Economy 16th edition by Sullivan Wicks Koelling ISBN 01334392759780133439274

Solution manual: https://testbankpack.com/p/solution-manual-for-engineering-economy-16th-edition-by-sullivan-wicks-koelling-isbn-0133439275-9780133439274/

Testbank: https://testbankpack.com/p/test-bank-for-engineering-

 economy-16th-edition-by-sullivan-wicks-koelling-isbn-0133439275-9780133439274/
Solutions to Chapter 2 Problems

A Note To Instructors: Because of volatile energy prices in today's world, the instructor is encouraged to vary energy prices in affected problems (e.g. the price of a gallon of gasoline) plus and minus 50 percent and ask students to determine whether this range of prices changes the recommendation in the problem. This should make for stimulating inclass discussion of the results.

2-1 The total mileage driven would have to be specified (assumed) in addition to the variable cost of fuel per unit (e.g. \$ per gallon). Also, the fixed cost of both engine blocks would need to be assumed. The efficiency of the traditional engine and the composite engine would also need to be specified

Raw Materials		X
Direct Labor		X
Supplies		X
Utilities	X	X
Property Taxes	X	
Administrative Salaries	X	X
Payroll Taxes	X	
Insurance-Building and Equipment	X	
Clerical Salaries		X
Sales Commissions	X	
Rent		
Interest on Borrowed Money		
*lassification is situation dependent		

2-3 (a) \# cows $=\overline{(365 \text { days } / \text { year })(15 \text { miles } / \text { day })}=182.6$ or 183 cows

Annual cost $=(1,000,000$ miles $/$ year $)(\$ 5 / 60$ miles $)=\$ 83,333$ per year
(b) Annual cost of gasoline $=\underline{1,000,000 \mathrm{miles} / \text { year }}(\$ 3 /$ gallon $)=\$ 100,000$
per year 30 miles/gall on
It would cost $\$ 16,667$ more per year to fuel the fleet of cars with gasoline.

Cost	Site A	Site B
Rent	$=\$ 5,000$	$=\$ 100,000$
Hauling	$(4)(200,000)(\$ 1.50)=\$ 1,200,000$	$(3)(200,000)(\$ 1.50)=\$ 900,000$
Total	$\$ 1,205,000$	$\$ 1,000,000$

Note that the revenue of $\$ 8.00 / \mathrm{yd}^{3}$ is independent of the site selected. Thus, we can maximize profit by minimizing total cost. The solid waste site should be located in Site B.

2-5 Stan's asking price of $\$ 4,000$ is probably too high because the new transmission adds little value to the N.A.D.A. estimate of the car's worth. (Low mileage is a typical consideration that may inflate the N.A.D.A. estimate.) If Stan can get $\$ 3,000$ for his car, he should accept this offer. Then the $\$ 4,000-$ $\$ 3,000=\$ 1,000$ "loss" on his car is a sunk cost.

2-6 The $\$ 97$ you spent on a passport is a sunk cost because you cannot get your money back. If you decide to take a trip out of the U.S. at a later date, the passport's cost becomes part of the fixed cost of making the trip (just as the cost of new luggage would be).

2-7 If the value of the re-machining option ($\$ 60,000$) is reasonably certain, this option should be chosen. Even if the re-machined parts can be sold for only $\$ 45,001$, this option is attractive. If management is highly risk adverse (they can tolerate little or no risk), the second-hand market is the way to proceed to guarantee $\$ 15,000$ on the transaction.

2-8 The certainty of making $\$ 200,000-\$ 120,000=\$ 80,000$ net income is not particularly good. If your friend keeps her present job, she is turning away from a risky $\$ 80,000$ gain. This "opportunity cost" of $\$ 80,000$ balanced in favor of a sure $\$ 60,000$ would indicate your friend is risk averse and does not want to work hard as an independent consultant to make an extra $\$ 20,000$ next year.

2-9 (a) If you purchase a new car, you are turning away from a risky 20% per year return. If you are a risk taker, your opportunity cost is 20%, otherwise; it is 6% per year.
(b) When you invest in the high tech company's common stock, the next best return you've given up is 6% per year. This is your opportunity cost in situation (b).

2-10 (a) The life cycle cost concept encompasses a time horizon for a product, structure, system, or service from the initial needs assessment to final phaseout and disposal activities. Definition of requirements; conceptual design, advanced development, and prototype testing; detailed design and resource acquisition for production or construction; actual production or construction; and operation and customer use, and maintenance and support are other primary activities involved during the life cycle.
(b) The acquisition phase includes the definitions of requirements as well as the conceptual and detailed design activities. It is during these activities that the future costs to produce (or construct), operate, and maintain a product, structure, system, or service are predetermined. Since these future costs (during the operation phase) are 80-90 percent of the life cycle costs, the greatest potential for lowering life cycle costs is during the acquisition phase (in the definition of requirements and design activities).

(b) Fixed costs that could change the BE point from 62 passengers to a lower number include: reduced aircraft insurance costs (by re-negotiating premiums with the existing insurance company or a new company), lower administrative expenses in the front office, increased health insurance costs for the employees (i.e. lowering the cost of the premiums to the airline company) by raising the deductibles on the group policy.
(c) Variable costs that could be reduced to lower the BE point include: no more meals on flights, less external air circulated throughout the cabin, fewer flight attendants. Note: One big cost is fuel, which is fixed for a given flight but variable with air speed. The captain can fly the aircraft at a lower speed to save fuel.

2-12 Re-write the price-demand equation as follows: $p=2,000-0.1 D$. Then,

$$
\mathrm{TR}=p \cdot D=2,000 D-0.1 D^{2}
$$

The first derivative of TR with respect to D is

$$
\mathrm{d}(\mathrm{TR}) / \mathrm{d} D=2,000-0.2 D
$$

This, set equal to zero, yields the D that maximizes TR. Thus,

$$
2,000-0.2 D=0
$$

$D=10,000$ units per month
What is needed to determine maximum monthly profit is the fixed cost per month and the variable cost per lash adjuster.

Profit $=150 D-0.01 D^{2}-50,000-40 D=110 D-0.01 D^{2}-$
$50,000 \mathrm{~d}($ Profit $) / \mathrm{d} D=110-0.02 D=0$
$D=5,500$ units per year, which is less than maximum anticipated demand

At $D=5,500$ units per year, Profit $=\$ 252,500$ and $p=\$ 150-0.01(5,500)=\$ 95 /$ unit.

2-14 (a) $\mathrm{p}=600-0.05 \mathrm{D} ; \quad \mathrm{CF}=\$ 800,000 /$ month; $\quad \mathrm{c}_{\mathrm{V}}=\$ 155.50$ per unit
The unit demand, D , is one thousand board feet.

$$
\mathrm{D}^{*}=\frac{\mathrm{a}-\mathrm{c}_{\mathrm{v}}}{2 \mathrm{~b}}=\frac{600-155.50}{2(0.05)}=\underline{4,445 \text { units/month }} \quad(\text { Eqn. 2-10 })
$$

$$
\text { Profit }(\text { loss })=600 \mathrm{D}-0.05 \mathrm{D}^{2}-(800,000+155.50 \mathrm{D})
$$

$$
=\left[600(4,445)-0.05(4,445)^{2}\right]-[\$ 800,000+\$ 155.50(4,445)]
$$

$$
=\$ 187,901.25 / \text { month } \quad \text { (maximum profit) }
$$

(b) $\mathrm{D}^{\prime}=444.5 \pm(444.5)^{2}-$
$\frac{1 \quad 4(0.05)(800,000)}{2(0.05)}$
444.5-193.86
$\mathrm{D}^{\prime}=\square=2,506$ units $/ \mathrm{month}$
$444.5+193.86$
$\mathrm{D}_{2}=\square=6,383$ units $/ \mathrm{month}$

Range of profitable demand is $\underline{2,506}$ units to 6,383 units per month.
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

2-15 (a) Profit $=\mid 38$

$$
\begin{aligned}
& \left\lceil+\frac{2700}{D}-\frac{5000}{D}-\stackrel{D}{D}-1000-40 \mathrm{D}\right. \\
& L \\
= & 38 \mathrm{D}+2700-\frac{5000}{\mathrm{D}}-1000-40 \mathrm{D}
\end{aligned}
$$

Profit $=-2 \mathrm{D}-\quad{ }_{\mathrm{D}}+1700$
$\frac{d \text { (Profit) }}{d \mathrm{D}}=-2+\frac{5000}{\mathrm{D}^{2}}=0$
or, $\mathrm{D}^{2}=\frac{5000}{2}=2500$ andD $^{*}=50$ units per month
(b) $\frac{d^{2}(\text { Profit })}{}=-10,000<0$ for $\mathrm{D}>1$ $d D^{2} D^{3}$

Therefore, $\underline{D}^{*}=50$ is a point of maximum profit.

2-16 Profit $=$ Total revenue - Total cost

$$
\begin{aligned}
& =\left(15 \mathrm{X}-0.2 \mathrm{X}^{2}\right)-\left(12+0.3 \mathrm{X}+0.27 \mathrm{X}^{2}\right) \\
& =14.7 \mathrm{X}-0.47 \mathrm{X}^{2}-12 \\
& \frac{d \text { Profit }}{d \mathrm{X}}=0=14.7-0.94 \mathrm{X}
\end{aligned}
$$

$X=\underline{15.64 \text { megawatts }}$
d_{2} Profit
$=-0.94$ thus, $X=15.64$ megawatts maximizes profit $d \mathrm{X}^{2}$

2-17 Breakeven point in units of production:
$\mathrm{C}_{\mathrm{F}}=\$ 100,000 / \mathrm{yr} ; \mathrm{CV}=\$ 140,000 / \mathrm{yr}$ (70\% of capacity)
Sales $=\$ 280,000 / \mathrm{yr}$ (70% of capacity) $; \mathrm{p}=\$ 40 /$ unit
Annual Sales (units) $=\$ 280,000 / \$ 40=7,000$ units $/ \mathrm{yr}(70 \%$ capacity $)$
$c_{v}=\$ 140,000 / 7,000=\$ 20 /$ unit
$\mathrm{D}^{\prime}=\frac{\mathrm{C}_{\mathrm{F}}}{\mathrm{p}-\mathrm{c}_{\mathrm{v}}}=\frac{\$ 100,000}{(\$ 40-\$ 20)}=5,000$ units $/ \mathrm{yr}$
or in terms of capacity, we have: 7,000 units $/ 0.7=x$ units $/ 1.0$

Thus, $x(100 \%$ capacity $)=7,000 / 0.7=10,000$ units $/ \mathrm{yr}$
$D^{\prime}(\%$ of capacity $)=\left(10,000{ }^{\$ 5,000}=0.5\right.$ or 50% of capacity

2-18 20,000 tons/yr. (2,000 pounds / ton $)=40,000,000$ pounds per year of zinc are produced.
The variable cost per pound is $\$ 20,000,000 / 40,000,000$ pounds $=\$ 0.50$ per pound.
(a) Profit/yr $=(40,000,000$ pounds $/$ year $)(\$ 1.00-\$ 0.50)-\$ 17,000,000$
$=\$ 20,000,000-\$ 17,000,000$
$=\$ 3,000,000$ per year
The mine is expected to be profitable.
(b) If only 17,000 tons $(=34,000,000$ pounds) are produced, then Profit $/ \mathrm{yr}=$
$(34,000,000$ pounds/year)(\$1.00-\$0.50) - $\$ 17,000,000=0$

Because Profit $=0,17,000$ tons per year is the breakeven point production level for this mine. A loss would occur for production levels $<17,000$ tons/year and a profit for levels $>17,000$ tons per year.

2-19 (a) $\mathrm{BE}=\$ 1,500,000 /(\$ 39.95-\$ 20.00)=75,188$ customers per month
(b) New BE point $=\$ 1,500,000 /(\$ 49.95-\$ 25.00)=60,120$ per month
(c) For 63,000 subscribers per month, profit equals

$$
63,000(\$ 49.95-\$ 25.00)-\$ 1,500,000=\$ 71,850 \text { per month }
$$

This improves on the monthly loss experienced in part (a).
$\mathbf{2 - 2 0}$ (a) $\mathrm{D}^{\prime}=\mathrm{p}-\mathrm{c}_{\mathrm{v}}=(\$ 90-\$ 40) /$ unit $=40,000$ units per year

(b) Profit (Loss) $=$ Total Revenue - Total Cost

$$
\begin{aligned}
(90 \% \text { Capacity }) & =90,000(\$ 90)-[\$ 2,000,000+90,000(\$ 40)] \\
& =\$ \underline{2,500,000} \text { per year } \\
(100 \% \text { Capacity }) & =[90,000(\$ 90)+10,000(\$ 70)]-[\$ 2,000,000+100,000(\$ 40)] \\
& =\$ \underline{2,800,000} \text { per year }
\end{aligned}
$$

2-21 Annual savings are at least equal to $(\$ 60 / \mathrm{lb})(600 \mathrm{lb})=\$ 36,000$. So the company can spend no more than $\$ 36,000$ (conservative) and still be economical. Other factors include ease of maintenance / cleaning, passenger comfort and aesthetic appeal of the improvements. Yes, this proposal appears to have merit so it should be supported.

2-22 Jerry's logic is correct if the AC system does not degrade in the next ten years (very unlikely). Because the leak will probably get worse, two or more refrigerant re-charges per year may soon become necessary. Jerry's strategy could be to continue re-charging his AC system until two re-charges are required in a single year. Then he should consider repairing the evaporator (and possibly other faulty parts of his system).

2-23 Over 81,000 miles, the gasoline-only car will consume 2,700 gallons of fuel. The flex-fueled car will use 3,000 gallons of E85. So we have

$$
(3,000 \text { gallons })(\mathrm{X})+\$ 1,000=(2,700 \text { gallons })(\$ 3.89 / \mathrm{gal})
$$

and

$$
X=\$ 3.17 \text { per gallon }
$$

This is 18.5% less expensive than gasoline. Can our farmers pull it off - maybe with government subsidies?

2-24 (a) Total Annual Cost $(T A C)=$ Fixed cost + Cost of Heat Loss $=450 \mathrm{X}+50+\frac{4.80}{\mathrm{X}^{1 / 2}}$
$\frac{d(\mathrm{TAC})}{d \mathrm{X}}=0=450-\frac{2.40}{\mathrm{X}^{3 / 2}}$

$$
\mathrm{X}_{3 / 2}=\frac{2.40}{450}=0.00533
$$

$X^{*}=\underline{0.0305}$ meters
(b) $\frac{d^{2}(\mathrm{TAC})}{=\frac{3.6}{}>0 \quad \text { for } \mathrm{X}>0 \text {. }}$
$d \mathrm{X}^{2} \quad \mathrm{X}^{5 / 2}$
Since the second derivative is positive, $X^{*}=0.0305$ meters is a minimum cost thickness.
(c) The cost of the extra insulation (a directly varying cost) is being traded-off against the value of reduction in lost heat (an indirectly varying cost).

2-25 Annual Profit/Loss $=$ Revenue $-($ Fixed Costs + Variable Costs $)$

$$
\begin{aligned}
& =\$ 300,000-[\$ 200,000+(0.60)(\$ 300,000)] \\
& =\$ 300,000-\$ 380,000 \\
& =-\$ 80,000
\end{aligned}
$$

So the correct choice is (d).
$\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{\mathrm{o}}+\mathrm{C}_{\mathrm{c}}=\mathrm{knv}{ }^{2}+\frac{\$ 1.500 \mathrm{n}}{\mathrm{v}}$
$\stackrel{d \mathrm{C}_{\underline{T}}}{\underline{\underline{T}}}=0=2 \mathrm{kv}-\underline{\underline{1.500}}=\mathrm{kv}^{3}-750$
$d \mathrm{v} \quad \mathrm{v}^{2}$
$v=\sqrt{\frac{750}{k}}$
To find k , we know that

$$
\underline{\mathrm{C}_{0}}=\$ 100 / \mathrm{mile} \text { at } \mathrm{v}=12 \mathrm{miles} / \mathrm{hr}
$$

n

$$
\frac{\mathrm{C}_{\mathrm{o}}}{\mathrm{n}}=\mathrm{kv} \mathrm{v}^{2}=\mathrm{k}(12)^{2}=100
$$

and

$$
\mathrm{k}=100 / 144=0.6944
$$

$$
\text { so, } \quad \mathrm{v}=\sqrt[3]{\frac{750}{0.6944}}=10.25 \text { miles } / \mathrm{hr} .
$$

The ship should be operated at an average velocity of 10.25 mph to minimize the total cost of operation and perishable cargo.

Note: The second derivative of the cost model with respect to velocity is:

$$
\frac{d_{2} \mathrm{C}_{\mathrm{T}}}{d \mathrm{v}^{2}}=1.388 \mathrm{n}+3,0 \underline{\mathrm{v}}^{3}{ }^{\mathrm{n}}
$$

The value of the second derivative will be greater than 0 for $n>0$ and $v>0$. Thus we have found a minimum cost velocity.

	R11	R19	R30	R38
A. Investment cost	$\$ 1,800$	$\$ 2,700$	$\$ 3,900$	$\$ 4,800$
B. Annual Heating Load $\left(10^{6} \mathrm{Btu} / \mathrm{yr}\right)$	74	69.8	67.2	66.2
C. Cost of heat loss/yr	$\$ 1,609.50$	$\$ 1,518.15$	$\$ 1,461.60$	$\$ 1,439.85$
D. Cost of heat loss over 25 years	$\$ 40,238$	$\$ 37,954$	$\$ 36,540$	$\$ 35,996$
E. Total Life Cycle Cost = A + D	$\$ 42,038$	$\$ 40,654$	$\$ 40,440$	$\$ 40,796$

R30 is the most economical insulation thickness.

2-28 $\left(293 \mathrm{kWh} / 10^{6} \mathrm{Btu}\right)(\$ 0.15 / \mathrm{kWh})=\$ 43.95 / 10^{6} \mathrm{Btu}$

	R11	R19	R30	R38
A. Investment cost	$\$ 2,400$	$\$ 3,600$	$\$ 5,200$	$\$ 6,400$
B. Annual Heating Load $\left(10^{6} \mathrm{Btu} / \mathrm{yr}\right)$	74	69.8	67.2	66.2
C. Cost of heat loss/yr	$\$ 3,252$	$\$ 3,068$	$\$ 2,953$	$\$ 2,909$
D. Cost of heat loss over 25 years	$\$ 81,308$	$\$ 76,693$	$\$ 73,836$	$\$ 72,737$
E. Total Life Cycle Cost = A + D	$\$ 83,708$	$\$ 80,293$	$\$ 79,036$	$\$ 79,137$

Select R30 to minimize total life cycle cost.

2-29 (a)
$\xrightarrow{d \mathrm{C}}=-{ }^{\mathrm{C}} \mathrm{I}_{+} \mathrm{CR}_{\mathrm{t}=0}$
$d \lambda \quad \lambda^{2}$
or, $\lambda^{2}=\mathrm{C}_{\mathrm{I}} / \mathrm{CRt}_{\mathrm{R}}$
and, $\lambda^{*}=\left(\mathrm{C}_{1} / \mathrm{C}_{\mathrm{R}}\right)^{1 / 2}$; we are only interested in the positive root.
(b) $\underline{d 2} \underline{C}=\frac{2 \mathrm{C}}{\mathrm{C}}>0$ for λ
$>0 d \lambda^{2} \lambda^{3}$
Therefore, λ^{*} results in a minimum life-cycle cost value.
(c) Investment cost versus total repair cost

2-30 $\left(\frac{100,000}{22} \frac{100,000}{28 p g-\quad} 2(\$ 3.00 /\right.$ gallon $)=\$ 3,896$

Total extra amount $=\$ 2,500+\$ 3,896=\underline{\$ 6,396}$
Assume the time value of money can be ignored and that comfort and aesthetics are comparable for the two cars.

2-31 (a) With Dynolube you will average $(20 \mathrm{mpg})(1.01)=20.2$ miles per gallon (a 1% improvement $)$. Over 50,000 miles of driving, you will save

$$
\frac{50,000 \text { miles }}{20 \mathrm{mpg}}-\frac{50,000 \mathrm{miles}}{20.2 \mathrm{mpg}}=24.75 \text { gallons of gasoline } .
$$

This will save (24.75 gallons)(\$4.00 per gallon) $=\$ 99$.
(b) Yes, the Dynolube is an economically sound choice.

2-32 The cost of tires containing compressed air is ($\$ 200 / 50,000$ miles) $=\$ 0.004$ per mile. Similarly, the cost of tires filled with 100% nitrogen is $(\$ 220 / 62,500$ miles $)=\$ 0.00352$ per mile. On the face of it, this appears to be a good deal if the claims are all true (a big assumption). But recall that air is 78% nitrogen, so this whole thing may be a gimmick to take advantage of a gullible public. At 200,000 miles of driving, one original set of tires and three replacements would be needed for compressed-air tires. One original set and two replacements (close enough) would be required for the 100% nitrogen-filled tires. What other assumptions are being made?

2-33

Cost Factor	Brass-Copper Alloy	Plastic Molding
Casting $/ \mathrm{pc}$	$(25 \mathrm{lb})(\$ 3.35 / \mathrm{lb})=\$ 83.75$	$(20 \mathrm{lb})(\$ 7.40 / \mathrm{lb})=\$ 148.00$
Machining /pc	$\$ 6.00$	0.00
Weight Penalty $/ \mathrm{pc}$	$(25 \mathrm{lb}-20 \mathrm{lb})(\$ 6 / \mathrm{lb})=\$ 30.00$	0.00
Total Cost /pc	$\$ 119.75$	$\$ 148.00$

The Brass-Copper alloy should be selected to save $\$ 148.00-\$ 119.75=\$ 28.25$ over the life cycle of each radiator.

2-34 (a) Machine A
Non-defective units/day $=(100$ units/hr) $)(7 \mathrm{hrs} /$ day $)(1-0.25)(1-0.03)$

$$
\approx 509 \text { units/day }
$$

Note: 3 months $=(52$ weeks $/$ year $) / 4=13$ weeks
Non-defective units/3-months = (13 weeks)(5 days/week)(509 units/day)

$$
=33,085 \text { units (> 30,000 required) }
$$

Machine B

Non-defective units/day $=(130$ units/hr $)(6 \mathrm{hrs} /$ day $)(1-0.25)(1-0.10)$ ≈ 526 units/day
Non-defective units/3-months = (13 weeks)(5 days/week)(526 units/day) $=34,190$ units (> 30,000 required)

Either machine will produce the required 30,000 non-defective units/3-months
(b) Strategy: Select the machine that minimizes costs per non-defective unit since revenue for 30,000 units over 3-months is not affected by the choice of the machine (Rule 2). Also assume capacity reductions affect material costs but not labor costs.

Machine A

$$
\begin{aligned}
& \hline \text { Total cost/day }=(100 \mathrm{units} / \mathrm{hr})(7 \mathrm{hrs} / \text { day })(1-0.25)(\$ 6 / \mathrm{unit}) \\
&+(\$ 15 / \mathrm{hr}+\$ 5 / \mathrm{hr})(7 \mathrm{hrs} / \text { day }) \\
&=\$ 3,290 / \text { day }
\end{aligned} \quad \begin{aligned}
\text { Cost/non-defective unit } & =(\$ 3,290 / \text { day }) /(509 \text { non-defective units/day }) \\
& =\$ 6.46 / \text { unit }
\end{aligned}
$$

Machine B

$$
\begin{aligned}
\text { Total cost/day }= & (130 \text { units } / \mathrm{hr})(6 \mathrm{hrs} / \text { day })(1-0.25)(\$ 6 / \mathrm{unit}) \\
& +(\$ 15 / \mathrm{hr}+\$ 5 / \mathrm{hr})(6 \mathrm{hrs} / \text { day }) \\
= & \$ 3,630 / \mathrm{day}
\end{aligned}
$$

Cost/non-defective unit $=(\$ 3,630 /$ day $) /(526$ non-defective units/day)
= \$6.90/unit

Select Machine A.

2-35 Strategy: Select the design which minimizes total cost for 125,000 units/year (Rule 2). Ignore the sunk costs because they do not affect the analysis of future costs.
(a) Design A

Total cost/ 125,000 units $=(12 \mathrm{hrs} / 1,000$ units $)(\$ 18.60 / \mathrm{hr})(125,000)$
$+(5 \mathrm{hrs} / 1,000$ units $)(\$ 16.90 / \mathrm{hr})(125,000)$
$=\$ 38,463$, or $\$ 0.3077 /$ unit
Design B
Total cost/ 125,000 units $=(7 \mathrm{hrs} / 1,000$ units $)(\$ 18.60 / \mathrm{hr})(125,000)$
$+(7 \mathrm{hrs} / 1,000$ units $)(\$ 16.90 / \mathrm{hr})(125,000)$
$=\$ 33,175$, or $\$ 0.2654 /$ unit

Select Design B

(b) Savings of Design B over Design A are:

Annual savings (125,000 units) $=\$ 38,463-\$ 33,175=\$ 5,288$
Or, savings/unit $=\$ 0.3077-\$ 0.2654=\$ 0.0423 /$ unit.

2-36 Profit per day $=$ Revenue per day - Cost per day $\begin{aligned} &=(\text { Production rate })(\text { Production time })(\$ 30 / \text { part })[1-(\% \text { rejected }+\% \text { tested }) / 100] \\ &-(\text { Production rate })(\text { Production time })(\$ 4 / \text { part })-(\text { Production time })(\$ 40 / \mathrm{hr})\end{aligned}$

Process 1: Profit per day $=(35$ parts $/ \mathrm{hr})(4 \mathrm{hrs} /$ day $)(\$ 30 /$ part $)(1-0.2)-$
(35 parts/hr)(4 hrs/day)(\$4/part) - (4 hrs/day)(\$40/hr)
$=\$ 2640 / \mathrm{day}$
Process 2: Profit per day $=(15$ parts/hr) $(7 \mathrm{hrs} /$ day $)(\$ 30 /$ part $)(1-0.09)-$
(15 parts/hr)(7 hrs/day)(\$4/part) - (7 hrs/day)(\$40/hr)
$=\$ 2155.60 /$ day

Process 1 should be chosen to maximize profit per day.

2-37 At 70 mph your car gets $0.8(30 \mathrm{mpg})=24 \mathrm{mpg}$ and at 80 mph it gets $0.6(30 \mathrm{mpg})=18 \mathrm{mpg}$. The extra cost of fuel at 80 mph is:

$$
(400 \mathrm{miles} / 18 \mathrm{mpg}-400 \mathrm{miles} / 24 \mathrm{mpg})(\$ 4.00 \text { per gallon })=\$ 22.22
$$

The reduced time to make the trip at 80 mph is about 45 minutes. Is this a good tradeoff in your opinion? What other factors are involved?

2-38 $5(4 \mathrm{X}+3 \mathrm{Y})=4(3 \mathrm{X}+5 \mathrm{Y})$ where $\mathrm{X}=$ units of profit per day from an 85 -octane pump and $\mathrm{Y}=$ units of profit per day from an 89 -octane pump. Setting them equal simplifies to $8 \mathrm{X}=5 \mathrm{Y}$, so the 89 octane pump is more profitable for the store.

2-39 When electricity costs $\$ 0.15 / \mathrm{kWh}$ and operating hours $=4,000$:
$\operatorname{Cost}_{\mathrm{ABC}}=(100 \mathrm{hp} / 0.80)(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.15 / \mathrm{kWh})(4,000 \mathrm{~h} / \mathrm{yr})+\$ 2,900+\$ 170=\$ 59,020$
$\operatorname{Cost}_{\mathrm{XYZ}}=(100 \mathrm{hp} / 0.90)(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.15 / \mathrm{kWh})(4,000 \mathrm{~h} / \mathrm{yr})+\$ 6,200+\$ 510=\$ 56,443$
Select pump XYZ.
When electricity costs $\$ 0.15 / \mathrm{kWh}$ and operating hours $=4,000$:
$\operatorname{Cost}_{\mathrm{ABC}}=(100 \mathrm{hp} / 0.80)(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.15 / \mathrm{kWh})(3,000 \mathrm{~h} / \mathrm{yr})+\$ 2,900+\$ 170=\$ 45,033$
Cost $_{\mathrm{XYZ}}=(100 \mathrm{hp} / 0.90)(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.15 / \mathrm{kWh})(3,000 \mathrm{~h} / \mathrm{yr})+\$ 6,200+\$ 510=\$ 44,010$
Select pump XYZ.

2-40 Option A (Purchase):
$\mathrm{C}_{\mathrm{T}}=(10,000$ items $)(\$ 8.50 /$ item $)=\$ 85,000$

Option B (Manufacture):

Direct Materials $=\$ 5.00 / \mathrm{item}$
Direct Labor $\quad=\$ 1.50 /$ item
Overhead $\quad=\$ 3.00 /$ item \$9.50/item
$\mathrm{C}_{\mathrm{T}}=(10,000$ items $)(\$ 9.50 /$ item $)=\$ 95,000$

Choose Option A (Purchase Item).

2-41 Assume you cannot stand the anxiety associated with the chance of running out of gasoline if you elect to return the car with no gas in it. Therefore, suppose you leave three gallons in the tank as "insurance" that a tow-truck will not be needed should you run out of gas in an unfamiliar city. The cost (i.e., the security blanket) will be $(\$ 3.50+\$ 0.50=\$ 4.00) \times 3$ gallons $=\$ 12.00$. If you bring back the car with a full tank of gasoline, the extra cost will be $\$ 0.50 \mathrm{x}$ the capacity, in gallons, of the tank. Assuming a 15gallon tank, this option will cost you $\$ 7.50$. Hence, you will save $\$ 12.00-\$ 7.50=\$ 4.50$ by bringing back the car with a full tank of gasoline.

2-42 Assumptions: You can sell all the metal that is recovered

$$
\begin{aligned}
& \text { Method 1: Recovered ore }=(0.62)(100,000 \text { tons } \quad=62,000 \text { tons } \\
& \text { Removal cost }=(62,000 \text { tons })(\$ 23 / \text { ton })=\$ 1,426,000 \\
& \text { Processing cost }=(62,000 \text { tons })(\$ 40 / \text { ton })=\$ 2,480,000 \\
& \text { Recovered metal }=(300 \mathrm{lbs} / \text { ton })(62,000 \mathrm{tons})=18,600,000 \mathrm{lbs} \\
& \text { Revenues } \quad=(18,600,000 \mathrm{lbs})(\$ 0.8 / \mathrm{lb})=\$ 14,880,000 \\
& \begin{aligned}
\text { Profit }=\text { Revenues }- \text { Cost } & =\$ 14,880,000-(\$ 1,426,000+\$ 2,480,000) \\
& =\$ 10,974,000
\end{aligned} \\
& \text { Method 2: Recovered ore }=(0.5)(100,000 \text { tons })=50,000 \text { tons } \\
& \text { Removal cost }=(50,000 \text { tons })(\$ 15 / \text { ton })=\$ 750,000 \\
& \text { Processing cost }=(50,000 \text { tons })(\$ 40 / \text { ton })=\$ 2,000,000 \\
& \text { Recovered metal }=(300 \mathrm{lbs} / \text { ton })(50,000 \mathrm{tons})=15,000,000 \mathrm{lbs} \\
& \text { Revenues } \quad=(15,000,000 \mathrm{lbs})(\$ 0.8 / \mathrm{lb})=\$ 12,000,000 \\
& \text { Profit }=\text { Revenues }- \text { Cost }=\$ 12,000,000-(\$ 750,000+\$ 2,000,000) \\
& \text { = \$9,250,000 }
\end{aligned}
$$

Select Method 1 (62% recovered) to maximize total profit from the mine.

Profit per ounce $($ Method $A)=\$ 1,750-\$ 550 /[(0.90$ oz. per ton $)(0.90)]=\$ 1,750-\$ 679$
$=\$ 1,071$ per ounce
Profit per ounce $($ Method B) $=\$ 1,750-\$ 400 /[(0.9$ oz. per ton $)(0.60)=\$ 1,750-$

$$
\$ 741=\$ 1,009 \text { per ounce }
$$

Therefore, by a slim margin we should recommend Method A.
(b) False; (e) True; (h) True; (k) True; (n) True; (q) True;
(c) True; (f) True; (i) True; (l) False; (o) True; (r) True;
$\mathbf{2 - 4 5}$ (a) Loss $=\frac{\left(\mathrm{lb} \mathrm{coal}_{(1,750,000 \mathrm{Btu})}^{(12,000 \mathrm{Btu})_{\equiv}}\right.}{0.30} 486 \mathrm{lbs}$ of coal
(b) 486 pounds of coal produces $(486)(1.83)=889$ pounds of CO_{2} in a year.

2-46 (a) Let $\mathrm{X}=$ breakeven point in miles
Fuel cost $($ car dealer option $)=(\$ 2.00 / \mathrm{gal})(1 \mathrm{gal} / 20 \mathrm{miles})=\$ 0.10 / \mathrm{mile}$
Motor Pool Cost $=$ Car Dealer Cost
$(\$ 0.36 / \mathrm{mi}) \mathrm{X}=(6$ days $)(\$ 30 /$ day $)+(\$ 0.20 / \mathrm{mi}+\$ 0.10 / \mathrm{mi}) \mathrm{X}$
$\$ 0.36 \mathrm{X}=180+\$ 0.30 \mathrm{X} \quad$ and $\quad \mathrm{X}=\underline{\underline{3,000} \text { miles }}$
(b) 6 days $(100$ miles/day $)=600$ free miles

If the total driving distance is less than 600 miles, then the breakeven point equation is given by:
$(\$ 0.36 / \mathrm{mi}) \mathrm{X}=(6$ days $)(\$ 30 /$ day $)+(\$ 0.10 / \mathrm{mi}) \mathrm{X}$
$\mathrm{X}=692.3$ miles >600 miles
This is outside of the range [0,600], thus renting from State Tech Motor Pool is best for distances less than 600 miles.

If driving more than 600 miles, then the breakeven point can be determined using the following equation:
$(\$ 0.36 / \mathrm{mi}) \mathrm{X}=(6$ days $)(\$ 30 /$ day $)+(\$ 0.20 / \mathrm{mi})(\mathrm{X}-600 \mathrm{mi})+(\$ 0.10 / \mathrm{mi}) \mathrm{X}$
$X=\underline{1,000 \text { miles }} \quad$ The true breakeven point is 1000 miles.
(c) The car dealer was correct in stating that there is a breakeven point at 750 miles. If driving less than 900 miles, the breakeven point is:
$(\$ 0.34 / \mathrm{mi}) \mathrm{X}=(6$ days $)(\$ 30 /$ day $)+(\$ 0.10 / \mathrm{mi}) \mathrm{X}$
X $=750$ miles <900 miles
However, if driving more than 900 miles, there is another breakeven point.

$$
\begin{aligned}
& (\$ 0.34 / \mathrm{mi}) \mathrm{X}=(6 \text { days })(\$ 30 / \mathrm{day})+(\$ 0.28 / \mathrm{mi})(\mathrm{X}-900 \mathrm{mi})+(\$ 0.10 / \mathrm{mi}) \mathrm{X} \\
& X=1800 \text { miles }>900 \text { miles }
\end{aligned}
$$

The car dealer is correct, but only if the group travels in the range between 750 miles and 1,800 miles. Since the group is traveling more than 1,800 miles, it is better for them to rent from State Tech Motor Pool.

This problem is unique in that there are two breakeven points. The following graph shows the two points.

Car Dealer v. State Tech Motor Pool

2-47 This problem is location specific. We'll assume the problem setting is in Tennessee. The eight years ($\$ 2,400 / \$ 300$) to recover the initial investment in the stove is expensive (i.e. excessive) by traditional measures. But the annual cost savings could increase due to inflation. Taking pride in being "green" is one factor that may affect the homeowner's decision to purchase a corn-burning stove.

Solutions to Spreadsheet Exercises

Reducing fixed costs has no impact on the optimum demand value, but does broaden the profitable range of demand. Reducing variable costs increase the optimum demand value as well as the range of profitable demand.

2-49 New annual heating load $=(230$ days $)\left(72{ }^{\circ} \mathrm{F}-46^{\circ} \mathrm{F}\right)=5,980$ degree days. Now, 136.7×10^{6} Btu are lost with no insulation. The following U-factors were used in determining the new heating load for the various insulation thicknesses.

	U-factor	Heating Load
R11	0.2940	$101.3 \times 10^{6} \mathrm{Btu}$
R19	0.2773	$\underline{95.5 \times 10^{-}}{ }^{-1} \underline{\text { tu }}$
R30	0.2670	$\underline{92 \times 10}{ }^{-1}$ Btu
R38	0.2630	$\underline{90.6 \times 10^{\underline{6}} \underline{-14} \text { u }}$

Energy Cost	$\begin{aligned} & \$ / k W h r \\ & \$ 0.086 \end{aligned}$		$\begin{gathered} \$ / 10^{6} \mathrm{Btu} \\ \$ 25.20 \end{gathered}$		R30		R38	
		R11		R19				
Investment Cost	\$	900	\$	1,350	\$	1,950	\$	2,400
Annual Heating Load (10^{6} Btu)		101.3		95.5		92		90.6
Cost of Heat Loss/yr		\$2,553		\$2,406		\$2,318		\$2,283
Cost of Heat Loss over 25 years		\$63,814		\$60,160		\$57,955		\$57,073
Total Life Cycle Cost		\$64,714		\$61,510		\$59,905		\$59,473

Solutions to Case Study Exercises

2-50 In this problem we observe that "an ounce of prevention is worth a pound of cure." The ounce of prevention is the total annual cost of daylight use of headlights, and the pound of cure is postponement of an auto accident because of continuous use of headlights. Clearly, we desire to postpone an accident forever for a very small cost.

The key factors in the case study are the cost of an auto accident and the frequency of an auto accident. By avoiding an accident, a driver "saves" its cost. In postponing an accident for as long as possible, the "annual cost" of an accident is reduced, which is a good thing. So as the cost of an accident increases, for example, a driver can afford to spend more money each year to prevent it from happening through continuous use of headlights. Similarly, as the acceptable frequency of an accident is lowered, the total annual cost of prevention (daytime use of headlights) can also decrease, perhaps by purchasing less expensive headlights or driving less mileage each year.

Based on the assumptions given in the case study, the cost of fuel has a modest impact on the cost of continuous use of headlights. The same can be said for fuel efficiency. If a vehicle gets only 15 miles to the gallon of fuel, the total annual cost would increase by about 65%. This would then reduce the acceptable value of an accident to "at least one accident being avoided during the next 16 years." To increase this value to a more acceptable level, we would need to reduce the cost of fuel, for instance. Many other scenarios can be developed.

2-51 Suppose my local car dealer tells me that it costs no more than $\$ 0.03$ per gallon of fuel to drive with my headlights on all the time. For the case study, this amounts to (500 gallons of fuel per year) x $\$ 0.03$ per gallon $=\$ 15$ per year. So the cost effectiveness of continuous use of headlights is roughly six times better than for the situation in the case study.

Solutions to FE Practice Problems

2-52 $p=400-D^{2}$

$$
T R=p \cdot D=\left(400-D^{2}\right) D=400 D-D^{3}
$$

$$
\mathrm{TC}=\$ 1125+\$ 100 \cdot \mathrm{D}
$$

Total Profit $/$ month $=T R-T C=400 D-D^{3}-\$ 1125-\$ 100 D$

$$
=-D^{3}+300 D-1125
$$

$d \mathrm{TP}$

$$
d \mathrm{D}=-3 \mathrm{D}^{2}+300=0 \quad \text { st } \mathrm{D}^{2}=100 \text { at } \mathrm{D}^{*}=10 \text { units }
$$

$$
\frac{d^{2} \mathrm{TP}}{d \mathrm{D}^{2}}=-6 \mathrm{D} ; \text { at } \mathrm{D}=\mathrm{D}^{*}, \quad \frac{d^{2} \mathrm{TP}}{d \mathrm{D}^{2}}=-60
$$

Negative, therefore maximizes profit.
$\underline{\text { Select (a) }}$
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

2-53 - $D^{3}+300 D-1125=0$ for breakeven
At $\underline{D}=15$ units; $-15^{3}+300(15)-1125=0$

Select (b)

$C_{F}=\$ 100,000+\$ 20,000=\$ 120,000$ per year
$C V=\$ 15+\$ 10=\$ 25$ per unit
$\mathrm{p}=\$ 40$ per unit

$$
\mathrm{D}^{\prime}=\frac{\mathrm{C}_{\mathrm{F}}}{\mathrm{p}-\mathrm{c}_{\mathrm{v}}}=\frac{\$ 120,000}{(\$ 40-\$ 25)}=\underline{8,000 \text { units } / \mathrm{yr}}
$$

Select (c)

2-55 Profit $=\mathrm{pD}-\left(\mathrm{C}_{\mathrm{F}}+\mathrm{C}_{\mathrm{V}} \mathrm{D}\right)$
At $\mathrm{D}=10,000$ units/yr,
Profit/yr $=(40)(10,000)-[120,000+(25)(10,000)]=\$ 30,000$
Select (e)

2-56 Profit $=\mathrm{pD}-\left(\mathrm{C}_{\mathrm{F}}+\mathrm{CVD}\right)$
$60,000=35 \mathrm{D}-(120,000+25 \mathrm{D})$
$180,000=10 \mathrm{D} ; \mathrm{D}=\underline{18,000 \text { units } / \mathrm{yr}}$
Select (d)

$$
\begin{aligned}
& =\$ 300,000-[\$ 200,000+(0.60)(\$ 300,000)] \\
& =\$ 300,000-\$ 380,000 \\
& =-\$ 80,000
\end{aligned}
$$

Select (d)

2-58 Savings in first year $=(7,900,000$ chips $)(0.01 \mathrm{~min} /$ chip $)(1 \mathrm{hr} / 60 \mathrm{~min})(\$ 8 / \mathrm{hr}+5.50 / \mathrm{hr})=\$ 17,775$

Select (d)

Solutions to Problems in Appendix 2-A

2-A-1 (a) Details of transactions

(a) Smith invested $\$ 35,000$ cash to start the business.
(b) Purchased $\$ 350$ of office supplies on account.
(c) Paid $\$ 30,000$ to acquire land as a future building site.
(d) Earned service revenue and received cash of $\$ 1,900$.
(e) Paid $\$ 100$ on account.
(f) Paid for a personal vacation, which is not a transaction of the business.
(g) Paid cash expenses for rent, $\$ 400$, and utilities, $\$ 100$.
(h) Sold office supplies for cost of $\$ 150$.
(i) Withdrew $\$ 1,200$ cash for personal use.

Analysis of Transactions:

(b) Financial Statements of Campus Apartments Locators

Income Statement
Month Ended July 31, 2010

Revenue:

Expenses:

Rent expense	\$400	
Utilities expense	100	
Total expenses		500

Statement of Owner's Equity
 Month Ended July 31, 2015

Jill Smith, capital, July 1, 2015	\$ 0
Add: Investment by owner ...Net income for the mon	35,000
	1,400
	36,400
Less: Withdrawals by owner	(1,200)
Jill Smith, capital, July 31, 2015	\$35,200

Balance Sheet
July 31, 2015

Assets

Total assets 35,450

Liabilities
Accounts payable \$ 250
Owner's Equity
Jill Smith, capital 35,200
Total liabilities and
owner's equity
\$35,450

Peavy Design Statement of Owner's Equity Month Ended May 31, 2015		
Daniel Peavy, capital, April 30, 2015		
Add: Investments by owner $(\$ 12,000+\$ 1,700)$	$\$$	23,660
Net income for the month		13,700
	4,240	
		41,600
Less: Withdrawals by owner	$(4,000)$	
Daniel Peavy, capital, May 31, 2015	$\$$	37,600

Peavy Design Balance Sheet May 31, 2015			
ASSETS		LIABILITI	
Cash	\$ 6,090	Accounts payable	\$ 720
Accounts receivable	7,490	OWNER'S EQUITY	
Supplies	640		
Land	24,100	Daniel Peavy, capital Total liabilities and	37,600
Total assets	\$ 38,320	owner's equity	\$ 38,230

Compensation for non-chargeable time, $0.15 \times \$ 3,600,000$ Other costs
(a) Total overhead
(b) Direct labor, $0.85 \times \$ 3,600,000$
\$ 540,000
1,449,000
\$1,989,000
\$3,060,000

Overhead application rate, (a) \div (b) 65%
2. Hourly rate:
$\$ 60,000 \div(48 \times 40)=\$ 60,000 \div 1,920$
\$31.25
Many students will forget that "his work there" includes an overhead application:

Direct labor, $10 \times \$ 31.25$	$\$ 312.50$
Applied overhead, $\$ 312.50 \times 0.65$	203.13

Total costs applied	$\$ 515.63$

We point out that direct-labor time on a job is usually compiled for all classes of engineers and then applied at their different compensation rates. Overhead is usually not applied on the piecemeal basis demonstrated here. Instead, it is applied in one step after all the labor costs of the job have been accumulated.

