
Solution Manual for Digital Systems Design Using VHDL 3rd Edition by Roth John
ISBN 1305635140 9781305635142

Full link download:
Solution Manual:

https://testbankpack.com/p/solution-manual-for-digital-systems-design-using-vhdl-
3rd-edition-by-roth-john-isbn-1305635140-9781305635142/

Chapter 2 Solutions

2.1 (a) VHDL - VHSIC Hardware Description Language

VHSIC - Very High Speed Integrated Circuit

(b) VHDL has statements that execute concurrently since it must model real hardware in which

the components are all in operation at the same time.

(c) A hardware description language allows a digital system to be designed and debugged at a

higher level of abstraction than schematic capture with gates, flip-flops, and standard MSI

building blocks. The details of the gates and flip-flops do not need to be handled during early

phases of design. Designs are more portable when low-level library-specific details are not

included in the model. HDLs allow the creation of such portable high-level behavioral models.

2.2 (a) Legal: A_123, and1; Illegal: 123A (Starts with number), _A123 (starts with underscore), A123_

(ends with underscore), c1 c2 (adjacent underscores), and (reserved word).

(b) They all equivalent. VHDL is not case sensitive.

2.3 (a)

(b)

2.4 entity Comb is

port(A, B, C, D : in bit;

Z : out bit);

end Comb;

architecture Comb2_1 of Comb is

signal E, F, G, H, I : bit;

begin
H<=(A and B and C) after 5 ns;

E<=H or D after 5 ns;
G<=(B nor C) after 5 ns;

F<=G nand A after 5 ns;

I <= not F after 2 ns;

Z<=E xor I after 5 ns;

end Comb2_1;

2.5 (a) entity one_bit_sub is
port(x, y, bin: in bit;

diff, bout: out bit);

https://testbankpack.com/p/solution-manual-for-digital-systems-design-using-vhdl-3rd-edition-by-roth-john-isbn-1305635140-9781305635142/
https://testbankpack.com/p/solution-manual-for-digital-systems-design-using-vhdl-3rd-edition-by-roth-john-isbn-1305635140-9781305635142/

end one_bit_sub;

architecture equ of one_bit_sub is

begin

diff <= x xor y xor bin; -- difference. See problem 1.2 answer

bout <= (not x and bin) or (not x and y)

or (bin and y); -- borrow out. See problem 1.2 answer

1

end equ;

(b) entity four_bit_sub is

port(a, b: in bit_vector(3 downto 0);

bin: in bit;
d: out bit_vector(3 downto 0);

bout: out bit);

end four_bit_sub;

architecture test of four_bit_sub is

signal bo: bit_vector(3 downto 0) := "0000"; -- borrow bits

component one_bit_sub

port(x, y, bin: in bit;

diff, bout: out bit);

end component;

begin

FS0: one_bit_sub port map(a(0),b(0),bin,d(0),bo(1));

FS1: one_bit_sub port map(a(1),b(1),bo(1),d(1),bo(2));

FS2: one_bit_sub port map(a(2),b(2),bo(2),d(2),bo(3));

FS3: one_bit_sub port map(a(3),b(3),bo(3),d(3),bout);

end test;

2.6 (a) entity circuit is
port(A, B, C, D: in bit;

G: out bit);

end circuit;

architecture internal of circuit is

signal E, F: bit;

begin

E <= A and B;

F <= E or C;

G <= D and F;

end internal;

(b) entity circuit is

port(A, B, C, D: in bit;

G: out bit);

end circuit;

architecture internal of circuit is

signal E, F: bit;

begin

process(A, B, C, D, E, F)
begin

E <= A and B;

F <= E or C;

G <= D and F;

end process;

end internal;

2.7 A changes to 1 at 25 ns, B changes to 1 at 20 + ∆ ns, C does not change

2.8 (a) A falling-edge triggered D flip-flop with asynchronous active high clear and set

(b) Q = '0', because Clr = 1 has priority.

2.9 entity SR_Latch is

port(S, R: in bit;

Q, Qn: inout bit);

end SR_Latch;

architecture proc of SR_Latch is

begin

process(S, R)

begin

if S = '1' then Q <= '1'; end if;

if R = '1' then Q <= '0'; end if;

end process;

Qn <= not Q;

end proc;

2.10 entity MNFF is

port(M, N, CLK, CLRn: in bit; Q: inout bit; Qn: out bit);

end MNFF;

architecture MN of MNFF is

begin

process(CLK, CLRn)

begin

if CLRn = '0' then Q <= '0';
elsif CLK = '0' and CLK'event then

if M = '0' and N = '0' then Q <= not Q;
elsif M = '0' and N = '1' then Q <= '1';

elsif M = '1' and N = '0' then Q <= '0';

elsif M = '1' and N = '1' then Q <= Q; --

optional end if;

end if;

end process;

QN <= not Q;

end MN;

2.11 entity DDFF is

port(R, S, D, Clk : in bit;

Q : out bit);

end DDFF;

architecture Behav of DDFF is

begin

process(Clk, R, S)

begin

if R = '0' then Q <= '0';

elsif S = '0' then Q <= '1';

elsif Clk'event then Q <= D;

end if;

end process;

end Behav;

2.12 (a) entity ITFF is

port(I0, I1, T, R: in bit;
Q, QN: inout bit);

end ITFF;

architecture behavior of ITFF is

begin

process(T, R)

begin

if R = '1' then
Q <= '0' after 5 ns;

else
if (I0 = '1' and T = '1' and T'event) or

(I1 = '1' and T = '0' and T'event) then

Q <= QN after 8 ns;

end if;

end if;

end process;

QN <= not Q;

end behavior;

(b) add list *

add wave *

force T 0 0, 1 100 -repeat

200 force I1 0 0, 1 50, 0 450

force I0 0 0, 1 450

run 750 ns

2.13
ns∆abcde 0+000000

20+000001

20+101001

20+208001
23+008011
25+018011
35+058011

2.14
ns∆abcde 10+000000

20+000001

20+107001

25+017001
35+057001

2.15

ns

∆

a

b

c

d

e

f

 0 +0 0 0 0 0 0 0

 5 +0 0 0 0 1 0 0

 5 +1 1 0 0 1 0 0

 5 +2 1 1 1 1 0 0

 5 +3 1 1 1 0 0 0

 10 +0 1 1 1 0 1 0

 10 +1 0 1 1 0 1 0

 10 +2 0 0 0 0 1 0

2.16

20.

2.17

2.18

ns ∆ a b c d
4 +0 0 0 0 0
5 +0 1 0 0 0 P1 executes

10 +0 1 1 0 0 P2 executes

10 +1 0 1 0 1 P1 executes

12 +0 0 1 1 1
15 +0 0 0 1 1 P2 executes

15 +1 1 0 1 1 P1 executes

17 +0 1 0 0 1

2.19 (a) 101011 or 011010 = 111011
(b) 101 ror 2 = 011

(c) 101 sla 2 = 111

(d) 101 & not 011 = 101 & 100 = 101100

101100 ≠ 111110, so evaluates to false

(e) 101 or 011 and 010 = 111 and 010 = 010

2.20 (a)

(b)

2.21

2.22

Unlike Clr , the output from the mux is only read on falling clock edges; therefore, adding C to

the sensitivity list is not required for proper operation of the circuit.

2.23 (a) sel <= C&D;
with sel select

F <= not A after 10 ns when "00",
B after 10 ns when "01",

not B after 10 ns when "10",

'0' after 10 ns when "11";

(b) F <= not A after 10 ns when C&D = "00"

else B after 10 ns when C&D = "01"

else not B after 10 ns when C&D =

"10" else '0' after 10 ns;

(c) sel <= C&D;
process(sel)
begin

case sel is

when "00" => F <= not A after 10 ns;

when "01" => F <= B after 10 ns; when

"10" => F <= not B after 10 ns; when

"11" => F <= '0' after 10 ns;

end case;

end process;

2.24 (a) process(C, B1, B2, B3)
begin

case C is
when 1 => A <= B1;

when 2 => A <= B2;

when 3 => A <= B3;

when others => A <= 0;

end case;

end process;

or

process(C, B1, B2, B3)

begin

if C = 1 then A <= B1;

elsif C = 2 then A <= B2;

elsif C = 3 then A <= B3;

else A <= 0; end if;

end process;

(b)

2.25 (a) entity Latch is
port(S, R: in bit;

P, Q: inout bit);
end Latch;

architecture conditional of Latch is

begin
Q <= '1' when S = '1' -- Assume SR = 0

else '0' when R = '1'
else Q;

P <= not Q;

end conditional;

(b) architecture characteristic of Latch is

begin

Q <= S or (not R and Q);

P <= not Q;

end characteristic;

(c) architecture gate of Latch is
begin

P <= S nor Q;

Q <= R nor P;

end gate;

2.26 S = "0101", Co = '1'

2.27 library IEEE;
use IEEE.numeric_bit.all;

entity Adder is

port(A: in bit_vector(3 downto 0);

B: in integer range 0 to 15;

Sum: out bit_vector(4 downto 0));

end Adder;

architecture overloaded of Adder is

signal sum5: unsigned(4 downto 0);

begin

sum5 <= '0' & UNSIGNED(A) + TO_UNSIGNED(B, 4); -- conv fns in Appndx
B Sum <= BIT_VECTOR(sum5);

end overloaded;

2.28
(a) entity decoder_3to8_behavioral is port(A0,

A1, A2, E1_bar, E2_bar, E3: in bit;

Y0_bar, Y1_bar, Y2_bar, Y3_bar, Y4_bar, Y5_bar, Y6_bar, Y7_bar: out bit := '1'); end

decoder_3to8_behavioral;

architecture behavior of decoder_3to8_behavioral is
signal input_values:bit_vector(3 downto 0);
signal enable:bit;

begin

enable<=E3 and (not E2_bar) and (not E1_bar);

input_values<=(enable)&(A2)&(A1)&(A0);

process (input_values) begin

case input_values is
when "1000" =>
Y0_bar <='0';
Y1_bar <='1';
Y2_bar <='1';
Y3_bar <='1';
Y4_bar <='1';

Y5_bar <='1';

Y6_bar <='1';

Y7_bar <='1';

when "1001" =>

Y0_bar <='1';

Y1_bar <='0';

Y2_bar <='1';

Y3_bar <='1';

Y4_bar <='1';

Y5_bar <='1';

Y6_bar <='1';

Y7_bar <='1';

when "1010" =>

Y0_bar <='1';

Y1_bar <='1';

Y2_bar <='0';

Y3_bar <='1';

Y4_bar <='1';

Y5_bar <='1';

Y6_bar <='1';

Y7_bar <='1';

when "1011" =>

Y0_bar <='1';

Y1_bar <='1';

Y2_bar <='1';

Y3_bar <='0';

Y4_bar <='1';

Y5_bar <='1';

Y6_bar <='1';

Y7_bar <='1';
when "1100" =>

Y0_bar <='1';

Y1_bar <='1';

Y2_bar <='1';

Y3_bar <='1';

Y4_bar <='0';

Y5_bar <='1';

Y6_bar <='1';

Y7_bar <='1';
when "1101" =>

Y0_bar <='1';

Y1_bar <='1';

Y2_bar <='1';

Y3_bar <='1';

Y4_bar <='1';

Y5_bar <='0';

Y6_bar <='1';

Y7_bar <='1';
when "1110" =>

Y0_bar <='1';

Y1_bar <='1';

Y2_bar <='1';

Y3_bar <='1';

Y4_bar <='1';

Y5_bar <='1';

Y6_bar <='0';

Y7_bar <='1';
when "1111" =>

Y0_bar <='1';

Y1_bar <='1';

Y2_bar <='1';

Y3_bar <='1';

Y4_bar <='1';

Y5_bar <='1';

Y6_bar <='1';

Y7_bar <='0';

when others

=> Y0_bar

<='1';
Y1_bar <='1';
Y2_bar <='1';
Y3_bar <='1';
Y4_bar <='1';

Y5_bar <='1';

Y6_bar <='1';

Y7_bar <='1';
end case;

end process;

end behavior;

(b) entity decoder_3to8_dataflow is port(A0,

A1, A2, E1_bar, E2_bar, E3: in bit;
Y0_bar, Y1_bar, Y2_bar, Y3_bar, Y4_bar, Y5_bar, Y6_bar, Y7_bar: out bit := '1');

end decoder_3to8_dataflow;

architecture dataflow of decoder_3to8_dataflow is

signal enable:bit;
begin

enable<=(E3) and (not E2_bar) and (not E1_bar);

Y0_bar<=not((enable)and(not A2)and(not A1)and(not A0));

Y1_bar<=not((enable)and(not A2)and(not A1)and(A0));

Y2_bar<=not((enable)and(not A2)and(A1)and(not A0));

Y3_bar<=not((enable)and(not A2)and(A1)and(A0));

Y4_bar<=not((enable)and(A2)and(not A1)and(not A0));

Y5_bar<=not((enable)and(A2)and(not A1)and(A0));

Y6_bar<=not((enable)and(A2)and(A1)and(not A0));

Y7_bar<=not((enable)and(A2)and(A1)and(A0));

end dataflow;

(c) entity decoder_3to8_structural is port(A0,

A1, A2, E1_bar, E2_bar, E3: in bit;

Y0_bar, Y1_bar, Y2_bar, Y3_bar, Y4_bar, Y5_bar, Y6_bar, Y7_bar: out bit := '1');

end decoder_3to8_structural;

architecture structure of decoder_3to8_structural is

component inverter

port(A: in bit; Z: out bit);
end component;

component and3

port(A, B, C: in bit; Z: out bit);

end component;

component and4

port(A, B, C, D: in bit; Z: out bit);

end component;

signal A2prime, A1prime, A0prime, invertA2prime, invertA1prime, invertA0prime, E1, E2, Y0, Y1,

Y2, Y3, Y4, Y5, Y6, Y7, enable: bit;
begin

I0:inverter port map(A2, A2prime);

I1:inverter port map(A1, A1prime);

I2:inverter port map(A0, A0prime);

I3:inverter port map(E1_bar, E1);

I4:inverter port map(E2_bar, E2);
I5:inverter port map(A2prime, invertA2prime);
I6:inverter port map(A1prime, invertA1prime);
I7:inverter port map(A0prime, invertA0prime);
I8:inverter port map(Y0,Y0_bar);

I9:inverter port map(Y1,Y1_bar);

I10:inverter port map(Y2,Y2_bar);

I11:inverter port map(Y3,Y3_bar);

I12:inverter port map(Y4,Y4_bar);

I13:inverter port map(Y5,Y5_bar);

I14:inverter port map(Y6,Y6_bar);

I15:inverter port map(Y7,Y7_bar);

AG0:and4 port map(enable,A2prime,A1prime,A0prime,Y0);
AG1:and4 port map(enable,A2prime,A1prime,invertA0prime,Y1);
AG2:and4 port map(enable,A2prime,invertA1prime,A0prime,Y2);
AG3:and4 port map(enable,A2prime,invertA1prime,invertA0prime,Y3);

AG4:and4 port map(enable,invertA2prime,A1prime,A0prime,Y4);

AG5:and4 port map(enable,invertA2prime,A1prime,invertA0prime,Y5);

AG6:and4 port map(enable,invertA2prime,invertA1prime,A0prime,Y6);
AG7:and4 port map(enable,invertA2prime,invertA1prime,invertA0prime,Y7);

AG8:and3 port map(E1,E2,E3, enable);

end structure;

entity inverter is

port(A: in bit; Z: out bit);

end inverter;

architecture inv of inverter is

begin

Z <= not A;
end inv;

entity and3 is

port(A, B, C: in bit; Z: out bit);
end and3;

architecture concur of and3 is

begin

Z <= (A and B and C);
end concur;

entity and4 is

port(A, B, C, D: in bit; Z: out bit);

end and4;

architecture con of and4 is

begin

Z <= (A and B and C and D);
end con;

2.29

entity decoder_4to16_structural is

port(A0, A1, A2, A3, E1_bar, E2_bar, E3: in bit;

Y0_bar,Y1_bar,Y2_bar,Y3_bar,Y4_bar,Y5_bar,Y6_bar,Y7_bar,Y8_bar,Y9_bar,Y10_bar,Y11_bar,

Y12_bar,Y13_bar,Y14_bar,Y15_bar: out bit := '1');

end decoder_4to16_structural;

architecture decoder of decoder_4to16_structural is

component decoder_3to8_structural
port(A0, A1, A2, E1_bar, E2_bar, E3: in bit; Y0_bar, Y1_bar, Y2_bar, Y3_bar, Y4_bar, Y5_bar, Y6_bar,

Y7_bar: out bit);

end component;

signal A2prime, A1prime, A0prime, invertA2prime, invertA1prime, invertA0prime, E1, E2, Y0, Y1,

Y2, Y3, Y4, Y5, Y6, Y7, enable: bit;

begin
D1:decoder_3to8_structural port map(A0, A1, A2, A3, E2_bar, E3, Y0_bar, Y1_bar, Y2_bar, Y3_bar,

Y4_bar, Y5_bar, Y6_bar, Y7_bar);

D2:decoder_3to8_structural port map(A0, A1, A2, E1_bar, E2_bar, A3, Y8_bar, Y9_bar, Y10_bar,

Y11_bar, Y12_bar, Y13_bar, Y14_bar, Y15_bar);

end decoder;

2.30
(a) entity alu is

port(M,Cn:in bit;

F: out bit_vector(3 downto 0);

S: in bit_vector(3 downto 0));

end alu;

architecture unit of alu is

begin
process(A,B,S,M,Cn) begin
case S is

when "0000"=>F<=not A;

when "0001"=>F<=not(A and B);

when "0010"=>F<=(not A) and B;

when "0011"=>F<="0001";

when "0100"=>F<=not (A or B);
when "0101"=>F<=not B;
when "0110"=>F<=not(A XOR B);

when "0111"=>F<=A or (not B);

when "1000"=>F<=(not A) and B;

when "1001"=>F<=A XOR B;

when "1010"=>F<=B;
when "1011"=>F<=A or B;

when "1100"=>F<="0000";

when "1101"=>F<=A and (not B);

when "1110"=>F<=A and B;
when "1111"=>F<=A;

end case;

end process;

end unit;

(b) library IEEE;

use IEEE.numeric_bit.all;

entity alu is

port(M,Cn:in bit;

A,B: in unsigned (3 downto 0);

F:out unsigned (3 downto 0);

S: in bit_vector(3 downto

0)); end alu;

architecture arithunit of alu is

begin
process(A,B,S,M,Cn) begin

if(Cn='0') then
case S is

when "0000"=>F<=A-1;

when "0001"=>F<=(A and B) - 1;

when "0010"=>F<=(A and (not B)) -1;

when "0011"=>F<="1111";

when "0100"=>F<= A+(A or (not B));
when "0101"=>F<= (A and B) + (A or (not B));

when "0110"=>F<= A - B - 1;

when "0111"=>F<= A or (not B);

when "1000"=>F<= A + (A or B);

when "1001"=>F<=A + B;

when "1010"=>F<= (A and (not B))+(A or B);

when "1011"=>F<=A or B;

when "1100"=>F<=A + (A sll 1);
when "1101"=>F<= (A and B) + A;

when "1110"=>F<= (A and (not B)) + A;

when "1111"=>F<=A;

end case;
else

case S is

when "0000"=>F<=A;

when "0001"=>F<=(A and B);

when "0010"=>F<=(A and (not B));
when "0011"=>F<="0000";
when "0100"=>F<= A+(A or (not B))+1;

when "0101"=>F<= (A and B) + (A or (not B)) + 1;

when "0110"=>F<= A - B;
when "0111"=>F<= A or (not B) + 1;

when "1000"=>F<= A + (A or B) + 1;

when "1001"=>F<=A + B + 1;

when "1010"=>F<= (A and (not B))+(A or B) + 1;
when "1011"=>F<=(A or B) +1;

when "1100"=>F<=A + A + 1;

when "1101"=>F<= (A and B) + A + 1;

when "1110"=>F<= (A and (not B)) + A + 1;

when "1111"=>F<=A + 1;

end case;

end if;
end process;

end arithunit;

2.31 (a) library IEEE;
use IEEE.numeric_bit.all;

entity counter is

port(d: in unsigned(3 downto 0);
clk, clr, ent, enp, up, load: in bit;
q: inout unsigned(3 downto 0); co: out bit);

end counter;

architecture test of counter is

begin

process(clk, clr)

begin

if clr = '0' then Q <= "0000";

elsif clk = '1' and clk'event

then

if load = '0' then q <= d; -- load

elsif (ent = '1' and enp = '1' and (not up) = '1')

if q = "0000" then q <= "1001"; -- wrap around

else q <= q – 1; end if; --decrement

elsif (ent = '1' and enp = '1' and up = '1') then

if q = "1001" then q <= "0000"; -- wrap around

else q <= q + 1; end if; --increment

end if;
end if;

end process;

then

co <= '1' when (ent = '1') and ((up = '1' and (Q = "1001")) or

(up = '0' and (Q ="0000"))) else '0';

end test;

(b) The block diagram is similar to Figure 2-47 with an "Up" input added to each counter.

The VHDL description similar to Figure 2-48.

2.32 Students should look on the web for 74192 data sheet. CLR is active high. LOADB is active low.

Counting up happens when UP has a rising edge and DOWN=1. Counting down happens when

DOWN has a rising edge and UP=1. CARRY indicates terminal count in the up direction, i.e. 9.

BORROW indicates terminal count in the down direction, i.e. 0.

Operating Mode CLR LOADB UP DOWN D Q Borrow Carry
Clear 1 X X 0 XXXX 0000 0 1

 1 X X 1 XXXX 0000 1 1
Load 0 0 X X XXXX Q = D 1* 1*

Count Up 0 1 ↑ 1 XXXX Q=Q+1 1 1**

Count Down 0 1 1 ↑ XXXX Q=Q–1 1** 1

* when loading, if the input is 0 and down = 0, borrow will be 0. If the input is 9 and up = 0, carry

will be 0
** Borrow = 0 when the counter is in state 0 and down = 0. Carry = 0 when the counter is in state 9

and up = 0.

entity count74192 is

port(DOWN, UP, CLR, LOADB: in bit;
BORROW, CARRY: out bit;

D: in integer range 0 to 15;

Q: inout integer range 0 to 15);

end count74192;

architecture behav of count74192 is

begin

process(DOWN, UP, CLR, LOADB)

begin

if CLR = '1' then Q <= 0;

elsif LOADB = '0' then Q <= D;

elsif UP'event and UP = '1' and DOWN = '1'

then if Q = 9 then Q <= 0;

else Q <= Q + 1; end if;
elsif DOWN'event and DOWN = '1' and UP = '1' then

if Q = 0 then Q <= 9;

else Q <= Q - 1; end if;

end if;

end process;

-- borrow rises on rising edge of DOWN in state 0

BORROW <= '0' when DOWN = '0' and Q = 0 else '1';

30

-- carry rises on rising edge of UP in state 9
CARRY <= '0' when UP = '0' and Q = 9 else '1';

end behav;

2.33 (a) entity shift8 is

port(Q: inout bit_vector(7 downto 0);
D: in bit_vector(7 downto 0);

CLR, CLK, S0, S1, LSI, RSI: in bit);

end shift8;

(b) architecture behave of shift8 is

begin

process(CLK, CLR)

begin

if CLR = '1' then Q <= "00000000";

elsif (CLK = '1' and CLK'event) then

if (S0 = '1' and S1 = '1') then Q<=

D; elsif (S0 = '0' and S1 = '1') then

Q <= RSI & Q(7 downto 1); elsif

(S0 = '1' and S1 = '0') then

Q <= Q(6 downto 0) &

LSI; end if;

end if;

end process;

end behave;

(c)

(d) entity shiftreg is

port(QQ: inout bit_vector(15 downto 0);
DD: in bit_vector(15 downto 0);

CLK2, CLR2, L, R: in bit);

end shiftreg;

(e) architecture struct of shiftreg is

component shift8 is

port(Q: inout bit_vector(7 downto 0);

D: in bit_vector(7 downto 0);

CLR, CLK, S0, S1, LSI, RSI: in bit);
end component;

begin

SR1: shift8 port map(QQ(15 downto 8), DD(15 downto 8),

CLR2, CLK2, L, R, QQ(7), QQ(0));

SR2: shift8 port map(QQ(7 downto 0), DD(7 downto 0),

CLR2, CLK2, L, R, QQ(15), QQ(8));

end struct;

2.34 library IEEE;

use IEEE.numeric_bit.all;

entity countQ1 is

port(clk, Ld8, Enable: in bit; S5: out bit;

Q: out unsigned(3 downto 0));

end countQ1;

architecture counter of countQ1 is

signal Qint: unsigned(3 downto 0);

begin

process(clk)

begin

if clk'event and clk = '1' then

if Ld8 = '1' then Qint <= "1000";

elsif Enable = '1' then
if Qint = "0011" then Qint <= "1000";

else Qint <= Qint – 1; end if;

end if;

end if;

end process;

S5 <= '1' when Qint <= "0101" else '0';

Q <= Qint;

end counter;

2.35 (a) library IEEE;

use IEEE.numeric_bit.all;

entity up_down is

port(CLK, CLR, LD, UP: in bit; D: in unsigned(3 downto 0);

Q: inout unsigned(3 downto 0));

end up_down;

architecture counter of up_down is

begin

process
begin

wait until CLK = '0' and CLK'event;

if CLR = '1' then Q <= "0000";

elsif LD = '1' then Q <= D;

elsif UP = '1' then Q <= Q + 1;

else Q <= Q – 1;

end if;

end process;

end counter;

(b)

(c) library IEEE;
use IEEE.numeric_bit.all;

entity modulo6 is

port(Q: inout unsigned(3 downto 0);

ClK, Reset, CNT: in bit);

end entity;

architecture six of modulo6 is

component up_down is

port(CLK, CLR, LD, UP: in bit;

D: in unsigned(3 downto 0);

Q: inout unsigned(3 downto 0));

end component;

signal load, clock: bit;
begin

load <= Reset or (not Q(0) and Q(1) and Q(2) and not Q(3));

clock <= CLK and CNT; --assume CNT changes when CLK is 0

U0: up_down port map(CLOCK, '0', load, '1', "0001", Q);

end six;

2.36 (a)

(b)

Present Next State X = 0 X = 1

State X = 0 X = 1 Z1 Z2 Z1 Z2
S0 S0 S1 1 0 0 0

S1 S1 S2 0 1 0 1

S2 S2 S3 0 1 0 1

S3 S0 S1 0 0 1 0

2.37 The following solutions utilize the solution for 1.13.
(a) entity P2_37 is

port(X, CLK: in bit;

S, V: out bit);

end P2_37;

architecture Table of P2_37 is

type StateTable is array

(integer range <>, bit range <>) of integer;

type OutTable is array

(integer range <>, bit range <>) of bit_vector(1 downto 0);

signal State, NextState: integer := 0;
signal SV: bit_vector (1 downto 0);

constant ST: StateTable (0 to 5, '0' to '1') :=

((1,1), (2,4), (3,3), (0,0), (3,5), (0,0));

constant OT: OutTable (0 to 5, '0' to '1') :=

(("00","10"), ("10", "00"), ("00", "10"), ("00","10"),

begin
("10","00"), ("10", "01"));

NextState <= ST(State, X);

SV <= OT(State, X);

S <= SV(1); -- Alternate method S <= OT(State,X)(1)

V <= SV(0); -- V <= OT(State,X)(0)

process(CLK)

begin

if CLK'event and CLK = '0' then

State <= NextState;
end if;

end process;

end Table;

(b) entity P2_37 is

port(X, CLK: in bit;
S, V: out bit);

end P2_37;

architecture Equations of P2_37 is

signal Q1, Q2, Q3: bit;
begin

process(CLK)

begin
if CLK = '0' and CLK'event then

Q1 <=not Q1 and Q3;

Q2 <= (not Q2 and not Q3)

or (X and not Q1 and Q2);

Q3 <= (not Q1 and Q3) or (Q2 and not Q3);
end if;

end process;

S<=(X and not Q2) or (not X and Q2);

V<=(X and Q1 and Q2);

end Equations;

(c) entity P2_37 is

port(X, CLK: in bit;
S, V: out bit);

end P2_37;

architecture Structural of P2_37 is

component DFF
port(D, CLK:

end component;

component And2

port(A1, A2:

end component;

component Or2

port(A1, A2:

end component;

component And3

in bit; Q: out bit; QN: out bit := '1');

in bit; Z: out bit);

in bit; Z: out bit);

port(A1, A2, A3:

end component;

component Inverter

in bit; Z: out bit);

port(A: in bit; Z: out bit);

end component;

signal Q1, Q2, Q3: bit := '0';
signal XN, Q1N, Q2N, Q3N: bit := '1';
signal D1, D2, D3: bit := '0';

signal A1, A2, A3, A4, A5, A6: bit := '0';

begin
I1: Inverter port map (X, XN);

G1: And2 port map (Q1N, Q3, D1);

G2: And2 port map (Q2N, Q3N, A1);

G3: And3 port map (X, Q1N, Q2, A2);

G4: Or2 port map (A1, A2, D2);

G5: And2 port map (Q1N, Q3, A3);

G6: And2 port map (Q2, Q3N, A4);

G7: Or2 port map (A3, A4, D3);

G8: And2 port map (X, Q2N, A5);

G9: And2 port map (XN, Q2, A6);

G10: Or2 port map (A5, A6, S);

G11: And3 port map (X, Q1, Q2, V);

DFF1: DFF port map (D1, CLK, Q1, Q1N);

DFF2: DFF port map (D2, CLK, Q2, Q2N);

DFF3: DFF port map (D3, CLK, Q3, Q3N);

end Structural;

See Section 2.15 for the definition of the DFF component. The And3, And2, Or2, and Inverter

components are all similar to the Nand3 component given on pages 109-110 (section 2.15).

2.38 The following solutions utilize the solution for 1.14.
(a) entity P2_38a is

port(X, CLK: in bit;
D, B: out bit);

end P2_38a;

architecture Table of P2_38a is

signal State, NextState: integer range 0 to
5; begin

process(State, X)
begin

case State is

when 0 => if X = '0' then D <= '0'; B <= '0'; NextState <= 1;

else D <= '1'; B <= '0'; NextState <= 1; end if;

when 1 => if X= '0' then D <= '1'; B <= '0'; NextState <= 2;

else D <= '0'; B <= '0'; NextState <= 3; end if;

when 2 => if X = '0' then D <= '1'; B <= '0'; NextState <= 4;

else D <= '0'; B <= '0'; NextState <= 5; end if;

when 3 => if X = '0' then D <= '0'; B <= '0'; NextState <= 5;

else D <= '1'; B <= '0'; NextState <= 5; end if;

when 4 => if X = '0' then D <= '1'; B <= '1'; NextState <= 0;

else D <= '0'; B <= '0'; NextState <= 0; end if;

when 5 => if X = '0' then D <= '0'; B <= '0'; NextState <= 0;

else D <= '1'; B <= '0'; NextState <= 0; end if;

end case;

end process;

process(CLK)

begin

if (CLK = '0' and CLK'event) then
State <= NextState; end if;

end process;
end Table;

(b) entity P2_38b is

port(X, CLK: in bit;

D, B: out bit);

end P2_38b;

architecture Equations of P2_38b is

signal Q1, Q2, Q3: bit;

begin
process(CLK)

begin

if (CLK='0' and CLK'event) then

Q1 <= (not Q1 and not Q3) or (not X and Q1 and not Q2);
Q2 <= (not Q2 and Q3);

Q3 <= not Q2 and (Q3 or Q1);

end if;

end process;

D <= (not X and Q1) or (X and not Q1 and

Q3); B <= not X and Q1 and Q2;

end Equations;

(c) entity P2_38c is

port(X, CLK: in bit;
D, B: out bit);

end P2_38c;

architecture Structure of P2_38c is

component JKFF

port(SN, RN, J, K, CLK: in bit; Q, QN: out bit);
end component;

component Nand2

port(A1, A2: in bit; Z: out bit);
end component;

component And3

port(A1, A2, A3:

end component;

component Nand3

port(A1, A2, A3:

end component;

component Inverter

in bit; Z: out bit);

in bit; Z: out bit);

port(A: in bit; Z: out bit);

end component;

signal A1, A2, A3: bit := '0';

signal Q1, Q2, Q3: bit := '0';
signal Q1N, Q2N, Q3N, XN, One: bit := '1';

begin
I1: Inverter port map (X, XN);

G1: Nand2 port map (XN, Q2N, A1);

FF1: JKFF port map ('1', '1', Q3N, A1, CLK, Q1, Q1N);

FF2: JKFF port map ('1', '1', Q3, '1', CLK, Q2, Q2N);

FF3: JKFF port map ('1', '1', Q1, Q2, CLK, Q3, Q3N);

G2: Nand2 port map (XN, Q1, A2);

G3: Nand3 port map (X, Q1N, Q3, A3);
G4: Nand2 port map (A2, A3, D);

G5: And3 port map (XN, Q1, Q2, B);

end Structure;

The Nand2, And3, and Inverter components are similar to the Nand3 component in Section

2.15. The JKFF component is similar to the DFF component in Section 2.15.

2.39 entity moore_mach is

port(X1, X2: in bit;

Clk: in bit;

Z: out bit);

end moore_mach;

architecture moore_mach_bhv of moore_mach is

signal state: natural := 1;

begin

process(Clk)

begin

if Clk = '0' and Clk'event then

case state is

when 1 =>

if (X1 xor X2) = '1' then

when

state <= 2 after 10 ns;

Z <= '0'after 20 ns; end if;

2 =>

if X2 = '1' then

state <= 1 after 10 ns;

Z <= '1' after 20 ns; end if;

when others => null;

end case;

end if;

end process;

end moore_mach_bhv;

2.40 entity P_40 is

port(x1, x2, clk: in bit;

z1, z2: out bit);

end P_40;

architecture behavioral of P_40 is

signal state, next_state: integer range 1 to 3;

begin

process(state, x1, x2)

begin

case state is

when 1 => if ((x1 & x2) = "00") then next_state <= 3 after 10 ns;

elsif ((x1&x2) = "01") then next_state <= 2 after 10
ns; else next_state <= 1 after 10 ns; end if;

when 2 => if ((x1 & x2) = "00") then next_state <= 2 after 10 ns;
elsif ((x1&x2) = "01") then next_state <= 1 after 10

ns; else next_state <= 3 after 10 ns; end if;

when 3 => if ((x1 & x2) = "00") then next_state <= 1 after 10 ns;

elsif ((x1&x2) = "01") then next_state <= 2 after 10

ns; else next_state <= 3 after 10 ns; end if;

end case;

end process;

process(clk)

begin

if (clk = '0' and clk'event) then

state <= next_state after 5 ns; end if;

end process;

z1 <= '1' after 10 ns when state = 2 else '0' after 10 ns;

z2 <= '1' after 10 ns when state = 3 else '0' after 10 ns;

end behavioral;

2.41 (a) nextstate is not always assigned a new value in the conditional statements, else clauses are not

specified. so a latch will be created to hold nextstate to its old value.

(b) The latch output would have the most recent value of nextstate.

(c) process(state, X)

begin

case state is
when 0 => if X = '1' then nextstate <= 1;

else nextstate <= 0; end if;

when 1 => if X = '0' then nextstate <= 2;

else nextstate <= 1; end if;

when 2 => if X = '1' then nextstate <= 0;

else nextstate <= 2; end if;

2.42

end case;

end process;

Signal or Variable time new value
A 20 ns 1
F 20 ns 6

A 20 ns 6

B 25 ns 7

C 30 ns 2

D 35 ns 5

Note: The change to A=1 is never visible.

2.43 Sel should be a variable, instead of a signal. Otherwise sel will not update for current use. It updates

only at the end of a process so the case statement will get the wrong value.

2.44

ns ∆ A B D
0 +0 0 0 0
5 +0 1 0 0

15 +0 1 0 1

15 +1 1 1 1

25 +0 1 1 0

25 +1 1 0 0

35 +0 1 0 1

35 +1 1 1 1

40 +0 0 1 1

2.45 Rising-edge triggered toggle flip-flop (T-flip-flop), with asynchronous active-high clear signal

2.46 (a) library IEEE;

use IEEE.numeric_bit.all;

entity ROM4_3 is

port(ROMin: in unsigned(0 to 3);
ROMout: out unsigned(0 to 2));

end ROM4_3;

architecture Behavioral of ROM4_3 is

type ROM16x3 is array (0 to 15) of unsigned(0 to 2);

constant ROM1: ROM16x3 := ("000","001","001","010","001","010",

"010","011","001","010","010","011","010","011","011","100");

signal index: integer range 0 to 15;
begin

index <= to_integer(ROMin);
ROMout <= ROM1(index);

end Behavioral;

(b) library IEEE;

use IEEE.numeric_bit.all;

entity P_46 is

port(A: in unsigned(11 downto 0);

count: out unsigned(3 downto 0));

end P_46;

architecture Behavioral of P_46 is

component ROM4_3

port(ROMin: in unsigned(0 to 3);
ROMout: out unsigned(0 to 2));

end component;

signal B, C, D: unsigned(0 to 2);

begin

RO1: ROM4_3 port map (A(11 downto 8), B);

RO2: ROM4_3 port map (A(7 downto 4), C);

R03: ROM4_3 port map (A(3 downto 0), D);

count <= '0' & B + C + D;

end Behavioral;

(c)
ACountDCB 1111111111111100100100100

0101101011010111011010010

1000010111000101010010001

2.47

a

b

c

y7

y6

y5

y4

y3

y2

y1

y0

 0 0 0 0 0 0 0 0 0 0 1

 0 0 1 0 0 0 0 0 0 1 0

 0 1 0 0 0 0 0 0 1 0 0

 0 1 1 0 0 0 0 1 0 0 0

 1 0 0 0 0 0 1 0 0 0 0

 1 0 1 0 0 1 0 0 0 0 0

 1 1 0 0 1 0 0 0 0 0 0

 1 1 1 1 0 0 0 0 0 0 0

library IEEE;

use IEEE.numeric_bit.all;

entity decoder is

port(A, B, C: in bit;

X: out unsigned(7 downto 0));

end decoder;

architecture LUT of decoder is

type ROM is array (0 to 7) of unsigned(7

downto 0);

signal Table: ROM := ("00000001", "00000010", "00000100", "00001000",
"00010000", "00100000", "01000000",

"10000000"); signal index: unsigned(2 downto 0);
begin

index <= A & B & C;
X <= Table(to_integer(index));

end LUT;

2.48 (a) process(A)

variable Max: integer;

begin

Max := A(1);

for i in 2 to 20 loop
if A(i) > Max then

Max := A(i);

end if;
end loop;

end process;

(b) process(A)

variable Max, i: integer;
begin

Max := A(1);
i := 2;
while i <= 20 loop

if A(i) > Max then

Max := A(i);

end if;

i := i + 1;
end loop;

end process;

2.49 architecture test1 of tester is

component Mealy

port(X, CLK: in bit; Z: out bit);

end component;

signal XA: bit_vector(0 to 11) := "011011011100";

signal ZA: bit_vector(0 to 11) := "100110110110";

signal X, clk, Z: bit := '0';

begin

clk <= not clk after 50 ns;

M1: Mealy port map(X, clk, Z);

process

begin

for i in 0 to 11 loop

X <= XA(i) after 10 ns; --start first output

immediately wait until clk = '1' and clk'event;

assert (Z = ZA(i))

report ("Error")
severity error;

end loop;

report("sequence correct");

end process;

end test1;

2.50 entity TestExcess3 is

end TestExcess3;

architecture test1 of TestExcess3 is

component Code_Converter is

port(X, CLK: in bit;

Z: out bit);

end component;

type bv_arr is array(1 to 10) of bit_vector(3 downto 0); constant

XA: bv_arr := ("0000", "0001", "0010", "0011", "0100",

"0101", "0110", "0111", "1000", "1001"); constant ZA: bv_arr :=

("0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010",

"1011", "1100");
signal X, Z, CLK: bit := '0';

begin
CLK <= not CLK after 50 ns;

C1: Code_Converter port map (X, CLK, Z);

process

begin

for i in 1 to 10 loop

for j in 0 to 3 loop

X <= XA(i)(j); --start first output immediately
wait until clk'event and clk = '1';
wait for 10 ns; --wait for gate delay
assert (Z = ZA(i)(j))

report "sequence incorrect"
severity error;

wait for 15 ns; --input will change 10+15 ns after
edge end loop;

end loop;

report "all sequences correct";

end process;

end test1;

40

2.51 library IEEE;

use IEEE.numeric_bit.all;

entity testbench is

port(time1: out time);

end testbench;

architecture test1 of testbench is

signal clk, Ld8, Enable, S5: bit;

signal Q: unsigned(3 downto 0);

component countQ1 is

port(ckl, Ld8, Enable: in bit; S5: out bit;

Q: out unsigned(3 downto 0));

end component;

begin

time1 <= now when S5 = '1' else 0 ns;
clk <= not clk after 50 ns;

Ld8 <= '1', '0' after 100 ns;

Enable <= '0', '1' after 100 ns, '0' after 600 ns,

'1' after 800 ns, '0' after 1800 ns;

cnt1: countQ1 port map (clk, Ld8, Enable, S5, Q);

end test1;

2.52 entity testSMQ1 is

port(correct: inout Boolean);

end testSMQ1;

architecture testSM of test SMQ1 is

component SMQ1

port(X, CLK: in bit; Z: out bit);
end component;

constant answer: bit_vector(1 to 5) := "11010";

signal X, Z, CLK: bit;

begin

clk <= not clk after 50 ns;

X <= '1', '0' after 100 ns, '1' after 300

ns; SMQ1_1: SMQ1 port map (X, CLK, Z);

process

begin

wait for 40 ns; --read output 10ns before rising edge of clock

for i in 1 to 15 loop
correct <= answer(i) = Z;
wait for 100 ns;

if correct = FALSE then exit; end if;

end loop;

wait;

end process;

end testSM;

2.56

library IEEE;

use IEEE.numeric_bit.all;

entity bcd is

port(Load, Clr, Enable, Clk, Up: in bit;

D: in unsigned(3 downto 0);

Cout: out bit; Q: out unsigned(3 downto 0));

end bcd;

architecture counter of bcd is

signal Qout: unsigned(3 downto 0);

begin

Q <= Qout;

process(Clk,Clr)

begin
if Clr = '0' then Qout<="0000";
elsif Clk'event and Clk = '1' then

if Load = '1' and Enable = '1' then

case D is
when "1010"=> Qout<="0000" after 2 ns;
when "1011"=> Qout<="0001" after 2 ns;

when "1100"=> Qout<="0010" after 2 ns;

when "1101"=> Qout<="0011" after 2 ns;

when "1110"=> Qout<="0100" after 2 ns;

when "1111"=> Qout<="0101" after 2 ns;

when others => Qout <= D after 2 ns;

end case;

elsif Load = '0' and Enable = '1' and Up = '1' then

if Qout = "1001" then Cout <= '1'; Qout<="0000" after 2

ns; else Qout <= Qout + 1 after 2 ns; Cout <= '0';
end if;

elsif Load = '0' and Up = '0' and Enable = '1' then

if Qout = "0000" then Cout <= '1'; Qout<="1001" after 2

ns; else Qout <= Qout - 1 after 2 ns; Cout <= '0';
end if;

end if;
end if;

end process;

end counter;

2.57

library IEEE;

use IEEE.numeric_bit.all;

entity complex is

port(clk50Mhz: in bit;
clk: inout bit);

end complex;

architecture internal of complex is

constant Fifty_Mil: integer := 50000000;

signal counter_Big: integer range 1 to Fifty_Mil;

begin

process(clk50Mhz)

begin

if clk50Mhz = '1' and clk50Mhz'event then

if counter_Big = Fifty_Mil then counter_Big <= 1; clk<=not clk;

else counter_Big<=counter_Big+1;
end if;

end if;

end process;

end internal;

EE 460M Digital Systems Design Using VHDL Lab Manual

Lab Assignment #2

Guideline
This lab is to be done individually. Each person does his/her own assignment and turns it in.

Objective
To learn designing basic sequential circuits in VHDL and implementing them on an FPGA.

Problem 1: Excess-3 code converter design
In this problem, you will be designing an FSM using three different styles of VHDL coding: behavioral,

dataflow, and structural. The following is the problem for which you will be designing the FSM:

A sequential circuit has one input (X), a clock input (CLK), and two outputs (S and V). X, S and V are all one-bit

signals. X represents a 4-bit binary number N, which is input least significant bit first. S represents a 4-bit binary

number equal to N + 3, which is output least significant bit first. At the time the fourth input occurs, V = 1 if N + 3

is too large to be represented by 4 bits; otherwise, V = 0. The value of S should be the proper value, not a don’t

care, in both cases. The circuit always resets after the fourth bit of X is received. Assume the sequential circuit

is implemented with the following state table. The outputs are (S,V). All state changes occur on the falling edge

of the clock pulse.

Present State Next State Output

 X=0 X=1 X=0 X=1

S0 S1 S2 1,0 0,0

S1 S3 S4 1,0 0,0

S2 S4 S4 0,0 1,0

S3 S5 S5 0,0 1,0

S4 S5 S6 1,0 0,0

S5 S0 S0 0,0 1,0

S6 S0 S0 1,0 0,1

a. Write a behavioral VHDL description using the state table shown above. Compile and simulate your code

using the following test sequence:

X = 1011 1100 1101 €

The first input bit is at the far right. This is the LSB of the first 4-bit value. Therefore, you will be adding 3

to 13, then to 12, and then to 11. While simulating, keep the period of the CLK to be 10ns. Change X 1/4

clock period after the rising edge of the clock.

b. Write a data flow VHDL description using the next state and output equations to describe the state

machine. You can use Logic Aid to derive the logic equations. Assume the following state assignment:

S0 = 000, S1 = 010, S2 = 001, S3 = 101, S4 = 011, S5 = 100,

S6=111 Compile and simulate your code using the same test sequence and timing as (a).

c. Write a structural model of the state machine in VHDL that contains the interconnection of gates and

D flip-flops. Compile and simulate your code using the same test sequence and timing as (a).

EE 460M Digital Systems Design Using VHDL Lab Manual

Problem 2: BCD Counter Design
Implement a 1 digit BCD (binary coded decimal) counter. It should be a synchronous (4-bit) up/down decade

counter with output Q that works as follows: All state changes occur on the rising edge of the CLK input, except

the asynchronous clear (CLR). When CLR = 0, the counter is reset regardless of the values of the other inputs.

You can keep the time period of the CLK signal to 10ns for simulating your design.

D

CO
BCD Counter

ENABLE

LOAD

UP

CLR

Q

If the LOAD = ENABLE = 1, the data input D is loaded into the

counter. If LOAD = 0 and ENABLE = UP = 1, the counter is

incremented.
If LOAD = 0, ENABLE = 1, and UP = 0, the counter is decremented.
If ENABLE = 1 and UP = 1, the carry output (CO) = 1 when the counter’s

value is 9. If ENABLE = 1 and UP = 0, the carry output (CO) = 1 when the

counter’s value is 0.

a. Write a VHDL description of the counter. You may implement your design in any style you wish. It will be easier

to use a behavioral description which can be either written in the algorithmic way (eg. Count <= Count + 1

– Figure 2.46 in the text) or a state machine way (eg. State <= Next_State – Figure 2.54/2.56 in the text).

You may also use dataflow or structural descriptions, although that will be more work. Use the following

simulation for your waveforms:

1. Load counter with 6

2. Increment counter four times. You should get 9 and then 0.

3. Decrement counter once. You should get 9.

4. Clear the counter.

b. Write a VHDL description of a decimal counter that uses two of the above counters to form a two-decade

decimal up/down counter that counts up from 00 to 99 or down from 99 to 00. In other words, instantiate (port

map) two single digit counters in a top module (the two-digit counter). You may need some extra logic in the

top module too other than these instantiations. The top module will have these inputs and outputs: CLR, CLK,

ENABLE, LOAD, UP, D1, D2, Q1, D2, CO. Use the following simulation for your waveforms:

1. Load counter with 97

2. Increment counter five times.

3. Do nothing for 2 clock periods

3. Decrement counter four times.

4. Clear the counter.

EE 460M Digital Systems Design Using VHDL Lab Manual

Problem 3: Synthesizing and implementing the BCD counter on the FPGA
Use the code for the single digit BCD counter that you wrote in Problem 2a. Before you synthesize it and

implement it on the board, you will have to modify your code a little bit. This is because the CLK signal

available on the board is a high frequency signal (50 MHz). If you use this high frequency for your circuit, you

will not be able to give proper inputs or see proper outputs to your design.

So, you need to add a clock divider to your VHDL description. Create two more entities in your design. Call one

as top and another as divider. Make connections as shown in the following figure. Look at the codes given in

the end of this document, understand them and see how they can be used as clock dividers.

Ensure that there are no latches in your design. Xilinx ISE will report these in the Synthesis report. You need to

eliminate such warnings. You may want to read the synthesis guidelines “Tips for writing synthesizable code”

available on Blackboard.

To look for latches in your synthesized design, open the synthesis report generated by ISE by clicking “View

Synthesis Report” under the “Synthesize-XST” option. In the synthesis report, look for “Macro Statistics” and

see if any latches are being shown. Alternatively, you can look for “cell usage” in the report and there should not

be any cells under “Flip Flops/Latches” having names starting with “L”.

Also, after adding the counter/clock divider block to your design, simulate the top entity in Modelsim before

directly synthesizing using ISE to ensure that the counter/divider works. And while simulating, reduce the large

values (like 5000000) in the counter to small values (say 50), so that simulation takes less time and the

waveforms are legible. Don't forget to switch to the correct (large) value before synthesizing.

TOP

CLK input
(connect it

to 50MHz

clock –

B8)

Other

inputs

Slow
clock

Divider BCD

Counter

Outputs

Synthesize the top module (which includes the divider and the 1-digit bcd counter) and use the following pin

assignments. Download the design onto the board and make sure it works as expected.

LOAD

D
ENABLE

UP

CLK
COUNT

CO

BTN0

SW[3:0]

SW4

SW5

B8

LED[3:0]

LED4

EE 460M Digital Systems Design Using VHDL Lab Manual

CLR SW6

Useful Information
1. Don’t limit your testing to the input sequences mentioned with the problem statement. During the

checkouts, the TAs will apply several input combinations to test your design. So, make sure to do

a thorough testing of your design using sufficient number of inputs.

2. While simulating your design, it is always a good idea to stagger your inputs with respect to the active

clock edge. For example, if your active clock edge is occurring at 10ns, apply your inputs sometime

before 10ns, say at 8ns. This ensures that when your design was clocked, the input was successfully

read. If your active edge occurs at 10ns and your input also changes at 10ns, then it becomes hard

to see whether the input was successfully captured by the clock edge or not.

Force inputs here

0ns 10ns 20ns 30ns 40ns

3. A state machine can be designed using either a single process statement (like Figure 2.56 in the text)

or using two process statements (like Figure 2.54 in the text). Both ways are correct. However, it is

easier to design it using a single process statement. Generally, the single process statement

partakes less debugging effort. This is good guideline to observe during the entire semester.

Submission Details
All parts of this lab are to be submitted on Blackboard. No hard- copy submission is needed. For each problem,

please zip all your files into a single folder with the following naming scheme: Lastname_Problem#.zip

Problem

1

Submission Requirements

VHDL file(s)

Do-fi le

2 VHDL file(s)

Do-file

3 VHDL file(s)

 Bit-file and UCF File

Checkout Details
During your checkout you will be expected to demonstrate each of the problems in the assignment and answer

verbal questions about the assignment.

EE 460M Digital Systems Design Using VHDL Lab Manual

Example 1

library IEEE;

use IEEE.numeric_bit.ALL;

entity simpleCounter is

Port (clk50Mhz : in

bit;

led : out bit);
end simpleCounter;

architecture Behavioral of simpleCounter

is signal counter: unsigned (26 downto

0); signal cnt_temp: bit_vector(26

downto 0); begin

process (clk50Mhz)

begin
if clk50MHZ = '1' and clk50Mhz'event then

counter <= counter + 1; --increment counter every 20 ns (1/ 50 Mhz) cycle.

end if;
end process;

cnt_temp <= bit_vector(counter);

led <= cnt_temp(26); -- (2^26 / 50E6) = 1.34 seconds

end Behavioral;

Example 2

library IEEE;

use IEEE.numeric_bit.ALL;

entity complex is

Port (clk50Mhz : in

bit; led : inout bit

);
end complex;

architecture Behavioral of complex is

signal counter: integer range 1 to 50000000;

begin

process (clk50Mhz)

begin
if clk50MHZ = '1' and clk50Mhz'event then

if counter = 50000000 then counter <= 1; led <= not

led; else counter <= counter + 1;

end if;

end if;

EE 460M Digital Systems Design Using VHDL Lab Manual

end process;

end Behavioral;

