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Chapter  2 
 

 

Solving Linear Systems 
 
 
 

Section 2.1,  p. 94 
 

−1r1  → r1 

 
 
⎡

1   −1      1      0   −3
⎤

2.  (a)   Possible answer: 
 
 
 

 
(b)   Possible answer:

 

3r1 + r2 → r2 

−4r1  + r3 → r3 

2r2 + r3 → r3 
 

2r1 + r2 → r2 

−4r1  + r3 → r3 

⎣0      1      4      1      1⎦ 

0      0      0      0      0 
 

⎡
1      1   −4

⎤
 

0      1      2

r2 + r3 → r3 

6 r3 → r3 

⎣           ⎦ 

0      0      1

⎡
1      0      0      8

⎤
 ⎡

1      0      0
 −1      4

⎤

4.  (a)    
3r3 + r1 → r1 

−r3 + r2 → r2
 

⎢0      1      0   −1⎥ ⎢
0      0      1      2

⎥ (b)    −3r2 + r1 → r1 ⎣0      1      0      1      0⎦

 

 
 

−r1 → r1 

−2r1  + r2 → r2 

−2r1  + r3 → r3
 

⎣ 

0      0      0      0 

⎦ 
 
 
 
 

−3r1 

 

 
 
 
 
+ r2 

 
 
 

 
→ r2 

 
 
 

 
⎡

1      0   −3
⎤ 

0      0      1   −1      0

1                                                                                         5r1 + r3 → r3 

6.  (a)
 

2 
r2 → r2                  I

 − 
(b)          + r     r

 ⎢0      1      2⎥

2r         →                ⎢           ⎥
−3r3  → r3                   

3 1          4            4 ⎣0      0      0⎦

4                                                                                         r2 + r3 → r3

3 r3 + r2 → r2 

−5r3  + r1 → r1 

2r2 + r1 → r1 

8
.  
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− 
−r2 

 

+ r1 

→ 
r1 

0      0      

0

 

9.  Consider the columns of A which contain  leading entries  of nonzero rows of A.  If this set of columns is 

the entire  set of n columns, then  A = In. Otherwise  there  are fewer than  n leading entries,  and hence 

fewer than  n nonzero rows of A. 
 

10.  (a)   A is row equivalent to itself:  the sequence of operations is the empty  sequence. 
 

(b)   Each  elementary row operation  of types I, II or III has a corresponding  inverse operation  of the 

same  type which “undoes”  the  effect of the  original  operation.  For  example,  the  inverse  of the 

operation  “add  d times  row r of A to row s of A”  is “subtract d times  row r of A from row s of 

A.”   Since B  is assumed  row equivalent to  A,  there  is a sequence  of elementary row operations 

which gets from A to B.  Take those operations in the reverse order, and for each operation  do its 

inverse, and that takes  B  to A.  Thus  A is row equivalent to B. 

(c)  Follow the operations which take  A to B  with those which take  B  to C.
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3   5
 

⎢ 

1 

1 ⎥ 
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12.  (a) 

⎡
1    0   0   0   0

⎤
 

⎣2    1   0   0   0⎦         (b) 

3     
1   0   0 

⎡
1   0   0   0   0

⎤
 

⎣0   1   0   0   0⎦ 

0   0   1   0   0

 

Section 2.2,  p. 113 
 

2.  (a)   x = −6 − s − t, y = s, z = t, w = 5. 

(b)   x = −3, y = −2, z = 1. 

4.  (a)   x = 5 + 2t, y = 2 − t, z = t. 

(b)  x = 1, y = 2, z = 4 + t, w = t. 

6.  (a)   x = −2 + r, y = −1, z = 8 − 2r, x4 = r, where r is any real number. 

(b)   x = 1, y = 2 , z = − 2 . 3                    3 

(c)  No solution. 

8.  (a)   x = 1 − r, y = 2, z = 1, x4 = r, where r is any real number. 

(b)   x = 1 − r, y = 2 + r, z = −1 + r, x4 = r, where r is any real number. 
   

r 
 

10.  x = 
0  

, where r = 0.

⎡ 
 

12.  x = 

⎢
 ⎢ ⎣ 

 
− 

4 
r 

4 
r 

r 

⎤ 
 

⎥
, where r = 0. ⎥ ⎦

 

14.  (a)   a = −2.      (b)  a = ±2.      (c)  a = 2. 

16.  (a)   a = ±
√

6.        (b)  a = ±
√

6. 
    

a    b   0  
 

18.  The  augmented matrix  is 
c   d   0 

.  If we reduce  this  matrix  to reduced  row echelon form, we see

that the linear system  has only the trivial  solution  if and only if A is row equivalent to I2. Now show 

that this occurs if and only if ad − bc = 0. If ad − bc = 0 then  at least one of a or c is = 0, and it is a 

routine  matter to show that A is row equivalent to I2. If ad − bc = 0, then  by case considerations we 

find that A is row equivalent to a matrix  that has a row or column consisting  entirely  of zeros, so that 

A is not row equivalent to I2. 
 

Alternate proof:  If ad − bc = 0,  then  A  is nonsingular,   so the  only  solution  is the  trivial  one.   If 

ad − bc = 0, then  ad = bc.  If ad = 0 then  either  a or d = 0, say a = 0.  Then  bc = 0, and  either  b 

or c = 0.  In any  of these  cases we get a nontrivial solution.   If ad = 0, then   a   =  b , and  the  second 
c          d 

equation  is a multiple  of the first one so we again have a nontrivial solution. 
 

19.  This had to be shown in the first proof of Exercise 18 above.  If the alternate proof of Exercise 18 was 

given, then  Exercise  19 follows from the  former by noting  that the  homogeneous  system  Ax  = 0 has 

only the trivial  solution if and only if A is row equivalent to I2 and this occurs if and only if ad−bc = 0.

⎡  
3 
⎤ 

2 

⎡
−1
⎤

20.  
⎢
−2
⎥ 

+ 
⎢ 1

⎥ 
t, where t is any number.

⎣   ⎦  ⎣   ⎦ 

0              0 
 

22.  −a + b + c = 0. 

24.  (a)   Change  “row” to “column.” 

(b)   Proceed  as in the proof of Theorem  2.1, changing  “row” to “column.”



Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall  

Section 2.2                                                                                                                                                   29 
 

 

25.  Using Exercise  24(b)  we can assume  that every m × n matrix  A  is column  equivalent to a matrix  in 

column echelon form.  That is, A is column equivalent to a matrix  B  that satisfies the following: 

 
(a)  All columns consisting  entirely  of zeros, if any, are at the right side of the matrix. 

 

(b)  The first nonzero entry  in each column that is not all zeros is a 1, called the leading entry  of the 

column. 
 

(c)  If the  columns  j and  j + 1 are  two  successive columns  that are  not  all zeros,  then  the  leading 

entry  of column j + 1 is below the leading entry  of column j. 

 
We start with matrix  B  and show that it is possible to find a matrix  C that is column equivalent to B 

that satisfies 

 
(d)  If a row contains  a leading entry  of some column then  all other  entries  in that row are zero. 

 
If column  j of B  contains  a nonzero element,  then  its first  (counting  top  to bottom) nonzero element 

is a 1.  Suppose the  1 appears  in row rj .  We can perform  column  operations of the  form acj  + ck for 

each of the  nonzero columns ck  of B  such that the  resulting  matrix  has row rj   with a 1 in the  (rj , j) 

entry  and zeros everywhere else. This can be done for each column that contains  a nonzero entry  hence 

we can produce  a matrix  C satisfying  (d).  It  follows that C is the  unique  matrix  in reduced  column 

echelon form and column equivalent to the original matrix  A. 

 
26.  −3a − b + c = 0. 

 
28.  Apply Exercise 18 to the linear system  given here.  The coefficient matrix  is 

 
   

a − r     d    
   

. 
c b − r 

 
Hence from Exercise 18, we have a nontrivial solution  if and only if (a − r)(b − r) − cd = 0. 

 
29.   (a)  A(xp + xh) = Axp + Axh = b + 0 = b. 

 

(b)  Let xp  be a particular solution  to Ax  = b and let x be any solution  to Ax  = b. Let xh = x − xp. 
Then  x = xp  + xh = xp  + (x − xp)  and Axh = A(x  − xp) = Ax − Axp = b − b = 0.  Thus  xh is 
in fact a solution  to Ax  = 0. 

 

30.  (a)   3x2 + 2       (b)  2x2 − x − 1 

 
32.  3 x2 − x + 1 . 2                        2 

34.  (a)   x = 0, y = 0                      (b)  x = 5, y = −7 

 
36.  r = 5, r2  = 5. 

 
37.  The GPS  receiver is located  at the tangent point where the two circles intersect. 

 
38.  4Fe + 3O2  → 2Fe2O3 

 
       

0 
40.  x =   1        1      .

 

4  
− 

4 
i 

 

42.  No solution.
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0 0 

−2 0 

0 1 

0 0 

 

1 

2 

⎥ 

2 

⎢ ⎥ 
2 

⎥ ⎥ 

⎢ 

2 

⎢ ⎢ 
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Section 2.3,  p. 124 
 

1.  The elementary matrix  E  which results  from In by a type I interchange of the ith  and jth row differs 

from In by having 1’s in the (i, j) and (j, i) positions  and 0’s in the (i, i) and (j, j) positions.  For that 

E, EA  has as its ith  row the jth row of A and for its jth row the ith  row of A. 
 

The elementary matrix  E which results  from In by a type II operation  differs from In by having c = 0 

in the (i, i) position.  Then  EA  has as its ith  row c times the ith  row of A. 
 

The elementary matrix  E  which results  from In by a type III operation  differs from In by having  c in 

the (j, i) position.  Then  EA  has as jth row the sum of the jth row of A and c times the ith  row of A.
⎡

1 

2.  (a)   
⎢0 

0
⎤

 

0⎥
.        (b)

 

⎡
1   0   0   0

⎤
 

⎢0   1   0   0⎥
.        (c)

 

⎡
0   0   1   0

⎤
 

⎢0   1   0   0⎥
.

⎢                ⎥         ⎢ ⎥         ⎢           ⎥
⎣0                       0⎦ 

0                      1 

⎣0   0   1   0⎦ 
0   0   3   1 

⎣1   0   0   0⎦ 
0   0   0   1

⎡  
1      0      0

⎤
 

⎡
1      0      0

⎤

4.   (a)  Add 2 times row 1 to row 3: ⎣ 0      1      0⎦ → ⎣0      1      0⎦ = C

−2      0      1 

⎡
1      0      0

⎤
 

0      0      1 

⎡
1      0      0

⎤

(b)  Add 2 times row 1 to row 3: ⎣0      1      0⎦ → ⎣0      1      0⎦ = B

0      0      1 2      0      1

⎡  
1      0      0

⎤ ⎡
1      0      0

⎤
 
⎡

1      0      0
⎤

(c)  AB  = ⎣ 0      1      0⎦ ⎣0      1      0⎦ = ⎣0      1      0⎦.

−2      0      1 
⎡

1      0      0
⎤ ⎡

 

2      0      1 

1      0      0
⎤

 

0      0      1 
⎡

1      0      0
⎤

BA  = ⎣0      1      0⎦ ⎣ 0      1      0⎦ = ⎣0      1      0⎦.

2      0      1 −2      0      1 0      0      1

 

Therefore  B  is the inverse of A. 
 

6.  If E1   is an elementary matrix  of type I then  E
−1  

= E1.  Let E2   be obtained from In by multiplying 

the  ith  row of In by c = 0.  Let E∗   be obtained from In by multiplying the  ith  row of In by  1 .  Then 2                                                                                                                                                  c 
E2E∗   = In. Let E3   be obtained from In by adding  c times the ith  row of In to the jth row of In. Let 

3  be obtained from In by adding  −c times the ith  row of In to the jth row of In. Then  E3E3 = In.
 

E∗                                                                                                                                                                                                                                                                     ∗
 

⎡             ⎤ 
1   −1       0 

8.  A−1  = 

⎢  
3         1          3 

⎥ ⎢  
2         2     

− 
2 
⎥. ⎣             ⎦

−1      0      1 

⎡ 
 

⎤ 
1   −1       0 

 
⎡              ⎤ 
−1       3          1

 

 
⎡  

3          3          1 

⎤
 

5     
− 

5     
− 

5

10.  (a)   Singular.        (b)  

⎢
 ⎢ 1      2      1

⎥
.        (c)  

⎢
 ⎥         ⎢ 1   − 3 

1 

⎥
.        (d)  

⎢  
2 

2 
⎥         ⎢  

5 
3          4 

⎥
. 

5     
− 

5 
⎥
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− 

⎢ 2 ⎥ 

⎣  
3         5          1 

⎦ ⎣       
1          1 

⎦ ⎣  
1          1          2 

⎦

− 
2         2     

− 
2 0      

2     
− 

2 − 
5          5          5

⎡                   ⎤ 
1   −1       0   −1 

⎢                   ⎥
⎢ 

12.  (a)   A−1  = 
⎢

 
0   − 1 0      0

⎥ ⎥
.        (b)  Singular.

⎢  1                       1          3 ⎥ 
⎢− 

5          
1      

5          5 
⎥

⎣  
2          1 2          1 

⎦

5     
− 

2     
− 

5     
− 

5



Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall  

⎣0 1 2⎦ = ⎣0 1   0⎦ ⎣0 1   0⎦ ⎣0 1      0⎦ ⎣0 1   0⎦ ⎣0 1   2⎦ ⎣0 1      0 

1 0 3 1 0   1      0 0   1      0 −2      1      0 0   4      0 0   1      0 0      1 

 

⎢ 

3 

⎥ 

3 

2 
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14.  A is row equivalent to I3; a possible answer is

⎡
1   2   3

⎤
 

A = 

⎡
1   0   0

⎤ ⎡
1   2   0

⎤ ⎡
1      0      0

⎤ ⎡
1   0   0

⎤ ⎡
1   0   0

⎤ ⎡
1      0   −1

⎤
 
⎦ .

 
⎡ 

 

16.  A = 

⎢ 

 

2     
−1 

1
 

1 

⎤
 

2 

1 

⎥
.

⎢  
2         

0   − 
2 
⎥ ⎣             ⎦ 

−1      1      0 
 

18.  (b) and (c). 
 

20.  For a = −1 or a = 3. 
 

21.  This follows directly  from Exercise 19 of Section 2.1 and Corollary  2.2. To show that 
 

A−1  =  
     1      

   
d     −b

 

 

 
we proceed as follows: 

ad − bc −c     a

 

     1       
    

d    −b
   

a   b
   

= 
   1       

    
ad − bc     db − bd  

   

= 

 
1   0

   

.
ad − bc −c     a      c   d ad − bc −ca + ac   −bc + ad         0   1

 

 
22.  (a) 

⎡
1      0      0

⎤
 

⎣0      1      0⎦.        (b) 

0      0   −3 

⎡
1   0   0

⎤
 

⎣0   1   0⎦.        (c) 

0   1   0 

⎡
1      0   −5

⎤
 

⎣0      1      0⎦. 

0      0      1

 

23.  The matrices  A and B  are row equivalent if and only if B = EkEk−1 · · · E2E1A. 
Let P = EkEk−1 · · · E2E1. 

 

24.  If A and B  are row equivalent then  B = P A, where P is nonsingular,  and A = P−1B (Exercise  23). If 

A is nonsingular  then  B  is nonsingular,  and conversely. 
 

25.  Suppose  B  is singular.   Then  by Theorem  2.9 there  exists  x = 0 such that Bx  = 0.  Then  (AB)x = 

A0  = 0, which means  that the  homogeneous  system  (AB)x = 0 has a nontrivial solution.   Theorem 

2.9 implies that AB  is singular,  a contradiction.  Hence, B  is nonsingular.   Since A = (AB)B−1  is a 

product  of nonsingular  matrices,  it follows that A is nonsingular. 
 

Alternate Proof:  If AB  is nonsingular  it follows that AB  is row equivalent to In, so P (AB) = In. Since 

P  is nonsingular,  P  = EkEk−1 · · · E2E1.  Then  (P A)B = In  or (EkEk−1 · · · E2E1A)B = In.  Letting 

EkEk−1 · · · E2E1A = C, we have  CB  = In, which implies that B  is nonsingular.   Since P AB  = In, 

A = P−1B−1, so A is nonsingular. 
 

26.  The matrix  A is row equivalent to O if and only if A = P O = O where P is nonsingular. 
 

27.  The  matrix  A  is row equivalent to B  if and  only if B  = P A,  where P  is a nonsingular  matrix.  Now 
BT = AT P T , so A is row equivalent to B  if and only if AT  is column equivalent to BT . 

 

28.  If A has a row of zeros, then  A cannot  be row equivalent to In, and so by Corollary  2.2, A is singular. 

If the  jth column  of A  is the  zero column,  then  the  homogeneous  system  Ax  = 0 has  a nontrivial 

solution,  the vector  x with 1 in the jth entry  and zeros elsewhere.  By Theorem  2.9, A is singular.
 

29.  (a)   No.   Let  A  = 

 
1   0

  

0   0 

 

, B  = 

 
0   0

  

0   1 

 

.   Then  (A + B)−1
 

 

exists  but  A−1
 

 

and  B−1
 

 

do not.   Even

supposing  they  all exist,  equality  need not  hold.  Let A = 
  

1
 
, B  = 

  
2

   
so (A + B)−1  = 

  
1 

   
= 

 
1

  
+ 

  
1 

   
= A−1  + B−1.
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(b)   Yes, for A nonsingular  and r = 0. 

 
1 

(rA) 
r 

 

 
 

A−1 

 

  
1
 

 
= r 

r 

 

 
 

A · A−1  = 1 · In = In.

 

30.  Suppose  that A  is nonsingular.   Then  Ax  = b has the  solution  x = A−1b  for every n × 1 matrix  b. 

Conversely,  suppose that Ax  = b is consistent for every n × 1 matrix  b. Letting  b be the matrices

⎡
1 
⎤ 

⎢
0 
⎥ 

⎡
0 
⎤ 

⎢
1 
⎥ 

⎡
0 
⎤ 

⎢
0 
⎥

⎢ ⎥         ⎢ ⎥                ⎢ ⎥

e1  = 
⎢ 

. 
⎥ 

,    e2  = 
⎢ ⎥ 

,    . . . ,    en = 
⎢ 

. 
⎥ 

,⎢ ⎥         ⎢0 ⎥                ⎢ ⎥
⎢ . ⎥ ⎢ 

. 
⎥ ⎢ . ⎥

⎢ ⎥         ⎢ ⎥                ⎢ ⎥
⎣ ⎦         ⎣ . ⎦ 

0                     0 

⎣0 ⎦ 
1

 

we see that we have solutions  x1, x2, . . . , xn to the linear systems 

Ax1 = e1,     Ax2 = e2,     . . . ,    Axn = en.                                    (∗ ) 

Letting  C be the matrix  whose jth column is xj , we can write the n systems  in (∗ ) as AC  = In, since 

In = 
 

e1     e2     · · ·    en 

 
. Hence, A is nonsingular. 

 

31.  We consider the case that A is nonsingular  and upper  triangular. A similar argument can be given for 

A lower triangular. 
 

By  Theorem  2.8,  A  is a  product   of elementary matrices  which  are  the  inverses  of the  elementary 

matrices  that “reduce”  A to In. That is, 
 

A = E
−1 · · · E−1

.
 

1                 k 
 

The  elementary matrix  Ei will be upper  triangular since it is used to introduce  zeros into  the  upper 

triangular part  of A in the  reduction process.  The  inverse of Ei is an elementary matrix  of the  same 

type and  also an  upper  triangular matrix.  Since the  product  of upper  triangular matrices  is upper 

triangular and we have A−1  = Ek · · · E1   we conclude that A−1  is upper  triangular. 
 

 

Section 2.4,  p. 129 
 

1.  See the answer to Exercise 4, Section 2.1. Where it mentions  only row operations, now read “row and 

column operations”.
 

2.  (a) 

  
I4 

  

0 

 

.        (b)  I3.       (c) 

  
I2      0 

  

0    0 

 

.        (d)  I4.

 

4.  Allowable equivalence  operations (“elementary row or elementary column  operation”) include  in par- 

ticular  elementary row operations. 
 

5.  A  and  B  are  equivalent  if and  only if B  = Et · · · E2E1AF1F2 · · · Fs.  Let  EtEt−1 · · · E2E1 = P  and 
F1F2  · · · Fs = Q.

   
I2      0 

  
⎡
−1      2      0

⎤
 
⎡

1      0   −1
⎤

6.  B = 
0    0  

; a possible answer is: B = ⎣ 1   −1      0⎦ A ⎣0      1   −1⎦.

−1      1      1 0      0      1
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8.  Suppose A were nonzero but equivalent to O. Then some ultimate elementary row or column operation 

must  have  transformed a  nonzero  matrix  Ar  into  the  zero matrix  O.   By  considering  the  types of 

elementary operations we see that this is impossible.



Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall  

⎣  4 1 0⎦, U = ⎣  0 6 2⎦, x = ⎣  4 

−5 3 1 0 0 −4 −1 

 

0 

k 
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9.  Replace  “row” by “column”  and vice versa in the elementary operations which transform A into B. 

10.  Possible answers are: 
⎡

1   −2      3      0
⎤

 

 
  

1   0
  

 

⎡
1      0      0      0      0

⎤

(a) ⎣0   −1      4      3⎦.        (b) 

0      2   −5   −2 

.        (c) 
0   0 

⎣0      1   −2      0      2⎦. 

0      5      5      4      4

 

11.  If A and B are equivalent then B = P AQ and A = P−1BQ−1.  If A is nonsingular  then B is nonsingular, 

and conversely. 
 

 

Section 2.5,  p. 136 
 

⎡  
0
⎤

 

2.  x = ⎣−2⎦. 

3 
 

⎡  
2
⎤

 

4.  x = 
⎢−1⎥

.⎢ ⎣ 
 
 

⎡ 
 

6.  L = 

⎥ ⎦ 

5 

1   0   0
⎤

 

 
 
 
⎡
−3      1   −2

⎤
 

 
 
 
⎡
−3
⎤ 

⎦.

 
⎡  

1   0   0   0
⎤

 
⎡
−5      4      0      1

⎤
 

⎡  
1
⎤

8.  L = 
⎢ 6   1   0   0⎥

, U = 
⎢ 0      3      2      1⎥

, x = 
⎢−2⎥

.
⎢            ⎥      ⎢ ⎥      ⎢   ⎥
⎣−1   2   1   0⎦ 

−2   3   2   1 

⎣  0      0   −4      1⎦ 

0      0      0   −2 

⎣  5⎦ 

−4

⎡   
1         0         0      0

⎤
 

⎡
4      1      0.25   −0.5

⎤
 

⎡
−1.5

⎤

10.  L = 
⎢ 0.2         1         0      0⎥

, U = 
⎢0   0.4        1.2   −2.5⎥

, x = 
⎢ 4.2⎥

.
⎢                        ⎥      ⎢ ⎥      ⎢     ⎥
⎣−0.4      0.8         1      0⎦ 

2   −1.2   −0.4      1 

⎣0      0   −0.85         2⎦ 

0      0           0   −2.5 

⎣  2.6⎦ 

−2
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2.   (a)  a = −4 or a = 2. 

(b)  The system  has a solution  for each value of a. 
 

4.  c + 2a − 3b = 0. 
 

5.   (a)  Multiply  the jth row of B  by  1 . 
 

(b)  Interchange the ith  and jth rows of B. 

(c)  Add −k times the jth row of B  to its ith  row. 
 

6.   (a)  If we transform E1   to reduced  row echelon form, we obtain  In. Hence E1   is row equivalent to In 

and thus  is nonsingular. 
 

(b)  If we transform E2   to reduced  row echelon form, we obtain  In. Hence E2   is row equivalent to In 
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and thus  is nonsingular.
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⎢ . 

cos θ 

⎥ 

cos θ 

⎥ 

⎢ ⎥ 
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(c)  If we transform E3   to reduced  row echelon form, we obtain  In. Hence E3   is row equivalent to In 

and thus  is nonsingular. 

⎡
1    −a   a2       −a3 ⎤ 

2
 

8.  
⎢0      1     −a    a   ⎥
⎣0      0       1      −a ⎦ 

0     0       0        1 

⎡
−41

⎤                   ⎡ 

 

 
 

83
⎤

10.   (a) ⎣  47⎦.        (b) 

−35 

⎣−45⎦. 

−62

12.  s = 0, ±
√

2. 
 

13.  For any angle θ, cos θ and  sin θ are never simultaneously zero.  Thus  at least one element in column 1 

is not  zero.  Assume  cos θ = 0.  (If cos θ = 0, then  interchange rows 1 and  2 and  proceed in a similar 

manner  to that described  below.)  To show that the  matrix  is nonsingular  and  determine  its inverse, 

we put 
        

cos θ    sin θ   1   0  
 

 
− sin θ   cos θ   0   1 

 

into reduced  row echelon form.  Apply row operations    1     times row 1 and sin θ times row 1 added  to

row 2 to obtain  
⎡        

sin θ 
1 ⎢        cos θ ⎢ ⎢ ⎢    

sin2 θ 

 

1          
⎤ 

0 
cos θ       ⎥ ⎥ 

. 

sin θ       
⎥

⎣ 
0              + cos θ 

cos θ 
1 
⎦ 

cos θ

Since  
 

sin2 θ 

cos θ 

 
 
 
+ cos θ = 

 
 

sin2 θ + cos2 θ 

cos θ 

 

 
1 

=         , 
cos θ

 

the  (2, 2)-element  is not  zero.  Applying  row operations cos θ times  row 2 and  
 
− sin θ 

    
times  row 2

added  to row 1 we obtain  
    

1   0   cos θ   − sin θ  
  

. 
0   1   sin θ      cos θ

 

It follows that the matrix  is nonsingular  and its inverse is 
    

cos θ   − sin θ  
  

. 
sin θ      cos θ 

 
14.   (a)  A(u + v) = Au + Av  = 0 + 0 = 0. 

(b)  A(u − v) = Au − Av  = 0 − 0 = 0. 

(c)  A(ru) = r(Au) = r0 = 0. 

(d)  A(ru + sv) = r(Au) + s(Av) = r0 + s0 = 0. 
 

15.  If Au = b and Av  = b, then  A(u − v) = Au − Av  = b − b = 0.
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⎢ 
. 

. 

xi 

⎢ ⎥ 

. ⎦ 
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16.  Suppose at  some point in the  process of reducing  the  augmented matrix  to reduced  row echelon form 

we encounter a row whose first n entries  are zero but  whose (n + 1)st entry  is some number  c = 0. The 

corresponding  linear equation  is 
 

0 · x1 + · · · + 0 · xn = c   or    0 = c. 
 

This equation  has no solution,  thus  the linear system  is inconsistent. 
 

17.  Let u be one solution to Ax  = b. Since A is singular,  the homogeneous system Ax  = 0 has a nontrivial 

solution u0. Then for any real number r, v = ru0 is also a solution to the homogeneous system.  Finally, 

by Exercise 29, Sec. 2.2, for each of the  infinitely  many  vectors  v, the  vector  w = u + v is a solution 

to the nonhomogeneous  system  Ax  = b. 
 

18.  s = 1, t = 1. 
 

20.  If any of the diagonal  entries  of L or U is zero, there  will not be a unique  solution. 
 

21.  The outer  product  of X and Y  can be written in the form 

⎡ 
x1 

  
y1      y2      · · ·     yn 

  ⎤
 

⎢ 
x2 

  
y1      y2      · · ·     yn 

  ⎥

XY T  = 
⎢

 ⎢ ⎣ 

⎥ ⎥ 
⎥ 

 

xn 

  
y1      y2      · · ·     yn 

 

 

If either  X = O or Y  = O, then  XY T  = O. Thus  assume that there is at least one nonzero component 

in X , say xi, and at least one nonzero component in Y , say yj . Then 
   

 1 
   

Rowi(XY T ) makes the ith 

row exactly  Y T . Since all the other  rows are multiples  of Y T , row operations of the form −xkRi + Rp, 
for p = i, can be performed  to zero out everything  but  the ith  row.  It follows that either  XY T   is row 
equivalent to O or to a matrix  with n − 1 zero rows. 
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True or  False 

1.  False.                2.  True.                 3.  False.                4.  True.                 5.  True. 

6.  True.                 7.  True.                 8.  True.                 9.  True.               10.  False. 

Quiz 
 

 
⎡

1   0   2
⎤

1.  ⎣0   1   3⎦ 

0   0   0 
 

2.   (a)  No. 

(b)  Infinitely  many. 

(c)  No. 
⎡ 
−6 + 2r + 7s 

⎤

(d)  x = 
⎢

 
⎣ 

r 

−3s 

s 

⎥
, where r and s are any real numbers. ⎦

 

3.  k = 6.
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⎡

0
⎤

 

4.  ⎣0⎦. 

0 

⎡  
1         1          1 

⎤ 
2         2          2

5.  
⎢ ⎣ 1      1      0

⎥
. ⎦

1         3          1 
− 

2         2     
− 

2 
 

6.  P = A−1, Q = B. 
 

7.  Possible answers:  Diagonal,  zero, or symmetric. 


