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CHAPTER 2 

 

 

Problem 2.1 
 

A heavy table is supported by flat steel legs (Fig. P2.1). Its natural period in lateral vibration is 0.5 sec. 
When a 50-lb plate is clamped to its surface, the natural period in lateral vibration is lengthened to 0.75 
sec. What are the weight and the lateral stiffness of the table? 

 

 

 

Tn = 0.5 sec                                   Tn = 0.75 sec                Figure P2.1 

 

 
Solution: 

 

Given: 
 

T   = 2π  m    = 0.5 sec                                      (a) 
n                  k 

T′=2π   m + 50 g   = 0. 75 sec                     (b) 
n                               k 

 

1. Determine the weight of the table. 
 

Taking the ratio of Eq. (b) to Eq. (a) and squaring the 

result gives 

2                                                     50   ⎛0.75 ⎞2
 

⎛   ′ ⎞

⎜ Tn  ⎜ m +50 g         ⇒ 1+     =⎜            ⎜ =2.25 
=

 

⎜            ⎜                                                                              mg ⎝ 0.5 ⎜

⎝Tn  ⎜ 
or 

 

mg = 

 

 

50 
 

1.25 

m 
 
 

= 40 lbs

2. Determine the lateral stiffness of the table. 
 

Substitute for m in Eq. (a) and solve for k: 
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⎛              ⎞
k =16π 2 

m =16π 2 ⎜ 
40 

⎝ 386    ⎜ 
 

⎜ =16.4lbs  in.
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An electromagnet weighing 400 lb and suspended by a spring having a stiffness of 100 lb/in. (Fig. 
P2.2a) lifts 200 lb of iron scrap (Fig. P2.2b). Determine the equation describing the motion when the 
electric current is turned off and the scrap is dropped (Fig. P2.2c). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure P2.2 

Solution: 
 

1. Determine the natural frequency. 

 400 
k  = 100 lb in.            m = 

386 

 
 
 
 

lb − sec
2 in.

 

ωn    = 
 k  

=    
      100   

= 9. 82 rads sec 
m           400 386 

 

2. Determine initial deflection. 
 

Static deflection due to weight of the iron scrap 
200

u(0) =  
100 

= 2 in.

3. Determine free vibration. 

u(t )  = u(0 ) cos ωnt = 2 cos (9. 82t )



Problem 2.3 
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2 

 

A mass m is at rest, partially supported by a spring and partially by stops (Fig. P2.3). In the posi-tion 
shown, the spring force is mg/ 2. At time t = 0 the stops are rotated, suddenly releasing the mass. 
Determine the motion of the mass. 

 
 

k 

m 

 
u 

 

Figure P2.3 

 
Solution: 

 
1. Set up equation of motion. 

 
ku+m g/2 

 

 
mü 

u 

m g 

 

mu&& +    ku  =  m g
 

 

 
2. Solve equation of motion. 

u(t ) = A cos ω t  + B sin ω t  +  mg 
n                                     n          2 k 

At t  = 0 , u(0)   = 0 and u& (0) = 0
 

mg 
, 

∴A=−       2 k 

 

B    = 0

u(t ) = 
 mg  

(1 − cos ωnt ) 

2 k



Problem 2.4 
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k 
u  

v0 

  m 

  m 0 

 

m0 = 

 

The weight of the wooden block shown in Fig. P2.4 is 10 lb and the spring stiffness is 100 lb/in. A 
bullet weighing 0.5 lb is fired at a speed of 60 ft/sec into the block and becomes embedded in the block. 
Determine the resulting motion u(t) of the block. 

 

 
vo 

m 
k 

Figure P2.4 
 
 

Solution: 
 
 

 

      10 
m  = 386 

 

= 0. 0259 lb − sec
2  

in.

    0.5 
386 

 

= 1.3  × 10 
−3  

lb − sec
2
 

 

in.

 

k  = 100 lb in. 
 

Conservation of momentum implies 

&
m0v0  = (m + m0 ) u(0)

u& (0)  =     m 0v   0            = 2.857 ft sec = 34. 29 in. sec 
m  + m 

0 

After   the   impact   the   system   properties   and   initial 

conditions are 

Mass = m + m  = 0. 0272 lb − sec
2  

in. 
0 

Stiffness = k  = 100 lb in. 
 

Natural frequency: 
 

ωn     =     k        = 60.63 rads sec 

m + m0 

Initial conditions: u(0) = 0, u&( 0) = 34. 29 in. sec 
 

The resulting motion is 
 

u(t )  = u&( 0 )  sin ω t  = 0.565 sin (60. 63t ) in. 
ωn                                                                                                     

n



Problem 2.5  

 

2 

• 
• 

 

A mass m1 hangs from a spring k and is in static equilibrium. A second mass m 2  drops through a height 
h and sticks to m1  without rebound (Fig. P2.5). Determine the subsequent motion u( t) measured from 
the static equilibrium position of  m1 and k. 

 

 
 
 

k 
 

m 
h                           

2
 

 
m1                  Figure P2.5 

 

 
 

Solution: 
 
 

 
k 

m 
2                                                      f S  = ku 

h 
m 2 

m 1                                                m 1 

 

u 
 

m 2 g

With u measured from the static equilibrium position 

of m1 and k, the equation of motion after impact is 

( m1  + m2 ) u&& + ku = m2g                           (a) 

The general solution is 

where 

u&2               = 2 gh 

 
Impose initial conditions to determine A and B: 

m2g                                  
(e)

u(t )   = A cos ω  t   + B sin ω t +   
m 

2
g                     

(b) 
n                                       n            k 

 

ωn    =   
          k                                                    

(c) 

u(0) = 0         ⇒A=− 
 

 
 
u&(0) = ωn B  ⇒ B  = 

 

k 
 

      m 2          2 gh 

 
 
 
 
(f)

m  + m      ω

m1  + m2 
 

The initial conditions are 

 
 
 

 
    m   2    

 

1            2            n 
 

Substituting Eqs. (e) and (f) in Eq. (b) gives

u(0)  = 0                         u& (0) = m  + m 
1     2 

2gh              (d) m   g 
u(t )  =   2         (1 − cos ω t ) +  

2 gh      m       sin ω t

The initial     velocity   in     Eq. (d) was determined by 

conservation of momentum during impact: 

m2u&2   = ( m1  + m2 ) u&( 0) 

n  

k                                   ω n 

n  

m1  + m2

 
 
 
 
 
 



Problem 2.6 
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+   ω n 

 

The packaging for an instrument can be modeled as shown in Fig. P2.6, in which the instrument of mass 
m is restrained by springs of total stiffness k inside a container; m = 10 lb/g and k = 50 lb/in. The container 
is accidentally dropped from a height of 3 ft above the ground. Assuming that it does not bounce on 
contact, determine the maximum deformation of the packaging within the box and the maximum 
acceleration of the instrument. 

 
 
 

 

u 
k/2 

 m 

 

 
k/2 

 

3’ 
 

 
 Figure P2.6 

 
 

Solution:                                                                                   4. Compute the maximum acceleration.
 
 

1. Determine deformation and velocity at impact. 

u&&  = ω    2u 
o           n      o 

= (43.93)2 (3.8)

 

u(0) = 
 mg

 

 

10 
=    = 0.2 in. 

= 7334    in./sec
2 

= 18.98g

k       50 
 

u&( 0 ) = − 2 gh = − 

 

 
2(386)(36) = −166.7 in./sec

 
 

2. Determine the natural frequency. 
 

ω 
 
n 

 

= kg 
 

=  ( 
 

 
50)(386) = 43.93 rad/sec 

   w    10 
 

 
3. Compute the maximum deformation. 

u&   (0)
u(t ) = u(0) cos ω n t + 

n 
 

⎛ 

ω     sin ω nt 

 
166.7         ⎞

=(0.2) cos 316.8t −    ⎜⎝ 43.93 ⎜⎜ sin 316.8t

 

 

2    ⎡  u&(0) ⎤  2 

uo  = [u(0)] 
 

⎣⎜                          ⎜⎜

= 0.2
2 +(−3.795)

2 
= 3.8 in.



Problem 2.8 
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Consider a diver weighing 200 lbs at the end of a diving board that cantilevers out 3 ft. The 

diver oscillates at a frequency of 2 Hz. What is the flexural rigidity EI of the diving board? 

 
 

Solution: 

Given:  
     200

m  = 32. 2 = 6. 211 lb −

sec
2  

ft fn = 2 Hz 
 

Determine EI:

3 EI   

k  =  L
3
 

3EI 

=  3
3
 

EI 
 

=   9  lb ft

 

f     =  1   
 

 k   ⇒ 2     =    1     EI    ⇒

n        2 π      m 2 π       55.90

EI  = (4π)
2 

55.90   = 8827 lb − ft2



Problem 2.9 
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n 

 

Show that the motion of a critically damped system due to initial displacement u(0) and initial velocity 

u˙(0) is 

u(t) = {u(0) + [u˙(0) + ωn u(0)] t} e−ω
n 

t
 

 

Solution: 

Equation of motion: 

&& 

 
Evaluate Eq. (f) at t   = 0 : 
 

u&(0) = − ω n A1  + A2(1 − 0 )

mu  + cu& + ku  = 0                                            (a)                                                                             +

Dividing Eq. (a) through by m gives 
2

 
∴ A2   = u&(0 )  +  ω   A   = u&(0) 

n   1 

ω   u(0)        (g) 
n

u&& + 2ζω 
 

where ζ = 1. 

u&      + ω 
n                      n 

u  = 0                                    (b) Substituting Eqs. (e) and (g) for A1 and A2  in Eq. (d) gives 

u(t ) = {u (0) + [u& (0) + ω n u(0) ]t}e 
−ω t          

(h)

Equation (b) thus reads

u&& + 2ω u& + ω2 
u = 0                                      (c) 

n                     n

Assume a solution of the form u(t ) =    e 
st 

. 

Substituting this solution into Eq. (c) yields 
 

( s 
2   + 2ωn s + ω n

2 
) e 

st   = 0 

Because e 
st 

is never zero, the quantity within parentheses 
must be zero: 

s 2   + 2ω n s  + ω
2   = 0 

n

or 
 

− 2ω 

 

 
± 
(2ω 

 
 

) 2    − 4ω2

s =       n                     n                     

n 

2 

= − ω n 

 
(double root)

 

The general solution has the following form: 
 

u(t )  = A  e 
− ω 

n 
t + A t e 

− ω 
n 

t
 (d) 

1 2  
where the constants A1 and A2 are to be determined from 

the initial conditions: u( 0) and u&( 0) . 
 

Evaluate Eq. (d) at t  = 0 : 
 

u(0) = A1  ⇒ A1 = u(0)                                      (e) 
 

Differentiating Eq. (d) with respect to t gives

u&(t )  = − ω   A e− ω n 
t     

+A(1−     ω t ) e − ω n 
t    

(f)

n   1                               2                n
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D 

⎞ 

n 

− 1 

& 

⎜ 

 

Show that the motion of an overcritically damped system due to initial displacement u(0) and initial 

velocity u˙(0) is
 

 
where ω  = ω √ ζ 

2    
− 1 

 

 
and 

u(t) = e
−ζ ω

n 
t     

A1 e
−ω   t

 

 

+ A 2 

 

e
ω

D 
t

D            n                                                                                                          √      
− u˙(0) + 

A1    = 
−ζ +     ζ 2          − 1  ωn  u(0) 

2ωD

√     ==     ωn u(0)
u˙(0) +  ζ +                    ζ      

2

A2    = 
2ωD

Solution: Differentiating Eq. (c) with respect to t gives

 
u(t ) = 

 

⎛ −ζ −   ζ   2−1 ⎞                   ⎡⎛−ζ  −   ζ   2 

 

⎞ω   t ⎤

Equation of motion: 

&&                  & 

A1 ⎜                                                                                                                                                           ⎜                                                                                                                         ω n e xp ⎜ ⎜                                                                                                                                                                                                                                                                                                                                                                       −1 ⎜  

n 

⎝                ⎜                   ⎣⎝            ⎜ 

 

(e)

mu  + cu + ku  = 0                                            (a) +  A2 
⎛

⎜⎝ −ζ +   ζ 2  −1 
⎞

⎜⎜ ω n    exp
⎡

⎜⎣
⎛

⎜⎝  −ζ +    ζ 2  −1 
⎞

⎜⎜ ω nt 
⎤

Dividing Eq. (a) through by m gives

u&& + 2ζω u& + ω2 
u  = 0                                 (b) 

n                     n 

Evaluate Eq. (e) at t  = 0 :

where ζ  > 1. u&(0) = A ⎛
⎜−ζ − ζ2 

−1 ⎞⎜ ω + A   ⎛ ⎜−ζ +    ζ
2
−1    ω

1⎝                                      ⎜ 
⎜ 

n         2 ⎝                                  ⎜          n  

Assume a solution of the form u(t )  =   e 
st 

. Substituting 

this solution into Eq. (b) yields 

 

= [u (0) − A ζ       ζ 
2
 

⎛ ⎜ ω    A ⎜    ζ       ζ 2     
⎜ ω

]    − −         −1 ⎞ 
2 n    

+  
2

⎛ 
− +      −1 ⎞ 

n

 
(s 

2 + 2ζω n s + ω   2 

 
) e 

st  = 0 

⎝                                      ⎜                                   ⎝                                                       ⎜ 

or

 

Because e 
st 

is never zero, the quantity within parentheses 
must be zero: 

s 2 
+ 2ζωn s  + ω

2
n    = 0

 

 
A 

2 ω n ⎣ 

 
⎡

−ζ +   ζ 2
 

 

 
⎛ 

 
−1 +

ζ
 

 
+  

ζ 2 −1 

 

 
⎞ 

 
⎤ 

⎜⎜ =

 
or 

s = −2ζω n ±   (2ζω n ) 
 2 

u&(0) + 
 

or 

⎝⎜ ζ +   ζ 2 −1 

 

 
⎛ 

⎜⎜ ω n u(0)

    − 4ω n
2 

2
 

2 

A                   +
= ζ

 ⎞ 

 ω n u(0)

2 = 
u&(0) + ⎝⎜ζ                          −⎜1⎜                                                              

(f) 
2

⎛                   
2        

⎞ 2  ζ     −1ωn

=   ⎜⎝ − ζ ±   ζ     −1 ⎜⎜ ω n 
 

Substituting Eq. (f) in Eq. (d) gives

The general solution has the following form:

⎡   ⎛               &          ⎛     ζ 2 −    ⎞ u (0)
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⎛ 

⎜ ζ2−1
 

 

ω nt 

u(0) +                                                         ⎜ζ +                                                                                                                                                                                            1 ⎜ ω  

            ⎝                           n      

u(t ) = A1 exp     ⎜ ⎜ −ζ −             ⎜
⎞      ⎤ A1  = u(0)  −

⎣⎝             ⎜                         (c) 
2      ζ

2
−1ω 

n

+    
⎡⎛

−ζ + ζ  2       ⎞  ⎤ 
2 ζ 2 − 1 ω u (0) − u& (0) −⎜

⎛ 
ζ 2  − 1 ⎜

⎞ 
ω u (0)

A2 exp⎜⎜                                   −1 ⎜ω nt 

⎣⎝               ⎜ 

where the constants A1 and A2 are to be determined from 

ζ+ 

=                   n                                      ⎝                     ⎜     n   

2   ζ
2
−1ωn

 

the initial conditions: u( 0) and u&( 0) . 

Evaluate Eq. (c) at t  = 0 :
 

−&    +   −ζ   + ζ 2 − 

=  u(0)     ⎝⎜                       
 

⎞ 
ω 

⎜ 1 ⎜    nu (0)

 

u(0)= A1 + A2 ⇒ A1 + A2 =u(0)                      (d) 
2 ζ 2 

− 1ωn  
(g)



 

 

Dt 

2 

⎜ 

 

 
The solution, Eq. (c), now reads:

u(t ) = e
−ζω 

n
t       (A e −ω 

′
 + A2 e

ω 
D

′ t )

1 

where 
 

ω′ =      ζ2        − 1 ω 
D                                      n

 

−&    + 
⎛                    

−ζ+ ζ       −   ⎞ω

A1 = 
  u(0)  ⎝⎜                                   

  1   ⎜  n 
u(0) 

2ω

&    +
⎛

ζ + ζ 2     − ⎞ ω

⎜                                  1
 

A2 = u(0)    ⎝                               ⎜ ⎜      
n u(0) 

2ω′D 
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F     ζ2 
 −1  

1 (l) 

 

u 

H 

1 2 

1 

2                                                                       2 

2 
A   A 

2 

Problem 2.10 

Derive the equation for the displacement response of a viscously damped SDF system due to ini- 
tial velocity u˙(0) for three cases: (a) underdamped systems; (b)    critically damped systems; and 
(c) overdamped systems. Plot u(t) ÷ u˙(0)/ωn    against t/Tn  for ζ = 0.1, 1, and 2. 

 

Solution: Substituting A and B into Eq. (f) gives 
 

        &(0)                                                       F                   2 I
 

Equation of motion: 

 
u(t ) = ω  n 1−ζ2

 

−ζω n t 

e         sin Hωn    1 − ζ Kt         (g)

u& + 2ζω n u& + ω 2 
u = 0                              (a) 

n 

Assume a solution of the form 

(b) Critically Damped Systems, ζ = 1 
 

The roots of the characteristic equation [Eq. (b)] are: 

s
 

u( t) = est 
s1 = −ω n 2 = −ω n                          (h)

 

Substituting this solution into Eq. (a) yields: 

2                          2 I st 

s    + 2ζω n s + ω nKe        = 0 

Because e
st  

is never zero 

The general solution is 

u( t) = A e 
− ω

n  
t  + At e −ω n

t                                                    
(i) 

1                      2 

Determined from the initial conditions u(0) = 0 and u&(0) : 
 

A1 = 0         A2  = u&(0)                                   (j)

2 
s   + 2ζω 

2 
s + ω 

 

= 0                                         (b)

n           n                                                                      Substituting in Eq. (i) gives
The roots of this characteristic equation depend on ζ. 

 

(a) Underdamped Systems, ζ<1 
u(t ) = &u(0) t e 

−ω
 

t 
n                                                                                    (k)

 

The two roots of Eq. (b) are 
(c) Overdamped Systems, ζ>1 
 

The roots of the characteristic equation [Eq. (b)] are:
 

s 
1,2

 

F 
= ω 

n H −ζ ± i
 
1−ζ2

  
(c)                                                

 

Hence the general solution is 
s    = ω     −ζ ± 

,2               n

u( t) = A e s t  + A e s  t The general solution is:

1                      2 
 

which after substituting in Eq. (c) becomes 

 

u(t ) = A1e 
s  t

 

 

+ A2 e 
s  t

 

 

(m) which after

i    t                                         
substituting Eq. (l) becomes

u(t ) = e 
−ζω 

n 
t eA1e

i
ω D 

t 
+ A2e − ω D   j       (d) 

 

F        I           F        I

where 
 

2 

u(t ) = A e H 
−ζ + ζ 

1 

−1Kω n t  

+ A 2 e 
H−ζ− ζ       −1Kω n t

 

 

 

(n)

ω D = ω n   1−ζ 

Rewrite Eq. (d) in terms of trigonometric functions: 

(e) Determined from the initial conditions u(0) = 0 and u&(0) : 
 

&

u( t) = e
−ζω 

n
t (A cosω D t + B sin ω D t)       (f) 

Determine A and B from initial conditions     u(0) = 0 and 

u(0) −   =  =                                

1         2      2ω  n  ζ      − 1 

(o)

u&(0) : 
 

A = 0          B = 
u &(0)

 



 

 

K 

Substituting in Eq. (n) gives 

  u &(0) e  −ζωn t    F ω t   ζ 2 −1                −ω t    ζ2−1   I 
u(t ) =                                                G e              

− e                                          J                (p)

H 
n                                      n 

ωD                                                                                             2ω n   ζ
2 −1 

 
 

 
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



 

 

u
 .
 

(0
))

 /
 ω

n
 )

 
 

 
 

(d) Response Plots 
 

Plot Eq. (g) with ζ = 0.1; Eq. (k), which is for ζ = 1; 

and Eq. (p) with ζ = 2. 

 
ζ = 0.1

 
0.8 

 
ζ =1.0                      ζ =2.0

 

0.4 
 

0 
0.25 

 
0.5            0.75              1              1.25 

 
1.5 

t/Tn

 
-0.4 

 

 
-0.8 
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Problem 2.11 
 

 

1 

 
For a system with damping ratio ζ , determine the number of free vibration cycles required to reduce 
the displacement amplitude to 10% of the initial amplitude; the initial velocity is zero. 

Solution: 
 

 1      F u 

 
 

I                                     1         1I
j  ln G u        J ≈2πζ⇒             j       lnH 0.1

J
K ≈ 2πζ 

H   j + 1 K                                10% 

∴ j                                     
10%  ≈ ln (10 ) 2 πζ ≈ 0. 366 ζ



Problem 2.12  

 

⎜                           ⎜ 

 

What is the ratio of successive amplitudes of vibration if the viscous damping ratio is known to be 
(a) ζ = 0.01, (b) ζ = 0.05, or (c) ζ = 0.25? 

 

 
 

Solution: 
 

  u             
⎛    

2πζ ⎞

i                                                                                                                                                                                                                           = exp ⎜ =      =                   ⎜

u 
i +1 

⎝   1−ζ         ⎜ 

2

(a) ζ   = 0.01:        
 ui   = 1.065 

u 
i + 1 

u
(b) ζ     = 0.05: 

 
 

(c) ζ   = 0.25: 

     i       = 1.37 
u 

i + 1 

u 
     i       = 5.06 

u 
i + 1



Problem 2.13  

 

 

The supporting system of the tank of Example 2.6 is enlarged with the objective of increasing its seismic 

resistance. The lateral stiffness of the modified system is double that of the original system. If the damp-ing 

coefficient is unaffected (this may not be a realistic assumption), for the modified tank determine 

(a) the natural period of vibration Tn , and (b) the damping ratio ζ . 
 

 

Solution: 
 

 
Given: 

 

w = 20.03 kips (empty); m = 0.0519 kip-sec2/in. 
 

k = 2 (8.2) = 16.4 kips/in. 
 

c = 0.0359 kip-sec/in. 
 

(a) T    = 2 π   m    = 2 π   0.0519   = 0. 353 sec 
n                     k                   16. 4 

(b) ζ    =     c       =            0.0359          = 0.0194 
2   k m          2 (16.4) (0.0519) 

= 1.94%



Problem 2.14  

 

 

The vertical suspension system of an automobile is idealized as a viscously damped SDF system. 
Under the 3000-lb weight of the car, the suspension system deflects 2 in. The suspension is designed to 
be critically damped. 
(a)  Calculate the damping and stiffness coefficients of the suspension. 
(b)  With four 160-lb passengers in the car, what is the effective damping ratio? 
(c)  Calculate the natural frequency of damped vibration for case (b). 

 
Solution: 

 
 

 
(a) The stiffness coefficient is k 

3000 
=       2 = 1500 lb/in. 

 

The damping coefficient is 
 

c = ccr = 2   km 

3000 
c = 2 1500 

386 

 

 
= 215.9 lb - sec / in.

 

(b)  With passengers the weight is w = 3640 lb. The 
damping ratio is 

ζ =   c   =        215.9    = 0.908 

2  km     2 1500 
 3640 

386 
 

(c) The natural vibration frequency for case (b) is 
 

2 
ωD  = ω n   1 − ζ 

      1500                     2
=   3640 / 386 1−(0.908)

=12.61×0.419 

=5.28 rads / sec



Problem 2.15  

 

1 

20 

 
The stiffness and damping properties of a mass–spring– damper system are to be determined by a free 
vibration test; the mass is given as m = 0.1 lb-sec2/in. In this test, the mass is displaced 1 in. by a hydraulic 
jack and then suddenly released. At the end of 20 complete cycles, the time is 3 sec and the amplitude is 
0.2 in. Determine the stiffness and damping coefficients. 

 
 

Solution: 
 

 

1. Determine ζ and ωn . 
 

  1     ⎛  u  ⎞       1       ⎛  1 ⎞ 
ζ            ≈                                 ln

⎜                        
⎜ =                                                 ln⎜                         ⎜                                                           = 0.0128 = 1.28%

⎜ u 
2π j  ⎝ 

 

j +1 ⎜⎜ 2π(20)     ⎝   0.2 ⎜

Therefore the assumption of small damping implicit in the 

above equation is valid. 

TD =  
  3

 
 

2 

 

= 0.15 sec ; Tn    ≈ TD    = 0.15 sec ; 
 

π

ωn   = 0. 15 = 41.89 rads sec

 

2. Determine stiffness coefficient. 
 

k = ωn
2
m  = ( 41.89)  

2 
0.1 = 175.5 lbs in. 

 

3. Determine damping coefficient. 
c 

cr  = 2 mωn   = 2 (0.1) ( 41. 89) = 8.377 lb − sec in. 
c    = ζ c        = 0.0128 (8.377)  = 0.107 lb − sec in. 

cr



Problem 2.16  

 

m  = w
g   = 

250  
 

J        ≈ 2 j πζ ⇒ 

 

A machine weighing 250 lbs is mounted on a supporting system consisting of four springs and four dampers. 

The vertical deflection of the supporting system under the weight of the machine is measured as 0.8 in. The 

dampers are designed to reduce the amplitude of vertical vibration to one-eighth of the initial amplitude after 

two complete cycles of free vibration. Find the following properties of the system: 
(a) undamped natural frequency, (b) damping ratio, and (c) damped natural frequency. Comment on 
the effect of damping on the natural frequency. 

 

Solution: 

250 
(a)   k  = 

0. 8 

 

 
= 312. 5 lbs in.

 

386   = 0. 647 lb − sec
2

 

 
in.

 

k 
ωn   =  m 

 

= 21.98 rads sec

 

(b) Assuming small damping, 
 

ln F   u 1   I 

u 
j + 1 K 

F  u0 
ln              G                                           = ln (8) ≈ 2 (2) πζ ⇒ ζ = 0.165 

I H u0    8K 
This value of ζ may be too large for small damping 

assumption; therefore, we use the exact equation: 

F    u1    I     2 j πζ 
ln 

 
or, 

u          = 
j + 1                     1−ζ2

 

 
2 (2) πζ                ζ

 

ln (8) = 

 

1  − ζ2   
⇒ 

 

1−ζ2
 

 

= 0.165 ⇒

ζ2    = 0.027(1 − ζ2
) ⇒ 

ζ =  0.0267  = 0.163 
 

(c)   ωD = ωn   1 − ζ2 = 21.69 rads sec 
 

Damping decreases the natural frequency.



Problem 2.17  

 

ln⎜                        ⎜ 

 

Determine the natural vibration period and damping ratio of the aluminum frame model (Fig. 1.1.4a) 
from the acceleration record of its free vibration shown in Fig. 1.1.4b. 

 
Solution: 

Reading values directly from Fig. 1.1.4b: 

Peak Time,               Peak, u&&i  (g) 
t 

             i   (sec)           
 

1 0.80  0.78 

        31        7.84          0.50 
 

TD = 7.84 − 0.80 = 0.235  sec
 

30 

ζ =  
     1      ⎛ 0. 78g ⎞   

= 0.00236 = 0.236% 

2π(30)    ⎝ 0.50 g ⎜



Problem 2.18 
 

 

L 

g 

L 

 

Show that the natural vibration frequency of the system in Fig. E1.6a is  ω = ωn (1 − w/wcr)1/2 , where 
n 

ωn is the natural vibration frequency computed neglecting the action of gravity, and wcr is the buckling 
weight. 

 
Solution: 

 

 
1. Determine buckling load. 

 

 

w 
cr 

θ 
L 

 

k 
 

 
wcr ( L θ)    = k θ 

 

wcr =  
 k

 
 
 

2. Draw free-body diagram and set up equilibrium 
equation. 

 
fI 

 

w 

L           θ 

 
fS 

O
 

 
where 

∑MO =0⇒  

fI L + fS = w Lθ 
(a)

fI  = 
w   

L
2
 

 

&θ& 

 

fS = k θ 
 

(b)

 

Substituting Eq. (b) in Eq. (a) gives 
w 

g L2 θ&& + (k − w L ) θ = 0 

3. Compute natural frequency. 

 
(c)

 
k  − w L   k       ⎛      w L ⎞

ωn′    = 
 

 
or 

 

(w g)   
2
 

=           2 ⎜1    −     ⎜ 

(w g) L   ⎝         k  ⎜

w 
ω′n= ωn      1 − 

w 
cr 

 

(d)



Problem 2.19 
 

 

n                          ω 

 
An impulsive force applied to the roof slab of the building of Example 2.8 gives it an initial velocity of 
20 in./sec to the right. How far to the right will the slab move? What is the maximum displacement of 
the slab on its return swing to the left? 

 
 

Solution: 
 
 

For motion of the building from left to right, the 

governing equation is 

mu&&   + ku = − F                                                 (a) 
 

for which the solution is 

u(t ) = A2 cos ωnt   + B2 sin ωnt − uF                 (b) 

With  initial    velocity of u&( 0) and initial  displacement 

u(0)  = 0 , the solution of Eq. (b) is 

&
u(t ) = 

u( 0 )                                                                         

sin 

ωn 

ω nt + u F (cos ω nt − 1)                    (c)

& 
u(t ) 

 

= u&(0 ) cos ωnt  − uFωn sin ωnt                 (d)

At the extreme right, u& (t )  = 0 ; hence from Eq. (d) 
 

  &              1
tan ω  t  = 

u( 0 )                                                                           

u 
n         F 

(e)

 

Substituting   ωn   = 4 π ,      uF   = 0.15 in.    and     u& (0 )  = 

20 in. sec in Eq. (e) gives 

tan ωnt =  20    1      = 10.61 

4π 0.15 

or 

sin ωnt = 0.9956;   cos ωnt = 0. 0938 

Substituting in Eq. (c) gives the displacement to the right:
 

 

u  = 4 

 

20                                           1) 
π ( 0. 9956) + 0.15 (0. 0938 − 

 

1. 449 in. 
=

After half a cycle of motion the amplitude decreases by 

2uF = 2  × 0.15  = 0. 3 in. 
 

Maximum displacement on the return swing is 

u  = 1. 449 −0. 3 = 1.149 in.



Problem 2.20  

 

 

An SDF system consisting of a weight, spring, and friction device is shown in Fig. P2.20. This device 
slips at a force equal to 10% of the weight, and the natural vibration period of the system is 0.25 sec. If 
this system is given an initial displacement of 2 in. and released, what will be the displacement 
amplitude after six cycles? In how many cycles will the system come to rest? 

u

F = 0.1w 

w 

k 

 
 
 

 
Figure P2.20

 

 

Solution: 
 

 
Given: 

 

F  = 0.1w , Tn = 0. 25 sec 
 

uF   = F    = 0.1w    = 0.1mg    =  0.1g    =      0.1g  

k           k 
 0.1g 

k              ω2                           (2π T )2 
n                            n

= (8π)
2

 

 

= 0. 061 in.

The reduction in displacement amplitude per cycle is 
 

4uF  = 0. 244 in. 
 

The displacement amplitude after 6 cycles is 

2.0 − 6 (0.244) = 2.0 − 1.464 = 0.536 in. 
 

Motion stops at the end of the half cycle for which the 

displacement amplitude  is  less  than   uF . Displacement 
amplitude at the end of the 7th cycle is 0.536 – 0.244 = 

0.292 in.; at the end of the 8th cycle it is 0.292 – 0.244 = 

0.048 in.; which is less than  uF . Therefore, the motion 

stops after 8 cycles.
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