<x<1
1+xXY= . 1
fl—x"+c, x>1.
y(0) = 0 then ¢:= 0 and for contrir__Puity we must have c.= 1 so that
1 1
— - ,<0gx 1
M2 2+x), &
Y= . 3 1
|?|2 . xa_ 5 x>1.
41. We first solve the initial-value problem y" + 2y = 4x,
y(0) = 3 on the interval [0, 1]. The integrating factor is
e ?dx = e, s0
‘ [e*y] = 4xe™
dx
ey = 4xe’* dx = 2xe’x — e + a
y=2x — 1+ cie~*x.
3 x

Using the initial condition, we find y(0) = =1+ c.=3,s0a=4and y = 2x — 1 + 4e~*,
0 < x < 1. Now, since y(1) = 2 — 1+ 4e-*= 1+ 4e~*, we solve the initial-value problem
V' — (2/x)y = 4x, y(1) = 1 + 4e~* on the interval (1, ). The integrating factor is

e (F2/x)dx = g=2Inx = X_Z, SO

d
ety =4 = 2
dx X

A

2 4
XY= TZTdx=4Inx+c

2
X

y=4xIn x + oxX’.

(We use In x instead of In |x| because x > 1.) Using the initial condition we find

71



72 CHAPTER 2 FIRST-ORDERDIFFERENTIAL EQUATIONS

y(1)=c:=1+4e? soy=4xInx + (1 + 4e7°)x", x> 1. Thus,

{2x—1+4e‘2x, O0<sx=<1

=1 % &
2

A Inx+ 1+ 4e” x°, x >1.

42 We first solve the initial-value problem y" +y = 0,
y(0) = 4 on the interval [0, 2]. The integrating factor "

ise’ & =¢

AN

d[ 1=0
eyl =
ax Y

A

X

ey = 0dx=ca

y =ce ™

Using the initial condition, we find y(0) =c1=4,soc=4and y =4e™™, 0<x< 2. Now,
since y(2) = 4e~*, we solve the initial-value problem y +5y = 0, y(1) = 4e~*on the interval

(2, «). The integrating factor is e ®dx = edX, so

d T
o es"y( =0
dx

~

Sx.

eXy= 0dx=c

y = ce™™%,

Using the initial condition we find y(2) = cze™* = 4e~, so c.= 4e°and y = 4e’e™™* =

4e", x> 2. Thus, the solution of the original initial-value problem is

-X
de , 0<x<?
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43. An integrating factor for y’ — 2xy =1is e*x . Thus

d 2 2
Sl yl=e

~ va
e’y =  efdt= _erf(x)+c
v 2
F 2 2
y= ex erf(x) + cex.

2
v o oo
From y(1) = ( m/2)e erf(1) + ce =1we get c = e~ — ﬂe#é(l). The solution of the

initial-value problem is

\/
B% FE X2 e~l — \/FE exz
=5 € erf(x) + _2_erf(1)
— o= 2
e —29 (erf(x) — erf(1)).
44. An integrating factor for y — 2xy = —1is e*x . Thus
g 2 2
[e= y] = —e,
dx
A~ - T
- ) X e dt = —\/_
xy=— e —erf(x) +c.
e xy 0 2

v v
From y(0) = /2, and noting that erf(0) = 0, we get c = /2. Thus

Vv
2 \/11 \/ﬁ \/Z e (1 T 2
y=ex —2erf(x) + ) = - —erf(x)) = 5 e erfc (x).

45. Fory + exry =1 an integrating factor is ee. Thus

d ex x x X ¢
dx €Y —e and ecy= ee dt + c.
From y(0) = 1 we get c = e, SOy = e~¢* Cxet 1—exo_
pe dt +e

. 1 . . .
46. Dividing by x* we have y’ = y = x. An integrating factor is e'x. Thus
X2

-~

X

1
el/xy — xe'/x and el/Xy = te'/tdt + c.

dx
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Fromy(l)=0wegetc=0,s0y =e-'/x * te'/cdt.



2.3 Linear Equations

47. An integrating factor for

y'+2y= 10 sin x
3
is x*. Thus
d , _1osinx
dax Y =%
*sint

Fy=10 —dt+c
0 t

y =10x~*Si (x) + cx~’.
From y(1) = 0 we get ¢ = —10 Si (1). Thus

y =10x~*Si (x) — 10x~* Si (1) = 10x~* (Si (x) — Si (1)).

x 2

48. The integrating factor for y — sinx’ y = 0ise- °5" ¢ d Then
h - i
d e xosin?dty:O
dx
x ) 2
e~ osint dty = ¢,
Xsin ¢ dt
y=ceo
. P P
Letting t= 7/2ywehavedt= m/2duand
~ r "~ v _ rr !
X o2 T 2/mx - T 2 du= T 2
n = = sin — — —
. sin t dt > & 5u 5 S nx
v_ v

VvV

soy =ae w?s 2mx  Using S(0)=0andy(0)=c: =5wehavey =5e m?2s Zmx,

49. We want 4 to be a critical point, so weusey =4 — y.
50.

since 4/x is discontinuous at x = 0, the hypotheses of Theorem 1.2.1 are not satisfied

and the initial-value problem does not have a unique solution.

(a) All solutions of the form y = x’ex — x"ex + cx” satisfy the initial condition. In this case,
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52.

53.

54.
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(b) The differential equation has no solution satisfying y(0) = yo, yo > 0.

(c) Inthis case, since xo > 0, Theorem 1.2.1 applies and the initial-value problem has a

unique solution given by y = x’ex — x'ex+ cx*where ¢ =yo/x“0— XoeX0 + X0,

On the interval (—3, 3) the integrating factor is

e xdx/(x'=9) — e~ X dx/(9—X2) = elln(g—xz) — pg —x2
2
and so
h i
d p—z— c
9—-x°y +o and y=
ax Y To=xr

We want the general solution to be y = 3x — 5+ ce~*. (Rather than e~x, any function that

approaches 0 as x — oo could be used.) Differentiating we get
y=3—cex=3—-—(y—3x+5)=—y+3x— 2,
so the differential equation y" +y = 3x — 2 has solutions asymptotic to the line y = 3x — 5.

The left-hand derivative of the function at x = 1 is 1/e and the right-hand derivative at x = 1

is1 — 1/e. Thus, y is not differentiable at x = 1.

(a) Differentiating y. = ¢/x° we get

__3c__3c
)c/ x4 x x3

__3
=—y
X c
so a differential equation with general solution y. = c/x3 isxy  + 3y = 0. Now using
.3
Yp = X
xyp + 3y, = x(3x°) + 3(x°) = 6x°

so a differential equation with general solution y = ¢/x°+ x’is xy” + 3y = 6x°. This

will be a general solution on (0, ©0).
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56.

57,
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(b) Sincey(1)=1°-1/1°=0, aninitial conditionisy(1) = 0.
Since y(1) = 1°+2/1°= 3, an initial condition is y(1) = 3.
Ineachcase the interval ofdefinition is (0,00). Theinitial-
value problem xy +3y = 6x°, y(0) = 0 has solution y = x° -
for —oo < x < co. In the figure the lower curve is the —t—+—+—
graph of y(x) = x’— 1/x°, while the upper curve is the
graph of y = x* —2/x°.

-3

(c) The first two initial-value problems in part (b) are not unique. For example, setting y(2)
=2°—1/2°=63/8, we see that y(2) = 63/8 is also an initial condition leading tothe

solution y = x* —1/x°.

Since e [ W dxtc=ece PMdx = o PWax we would have

~ ~

cie P (x) de =co + cie PG dxf‘(x) dX and e P (x) de = C3 + e P(X)dxf(x) Xm

which is the same as (4) in the text.
We see by inspection that y = 0 is a solution.

The solution of the first equation is x = cie=*Y. From x(0) = xo we obtain ¢: = xo and so

x = xoe~Mt, The second equation then becomes

dy
dt

dy
dt

= -t _ = -t
xokle Azy or +)ny xo)nle

which is linear. An integrating factor is e*?‘. Thus

dhz)\t1 —-AtAt

dt € y = XOAle

(A =2 )t

le2 =xohie 2 1

ety = XoM1 eA=2=2a)t 4 c,
A— A1

XOAl e—ﬁlt +c e—lzt_
2
A2 — A

y:
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From y(0) = yo we obtain c: = (yoA2 — yoA1 — XxoA1) /(A2 — A1). The solution is

XoAa e_;ut + VoA2z — VoAr — XoA1 e_)tzf

y=

C— A Ao —2a
dE 1 ) _ )
58. Writing the differential equation as T + %l E = 0 we see that an integrating factor is
t
et/RC. Then

dh i

— et/RCE =0

dt
e/RCE = ¢

E = ce~t/RC

From E(4) = ce=*/rR¢ = E; we find ¢ = E.e’/R¢ . Thus, the solution of the initial-value
problem is

E= Eqe*/RC e=t/RC = Eoe=(t=4)/RC

59. (a) (b) Using a CAS we find y(2) = 0.226339.
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(b) From the graph in part (b) we see that the absolute maximum occurs around x =1.7.
Using the root-finding capability of a CAS and solving y'(x) = 0 for x we see that the

absolute maximum is (1.688, 1.742).

61. (a)

<
>

(b) From the graph we see that as x — ©0, y(x) oscillates with decreaging amplitudes ap-
proaching 9.35672. Since lim S(x) = , we have lim y(x) =5e =8 x 9,357, and
1 =

X—>00 2 X—>0

1 .
since lim S(x) = —_, we have lim y(x)=5e- =8 = 2.672.

X—>==c0 2 X—>=00

(¢) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7 and
the absolute minimum occurs around x = —1.8. Using the root-finding capability ofa
CAS and solving y'(x) = 0 for x, we see that the absolute maximum is (1.772, 12.235) and

the absolute minimum is (—=1.772, 2.044).

2.4 Exact Equations

1. Let M = 2x— 1land N = 3y+7sothat M,= 0 = N,. Fromfi = 2x — 1 we obtain
f=xX—x+h(y), h(y) =3y +7,and h(y) = °)° +7y. A solution is X’ —x+,)y*+7y =c.

2. LetM=2x+yand N=—x — 6y. Then M, =1 and N,= —1, so the equation is not exact.

3. Let M =5x+4y and N = 4x — 8y’ so that M, = 4 = N,. From f. = 5x + 4y we obtain
f=°X" +4xy + h(y), h'(y) = —8y°, and h(y) = —2y". A solution is ;X +4xy — 2y" =c.

4. Let M =siny — ysinxand N = cos x + x cos y — y so that M, = cos y — sin x = N,. From
f« = siny — ysinx we obtain f = xsiny + ycosx + h(y), h'(y) = —y, and h(y) = —%y*. A
solution is xsiny +ycosx —1y’ = c.
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5. Let M = 2y°x—3 and N = 2yx’ + 4 so that M, = 4xy = N,. From f; = 2y°x — 3 we obtain
f=xy"—3x+h(y), h(y) =4, and h(y) = 4y. A solution is x’y° —3x + 4y = c.

6. Let M = 4x’— 3ysin 3x — y/x*and N = 2y — 1/x + cos 3x so that M, = —3 sin 3x — 1%
and N, = 1/x* — 3 sin3x. The equation is not exact.

7. Let M =x’— y*and N = x* — 2xy so that M,, = —2y and N, = 2x — 2y. The equation #ot
exact.

8. LetM=1+Inx+y/xand N = —1+Inxsothat M, =1/x= Nx. From f, = =1+ Inx we
obtain f= —y+ylnx+ h(x), h'(x) = 1+Inx, and h(x) = xInx. A solutionis —y+yInx+
xlnx=c.

9. Let M =)°— y’sinx — xand N = 3xy” + 2y cos x so that M, = 3y° — 2y sin x = N,. From
fx =y’ —)’sinx — x we obtain f =xy’ +y’cosx — Lx* + h(y), h'(y) =0, and h(y) = 0. A
solution is xy’+y*cosx — 3x* = c.

10. Let M = x* +y*and N = 3xy° so that M, = 3y° = N,. From f, = X’ +)° we obtain

f=*%"+xy+h(y), h(y) =0, and h(y) = 0. A solution is *x' +xy’ = c.
4 4

11. LetM=yIny—ewand N=1/y+xInysothat M,=1+ Iny+ xe~ and Nx=1Iny. The
equation is not exact.

12. LetM =3x’y+erand N = x°+ xer — 2y so that M, = 3x* + e» = N,. From f, =3x’y + &
we obtain f = x’y+xe’ +h(y), h'(y) = =2y, and h(y) = —y°. A solution is X’y +xer —y" = c.

13. Let M=y — 6x° — 2xexand N = x sothat M, =1 = N,. From i, =y — 6x° — 2ene
obtain f = xy — 2x° — 2xex + 2ex + h(y), h'(y) = 0, and h(y) = 0. A solution iy —
2x° — 2xex + 2ex = c.

14, LetM=1—3/x+yand N=1—3/y+xsothat M, =1=N,. Fromfi=1—3/x+y
we obtain f=x —3In |x| + xy + h(y), h(y) =1 — — ,and h(y) =y — 3In |y|. Asolution is
y
x+y+xy—3In|xy| =c.
15. Let M = x°y° _ 1/ 1+9%x* and N = x’)° so that M, = 3x’y* = Nx. From
fx =Xy —1/ 1+9x° we obtain f = 3x°y’ — Larctan (3x) + h(y), h'(y) = 0, and
h(y) = 0. A solution is x’y’ — arctan (3x) = c.

16. Let M = —2y and N = 5y — 2x so that M, = —2 = N,. From f, = —2y we obtain
f=—2xy+h(y), h'(y) = 5y, and h(y) = °»°. A solution is —2xy +, )= c.

17. Let M =tanx —sinxsiny and N = cosxcosy so that M, = —sinxcosy = N,. From f;
=tanx — sinxsiny we obtain f = In|secx| + cosxsiny + h(y), h’(y) =0, and h(y) = 0. A
solution is In | sec x| + cosxsiny = c.

77



78

18.

19.

20.

21.

22.

23.

24.

25.

26.
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Let M = 2ysinxcosx — y + 2y°e»” and N = —x + sin’ x + 4xye®” so that

M,=2sinxcosx —1+ 4xy’ew” +4yew” = N,

2 xy° 2 xy’ ’
From f. = 2ysinxcosx—y+2y e we obtain f=ysin x—xy+2e +h(y),h(y)=0,

and h(y) = 0. A solution is y sin’ x — xy + 2w’ = c.

Let M = 48y — 15¢° — y and N = t' +3y" — t sothat M, = 4 — 1 = N.. Forf;
= 4ty — 15¢ — y we obtain £ = t'y — 58 — ty + h(y), h'(y) = 3)°, and h(y) = JA
solution is t'y — 5 —ty +y’=c.

Let M =1/t +1/ —y/ t?*+ y2 and N = yey +t/?t +)? so that

M, = y —¢ /€+y"% = N. From fi = 1/t + 1/f — y/ £+)* we obtain

-+ h(y), h'(y) =ye’, and h(y) = yer — ev. A solution is
f=1In[t] — .~ arctan y

I =

1 t

In|t] — — arctan +yer— e =c.
t y

Let M = X +2xy+)y’and N = 2xy + x* — 1 so that M, = 2(x+y) = N,. From
fi=xX+ 2xy +yzwe obtain /= *x'+x’y + xy*+ h(y), h'(y) = —1, and h(y) = —y. The
solution is *3x +xy+xy —y=c Ify(l) =1 then ¢ = 4/3 and a solution of the initial-value

problem is x +Xy+x) —y= *3

Let M = ex +yandN =2+x +yersothat M, =1 = N,. From f; = ex + y we obtain
f=ex+xy+ h(y), h'(y) =2 + yer, and h(y) = 2y + yer — ev. The solution isex+xy +
2y+yey —ey = c. If y(0) = 1 then ¢ = 3 and a solution of the initial-value problemis ex + xy
+2y+yey —ev=3.

Let M =4y + 2t — 5and N = 6y + 4t — 1 so that M, = 4 = N.. From f;= 4y + 2t —5

we obtain f =4ty + £ — 5t+ h(y), h'(y) =6y — 1,and h(y) = 3y° — y. The solution is 4ty

+t— 5t+3y°'— y=c. If y(—1) = 2 then ¢ = 8 and a solution of the initial-value problem is

4ty +t —5t+3y° —y=8.

Let M =t/2y" and N = 3y2 — ¢ /y° sothat M, = —2t/y° = N.. From f; = t/2y" we
t2 3 3 £ 3

obtain f= — 4 p h ,and h(y) = . The solution is — =c. If
st HO)H ()= g and h) = = S 223

y(1) = 1 then ¢ = =5/4 and a solution of the initial-value problem 'rs—4y4 2 ==y
Let M = y* Cosx—3x2y 2xand N = 2ysinx—x3 +Iny so that M, = 2y cosx — 3x*= N,
From fi =) 003x—3xy—2xwe obtalnf e smx—xy—x + h(y), h'(y) = Iny, ad
h(y) =y Iny — y. The solution is y’sinx— X’y — xX*+ylIny—y =c. If y(0)=e then c=
0 and a solution of the initial-value problem is y’sinx — X’y — x’+ yIny —y = 0.

Let M =y’ +ysinxand N = 2xy—c05x 1/ 1+y° so that M =2y +sinx = N,. From
f =y’ +ysinx we obtain f =xy’ _ ycosx+ h(y), h'(y) = ,and h(y) = _tan='y.

X 1 +y2
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28.

29.

30.

31.

32.

33.

34.

35.

36.

2.4 Exact Equations

The solution is xy* — ycosx —tan="y = c. If y(0) = 1 then ¢ = —1 — /4 and a solutiond
the initial-value problem is xy? — ycosx tan- 1y = 1 n

Y
Equating M, = 3y” + 4kxy® and N, = 3y’ + 40xy’ we obtain k = 10.

Equating M, = 18xy” — siny and N, = 4kxy* — siny we obtain k = 9/2.

Let M = —x’y’sinx + 2xy°cos x and N = 2x’y cos x so that
M, = —2x’y sinx+4xy cosx = N,. From f, = 2x’y cosx we obtain = x’y* cos x+h(y),
h'(y) =0, and h(y) = 0. A solution of the differential equation is x’y* cosx = c.
Let M= (X + 2xy —y)/(X +2xy +y°) and N = (y° + 2xy — x5)/(y° + 2yv + X°) SO
that M, = —4Xy/(x+y;3/ = Nx. r-Yromfx = Xz+gy+y -2 (x

+y) we obtain
2 . y / )
f=x+ xﬁ h(), h (y) = —1, and h(y) = —y. A solution of the differential equation is
X +y'=c(x+y).

We note that (M, —N ,)/N = 1/x, so anintegrating factorise dvx = x. Let M = 2xy* +3x°

and N = 2x°y so that M, = 4xy = N,. From fx = 2xy”+3x°we obtain f= Xy’ +x’+h(y), h'(y)
=0, and h(y) = 0. A solution of the differential equation is x°y* + x’ = c.

dx X

We note that (M, — N,)/N =1, so an integrating factorise = e .Let

M = xyex + y’ex + yex and N = xex + 2yex so that M, = xex + 2yex + ex = N,. From f,
= xex+ 2yex we obtain f= xyex+ y’ex+ h(x), h'(x) = 0, and h(x) = 0. A solution of the
differential equation is xyex + y’ex = c.

We note that (Nx — M,)/M = 2/y, so an integrating factorise 2 vy =y Let M =

3

6xy
and N = 4y’ +9x”y’so that M, = 18xy* = N,. From fi. = 6xy’ we obtain £ = 3x’y’+ h(y),
h'(y) =4y°, and h(y) =y'. A solution of the differential equation is 3x°y°+ y" = c.

cot

We note that (M, — Ny)/N = —cotx, so an integrating factor is e~ “xdx = cscx. Let
M =cosxcscx=cotxand N =(1+2/y)sinxcscx=1+2/y,sothat M, =0 = N,. From

fx =cot x we obtain f = In (sin x) + h(y), h'(y) =1 + 2/y, and h(y) =y + In y*. A solution of

the differential equation is In(sinx) +y +Iny’ = c.

We note that (M, — N,)/N = 3, so an integrating factor ise 3 dx = g%, Let

M = (10 — 6y + e=*)e’x = 10e’x — 6ye’ + 1 and N = —2¢’x, so that M, = —6e’* = N,.

From fi= 10e’* — 6ye’x + 1 we obtain f = ;e — 2ye’*+x+ h(y), h'(y) = 0, and h(y) = Q
A solution of the differential equation is31*°e3x —2yex +x =c.

We note that (N — M,)/M = —3/y, so an integrating factor is e-* %% = 1/°. Let

M=0"+x°)/y'=1/y+xand N = (5° —xy +y’siny)/y’ =5/y — x/y’ + siny, so that
M, = —1/y" = Nx. From f, = 1/y+x we obtain f = x/y+,x’+h(y), h'(y) = 5/y+siny, and
h(y) = 5In|y|—cosy. A solution of the differential equation is x/y+'x*+5In |y|—cosy = c.
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2.4 Exact Equations

37. We note that (M, — N,)/N = 2x/(4 + x°), so an integrating factor is

e=? xdy/(4%) = 1/(4+x°). Let M = x/(4+x°) and N = (X’y + 4y)/(4 +X°) =y, sO
that M, = 0= N,. From f; = x(4 + x°) we obtainfzlen(4 +x°) + h(y), h'(y) =y, and

h(y) = 'y*. A solution of the differential equation is * In (4 + x°)+*y* = c. Multiplying both

2

2 2
sides by 2 the last equation can be written as e x*+ 4 = ci. Using the initial condition
2

y(4) = 0 we see that c: = 20. A solution of the initial-value problemiser x*+4 =20.

38. Wenote that (M, —N,)/N = —3/(1+x), soanintegrating factor is e-=* /" = 1/(1+x)3.

Let M= (X*+)*—5)/(1 +x)’and N = —(y +xy)/(1 +x)°= —y/(1 + x)?, so that
M, =2y/(1+x)’ = Nx. From f, = —y/(1 + x)* we obtain f = —* y* /(1 + x) + h(x), h'(x)
= (xX*— 5)/(1 + x)°, and h(x) = 2/(1 + x)*+ 2/(1 + x) + In|1 + x|. A solution of the
differential equation is
y 2 2
— + +
21+ x)?2 (1+x)2 (1+x)

+In|l+x|=c

Using the initial condition y(0) = 1 we see that ¢ = 7/2. A solution of the initial-value

problem is
y 2 2 7

— + + +In|l+x| =5
T T T AR T A

2

39. (a) Implicitly differentiating x* + 2x’y + y° = ¢ and solving for dy/dx we obtain
2 2dY +Axy+2y V=0 and dy 3% +4xy

3x+2x . -

dx dx = — .
dx 2x2+ 2y

By writing the last equation in differential form we get (4xy + 3x")dx+(2y + 2x*)dy = 0.

(b) Setting x=0andy =-2inx’+2x’y +y°=c we find ¢ = 4, and setting x=y =1 we
also find ¢ = 4. Thus, both initial conditions determine the same implicit solution.
(c) Solving x°+ 2x’y + y* = 4 for y we get

) © 4
) =—x"— 4 —x3+x*

and

p—
yo(x) = =X+ 4 — x3+ x4 -4

Observe in the figure that y:(0) = —2 and y-(1) = 1.

40. To see that the equations are not equivalent consider dx = —(x/y) dy. An integrating factor
is u(x, y) = yresulting in y dx + xdy = 0. A solution of the latter equation is y = 0, but this
is not a solution of the original equation.
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. o P
41. Theexplicitsolutionisy = (34 cos2x)/(1 — x2). Since 3+ cos’x > 0 for all x we must

have 1 — x*> 0 or —1 < x < 1. Thus, the interval of definition is (—1, 1).
42. (a)Sincef = N(xy) = xev +2xy +1/x we obtain f = ev + xy’+7 + h(x) so that

X
+ h'(x). Let M(x,y) =yew +)° -

x2 X2

y
f =yev+y =%
X

(b) Since fx = M(x,y) =y/’x~"/*+x x* +y -'we obtain
f=2yY2x2 + 1_In X'+ y+ g(y)sothat f, = , 72"/ + i‘ X +y -1+ g(y). Let

2 4 2
N(xy) =y /X7 s = oy ™

43. First note that
d  xZ+y? =px—dx+p Y dy.

X2 + y2 X2 + y2
) © S
Then x dx + ydy =  x2+ y2 dx becomes
x | &
P dx+ p Y dy=d x%+y? =dx
X2+ y2 x2 + 2

S ; . P
The left S'deI')Sthe total differential of ™ + y2 and the right side is the total differential of

x +c. Thus x2+ y2=x + c is a solution of the differential equation.

44. To see that the statement is true, write the separable equation as —g(x) dx + dy/h(y) = 0.
Identifying M = —g(x) and N = 1/h(y), we see that M, = 0 = N,, so the differential
equation is exact.

45. (a) In differential form
V' —32xdx + xvdv =0

This is not an exact equation, but p(x) = x is an integrating factor. The new equation

2 2 2 —_ . 5 H H _1 2.2 32,8 - -
Ve 0aid 8P 2 268 SBIVIRYAAINSOWIROHEIT: V Keids the eXpicit Solbtion
Ir

x—9
v(x) =8 37 X2

(b) The chain leaves the platform when x = 8, and so
) @

v(8) =8

we compute

=~ 12.7ft/s

3 64

46. (a) Letting



2xy

Yy —x
M(x,y)
= 2+
y2)?

and

N(x,y)

2.4 Exact Equations
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so the differential equation is exact. Then we have

of 2xy , o
== =M(xy) = (x2 + y2)2 =2xy(x” +y’)"

ox
2 2\ _1 _yv
fxy) =y +y)— +gly) = — +g()
X2+y2
6_f yz_xz . yz_xz
ay = (2+y22" Y W=Ny)=1+ (x? + y?)2"
S A

Thus, g'(y) =1 and g(y) =y. The solutionisy _ = c¢. When ¢ = 0 the solution

X2+y2
is X’ +y° = 1.

(b) The first graph below is obtained in Mathematica using f(x,y) =y —y/(x*+y°) and

ContourPlot[f[x, y], {Xx, -3, 3}, {y, -3, 3},
Axes—>True, AxesOrigin—>{0, 0}, AxesLabel—>{x, y},
Frame—>False, PlotPoints—>100, ContourShading—>False,
Contours—>{0, -0.2, 0.2, -0.4, 0.4, -0.6, 0.6, -0.8, 0.8}]

The second graph uses

S 5 2 s
x yr=or =y yr=cy*=y
=— and x=

c—y c—y

In this case the x-axis is vertical and the y-axis is horizontal. To obtain the third graph,
we solve y —y/(x*+y°) = c for y in a CAS. This appears to give one real and two complex
solutions. When graphed in Mathematica however, all three solutions contribute to the
graph. This is because the solutions involve the square root of expressions containing c.
For some values of ¢ the expression is negative, causing an apparent complex solution to
actually be real.




2.5 Solutions by Substitutions

2.5 Solutions by Substitutions

1. Lettingy = ux we have

(x — ux) dx + x(udx + xdu) = 0

dx+xdu=0
dx
__+du=0
X

In|x| +u=c

xIn|x| +y =cx

2. Letting y = ux we have

(x+ux)dx+x(udx+xdu) =0
(1+2u)dx+xdu =0

dx du

o+ =0
X 1+2u

1

In |x| +_2In|1+2u| =c

X21+2y =
X

X’ + 2xy = a.

3. Letting x = vy we have

vy(vdy +ydv)+ (y —2vy)dy=0
v dv+y v2i—2vy+1dy=0

v dv dy
4+ =0
v—12% y
1
In|v—1|—v_1+ln vyl = ¢
X
In"—1- —+:L In =c
v Xy —1 Iyl

x=y)In|x—y| —y=clx—y).
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4. Letting x = vy we have

y(vdy +ydv) —2(vy +y)dy =0
ydv—(v+2)dy=0
dv dy
viz 0
Inlv+2|=In|y|=c
X
Iny—+ 2—1In|y|l=c

x+2y =cy
5. Letting y = ux we have
2 2 2 2

ux +tux dx—x(udx+xdu)=0
u'dx—xdu=0

dx du
w0

1
In |x| +-— =¢

u

X
In|x| +- =c¢

y

yin|x| +x=cy.

6. Letting y = ux and using partial fractions, we have

u’x’ + ux’ dx + xX(udx +xdu) =0
Xu?+2u dx+x du=0
dx du
_+ = =0
x u(u +2)

1 1
In + dnjul — Inju+2|=c¢
x| + 5 5
2
Xu
=c
u+2
2y y
X _ = _+2
X X

X'y = ci(y + 2x).



2.5 Solutions by Substitutions

7. Letting y = ux we have

(ux — x)dx — (ux +x)(udx +xdu)=0

v+ 1 dx+x(u+1)du=0

dx u-+l
x 21 u=0

1
In x|+, Inu’+1 +tan-‘u = ¢
2

2

y
Inx* —+1 +2tan~"_ =,

x2 X

In ¥+ +2tan-1Y = ¢
X

8. Letting y = ux we have

(x+3ux)dx— (Bx+ ux)(udx +xdu)=0
Uz—ldx+x(u+3)du=0

dx u+3
— 7 du=0
x (wW—1)(u+1)
In|x] +2Inju—=1 —-Inju+1]=c
x(u—1)°
u+1l -
y_ 2 y
X — 1l =¢c —+1
X X

v —x)P=ca(y+x).

9. Lettingy = ux we have

—uxdx+ (x +://Tlx)(udx +xdu) =0

(X +x u)du+xu’dx=0

1 dx
u=32+= du+_=0
u X

—2u=/"+In|ul +In|x| =c

In ly/x| +In x| =2 x/y + ¢
y(Inly| —c)’= 4x.
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10. Letting y = uxwe have

P 2
x2—u?x2dx — xdu=0
| © S
x 1—u?2dx—x"du=0, (x>0)
x_g
D¢ 1— u?

Inx—sin‘u=c

sin"u=Inx+c
ly=|nx+c
2

sin—

=sin (Inx + ¢2)

X < Xl

y=xsin(Inx + c).

See Problem 33 in this section for an analysis of the solution.

11. Letting y = uxwe have
X —u’x’ dx+ u’x’(udx+xdu) =0

dx+ u’xdu=0

dx 5
___+u du=0
X

=3 _
Injx] + W'=c
3

3xX°In|x] +y' = aix’.
Using y(1) = 2 we find cx = 8. The solution of the initial-value problem is 3x° In |x|+y® = 8x°.

12. Letting y = ux we have

X+ 2u’x’)dx — ux’(u dx + xdu) =
O + 2u°%)d 2(udx + xdu) = 0
X(L+u)dx —ux’du=0

dx udu

x 1+ u?

1
In|x] —— In(Ll+u’)=c
2

x2

=c
1+ u? !

x'= (X’ + ).

Using y(—1) = 1 we find c: = 1/2. The solution of the initial-value problem is 2x' = y* + x’.



2.5 Solutions by Substitutions

13. Letting y = uxwe have

(x+ uxev) dx — xev(udx + xdu) =0

dx—xevdu=0
X  ugy =0
T —e

X

In|x| —et=c

In|x| —ex=c

Using y(1) = 0 we find ¢ = —1. The solution of the initial-value problem is In |x| = ev/x — 1.

14. Letting x = vy we have

y(vdy +ydv)+vy(Invy —Iny —1)dy =0
ydv+vinvdy =0

dv d
+ y:O
vinv y

In|In|v]|+In|y|=c
y Ini—( Ci.
Yy
X

Using y(1) = e we find ¢: = —e. The solution of the initial-value problem is y Iny = —e.

1 1 .d 3 3 . . .
15.  Fromy + "y = "y~ and w =y’ we obtain W_+ w =" . An integrating factor is x* so
X X dx x X
that X¥’w = x’+ cor y’ =1+ cx~.

. . dw
16. Fromy _y = ey’ and w = y~" we obtain P + W= _ex An integrating factor is ex so
X

that exw = —}e’x + c or y=' = —}ex + ce™x.
. d . . .
17. From y +y =xy" and w = y~° we obtain Y 3w=_3x An integrating factor is e=** so

dx
that e=*w = xe=** + e~ + cor y=*=x 4+* + ce’~.

3 3
1 . dw 1
18. Fromv — 1+ Y=Y andw=y= weobtain ="+ 1+~ = _1 Anintegrating
: Y X dx X
. 1 1 ¢
factor is xex so that xexw = —xex+ex+cory— =—=1+ "~ + “ex
X X
1 1, 1 dw | 1 1
19. Fromy T T andlw =y we obtain dc Ve An integrating factor is t so
c t
that tw = Int+cory= = " |n ¢+, Writing this in the form = In ¢ + ¢, we see that the
t t y

solution can also be expressed in the form et” = cit.
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20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
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2 2t . d 2t -2t
From y" + Y= y' and w = y=° we obtain ar_ w= _An
3(1+¢2 31+t dt 42 L2
integrating fa(ctor is) 1 sothatt W = 1 +cory”’ 1+¢ ) 1+t

1+ 82 1+  1+¢£ =l+cl+t.

2 3 . d 6 9 . .
Fromy — “y =— y*and w = y=° we obtain Yy 2w= -2 An integrating factor
2
is x° so thit x°w = —9x° + ¢ or y=° = —9x=1X x® )(])_() = * then ¢ = *® and

5 5 2 5
y=3= —2x~1+ 49 x—6

5 5
12 32 dW 3 3
Fromy +y=y-/ andw=y/ weobtain___+ w = _ . An integrating factor is e so

dx 2 2
that e®*w = e+ cor y°’/* =1+ ce=*/. If y(0) =4 then c =7 and y°/ = 1 + 7Te~*x/,

Letu =x+y + 1sothat du/dx = 1+ dy/dx. Then 94 —1 =17 or du = dx. Thus
dx 1 +u?
tan-‘u=x+coru=tan(x+c),andx+y+1=tan(x+c) ory =tan(x+c) —x— 1.
Letu = x + y 50 that du/dx = 1 + dy/dx. Then-3Y — 1 =1=U or u du = dx. Thus
dx u
suU=x+coru’ =2x+c, and (x+y)* =2x+ci.
_du 2 2
Letu = x + y sothat du/dx =1+ dy/dx. Then —1l=tanuorcos udu = dx. Thus

TU+'sin20 = x+c or 2u+sin2u = 4x + c1, afd 2(x +y) +sin2(x+y) = 4x + c. or
2 4

2y +sin 2(x +y) = 2x + cu.

du 1
Let u = x+ y so that du/dx = 1+ dy/dx. Then __ _ 1 = qj —  du=dx.

Multiplying by (1 sinu)/(1 sinu) we hae cos? fu =dxor(seCc y se_cutanu)du = dx.

Thustanu —secu=x+cortan(x+y) —sec(x+y)=x+c.
du \/
Let u =y —2x+ 3 so that du/dx = dy/dx — 2. Thenﬂx+2 =2+Vgor V:l_du = dx. Thus

u
u=x+cand?2 =x+c.
2 y—2x+3
du

Let u=y _ x+5 so that du/dx = dy/dx— 1. Then dx* 1=1+evorewdu = dx. Thus

—e~u=x+cand —ev" " x=°> = x+c.

du 1
Letu = x + y so that du/dx = 1 + dy/dx. Then - 1=rcos u and 1mdu = dx. Now

1 1 —cosu 1—cosu )
= = =CSC u—cscucotu

1+cosu 1 —cos’u sin‘u

sowe have (csc’u — cscucotu)du = dxand —cotu+cscu = x+c. Thus —cot (x+y)+



.\/

2.5 Solutions by Substitutions

csc(x+y) = x+c. Setting x =0 and y = m/4 we obtain c = 2_— 1. The solution is

csc(x+y) —cot(x+y)=x+ 2— 1.
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30.

31.

32.
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du 2u 5u +6
Let u = 3x + 2y so that du/dx = 3 + 2 dy/dx. Then — =3+ = and
u+ 2 dx u+2 u+2
5u—+6du = dx. Now by long division
UTe +2 = } + —4
5u+6 5 25u +30
S0 we have -
1
_+ _4 du = dx
5 25u+30
and“u +* In |25u + 30| = x + c. Thus
5 25
1 4

g €8x+ 2y) + I |75x + 50y + 30 =x + c.

Setting x = —1 and y = —1 we obtain ¢ =§5“ In 95. The solution is

1 4 4
_In|75x + 50y + 30| = x +_
5 (Bx+2)+ o I )y I 5c In 95

or

5y — 5x + 2 In |75x + 50y + 30| = 2 In 95

We write the differential equation M(x,y)dx + N(x,y)dy =0 as dy/dx = f(x,y) where

. M&Y)
ﬂx:y) - = N(x,y) .

The function f (x, y) must necessarily be homogeneous of degree 0 when M and N are ho-
mogeneous of degree a. Since M is homogeneous of degree a, M(tx, ty) = t«M(x, y), and
letting t = 1/x we have

1
M(1,y/x) = = M(x,y) or M(xy) = xM (1 y/x).
Thus dy xeM (1, y/x) M(1y/x) v

x =flxy) =

x*N(1, y/x) - N(@,y/x) =F x

Rewrite (5x° — 2y°)dx — xy dy = 0 as

d
Xy & 5x° _ 2y°
dx
and divide by xy, so that
dy x y
E{ = 5)—/ - Z—X.
We then identi
e then identify y y -1y
F =5 -2
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33. (a) By inspection y = x and y = —x are solutions of the differential equation and not
members of the family y = xsin(Inx + ¢2).

(b) Letting x =5 and y = 0 in sin~* (y/x) = In x + c2we get
sin~"0=1In5+ c.or c. = — In 5. Then

sin=* (v/x) = Inx—In5 = In (x/5). Because the range of 20 -
the arcsine function is [—1/2, /2] we must have :
15

T | X T :

- =< < 10 -
2= "5 2 :
5

>

e—Tt/Z < _ Se1r/2

ol

5e~m/2 < x < 5e™/?
The interval of definition of the solution is approximately [1.04, 24.05].

34. As x — —00, e — 0 and y — 2x+3. Now write (1+ce®)/(1— ce*) as (e~** +c)/(e~** —c).
Then, asx — 00, e=* — 0 andy — 2x — 3.

35. (a) The substitutions y = y:» + u and

dy _dy» + du
dx dx dx
lead to dv: du
+_ =P+ QU+ u)+ Ry, + u)
dx dx '
=P + Qyi+ Ry’ |+ Qu+ 2y:Ru + Ru’
or

du 2
E{ —(Q+2y:R)u=Ru .
This is a Bernoulli equation with n = 2 which can be reduced to the linear equation
dw
ax +(Q+2y:R)w=—R

by the substitution w = u=".

dw 1
2 = =
(b) Identify P (x) = —4/x, Q(x) = —1/x, and R(x) = 1. Then + g ~ w=-1
o+
dx X X
An integrating factor is x° so that x'w = z1x"+coru= —lx+ cx-* "' Thus,
2 2 1 s,
y=_+4+u or y=_+ __Xx+cx~

X X 4

36. Write the differential equation in the form x(y'/y) = Inx+Iny and let u = Iny. Then

du/dx =y’ /y and the differential equation becomes x(du/dx) =Inx+u or du/dx —u/x =
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(In x)/x, which is first-order and linear. An integrating factor is e~ “¥*= 1/x, so that
(using integration by parts)
d 1 Inx u 1 Inx
___ _u = =— ——+cC
dx x x2 and b'¢ b'¢ X
The solution is
ecx—1
Iny=—=1—-Inx+cx or y= N ’
37. Write the differential equation as
d 1
_V +v=32v"
dx x
and let u=v* or v=u'/. Then
CE = 1_u_1/2 @
dx 2 dx
and substituting into the differential equation, we have
u-/ du + 1ul/2 =32u-/* or du + 2 u = 64.
2 dx x dx x ,
The latter differential equation is linear with integrating factor e~ @/ ax = x?, 0
x2u = 64x?2
and ax
2 64 3 2 64 C
xXxXu-= _X +c or v =_X+_
3 3 X2
38. Write the differential equation as dP/dt — aP = —bP *and letu = P = or P = u~". Then
dp _ _  -2du
dt dt’
and substituting into the differential equation, we have
d d
M —au = —bu or Hrau=b
dt dt

The latter differential equation is linear with integrating factor e adt= eat, so

d
Jr [eatu] = beat

and
b
eaty = —eat + ¢
a

-1_Db
edtp =1 == pat 4~
a

p-1=b 4 cemat
a
p= ' a
b/a+ce~ b+ cie~at
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2.6 A Numerical Method

1. We identify f(x,y) =2x — 3y + 1. Then, for h=0.1,

Yn+1 =yn +0.1(2x, — 3y, +1) = 0.2x, + 0.7y, + 0.1,

and
y(1.1) = y»=0.2(1) +0.7(5) +0.1 = 3.8
y(1.2) = y»=0.2(1.1) +0.7(3.8) + 0.1 = 2.98
For h =0.05,
Yn+1 = yn +0.05(2x, — 3y, +1) = 0.1x, + 0.85y, + 0.1,
and

Y(L.05) = y1 = 0.1(1) + 0.85(5) + 0.1 = 4.4
y(1.1) = y»= 0.1(1.05) + 0.85(4.4) +0.1 = 3.895
»(1.15) = ys = 0.1(1.1) + 0.85(3.895) + 0.1 = 3.47075
Y(1.2) = ye= 0.1(1.15) + 0.85(3.47075) + 0.1 = 3.11514

2. We identify f(x,y) = x+y*. Then, for h = 0.1,
Yn+1 =yn +0.1(xn +y°) = 0.1x, +y, + 0.1y7,

n n
and
y(0.1) = y:=0.1(0) + 0+ 0.1(0)*= 0
y(0.2) = »»=0.1(0.1) + 0 + 0.1(0)* = 0.01
For h = 0.05, , ,
Vn+1 = yn +0.05(x, +y°) = 0.05x, +y, +0.05y°,
n n
and

¥(0.05) = y: = 0.05(0) + 0 +0.05(0)* = 0
»(0.1) = y= = 0.05(0.05) + 0 + 0.05(0)° = 0.0025

1(0.15) = ys = 0.05(0.1) + 0.0025 + 0.05(0.0025)° = 0.0075
$(0.2) & ya= 0.05(0.15) + 0.0075 + 0.05(0.0075) = 0.0150

3. Separating variables and integrating, we have
dy
3 =dx and In|y|=x+c

Thus y = ciex and, using y(0) = 1, we find ¢ = 1, so y = ex is the solution of the initial-value
problem.






2.6 A Numerical Method

h=0.1 h=0.05
. y Actual Abs. %Rel. X y Actual Abs. %Rel.
’ ! Value Error  Error n n Value Error  Error
0.00 1.0000 1.0000 0.0000 0.00 0.00 1.0000 1.0000 0.0000 0.00
1.10 1.1000 1.1052 0.0052 0.47 0.05 1.0500 1.0513 0.0013 0.12
0.20 1.2100 1.2214 0.0114 0.93 0.10 1.1025 1.1052 0.0027 0.24
0.30 1.3310 1.3499 0.0189 1.40 0.15 1.1576 1.1618 0.0042 0.36
0.40 1.4641 1.4918 0.0277 1.86 0.20 1.2155 1.2214 0.0059 0.48
0.50 1.6105 1.6487 0.0382 2.32 0.25 1.2763 1.2840 0.0077 0.60
0.60 1.7716 1.8221 0.0506 2.77 0.30 1.3401 1.3499 0.0098 0.72
0.70 1.9487 2.0138 0.0650 3.23 0.35 1.4071 1.4191 0.0120 0.84
0.80 2.1436 2.2255 0.0820 3.68 0.40 1.4775 1.4918 0.0144 0.96
0.90 2.3579 2.4596 0.1017 4.13 0.45 1.5513 1.5683 0.0170 1.08
1.00 2.5937 2.7183 0.1245 4.58 0.50 1.6289 1.6487 0.0198 1.20
0.55 1.7103 1.7333 0.0229 1.32
0.60 1.7959 1.8221 0.0263 1.44
0.65 1.8856 1.9155 0.0299 1.56
0.70 1.9799 2.0138 0.0338 1.68
0.75 2.0789 2.1170 0.0381 1.80
0.80 2.1829 2.2255 0.0427 1.92
0.85 2.2920 2.3396 0.0476 2.04
0.90 2.4066 2.4596 0.0530 2.15
0.95 2.5270 2.5857 0.0588 2.27
1.00 2.6533 2.7183 0.0650 2.39

4. Separating variables and integrating, we have

dy
y

=2xdx and In|y|=x"+c.

Thus y = ¢ @*and, using y(1) = 1, we find ¢ = e~*, so y = e¥~Lis the solution of the initial-
value problem.

h=0.1 h=0.05

« y Actual Abs. %Rel. X y Actual Abs. %Rel.
’ ! Value Error Error " n Value Error Error

1.00 1.0000 1.0000 0.0000 0.00 1.00 1.0000 1.0000 0.0000 0.00

1.10 1.2000 1.2337 0.0337 2.73 1.05 1.1000 1.1079 0.0079 0.72

1.20 1.4640 1.5527 0.0887 5.71 1.10 1.2155 1.2337 0.0182 1.47

1.30 1.8154 1.9937 0.1784 8.95 1.15 1.3492 1.3806 0.0314 2.27

1.40 2.2874 2.6117 0.3243 12.42 1.20 1.5044 1.5527 0.0483 3.11

1.50 2.9278 3.4903 0.5625 16.12 1.25 1.6849 1.7551 0.0702 4.00

1.30 1.8955 1.9937 0.0982 493

1.35 2.1419 2.2762 0.1343 5.90

1.40 2.4311 2.6117 0.1806 6.92

1.45 2.7714 3.0117 0.2403 7.98

1.50 3.1733 3.4903 0.3171 9.08
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h=0.1 h =0.05
X, Yn X, Yn
0.00 0.0000 0.00 0.0000
0.10 0.1000 0.05 0.0500
0.20 0.1905 0.10 0.0976
0.30 0.2731 0.15 0.1429
0.40 0.3492 0.20 0.1863
0.50 0.4198 0.25 0.2278
0.30 0.2676
0.35 0.3058
0.40 0.3427
0.45 0.3782
0.50 0.4124
h=0.1 h =0.05
Xy Yn Xq Yn
0.00 0.5000 0.00 0.5000
0.10 0.5250 0.05 0.5125
0.20 0.5431 0.10 0.5232
0.30 0.5548 0.15 0.5322
0.40 0.5613 0.20 0.5395
0.50 0.5639 0.25 0.5452
0.30 0.5496
0.35 0.5527
0.40 0.5547
0.45 0.5559
0.50 0.5565
h=01 h =0.05
Xy Yn X, Yn
1.00 1.0000 1.00 1.0000
1.10 1.0000 1.05 1.0000
1.20 1.0191 1.10 1.0049
1.30 1.0588 1.15 1.0147
1.40 1.1231 1.20 1.0298
1.50 1.2194 1.25 1.0506
1.30 1.0775
1.35 1.1115
1.40 1.1538
1.45 1.2057
1.50 1.2696

6.

10.

h=0.1 h =0.05
Xn Yn Xq Yn
0.00 1.0000 0.00 1.0000
0.10 1.1000 0.05 1.0500
0.20 1.2220 0.10 1.1053
0.30 1.3753 0.15 1.1668
0.40 1.5735 0.20 1.2360
0.50 1.8371 0.25 1.3144
0.30 1.4039
0.35 1.5070
0.40 1.6267
0.45 1.7670
0.50 1.9332
h=0.1 h =0.05
Xn Yn Xq Yn
0.00 1.0000 0.00 1.0000
0.10 1.1000 0.05 1.0500
0.20 1.2159 0.10 1.1039
0.30 1.3505 0.15 1.1619
0.40 1.5072 0.20 1.2245
0.50 1.6902 0.25 1.2921
0.30 1.3651
0.35 1.4440
0.40 1.5293
0.45 1.6217
0.50 1.7219
h=01 h =0.05
Xn Yn Xn Yn
0.00 0.5000 0.00 0.5000
0.10 0.5250 0.05 0.5125
0.20 0.5499 0.10 0.5250
0.30 0.5747 0.15 0.5375
0.40 0.5991 0.20 0.5499
0.50 0.6231 0.25 0.5623
0.30 0.5746
0.35 0.5868
0.40 0.5989
0.45 0.6109
0.50 0.6228




2.6 A Numerical Method

11. Tables of values were computed using the Euler and RK4 methods. The resulting points were
plotted and joined using ListPlot in Mathematica.

h=0.25

RK4{\
} )

h=10.05

—
~

P NwWwhoo

P NWHSOOO
v vy e
P NDwWwkhoo
v vy e

h=0.25 h=01 h=0.05
y y
6F 6
G RARALR Irdald ! . RK4 RK4
FaVAVAVAYAVAYAVAVAV Euler Euler
4 ( \A[ 't.‘(E'%ler\«J [V ‘J 4
K13 R AR A 3
2 2
14 1
| I R x e .. =X e X
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

13. Using separation of variables we find that the solution of the differential equationis y =1/(1
— X°), which is undefined at x = 1, where the graph has a vertical asymptote. Because the
actual solution of the differential equation becomes unbounded at x approaches 1, very small
changes in the inputs x will result in large changes in the corresponding outputs y. This can be
expected to have a serious effect on numerical procedures. The graphs below were obtained as
described in Problem 11.

y h=01 h =0.05
10 ¢ 10 y
gl RK4 8 RK4
6 6
Eyl€r,
4 4
Euler
2 2
X X
0.2 0.4 0.6 0.8 1 0.2 04 0.6 0.8 1

14. (a) The graph to the right was obtained using RK4
and ListPlot in Mathematicawith h = 0.1.
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(b) Writing the differential equation in the form " + 2xy = 1 we see that an integrating
2
factoris e xdx =ex, SO
[exzy] = ex2
dx

and S )

2 X

y = ex etdt+ ce~x.
0
This solution can also be expresseg/in terms of the inverse error function as

Eid 2 2
y= e~xerfi(x) + ce~x.

Letting x = 0 and y(0) = 0 we find ¢ = 0, so the solution of the initial-value problem is
Y=ot efde= T eerfi(x),
0 2

(c) Using FindRoot in Mathematica we see that y'(x) = 0 when x = 0.924139. Since
y(0.924139) =0.541044, we see from the graph in part (a) that (0.924139, 0.541044) is
a relative maximum. Now, using the substitution u = —t in the integral below, we have

-~

( ) 2 -X X (_u)2 2 X 2

2 -5

Y(—x) = e= e dt=ex e (—du) = —e-x  eu du = —y(x).
0 0

Thus, y(x) is an odd function and (—0.924139, —0.541044) is a relative minimum.

Chapter 2 in Review

1. Writing the differential equation in the form y" = k(y + A/k) we see that the critical point
—A/k is a repeller for k > 0 and an attractor for k < 0.

2. Separating variables and integrating we have

d 4
_y=_dx
y X

Iny=4Inx+c=Inx"+c
Yy =cix.
We see that when x = 0, y = 0, so the initial-value problem has an infinite number of solutions
for k = 0 and no solutions for k 6= 0.

3. True; y = k:/ki is always a solutionfor k» 0.

4. True; writing the differential equation as ai(x) dy + a:(x)y dx = 0 and separating variables
yields
d _ _a(x) dx.
y ax(x)
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3

dy
el xsiny (There are many answers.)
dr
False: — =ré@+r+6+1=(r+1)(6+1).
" do
True

Since the differential equation in the form y" =2 — |y| is seen to be autonomous, 2 — |[y| =0
has critical points 2 and —2 so y:= 2 and y.= —2 are constant (equilibrium) solutions.
dy

_ =exdx
4
Iny=ex+c
y=ectC=ecee” or y=cree
y =Ix|, y(=1)=2
C
dy _ —x x<0
dx X, x=20
oy
|_a|_2_x2 +c, x<0O
Y= .1
[Fl_
2x2 +c, x=0
- -, = -, = - - 1 5
The initial condition y(—1) = 2 implies 2 = = + ¢, and thus ¢: = 5 - Now y(x) is supposed

to be differentiablg and so continuous. At x = 0 the two parts of the functions must agree

and so == 5o So,
Y
10
Iﬂl ]
75 5—x", x<0 5
y= pd .
Pl X +5 x>0 -4 f2 2 4
2 -5
-10

X

11. y — ecosx te™ cost dt

dy x

T eCOS Xxe™ COSX + (— sinx)etosx  te~ COStqt
dy dy

e =X~ (sinx)y or E{+(Slnx)y=x.

dy dy

2
12._ =y+3, __ =W +3
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dx dx
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d

13. ¥ = 1 _ 3y
dx
dy

14. =y(y =2) (y =4

dx
15. When nis odd, x» <0 for x <0 and x7 > 0 for x > 0. In this case 0 is unstable. When n is
even, x»> 0 for x < 0 and for x > 0. In this case 0 is semi-stable.

When n is odd, —x7> 0 for x <0 and —x7 < 0 for x > 0. In this case 0 is asymptotically
stable. When n is even, —x» < 0 for x < 0 and for x > 0. In this case O is semi-stable.

16. Using a CAS we find that the zero of f occurs at approximately P = 1.3214. From the graph
we observe that dP/dt > 0 for P <1.3214 and dP/dt <0 for P > 1.3214,so P = 1.3214 is
an asymptotically stable critical point. Thus, lim P (¢t) = 1.3214.

t—>c0

- AN AN

S\ -
SRR AL S aa-
S TN
e e T N

y

17' FP=SSANAVANENNNNAN Ty
PV N
4

y"ﬂ"“\‘\
AR I I AL
; NAANS
-

=mmm N AV AAN BN AL -
Fomun LA AVNES VANV L uum s

18.
(a) linear iny, homogeneous, exact (b) linear in x
(c) separable, exact, linear in xand y (d) Bernoulli in x
(e) separable (f) separable, linear in x, Bernoulli
(9) linearin x (h) homogeneous
(i) Bernoulli (j) homogeneous, exact, Bernoulli
(k) linear in x and y, exact, separable, () exact, linearin y
homogeneous
(m) homogeneous (n) separable

19. Separating variables and using the identity cos® x =21(1 + cos 2x), we have

2
cos xdx = dy,

y2+1

1 1 . 1
“x+ _sin2x=_Iny’+1 *t¢
2 4 2

99
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and
2x+sin2x=2Iny*+ 1+c.

20. Write the differential equation in the form

X

x
yin—dx= xIn- —y dy.
3% y

y

This is a homogeneous equation, so let x = uy. Then dx = u dy + y du and the differential
equation becomes

yinu(udy +ydu) =(uylnu—y)dy or ylnudu = —dy.

Separating variables, we obtain

dy
Inudu=—
uln|ul —u=-1In|y| +c
X X X
—In-— =—-Inly|l+c
N5y vl

x(Inx —Iny) —x=—ylIn|y| + ¢y

21. The differential equation ,
dy 2 3x -2
+ ——y=—
dx 6x+ 1y 6x + 1y
is Bernoulli. Using w = y°, we obtain the linear equation
dw 6 ox*

4+ = - .
dx ex+17 " Bx+1

An integrating factor is 6x + 1, so

d 2
dx[(6x + Dw] = —9%,

3x° c

= = +
6x+1 6x+1
and

(6x+1)y’= —-3x° +c
(Note: The differential equation is also exact.)

22. Write the differential equation in the form (3y” + 2x)dx + (4y° + 6xy)dy = 0. Letting
M =3y’ +2x and N = 4y° + 6xy we see that M, = 6y = N, so the differential equation is
exact. From f, = 3y° +2x we obtain f = 3xy* +x* +h(y). Then f, = 6xy+h'(y) = 4y’ +6xy
and h'(y) = 4y*so h(y) = 4%13. A one-parameter family of solutions is

4
'+x° + Y =c
3
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23. Write the equation in the form

dQ 1
—+_Q=¢FInt
dt t
An integrating factor is "t = t, so
d a
E:[tQ] =tint
1s l155 Int +c
tR="55t *5
and
1 1 [
= Sne+ .
Q="2" "5 t
24. Letting u = 2x+y +1 we have du dy
=2+,
dx dx
and so the given differential equation is transformed into
du du 2u+l
u o= 2 =1 or d%  —O
Separating variables and integrating we get
du = dx
2u + 1
1 1 1
— du = dx
2 22u+

1
u—_In[2u+1|=x+c

4
2u — In |[2u + 1| = 4x + cu

Resubstituting for u gives the solution
dx+2y +2 —In|dx+ 2y + 3| =4x +

or

2y + 2 —In |4x + 2y + 3|

C1

25. Write the equation in the form
dy 8x 2x

o+ = i
4dx x2+4Y T 2+ 4

An integrating factor is x?
+ 4,50
d hX2 4 1_ 5 3
ax +4 y =2x x>+ 4

4 2 4
2 X+ cC
x +4 y=_ 4
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and

26. Letting M = 2r’cos@sin@+rcosO and N = 4r +sin® — 2rcos’ 6 we see that

M, = 4rcos 6sin 6 + cos 6 = Ny, so the differential equation is exact. From
fo=2r’cos@sin @+ rcos 6 we obtain f= —r’cos’ 8 + rsin8+ h(r). Then
fr=—=2rcos’@+sin@+ h'(r) = 4r +sin@ — 2rcos’ 0 and h'(r) = 4r so h(r) = 2r’. The
solution is

—F oS0 + rsin @ + 2r= c.

. d
27. We put the equation 4

. d
+ 4 (cos x) y = x in the standard form Y 4 2(cosx)y = 1x then

. . . 2cosxdx = p2sinx, Therefore dx 2
the integrating factor is e - :
d 2 sinx = ]_- 2 sin x
A ax’ Y T
x d 1 *
&2 Sinjl(t) dt= _ te2sin t d
o dt 20
2y 1 ¢
sin = 2 sin t
32 Xy(X) _eoy(o) — 5 ., te dt
e My(x) —1= 1 te? sin t gy
2 0 A
1 _ X )
y(x) = e=? "x + _e™2sinx te2sint dq¢

0

28. The equation—dx — 4xy = sin x’ is already in standard form so the integrating factor is

dx dh i

_ 2 2 2
2 —x2 e
e- “x dx = e=*" _ Therefore e~y

dx sin x . Because of the initial condition

y(0) = 7 we write

N PN

h i -
d Veug ) de= e sin fdt

o dt 0

.
o A e

y(x)—e y(0)= , sin t dt
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2 2 2 .
y(x) = 7™ + e e~ sin t’ dt
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. . d
29. We put the equation x4z +2y = xex into standard form 4
’ dx __ty=e
2 dx Inx* 2 dx x
factorise x =e = x . Therefore
d
's %{ +2xy = xexX
d 2
AX d ~ x )
2 = ter dt
dt ty(t) dt ) e
2 = x ¢
X X) — =
Yo —Hlf= x, e
1 ~
3 1 X
Yy =__ . gefdt
x2 x2 1
30.
d
x_y +(sinx)y =0
dx
dy sinx
—+ ___y=0
dx X Y
Ceanta
The integrating factorisec ¢ . Thgyefore,
d™ xsintge
eo t =0
~ y
hdx
x d ,lsiniu i ) x
_eo WAy gr= 0de=0
dE y(t) .
’ xsin t ¢ 0 Z}T{

eo + y(x)—ey(0)=0

y(x)

31.
d

dx

For0 < x <1,

d
_[ey]l=1
ax

x sin ¢
= 10e- o

C

Y +y=fx), y0)=5  where f(x)= €%

0,

exy=x+ c

x2

. Then the integrating

0<x<1
x=21
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Yy = xe X+ cie™x
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Using y(0) = 5, we have c:= 5. Therefore y = xe=x + 5e~x. Then for x = 1,

d
__[ey]=0
X
exy = ¢
Y = ce7x

Requiring that y(x) be continuous at x = 1 yields

coet=e 1+ 571

c2=6
Therefore
C
_ xex+bhbex 0<x<1
yx)=
6ex, x=21
C
Y iPy=e, y0)=_1 where P()= L 0Sx<l
dx -1, x=21
For0 < x <1,
d _ 2
d_x[ey] =e
ey="ex+c
?. 1
y = ex + Cc e~x
2
Using y(0) = —1, we have ci= —2. Therefore y ="ex— 2e=x. Then for x > 1,
2 2 2
_ ey =1

dx
exy =x + ¢z

Y = xex+czex

Requiring that y(x) be continuous at x = 1 yields

1 3
e+ ce= d— 3e
c = 2 e'2
N
Therefore 2 2
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33. The differential equation has the form (d/dx)[(sin x)y] = 0. Integrating, we have (sinx)y =c¢
ory = ¢/sinx. The initial condition implies ¢ = —2sin (7m/6) = 1. Thus, y = 1/sinx, where
the interval (77, 2m) is chosen to include x = 7m/6.

34. Separating variables and integrating we have

dy
—=—-2(t+ 1) dt
32 ( )
1 2
- =—(t+1+c
y ( )
1
Y= = e where — c=

1

The initial condition y(0) = —lgimplies c1 = —9, so a solution of the initial-value problem is
1 1
= or y=
(t+1)2—-9 2
2t — 8

where —4 < t < 2.

35. (a) Fory < 0, yis not a real number.

(b) Separating variables and integrating we have

dy v_
V%=dx and 2 y=x+c

Letting y(xo) = yo we get c =2 yo — xo, SO that

v va 1y

2

2 y=x+2 Yyo— X, and y=4(x+2 Yo — x0).
Vv

1

Since  y >0 for y 6= 0, we see that dy/dx =, (Xx+2_ys =x) must be positive. Thus,

the interval on which the solution is defined is (xo —2 yo, ©0).

36. (a) The differential equation is homogeneous and we let y = ux. Then

X' —y)dx+xydy =0
(x* — u’x’) dx + ux’(udx + xdu) = 0

dx+ uxdu =0

dx
udu=—"_
b
“u'=—In|x| +c
2
Y
2° =2 1In |x| + c.

The initial condition gives ¢: = 2, so an implicit solution is y*= x*(2 — 2In |x]).



10

37.

38.

39.

40.
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(b) Solving for y in part (a) and being su\r/e that the initial con-

dition is still satisfied, we have y = — 2|x|(1 — In|x])*/?,
where —e < x < esothat 1 — In |x| = 0. The graph of
this function indicates that the derivative is not defined at
x=0andx =e. TOus, the solution of the initial-value

problemisy=— 2x(1 — Inx)"”, forO<x<e.

X

The graph of y:(x) is the portion of the closed blue curve lying in the fourth quadrant. Its
interval of definition is approximately (0.7, 4.3). The graph of y-(x) is the portion of the left-hand
blue curve lying in the third quadrant. Its interval of definition is (—oo, 0).

The first step of Euler’s method gives y(1.1) = 9;+0.1(1+3) = 9.4. Applying Euler’s method

v

one more time gives y(1.2) # 9.4+0.1(1+ 1.1 9.4) = 9.8373.

Since the differential equation is autonomous, all lineal
elements on a given horizontal line have the same slope.
The direction field is then as shown in the figure at the
right. It appears from the figure that the differential
equation has critical points at —2 (an attractor) andat
2 (arepeller). Thus, —2 is an aymptotically stable critical
point and 2 is an unstable critical point.

Since the differential equation is autonomous, all lineal
elements on a given horizontal line have the same slope.
The direction field is then as shown in the figure at the
right. It appears from the figure that the differential
equation has no critical points.




