Solution Manual for Engineering Economy 8th edition by Blank Tarquin ISBN 00735234379780073523439

Full link download
Solution Manual: https://testbankpack.com/p/solution-manual-for-engineering-economy-8th-edition-by-blank-tarquin-isbn-0073523437-

9780073523439/

Chapter 2

Factors: How Time and Interest Affect Money

Determination of \mathbf{F}, \mathbf{P} and A

$2.1(1)(\mathrm{F} / \mathrm{P}, 10 \%, 7)=1.9487$
(2) $(\mathrm{A} / \mathrm{P}, 12 \%, 10)=0.17698$
(3) $(\mathrm{P} / \mathrm{G}, 15 \%, 20)=33.5822$
(4) $(\mathrm{F} / \mathrm{A}, 2 \%, 50)=84.5794$
(5) $(\mathrm{A} / \mathrm{G}, 35 \%, 15)=2.6889$
$2.2 \mathrm{~F}=1,200,000(\mathrm{~F} / \mathrm{P}, 7 \%, 4)$
$=1,200,000(1.3108)$
= \$1,572,960
$2.3 \mathrm{~F}=200,000(\mathrm{~F} / \mathrm{P}, 10 \%, 3)$
$=200,000(1.3310)$
= \$266,200
2.4 $\mathrm{P}=7(120,000)(\mathrm{P} / \mathrm{F}, 10 \%, 2)$
$=840,000(0.8264)$
$=\$ 694,176$
$2.5 \mathrm{~F}=100,000,000 / 30(\mathrm{~F} / \mathrm{A}, 10 \%, 30)$

$$
=3,333,333(164.4940)
$$

$$
=\$ 548,313,333
$$

$2.6 \mathrm{P}=25,000(\mathrm{P} / \mathrm{F}, 10 \%, 8)$
$=25,000(0.4665)$
= \$11,662.50

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

$$
\begin{aligned}
& 2.7 \mathrm{P}=8000(\mathrm{P} / \mathrm{A}, 10 \%, 10) \\
& =8000(6.1446) \\
& =\$ 49,156.80 \\
& 2.8 \quad \mathrm{P}=100,000((\mathrm{P} / \mathrm{A}, 12 \%, 2) \\
& =100,000(1.6901) \\
& =\$ 169,010 \\
& 2.9 \quad \mathrm{~F}=12,000(\mathrm{~F} / \mathrm{A}, 10 \%, 30) \\
& =12,000(164.4940) \\
& \text { = \$1,973,928 } \\
& 2.10 \mathrm{~A}=50,000,000(\mathrm{~A} / \mathrm{F}, 20 \%, 3) \\
& =50,000,000(0.27473) \\
& =\$ 13,736,500 \\
& 2.11 \mathrm{~F}=150,000(\mathrm{~F} / \mathrm{P}, 18 \%, 5) \\
& =150,000(2.2878) \\
& =\$ 343,170 \\
& 2.12 \mathrm{P}=75(\mathrm{P} / \mathrm{F}, 18 \%, 2) \\
& =75(0.7182) \\
& =\$ 53.865 \text { million } \\
& 2.13 \mathrm{~A}=450,000(\mathrm{~A} / \mathrm{P}, 10 \%, 3) \\
& =450,000(0.40211) \\
& \text { = \$180,950 } \\
& 2.14 \mathrm{P}=30,000,000(\mathrm{P} / \mathrm{F}, 10 \%, 5)-15,000,000 \\
& =30,000,000(0.6209)-15,000,000 \\
& =\$ 3,627,000 \\
& 2.15 \mathrm{~F}=280,000(\mathrm{~F} / \mathrm{P}, 12 \%, 2) \\
& =280,000(1.2544) \\
& =\$ 351,232 \\
& 2.16 \mathrm{~F}=(200-90)(\mathrm{F} / \mathrm{A}, 10 \%, 8) \\
& =110(11.4359) \\
& =\$ 1,257,949
\end{aligned}
$$

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

```
2.17 F = 125,000(F/A,10%,4)
    = 125,000(4.6410)
    = $580,125
```

$2.18 \quad \mathrm{~F}=600,000(0.04)(\mathrm{F} / \mathrm{A}, 10 \%, 3)$
$=24,000(3.3100)$
= \$79,440
$2.19 \quad \mathrm{P}=90,000(\mathrm{P} / \mathrm{A}, 20 \%, 3)$
$=90,000(2.1065)$
$=\$ 189,585$
$2.20 \mathrm{~A}=250,000(\mathrm{~A} / \mathrm{F}, 9 \%, 5)$
$=250,000(0.16709)$
$=\$ 41,772.50$
$2.21 \mathrm{~A}=1,150,000(\mathrm{~A} / \mathrm{P}, 5 \%, 20)$
$=1,150,000(0.08024)$
$=\$ 92,276$
2.22 $\mathrm{P}=\left(110,000^{*} 0.3\right)(\mathrm{P} / \mathrm{A}, 12 \%, 4)$
$=(33,000)(3.0373)$
= \$100,231
2.23 $\mathrm{A}=3,000,000(10)(\mathrm{A} / \mathrm{P}, 8 \%, 10)$
$=30,000,000(0.14903)$
= \$4,470,900

```
2.24 A = 50,000(A/F,20%,3)
    = 50,000(0.27473)
    = $13,736
```

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Factor Values

2.25 (a) 1. Interpolate between $\mathrm{i}=8 \%$ and $\mathrm{i}=9 \%$ at $\mathrm{n}=15$:

$$
\begin{aligned}
0.4 / 1 & =x /(0.3152-0.2745) \\
x & =0.0163 \\
(\mathrm{P} / \mathrm{F}, 8.4 \%, 15) & =0.3152-0.0163 \\
& =0.2989
\end{aligned}
$$

2. Interpolate between $\mathrm{i}=16 \%$ and $\mathrm{i}=18 \%$ at $\mathrm{n}=10$:

$$
\begin{aligned}
1 / 2 & =x /(0.04690-0.04251) \\
x & =0.00220
\end{aligned}
$$

$$
\begin{aligned}
(\mathrm{A} / \mathrm{F}, 17 \%, 10) & =0.04690-0.00220 \\
& =0.04470
\end{aligned}
$$

(b) 1. $(\mathrm{P} / \mathrm{F}, 8.4 \%, 15)=1 /(1+0.084)^{15}$

$$
=0.2982
$$

2. $(\mathrm{A} / \mathrm{F}, 17 \%, 10)=0.17 /\left[(1+0.17)^{10}-1\right]$

$$
=0.04466
$$

(c) 1. $=-\operatorname{PV}(8.4 \%, 15,, 1)$ displays 0.29824
2. =-PMT $(17 \%, 10,, 1)$ displays 0.04466
2.26 (a) 1. Interpolate between $\mathrm{i}=18 \%$ and $\mathrm{i}=20 \%$ at $\mathrm{n}=20$:

$$
\begin{aligned}
1 / 2 & =x / 40.06 \\
x & =20.03 \\
(\mathrm{~F} / \mathrm{A}, 19 \%, 20) & =146.6280+20.03 \\
& =166.658
\end{aligned}
$$

2. Interpolate between $\mathrm{i}=25 \%$ and $\mathrm{i}=30 \%$ at $\mathrm{n}=15$:

$$
\begin{aligned}
& 1 / 5=x / 0.5911 \\
& x=0.11822 \\
&(\mathrm{P} / \mathrm{A}, 26 \%, 15)=3.8593-0.11822 \\
&=3.7411
\end{aligned}
$$

(b) 1. $(\mathrm{F} / \mathrm{A}, 19 \%, 20)=\left[(1+0.19)^{20}-1\right] / 0.19$

$$
=165.418
$$

$$
\text { 2. }(\mathrm{P} / \mathrm{A}, 26 \%, 15)=\left[(1+0.26)^{15}-1\right] /\left[0.26(1+0.26)^{15}\right]
$$

$$
=3.7261
$$

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
(c) 1. $=-\mathrm{FV}(19 \%, 20,1)$ displays 165.41802
2. $=-\mathrm{PV}(26 \%, 15,1)$ displays 3.72607
2.27 (a) 1. Interpolate between $\mathrm{n}=32$ and $\mathrm{n}=34$:

$$
\begin{aligned}
& 1 / 2=x / 78.3345 \\
& x=39.1673 \\
& \begin{aligned}
(\mathrm{F} / \mathrm{P}, 18 \%, 33) & =199.6293+39.1673 \\
& =238.7966
\end{aligned}
\end{aligned}
$$

2. Interpolate between $\mathrm{n}=50$ and $\mathrm{n}=55$:

$$
\begin{aligned}
& 4 / 5=\mathrm{x} / 0.0654 \\
& \mathrm{x}=0.05232 \\
&(\mathrm{~A} / \mathrm{G}, 12 \%, 54)=8.1597+0.05232 \\
&=8.2120
\end{aligned}
$$

(b) 1. $(\mathrm{F} / \mathrm{P}, 18 \%, 33)=(1+0.18)^{33}$

$$
=235.5625
$$

2. $(\mathrm{A} / \mathrm{G}, 12 \%, 54)=\left\{(1 / 0.12)-54 /(1+0.12)^{54}-1\right\}$

$$
=8.2143
$$

2.28 Interpolated value: Interpolate between $n=40$ and $n=45$:

$$
\begin{aligned}
& 3 / 5=x /(72.8905-45.2593) \\
& x=16.5787 \\
& \begin{aligned}
(\mathrm{F} / \mathrm{P}, 10 \%, 43) & =45.2593+16.5787 \\
& =61.8380
\end{aligned}
\end{aligned}
$$

Formula value: $(\mathrm{F} / \mathrm{P}, 10 \%, 43)=(1+0.10)^{43}$

$$
=60.2401
$$

$\%$ difference $=[(61.8380-60.2401) / 60.2401] * 100$

$$
=2.65 \%
$$

Arithmetic Gradient

2.29 (a) $\mathrm{G}=\$-300$
(b) $\mathrm{CF}_{5}=\$ 2800$
(c) $\mathrm{n}=9$

$$
\begin{aligned}
2.30 \quad \mathrm{P}_{0} & =500(\mathrm{P} / \mathrm{A}, 10 \%, 9)+100(\mathrm{P} / \mathrm{G}, 10 \%, 9) \\
& =500(5.7590)+100(19.4215) \\
& =2879.50+1942.15 \\
& =\$ 4821.65
\end{aligned}
$$

2.31 (a) Revenue $=390,000+2(15,000)$

$$
=\$ 420,000
$$

(b) $\mathrm{A}=390,000+15,000(\mathrm{~A} / \mathrm{G}, 10 \%, 5)$

$$
\begin{aligned}
& =390,000+15,000(1.8101) \\
& =\$ 417,151.50
\end{aligned}
$$

$2.32 \mathrm{~A}=9000-560(\mathrm{~A} / \mathrm{G}, 10 \%, 5)$

$$
=9000-560(1.8101)
$$

= \$7986

$$
\begin{aligned}
2.33500 & =200+\mathrm{G}(\mathrm{~A} / \mathrm{G}, 10 \% .7) \\
500 & =200+\mathrm{G}(2.6216) \\
\mathrm{G} & =\$ 114.43
\end{aligned}
$$

$$
2.34 \mathrm{~A}=100,000+10,000(\mathrm{~A} / \mathrm{G}, 10 \%, 5)
$$

$$
=100,000+10,000(1.8101)
$$

$$
=\$ 118,101
$$

$$
\begin{aligned}
\mathrm{F} & =118,101(\mathrm{~F} / \mathrm{A}, 10 \%, 5) \\
& =118,101(6.1051) \\
& =\$ 721,018
\end{aligned}
$$

$2.353500=\mathrm{A}+40(\mathrm{~A} / \mathrm{G}, 10 \%, 9)$

$$
3500=A+40(3.3724)
$$

$$
A=\$ 3365.10
$$

2.36 In $\$$ billion units,

$$
\begin{aligned}
\mathrm{P} & =2 \cdot 1(\mathrm{P} / \mathrm{F}, 18 \%, 5) \\
& =2.1(0.4371) \\
& =0.91791=\$ 917,910,000
\end{aligned}
$$

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

$$
\begin{aligned}
& 917,910,000=100,000,000(\mathrm{P} / \mathrm{A}, 18 \%, 5)+\mathrm{G}(\mathrm{P} / \mathrm{G}, 18 \%, 5) \\
& 917,910,000=100,000,000(3.1272)+\mathrm{G}(5.2312) \\
& \mathrm{G}=\$ 115,688,561 \\
& 2.3795,000=55,000+\mathrm{G}(\mathrm{~A} / \mathrm{G}, 10 \%, 5) \\
& 95,000=55,000+\mathrm{G}(1.8101) \\
& \mathrm{G}=\$ 22,098
\end{aligned}
$$

2.38 P in year $0=500,000(\mathrm{P} / \mathrm{F}, 10 \%, 10)$

$$
\begin{aligned}
& =500,000(0.3855) \\
& =\$ 192,750
\end{aligned}
$$

$192,750=\mathrm{A}+3000(\mathrm{P} / \mathrm{G}, 10 \%, 10)$
$192,750=\mathrm{A}+3000(22.8913)$

$$
A=\$ 124,076
$$

Geometric Gradient

2.39 Find (P/A,g,i,n) using Equation [2.32] and $\mathrm{A}_{1}=1$

For $\mathrm{n}=1: \mathrm{P}_{\mathrm{g}}=1^{*}\left\{1-[(1+0.05) /(1+0.10)]^{1}\right\} /(0.10-0.05)$

$$
=0.90909
$$

For $\mathrm{n}=2: \mathrm{P}_{\mathrm{g}}=1^{*}\left\{1-[(1+0.05) /(1+0.10)]^{2}\right\} /(0.10-0.05)$

$$
=1.77686
$$

2.40 Decrease deposit in year 4 by 7% per year for three years to get back to year 1. First deposit $=5550 /(1+0.07)^{3}$

$$
=\$ 4530.45
$$

$$
\begin{aligned}
2.41 \mathrm{P}_{\mathrm{g}} & =35,000\left\{1-[(1+0.05) /(1+0.10)]^{6}\right\} /(0.10-0.05) \\
& =\$ 170,486 \\
2.42 \mathrm{P}_{\mathrm{g}} & =200,000\left\{1-[(1+0.03) /(1+0.10)]^{5}\right\} /(0.10-0.03) \\
& =\$ 800,520
\end{aligned}
$$

2.43 First find P_{g} and then convert to F in year 15

$$
\begin{aligned}
\mathrm{P}_{\mathrm{g}} & =(0.10)(160,000)\left\{1-[(1+0.03) /(1+0.07)]^{15} /(0.07-0.03)\right\} \\
& =16,000(10.883)=\$ 174,128.36 \\
\mathrm{~F} & =174,128.36(\mathrm{~F} / \mathrm{P}, 7 \%, 15) \\
& =174,128.36(2.7590) \\
& =\$ 480,420.15
\end{aligned}
$$

2.44 (a) $\mathrm{P}_{\mathrm{g}}=260\left\{1-[(1+0.04) /(1+0.06)]^{20}\right\} /(0.06-0.04)$

$$
\begin{aligned}
& =260(15.8399) \\
& =\$ 4119.37
\end{aligned}
$$

(b) $\mathrm{P}_{\text {Total }}=(4119.37)(51,000)$

$$
=\$ 210,087,870
$$

2.45 Solve for P_{g} in geometric gradient equation and then convert to A

$$
\begin{aligned}
& \mathrm{A}_{1}=5,000,000(0.01)=50,000 \\
& \begin{aligned}
\mathrm{P}_{\mathrm{g}} & =50,000\left[1-(1.10 / 1.08)^{5}\right] /(0.08-0.10) \\
& =\$ 240,215 \\
\mathrm{~A} & =240,215(\mathrm{~A} / \mathrm{P}, 8 \%, 5) \\
& =240,215(0.25046) \\
& =\$ 60,164
\end{aligned}
\end{aligned}
$$

2.46 First find P_{g} and then convert to F

$$
\begin{aligned}
\mathrm{P}_{\mathrm{g}} & =5000\left[1-(0.95 / 1.08)^{5}\right] /(0.08+0.05) \\
& =\$ 18,207 \\
\mathrm{~F} & =18,207(\mathrm{~F} / \mathrm{P}, 8 \%, 5) \\
& =18,207(1.4693) \\
& =\$ 26,751
\end{aligned}
$$

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Interest Rate and Rate of Return

2.47 1,000,000 = 290,000(P/A,i,5)
$(\mathrm{P} / \mathrm{A}, \mathrm{i}, 5)=3.44828$
Interpolate between 12% and 14% interest tables or use Excel's RATE function By RATE, $\mathrm{i}=13.8 \%$
$2.4850,000=10,000(\mathrm{~F} / \mathrm{P}, \mathrm{i}, 17)$ $5.0000=(\mathrm{F} / \mathrm{P}, \mathrm{i}, 17)$

$$
5.0000=(1+i)^{17}
$$

$$
i=9.93 \%
$$

2.49

$$
\begin{aligned}
\mathrm{F} & =\mathrm{A}(\mathrm{~F} / \mathrm{A}, \mathrm{i} \%, 5) \\
451,000 & =40,000(\mathrm{~F} / \mathrm{A}, \mathrm{i} \%, 5) \\
(\mathrm{F} / \mathrm{A}, \mathrm{i} \%, 5) & =11.2750
\end{aligned}
$$

Interpolate between 40% and 50% interest tables or use Excel's RATE
function By RATE, $\mathrm{i}=41.6 \%$
2.50 Bonus/year $=6(3000) / 0.05=\$ 360,000$

$$
1,200,000=360,000(\mathrm{P} / \mathrm{A}, \mathrm{i}, 10)
$$

$$
(\mathrm{P} / \mathrm{A}, \mathrm{i}, 10)=3.3333
$$

$$
\mathrm{i}=27.3 \%
$$

$2.51 \quad$ Set future values equal to each other
Simple: F = P + Pni

$$
\begin{aligned}
& =\mathrm{P}(1+5 * 0.15) \\
& =1.75 \mathrm{P}
\end{aligned}
$$

Compound: $\mathrm{F}=\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}$

$$
=\mathrm{P}(1+\mathrm{i})^{5}
$$

$$
\begin{aligned}
1.75 \mathrm{P} & =\mathrm{P}(1+\mathrm{i})^{5} \\
\mathrm{i} & =11.84 \%
\end{aligned}
$$

$2.52100,000=190,325(\mathrm{P} / \mathrm{F}, \mathrm{i}, 30)$
$(\mathrm{P} / \mathrm{F}, \mathrm{i}, 30)=0.52542$
Find i by interpolation between 2% and 3%, or by solving P / F equation, or by Excel By RATE function, $\mathrm{i}=2.17 \%$

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
$2.53400,000=320,000+50,000(\mathrm{~A} / \mathrm{G}, \mathrm{i}, 5)$
$(\mathrm{A} / \mathrm{G}, \mathrm{i}, 5)=1.6000$
Interpolate between $\mathrm{i}=22 \%$ and $\mathrm{i}=24 \%$
$\mathrm{i}=22.6 \%$

Number of Years

$2.54160,000=30,000(\mathrm{P} / \mathrm{A}, 15 \%, \mathrm{n})$
$(\mathrm{P} / \mathrm{A}, 15 \%, \mathrm{n})=5.3333$
From 15% table, n is between 11 and 12 years; therefore, $\mathrm{n}=12$ years
By NPER, $\mathrm{n}=11.5$ years
2.55 (a) $\quad 2,000,000=100,000(\mathrm{P} / \mathrm{A}, 5 \%, \mathrm{n})$
$(\mathrm{P} / \mathrm{A}, 5 \%, \mathrm{n})=20.000$

From 5\% table, n is > 100 years. In fact, at 5\% per year, her account earns \$100,000 per year. Therefore, she will be able to withdraw $\$ 100,000$ forever; actually, n is ∞.
(b)

$$
\begin{aligned}
2,000,000 & =150,000(\mathrm{P} / \mathrm{A}, 5 \%, \mathrm{n}) \\
(\mathrm{P} / \mathrm{A}, 5 \%, \mathrm{n}) & =13.333
\end{aligned}
$$

By NPER, $\mathrm{n}=22.5$ years
(c) The reduction is impressive from forever (n is infinity) to $\mathrm{n}=22.5$ years for a 50% increase in annual withdrawal. It is important to know how much can be withdrawn annually when a fixed amount and a specific rate of return are involved.
$2.56 \quad 10 \mathrm{~A}=\mathrm{A}(\mathrm{F} / \mathrm{A}, 10 \%, \mathrm{n})$
$(\mathrm{F} / \mathrm{A}, 10 \%, \mathrm{n})=10.000$

From 10% factor table, n is between 7 and 8 years; therefore, $\mathrm{n}=8$ years
2.57 (a) $500,000=85,000(\mathrm{P} / \mathrm{A}, 10 \%, \mathrm{n})$ $(\mathrm{P} / \mathrm{A}, 10 \%, \mathrm{n})=5.8824$

From 10% table, n is between 9 and 10 years.
(b) Using the function $=\operatorname{NPER}(10 \%,-85000,500000)$, the displayed $\mathrm{n}=9.3$ years.

$$
\begin{gathered}
2.58 \quad 1,500,000=6,000,000(\mathrm{P} / \mathrm{F}, 25 \%, \mathrm{n}) \\
(\mathrm{P} / \mathrm{F}, 25 \%, \mathrm{n})=0.2500
\end{gathered}
$$

From 25% table, n is between 6 and 7 years; therefore, $n=7$ years

$$
2.59 \begin{aligned}
15,000 & =3000+2000(\mathrm{~A} / \mathrm{G}, 10 \%, \mathrm{n}) \\
(\mathrm{A} / \mathrm{G}, 10 \%, \mathrm{n}) & =6.0000
\end{aligned}
$$

From 10% table, n is between 17 and 18 years; therefore, $\mathrm{n}=18$ years. She is not correct; it takes longer.
2.60 First set up equation to find present worth of $\$ 2,000,000$ and set that equal to P in the geometric gradient equation. Then, solve for n.

$$
\begin{aligned}
& \mathrm{P}=2,000,000(\mathrm{P} / \mathrm{F}, 7 \%, \mathrm{n}) \\
& 2,000,000(\mathrm{P} / \mathrm{F}, 7 \%, \mathrm{n})=10,000\left\{1-[(1+0.10) /(1+0.07)]^{\mathrm{n}}\right\} /(0.07-0.10)
\end{aligned}
$$

Solve for n using Goal Seek or trial and error.
By trial and error, $\mathrm{n}=$ is between 25 and 26 ; therefore, $\mathrm{n}=26$ years

Exercises for Spreadsheets

2.61

Part	Function	Answer
a	$=-\operatorname{FV}(10 \%, 30,100000000 / 30)$	$\$ 548,313,409$
b	$=-\operatorname{FV}(10 \%, 33,100000000 / 30)$	$\$ 740,838,481$
c	$=-\operatorname{FV}(10 \%, 33,100000000 / 30)+\mathrm{FV}\left(10 \%, 3,(100000000 / 30)^{*} 2\right)$	$\$ 718,771,814$

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

4	A	8	c	0	E	F
1	Part		Function	Result	Conclusion	
2	(a) $\$ 12,000$ for 30 years		$=-\mathrm{FV}(10 \%, 30,12000)$	\$1,973,928.27	Not quite reached	
3						
4	(a) $\$ 8000$ for $15 ; \$ 15,000$ for 15 years		$=-\mathrm{FV}(10 \%, 30,8000)-\mathrm{FV}(10 \%, 15,7000)$	\$ 1,538,359.55	Notreached	
5						
6	(b) $\$ 12,000$ for n years		$=\operatorname{NPER}(10 \%,-12000,2000000)$	30.13	Years	
7						
8	(c) $\$ 8000$ for $15 ; \$ 15000$ for	years				
	One solution: Continue the deposits beyond year 30 and determine the future worth year by year.	Year	Function	Accumulated	Conc	
10		31		\$ 1,707,195.51		
11		32	$=-$ PV $(10 \%, 5811,8000)-$ - $(10 \%, 5811-15,7000)$	\$ 1,892,915.06		
12		33	$=-\mathrm{FV}(10 \%, \$ 812,8800)-\mathrm{PV}(10 \%, 5 B 12-15,7000)$	\$ 2,097,206.57		years
13		34	$=-\mathrm{FV}(10 \%, \$ 813,8000)-\mathrm{FV}(10 \%, 5813-15,7000)$	\$ 2,321,927.22		
14		35	$=-\mathrm{FV}(10 \% \%$ SB14,8000) $-\mathrm{FV}(10 \%, \$ 814.15,7000)$	\$ 2,569,119.94		

2.63 Goal Seek template before and result after with solution for $\mathrm{G}=\$ 115.69$ million

	A	B	C	D	E	F	G	H	1
1	Gradient amount is (\$1000)			\$ 50.00					
2									
3	Year	Deposit	PV in year 0	FV in year 5					
4	0					Goal Sek	$9-x$		
5	1	100.00	\$84.75			Stecel	5098 園		
6	2	150.00	\$192.47			Toyate Eypanging celt			
7	3	200.00	\$314.20			\% ${ }^{\text {a }}$	Conet		
8	4	250.00	\$443.15						
9	5	300.00	\$574.28	\$1,313.81					
10									

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

	A	B	C	D	E
1	Gradient amount is (\$1000)			\$ 115.69	
3	Year	Deposit	PV in year 0	FV in year 5	
4	0				
5	1	100.00	\$84.75		
6	2	215.69	\$239.65		
7	3	331.38	\$441.34		
8	4	447.08	\$671.94		
9	5	562.77	\$917.93	\$2,100.00	

2.64 Here is one approach to the solution using NPV and FV functions with results (left) and formulas (right).

Year,		Present worth	Future worth	Year,		Present worth	Future worth
n	Deposit	in year 0	in year n	n	Deposit	in year 0	in year n
0				0			
1	10,000	9,346	10,000	= \$ ${ }^{\text {3 }}+$	0000	=NPV(7\%,\$B\$4:\$B4)	(7\%,\$A4,,\$C4)
2	11,000	18,954	21,700	= \$A4	\$B4*1.1 $=$	=NPV(7\%,\$B\$4:\$B5)	$-\mathrm{FV}\left(7 \%, \$ A 5\right.$, , ${ }^{\text {c }}$ (5)
3	12,100	28,831	35,319	= \$A5	\$B5*1.1	$=N P V(7 \%, \$ B \$ 4: \$ B 6)$	$=-\mathrm{FV}\left(7 \%, \$ \mathrm{~A}\right.$, ,\$ ${ }^{\text {c }}$)
4	13,310	38,985	51,101	= \$A6	\$B6*1.1 $=$	=NPV(7\%,\$B\$4:\$B7)	
5	14,641	49,424	69,319	= \$ $\mathrm{A}^{\text {P }}$	\$B7*1.	=NPV(7\%,\$B\$4:\$B8)	$=-\mathrm{FV}\left(7 \%, \$ \mathrm{~A}\right.$, , ${ }^{\text {S }}$ C8 8$)$
6	16,105	60,155	90,277	= \$A8+	\$B8*	=NPV(7\%,\$B\$4:\$B9)	$=-\mathrm{FV}(7 \%, \$ A 9$, ,\$C9)
7	17,716	71,188	114,312	= \$A9	\$B9*	$=N P V(7 \%, \$ 8 \$ 4: \$ B 10)$	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 10$, , $\mathrm{SC10})$
8	19,487	82,529	141,801	= \$ A 10	\$B10*1	=NPV(7\%,\$B\$4:\$B11)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 11$, , C 11$)$
9	21,436	94,189	173,163	= \$A11	SB11*	$=N P V(7 \%, \$ 8 \$ 4: \$ B 12)$	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 12$, , S 12$)$
10	23,579	106,176	208,864	= \$ $\mathrm{Al}^{\text {2 }}$	\$B12*1	=NPV(7\%,\$B\$4:\$B13)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 31$, \$C13)
11	25,937	118,498	249,422	= \$ ${ }^{\text {1 }}$ S ${ }^{\text {+ }}$	\$B13*1.1	$=\mathrm{NPV}(7 \%, \$ \mathrm{~S} \$ 4: \$ B 14)$	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 41$, , C 14$)$
12	28,531	131,167	295,412	= \$A14+	\$B14*1.1	=NPV(7\%,\$B\$4:\$B15)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 15$, ,\$C15)
13	31,384	144,190	347,475	= \$A15+	\$B15*1.	=NPV(7\%,\$B\$4:\$B16)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 16$, ,\$C16)
14	34,523	157,578	406,321	= \$A16+	\$B16*1.	$=\mathrm{NPV}(7 \%, \$ \mathrm{~S} \$ 4: \$ B 17)$	$=-\mathrm{FV}(7 \%, \$ A 17$, \$C17)
15	37,975	171,342	472,739	= \$A17	\$B17*1	=NPV(7\%,\$B\$4:\$B18)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 18$, ,\$C18)
16	41,772	185,492	547,603	= \$A18	\$B18*	=NPV(7\%,\$8\$4:\$B19)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 19$, ,\$C19)
17	45,950	200,039	631,885	= \$A19+	= \$B19*1.	$=\mathrm{NPV}(7 \%, \$ \mathrm{~S} \$ 4: \$ \mathrm{~B} 20)$	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 20$, ,\$C20)
18	50,545	214,993	726,662	- \$ 2 $20+~_{\text {+ }}$	\$ $820 * 1$	$=N P V(7 \%, \$ 8 \$ 4: \$ B 21)$	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 21$, ,\$ 2121$)$
19	55,599	230,367	833,127	= \$ 221 $^{\text {+ }}$	\$ $821 * 1$	=NPV(7\%,\$8\$4:\$B22)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 22$, ,\$ 222$)$
20	61,159	246,171	952,605	= \$ ${ }^{\text {2 } 22+1}$	\$ 822	=NPV(7\%,\$B\$4:\$B23)	$=-\mathrm{FV}(7 \%, \$ A 23$, \$C23)
21	67,275	262,419	1,086,563	= \$A23+1	\$B23*	=NPV(7\%,\$B\$4:\$B24)	$=-\mathrm{FV}(7 \%, \$ A 24$, ,\$ 24$)$
22	74,002	279,122	1,236,624	= \$ $\mathrm{A} 24+1^{\text {2 }}$	= \$B24*1.1	$=N P V(7 \%, \$ B \$ 4: \$ B 25)$	$=-\mathrm{FV}(7 \%, \$ A 25$, ,\$C25)
23	81,403	296,294	1,404,591	= \$A25+1	$=\$ B 25 * 1.1=$	=NPV(7\%,\$B\$4:\$B26)	$=-\mathrm{FV}(7 \%, \$ A 26$, ,\$C26)
24	89,543	313,947	1,592,455	= \$A26+1	$=$ \$B26*1.1 $=$	=NPV(7\%,\$B\$4:\$B27)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 27$, ,\$27)
25	98,497	332,095	1,802,424	= \$A27+1	$=\$ B 27 * 1.1=$	$=N P V(7 \%, \$ 8 \$ 4: \$ B 28)$	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 28$, ,\$ 28$)$
26	108,347	350,752	2,036,941	= \$ ${ }^{\text {2 }}$ 28+1	$=$ \$B28*1.1 $=$	=NPV(7\%,\$B\$4:\$B29)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 29$, ,\$ 29$)$
27	119,182	369,932	2,298,709	= \$A29+1	= \$B29*1.1 =	=NPV(7\%,\$8\$4:\$B30)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 30$, ,\$ 30$)$
28	131,100	389,650	2,590,718	= \$A30+	= \$B30*1.1 =	=NPV(7\%,\$B\$4:\$B31)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 31$, ,\$ 31$)$
29	144,210	409,920	2,916,279	= \$A31+1	$=\$ B 31 * 1.1=$	$=\mathrm{NPV}(7 \%, \$ \mathrm{~S} \$ 4: \$ B 32)$	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 2$, ,\$C32)
30	158,631	430,759	3,279,049	= \$A32+1	$=$ \$ $3^{2}{ }^{*} 1.1=$	$=N P V(7 \%, \$ 8 \$ 4: \$ B 33)$	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 33, \$ \mathrm{SC33})$

Answers: (a) 26 years; (b) 30 years, only 4 years more than the $\$ 2$ million milestone.

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
2.65 (a) Present worth is the value of the savings for each
bid Bid 1: Savings = \$10,000
Bid 2: Savings $=\$ 17,000$
Bid 3: Savings $=\$ 25,000$
(b) and (c) Spreadsheet for A values and column chart

ADDITIONAL PROBLEMS AND FE REVIEW QUESTIONS

2.66 Answer is (a)

$$
\begin{aligned}
2.67 \mathrm{P} & =840,000(\mathrm{P} / \mathrm{F}, 10 \%, 2) \\
& =840,000(0.8264) \\
& =\$ 694,176
\end{aligned}
$$

Answer is (a)

$$
\begin{aligned}
2.68 \quad \mathrm{P} & =81,000(\mathrm{P} / \mathrm{F}, 6 \%, 4) \\
& =81,000(0.7921) \\
& =\$ 64,160
\end{aligned}
$$

Answer is (d)

$$
\begin{aligned}
2.69 \mathrm{~F} & =25,000(\mathrm{~F} / \mathrm{P}, 10 \%, 25) \\
& =25,000(10.8347) \\
& =\$ 270,868
\end{aligned}
$$

Answer is (c)
$2.70 \quad \mathrm{~A}=10,000,000(\mathrm{~A} / \mathrm{F}, 10 \%, 5)$
$=10,000,000(0.16380)$
$=\$ 1,638,000$
Answer is (a)
$2.71 \mathrm{~A}=2,000,000(\mathrm{~A} / \mathrm{F}, 8 \%, 30)$

$$
\begin{aligned}
& =2,000,000(0.00883) \\
& =\$ 17,660
\end{aligned}
$$

Answer is (a)
$2.72390=585(\mathrm{P} / \mathrm{F}, \mathrm{i}, 5)$
$(\mathrm{P} / \mathrm{F}, \mathrm{i}, 5)=0.6667$
From tables, i is between 8% and 9%
Answer is (c)
2.73

$$
\begin{aligned}
\mathrm{AW} & =26,000+1500(\mathrm{~A} / \mathrm{G}, 8 \%, 5) \\
& =\$ 28,770
\end{aligned}
$$

Answer is (b)
$2.7430,000=4202(\mathrm{P} / \mathrm{A}, 8 \%, \mathrm{n})$
$(\mathrm{P} / \mathrm{A}, 8 \%, 5)=7.1395$

$$
\mathrm{n}=11 \text { years }
$$

Answer is (d)
$2.7523,632=3000\left\{1-\left[(1+0.04)^{\mathrm{n}} /(1+0.06)^{\mathrm{n}}\right]\right\} /(0.06-0.04)$
$[(23,632 * 0.02) / 3000]-1=(0.98113)^{\mathrm{n}}$
$\log 0.84245=n \log 0.98113$
$\mathrm{n}=9$
Answer is (b)
2.76

$$
\begin{aligned}
\mathrm{A} & =800-100(\mathrm{~A} / \mathrm{G}, 8 \%, 6) \\
& =800-100(2.2763) \\
& =\$ 572.37
\end{aligned}
$$

Answer is (c)
$2.77 \mathrm{P}=100,000(\mathrm{P} / \mathrm{A}, 10 \%, 5)-5000(\mathrm{P} / \mathrm{G}, 10 \%, 5)$
$=100,000(3.7908)-5000(6.8618)$

$$
=\$ 344,771
$$

Answer is (a)
2.78

$$
\begin{aligned}
109.355 & =7(\mathrm{P} / \mathrm{A}, \mathrm{i}, 25) \\
(\mathrm{P} / \mathrm{A}, \mathrm{i}, 25) & =15.6221
\end{aligned}
$$

From tables, $\mathrm{i}=4 \%$
Answer is (a)
$2.7928,800=7000(\mathrm{P} / \mathrm{A}, 10 \%, 5)+\mathrm{G}(\mathrm{P} / \mathrm{G}, 10 \%, 5)$
$28,800=7000(3.7908)+G(6.8618)$
$\mathrm{G}=\$ 330$
Answer is (d)

$$
\begin{aligned}
2.80 \quad 40,000 & =11,096(\mathrm{P} / \mathrm{A}, \mathrm{i}, 5) \\
(\mathrm{P} / \mathrm{A}, \mathrm{i}, 5) & =3.6049 \\
\mathrm{i} & =12 \%
\end{aligned}
$$

Answer is (c)

Solution to Case Study, Chapter 2

The Amazing Impact of Compound Interest

1. Ford Model T and a New Car
(a) Inflation rate is substituted for $\mathrm{i}=3.10 \%$ per year
(b) Model $\mathrm{T}:$ Beginning cost in 1909: $\mathrm{P}=\$ 825$

$$
\text { Ending cost: } \mathrm{n}=1909 \text { to } 2015+50 \text { years }=156 \text { years; } \mathrm{F}=\$ 96,562
$$

$$
\begin{aligned}
\mathrm{F} & =\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}=825(1.031)^{156} \\
& =825(117.0447) \\
& =\$ 96,562
\end{aligned}
$$

New car: Beginning cost: $\mathrm{P}=\$ 28,000$
Ending cost: $\mathrm{n}=50$ years; $\mathrm{F}=\$ 128,853$

$$
\begin{aligned}
\mathrm{F} & =\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}=28,000(1.031)^{50} \\
& =28,000(4.6019) \\
& =\$ 128,853
\end{aligned}
$$

2. Manhattan Island
(a) $i=6.0 \%$ per year
(b) Beginning amount in 1626: $\mathrm{P}=\$ 24$

Ending value: $\mathrm{n}=391 ; \mathrm{F}=\$ 188.3$ billion

$$
\begin{aligned}
\mathrm{F} & =24(1.06)^{391} \\
& =24(7,845,006.7) \\
& =\$ 188,280,161 \quad(\$ 188.3 \text { billion })
\end{aligned}
$$

3. Pawn Shop Loan
(a) i per week $=(30 / 200) * 100=15 \%$ per week
i per year $=\left[(1.15)^{52}-1\right] * 100=143,214 \%$ per year

Subtraction of 1 considers repayment of the original loan of $\$ 200$ when the interest rate is calculated (see Chapter 4 for details.)
(b)

$$
\text { Beginning amount: } \mathrm{P}=\$ 200
$$

Ending owed:1 year later, F = \$286,627

$$
\begin{gathered}
\mathrm{F}=\mathrm{P}(\mathrm{~F} / \mathrm{P}, 15 \%, 52) \\
=200(1.15)^{52} \\
=200(1433.1370) \\
=\$ 286,627
\end{gathered}
$$

4. Capital Investment

(a) $i=15^{+} \%$ per year

$$
\begin{aligned}
1,000,000 & =150,000(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 60) \\
(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 60) & =6.6667 \\
\mathrm{i} & =15+\%
\end{aligned}
$$

(b) Beginning amount: $\mathrm{P}=\$ 1,000,000$ invested

Ending total amount over 60 years: $150,000(60)=\$ 9$ million

$$
\text { Value: } \begin{aligned}
\mathrm{F}_{60} & =150,000(\mathrm{~F} / \mathrm{A}, 15 \%, 60) \\
& =150,000(29220.0) \\
& =\$ 4,383,000,000 \quad(\$ 4.38 \text { billon })
\end{aligned}
$$

5. Diamond Ring

(a) $i=4 \%$ per year
(b)

Beginning price: $\mathrm{P}=\$ 50$
Ending value after 179 years: $F=\$ 55,968$
$\mathrm{n}=$ great grandmother + grandmother + mother + girl $=65+60+30+24$

$$
\begin{aligned}
& =179 \text { years } \\
\mathrm{F} & =50(\mathrm{~F} / \mathrm{P}, 4 \%, 179) \\
& =50(1119.35) \\
& =\$ 55,968
\end{aligned}
$$

