Solution Manual for Electronics A Physical Approach 1st Edition by Snoke ISBN 03215513389780321551337

Full link

download
Solution Manual https://testbankpack.com/p/solution-manual-for-electronics-a-physical-approach-1st-edition-by-snoke-isbn-0321551338-9780321551337/

Chapter 2 Exercises

2.1

The electric eld outside a charged sphere is the same as for a point source,

$$
\mathrm{E}(\mathrm{r})=\frac{\mathrm{Q}}{4 \mathrm{or}^{2}} ;
$$

where Q is the charge on the inner surface of radius a . The potential drop is the integral

$$
\mathrm{V}=\quad \mathrm{Zb}^{\mathrm{a}} \frac{\mathrm{Q}}{4 \mathrm{or}^{2}} \mathrm{dr}=\frac{\mathrm{Q}}{40} \quad \frac{1}{\mathrm{a}} \frac{1}{\mathrm{~b}}:
$$

The capacitance is therefore

$$
\mathrm{C}=\frac{\mathrm{Q}}{\mathrm{~V}}=40 \frac{\mathrm{ab}}{\mathrm{~b} a \mathrm{a}}
$$

This is inversely proportional to the resistance found in Exercise 1.4.
2.2

The planar capacitor formula is

$$
\mathrm{C}=\mathrm{A}_{\mathrm{d}^{0}}:
$$

Solving for A,

$$
\mathrm{A}=\frac{\mathrm{Cd}}{0}=\frac{(1 \mathrm{~F})\left(10{ }^{9} \mathrm{~m}\right)}{10\left(8: 8510^{12} \mathrm{C}^{2}=\mathrm{N}^{2} \mathrm{~m}^{2}\right)}-1: 1 \mathrm{~m}^{2}:
$$

2.3

The solenoid inductor formula is

$$
\mathrm{L}=\mathrm{A}_{0} \mathrm{~N}_{2}: 1
$$

$\stackrel{2}{{ }^{2}} \stackrel{2}{2}\left(5 \mathrm{~cm}^{2}\right)=76 \mathrm{~cm}^{2} \quad=7: 6 \quad 103 \mathrm{~m}^{2}$. The density of coils is $\mathrm{N}=1$ (6 4$)=(: 05)(2(: 05 \mathrm{~m}))=2: 5 \quad 10 / \mathrm{m}$.

Solving for 1 ,

$$
1=\frac{L}{A_{0}(N=1)^{2}}=\frac{1 H}{\left(7: 6 \quad 10^{3} \mathrm{~m}^{2}\right)\left(4 \quad 10^{7} \mathrm{~N}=\mathrm{A}^{2}\right)\left(2: 5 \quad 10^{4}=\mathrm{m}\right)^{2}}=17 \mathrm{~cm}:
$$

2.4

Integrate the ux over a rectangular section between the wires of length 1 . The magnetic eld from a wire is

$$
\mathrm{B}=2^{\frac{-\mathrm{I}}{} \underline{\mathrm{I}}} \text { : }
$$

The ux from one wire is

$$
=1^{\mathrm{Z}_{\mathrm{a}}} \underset{0}{\mathrm{I}} \underset{2 \mathrm{dr}=0}{\mathrm{I}}{ }^{\mathrm{Il}} \mathrm{ln}(\mathrm{a}=\mathrm{b}):
$$

The second wire contributes
$u x$ in the same direction, so the total $u x$ is

$$
\text { tot }={ }_{0} \mathrm{II}{ }^{\ln (\mathrm{b}=\mathrm{a}):}
$$

The voltage drop is

$$
V={ }^{@} @ t^{t o t}=-{ }_{0}^{1} \ln (\mathrm{a}=\mathrm{b}){ }^{@ \mathrm{I}_{@ \mathrm{t}}} \text { : }
$$

Therefore

$$
\mathrm{L}={ }^{0} \mathrm{l}{ }^{1} \ln (\mathrm{a}=\mathrm{b}):
$$

[Note: Technically we should account for the magnetic eld inside each wire. The current inside the radius r is $\operatorname{Ir}^{2}=b^{2}$. $B(2 r)=0 \operatorname{Ir}^{2}=b^{2}$, so

$$
\mathrm{B}=\underline{0} \underline{\underline{\mathrm{rI}}} \frac{\underline{2}}{\mathrm{~b}^{2}}
$$

inside the wire. The integral of the
ux is inside the wire is

$$
=1 Z_{0} \quad \frac{{ }^{\mathrm{b}}{ }_{0} \mathrm{rI}}{2 \mathrm{~b}^{2}}=1 \frac{0 \mathrm{I}}{4}:
$$

The contribution to the inductance L from both wires is then

$$
L^{0}=\frac{0 \underline{L}}{2}:
$$

which implies $\mathrm{L}=\mathrm{L}^{0}=2 \ln (\mathrm{a}=\mathrm{b})$, which means the eld inside the wire is negligible if a

The Biot-Savart law is

$$
\mathrm{dB} \sim(\sim \mathrm{r})=\frac{0}{4} \frac{\tilde{\mathrm{Id} 1 \mathrm{R}} \sim^{\sim}}{\mathrm{R}^{3}}:
$$

For a loop of radius L centered at $(0,0)$, the unit vector along dl is

$$
=x^{\wedge} \sin +y^{\wedge} \cos :
$$

The distance from a point of the circle to a point r on the x-axis is

$$
\mathrm{R}=\mathrm{jL}(\cos ; \sin) \quad(\mathrm{r} ; 0) \mathrm{j}=\mathrm{q}(\mathrm{~L} \cos \mathrm{r})^{2}+\mathrm{L}^{2} \sin ^{2}
$$

The direction of R is

$$
\hat{\mathrm{R}}=\frac{\mathrm{L}(\cos ; \sin) \quad(\mathrm{r} ; 0)}{\mathrm{R}}=\frac{1}{\mathrm{R}}\left(\wedge^{\wedge} \mathrm{x}(\mathrm{~L} \cos \quad \mathrm{r})+\mathrm{yL}^{\wedge} \sin \right):
$$

The cross product is

$$
\begin{array}{lll}
\wedge & \wedge & \frac{\mathrm{Z}^{\wedge}}{\mathrm{R}}= \\
\mathrm{R}(\mathrm{r} \cos & \mathrm{L}):
\end{array}
$$

The integral of the Biot-Savart element is then

$$
\mathrm{B}^{\sim}=\frac{0 \mathrm{Iz}^{\wedge}}{4} \mathrm{Z}^{2} \frac{\mathrm{r} \cos \mathrm{~L}}{\operatorname{Ld}\left[(\mathrm{~L} \cos \quad \mathrm{r})^{2}+\mathrm{L}^{2} \sin ^{2}\right]^{3=2}}
$$

This function involves elliptic integrals. Doing it numerically for $\mathrm{r}=0$ (the center of the loop), gives

$$
\sim \frac{{ }_{0}^{\mathrm{IZ}}}{\mathrm{~B}} \mathrm{~B}^{\wedge} ;
$$

while at $\mathrm{r}=\mathrm{L}=2$, it is

$$
\sim \quad \frac{\mathrm{IZ}^{\wedge}}{\sim} \quad \frac{\mathrm{I}^{\wedge}}{}(3: 91=) 4 \mathrm{~L}: ~
$$

2.6

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{IR}=\mathrm{RC} \quad \frac{@}{@ \mathrm{t}}\left(\mathrm{~V} \quad \mathrm{~V}_{\mathrm{o}}\right)=\mathrm{RC} \frac{@ \mathrm{~V}_{0}}{@ \mathrm{t}}:
$$

This has the solution

$$
\mathrm{V}_{\mathrm{o}}(\mathrm{t})=\mathrm{Ve} \quad \mathrm{t}=\mathrm{RC}:
$$

2.7

Kirchho :

$$
0=R C \quad \frac{@ V_{0}}{@ t}+V_{o}:
$$

This has the general solution

$$
\mathrm{V}_{\mathrm{o}}(\mathrm{t})=\mathrm{V}_{1} \mathrm{e}^{\mathrm{t}=\mathrm{RC}}+\mathrm{V}_{2}:
$$

Setting this to V at $\mathrm{t}=\mathrm{t} 0$ gives

$$
V=V_{1} e_{0}^{t}=R C+V_{2}:
$$

The current through the capacitor is

$$
\begin{aligned}
& I(t 0)=\underset{t_{0} 0=R C}{\underline{V}}=C\left(V_{1} e^{t=R C}+V_{2} R\right) t=t 0 \quad-V_{1} \quad{ }^{t 0}=R C \\
&
\end{aligned}
$$

which implies $\mathrm{V}_{1}=\mathrm{Ve}$. . Plugging this into the above gives $\mathrm{V}_{2}=0$, so the solution is

$$
\mathrm{V}_{\mathrm{o}}(\mathrm{t})=\mathrm{Ve}^{\left(\mathrm{t}_{\mathrm{b}}\right)=\mathrm{RC}}:
$$

This is decay to zero with the same time constant RC.

2.8

The integrator circuit of Figure 2.16(a) is governed by equation (2.4.13),

$$
\mathrm{V}_{\mathrm{o}}+\mathrm{RCV}-_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}}:
$$

For $V_{o}=\sin !t$, this implies

$$
\sin !t+!R C \cos !t=V_{i}:
$$

When !RC 1, the sin !t term is negligible, and V_{i} is proportional to $\mathrm{V}^{-}{ }_{\mathrm{o}}$, i.e., V_{o} is proportional to the antiderivative of V_{i}.

The di erentiator circuit of Figure 2.16(b) is governed by equation (2.4.17), \mathbf{V}
For $\mathrm{V}_{\mathrm{o}}=\sin !\mathrm{t}$, this implies

$$
!\cos !t+\mathrm{RC}^{1} \sin !\mathrm{t}=\mathrm{V}^{-} \mathrm{i}:
$$

When !RC 1 , the \cos !t term is negligible, and $\mathrm{V}^{-}{ }_{\mathrm{i}}$ is proportional to V_{o}, i.e., V_{o} is proportional to the derivative of V_{i}.
2.9

This is the circuit shown in Fig. 2.18(b). We have

2.10

$$
\frac{V_{0}}{V_{i}}=-\frac{Z_{L}}{R+Z_{L}}=-\frac{i!L}{R+i!L}
$$

This is a high-pass lter.
2.11 From Exercise 2.9, we have

Solve for !:

a)

$$
\begin{array}{r}
3 \mathrm{~dB}=10 \log _{10} \mathrm{j} \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{ij}}{ }^{2} \\
\mathrm{j}_{\mathrm{o}}=\mathrm{V}_{\mathrm{ij}}{ }^{2}=10: 3=0: 5!!=1=\mathrm{RC}
\end{array}
$$

b)

$$
\mathrm{j} \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{ij}}{ }^{2}=10^{1}=0: 1!!=1=3 \mathrm{RC}
$$

c)

$$
\mathrm{j} \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{ij}}{ }^{2}=10^{2}=0: 01!!=1=10 \mathrm{RC}
$$

2.12
a)

$$
\begin{gathered}
10 \mathrm{dBm}=20 \log _{10}\left(\mathrm{~V}=\mathrm{V}_{0}\right) \\
\mathrm{V}_{0}=10_{1=2} \\
\mathrm{~V}=3: 1 \mathrm{~V}_{0}=1 \mathrm{~V} \\
\mathrm{P}=\frac{\mathrm{V}^{2}}{2 \mathrm{R}}=10 \mathrm{~mW}:
\end{gathered}
$$

We could also have done this just by noting that 10 dBm is 10 times greater than $0 \mathrm{dBm} . \mathrm{b}$)

$$
\begin{gathered}
35 \mathrm{~dB}=20 \log _{10} \mathrm{~V}_{2}=\mathrm{V}_{1} \\
\underline{\mathrm{~V}}_{2}=10_{35=20}=56 \\
\mathrm{~V}_{1}
\end{gathered}
$$

2.13

$$
\sin !t=\frac{\mathrm{e}^{\mathrm{i}!\mathrm{t}} \mathrm{e}^{\mathrm{i}!\mathrm{t}}}{2 \mathrm{i}}
$$

From (2.7.11),

$$
\mathrm{F}\left(!^{0}\right)=2 \quad \frac{\left(!^{0}\right.}{2 \mathrm{i}} \frac{!)\left(!^{0}+!\right)}{2}
$$

2.14
$f(t)$ is given by (note typo in book)

$$
\mathrm{f}(\mathrm{t})=\begin{aligned}
& 0 ; \quad(\mathrm{n} \quad 1=2) \mathrm{T}<\mathrm{t}<\mathrm{nT}: \\
& 1 ; \\
& (\mathrm{n} 1) \mathrm{T}<\mathrm{t}<(\mathrm{n} 1=2) \mathrm{T}
\end{aligned}
$$

$$
\begin{aligned}
& c_{n}=\frac{1}{\mathrm{~T}} \mathrm{Z}_{\mathrm{T}=2 \mathrm{e}}^{\mathrm{T}} \quad \mathrm{i} 2 \mathrm{nt}=\mathrm{T} d t \\
& =\frac{e^{\mathrm{i} 2 \mathrm{n}} \mathrm{e}_{\mathrm{in}}}{\mathrm{i} 2 \mathrm{n}} \\
& =\frac{e^{3 i n=2(e}}{l} \frac{i n=2}{i 2 n} \frac{\left.e_{i n=2}\right)}{n}=\frac{1}{n} e^{3 i n=2} \sin (n=2)
\end{aligned}
$$

The sum of the terms up through $\mathrm{n}=7$ (rst
ve nonzero terms) is shown in Figure 6.

Figure 6: Fourier sum for Exercise 2.14.

2.15

The Fourier transform is

$$
\mathrm{F}(!)={ }^{\mathrm{Z}} \quad{ }_{1} \mathrm{f}(\mathrm{t}) \mathrm{e}^{\mathrm{i}!\mathrm{t}} \mathrm{dt}:
$$

$f(t)$ is given by

$$
\mathrm{f}(\mathrm{t})=\begin{aligned}
& \left(\begin{array}{l}
0 ; \\
0 ;
\end{array} \quad(\mathrm{n} 1) 1=2\right) \mathrm{T}<\mathrm{t}<\mathrm{nT}: \\
& 1 ;(\mathrm{n} \quad \mathrm{~T}<\mathrm{t}<\mathrm{n} \quad 1=2) \mathrm{T}
\end{aligned}
$$

The transform is

The sum will be equal to in nity for $!=2 \mathrm{n}^{0}=\mathrm{T}$ and zero otherwise (this is equivalent to a -function). Thus we have

This is the same as the result of Exercise 2.14.
2.16

The Fourier transform is

$$
F(!)=Z_{1} \quad(t) e^{\text {st }} \mathrm{Z}_{1} \quad \mathrm{i}^{\mathrm{i}!\mathrm{dt}=Z^{1}} \begin{gathered}
\frac{1}{0} \\
\mathrm{e}^{\text {ste }}{ }^{\mathrm{i}!\mathrm{t}} \mathrm{dt}= \\
\mathrm{s} \quad \mathrm{i}! \\
=!\text { is }
\end{gathered}
$$

The response function (2.5.7) is
and the product is
The reverse Fourier transform is
$f(t)=2$

Setting s $=0$ gives

$$
\mathrm{f}(\mathrm{t})=1 \mathrm{e}_{\mathrm{t}=\mathrm{RC}} \text { : }
$$

2.17

Loops:
$\mathrm{V}_{\mathrm{i}}=\mathrm{IR}+\mathrm{I}_{\mathrm{C}} \mathrm{Z}_{\mathrm{C}}$
$\mathrm{V}_{\mathrm{i}}=\mathrm{IR}+\mathrm{I}_{\mathrm{L}} \mathrm{Z}_{\mathrm{L}}$
Node:
$\mathrm{I}=\mathrm{I} \mathrm{C}+\mathrm{IL}$
Solution:

$$
\begin{gathered}
I_{C}=\frac{Z_{L}}{R_{C}+R Z_{L}+Z_{C} Z_{L}} V_{i}=\frac{i!L}{i R=!C+i!R L+L=C} V_{i} \\
V_{C}=I_{C} Z_{C}=\frac{L=C}{i R=!C+i!R L+L=C} V_{i}
\end{gathered}
$$

2.18
(2.8.2) is

$$
\frac{V_{0}}{V_{i}}=\frac{R}{R \quad} \frac{R}{i=!C+i!L}
$$

(2.8.12) is

$$
\overline{\mathrm{V}_{\mathrm{i}}}=\overline{\mathrm{IR}}+\frac{\mathrm{I}}{\mathrm{C}}+\mathrm{LI}:
$$

For $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}(0) \mathrm{e}^{\mathrm{i}!t}$ and $\mathrm{I}=\mathrm{I}_{0} \mathrm{e}^{\mathrm{i}!t+}$, this becomes

$$
i!V_{i}(0) e^{i!t}=\mathrm{i}!I_{0 R e} e^{\mathrm{i}(!t+)}+\frac{\mathrm{I}_{0}}{\mathrm{C}} \mathrm{e}^{\mathrm{i}((t+)} \mathrm{L}!^{2} \mathrm{I}_{0 e^{\mathrm{i}(t+)}}:
$$

The output V_{o} is across R , so $\mathrm{V}_{\mathrm{O}}=\mathrm{I}_{0} \mathrm{Re}^{\mathrm{i}(!t+)}$. The above equation therefore becomes

$$
{\mathrm{i}: \mathrm{V}_{\mathrm{i}}=: \mathrm{IV} \mathrm{v}_{\mathrm{o}}+}_{\frac{\mathrm{V}_{0}}{\mathrm{RC}} \quad \frac{\mathrm{~L}}{\mathrm{R}}{ }_{!\mathrm{V}_{\mathrm{o}}:} .}
$$

Solving for $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}}$ gives

$$
\frac{V_{0}}{V_{i}}=\overline{i!+1=R C}-\frac{i!}{!^{2} L=R}
$$

which is the same as (2.8.2).

We want a high-pass lter like that shown in Fig. 2.18(b), which has response (see Exercise 2.9)

We solve for C :

$$
\stackrel{\substack{\mathrm{C}=\mathrm{RS} \\!}}{1} \mathrm{~T}^{2(100 \mathrm{~Hz})}{ }^{\mathrm{q}} \xrightarrow{1=(: 95)^{2}} \quad 1=0: 6 \mathrm{~F}:
$$

2.20

Solve for 10% value:

$$
\mathrm{t}_{10}=\mathrm{e}^{\mathrm{t}_{\mathrm{t}_{10}=2_{2}}=: 1} \frac{2^{2} \ln (0: 1):}{}
$$

For 90\% value,

$$
\mathrm{t}_{90}=\overline{2^{2} \ln (0: 9)}
$$

On the positive side,

$$
\mathrm{t}_{10} \quad \mathrm{t}_{90}=\mathrm{q} \quad 2^{2} \ln (0: 9) \quad \text { q } \quad 2^{2} \ln (0: 1)=\mathrm{p}_{2\left(^{\mathrm{q}} \quad \ln (0: 1) \quad \text { q } \quad \ln (0: 9)\right)=1: 2 \mathrm{p} 2: ~}^{\text {2 }}
$$

2.21

The electric eld is purely radial. For charge $+Q$ on the inner sphere and Q on the outer sphere, the electric eld is

$$
\mathrm{E}(\mathrm{r})=\frac{\mathrm{Q}}{4 \mathrm{or}^{2}}
$$

and the potential drop is

$$
V(r)=Z_{r_{1} E(r) d r}^{\mathrm{r}_{2}}=\frac{Q}{40 \mathrm{r} 1} \frac{Q}{4 \text { or2 }:}
$$

Comparing to the de nition $\mathrm{Q}=\mathrm{C} \quad \mathrm{V}$, this gives

$$
\mathrm{C}=4 \begin{array}{cccc}
& 1 & 1 & 1 \\
& 0 & \overline{\mathrm{r}_{1}} & \overline{\mathrm{r}_{2}}
\end{array}
$$

2.22

The electric eld from a line charge is found from Gauss's law,

$$
\mathrm{E}=\square ;
$$

$$
\mathrm{V}=\quad \mathrm{Zb} \mathrm{E}(\mathrm{r}) \mathrm{dr}=\frac{\mathrm{Q}=1}{20} \ln (\mathrm{a}=\mathrm{b}):
$$

By superposition, the other wire contributes the same, so we multiply by 2 . This implies

$\mathrm{C}=$

\qquad

$$
\ln (\mathrm{a}=\mathrm{b})
$$

2.23

$$
\begin{aligned}
& \mathrm{C}=\frac{\mathrm{A}_{0}}{\mathrm{~d}}=\stackrel{\mathrm{lw}_{0}}{\mathrm{~d}} \\
& \mathrm{~L}=\frac{\text { old }}{\mathrm{w}}
\end{aligned}
$$

2.24

The high-pass lter of Fig. 2.18(b) has response (see Exercise 2.9)

$$
\frac{V_{0}}{V_{i}}=\frac{R}{R i=!C}=\frac{R(R+i=!C)}{R^{2}+1=!^{2} C^{2}}:
$$

From (2.5.9),

$$
\begin{aligned}
\tan & =\frac{\operatorname{Im} V_{0}=V_{i}}{\operatorname{Re} V_{0}=V_{i}} \\
& =\frac{1=!C}{R}
\end{aligned}
$$

At high frequency, $=0$. At low frequency, $==2$.

$$
\frac{V_{0}}{V_{i}}=\frac{i!L}{i!L+R}=\frac{i!L=R}{i!L=R+1}:
$$

Figure ?? shows the plot with frequency in units of $\mathrm{R}=\mathrm{L}$.

Figure 7: Response function for Exercise 2.25.
2.26
$\mathrm{j} \mathrm{V}_{\mathrm{oj}}{ }^{2}$ is increased by $(3=2)^{2}=2: 25$.
$10\left(\log _{10} 2: 25\right)=3: 52 \mathrm{~dB}$
2.27

From Exercises 2.9 and 2.18:

Solving for !,

$$
\begin{aligned}
& \mathrm{V}_{0}{ }^{2} \quad 1 \\
& !={ }_{\mathrm{RC}} \mathrm{jV}_{\mathrm{o}}=\mathrm{V}_{\mathrm{ij} 2}{ }^{1!} \quad 1=2=\mathrm{RC} \\
& \underline{1} \quad \underline{1} \quad \text { 0:1 }
\end{aligned}
$$

2.28

The low-pass lter response (2.5.7) is

$$
\frac{V_{0}}{V_{i}}=\frac{i=!C}{R \quad i=!C}:
$$

Power response is

$$
V_{0}{ }^{2} \quad \begin{aligned}
& i=!\mathrm{C} \quad i=!\mathrm{C} \\
& \\
& \\
& \\
&
\end{aligned}
$$

Solve for !:

$$
1^{\mathrm{s}}-1
$$

10% :
$!=\frac{3}{\mathrm{RC}}$:
90\%:
$!=3 R C^{1}$:
10-90 range:

$$
!={ }^{2} \mathrm{RC}{ }^{: 667}:
$$

2.29

$$
\begin{aligned}
& \mathrm{dB}=20 \log _{10} \mathrm{~V}_{2}=\mathrm{V}_{1} \\
& \underline{\mathrm{~V}}_{1}=10{ }_{\mathrm{dB}=20}=10^{13=20}=4: 5
\end{aligned}
$$

The amplitude signal-to-noise ratio increases by a factor of 4.5 , i.e. from 2 to 9 .
It is also common to talk in terms of the signal-to-noise power ratio.
2.30

The circuit is shown in Figure 8.

Figure 8: Circuit for Exercise 2.30.

Loops:
$\mathrm{V}_{\mathrm{i}}=\mathrm{I}_{1} \mathrm{R}_{1}+\mathrm{ICl}_{\mathrm{C}} \mathrm{Z}_{\mathrm{C} 1}$
$\mathrm{~V}_{\mathrm{i}}=\mathrm{I}_{1} \mathrm{R}_{1}+\mathrm{I}_{2} \mathrm{R}_{2}+\mathrm{V}_{\mathrm{o}}$
$\mathrm{V}_{\mathrm{o}}=\mathrm{I}_{2} \mathrm{Z}_{\mathrm{C} 2}$
Node:
$\mathrm{I}_{1}=\mathrm{I}_{\mathrm{C}} 1+\mathrm{I}_{2}$
Set $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}, \mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$. Solution:

$$
\mathrm{V}^{\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{i}}}=\frac{\mathrm{Zc}^{2}}{\mathrm{R}^{2}+3 \mathrm{RZC}+\mathrm{ZC}^{2}}:}
$$

In the Figure 9, the lower curve is this response function, while the upper curve is the single low-pass response, from Exercise 2.27.

Figure 9: Response functions for Exercise 2.30.
2.31

Assuming perfect detector; no current ows into output; I_{o} is the current owing from top to bottom in the right side of the circuit.

Loops:

$$
\begin{aligned}
& \mathrm{V}=\mathrm{I} \quad \mathrm{Z}+\mathrm{I} \xrightarrow{-} \begin{array}{l}
\mathrm{R} \\
\mathrm{i} \quad \mathrm{C} 1 \quad \mathrm{c}
\end{array}
\end{aligned}
$$

R3 2
$V_{i}=I_{R 1} R+I_{C 3} \frac{Z_{C}}{2}$
$\mathrm{V}_{\mathrm{i}}=\mathrm{I}_{\mathrm{R} I} \mathrm{R}+\mathrm{I}_{\mathrm{o}} \mathrm{R}+\mathrm{V}_{\mathrm{o}}$
$\mathrm{V}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}} \mathrm{Z}_{\mathrm{C}}+\mathrm{I}_{\mathrm{R} 3} \frac{\mathrm{R}}{2}$
Nodes:
$\mathrm{I}_{\mathrm{R} 1}=\mathrm{I}_{\mathrm{C} 3}+\mathrm{I}_{\mathrm{o}}$
$\mathrm{I}_{\mathrm{C} 1}+\mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{R} 3}$
Solution:

$$
\frac{V_{0}}{V_{i}}=\frac{\left(1+C^{2} R^{2} \quad!^{2}\right)}{14 i C R!+C^{2} R^{2}!^{2}}
$$

This is plotted in Figure 10. When $!=1=R C$, this equals 0 . When $!!0$ or $!!1$, it approaches unity.

Figure 10: Response function for Exercise 2.31.

2.32

The circuit in the book is missing a 50-resistor between V_{i} and the rest of the circuit|as drawn, the circuit will give $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}}$ for all inputs. Putting a resistor there gives

Loops:
$\mathrm{V}_{\mathrm{i}}=\mathrm{IR}+\mathrm{V}_{\mathrm{O}}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{I}_{1}\left(\mathrm{Z}_{\mathrm{C}} 1+\mathrm{Z}_{\mathrm{L} 1}\right)$

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{I}_{2}\left(\mathrm{Z}_{\mathrm{C} 2}+\mathrm{Z}_{\mathrm{L} 2}\right)
$$

Node:
$\mathrm{I}=\mathrm{I} 1+\mathrm{I} 2$
Solution:

This is a double notch lter, with zeroes where the two terms in the numerator vanish.
Figure 11 shows a plot for the values given:

Figure 11: Double notch response function, for Exercise 2.32.
2.33
a) Capacitor relation:

$$
\mathrm{I}=\mathrm{C} \frac{@ \mathrm{~V}_{\mathrm{c}}}{@ \mathrm{t}}
$$

Loops:
$\mathrm{V}_{\mathrm{S}}=\mathrm{I}_{1} \mathrm{R}_{1}+\mathrm{I}_{2} \mathrm{R}_{2}$
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{o}}!\mathrm{V}^{-}{ }_{i}=\mathrm{I}^{\mathrm{C}}+\mathrm{V}^{-}{ }_{o}$
$\mathrm{V}_{\mathrm{o}}=\mathrm{I}_{2} \mathrm{R}_{2}$
These become

$$
\begin{aligned}
& V_{s}=I_{1} R_{1}+I_{2} R_{2} \\
& i!V_{1} e^{i!t}=I^{C}+i!V_{A C} e^{i(!t+)} \\
& V_{D C}+V_{A C} e^{i(!t+)}=I_{2} R_{2}
\end{aligned}
$$

Node:
$\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{1}=\mathrm{I}_{2}$.

$$
\text { Write } \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{DC}}+\mathrm{I}_{1 \mathrm{AC}} \text { and } \mathrm{I}_{2}=\mathrm{I}_{2} \mathrm{DC} \quad+\mathrm{I}_{2 \mathrm{AC}}
$$

through the capacitor), and set DC terms equal

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}=\mathrm{I}_{1 \mathrm{DC}} \mathrm{R}_{1}+\mathrm{I}_{2 \mathrm{DC}} \mathrm{R}_{2} \\
& 0=\mathrm{I} \quad \mathrm{R}+\mathrm{I} \text { R } \\
& \text { 1AC } 1 \quad 2 \mathrm{AC} 2 \\
& \mathrm{i}!\mathrm{V}_{1} \mathrm{e}^{\mathrm{i}!\mathrm{t}}=\mathrm{I}^{\mathrm{C}}+\mathrm{i}!\mathrm{VACe}^{\mathrm{i}(!++)} \\
& \mathrm{V}_{\mathrm{DC}}=\mathrm{I}_{2 \mathrm{DC}} \mathrm{R}_{2} \\
& V_{A C} \mathrm{e}^{\mathrm{i}(!t+)}=\mathrm{I} 2 \mathrm{AC} \text { R2 } \\
& \mathrm{I}_{\mathrm{C}}+\mathrm{I}_{1 \mathrm{AC}}=\mathrm{I}_{2 \mathrm{AC}} \\
& I_{1 D C}=I_{2 D C}
\end{aligned}
$$

We solve these for $\mathrm{I}_{C} ; \mathrm{I}_{1 \mathrm{DC}} ; \mathrm{I}_{1 \mathrm{AC}} ; \mathrm{I}_{2} \mathrm{DC} ; \mathrm{I}_{2} \mathrm{AC} ; \mathrm{V}_{\mathrm{DC}} ;$ and $\mathrm{V}_{A C} \mathrm{e}^{\mathrm{i}}$, which gives

$$
\begin{gathered}
\mathrm{V}_{\mathrm{DC}}=\frac{\mathrm{R}_{2} \mathrm{~V}_{\mathrm{S}}}{\mathrm{R}_{1}+\mathrm{R}_{2}}= \\
\mathrm{V}_{\mathrm{AC}} \mathrm{e}^{\mathrm{i}}= \\
\frac{\mathrm{CR}_{1} \mathrm{R}_{2}!}{\mathrm{iR}_{1}} \mathrm{iR}_{2}+\mathrm{CR}_{1} \mathrm{R}_{2}! \\
\mathrm{v}_{1} \\
= \\
\mathrm{i}+\mathrm{CRe}!\mathrm{V}_{1}
\end{gathered}
$$

where

$$
\mathrm{R}_{\mathrm{e}}=\frac{-\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}:
$$

2.34

We want a low-pass lter that eliminates AC frequency of 60 Hz . We use the circuit shown in Fig. 2.18(a) with a polarized capacitor with the negative side grounded. Formula (2.5.11) gives us

$$
\mathrm{j} \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{ij}}{ }^{2}=\frac{1}{1+!^{2} \mathrm{R}^{2} \mathrm{C}^{2}}
$$

We would like low series R to prevent DC droop of the voltage supply. Pick $\mathrm{R}=1$, which is small compared to a typical 50 load impedance. Solve for C:

$$
\mathrm{C}=\frac{1 \mathrm{q}}{!\mathrm{R}} 1=\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{ij}} \mathrm{z}^{1}
$$

To eliminate 99% of the ripple, pick $\mathrm{j}_{\mathrm{o}}=\mathrm{V}_{\mathrm{ij}}{ }^{2}=: 01$. Setting $!=2(60 \mathrm{~Hz})=377 \mathrm{~s}^{1}$, we then have

$$
\mathrm{C}=\frac{1}{\frac{1}{\left(377 \mathrm{~s}^{1}\right)(50)} \mathrm{p}-} \quad 99=0: 00053 \mathrm{~F}=530 \mathrm{~F}:
$$

