Solution Manual for Electric Circuits 1st Edition by Kang ISBN 1305635213 9781305635210

Full link download: Solution Manual:

[https://testbankpack.com/p/solution-manual-for-electric](https://testbankpack.com/p/solution-manual-for-electric-circuits-1st-edition-by-kang-isbn-1305635213-9781305635210/)[circuits-1st-edition-by-kang-isbn-1305635213-](https://testbankpack.com/p/solution-manual-for-electric-circuits-1st-edition-by-kang-isbn-1305635213-9781305635210/) [9781305635210/](https://testbankpack.com/p/solution-manual-for-electric-circuits-1st-edition-by-kang-isbn-1305635213-9781305635210/)

Test Bank:

[https://testbankpack.com/p/test-bank-for-electric-circuits-1st-edition-by-kang-isbn-1305635213-](https://testbankpack.com/p/test-bank-for-electric-circuits-1st-edition-by-kang-isbn-1305635213-9781305635210/) [9781305635210/](https://testbankpack.com/p/test-bank-for-electric-circuits-1st-edition-by-kang-isbn-1305635213-9781305635210/)

Chapter 2: Circuit Laws PROBLEM 2.1

From Ohm's law, the current I₁ through R_1 is given by

I =*V* = 6*V* = 6*V* = 0.002*A* = 2*mA* 1 *R*₁ 3*k*Ω 3000Ω

Notice that 1 V/1 k Ω = 1 mA. From Ohm's law, the current I₂ through R₂ is given by

$$
I_2 = \frac{V}{R_0 \frac{6k\Omega}{2}} = \frac{6V}{6000\Omega} = 0.001A = 1mA
$$

PROBLEM 2.2

From Ohm's law, the current I₁ through R_1 is given by

$$
I_1 = \frac{V_1}{R_1} = \frac{2.4V}{800\Omega} = 0.003A = 3mA
$$

From Ohm's law, the current I_2 through R_2 is given by

$$
I_2 = \frac{V}{R_2} = \frac{3.6V}{2k\Omega} = 1.8mA
$$

From Ohm's law, the current I₃ through R₃ is given by $I_3 = \frac{V_{22}}{V_{21}} = \frac{3.6V_{22}}{V_{21}}$ =1.2*mA R*3 3*k*Ω

PROBLEM 2.3

From Ohm's law, the current I₁ through R_1 is given by

$$
I_1 = \frac{V_1}{I} = \frac{2.4 \, V}{I} = 0.6 mA = 600 \propto A
$$

 $I_2 = \frac{V_1}{\frac{V_2}{\lambda}} = \frac{2.4V}{4.44} = 400 \propto A$ *R*1 4*k*Ω From Ohm's law, the current I₂ through R_2 is given by *R*2 6*k*Ω

From Ohm's law, the current I₃ through R₃ is given by

$$
I_{3} = \frac{V}{R_{2}} = \frac{1.2V}{1.8k\Omega} = \frac{2}{3}mA = 0.6667 mA = 666.5557 \propto A
$$

 $I_4 = \frac{V_2}{V_2} = \frac{1.2V}{V_2} = 0.2mA = 200 \propto$ From Ohm's law, the current I⁴ through R⁴ is given by

*A R*⁴ 6*k*Ω

From Ohm's law, the current Is through R5 is given by $I_5 = \frac{V_2}{V_2} = \frac{1.2V}{V_1} = \frac{2}{4}mA = 0.1333mA = 133.3333A A$ *R*⁵ 9*k*Ω 15

PROBLEM 2.4

From Ohm's law, the voltage across R₂ is given by

$$
V_o = R_2 I_2 = 6 k\Omega \times 1.2 mA = 6000 \times 0.0012 = 7.2 V
$$

Notice that $1 \text{ k}\Omega \times 1 \text{ mA} = 1 \text{ V}.$ From Ohm's law, the current I₁ through R_1 is given by

$$
I = \frac{V}{R_1} = \frac{2.8V}{1.4k\Omega} = 2mA
$$

From Ohm's law, the voltage across R² is given by

 $V_0 = R_2I_2 = 6 k\Omega \times 1.2 mA = 6000 \times 0.0012 = 7.2 V$

From Ohm's law, the current I₃ through R₃ is given by $I_3 = \frac{V_0}{V_0} = \frac{7.2V}{4.2} = 0.8mA = 800 \infty$ *A R*³ 9*k*Ω

PROBLEM 2.5

From Ohm's law, the voltage across R⁴ is given by

 $V_0 = R4I_4 = 18 k\Omega \times 0.2 mA = 18000 \times 0.0002 = 3.6 V$

From Ohm's law, the current I₃ through R₃ is given by

$$
I_3 = \frac{V_o}{r} = \frac{3.6V}{R_3 \, 6k\Omega} = 0.6mA = 600 \, \times \, A \, R_3 \, 6k\Omega
$$

PROBLEM 2.6

From Ohm's law, the voltage across R⁴ is given by

$$
V_o = R4I_4 = 8 \ k\Omega \times 0.4 \ mA = 8000 \times 0.0004 = 3.2 \ V
$$

 $I_2 = \frac{V_o}{V} = \frac{3.2V}{V} = \frac{16}{mA} = 1.06667$ From Ohm's law, the current I2 through R2 is given by

*mA R*2 3*k*Ω 15

From Ohm's law, the current I₃ through R₃ is given by $I_3 = \frac{V_o}{V} = \frac{3.2V}{4} = \frac{16}{4}$ *mA* = 0.533333*mA* = 533.33333 \propto *A R*³ 6*k*Ω 30

PROBLEM 2.7

From Ohm's law, the voltage across R³ is given by

$$
V_0 = R_3 I_3 = 42 k\Omega \times (1/12) mA = 42/12 V = 3.5 V
$$

From Ohm's law, the resistance value R₂ is given by

$$
R = \frac{V_o}{I_2} = \frac{3.5V}{\frac{7}{60}mA} = 30k\Omega
$$

1 V/1 mA = 1 kΩ

PROBLEM 2.8

The power on R_1 is

$$
P = I^2 R = (2 \times 10^{-3})^2 \times 2000 = 4 \times 10^{-6} \times 2 \times 10^3 = 8 \times 10^{-3} \text{ W} = 8m \text{W (absorbed)}
$$

The power on R₂ is

$$
P_{\gamma_2} = I^2 R = (2 \times 10^{-3})^2 \times 3000 = 4 \times 10^{-6} \times 3 \times 10^3 = 12 \times 10^{-3} \text{ W} = 12 \text{ mW (absorbed)}
$$

The power on V_s is

 $P_{V_s} = -IV_s = -2 \times 10^{-3} \times 10 = -20 \times 10^{-3} W = -20 mW$ (released)

Total power absorbed $= 20$ mW $=$ total power released

PROBLEM 2.9

The power on R₁ is

$$
P_{\frac{1}{s}} = \frac{V^2}{R} = \frac{4.8^2}{8000} = 2.88 \times 10^{-3} W = 2.88 mW \text{ (absorbed)}
$$

The power on R₂ is

$$
P_{\frac{2}{n}} = \frac{V_2}{R} = \frac{4.8^2}{12000} = 1.92 \times 10^{-3} W = 1.92 mW \text{ (absorbed)}
$$

The power on V^s is

$$
P = -IV = -1 \times 10^{-3} \times 4.8 = -4.8 \times 10^{-3} W = -4.8 mW
$$
 (released)

PROBLEM 2.10

From Ohm's law, current I₁ is given by

$$
I = \frac{20V - 15V}{R_1} = \frac{5V}{0.5k\Omega} = 10mA
$$

From Ohm's law, current I₂ is given by

$$
I_2 = \frac{20V - 10V}{R_2 2k\Omega} = 10V = 5mA
$$

From Ohm's law, current I³ is given by

$$
I_3 = \frac{10V - 0V}{R_3} = \frac{10V}{10mA}
$$

$$
I_3 = \frac{1k\Omega}{1}
$$

From Ohm's law, current I⁴ is given by

$$
I_4 = \frac{10V - 15V}{R_4 1k\Omega} = -5V = -5mA
$$

From Ohm's law, current *i* is given by

$$
i = \frac{10V - 8V}{R_3} = \frac{2V}{2k\Omega} = 1mA
$$

From Ohm's law, current I₁ is given by

$$
I_1 = \frac{12V - 10V}{R_1} = \frac{2V}{1k\Omega} = 2mA
$$

From Ohm's law, current I₂ is given by

$$
I_2 = \frac{10V - 5V}{R_2} = \frac{5V}{5k\Omega} = 1mA
$$

From Ohm's law, current I³ is given by $I_3 = \frac{12V - 8V}{4V} = 2mA$ *R*4 2*k*Ω

From Ohm's law, current I⁴ is given by

$$
I_4 = \frac{8V - 5V}{R_5} = \frac{3V}{3k\Omega} = 1mA
$$

From Ohm's law, current Is is given by

$$
I_s = \frac{8V}{R_6} = \frac{8V}{4k\Omega} = 2mA
$$

PROBLEM 2.12

Application of Ohm's law results in

$$
I_1 = \frac{34V - 24V}{R_1} = \frac{10V}{2k\Omega} = 5mA
$$

$$
I_2 = \frac{24V - 10V}{R_2 2k\Omega} = \frac{14V - 7}{4V} = 7
$$

\n
$$
I_3 = \frac{24V - 28V}{R_3 2k\Omega} = \frac{6V}{0.6k\Omega} = 10mA
$$

\n
$$
I_4 = \frac{34V - 28V}{R_4} = \frac{6V}{0.6k\Omega} = 10mA
$$

\n
$$
I_5 = \frac{28V - 10V}{R_56k\Omega} = \frac{18V}{3mA}
$$

\n
$$
I_6 = \frac{28V}{10} = \frac{28V}{10M} = 5mA
$$

\n
$$
I_7 = \frac{10V}{10} = \frac{10V}{10M} = \frac{10V}{10M}
$$

The total voltage from the four voltage sources is

$$
V = V_{s1} + V_{s2} + V_{s3} + V_{s4} = 9\ V + 2\ V - 3\ V + 2\ V = 10V
$$

The total resistance from the five resistors is

$$
R = R_1 + R_2 + R_3 + R_4 + R_5 = 3 k\Omega + 5 k\Omega + 4 k\Omega + 2 k\Omega + 4 k\Omega = 18 k\Omega
$$

The current through the mesh is

$$
I = \frac{V}{R} = \frac{10V}{18000\Omega} = \frac{5}{2} mA = 0.5556mA
$$

From Ohm's law, the voltages across the five resistors are given

respectively
$$
V_1 = R_1I = 3 \times 5/9
$$
 $V = 15/9$ $V = 5/3$ $V = 1.6667$ V $V_2 = R_2I =$

$$
5 \times 5/9
$$
 V = 25/9 V = 2.7778 V

$$
V_3 = R_3I = 4 \times 5/9 \text{ V} = 20/9 \text{ V} = 2.2222 \text{ V}
$$

$$
V_4 = R_4I = 2 \times 5/9 \text{ V} = 10/9 \text{ V} = 1.1111 \text{ V}
$$

$$
V_5 = R_5I = 4 \times 5/9 \text{ V} = 20/9 \text{ V} = 2.2222 \text{ V}
$$

Radius is r = d/2 = 0.2025 mm = 0.2025 × 10⁻³
\nm A = πr² = 1.28825×10⁻⁷ m²
\n(a)
\nR =
$$
\frac{l}{\sigma}
$$
 = $\frac{20}{5.69 \times 10^{7} \times \pi \times (0.2025 \times 10^{-3})^{2}}$ = 2.7285Ω
\n(b)
\nR = $\frac{l}{\sigma}$ = $\frac{200}{5.69 \times 10^{7} \times \pi \times (0.2025 \times 10^{-3})^{2}}$ = 27.2846Ω
\n(c)
\nR = $\frac{l}{\sigma}$ = $\frac{2000}{5.69 \times 10^{7} \times \pi \times (0.2025 \times 10^{-3})^{2}}$ = 272.8461Ω
\n(d)
\nR = $\frac{l}{\sigma}$ = $\frac{20000}{5.69 \times 10^{7} \times \pi \times (0.2025 \times 10^{-3})^{2}}$ = 2728.4613Ω

PROBLEM 2.15

From Ohm's law, the voltage across R² is given by

$$
V_2 = I_2R_2 = 3 mA \times 2 k\Omega = 6 V
$$

From Ohm's law, the current through R₃ is given by

$$
I_{3} = \frac{V_{2}}{R_{3}} = \frac{6V}{3k\Omega} = 2mA
$$

According to KCL, current I¹ is the sum of I² and I3. Thus, we have

 $I_1 = I_2 + I_3 = 3 mA + 2 mA = 5 mA$

The voltage across R_1 is given by

 $V_1 = R_1I_1 = 1 k\Omega \times 5 mA = 5 V$

PROBLEM 2.16

From Ohm's law, the currents I2, I3, and I⁴ are given respectively by

$$
I_2 = \frac{V_2}{V_2} = \frac{6V}{V} = 3mA
$$

$$
R_2 2k\Omega
$$

$$
I_3 = \frac{V_2}{R_3} = \frac{6V}{3k\Omega} = 2mA
$$

$$
I_4 = \frac{V_2}{R_4} \cdot \frac{6V}{6k\Omega} = 1mA
$$

From KCL, current I₁ is the sum of I₂, I₃, and I₄. Thus, we have

$$
I_1 = I_2 + I_3 + I_4 = 3 mA + 2 mA + 1 mA = 6 mA
$$

The voltage across R_1 is given by

 $V_1 = R_1I_1 = 1 kΩ × 6 mA = 6 V$

PROBLEM 2.17

From Ohm's law, we have

$$
V_2 = R_4 I_4 = 1\ mA \times 6\ k\Omega = 6\ V
$$

From Ohm's law, the current through R₃ is given by

$$
I_{3} = \frac{V_{2}}{R_{3}} = \frac{6V}{3k\Omega} = 2mA
$$

From KCL, I2 is the sum of I3 and I4. Thus,

 $I_2 = I_3 + I_4 = 3$ mA

From KCL, I₁ is given by

 $I_1 = I_s - I_2 = 2 mA$

From Ohm's law, the voltage across R¹ is

$$
V_1 = R_1 I_1 = 4.5 \text{ k}\Omega \times 2 \text{ mA} = 9 \text{ V}
$$

PROBLEM 2.18

From Ohm's law, we have

$$
I_{3} = \frac{V_o}{R_{3}} = \frac{8V}{2k\Omega} = 4mA
$$

$$
I_{4} = \frac{V_o}{R_{4}} = \frac{8V}{4k\Omega} = 2mA
$$

$$
I = \frac{V_s - V_o}{R_1} = \frac{12V - 8V}{1k\Omega} = \frac{4V}{1k\Omega} = 4mA
$$

$$
I_2 = \frac{V_s - V_o}{R_2} = \frac{12V - 8V}{2k\Omega} = \frac{4V}{2k\Omega} = 2mA
$$

As a check, $I_1 + I_2 = I_3 + I_4 = 6$ mA

PROBLEM 2.19

From Ohm's law, we have

$$
I_3 = \frac{V_4}{R_4} = \frac{5V}{2.5k\Omega} = 2mA
$$

\n
$$
V_3 = R_3I_3 = 2 k\Omega \times 2 mA = 4 V
$$

\n
$$
V_2 = V_3 + V_4 = 4V + 5V = 9V
$$

\n
$$
I_2 = \frac{V_2}{R_2} = \frac{3.9V}{4k\Omega} = 3mA
$$

\nFrom KCL, we have
\n
$$
I_1 = I_2 + I_3 = 5 mA
$$

From Ohm's law, we get

 $V_1 = R_1I_1 = 1 k\Omega \times 5 mA = 5 V$

PROBLEM 2.20

Application of KCL at node *a* yields

 $I_s = I_1 + I_2 + I_3$

Solving for I2, we obtain

 $I_2 = I_s - I_1 - I_3 = 10$ mA - 5 mA - 2 mA = 3 mA

Application of KCL at node *b* yields

 $I_1+I_2=I_4+I_5$

Solving for I5, we obtain

 $I_5 = I_1 + I_2 - I_4 = 5$ mA + 3 mA - 2 mA = 6 mA

Figure S2.20

PROBLEM 2.21

Application of KCL at node *b* yields

 $I_s = I_2 + I_3$

Solving for I2, we obtain

 $I_2 = I_s - I_3 = 15$ mA - 10 mA = 5 mA

Application of KCL at node *a* yields

 $I_4 = I_2 - I_1 = 5$ mA $- 2$ mA $= 3$ mA

Application of KCL at node *c* yields

 $I_5 = I_1 + I_3 = 2$ mA + 10 mA = 12 mA

Figure S2.21

PROBLEM 2.22

Application of KCL at node *b* yields

 $I_1 = I_s - I_4 = 20$ mA - 10 mA = 10 mA

Application of KCL at node *a* yields

 $I_2 = I_1 - I_3 = 10$ mA $- 5$ mA $= 5$ mA

Application of KCL at node *c* yields

 $I_6 = I_3 + I_4 - I_5 = 5$ mA + 10 mA - 5 mA = 10 mA

Application of KCL at node *d* yields

 $I_7 = I_2 + I_5 = 5$ mA + 5 mA = 10 mA

PROBLEM 2.23

Application of KCL at node *d* yields

 $I_2=13-10=3A$

Application of KCL at node *a* yields

 $I_1 = I_2 - 2 = 3 - 2 = 1$ A

Application of KCL at node *b* yields

 $I_3 = -I_1 - 5 = -1 - 5 = -6A$

Application of KCL at node *c* yields

 $I_5 = -2 - 10 = -12A$

Application of KCL at node *e* yields

 $I_4 = -I_3 - 13 = -(-6) - 13 = -7A$

PROBLEM 2.24

Summing the voltage drops around mesh 1 in the circuit shown in Figure S2.24 in the clockwise direction, we obtain

 $-V_1 + V_{R1} + V_{R3} = 0$

Since $V_1 = 30V$ and $V_{R1} = 10V$, this equation becomes

 $-30 + 10 + V_{R3} = 0$

Thus,

 $V_{R3} = 30 - 10 = 20V$.

Summing the voltage drops around mesh 2 in the circuit shown in Figure S2.11 in the clockwise direction, we obtain

 $-V_{R3} + V_{R2} + V_{R4} = 0$

Since $V_{R3} = 20V$ and $V_{R4} = 15V$, this equation becomes

 $-20 + V_{R2} + 15 = 0$

Thus,

 $V_{R2} = 20 - 15 = 5V$.

Figure S2.24

Consider the loop consisting of V1, R¹ and R5, shown in the circuit shown in Figure S2.25. Summing the voltage drops around this loop in the clockwise direction, we obtain

 $-V_1 + V_{R1} + V_{R5} = 0$

Since $V_1 = 20V$ and $V_{R1} = 10V$, this equation becomes

 $-20 + 10 + V$ R5 = 0

Thus,

 $V_{R5} = 20 - 10 = 10V$.

In the mesh consisting of R4, R³ and R5, shown in the circuit shown in Figure S2.25, summing the voltage drops around this mesh in the clockwise direction, we obtain

 $-V_{R4} + V_{R3} + V_{R5} = 0$

Since $V_{R3} = 5V$ and $V_{R5} = 10V$, this equation becomes

 $-V_{R4}+5+10=0$

Thus,

 $V_{R4} = 5 + 10 = 15V$.

In the mesh consisting of V_1 , R_2 and R_4 , shown in the circuit shown in Figure S2.25, summing the voltage drops around this mesh in the clockwise direction, we obtain

 $-V_1 + V_{R2} + V_{R4} = 0$

Since $V_1 = 20V$ and $V_{R4} = 15V$, this equation becomes

 $-20+V_{R2}+15=$

0 Thus,

 $V_{R2}=20-15=5V$.

In the mesh consisting of R₁, R₃ and R₄, upper left in the circuit shown in Figure S2.26, summing the voltage drops around this mesh in the clockwise direction, we obtain

 $V_{R1}+V_{R3}-V_{R4}=0$

Since $V_{R1} = 5V$ and $V_{R3} = 5V$, this equation becomes

 $5+5-V_{R4}=0$

Thus,

 $V_{R4}=5+5=10V$.

In the mesh consisting of V_1 , R_4 and R_6 , lower left in the circuit shown in Figure S2.26, summing the voltage drops around this mesh in the clockwise direction, we obtain

 $-V_1 + V_{R4} + V_{R6} = 0$

Since $V_1 = 20V$ and $V_{R4} = 10V$, this equation becomes

 $-20+10+V_{R6}=0$

Thus,

 $V_{R6} = 20 - 10 = 10V$.

In the mesh consisting of R3, R² and R5, upper right in the circuit shown in Figure S2.26, summing the voltage drops around this mesh in the clockwise direction, we obtain

 $-V_{R3} + V_{R2} - V_{R5} = 0$

Since $V_{R3} = 5V$ and $V_{R5} = 5V$, this equation becomes

 $-5+V_{R2}-5=0$

Thus,

 $V_{R2}=5+5=10V$.

In the mesh consisting of R6, R⁵ and R7, lower right in the circuit shown in Figure S2.26, summing the voltage drops around this mesh in the clockwise direction, we obtain

 $-V_{R6} + V_{R5} + V_{R7} = 0$

Since $V_{R6} = 10V$ and $V_{R5} = 5V$, this equation becomes

 $-10+5+V_{R7}=0$

Thus,

VR7=10-5=5V.

PROBLEM 2.27

From Ohm's law, the current Is is given by $I_5 = \frac{V_5}{V_5} = \frac{6V}{V} = 6mA$ *R*⁵ 1*k*Ω

From Ohm's law, the current I₁ is given by

$$
I_1 = \frac{V - V_s}{R_1} = \frac{16V - 6V}{5k\Omega} = \frac{10V}{5k\Omega} = 2mA
$$

From KCL, we have

 $I_3 = I_5 - I_1 = 6$ mA $- 2$ mA $= 4$ mA

The voltage across R₃ is

 $V_3 = R_3I_3 = 1 \text{ k}\Omega \times 4 \text{ mA} = 4 \text{ V}$

From KVL, the voltage across R⁴ is given by

$$
V_4\!\!=\!V_3\!+\!V_5\!\!=\!\!4V\!+\!6V\!\!=\!\!10V
$$

The current through R₄ is given by

$$
I_4 = \frac{V}{R_4} = \frac{10V}{84.5k\Omega} = 2mA
$$

From KCL, current I₂ is given by

 $I_2 = I_3 + I_4 = 4$ mA + 2 mA = 6 mA

PROBLEM 2.28

The voltage across R₃ is given by

 $V_2 = R_3I_3 = 4 k\Omega \times 2 mA = 8 V$

From Ohm's law, current I⁴ is given by

$$
I_4 = \frac{V_2}{R_4} = \frac{8V}{2k\Omega} = 4mA
$$

From KCL, the current through R₂ is given by

 $I_2 = I_3 + I_4 = 2$ mA + 4 mA = 6 mA

From KCL, the current through R₁ is given by

$$
I_1 = I_s - I_2 = 8 mA - 6 mA = 2 mA
$$

The voltage across R_1 is given by

 $V_1 = R_1I_1 = 7 k\Omega \times 2 mA = 14 V$

PROBLEM 2.29

The voltage across R_1 is given by

 $V_1 = R_1I_1 = 5 k\Omega \times 1 mA = 5 V$

From KCL, the current through R2 is given by

 $I_2 = I_s - I_1 = 5$ mA - 1 mA = 4 mA

From KVL, V₂ is given by

$$
V_2 = V_1 - R_2 I_2 = 5\ V - 0.5\ k\Omega \times 4\ mA = 5\ V - 2\ V = 3\ V
$$

From Ohm's law, current Is is given by

$$
I_3 = \frac{V_2}{I} = \frac{3V}{I} = 3mA
$$

*R*³ 1*k*Ω

 $I_4 = \frac{V_2}{V_2} = \frac{3V}{V_1} = 1mA$ From Ohm's law, current I⁴ is given by *R*4 3*k*Ω

PROBLEM 2.30

Application of KVL around the outer loop yields

 $-2-V_1-3=0$

Solving for V1, we obtain

 $V_1 = -5V$

Application of KVL around the top mesh yields

 $-V_1-4+V_2=0$

Solving for V2, we obtain

 $V_2=V_1+4=1V$

Application of KVL around the center left mesh yields

 $-V_2+5-V_3=0$

Solving for V3, we obtain

 $V_3 = -V_2 + 5 = 6V$

Application of KVL around the center right mesh

 $yields -5+4+V₄=0$

Solving for V4, we obtain

 $V_4 = 5 - 4 = 1V$

Application of KVL around the bottom left mesh yields

 $-2+V_3-V_5=0$

Solving for V5, we obtain

 $V_5 = -2 + 6 = 4V$

PROBLEM 2.31

Application of KVL around the outer loop yields

 $-3-V_1=0$

Solving for V1, we obtain

 $V_1 = -3V$

Application of KVL around the lower left mesh yields

 $-3+V_2-1=0$

Solving for V2, we obtain

 $V_2 = 3 + 1 = 4V$

Application of KVL around the lower right mesh

yields 1-V5=0

Solving for V5, we obtain

 $V = 1V$

Application of KCL at node *a* yields

 $I_1=2+2=4A$

Application of KCL at node *b* yields

 $I_4 = 2 + 3 = 5A$

PROBLEM 2.32

Resistor R_1 is in series to the parallel combination of R_2 and R_3 . Thus, the equivalent resistance Req is given by

$$
R_{eq} = R_1 + (R_2 \parallel R_3) = R_1 + \frac{R_2 R_3}{R_2 + R_3} = 2000 + \frac{4000 \times 12000}{4000 + 12000}
$$

$$
= 2000 + \frac{48,000,000}{16,000} = 2000 + 3000 = 5000 \Omega = 5k\Omega
$$

Instead of ohms $(Ω)$, we can use kilo ohms $(kΩ)$ to simplify the algebra:

$$
R_{eq} = R_1 + (R_2 \parallel R_3) = R_1 + \frac{R R_{eq}}{R_{eq} R_{eq}} = 2k + \frac{4k \times 12k}{4k + 12k} = 2k + \frac{48k^2}{16k} = 2k + 3k = 5k\Omega
$$

If all the resistance values are in $k\Omega$, k can be removed during calculations, and represent the answer in $k\Omega$ as shown below.

$$
R_{eq} = R_1 + (R_2 \parallel R_3) = R_1 + \frac{R_2 R_3}{R_2 + R_3} = 2 + \frac{4 \times 12}{4 + 12} = 2 + \frac{48}{16} = 2 + 3 = 5k\Omega
$$

PROBLEM 2.33

Resistors R¹ and R² are in parallel, and resistors R³ and R⁴ are in parallel. The equivalent resistance is the sum of $R_1 \parallel R_2$ and $R_3 \parallel R_4$.

$$
R_{eq} = (R_1 \parallel R_2) + (R_3 \parallel R_4) = \frac{R_1 R_2}{R_1 + R_2} + \frac{R_3 R_4}{R_3 + R_4} = \frac{10 \times 40}{10 + 40} + \frac{8 \times 56}{8 + 56} = \frac{400}{64} + \frac{448}{64} = 8 + 7 = 15k\Omega
$$

The equivalent resistance is the sum of R_1 and the parallel combination of R_2 , R_3 , and R_4 .

$$
R = R + (R || R || R) = R + \frac{1}{R + \frac{
$$

PROBLEM 2.35

The equivalent resistance of the parallel combination of R₄ and a short circuit (0Ω) is given by

$$
\frac{R}{4} \parallel 0 = \frac{20 \times 0}{20 + 0} = \frac{0}{20} = 0 \ \Omega
$$

The equivalent resistance is the sum of R_1 and the parallel combination of R_2 and R_3 .

$$
R_{eq} = R_1 + (R_2 \parallel R_3) = R_1 + \frac{R_2 R_3}{R_2 + R_3} = 12 + \frac{99 \times 22}{99 + 22} = 12 + \frac{2178}{121} = 12 + 18 = 30 \times \Omega
$$

PROBLEM 2.36

The equivalent resistance R_a of the series connection of three resistors R_4 , R_5 , and R_6 is

 $R_a = R_4 + R_5 + R_6 = 25 + 20 + 33 = 78$ k Ω

The equivalent resistance R_b of the parallel connection of R_3 and R_a is

$$
\underset{b}{R=R||R=}\n \underset{3}{\overset{R=}{\underset{a}{\longrightarrow}}}\n \frac{R_3 R_a}{R+R} = \frac{39 \times 78}{39 + 78} = \frac{3042}{117} = 26k\Omega
$$

The equivalent resistance Req of the circuit shown in Figure P2.5 is the sum of R1, Rb, and R2:

 $Req = R1 + Rb + R2 = 10 + 26 + 14 = 50 k\Omega$

PROBLEM 2.37

The resistors R_1 and R_2 are connected in parallel. Let R_3 be $R_1 \parallel R_2$. Then, we have

$$
R = R||R = \frac{R_1R_2}{R_1 + R_2} = \frac{50 \times 75}{50 + 75} = \frac{50 \times 75}{125} = \frac{50 \times 3}{5} = 10 \times 3 = 30k\Omega
$$

The resistors R₃ and R₄ are connected in parallel. Let R_b be R₃ || R₄. Then, we have

$$
R=R||R=\frac{R_3R_4}{R_3+R_3}=\frac{55\times66}{5+6}=\frac{5\times66}{11}=\frac{5\times66}{11}=\frac{5\times6}{11}=\frac{5\times6}{11}=\frac{30k}{11}
$$

The equivalent resistance Req of the circuit shown in Figure P2.6 is given by the sum of R^a and Rb:

 $Req = Ra + Rb = 30 k\Omega + 30 k\Omega = 60 k\Omega$

MATLAB

```
clear all; 
R1=50000;R2=75000;R3=55000;R4=66000; 
Req=P([R1,R2])+P([R3,R4])
Answer: 
Req =60000
```
PROBLEM 2.38

The equivalent resistance Req can be found by combining resistances from the right side of the circuit and moving toward the left. Since R_7 , R_8 , and R_9 are connected in series, we have

 $R_a = R_7 + R_8 + R_9 = 15 + 19 + 20 = 54 k\Omega$

Let R_b be the equivalent resistance of the parallel connection of R_6 and R_a . Then we have

$$
R=R||R=\n\begin{array}{ccc}\n & R6 \times R_a \\
 R+R & 27+54 \\
 & 6 \end{array}\n\begin{array}{c}\n & 27 \times 54 \\
 & 1+2 \end{array}\n=\n\begin{array}{c}\n1 \times 54 = 54 = 18k\n\end{array}\n\begin{array}{c}\n & 8k\n\end{array}
$$

Let Re be the sum of R_4 , R_b , and R_5 . Then, we have

 $R_c = R_4 + R_5 + R_5 = 6 + 18 + 4 = 28$ k Ω .

Let R_d be the equivalent resistance of the parallel connection of R_3 and R_c . Then, we have

$$
R=R||R=\n\begin{array}{cc}\nR_3 \times R_c &= 21 \times 28 \\
R_3 \times R_2 &= 21 \times 28 \\
R_4 \times R_3 &= 21 \times 28 \\
R_5 \times R_4 &= 21 \times 28 \\
R_6 \times R_5 &= 21 \times 28 \\
R_7 \times R_8 &= 21 \times 28 \\
R_8 \times R_9 &= 21 \times 28 \\
R_9 \times R_9 &= 21 \times 28 \\
R_1 \times R_1 &= 21 \times 28 \\
R_1 \times R_2 &= 21 \times 28 \\
R_1 \times R_1 &= 21 \times 28 \\
R_1 \times R_2 &= 21 \times 28 \\
R_2 \times R_3 &= 21 \times 28 \\
R_3 \times R_4 &= 21 \times 28 \\
R_4 \times R_5 &= 21 \times 28 \\
R_5 \times R_6 &= 21 \times 28 \\
R_6 \times R_7 &= 21 \times 28 \\
R_7 \times R_8 &= 21 \times 28 \\
R_8 \times R_9 &= 21 \times 28 \\
R_9 \times R_1 &= 21 \times 28 \\
R_1 \times R_2 &= 21 \times 28 \\
R_1 \times R_1 &= 21 \times 28 \\
R_1 \times R_2 &= 21 \times 28 \\
R_1 \times R_1 &= 21 \times 28 \\
R_2 \times R_2 &= 21 \times 28 \\
R_3 \times R_1 &= 21 \times 28 \\
R_4 \times R_2 &= 21 \times 28 \\
R_5 \times R_1 &= 21 \times 28 \\
R_6 \times R_2 &= 21 \times 28 \\
R_7 \times R_1 &= 21 \times 28 \\
R_8 \times R_1 &= 21 \times 28 \\
R_9 \times R_1 &= 21 \times 28 \\
R_1 \times R_2 &= 21 \times 28 \\
R_1 \times R_1 &= 21 \times 28 \\
R_1 \times R_2 &= 21 \times 28 \\
R_1 \times R_1 &
$$

The equivalent resistance $\text{Re}q$ is the sum of R_1 , R_d , and R_2 . Thus, we have

 $Req = R_1 + R_d + R_2 = 3 + 12 + 5 = 20 k\Omega$

MATLAB

```
clear all; 
R1=3000;R2=5000;R3=21000;R4=6000;R5=4000;R6=27000;R7=15000;R8=19000;R9=20000; 
Req=R1+R2+P([R3,R4+R5+P([R6,R7+R8+R9])])
Answer: 
Req =
       20000
```
PROBLEM 2.39

Let R_a be the equivalent resistance of the parallel connection of R_5 and R_6 . Then, we have

$$
R=R||R=\frac{R_5 \times R_6}{56} = \frac{20 \times 20}{1+1} = \frac{1 \times 20}{2} = \frac{20}{10} = 10k\Omega
$$

Let R_b be the equivalent resistance of the series connection of R_4 and R_a . Then, we have

 $R_b = R_4 + R_a = 10 + 10 = 20$ kΩ.

Let $\text{Re } k$ be the equivalent resistance of the parallel connection of R_3 and R_b . Then, we have

$$
R=R||R=\frac{R_3 \times R_b}{R_3 + R_2(0+20)} = \frac{20 \times 20}{1+1} = \frac{1 \times 20}{2} = \frac{20}{10} = 10k\Omega
$$

Let R_d be the equivalent resistance of the series connection of R_2 and R_c . Then, we have

 $R_d = R_2 + R_c = 10 + 10 = 20$ kΩ.

The equivalent resistance Req of the circuit shown in Figure P3.8 is the parallel connection of R¹ and Rd. Thus, we get

$$
R = R||R = \frac{R_1 \times R_d}{R_1 + R_2} = \frac{20 \times 20}{1 + 1} = \frac{1 \times 20}{2} = \frac{20}{10} = 10k\Omega
$$

MATLAB

```
clear all; 
R1=20000;R2=10000;R3=20000;R4=10000;R5=20000;R6=20000; 
Req=P([R1,R2+P([R3,R4+P([R5,R6])])])
Answer: 
Req =10000
```
PROBLEM 2.40
\n
$$
R = \frac{1}{1 + \frac{1
$$

7.792207792207792e+02

PROBLEM 2.41

Let $R_9 = R_2 || R_3 || R_4, R_{10} = R_6 || R_7 || R_8$, and $R_{11} = R_9 + R_5 + R_{10}$. Then, $R_{eq} = R_1 || R_{11}$.

$$
R_9 = \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}} = \frac{1}{1000} + \frac{1}{2700} + \frac{1}{2000} = 534.6535\Omega
$$

\n
$$
R_{10} = \frac{1}{\frac{1}{R_6} + \frac{1}{R_7} + \frac{1}{R_8}} = \frac{1}{2000} + \frac{1}{2000} = 750\Omega
$$

\n
$$
\frac{1}{R_6} + \frac{1}{R_7} + \frac{1}{R_8} + \frac{1}{2000} + \frac{1}{6000}
$$

\n
$$
R_{11} = R_9 + R_5 + R_{10} = 3.7837 \text{ k}\Omega
$$

\n
$$
R_{eq} = \frac{R_1 R_{11}}{R_1 + R_{11}} = 2.877215k\Omega
$$

clear all; R1=12000;R2=1000;R3=2700;R4=2000;R5=2500;R6=2000;R7=1500;R8=6000; R9=P([R2,R3,R4]) R10=P([R6,R7,R8]) R11=R9+R5+R10 Req=P([R1,R11]) Answer: Req = 2.877214991375255e+03

PROBLEM 2.42

Let $R_6 = R_1 || R_2, R_7 = R_3 || R_4$. Then we have

$$
R = \frac{R_1 R_2}{R_1 + R_2} = 571.4286 \ \Omega
$$

$$
R = \frac{R R}{\frac{3}{7} + R \cdot \frac{4}{4}} = 1.66667 \text{ k}\Omega
$$

 $R_{eq} = R_6 + R_7 + R_5 = 2.7381 \text{ k}\Omega$

clear all; R1=600;R2=12000;R3=2000;R4=10000;R5=500; R6=P([R1,R2]) R7=P([R3,R4]) Req=R6+R7+R5 Answer: $Req =$ 2.738095238095238e+03

PROBLEM 2.43

Let $R_9 = R_3 ||R_4, R_{10} = R_5 ||R_6, R_{11} = R_7 ||R_8, R_{12} = R_2 + R_9, R_{13} = R_{10} + R_{11}.$ Then, $Req = R_1 + (R_{12}||R_{13}).$

$$
R_{9} = \frac{R_{3} \times R_{4}}{R_{3} + R_{4}} = \frac{60k \times 20k}{60k + 20k} = \frac{1200k}{80} = 15k\Omega
$$
\n
$$
R_{10} = \frac{R_{5} \times R_{6}}{R_{5} + R_{6}} = \frac{10k \times 15k}{10k + 15k} = \frac{150k}{25} = 6k\Omega
$$
\n
$$
R_{11} = \frac{R_{7} \times R_{8}}{R_{7} + R_{8}} = \frac{20k \times 30k}{20k + 30k} = \frac{600k}{50} = 12k\Omega
$$
\n
$$
R_{12} = R_{2} + R_{9} = 3k\Omega + 15k\Omega = 18k\Omega
$$
\n
$$
R_{13} = R_{10} + R_{11} = 6k\Omega + 12k\Omega = 18k\Omega
$$

$$
R_{eq} = R_1 + (R_{12}||R_{13}) = 6k\Omega + (18k\Omega||18k\Omega) = 6k\Omega + 9k\Omega = 15k\Omega
$$

```
clear all; 
R1=6000;R2=3000;R3=60000;R4=20000;R5=10000;R6=15000;R7=20000;R8=30000; 
R9=P([R3,R4])
R10=P([R5,R6])
R11=P([R7,R8]) 
R12=R2+R9
R13=R10+R11
Req=R1+P([R12,R13])
Req =
       15000
```
PROBLEM 2.44

Let $R_6 = R_4 | R_5, R_7 = R_3 + R_6, R_8 = R_2 | R_7$. Then, $R_{eq} = R_1 + R_8$.

$$
R = \frac{R_4 \times R_5}{R + R} = \frac{2k \times 3k}{2k + 3k} = \frac{6k}{5} = 1.2k\Omega
$$

R7 = R3 + R6 = 1.8k Ω + 1.2k Ω = 3k Ω

$$
R = \frac{R_2 \times R_7}{R + R} = \frac{7k \times 3k}{7k + 3k} = \frac{21k}{10} = 2.1k\Omega
$$

Req = R1 + R8 = 0.9k Ω + 2.1k Ω = 3k Ω

clear all;

```
R1=900;R2=7000;R3=1800;R4=2000;R5=3000; 
Req=R1+P([R2,R3+P([R4,R5])])
Answer: 
Req =
        3000
```
PROBLEM 2.45

Let $R_8 = R_6 || R_7$, $R_9 = R_4 + R_5 + R_8$. Then, $R_{eq} = R_1 || R_2 || R_3 || R_9$.

$$
R = \frac{R_6 \times R_7}{R_6 + R_7} = \frac{20k \times 80k}{20k + 80k} = \frac{1600k}{100} = 16k\Omega
$$

R9 = R4 + R5 + R8 = 10k Ω + 4k Ω + 16k Ω = 30k Ω

$$
R_{eq} = \frac{1}{\frac{1}{R_1 + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_9}}} = \frac{1}{\frac{1}{4000} + \frac{1}{4000} + \frac{1}{4000} + \frac{1}{4000}} = 2.4k\Omega
$$

clear all;
R1 = 4000; R2 = 10000; R3 = 30000; R4 = 10000; R5 = 4000; R6 = 20000; R7 = 80000;
Req = P([R1, R2, R3, R4 + R5 + P([R6, R7])])
Req = 2400

PROBLEM 2.46

Let $R_8 = R_3||R_4, R_9 = R_6||R_7, R_{10} = R_8 + R_5 + R_9$. Then, $R_{eq} = R_1||R_2||R_{10}$.

$$
R = \frac{R_3 \times R_4}{R + R_4} = \frac{10k \times 10k}{10k + 10k} = \frac{100k}{20} = 5k\Omega
$$

$$
R = \frac{R_6 \times R_7}{R + R_7} = \frac{10k \times 15k}{10k + 15k} = \frac{150k}{25} = 6k\Omega
$$

 $R_{10} = R_8 + R_5 + R_9 = 5k\Omega + 4k\Omega + 6k\Omega = 15k\Omega$

PROBLEM 2.47

The voltage from the voltage source is divided into V_1 and V_2 in proportion to the resistance values. Thus, we have

$$
V = -\frac{R_1}{R + R_2} - V = -\frac{2.5}{2.5 + 7.5} 20V = -\frac{1}{4} 20V = 5V
$$

$$
V = -\frac{R_2}{R + R_2} - V = -\frac{7.5}{2.5 + 7.5} 20V = -\frac{3}{4} 20V = 15V
$$

Notice that V₂ can also be obtained from V₂ = V_S – V₁ = 20 – 5 = 15 V.

PROBLEM 2.48

The equivalent resistance of the parallel connection of R_2 and R_3 is given by

$$
R=R||R=\frac{R_2R_3}{\frac{R_1+R_3}{2} + R_3} = \frac{38k}{3} \times \frac{357k}{57k} = \frac{2166}{2}k = 22.8 k\Omega
$$

The voltage V_1 across R_1 is given by

$$
V = -\frac{R}{R + R} - V = -\frac{27.2}{27.2 + 22.8} 25V = -\frac{27.2}{50} 25V = -\frac{27.2}{2} V = 13.6 V
$$

The voltage V_2 across R_2 and R_3 is given by

$$
V = \frac{R_4}{R_1 + R_4} V = \frac{22.8}{27.2 + 22.8} 25V = \frac{22.8}{50} 25V = \frac{22.8}{2} V = 11.4 V
$$

Notice that V₂ can also be obtained from V₂ = V_S – V₁ = 25 – 13.6 = 11.4 V.

Let R₅ be the equivalent resistance of the parallel connection of R₁ and R₂. Then, we have

$$
R = \frac{R_1 R_2}{R_1 + R_2} = \frac{30k \times 95k}{30k + 95k} = \frac{2850}{125}k = 22.8 k\Omega
$$

Let R_6 be the equivalent resistance of the parallel connection of R_3 and R_4 . Then, we have

$$
R = \frac{R_3 R_4}{R_3 + R_4} = \frac{62k}{62k + 93k} = \frac{5766}{155}k = 37.2 k\Omega
$$

The circuit reduces to

The voltage V_1 across R₅ is given by

$$
V = \frac{R_5}{-R_5 + R_6} = \frac{V}{S} = \frac{22.8}{22.8 + 37.2} \times 30V = \frac{22.8}{60} \times 30V = \frac{22.8}{2} V = 11.4 V
$$

The voltage V_2 across R_6 is given by

$$
V = \frac{R_6}{R_1 + R_6} \quad V = \frac{37.2}{22.8 + 37.2} \times 30V = \frac{37.2}{60} \times 30' = \frac{37.2}{2} V = 18.6 V
$$

Notice that V₂ can also be obtained from V₂ = V_S – V₁ = 30 – 11.4 = 18.6 V.

PROBLEM 2.50

Let R₅ be the combined resistance of the series connection of R₃ and R₄. Then, we have

$$
R_5 = R_3 + R_4 = 24 k\Omega + 60 k\Omega = 84 k\Omega.
$$

Let R₆ be the equivalent resistance of the parallel connection of R₂ and R₅. Then, R₆ is given by

$$
R=R||R=\frac{R_2R_5}{R_2+R}=\frac{42k\times84k}{42k+84k}\frac{3528}{126}k=28 k\Omega
$$

The circuit reduces to

The voltage V_1 across R_6 is given by

$$
V = \underbrace{R_6}_{1} \underbrace{V}_{R} = \underbrace{28}_{22+28} \times 20V = \underbrace{28}_{50} \times 20V = \underbrace{56}_{5} V = 11.2 V
$$

The voltage V_1 is split between R₃ and R₄ in proportion to the resistance values. Applying the voltage divider rule, we have

$$
V = \underbrace{R_4}_{2R_3 + R_4} V = \underbrace{60}_{12} \times 11.2 \text{ V} = \underbrace{60}_{84} \times 11.2 \text{ V} = 8 \text{ V}
$$

PROBLEM 2.51

Let R_6 be the equivalent resistance of the parallel connection of R_4 and R_5 . Then, we have

$$
R = \frac{R_4 R_5}{R_4 + R_5} = \frac{22k \times 99k}{22k + 99k} = \frac{2178}{121}k = 18 k\Omega
$$

Let R_7 be the equivalent resistance of the series connection of R_3 and R_6 . Then, we have

$$
R_7 = R_3 + R_6 = 70 \ k\Omega + 18 \ k\Omega = 88 \ k\Omega.
$$

Let R₈ be the equivalent resistance of the parallel connection of R₂ and R₇. Then, we have

$$
R = \frac{R_2 R_7}{R_2^2 R_7} = \frac{33k \times 88k}{33k + 88k} = \frac{2904}{121}k = 24 k\Omega
$$

The circuit reduces to

The voltage V_1 across R₈ is given by

$$
V = \frac{R_8}{R_1 + R} - V = \frac{24}{6 + 24} \times 45V = \frac{24}{30} \times 45V = \frac{72}{2} V = 36V
$$

The voltage across R_1 is given by

$$
V_{R1} = \frac{R_1}{R + R} - V = \frac{6}{6 + 24} \times 45V = \frac{6}{30} \times 45V = \frac{18}{2} V = 9V
$$

The voltage V_1 is split between R₃ and R₆ in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$
V = -\frac{R_6}{R_3 + R_6} - V = -\frac{18}{70 + 18} \times 36V = \frac{18}{88} \times 36V = \frac{81}{11}V = 7.3636 \text{ V}
$$

The voltage across R₃ is given by

$$
V_{R3} = \frac{R_3}{R_3 + R_6} - V = \frac{70}{70 + 18} \times 36V = \frac{70}{88} \times 36V = \frac{315}{11} V = 28.6364 V
$$

PROBLEM 2.52

Let R₈ be the equivalent resistance of the parallel connection of R₆ and R₇. Then, we have

$$
R = \frac{R_6 R_7}{R_6 + R_7} = \frac{6 \times 12}{6 + 12} k = \frac{72}{18} k = 4 k \Omega
$$

Let R_9 be the equivalent resistance of the series connection of R_5 and R_8 . Then, we have

$$
R_9 = R_5 + R_8 = 5 \text{ k}\Omega + 4 \text{ k}\Omega = 9 \text{ k}\Omega.
$$

Let R₁₀ be the equivalent resistance of the parallel connection of R₄ and R₉. Then, we have

$$
R = \frac{R_4 R_9}{R_4 + R_9} = \frac{18 \times 9}{18 + 9} k = \frac{162}{27} k = 6 k\Omega
$$

Let R_{11} be the equivalent resistance of the series connection of R_3 and R_{10} . Then, we have

$$
R_{11} = R_3 + R_{10} = 4 k\Omega + 6 k\Omega = 10 k\Omega.
$$

Let R_{12} be the equivalent resistance of the parallel connection of R_2 and R_{11} . Then, we have

$$
R_{12} = \frac{RR}{R + R_{11}} = \frac{40 \times 10}{40 + 10} k = \frac{400}{50} k = 8 k\Omega
$$

The circuit reduces to

The voltage V_1 across R_{12} is given by

$$
V = \frac{R}{\frac{R}{1} + R} - V = \frac{8}{4 + 8} \times 24V = \frac{8}{12} \times 24 \text{ V} = 16 \text{ V}
$$

The voltage across R_1 is given by

$$
V_{R1} = \frac{R_1}{R + R} - V = \frac{4}{4 + 8} \times 24V = \frac{4}{12} \times 24V = 8V
$$

The voltage V₁ is split between R₃ and R₁₀ in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$
V = \frac{R}{2} \frac{10}{4} - V = \frac{6}{4} \times 16V = \frac{6}{10} \times 16V = \frac{48}{5} V = 9.6V
$$

The voltage across R₃ is given by

$$
V_{R3} = \frac{R_3}{R_3 + R_1} - V = \frac{4}{4 + 6} \times 16V = \frac{4}{10} \times 16V = \frac{32}{5} V = 6.4V
$$

The voltage V₂ is split between R₅ and R₈ in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$
V = \frac{R_8}{2R_3} - V = \frac{4}{5} \times 9.6 \text{ V} = \frac{4}{9} \times 9.6 \text{ V} = \frac{12.8}{3} \text{ V} = 4.2667 \text{ V}
$$

The voltage across R₅ is given by

$$
V_{RS} = \frac{R_5}{R_5 + R_8} V = \frac{5}{5 + 4} \times 9.6 \text{ V} = \frac{5}{9} \times 9.6 \text{ V} = \frac{16}{3} \text{ V} = 5.3333 \text{ V}
$$

Let R_7 be the equivalent resistance of the parallel connection of R_4 , R_5 and R_6 . Then, we have

$$
R_7 = \frac{1}{\frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}} = \frac{1}{\frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}} = 12 k\Omega
$$

Let R₈ be the equivalent resistance of the series connection of R₃ and R₇. Then, we have

$$
R_8 = R_3 + R_7 = 8 k\Omega + 12 k\Omega = 20 k\Omega.
$$

Let R_9 be the equivalent resistance of the parallel connection of R_2 and R_8 . Then, we have

$$
R = \frac{R_2 R_8}{R + R_3} = \frac{80 \times 20}{80 + 20} k = \frac{1600}{100} k = 16 k\Omega
$$

The circuit reduces to

The voltage V_1 across R_9 is given by

$$
V = -\frac{R_9}{R + R_9}V = -\frac{16}{9 + 16} \times 10V = \frac{16}{25} \times 10V = \frac{32}{5}V = 6.4V
$$

The voltage across R_1 is given by

$$
V_{R1} = \frac{R_1}{R + R_{9}} V = \frac{9}{9 + 16} \times 10V = \frac{9}{25} \times 10V = \frac{18}{5} V = 3.6V
$$

The voltage V₁ is split between R₃ and R₇ in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$
V = \underbrace{R_7}{R_3 + R_7} \quad V = \underbrace{12}_{1} \times 6.4 \quad V = \underbrace{12}_{20} \times 6.4 \quad V = \underbrace{96}_{25} \quad V = 3.84 \quad V
$$

The voltage across R₃ is given by

$$
V_{R3} = \frac{R_3}{R_3 + R_7} V = \frac{8}{8 + 12} \times 6.4 \text{ V} = \frac{8}{20} \times 6.4 \text{ V} = \frac{64}{25} \text{ V} = 2.56 \text{ V}
$$

Let R_9 be the equivalent resistance of the parallel connection of R_6 , R_7 and R_8 . Then, we have

$$
R_9 = \frac{1}{\frac{1}{\frac{1}{1} + \frac{1}{1} + \frac{1}{1}}} = \frac{1}{\frac{1}{1} + \frac{1}{1} + \frac{1}{1}} k = 9 k\Omega
$$

R₆ R₇ R₈ 18 27 54

Let R₁₀ be the equivalent resistance of the series connection of R₅ and R₉. Then, we have

$$
R_{10} = R_5 + R_9 = 6 k\Omega + 9 k\Omega = 15 k\Omega.
$$

Let R_{11} be the equivalent resistance of the parallel connection of R_4 and R_{10} . Then, we have

$$
R = \frac{RR}{4.4 \cdot 10} = \frac{30 \times 15}{30 + 15} k = \frac{450}{45} k = 10 k\Omega
$$

Let R_{12} be the equivalent resistance of the series connection of R_3 and R_{11} . Then, we have

$$
R_{12} = R_3 + R_{11} = 10 \text{ k}\Omega + 10 \text{ k}\Omega = 20 \text{ k}\Omega.
$$

Let R₁₃ be the equivalent resistance of the parallel connection of R₂ and R₁₂. Then, we have

$$
R = \frac{R R}{\frac{R}{13} + R_{12}} = \frac{30 \times 20}{30 + 20} k = \frac{600}{50} k = 12 k\Omega
$$

The circuit reduces to

R R

The voltage V_1 across R₁₃ is given by

$$
V = \frac{R}{\frac{R}{1} + R_{13}} V = \frac{12}{8 + 12} \times 20V = \frac{12}{20} \times 20 \text{ V} = 12 \text{ V}
$$

The voltage across R_1 is given by

$$
V = \frac{R_1}{R + R_1} V = \frac{8}{8 + 12} \times 20V = \frac{8}{20} \times 20V = 8V
$$

The voltage V_1 is split between R₃ and R₁₁ in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$
V = \frac{R}{\frac{R}{3} + \frac{R}{R_{11}}} - V = \frac{10}{10 + 10} \times 12V = \frac{10}{20} \times 12V = 6V
$$

The voltage across R₃ is given by

R

$$
V_{R3} = \frac{R_3}{R + R_{11}} V = \frac{10}{10 + 10} \times 12V = \frac{10}{20} \times 12V = 6V
$$

The voltage V_2 is split between R₅ and R₉ in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$
V = \frac{R}{\frac{R}{s} + R} - V = \frac{9}{s^2} \times 6V = \frac{9}{15} \times 6V = \frac{18}{5} V = 3.6V
$$

The voltage across R₅ is given by

$$
V_{RS} = \frac{R_5}{R_5 + R_9} V = \frac{6}{6 + 9} \times 6V = \frac{6}{15} \times 6V = \frac{12}{5} V = 2.4V
$$

PROBLEM 2.55

Let R_7 be the equivalent resistance of the parallel connection of R_4 , R_5 and R_6 . Then, we have

$$
R_7 = \frac{1}{\frac{1}{\frac{1}{1} + \frac{1}{1} + \frac{1}{1}}} = \frac{1}{\frac{1}{\frac{1}{1} + \frac{1}{1} + \frac{1}{1}}} k = 16 k\Omega
$$

R₄ R₅ R₆ 30 60 80

Let R₈ be the equivalent resistance of the series connection of R₁ and R₂. Then, we have

$$
R_9 = R_1 + R_2 = 10 \text{ k}\Omega + 30 \text{ k}\Omega = 40 \text{ k}\Omega.
$$

Let R₁₀ be the equivalent resistance of the parallel connection of R₃ and R₉. Then, we have

$$
R = \frac{R_3 R_9}{R_3 + R_9} = \frac{10 \times 40}{10 + 40} k = \frac{400}{50} k = 8 k\Omega
$$

R¹⁰ is in series with R7. The circuit reduces to

The voltage V_2 across R_7 is given by

$$
V = \frac{R_7}{R_1} - V = \frac{16}{8 + 16} \times 30V = \frac{16}{24} \times 30V = 20V
$$

The voltage across R¹⁰ is given by

$$
V_{R10} = \frac{R_{10}}{R_{10} + R_{7}} - V = \frac{8}{8 + 16} \times 30V = \frac{8}{24} \times 30 \text{ V} = 10 \text{ V}
$$

The voltage VR10 is split between R_1 and R_2 in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$
V = V + \underbrace{R_2}{R_1 + R_2} V = 20 + \underbrace{30}_{10 + 30} \times 10 V = 20 + \underbrace{30}_{40} \times 10 V = 27.5 V
$$

PROBLEM 2.56

Let R7 be the equivalent resistance of the parallel connection of $R_2 + R_4$ and $R_3 + R_5$. Then we have

$$
R = (R + R) || (R + R) = 5k || 5k = \frac{5k \times 5k}{5k + 5k} = \frac{25k^2}{10k} = 2.5k\Omega
$$

The voltage Vs is divided across R_1 , R_7 , and R_6 in proportion to the resistance values. The voltage across R_7 is given by \sim \sim

$$
V_{R7} = \frac{R_7}{R_1 + R_7 + R_6} V_S = \frac{2.5}{1 + 2.5 + 1.5} \times 10V = \frac{2.5}{5} \times 10V = 5V
$$

The voltage across R_1 is given by

$$
V_{R1} = \frac{R_1}{R_1 + R_2 + R_3} V_S = \frac{1}{1 + 2.5 + 1.5} \times 10V = \frac{1}{5} \times 10V = 2V
$$

The voltage across R₆ is given by

$$
V_{R6} = \frac{R_6}{R + R + R} V_S = \frac{1.5}{1 + 2.5 + 1.5} \times 10V = \frac{1.5}{5} \times 10V = 3V
$$

The voltage VR7 is divided across R2 and R4 in proportion to the resistance values. Thus, we have

$$
V_{R2} = \frac{R_2}{R_2 + R_4} - V_{R1} = \frac{1}{1 + 4} \times 5V = \frac{1}{5} \times 5V = 1V
$$

$$
V_{R4} = \frac{R_4}{R_2 + R_4} - V_{R1} = \frac{4}{1 + 4} \times 5V = \frac{4}{5} \times 5V = 4V
$$

The voltage VR7 is divided across R3 and R5 in proportion to the resistance values. Thus, we have

$$
V_{R3} = \frac{R_3}{R + R_{s}} - V_{R7} = \frac{3}{3 + 2} \times 5V = \frac{3}{5} \times 5V = 3V
$$

$$
V = \frac{R_5}{\sqrt{36}} - V_{R7} = \frac{2}{3} \times 5V = \frac{2}{3} \times 5V = 2V
$$

The voltage at node *a*, V_a, is the sum of V_{R4} and V_{R6}. Thus, we have

$$
V_a=V_{R4}+V_{R6}=4V+3V=7V\\
$$

 R_5 $R_3 + R_5$ R_7 $3+2$ 5

The voltage at node *b*, V_b, is the sum of V_{R5} and V_{R6}. Thus, we have

$$
V_b=V_{R5}+V_{R6}=2V+3V=5V\\
$$

The voltage V_{ab} is the difference of V_a and V_b , that is,

 $V_{ab} = V_a - V_b = 7V - 5V = 2V.$

PROBLEM 2.57

Let $R_7 = R_2 || R_3$ and $R_8 = R_5 || R_6$. Then, we have

$$
R=R||R=\frac{R_2 \times R_3}{R+R} = \frac{5k \Omega \times 5k\Omega}{3} = \frac{25}{2}k \Omega = 2.5k\Omega
$$

$$
R=R||R=\frac{R_5 \times R_6}{8} = \frac{2k \Omega \times 8k\Omega}{R+R} = \frac{16}{2}k \Omega = 1.6k\Omega
$$

The equivalent resistance seen from the voltage source is

 $R_{eq} = R_1 + R_7 + R_4 + R_8 = 0.5 \text{ k}\Omega + 2.5 \text{ k}\Omega + 0.4 \text{ k}\Omega + 1.6 \text{ k}\Omega = 5 \text{ k}\Omega$

From Ohm's law, the current I₁ is given by

$$
I = \frac{V_s}{R_{eq}} = \frac{10V}{5k\Omega} = 2mA
$$

The voltage drop across R₁ is $I_1R_1 = 2mA \times 0.5k\Omega = 1V$. The voltage V₁ is given by

$$
V_1 = V_S - I_1 R_1 = 10V - 1V = 9V.
$$

Since $R_2 = R_3$, $I_2 = I_3 = I_1/2 = 1$ mA. The voltage drop across R_7 is $I_1 \times R_7 = 2$ mA $\times 2.5$ k $\Omega =$ 5V. We can get the same voltage drop from $I_2R_2 = I_3R_3 = 5V$. The voltage V₂ is given by

$$
V_2 = V_1 - 5V = 9V - 5V = 4V.
$$

The voltage drop across R₄ is I₁×R₄ = 2mA×0.4k Ω = 0.8V. The voltage V₃ is given by

$$
V_3 = V_2 - 0.8V = 4V - 0.8V = 3.2V.
$$

The current through R₅ is given by

$$
I_4 = \frac{V}{.3} = \frac{3.2V}{.} = 1.6mA
$$

$$
R_5 2k\Omega
$$

The current through R_6 is given by

$$
I_5 = \frac{V_{3}}{1} = \frac{3.2V}{1} = 0.4mA
$$

*R*6 8*k*Ω

PROBLEM 2.58

From the current divider rule, the current IR1 is given by

$$
I_{R1} = \frac{R_2}{R_1 + R_2} - I_s = \frac{3}{2 + 3} \times 10mA = 6mA
$$

Similarly, the current IR2 is given by

$$
I_{R2} = \frac{R_1}{R_1 + R_2} I_s = \frac{2}{2 + 3} \times 10mA = 4mA
$$

From the current divider rule, the current IR1 is given by

$$
I_{R1} = \frac{\frac{1}{R_1}}{1 + \frac{1}{R_1} + \frac{1}{R_2}} I_S = \frac{\frac{1}{2}}{1 + \frac{1}{R_1} + \frac{1}{R_2}} \times 26mA = \frac{\frac{1}{2}}{1 + \frac{1}{R_1} + \frac{1}{R_2}} \times 26mA = 12mA
$$

R1 R2 R3 2 3 4 12 12 12

Similarly, the currents IR2 and IR3 are given respectively by

$$
I_{R2} = \frac{\frac{1}{R_2}}{1 + \frac{1}{R_1} + \frac{1}{R_2}} I_S = \frac{\frac{1}{3}}{1 + \frac{1}{1} + \frac{1}{R_3}} \times 26mA = \frac{\frac{1}{3}}{6} + \frac{4}{1} + \frac{3}{1} \times 26mA = 8mA
$$

\n
$$
\frac{1}{12 \quad 12 \quad 12}
$$

\n
$$
\frac{1}{163} = \frac{\frac{1}{12}}{1 + \frac{1}{1} + \frac{1}{1} + \frac{1}{1}} I_S = \frac{\frac{1}{14}}{1 + \frac{1}{1} + \frac{1}{1}} \times 26mA = \frac{\frac{1}{14}}{12 \quad 12 \quad 12}
$$

\n
$$
I_{R3} = \frac{\frac{1}{14}}{1 + \frac{1}{1} + \frac{1}{1}} I_S = \frac{\frac{1}{14}}{1 + \frac{1}{1} + \frac{1}{1}} \times 26mA = \frac{\frac{1}{14}}{12 \quad 12 \quad 12}
$$

PROBLEM 2.60

Let R_6 be the equivalent resistance of the parallel connection of R_2 and R_3 . Then, R_6 is given by

$$
R = \frac{R_2 R_3}{R_2 + R_3} = \frac{30k \times 60k}{30k + 60k} = \frac{1800}{90}k = 20k\Omega
$$

Let R_7 be the equivalent resistance of the parallel connection of R_4 and R_5 . Then, R_7 is given by

$$
\frac{R}{7} = \frac{R_4 R_5}{R_4 + R_5} = \frac{90k \times 180k}{90k + 180k} = \frac{180}{3}k = 60k\Omega
$$

Let R₈ be the equivalent resistance of the series connection of R₆ and R₇. Then, R₈ is given by

 $R_8 = R_6 + R_7 = 80 \text{ k}\Omega$

The current from the current source Is is split into IR1 and IR8 according to the current divider rule. Thus, we have

$$
I_{R1} = \frac{R_8}{R + R} I_s = \frac{80}{4} \times 48 \eta A = 38.4 mA
$$

+80

$$
I_{R8} = \frac{R_1}{R_1 + R_8} I_S = \frac{20}{20 + 80} \times 48mA = 9.6 mA
$$

The current IR8 is split into IR2 and IR3 according to the current divider rule. Thus, we have

$$
I_{R2} = \frac{R_3}{R_+ + R_3} I_{R8} = \frac{60}{30 + 60} \times 9.6mA = 6.4mA
$$

$$
I_{R3} = \frac{R_2}{R_+ + R_3} I_{R8} = \frac{30}{30 + 60} \times 9.6mA = 3.2mA
$$

The current IR8 is split into IR4 and IR5 according to the current divider rule. Thus, we have

$$
I_{R4} = \frac{R_5}{R_+ + R_5} I_{R8} = \frac{180}{90 + 180} \times 9.6mA = 6.4mA
$$

$$
I_{R5} = \frac{R_4}{R_+ + R_5} I_{R8} = \frac{90}{90 + 180} \times 9.6mA = 3.2mA
$$

PROBLEM 2.61

$$
R\|R = \frac{R_3 \times R_4}{8R_3^2 R_4} = \frac{4k \Omega \times 6k\Omega}{8R_3^2 R_4^2 R_5} = \frac{24}{10} k \Omega = 2.4k\Omega
$$

$$
R_5 = R_2 + (R_3||R_4) = 0.6 k\Omega + 2.4 k\Omega = 3k\Omega
$$

The current from the current source, $I_s = 2$ mA, is split between I₁ and I₂ based on the current divider rule.

$$
I_1=I_S \times \overbrace{R_1^+ R_5^+} = 2mA \times 7k\Omega + 3k\Omega = 0.6mA
$$

$$
I_2=I_S \times \frac{R_1}{R+R} = 2mA \times \frac{7k\Omega}{7k\Omega + 3k\Omega} = 1.4mA
$$

The currents I₃ and I₄ are found by applying the current divider rule on R₃ and R₄.

$$
I_3 = I_2 \times \frac{R_4}{R_3 + R_4} = 1.4 \, \text{mA} \times \frac{6k\Omega}{4k\,\Omega + 6k\Omega} = 0.84 \, \text{mA}
$$

$$
I_4 = I_2 \times \frac{R_3}{R_3 + R_4} = 1.4 \, mA \times \frac{4k\Omega}{4k\Omega + 6k\Omega} = 0.56 \, mA
$$

The voltages V_1 and V_2 are found by applying Ohm's law.

$$
V_1 = I_1 \times R_1 = 0.6 mA \times 7 k\Omega = 4.2 V
$$

$$
V_2 = I_3 \times R_3 = 0.84 \text{ mA} \times 4 \text{k} \Omega = 3.36 \text{V}
$$

PROBLEM 2.62

Let R^a be the equivalent resistance of the series connection of R² and R3. Then, we have

 $R_a = R_2 + R_3 = 2 kΩ + 5 kΩ = 7 kΩ$

Application of current divider rule yields

$$
I_1 = I_s \times \frac{R_a}{R + R_a} = 20mA \times \frac{7}{3 + 7} = 14mA
$$

$$
I_2 = I_s \times \frac{R_1}{R + R} = 20mA \times \frac{3}{3 + 7} = 6mA
$$

PROBLEM 2.63

Let R_a be the equivalent resistance of the parallel connection of R₂ and R₃. Then, we have

$$
R = \frac{R_2 \times R_3}{R + R_2} = \frac{20 \times 20}{24} k = 10k\Omega
$$

Application of voltage divider rule yields

$$
V_1 = V_s \times \frac{R_a}{R + R} = 50V \times \frac{10}{15 + 10} = 20V
$$

Application of Ohm's law yields

$$
I_2 = \frac{V}{r} = \frac{20V}{r} = 1 mA
$$

$$
I_3 = \frac{V}{r} = \frac{20V}{r} = 1 mA
$$

$$
I_3 = \frac{V}{R_3} = \frac{20V}{20k\Omega} = 1 mA
$$

From KCL, we have

 $I_1 = I_2 + I_3 = 1$ mA + 1 mA = 2 mA

PROBLEM 2.64

Let R₈ be the equivalent resistance of the parallel connection of R₆ and R₇. Then, R₈ is given by

$$
R = \frac{R_6 R_7}{R_6 + R_7} = \frac{9k \times 18k}{9k + 18k} = \frac{18}{3}k = 6k\Omega
$$

Let R_9 be the equivalent resistance of the series connection of R_5 and R_8 . Then, R_9 is given by

$$
R_9=R_5+R_8=10\;k\Omega
$$

Let R₁₀ be the equivalent resistance of the parallel connection of R₃, R₄ and R₉. Then, R₁₀ is given by

$$
R = \frac{1}{1 + 1 + 1} = \frac{1}{1 + 1 + 1} = \frac{1}{1 + 1 + 1} = \frac{20k}{4} = 5k\Omega
$$

R₃ R₄ R₉ 20k 20k 10k

Let R_{11} be the equivalent resistance of the series connection of R_2 and R_{10} . Then, R_{11} is given by

 $R_{11} = R_2 + R_{10} = 10 \text{ k}\Omega$

The current from the current source Is is split into IR1 and IR11 according to the current divider rule. Thus, we have

$$
I_{R1} = \frac{R}{\frac{R}{1} + R_{11}} I_{11} = \frac{10}{15+10} \times 50mA = 20mA
$$

$$
I_{R11} = \frac{R_1}{R_1 + R_1} I_s = \frac{15}{15 + 10} \times 50mA = 30mA
$$

Notice that $I_{R2} = I_{R11} = 30$ mA.

The current IR11 is split into IR3, IR4 and IR9 according to the current divider rule. Thus, we have

$$
\frac{1}{1} \qquad \frac{1}{20} \qquad \frac{1}{1} \qquad \frac{1}{20} \qquad \frac{1}{1}
$$
\n
$$
I_{R3} = \frac{1}{1} \qquad \frac{1}{1} \qquad \frac{1}{1} \qquad \frac{1}{1} \qquad \frac{1}{1} \qquad \frac{1}{1} \qquad \frac{1}{1} \times 30mA = 4 \times 30mA = 7.5mA
$$

*R*3 *R*4 *R*9 20 20 10

$$
I = \frac{1}{-R_4} - I = \frac{1}{20} - I
$$

\n
$$
R_4 = \frac{1}{-R_4} + \frac{
$$

Notice that $I_{RS} = I_{R9} = 15$ mA.

The current IR9 is split into IR6 and IR7 according to the current divider rule. Thus, we have

$$
I_{R6} = \frac{R_7}{R_6 + R_7} I_{R9} = \frac{18k}{9k + 18k} \times 15mA = \frac{2}{3} \times 15mA = 10mA
$$

$$
I_{R7} = \frac{R_6}{\frac{R}{6} + R_7} I_{R9} = \frac{9k}{9k + 18k} \times 15mA = \frac{1}{3} \times 15mA = 5mA
$$

PROBLEM 2.65

Let R_a be the equivalent resistance of the parallel connection of R_1 and R_2 . Then, we have

$$
R = \frac{R_1 \times R_2}{R + R_2} = \frac{90 \times 180}{90 + 180} = \frac{1 \times 180}{1 + 2} = 60\Omega
$$

Let R_b be the equivalent resistance of the parallel connection of R_4 and R_5 . Then, we have

$$
R = \frac{R_4 \times R_5}{R_4 + R_5} = \frac{100 \times 150}{100 + 150} = \frac{2 \times 150}{2 + 3} = 60\Omega
$$

Let R_c be the equivalent resistance of the series connection of R_a and R_b . Then, we have

$$
R_c=R_a+R_b=60~\Omega+60~\Omega=120~\Omega
$$

Application of current divider rule yields

$$
I_3 = I_s \times \frac{R_c}{R+R} = 9.6mA \times \frac{120}{360+120} = 2.4mA
$$

c

From Ohm's law, the voltage across R³ is given by

$$
V_1 = R_3 I_3 = 360 \Omega \times 0.0024 \text{ A} = 0.864 \text{ V}
$$

Application of voltage divider rule yields

$$
V_2 = V_1 \times \overline{R} + R_b = 0.864 V \times \frac{60}{60 + 60} = 0.432 V
$$

Application of Ohm's law yields

$$
I = \frac{V_1 - V_2}{R_1} = \frac{0.864 - 0.432}{90} = \frac{0.432}{90} = 4.8mA
$$

$$
I_2 = \frac{V - V}{R_2} = \frac{0.864 - 0.432}{R_2} = \frac{0.432}{R_2} = 2.4mA
$$

$$
I_4 = \frac{V}{r^2} = \frac{0.432}{4.32} = 4.32 mA
$$

*R*4 100

$$
I_5 = \frac{V}{4} = \frac{0.432}{4} = 2.88 mA
$$

R₅ 150

MATLAB

```
clear all;format long; 
R1=90;R2=180;R3=360;R4=100;R5=150; 
Is=9.6e-3;
Ra=P([R1,R2]) 
Rb=P([R4,R5]) 
Rc=Ra+Rb 
I3=Is*Rc/(R3+Rc) 
V1=R3*I3
V2=V1*Rb/(Ra+Rb)
I1=(V1-V2)/R1
I2=(V1-V2)/R2
I4=V2/R4
I5=V2/R5
Answers: 
Ra =
   60
Rb =60
Rc =120
I3 =
   0.002400000000000
V1 =0.864000000000000
V2 =0.432000000000000
I1 =0.004800000000000
I2 =0.002400000000000
I4 =
```
0.004320000000000 $I5 =$ 0.002880000000000

PROBLEM 2.66

Let R_a be the equivalent resistance of the series connection of R_5 and R_6 . Then, we have

 $R_a = R_5 + R_6 = 10 \Omega + 5 \Omega = 15 \Omega$

Let R_b be the equivalent resistance of the parallel connection of R_4 and R_a . Then, we have

$$
R = \frac{R_4 \times R_a}{R + R} = \frac{10 \times 15}{10 + 15} = \frac{150}{25} = 6\Omega
$$

Let R_c be the equivalent resistance of the series connection of R₃ and R_b. Then, we have

$$
R_c=R_3+R_b=10~\Omega+6~\Omega=16~\Omega
$$

Let R_d be the equivalent resistance of the parallel connection of R_2 and R_c . Then, we have

$$
R = \frac{R_2 \times R_b}{R + R} = \frac{20 \times 16}{20 + 16} = \frac{320}{36} = \frac{80}{9} = 8.8889 \Omega
$$

Let Re be the equivalent resistance of the series connection of R_1 and R_d . Then, we have

$$
R_e = R_1 + R_d = 4 \Omega + 8.8889 \Omega = 12.8889 \Omega
$$

Application of Ohm's law yields

$$
I = \frac{V_s}{R_e} = \frac{100}{12.8889} = 7.9786 A
$$

 $V_1 = R_1I_1 = 4 \times 7.9786 = 31.0345$ V

From KVL, we have

 $V_2 = V_s - V_1 = 100 - 31.0345 = 68.9655$ V

Application of Ohm's law yields

$$
I_{2} = \frac{V_{2}}{R_{2}} = \frac{68.9655V}{20\Omega} = 3.4483 A
$$

From KCL, we have

 $I_3 = I_1 - I_2 = 7.9786 - 3.4483 = 4.3103 A$

From Ohm's law, we have

 $V_3 = R_3I_3 = 10 \times 4.3103 = 43.1034$ V

From KVL, we have

 $V_4 = V_2 - V_3 = 68.9655 - 43.1034 = 25.8621$ V

Application of Ohm's law yields

$$
I_4 = \frac{V_4}{R_4} = \frac{25.8621V}{10\Omega} = 2.5862A
$$

$$
I_5 = \frac{V_4}{R_a} = \frac{25.8621V}{15\Omega} = 1.7241A
$$

 $V_5 = R_5I_5 = 10 \times 1.7241 = 17.2414$ V

 $V_6 = R_6I_5 = 5 \times 1.7241 = 8.6207$ V

MATLAB

```
clear all; format long;
R1=4;R2=20;R3=10;R4=10;R5=10;R6=5; 
Vs=100;
Ra = R5 + R6Rb=P([R4,Ra]) 
Rc=R3+Rb 
Rd=P([R2,Rc]) 
Re=R1+Rd 
I1=Vs/Re 
V1=R1*I1
V2=Vs-V1
I2=V2/R2
I3=I1-I2
V3=R3*T3V4=V2-V3
I4=V4/R4
I5=V4/Ra
V5=R5*I5
V6=R6*I5
SV=-Vs+V1+V3+V5+V6
SI=-I1+I2+I4+I5
Answers: 
Ra =
   15
Rb =5.999999999999999
Rc =16
Rd =8.888888888888889
Re =12.888888888888889
```


Let R_a be the equivalent resistance of the parallel connection of R₆ = 4 Ω and R₇ + R₈ + R₉ = 12 Ω. Then, we have

$$
R_{a} = \frac{4 \times 12}{4 + 12} = \frac{48}{16} = 3\Omega
$$

Let R_b be the equivalent resistance of the parallel connection of R₂ = 4 Ω and R₃ + R₄ + R₅ = 12 Ω. Then, we have

$$
R_{b} = \frac{4 \times 12}{4 + 12} = \frac{48}{16} = 3\Omega
$$

Let R_c be the equivalent resistance of the series connection of R₁, R_a, and R_b. Then, we have

 $R_c = R_1 + R_a + R_b = 4 \Omega + 3 \Omega + 3 \Omega = 10 \Omega$

The current through R_1 is

$$
I = \frac{V}{R_c} \frac{40V}{10\Omega} = 4A
$$

Application of current divider rule yields 4 16

 $I = 4A \times$ $--- = -A = 1A$

Resistors R1, R2, and R³ are connected in delta. These three resistors can be transformed to wye configuration with resistors R_a, R_b, and R_c using

The circuit shown in Figure P2.68 can be redrawn as that shown below.

Req

The sum of R_b and R₄ is 1 k Ω , and the sum of R_c and R₅ is 4 k Ω . These two are connected in parallel. Thus, we have

$$
(R + R) ||(R + R) = 1 ||4 = \frac{1 \times 4}{1 + 4} = \frac{4}{5} = 0.8k\Omega
$$

The equivalent resistance R_{eq} is the sum of R_a and $(R_b + R_4)$ || $(R_c + R_5)$:

 $Req = Ra + 0.8 = 1.5 + 0.8 = 2.3 k\Omega$.

MATLAB

```
>> [Ra,Rb,Rc]=D2Y([3000,2000,5000]
) Ra =Rb =600
Rc =1500
        1000
>> Req=Ra+P([Rb+400,Rc+3000]) 
Req =
        2300
```
PSpice

Click on View Simulation Output File. Part of the output file reads

```
**** SMALL-SIGNAL CHARACTERISTICS 
     V(R_R5)/V_Vs = 2.609E-01INPUT RESISTANCE AT V_Vs = 2.300E+03
     OUTPUT RESISTANCE AT V(R R5) = 1.043E+03
```
The input resistance is 2.3 kΩ. Alternatively, just run the bias point analysis (uncheck .TF) and display currents.

The current through the voltage source is 434.8µA. The input resistance is given by the ratio of the test voltage $1\overline{V}$ to the current. Thus, we have 1 \overline{V}

$$
R_{eq} = \frac{1}{434.8 \times 10^{-6}} = 2.2999 k\Omega
$$

PROBLEM 2.69

The wye-connected resistors R_a, R_b, and R_c can be transformed to delta connected resistors R₁, R2, and R3.

$$
R = \frac{R_a R_b + R_b R_c + R_a R_c}{R} = \frac{14.4 \times 21.6 + 21.6 \times 12.96 + 14.4 \times 12.96}{12.96} = 60k\Omega
$$

\n
$$
R = \frac{R_a R_b + R_b R_c + R_a R_c}{R_a} = \frac{14.4 \times 21.6 + 21.6 \times 12.96 + 14.4 \times 12.96}{14.4} = 54k\Omega
$$

\n
$$
R = \frac{R_a R_b + R_b R_c + R_a R_c}{R_a} = \frac{14.4 \times 21.6 + 21.6 \times 12.96 + 14.4 \times 12.96}{14.4} = 36k\Omega
$$

Similarly, the wye-connected resistors Rd, Re, and R^f can be transformed to delta connected resistors R4, R5, and R6.

$$
R_{4} = \frac{R_{d}R_{e} + R_{e}R_{f} + R_{d}R_{f}}{R_{f}} = \frac{9 \times 16.2 + 16.2 \times 13.5 + 9 \times 13.5}{13.5} = 36k\Omega
$$

\n
$$
R_{5} = \frac{R_{d}R_{e} + R_{e}R_{f} + R_{d}R_{f}}{R_{d}} = \frac{9 \times 16.2 + 16.2 \times 13.5 + 9 \times 13.5}{9} = 54k\Omega
$$

\n
$$
R_{6} = \frac{R_{d}R_{e} + R_{e}R_{f} + R_{d}R_{f}}{R_{e}} = \frac{9 \times 16.2 + 16.2 \times 13.5 + 9 \times 13.5}{16.2} = 30k\Omega
$$

 R_b 21.6

After two wye-delta transformations, the circuit shown in Figure P2.69 is transformed to the circuit shown below.

The equivalent resistance of the parallel connection of R3, R7, and R⁴ is given by

$$
R = \frac{1}{\frac{1}{\cancel{1} + \cancel{1}} + \cancel{1}} = \frac{1}{\frac{1}{\cancel{1} + \cancel{1}} + \cancel{1}} = \frac{1}{\frac{3}{\cancel{1} + \cancel{1}} + \cancel{1}} = \frac{36}{3} = 12k\Omega
$$

*R*₃ *R*₇ *R*₇ 36 36 36 36

The equivalent resistance of the parallel connection of R₂, R₈, and R₅ is given by

$$
R = \frac{1}{\frac{1}{k} + \frac{1}{k} + \frac{1}{k}} = \frac{1}{\frac{1}{k} + \frac{1}{k} + \frac{1}{k}} = \frac{1}{\frac{1}{k} + \frac{1}{k}} = \frac{54}{3} = 18k\Omega
$$

R2 R8 R5 54 54 54 54

Resistors R_g and R_h are connected in series. The equivalent resistance of R_g and R_h is given by

 $R_i = R_g + R_h = 12 + 18 = 30$ kΩ.

The equivalent resistance Req of the circuit shown in Figure P2.10 is given by the parallel connection of R1, Ri, and R6, that is,

MATLAB

```
clear all; 
Ra=14400;Rb=21600;Rc=12960;Rd=9000;Re=16200;Rf=13500;R7=36000;R8=54000; 
[R1,R2,R3]=Y2D([Ra,Rb,Rc])
[R4,R5,R6]=Y2D([Rd,Re,Rf]) 
Req=P([R1,R6,P([R3,R7,R4])+P([R2,R8,R5])])
```
Answer: $Req =$ 1.2000e+04

PSpice

View Simulation Output File.

```
**** SMALL-SIGNAL CHARACTERISTICS 
     V(R_Rf)/V/V = 6.000E-01INPUT RESISTANCE AT V_Vs = 1.200E+04
     OUTPUT RESISTANCE AT V(R_Rf) = 4.500E+03
```
The input resistance is $Req = 12 k\Omega$.

PROBLEM 2.70

The wye-connected resistors R_a, R_b, and R_c can be transformed to delta connected resistors R₁, R2, and R3.

$$
R = \frac{R_a R_b + R_b R_c + R_a R_c}{R_c} = \frac{3 \times 4 + 4 \times 2 + 3 \times 2}{2} k = \frac{26}{2} k = 13 k\Omega
$$

\n
$$
R = \frac{R_a R_b + R_b R_c + R_a R_c}{R_a} = \frac{3 \times 4 + 4 \times 2 + 3 \times 2}{3} k = \frac{26}{3} k = 8.6667 k\Omega
$$

\n
$$
R = \frac{R_a R_b + R_b R_c + R_a R_c}{R_b} = \frac{3 \times 4 + 4 \times 2 + 3 \times 2}{4} k = \frac{26}{4} k = 6.5 k\Omega
$$

The circuit shown in Figure P2.70 can be redrawn as that shown below.

Notice that

R³ || R^d = 1.5294 kΩ, R² || R^e = 3.1707 kΩ

Application of voltage divider rule yields

$$
V_o = V_s \times \frac{R_2 || R_e}{\frac{R}{3d2e} || R + R || R} = 9V \times \frac{3.1707}{1.5294 + 3.1707} = 6.0714V
$$

PROBLEM 2.71

Resistors R1, R2, and R³ are connected in delta. These three resistors can be transformed to wye configuration with resistors R_a, R_b, and R_c using

Substituting the values, we obtain

 R_1R_3 4×3 12 4 *R_a* = $\frac{R+R+R}{1^2}$ = $\frac{4+2+3}{3}$ = $\frac{9}{9}$ = 3 k Ω = 1.3333*k*Ω

$$
R_b = \frac{R_1 R_2}{R_1 + R_2 + R_3} = \frac{4 \times 2}{4 + 2 + 3} = \frac{8}{9} k \Omega = 0.8889 k \Omega
$$

$$
R_c = \frac{R_2 R_3}{R_1 + R_2 + R_3} = \frac{2 \times 3}{4 + 2 + 3} = \frac{6}{9} k \Omega = 0.6667 k \Omega
$$

The circuit shown in Figure P2.70 can be redrawn as that shown below.

Let

R₁₀ = R_b + R₄ = 2.8889 kΩ
R₁₁ = R_c + R₅ = 6.6667 kΩ
R₁₂ = R₁₀ || R₁₁ =
$$
\frac{R_{10} \times R_{11}}{R_{10} + R_{11}}
$$
 = 2.0115kΩ

 V_3 = voltage across R₁₀ and R₁₁.

Application of voltage divider rule yields

$$
R_{12} = V_s \times \overline{R + R_{12}} = 9V \times \overline{1.3333 + 2.0115} = 7.2222V
$$

$$
V=V \times \underbrace{R_4}_{1} = 7.2222V \times \underbrace{2.8889}_{2.8889} = 5V
$$

$$
V=V \times \underbrace{R_5}_{3} = 7.2222V \times \underbrace{6.6667}_{6.6667} = 6.5V
$$

PROBLEM 2.72

Resistors R₁, R₂, and R₃ are connected in delta. These three resistors can be transformed to wye configuration with resistors R_a , R_b , and R_c using

Substituting the values, we obtain

$$
R_{a} = \frac{RR}{R+R+R}
$$
\n
$$
R_{b} = \frac{RR+RR+R}{R+R+R}
$$
\n
$$
R_{b} = \frac{RR+RR+R}{R+R+R}
$$
\n
$$
R_{c} = \frac{R_{c}RR+RR}{R+R+R}
$$
\n
$$
R_{c} = \frac{1}{R+R+R}
$$
\n
$$
R_{c} = \frac{1}{R+R+R}
$$
\n
$$
R_{c} = \frac{1}{R+R+R}
$$
\n
$$
R_{c} = 5 + 2 + 2 = 9k\Omega = 0.4444k\Omega
$$

The circuit shown in Figure P2.70 can be redrawn as that shown below.

This circuit can be redrawn as

Notice that

 $R_g = R_4 + R_a = 5.1111~k\Omega$ $R_d = R_5 = 3 k\Omega$ $R_{e}=R_{6}=2~k\Omega$ $R_f = R_b = 1.1111 \text{ k}\Omega$ $R_i = R_7 + R_c = 3.4444 k\Omega$

Converting the wye configuration R_d, R_e, R_f to delta configuration, we obtain

$$
R_{11} = \frac{R_d R_e + R_e R_f + R_d R_f}{R_f} = \frac{3 \times 2 + 2 \times 1.1111 + 3 \times 1.1111}{1.1111} k = 10.4 k\Omega
$$

\n
$$
R_{21} = \frac{R_d R_e + R_e R_f + R_d R_f}{R_d} = \frac{3 \times 2 + 2 \times 1.1111 + 3 \times 1.1111}{3} k = 3.8519 k\Omega
$$

\n
$$
R_{31} = \frac{R_d R_e + R_e R_f + R_d R_f}{R_e} = \frac{3 \times 2 + 2 \times 1.1111 + 3 \times 1.1111}{2} k = 5.7778 k\Omega
$$

The circuit with R11, R21, and R³¹ is shown below.

Let $R_{51} = R_g || R_{31}$ and $R_{52} = R_i || R_{21}$. Then, we have

$$
R_{51} = \frac{R_g \times R_{31}}{R + R_{31}} = \frac{5.1111 \times 5.7778}{5.1111 + 5.7778} k = 2.712k\Omega
$$

$$
R_{52} = \frac{R_i \times R_{21}}{R + R_{21}} = \frac{3.4444 \times 3.8519}{3.4444 + 3.8519} k = 1.8184 k\Omega
$$

Application of voltage divider rule yields

$$
\frac{R}{V_2 = V_s \times \frac{R}{R} + R} = 10V \times \frac{1.8184}{2.712 + 1.8184} = 4.0137V
$$

Application of voltage divider rule yields

$$
V_1 = V_2 + (V_s - V_2) \times \frac{R_a}{R + R} = 4.0137V + 5.9863V \times \frac{1.1111}{S_{1,1111}} = 5.3151V
$$