Solution Manual for Elementary Geometry for College Students 6th Edition by Alexander Koeberlein ISBN 1285195698 9781285195698

Full link download Solution Manual:

https://testbankpack.com/p/solution-manual-forelementary-geometry-for-college-students-6thedition-by-alexander-koeberlein-isbn-1285195698-9781285195698/

Chapter 1 Line and Angle Relationships

SECTION 1.1: Sets, Statements, and Reasoning

- 1. a. Not a statement.
 - **b.** Statement; true
 - c. Statement; true
 - d. Statement; false
- 2. a. Statement; true
 - **b.** Not a statement.
 - c. Statement; false
 - d. Statement; false
- **3. a.** Christopher Columbus did not cross the Atlantic Ocean.
 - **b.** Some jokes are not funny.
- 4. a. Someone likes me.
 - **b.** Angle 1 is not a right angle.
- 5. Conditional
- 6. Conjunction
- 7. Simple
- 8. Disjunction
- 9. Simple
- 10. Conditional
- 11. H: You go to the game.
 - C: You will have a great time.

- **17.** First, write the statement in "If, then" form. If a figure is a square, then it is a rectangle.
 - H: A figure is a square.
 - C: It is a rectangle.
- 18. First, write the statement in "If, then" form. If angles are base angles, then they are congruent.
 - H: Angles are base angles of an isosceles triangle.
 - C: They are congruent.
- **19.** True
- **20.** True
- **21.** True
- 22. False
- 23. False
- **24.** True
- 25. Induction
- 26. Intuition
- 27. Deduction
- 28. Deduction
- 29. Intuition
- 30. Induction
- **31.** None
- 32. Intuition
- **33.** Angle 1 looks equal in measure to angle 2.

- **12.** H: Two chords of a circle have equal lengths.
 - C: The arcs of the chords are congruent.
- **13.** H: The diagonals of a parallelogram are perpendicular.
 - C: The parallelogram is a rhombus.

14. H:
$$\frac{a}{b} = \frac{c}{d} (b \neq 0, d \neq 0)$$

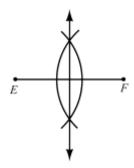
- C: $a \cdot d = b \cdot c$
- **15.** H: Two parallel lines are cut by a transversal.
 - C: Corresponding angles are congruent.
- 16. H: Two lines intersect.
 - C: Vertical angles are congruent.

- **34.** AM has the same length as MB.
- **35.** Three angles in one triangle are equal in measure to the three angles in the other triangle.
- **36.** The angles are not equal in measure.
- **37.** A Prisoner of Society might be nominated for an Academy Award.
- **38.** Andy is a rotten child.
- **39.** The instructor is a math teacher.
- **40.** Your friend likes fruit.
- **41.** Angles 1 and 2 are complementary.
- 42. Kathy Jones will be a success in life.
- **43.** Alex has a strange sense of humor.
- **44.** None
- **45.** None

- **46.** None
- **47.** June Jesse will be in the public eye.
- **48.** None
- **49.** Marilyn is a happy person.
- **50.** None
- **51.** Valid
- 52. Not valid
- 53. Not valid
- 54. Valid
- **55. a.** True
 - b. True
 - c. False
- **56. a.** False
 - b. False
- **57. a.** True
 - **b.** True

SECTION 1.2: Informal Geometry and Measurement

- 1. AB < CD
- **2.** m∠*ABC* < m∠*DEF*
- 3. Two; one
- **4.** No
- 5. One; none
- 6. Three
- 7. $\angle ABC$, $\angle ABD$, $\angle DBC$
- **8.** 23°, 90°, 110.5°
- 9. Yes; no; yes
- **10.** *A-X-B*
- **11.** ∠ABC , ∠CBA
- 12. Yes; yes
- 13. Yes; no
- **14.** a, d
- **15.** a, d


- **b.** $2\frac{1}{2}$
- **18. a.** 1.5
 - **b.** 5
- **19. a.** 40°
 - **b.** 50°
- **20. a.** 90°
 - **b.** 25°
- 21. Congruent; congruent
- 22. Equal; yes
- 23. Equal
- **24.** 2 inches
- **25.** No
- **26.** Yes
- **27.** Yes
- **28.** No
- 29. Congruent
- 30. Congruent
- **31.** \overline{MN} and \overline{QP}
- 32. Equal
- 33. \overline{AB}
- **34.** ∠*ABD*
- **35.** 22
- **36.** 14
- **37.** x + x + 3 = 21

$$2x = 18$$
$$x = 9$$

- **38.** x + y
- **39.** 124°
- **40.** 2x + x = 1803x = 180x = 60
 - $m \angle 1 = 120^{D}$
- **41.** 71°
- **42.** 34°
 - **16.** *R*; they are equal.

43.
$$x + 2x + 3 = 72$$

 $3x = 69$
 $x = 23$

44.
$$x + y$$

47.
$$x + y = 180$$

 $x - y = 24$

$$2x = 204$$
$$x = 102$$
$$y = 78$$

48.
$$x + y = 67$$

 $x - y = 17$
 $2x = 84$
 $x = 42$

$$y = 25$$

SECTION 1.3: Early Definitions and Postulates

- **1.** AC
- 2. Midpoint
- 3. $6.25 \text{ ft} \cdot 12 \text{ in./ft} = 75 \text{ in.}$
- **4.** 52 in. \div 12 in./ft = $4\frac{1}{3}$ ft or 4 ft 4 in.

5.
$$\frac{1}{2}$$
 m · 3.28 ft/m = 1.64 feet

7.
$$18 - 15 = 3 \text{ mi}$$

8.
$$300 + 450 + 600 = 1350$$
 ft
 1350 ft ÷ 15 ft/s = 90 s or 1 min 30 s

- 11. \widetilde{CD} means line CD;
 - CD means segment CD;
 - CD means the measure or length of CD;
 - \widetilde{CD} means ray CD with endpoint C.
- 12. a. No difference
 - b. No difference
 - c. No difference
 - **d.** CD is the ray starting at C and going to the

 \overline{DC} is starting at D and going to the left.

- **13. a.** *m* and *t*
 - **b.** m and p or p and t
- **14. a.** False
 - **b.** False
 - c. True
 - d. True
 - e. False

15.
$$2x + 1 = 3x - 2$$

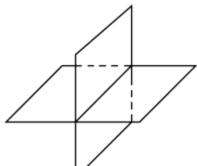
 $-x = -3$
 $x = 3$
 $AM = 7$


16.
$$2(x+1) = 3(x-2)$$

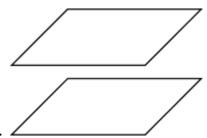
 $2x+2 = 3x-6$
 $-1x = -8$
 $x = 8$
 $AB = AM + MB$
 $AB = 18 + 18 = 36$

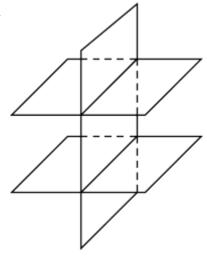
17.
$$2x + 1 + 3x = 6x - 4$$

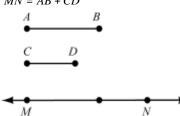
 $5x + 3 = 6x - 4$
 $-1x = -7$
 $x = 7$

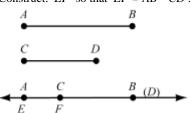

$$AB = 38$$

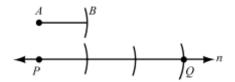
None


```
b. OA and OB (There are other
       possible
           a
           n
           \mathbf{S}
           \mathbf{w}
           e
20. \stackrel{\text{HJG}}{CD} lies on plane X.
```

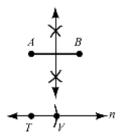




22. a.


c.


- 23. Planes M and N intersect at $\stackrel{\text{HJJ}}{AB}$.
- **24.** B
- **25.** *A*
- **26.** a. One
 - **b.** Infinite
 - c. One
 - d. None
- **27. a.** *C*
 - **b.** *C*
 - **c.** *H*
- 28. a. Equal
 - **b.** Equal
 - **c.** AC is twice DC.
- **29.** Given: \overline{AB} and \overline{CD} as shown (AB > CD)Construct \overline{MN} on line l so that MN = AB + CD

30. Given: \overline{AB} and \overline{CD} as shown (AB > CD)Construct: \overline{EF} so that EF = AB - CD.



31. Given: \overline{AB} as shown Construct: \overline{PQ} on line *n* so that PQ = 3(AB)

32. Given: \overline{AB} as shown

Construct: \overline{TV} on line *n* so that $TV = \frac{1}{2}(AB)$

- **33.** a. No
 - b. Yes
 - c. No
 - d. Yes
- **34.** A segment can be divided into 2^n congruent parts where $n \ge 1$.
- **35.** Six
- **36.** Four
- 37. Nothing
- 38. a. One
 - b. One
 - c. None
 - d. One
 - e. One
 - f. One
 - g. None
- **39.** a. Yes
 - b. Yes
 - c. No
- **40.** a. Yes
 - **b.** No
 - c. Yes
- **41.** $\frac{1}{3}a + \frac{1}{2}b \text{ or } \frac{2a+3b}{6}$

SECTION 1.4: Angles and Their Relationships

- 2. a. Obtuse
 - b. Straight
 - c. Acute
- 3. a. Complementary
 - b. Supplementary
- 4. a. Congruent
 - b. None
- 5. Adjacent
- 6. Vertical
- 7. Complementary (also adjacent)
- 8. Supplementary
- 9. Yes; No
- **10.** a. True
 - b. False
 - c. False
 - d. False
 - e. True
- 11. a. Obtuse
 - b. Straight
 - c. Acute
 - d. Obtuse
- **12.** B is not in the interior of $\angle FAE$; the Angle-Addition Postulate does not apply.
- 13. $m \angle FAC + m \angle CAD = 180$ $\angle FAC$ and $\angle CAD$ are supplementary.
- **14. a.** x + y = 180
 - **b.** x = y
- **15. a.** x + y = 90
 - **b.** x = y
- **16.** 62°
- **17.** 42°
- **18.** 2x + 9 + 3x 2 = 675x + 7 = 675x = 60x = 12

- 1. a. Acute
 - **b.** Right
 - c. Obtuse

19.
$$2x-10+x+6=4(x-6)$$

 $3x-4=4x-24$
 $20=x$
 $x=20$
 $m\angle RSV = 4(20-6) = 56^{0}$

20.
$$5(x+1)-3+4(x-2)+3=4(2x+3)-7$$

 $5x+5-3+4x-8+3=8x+12-7$
 $9x-3=8x+5$
 $x=8$
 $m \angle RSV = 4(2\cdot8+3)-7=69^{D}$

21.
$$\frac{x}{2} + \frac{x}{4} = 45$$

Multiply by LCD, 4

$$2x + x = 180$$

 $3x = 180$
 $x = 60$; m $\angle RST = 30$

22.
$$\frac{2x}{3} + \frac{x}{2} = 49$$

Multiply by LCD, 6

 $4x + 3x = 294$
 $7x = 294$
 $x = 42$; $m \angle TSV = \frac{x}{2} = 21$

$$x + y + 2x - 2y = 64$$

$$-1x + 3y = 0$$

$$3x - 1y = 64$$

$$-3x + 9y = 0$$

$$3x - y = 64$$

$$8y = 64$$

$$y = 8; x = 24$$

x + y = 2x - 2y

24.
$$2x + 3y = 3x - y + 2$$
$$2x + 3y + 3x - y + 2 = 80$$
$$-1x + 4y = 2$$
$$5x + 2y = 78$$
$$-5x + 20y = 10$$
$$\frac{5x + 2y = 78}{22y = 88}$$
$$y = 4; x = 14$$

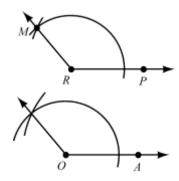
Chapter 1: Line and Angle Research

26.
$$x + y = 90$$
 $x = 12 + y$
 $x + y = 90$
 $x - y = 12$
 $2x = 102$
 $x = 51$
 $51 + y = 90$
 $y = 39$

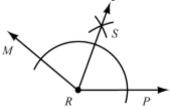
27. $x + y = 180$
 $x = 24 + 2y$
 $x + y = 180$
 $x - 2y = 24$
 $-2x + 2y = 360$
 $x - 2y = 24$
 $3x = 384$
 $x = 128; y = 52$

28. a. $(90 - x)^{D}$
b. $(90 - (3x - 12))^{D} = (102 - 3x)^{D}$
c. $90 - (2x + 5y) = (90 - 2x - 5y)^{D}$

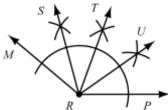
29. a. $(180 - x)^{D}$
b. $180 - (3x - 12) = (192 - 3x)^{D}$
c. $180 - (2x + 5y)$
 $(180 - 2x - 5y)^{D}$

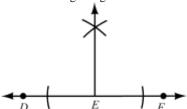

30. $x - 92 = 92 - 53$
 $x - 92 = 39$
 $x = 131$

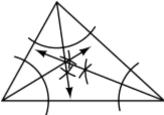
31. $x - 92 + (92 - 53) = 90$
 $x - 53 = 90$


x = 143

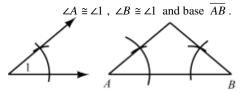
25. ∠*CAB* ≅ ∠*DAB*


33. Given: Obtuse ∠*MRP* Construct: With *OA* as one side, an angle $\cong \angle MRP$.

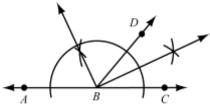

34. Given: Obtuse ∠*MRP* Construct: \overrightarrow{RS} , the angle-bisector of $\angle MRP$.


35. Given: Obtuse ∠MRPConstruct: Rays RS, RT, and RU so that $\angle MRP$ is divided into $4 \cong$ angles.

36. Given: Straight angle *DEF* Construct: a right angle with vertex at *E*.



37. For the triangle shown, the angle bisectors are been constructed.



It appears that the angle bisectors meet at one point.

38. Given: Acute ∠1 Construct: Triangle ABC which has

- **39.** It appears that the two sides opposite \angle s *A* and *B* are congruent.
- **40.** Given: Straight angle *ABC* Construct: Bisectors of $\angle ABD$ and $\angle DBC$.

It appears that a right angle is formed.

- **41. a.** 90°
 - **b.** 90°
 - c. Equal
- **42.** Let $m \angle USV = x$, then $m \angle TSU = 38 x$

$$38 - x + 40 = 61$$

$$78 - x = 61$$

$$78 - 61 = x$$

$$x = 17$$
; m $\angle USV = 17^{1}$

43.
$$x + 2z + x - z + 2x - z = 60$$

 $4x = 60$

$$x = 15$$

If
$$x = 15$$
, then $= 15 - z$, $m \angle USV$ $m \angle VSW = 30 - z$, and

$$m \angle USW = 3x - 6 = 3(15) - 6 = 39$$

So
$$15 - z + 2(15) - z = 39$$

$$45 - 2z = 39$$

$$6 = 2z$$

$$z = 3$$

- **44. a.** 52°
 - **b.** 52°
 - c. Equal

45.
$$90 + x + x = 360$$

 $2x = 270$
 $x = 135^{D}$

SECTION 1.5: Introduction to Geometric Proof

- 1. Division Property of Equality or Multiplication Property of Equality
- **2.** Distributive Property [x + x = (1 + 1)x = 2x]
- 3. Subtraction Property of Equality
- 4. Addition Property of Equality
- 5. Multiplication Property of Equality
- 6. Addition Property of Equality
- 7. If 2 angles are supplementary, then the sum of their measures is 180°.
- 8. If the sum of the measures of 2 angles is 180° , then the angles are supplementary.
- **9.** Angle-Addition Property
- 10. Definition of angle-bisector
- **11.** AM + MB = AB
- **12.** AM = MB

17.
$$2x = 10$$

18.
$$x = 7$$

19.
$$7x + 2 = 30$$

20.
$$\frac{1}{2} = 50\%$$

21.
$$6x - 3 = 27$$

22.
$$x = -20$$

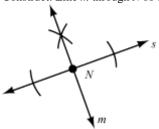
- 23. 1. Given
 - 2. Distributive Property
 - 3. Addition Property of Equality
 - 4. Division Property of Equality
- 24. 1. Given
 - 2. Subtraction Property of Equality
 - 3. Division Property of Equality
- **25. 1.** 2(x+3)-7=11
 - 2. 2x + 6 7 = 11
 - 3. 2x 1 = 11
 - **4.** 2x = 12
 - 5. x = 6
- **26. 1.** $\frac{x}{5}$ + 3 = 9

$$\frac{x}{JJJ}$$

- **3.** x = 30
- **27. 1.** Given
 - 2. Segment-Addition Postulate
 - 3. Subtraction Property of Equality
 - 13. EG bisects $\angle DEF$
 - **14.** $m \angle 1 = m \angle 2$ or $\angle 1 \cong \angle 2$
 - **15.** $m \angle 1 + m \angle 2 = 90^{D}$
 - **16.** $\angle 1$ and $\angle 2$ are complementary

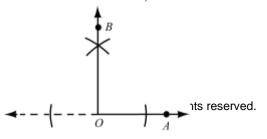
- **28. 1.** Given
 - **2.** The midpoint forms 2 segments of equal measure.
 - **3.** Segment-Addition Postulate
 - 4. Substitution
 - 5. Distributive Property
 - 6. Multiplication Property of Equality
- **29. 1.** Given
 - 2. If an angle is bisected, then the two angles formed are equal in measure.
 - 3. Angle-Addition Postulate

- 4. Substitution
- 5. Distribution Property
- 6. Multiplication Property of Equality
- **30. 1.** Given
 - 2. Angle-Addition Postulate
 - 3. Subtraction Property of Equality
- **31. S1.** *M-N-P-Q* on *MQ*
 - R1. Given
 - 2. Segment-Addition Postulate
 - 3. Segment-Addition Postulate
 - **4.** MN + NP + PQ = MQ
- **32.** 1. $\angle TSW$ with SU and SV; Given
 - 2. Angle-Addition Postulate
 - 3. Angle-Addition Postulate
 - **4.** $m \angle TSW = m \angle TSU + m \angle USV + m \angle VSW$
- **33.** $5 \cdot x + 5 \cdot y = 5(x + y)$
- **34.** $5 \cdot x + 7 \cdot x = (5 + 7)x = 12x$
- **35.** (-7)(-2) > 5(-2) or 14 > -10
- **36.** $\frac{12}{4} < \frac{-4}{9}$ or -3 < 1-4 -4
- **37. 1**. Given
 - 2. Addition Property of Equality
 - 3. Given
 - 4. Substitution
- **38. 1**. a = b
 - **2.** a c = b c
 - 2. Subtraction Property of Equality
 - **3.** c = d
- 3. Given


1. Given

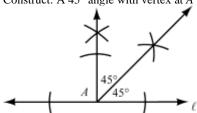
- **4.** a c = b d
- 4. Substitution

SECTION 1.6: Relationships: Perpendicular Lines

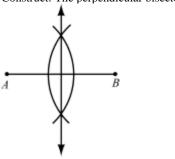

- 5. Substitution
- **6.** If $2 \angle s$ are = in measure, then they are \cong .
- 2. 1. Given
 - 2. The measure of a straight angle is 180°.
 - 3. Angle-Addition Postulate
 - 4. Substitution
 - 5. Given
 - **6.** The measure of a right $\angle = 90^{\circ}$.
 - 7. Substitution
 - 8. Subtraction Property of Equality
 - 9. Angle-Addition Postulate
 - 10. Substitution
 - 11. If the sum of measures of 2 angles is 90°, then the angles are complementary.
- **3.** 1. $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$
 - **2.** ∠1 ≅ ∠3
- **4.** 1. $m \angle AOB = m \angle 1$ and $m \angle BOC = m \angle 1$
 - 2. $m \angle AOB = m \angle BOC$
 - **3.** ∠*AOB* ≅ ∠*BOC*
 - 4. \overrightarrow{OB} bisects $\angle AOC$
- **5.** Given: Point *N* on line *s*.

Construct: Line *m* through *N* so that $m \perp s$.

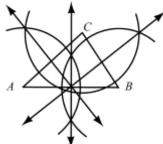
6. Given: OA


Construct: Right angle BOA (Hint: Use the straightedge to extend \overrightarrow{OA} to the left.)

© 2015 Cengage Learning. All rights reserved.


- **1. 1.** Given
 - 2. If $2 \angle s$ are \cong , then they are equal in measure.
 - **3.** Angle-Addition Postulate
 - **4.** Addition Property of Equality

7. Given: Line A containing point A Construct: A 45° angle with vertex at A



8. Given: \overline{AB}

Construct: The perpendicular bisector of \overline{AB}

9. Given: Triangle ABCConstruct: The perpendicular bisectors of each side, \overline{AB} , \overline{AC} , and \overline{BC} .

- **10.** It appears that the perpendicular bisectors meet at one point.
- 11. 1. Given
 - 3. Substitution
 - **4.** $m \angle 1 = m \angle 2$
 - **5.** ∠1 ≅ ∠2
- **12. 1.** Given
 - 2. $m \angle 1 = m \angle 2$ and $m \angle 3 = m \angle 4$
 - 3. Given
 - **4.** m∠2 + m∠3 = 90
 - 5. Substitution
 - **6.** \angle s 1 and 4 are comp.
- 13. No; Yes; No

- 15. No; Yes; No
- 16. No; No; Yes
- 17. No; Yes; Yes
- 18. No; No; No
- 19. a. perpendicular
 - **b.** angles
 - c. supplementary
 - d. right
 - e. measure of angle
- 20. a. postulate
 - **b.** union
 - c. empty set
 - d. less than
 - e. point
- 21. a. adjacent
 - b. complementary
 - c. ray AB
 - d. is congruent to
 - e. vertical
- 22. In space, there are an infinite number of lines perpendicular to a given line at a point on the line.

23.	STATEMENTS		REASONS
	1. $M - N - P - Q$ on MQ	1.	Given
	 M - N - P - Q on MQ MN + NQ = MQ 	2.	Segment-Addition
			Postulate
	3. $NP + PQ = NQ$	3.	Segment-Addition
			Postulate
	A MN + NP + PO = MO	4	Substitution

- **4.** MN + NP + PQ = MQ | **24.** AE = AB + BC + CD + DE
- STATEMENTS **REASONS** 1. ∠TSW with SU 1. Given 25. and SV **2.** m∠*TSW* 2. Angle-Addition $= m \angle TSU + m \angle USW$ Postulate **3.** m∠*USW* Angle-Addition $= m \angle USV + m \angle VSW$ Postulate **4.** m∠*TSW* = m∠*TSU* 4. Substitution $+m\angle USV + m\angle VSW$
- **26.** $m \angle GHK = m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4$
 - 14. No; No; Yes

27. In space, there are an infinite number of lines that perpendicularly bisect a given line segment at its midpoint.

- 2. If 2 ∠s are comp., then the sum of their measures is 90°.
- 3. Given
- The measure of an acute angle is between 0 and 90°.
- 5. Substitution
- 6. Subtraction Prop. of Eq.
- 7. Subtraction Prop. of Inequality
- 8. Addition Prop. of Inequality
- 9. Transitive Prop. of Inequality
- 10. Substitution
- 11. If the measure of an angle is between 0 and 90° , then the angle is an acute \angle .
- **29.** Angles 1, 2, 3, and 4 are adjacent and form the straight angle AOB which measures 180. Therefore, $m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 = 180$.
- 30. If ∠2 and ∠3 are complementary, then m∠2 + m∠3 = 90. From Exercise 29, m∠1 + m∠2 + m∠3 + m∠4 = 180. Therefore, m∠1 + m∠4 = 90 and ∠1 and ∠4 are complementary.

SECTION 1.7: The Formal Proof of a Theorem

- 1. H: A line segment is bisected.
 - C: Each of the equal segments has half the length of the original segment.
- 2. H: Two sides of a triangle are congruent.
 - C: The triangle is isosceles.
- **3.** First write the statement in the "If, then" form. If a figure is a square, then it is a quadrilateral.
 - H: A figure is a square.
 - C: It is a quadrilateral.
- **4.** First write the statement in the "If, then" form. If a polygon is a regular polygon, then it has congruent interior angles.
 - H: A polygon is a regular polygon.
 - C: It has congruent interior angles.
- **5.** H: Each is a right angle.
 - C: Two angles are congruent.

- **6.** First write the statement in the "If, then" form. If polygons are similar, then the lengths of corresponding sides are proportional.
 - H: Polygons are similar.
 - C: The lengths of corresponding sides are proportional.
- 7. Statement, Drawing, Given, Prove, Proof
- 8. a. Hypothesis
 - **b.** Hypothesis
 - c. Conclusion
- **9. a**. Given
- **b**. Prove
- **10.** *a*, *c*, *d*
- 11. After the theorem has been proved.
- **12.** No
- 13. Given: $\overrightarrow{AB} \perp \overrightarrow{CD}$

Prove: $\angle AEC$ is a right angle.

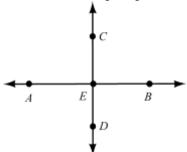
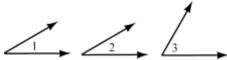
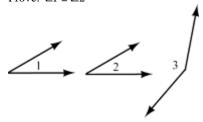
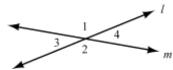



Figure for exercises 13 and 14.

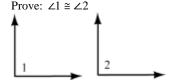
- **14.** Given: $\angle AEC_{\text{HJ}}$ is a right angle Prove: $AB \perp CD$
- **15.** Given: $\angle 1$ is comp to $\angle 3$


 $\angle 2$ is comp to $\angle 3$

Prove: $\angle 1 \cong \angle 2$


16. Given: $\angle 1$ is supp to $\angle 3$ $\angle 2$ is supp to $\angle 3$

Prove: $\angle 1 \cong \angle 2$



17. Given: Lines l and m

Prove: $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$

18. Given: ∠1 and ∠2 are right angles

19.
$$m \angle 2 = 55^{\circ}$$
, $m \angle 3 = 125^{\circ}$, $m \angle 4 = 55^{\circ}$

20.
$$m \angle 1 = 133^{\mathbb{D}}$$
, $m \angle 3 = 133^{\mathbb{D}}$, $m \angle 4 = 47^{\mathbb{D}}$

21.
$$m \angle 1 = m \angle 3$$
 $3x + 10 = 4x - 30$

22.
$$m \angle 2 = m \angle 4$$

 $6x + 8 = 7x$
 $x = 8; m \angle 2 = 56^{D}$

23.
$$m \angle 1 + m \angle 2 = 180^{D}$$

$$2x + x = 180$$

 $3x = 180$
 $x = 60; \text{ m} \angle 1 = 120^{D}$

24.
$$m\angle 2 + m\angle 3 = 180^{\mathbb{D}}$$

 $x + 15 + 2x = 180$
 $3x = 165$
 $x = 55; \ m\angle 2 = 110^{\mathbb{D}}$

25.
$$\frac{x}{-10+}$$
 + 40 = 180

$$\frac{x}{2} + \frac{x}{3} + 30 = 180$$

$$\frac{x}{2} + \frac{x}{3} = 150$$

Multiply by 6

$$3x + 2x = 900$$

$$5x = 900$$

$$3x + x = 480$$

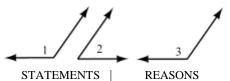
$$4x = 480$$

$$x = 120$$
; m $\angle 4 = 40$

27. 1. Given

2. If $2 \angle s$ are comp., then the sum of their measures is 90.

3. Substitution


4. Subtraction Property of Equality

5. If $2 \angle s$ are = in measure, then they are \cong .

28. Given: $\angle 1$ is supp to $\angle 2$

 $\angle 3$ is supp to $\angle 2$

Prove: $\angle 1 \cong \angle 3$

1. $\angle 1$ is supp to $\angle 2$

1. Given

 $\angle 3$ is supp to $\angle 2$ **2.** $m \angle 1 + m \angle 2 = 180$

2. If $2 \angle s$ are supp.,

 $m \angle 3 + m \angle 2 = 180$

then the sum of their measures is 180.

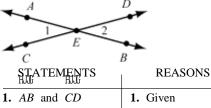
3. m∠1+ m∠2 $= m \angle 3 + m \angle 2$

4. m∠1 = m∠3

5. ∠1≅∠3

3. Substitution

4. Subtraction Property of Equality


5. If $2 \angle s$ are = in measure, then they are ≅.

29. If 2 lines intersect, the vertical angles formed are congruent.

> HJJG HJJG

Given: AB and CD intersect at E

Prove: $\angle 1 \cong \angle 2$

 $x = 180; m \angle 2$ = 80

intersect at E

2. $\angle 1$ is supp to $\angle AED$ $\angle 2$ is supp to $\angle AED$

© 2015 Cengage Learning. All rights reserved.

26. $x + 20 + \frac{x}{} = 180$

$$x + \frac{x}{3} = 160$$

Multiply by 3

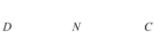
- 2. If the exterior sides of two adj. ∠s form a straight line, then these ∠s are supp.
- **3.** ∠1≅∠2
- 3. If $2 \angle s$ are supp. to the same \angle , then these $\angle s$ are \cong .

30. Any two right angles are congruent.

Given: ∠1 is a rt. ∠ $\angle 2$ is a rt. \angle

Prove: $\angle 1 \cong \angle 2$

<u> </u>	2
STATEMENTS	REASONS
1. ∠1 is a rt. ∠	1. Given
$\angle 2$ is a rt. \angle	
2. m∠1 = 90	2. Measure of a right
m∠2 = 90	$\angle = 90.$
3. m∠1 = m∠2	3. Substitution
4. ∠1 ≅ ∠2	4. If $2 \angle s$ are = in
	measure, then they
	are ≅.


- **31. 1.** Given
 - 3. The measure of a rt. $\angle = 90$.
 - **4.** Angle-Addition Postulate
 - **6.** $\angle 1$ is comp. to $\angle 2$.

32. If 2 segments are congruent, then their midpoints separate these segments into four congruent segments.

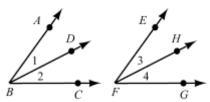
Given: $AB \cong DC$

M is the midpoint of \overline{AB} *N* is the midpoint of \overline{DC}

Prove: $\overline{AM} \cong \overline{MB} \cong \overline{DN} \cong \overline{NC}$

D	N	C	
<u>ST</u> 2	ATEMENTS	REA	SONS
\overline{AB}	≅DC	1. Given	
AB	=DC	2. If 2 seg	gments are
		≅, ther	their
		lengths	s are =.
3. AB	=AM+MB	3. Segme	nt-Addition
DC	=DN+NC	Post.	
4. AM	$I + MB = DN + \overline{NC}$	4. Substit	tution
5. M	is the midpt of \overline{AB}	5. Given	
Ni	s the midpt of DC		
6. AM	I = MB and	6. If a pt.	is the
DN	=NC	midpt	of a
		segme	nt, it forms
		2 segn	nents equal
		in mea	sure.
7. AM	I + AM = DN + DN	7. Substit	tution
or 2	$2 \cdot AM = 2 \cdot DN$		
8. AM	I = DN	8. Divisio	on Prop.
		of Eq.	
9. AM	I = MB = DN = NC	9. Substit	tution

10. $\overline{AM} \cong \overline{MB} \cong DN \cong NC$ | **10.** If segments are =


in length, then they are \cong .

33. If 2 angles are congruent, then their bisectors separate these angles into four congruent angles. Given: $\angle ABC \cong \angle EFG$

BD bisects $\angle ABC$

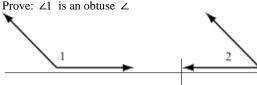
FH bisects ∠EFG

Prove: $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$

STATEMENTS		REASONS
$\angle ABC \cong \angle EFG$	1.	Given
$m\angle ABC = m\angle EFG$	2.	If 2 angles are
		≅, then their
		measures are =.
$m \angle ABC = m \angle 1 + m \angle 2$	3.	Angle-Addition
$m\angle EFG = m\angle 3 + m\angle 4$		Post.
m∠1+ m∠2	4.	Substitution
- m∠3+ m∠4		
0000	5.	Given
0000		01,011
	_	If a way biggets
	0.	If a ray bisects
$m \angle 3 = m \angle 4$		an \angle , then $2 \angle s$
		of equal measure
	_	are formed.
	7.	Substitution
$m \angle 1 = m \angle 3$	8.	Division Prop.
		of Eq.
$m \angle 1 = m \angle 2$	9.	Substitution
$= m \angle 3 = m \angle 4$		
$\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$	10.	If $\angle s$ are = in
		measure, then
		they are \cong .
	$\angle ABC \cong \angle EFG$ $m\angle ABC = m\angle EFG$ $m\angle ABC = m\angle EFG$ $m\angle ABC = m\angle 1 + m\angle 2$ $m\angle EFG = m\angle 3 + m\angle 4$ $m\angle 1 + m\angle 2$ $m\angle 3 + m\angle 4$ $m\angle 1 + m\angle 2$ $m\angle 1 = m\angle 2$ and $m\angle 1 = m\angle 2$ and $m\angle 1 + m\angle 1$ $m\angle 1 + m\angle 1$ $m\angle 1 + m\angle 1$ $m\angle 1 + m\angle 3$ $m\angle 1 = m\angle 3$ $m\angle 1 = m\angle 3$ $m\angle 1 = m\angle 3$	\(\triangle ABC \cong \triangle EFG \) \(\text{m} \triangle ABC \cong \triangle EFG \) \(\text{m} \triangle ABC \cong \triangle EFG \) \(\text{m} \triangle ABC \cong \triangle m \triangle 3 + \triangle m \triangle 4 \) \(\text{m} \triangle 1 + \triangle m \triangle 4 \) \(\text{m} \triangle 1 + \triangle m \triangle 4 \) \(\text{m} \triangle 1 + \triangle m \triangle 4 \) \(\text{m} \triangle 1 + \triangle m \triangle 2 \) \(\text{m} \triangle 1 + \triangle m \triangle 2 \) \(\text{m} \triangle 1 + \triangle m \triangle 3 \) \(\text{m} \triangle 1 + \triangle m \triangle 3 \) \(\text{m} \triangle 1 + \triangle m \triangle 3 \) \(\text{m} \triangle 1 + \triangle m \triangle 3 \) \(\text{m} \triangle 1 + \triangle m \triangle 3 \) \(\text{m} \triangle 1 + \triangle m \triangle 3 \) \(\text{m} \triangle 1 + \triangle m \triangle 3 \) \(\text{m} \triangle 1 + \triangle m \triangle 3 \) \(\text{m} \triangle 1 + \triangle m \triangle 3 \) \(\text{m} \triangle 1 + \triangle m \triangle 3 \) \(\text{m} \triangle 1 + \triangle m \triangle 3 \) \(\text{m} \triangle 1 + \triangle m \triangle 3 \) \(\text{m} \triangle 1 + \triangle 1 + \triangle 3 \) \(\text{m} \triangle 1 + \triangle 1 + \triangle 2 \) \(\text{m} \triangle 1 + \triangle 1 + \triangle 2 \) \(\text{m} \triangle 1 + \triangle 1 + \triangle 2 \) \(\text{m} \triangle 1 + \triangle 1 + \triangle 2 \) \(\text{m} \triangle 1 + \triangle 2 + \triangle 2 \) \(\text{m} \triangle 1 + \triangle 2 + \triangle 2 \) \(\text{m} \triangle 1 + \triangle 2 + \triangle 2 + \triangle 2 \) \(\text{m} \triangle 1 + \triangle 2 \) \(\text{m} \triangle 1 + \triangle 2

34. The bisectors of two adjacent supplementary angles form a right angle. Given: $\angle ABC$ is supp. to $\angle CBD$

BE bisects $\angle ABC$


BF bisects $\angle CBD$ BF isart. 2

STATEMENTS	REASONS
1. ∠ABC is supp	1. Given
to $\angle CBD$	
2. m∠ <i>ABC</i> + m∠ <i>CBD</i>	2. The sum of the
=180	measures of supp
3. $m \angle ABC = m \angle 1 + m \angle 2$	3. Angle-Addition
$m\angle CBD = m\angle 3 + m\angle 4$	Post.
4. m∠1+ m∠2+ m∠3	4. Substitution
+m∠4=180	
5. \overrightarrow{BE} bisects $\angle ABC$	5. Given
BF bisects $\angle CBD$	
6. $m \angle 1 = m \angle 2$ and	6. If a ray bisects
m∠3=m∠4	an \angle , then 2 \angle s
	of equal measure
	are formed.
7. m∠2+ m∠2+ m∠3	7. Substitution
+m∠3=180 or	
$2 \cdot m \angle 2 + 2 \cdot m \angle 3 = 180$	
8. m∠2+ m∠3=90	8. Division Prop.
	of Fa
9. $m\angle EBF = m\angle 2 + m\angle 3$	9. Angle-Addition
	Poet
10. m∠ <i>EBF</i> = 90	10. Substitution
11. $\angle EBF$ is a rt. \angle	11. If the measure of
	an ∠ is 90, then

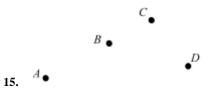
35. The supplement of an acute angle is obtuse.

Given: $\angle 1$ is supp to $\angle 2$

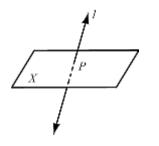
 $\angle 2$ is an acute \angle

STATEMENTS

- 1. $\angle 1$ is supp to $\angle 2$
- 2. $m \angle 1 + m \angle 2 = 180$
- 3. $\angle 2$ is an acute \angle
- **4.** $m \angle 2 = x$ where 0 < x < 90
- 5. $m \angle 1 + x = 180$
- **6.** x is positive \therefore m $\angle 1 < \angle 180$
- 7. $m \angle 1 = 180 x$
- 8. -x < 0 < 90 x
- **9.** 90 x < 90 < 180 x
- **10.** $90 x < 90 < m \angle 1$
- **11.** 90 < m∠1 < 180
- 12. $\angle 1$ is an obtuse \angle


REASONS

- 1. Given
- 2. If $2 \angle s$ are supp., the sum of their measures is 180.
- 3. Given
- The measure of an acute ∠ is between 0 and 90.
- **5.** Substitution (#4 into #3)
- **6.** If $a + p_1 = b$ and p_1 is positive, then a < b.
- Substitution Prop of Eq. (#5) 7.
- 8. Subtraction Prop of Ineq. (#4)
- **9.** Addition Prop. or Ineq. (#8)
- Substitution (#7 into #9) 10.
- Transitive Prop. of Ineq (#6 & #10) 11.
- 12. If the measure of an angle is between 90 and 180, then the \angle is obtuse.


CHAPTER REVIEW

- 1. Undefined terms, defined terms, axioms or postulates, theorems
- 2. Induction, deduction, intuition
- **3. 1.** Names the term being defined.
 - 2. Places the term into a set or category.
 - 3. Distinguishes the term from other terms in the same category.
 - 4. Reversible
- 4. Intuition
- 5. Induction
- 6. Deduction
- 7. H: The diagonals of a trapezoid are equal in
 - C: The trapezoid is isosceles.
- **8.** H: The parallelogram is a rectangle.
 - C: The diagonals of a parallelogram are congruent.

- 9. No conclusion
- 10. Jody Smithers has a college degree.
- **11.** Angle *A* is a right angle.
- **12.** C
- 13. $\angle RST$, $\angle S$, more than 90°.
- **14.** Diagonals are \perp and they bisect each other.

16.

- **18. a.** Obtuse
- b. Right
- **19. a.** Acute
- **b.** Reflex

20.
$$2x + 15 = 3x + 5$$

 $10 = x$
 $x = 10; \text{ m} \angle ABC = 70^{\mathbb{D}}$

21.
$$2x + 5 + 3x - 4 = 86$$

 $5x + 1 = 86$
 $5x = 85$
 $x = 17$; m $\angle DBC = 47^{\mathbb{D}}$

22.
$$3x-1 = 4x-5$$

 $4 = x$
 $x = 4$; $AB = 22$

23.
$$4x-4+5x+2=25$$

 $9x-2=25$
 $9x=27$
 $x=3$; $MB=17$

24.
$$2 \cdot CD = BC$$

 $2(2x+5) = x+28$
 $4x+10 = x+28$
 $3x = 18$
 $x = 6$; $AC = BC = 6+28 = 34$

25.
$$7x - 21 = 3x + 7$$

 $4x = 28$
 $x = 7$
 $m ∠ 3 = 49 - 21 = 28^{D}$
∴ $m ∠ FMH = 180 - 28 = 152^{D}$

26.
$$4x+1+x+4=180$$

 $5x+5=180$
 $5x=175$
 $x=35$
 $m \angle 4 = 35+4=39^{D}$

- **27. a.** Point *M*
 - **b.** ∠*JMH* JJJG
 - c. MJ
 - **d.** *KH*

28.
$$2x-6+3(2x-6) = 90$$

 $2x-6+6x-18 = 90$
 $8x-24 = 90$
 $8x = 114$
 $x = 14\frac{1}{4}$
 $m\angle EFH = 3(2x-6) = 3\left(28\frac{1}{2}-6\right)$
 $= 3\cdot 22\frac{1}{2}$
 $= 67\frac{1}{2}$

29.
$$x + (40 + 4x) = 180$$

 $5x + 40 = 180$
 $5x = 140$
 $x = 28^{D}$
 $40 + 4x = 152^{D}$

30. a.
$$2x + 3 + 3x - 2 + x + 7 = 6x + 8$$

b.
$$6x + 8 = 32$$

 $6x = 24$
 $x = 4$

c.
$$2x + 3 = 2(4) + 3 = 11$$

 $3x - 2 = 3(4) - 2 = 10$
 $x + 7 = 4 + 7 = 11$

- **31.** The measure of angle 3 is less than 50.
- **32.** The four foot board is 48 inches. Subtract 6 inches on each end leaving 36 inches.

$$4(n-1) = 36$$

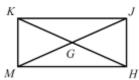
$$4n-4 = 36$$

$$4n = 40$$

$$n = 10$$

∴ 10 pegs will fit on the board.

- **33.** S
- **34.** S
- **35.** A
- **36.** S
- **37.** N

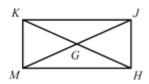

- **4.** If $2 \angle s$ are \cong , then their measures are =.
- 5. Given
- **6.** m∠2 = m∠3

7.
$$m \angle 1 + m \angle 2 = m \angle 4 + m \angle 3$$

- 8. Angle-Addition Postulate
- 9. Substitution
- **10.** ∠*TVP* ≅ ∠*MVP*

39. Given:
$$\overline{KF} \perp \overline{FH}$$
 $\angle JHK$ is a right \angle

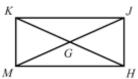
Prove: $\angle KFH \cong \angle JHF$



	STATEMENTS		REASONS
1.	$KF \perp FH$	1.	Given
2.	$\angle KFH$ is a right \angle	2.	If 2 segments are \perp , then they
			form a right ∠.
3.	$\angle JHF$ is a right \angle	3.	Given
4.	$\angle KFH \cong \angle JHF$	4.	Any two right \angle s are \cong .

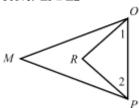
40. Given: $\overline{KH} \cong \overline{FJ}$

G is the midpoint of both \overline{KH} and \overline{FJ}


Prove: $\overline{KG} \cong \overline{GJ}$

	STATEMENTS		REASONS
1.	$KH \cong FJ$	1.	Given
	$\frac{G}{KH}$ is the midpoint of both $\frac{FJ}{FJ}$		
2.	$\overline{KG} \cong \overline{GJ}$	2.	If 2 segments are \cong , then their midpoints separate these segments into $4\cong$ segments.

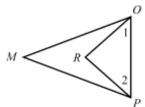
41. Given: $\overline{KF} \perp \overline{FH}$


Prove: $\angle KFH$ is comp to $\angle JHF$

	STATEMENTS	REASONS	
1.	$KF \perp FH$	1.	Given
2.	$\angle KFH$ is comp. to $\angle JFH$	2.	If the exterior sides of 2 adjacent ∠s form
			\perp rays, then these \angle s are comp.

42. Given: $\angle 1$ is comp. to $\angle M$ \angle 2 is comp. to \angle M

Prove: $\angle 1 \cong \angle 2$

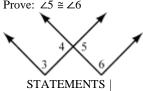

STATEMENTS

REASONS

- **1.** $\angle 1$ is comp. to $\angle M$
- 1. Given
- **2.** $\angle 2$ is comp. to $\angle M$
- **2.** Given
- **3.** ∠1 ≅ ∠2
- 3. If $2 \angle s$ are comp. to the same \angle , then these angles are \cong .
- **43.** Given: $\angle MOP \cong \angle MPO$

 $\begin{array}{c}
OR \\
OR \\
PR
\end{array}$ bisects $\angle MOP$

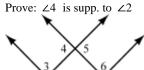
Prove: $\angle 1 \cong \angle 2$



STATEMENTS

REASONS

- 1. $\angle MOP \cong \angle MPO$
- 1. Given
- 2. QR bisects $\angle MOP$ PR bisects ∠MPO
- 2. Given
- **3.** ∠1 ≅ ∠2
- 3. If $2 \angle s$ are \cong , then their bisectors separate these \angle s into four $\cong \angle$ s.
- **44.** Given: $\angle 4 \cong \angle 6$



REASONS

- **1.** ∠4 ≅ ∠6
- 1. Given
- **2.** ∠4 ≅ ∠5
- 2. If 2 angles are vertical \angle s then they are \cong .
- **3.** ∠5 ≅ ∠6
- 3. Transitive Prop.

45. Given: Figure as shown

STATEMENTS

1. Figure as shown

2. $\angle 4$ is supp. to $\angle 2$

REASONS


Given 1.

2. If the exterior sides of 2 adjacent \angle s form a line, then the \angle s are supp.

46. Given: $\angle 3$ is supp. to $\angle 5$

 $\angle 4$ is supp. to $\angle 6$

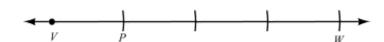
Prove: $\angle 3 \cong \angle 6$

STATEMENTS

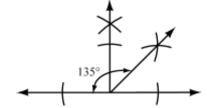
1. $\angle 3$ is supp to $\angle 5$

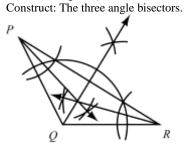
 $\angle 4$ is supp to $\angle 6$ **2.** ∠4 ≅ ∠5

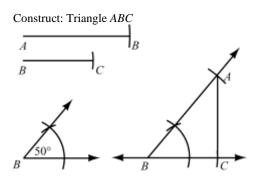
3. ∠3 ≅ ∠6

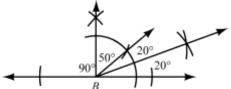

REASONS

1. Given


- 2. If 2 lines intersect, the vertical angles formed are \cong .
- 3. If $2 \angle s$ are supp to congruent angles, then these angles are \cong .
- **47.** Given: \overline{VP}


Construct: \overline{VW} such that $VW = 4 \cdot VP$


48. Construct a 135° angle.



It appears that the three angle bisectors meet at one point inside the triangle.

50. Given: \overline{AB} , \overline{BC} , and $\angle B$ as shown

51. Given: $m\angle B = 50^{\circ}$ Construct: An angle whose measure is 20° .

52.
$$m \angle 2 = 270^{D}$$

CHAPTER TEST

- 1. Induction
- **2.** ∠*CBA* or ∠*B*
- 3. $\overline{AP} + \overline{PB} = \overline{AB}$
- 4. a. Point
 - b. Line
- 5. a. Right
 - **b.** Obtuse
- 6. a. Supplementary
 - b. Congruent

- 8. a. Right
 - b. Supplementary
- 9. Kianna will develop reasoning skills.
- **10.** 3.2 + 7.2 = 10.4 in.

11. a.
$$x + x + 5 = 27$$

 $2x + 5 = 27$
 $2x = 22$
 $x = 11$

b.
$$x + 5 = 11 + 5 = 16$$

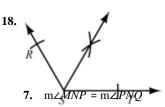
13. a.
$$x + 2x - 3 = 69$$

 $3x - 3 = 69$
 $3x = 72$
 $x = 24^{D}$

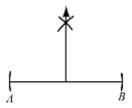
b.
$$m \angle 4 = 2(24) - 3 = 45^{\mathbb{D}}$$

14. a.
$$m \angle 2 = 137^{D}$$

b.
$$m \angle 2 = 43^{D}$$


15. a.
$$2x - 3 = 3x - 28$$

 $x = 25^{\circ}$


b.
$$m \angle 1 = 3(25) - 28 = 47^{D}$$

16. a.
$$2x - 3 + 6x - 1 = 180$$

 $8x - 4 = 180$
 $8x = 184$
 $x = 23^{D}$

b.
$$m \angle 2 = 6(23) - 1 = 137^{D}$$

17.
$$x + y = 90$$

21

- **20. 1.** Given
 - 2. Segment-Addition Postulate
 - 3. Segment-Addition Postulate
 - 4. Substitution
- **21. 1.** 2x 3 = 17
 - **2.** 2x = 20
 - 3. x = 10
- **22. 1.** Given
 - **2.** 90°
 - **3.** Angle-Addition Postulate
 - **4.** 90°
 - 5. Given
 - **6.** Definition of Angle-Bisector
 - 7. Substitution
 - **8.** m∠1 = 45^D
- **23.** 108