Solution Manual for Essential Mathematics 4th Edition by Lial Salzman ISBN 03218450569780321845054

Full link download:
Solution Manual:
https://testbankpack.com/p/solution-manual-for-essential-mathematics-4th-edition-by-lial-salzman-isbn-0321845056-
9780321845054/
Test Bank:
https://testbankpack.com/p/test-bank-for-essential-mathematics-4th-edition-by-lial-salzman-isbn-0321845056-9780321845054/

Chapter 2: Multiplying and Dividing Fractions

CHAPTER 2 MULTIPLYING AND DIVIDING FRACTIONS

2.1 Basics of Fractions

2.1 Margin Exercises

1. (a) The figure has equal parts.

Three parts are shaded:-
One part is unshaded: -
(b) The figure has equal parts.

One part is shaded:

Five parts are unshaded:
2. (a) An area equal to of the - parts is shaded.
(b) An area equal to of the - parts is shaded.

_ $¥$ Numerator

3. (a)
$¥$ Denominator

(b)
¥ Numerator
$¥$ Denominator

(c)
$¥$ Numerator
$¥$ Denominator

(d)

One part is unshaded: -
4. (a) Proper fractions: numerator smaller than denominator.
$-\hat{A}-\hat{A}-$
15. Five of the bills have a lifespan of years or greater: -
Four of the bills have a lifespan of years or
less:
Two of the bills have a lifespan of years:

72 Chapter 2 Multiplying and Dividing Fractions
16. Four of the coins are pennies: -

Three of the coins are nickels:
Two of the coins are dimes: -
17. There are students, and are hearing impaired.

```
_ \(\quad\) Y hearing impaired students (numerator)
\(¥\) total students (denominator)
```

18. There are shopping carts of which are in the parking lot (c ~ are not in the parking lot, but are in the store).

Fraction of carts in store:
19. There are rooms. are for nonsmokers, and c \quad are for smokers.
20. There are employees. $\mathbf{c} \sim$ are parttime.
21. Proper fractions: numerator smaller than denominator.

$$
-\hat{A}-\hat{A}-
$$

Improper fractions: numerator greater than or equal to denominator.

$$
-\hat{A}-\hat{A}-
$$

22. Proper fractions: numerator smaller than denominator.

$$
-\hat{A}-\hat{A}-
$$

Improper fractions: numerator greater than or equal to denominator.
\qquad
23. Proper fractions: numerator smaller than denominator.

Improper fractions: numerator greater than or equal to denominator.
(b) $\quad \sim \quad$ Multiply and
b ~ Add.

$$
\begin{aligned}
& \text { (c) • ~ Multiply and . } \\
& \text { b ~ Add. } \\
& \text { (d) • ~ Multiply and . } \\
& \text { b ~ Add . }
\end{aligned}
$$

3. (a) Divide _ by _.

¥ Remainder
(b) Divide by .
$¥$ Whole number part
$¥$ Remainder
(c) Divide by .

Remainder
2. is a proper fraction since the numerator is
smaller than the denominator. The statement is true.
3. • ~ Multiply and .
b ~ Add.

The mixed number - can be changed to the
improper fraction - , not - . The statement is
false.
4. The statement "Some mixed number cannot be changed to an improper fraction" is false since any mixed number can be changed to an improper fraction.

The mixed number -can be changed to the improper fraction - , not - . The statement is false.
6.
b ~ Add.

The statement is true.
7.

$$
\begin{aligned}
& \mathbf{D} \sim \text { Multiply and . } \\
& \mathbf{b} \sim \text { Add } .
\end{aligned}
$$

(d) Divide by . $¥$ Whole number part
\lceil
\qquad
¥ Remainder

2.2 Section Exercises

1. is an improper fraction since the numerator is
2. . ~ Multiply and .
b ~ Add .
3. - . ~ Multiply and .
b ~ Add
4. - . ~ Multiply and.
b ~ Add
greater than or equal to the denominator. The statement is true.

74 Chapter 2 Multiplying and Dividing Fractions
11. $\quad \sim \quad$ Multiply and.
12.

	Multiply and
\sim	Add .
b ~	

b ~
\qquad
13.

- Multiply and
b ~ Add.

14.

- -

Multiply and
b ~ Add .
15. $\quad \begin{aligned} & \text { b } \quad \text { Multiply and. } \\ & \quad \text { Add . }\end{aligned}$

21
22.

- ~ Multiply
b ~ Add .

23. - • ~ Multiply and
b ~
Add
24.

- ~

Multiply and Add
b ~
— ~
25.

- ~
b ~

26

Multiply and
Add
27. • ~ Multiply and
b ~
Add

$-\sim$
28.

29

Multiply and
19.

b ~ Add.
18.
\cdot
$-\sim-$
b ~ Add.

- ~
.
\quad. \quad Multiply and
b \quad Add .

30.
31. The improper fraction - can be changed to the mixed number - , not \quad The statement is false.
32. The statement "An improper fraction cannot always be written as a whole number or a mixed number" is false since a mixed number always has a value equal to or greater than a whole number.
33. The statement "Some improper fractions can be written as a whole number with no fraction part" is true. For example, $-\sim$.
34. The statement "The improper fraction - can be written as the whole number " is true.
35.

$¥$ Whole number part
$¥$ Remainder
36.

37.
\qquad
$¥$ Remainder
37.
38.

Y Remainder
40.
¥ Whole number part
\square
$¥$ Remainder
\qquad
~
41.
$¥$ Whole number part
¥ Remainder
42.

Y Whole number part

43.

Y Whole number part \bigcirc

Y Remainder
~
44.

Y Remainder number part
45.

Y Remainder
46.
$¥$ Whole number part

51.
-
$¥$ Whole number part
47.
Y Whole number part

\qquad
48.

49.

Y Whole number part

Y Remainder
50.

55. Multiply the denominator by the whole number and add the numerator. The result becomes the new numerator, which is placed over the original denominator.

56. Divide the numerator by the denominator. The quotient is the whole number of the mixed number and the remainder is the numerator of the fraction part. The denominator is unchanged.

57.
b ~
58.
b ~
59.
b ~
60. . ~
b ~
61.
b ~
62.
b ~
63.

64.

65. The commands used will vary. The following is from a TI-83 Plus:

66. The commands used will vary. The following is from a TI- 13 P

67. The commands used will vary. The following is from a TI-83 Plus:

Note: You can use the following procedure on any calculator. Divide by to get À Subtract . Multiply by to get . The mixed number is

78 Chapter 2 Multiplying and Dividing Fractions
68. The commands used will vary. The following is from a TI-83 Plus:

—~~
69. The following fractions are proper fractions.

A Á A
70. (a) The proper fractions in Exercise 69 are the ones where the numerator is less than the denominator.

(c) The proper fractions in Exercise 69 are all less than.
71. The following fractions are improper fractions.

$$
-\hat{A}-\hat{A}-
$$

72. (a) The improper fractions in Exercise 71 are the ones where the numerator is equal to or greater than the den ϕ minator.
(b)

(c) The improper fractions in Exercise 71 are all equal to or greater than.
73. The following fractions can be written as whole or mixed numbers.

-

- ~ -
$-$

74. (a) The fractions that can be written as whole or mixed numbers in Exercise 73 are improper fractions, and their value is always greater than or equal to .
(b)

75. (a) Factorizations of

The factors of are , , , , , , and .
(b) Factorizations of :

The factors of are , , , and.
(c) Factorizations of :

- ~ • ~ • ~ • ~

The factors of are , , , , , and
(d) Factorizations of :

- ~ • ~ • ~ • ~
- ~

The factors of are , , , , , , and
2.
, , , and are prime because they are divisible only by themselves and .
3.
, , , and each have no factor other than
themselves or ; , , , , , and each have a factor of ; , and have a factor of . So , , , , , , and are composite.
4. (a) e ~
e ~ prime
~ • •
(b) e ~ e ~ prime ~ ••
(c)
e ~
e ~. prime
(d) \quad e ~
e~
e ~ prime
~....

This division is done from the "top-down."
Divide by .
Divide by .
Divide by .
\quad Divide by .

Quotient is 1.

Either method is correct and yields the prime factorization as follows:
(b)

Divide by
\lceil Divide by .
\lceil Divide by .

Quotient is 1 .

(c)

Divide by

Divide by .

Divide by .

Divide by .
Quotient is 1.
$\sim \cdot \bullet \quad \bullet \quad$ • •
(a)

Divide by .
5. (a) This division is done from the "bottom-up." Divide by

> Quotient is 1 .
> - $\quad \begin{aligned} & \text { Divide by } . \\ & \text { Divide by } \\ & -\quad\end{aligned} \begin{aligned} & \text { Divide by } \\ & \text { Divide }\end{aligned}$
> \lceil Divide by Divide by
> Quotient is 1.
> ~. •• ~
6.

Divide by Γ Divide by .
Divide by .

Divide by

Quotient is 1.
~••••~

(e)
(e) Divide by . \lceil Divide by . $\lceil\quad$ Divide by . \lceil Divide by . Γ Quotient is 1 .
7. $\tilde{\mathrm{A}}^{(\mathrm{a})} \mathrm{A}$

\sim ••~ •
(b)

(c)
(c)
Divide by
Quotient is 1.
$\sim . \quad \sim \quad$.
Divide by .
Γ Divide by .
$\Gamma \quad$ Divide by .
\lceil Divide by .
Quotient is 1.
(d)

```
~ . . . ~ . .
```


	Divide	by
	Divide	by
Γ	Divide	by
	Divide	by
Γ	Divide	by
Quotie		

statement is true.
3. Factorizations of :

The factors of are , , and . The statement is true.
4. Factorizations of

The factors of are , , , and . The statement is false (missing and).
5. Factorizations of :

- ~ • ~ • ~ • ~

The factors of are and
6. Factorizations of :

The factors of are , , , , , and
7. Factorizations of :

The factors of are , , , , , and \qquad
8. Factorizations of :

The factors of are , and __ _.
9. Factorizations of :

- ~

The factors of are , , , , , , and
10. Factorizations of :

The factors of are , , , , and
11. Factorizations of :

The factors of are , , , , , and
12. Factorizations of :

- ~ • ~ • ~ • ~

The factors of are , , , , 1 , , and
13. Factorizations of :

14. Factorizations of :
15. Factorizations of :

The factors of are , , , and
16. Factorizations of :

The factors of are , , and
17. is divisible by and , so is composite.
18. is divisible by , so is composite.
19. is only divisible by itself and , so it is prime.
20. is divisible by , so is composite.
21. is divisible by and , so is composite.
22. is only divisible by itself and , so it is prime.
23. is only divisible by itself and , so it is prime.
24. is only divisible by itself and , so it is prime.
25. is divisible by , so is composite.
26. is divisible by and , so is composite.
27. is only divisible by itself and , so it is prime.
28. is divisible by and , so is composite.
29.
Divide by .
Γ Divide by .
Γ Divide by .
$\Gamma \quad$ Divide by .

Quotient is 1.

The correct choice is (b).
30.

A $\hat{\mathrm{A}}$
$\tilde{\mathrm{A}} \hat{\mathrm{A}}$

The factors of are

82 Chapter 2 Multiplying and Dividing Fractions
31.

\lceil Divide by .

\lceil Divide by
\lceil Divide by
Quotient is 1.

The correct choice is (a).
32.
\lceil Divide by .
\lceil Divide by .
\lceil Divide by .
Quotient is 1 .
33.

Divide by .
\lceil Divide by .
Quotient is 1.
34. We can also use a factor tree.

35.

36.

Divide by
Divide by
37.
$\tilde{\mathrm{A}} \quad \hat{\mathrm{A}}$
38.

39.

Divide by .
Divide by

\lceil Divide by .
\lceil Divide by . Quotient is 1 .
40.

41.

Div
ide
by . Divide
Γ by
■ Divide by
Quotient is 1 .
~•• ~ •
42.

$\tilde{\mathrm{A}} \hat{\mathrm{A}}$

Ar Ar

43.

\lceil Divide by .
\lceil Divide by
\lceil Divide by .
Quotient is 1 .
44.

$\tilde{\mathrm{A}} \hat{\mathrm{A}}$
45.
Г Divide by .
$\Gamma \quad$ Divide by .
Γ Divide by .
Quotient is 1 .
46.

Divide by .
Divide by
\lceil Divide by Quotient is 1 .
48.

49.

Divide by .
Quotient is 1 .
50.

47.
\square A \hat{A}

Divide by

Divide by A Â

84 Chapter 2 Multiplying and Dividing Fractions
51.

Divide by
Divide by
Divide by
Divide by
\lceil Divide by .
\lceil Divide by .
Quotient is 1.
52.

A $\quad \hat{A}$
A \hat{A}
~ ~ .
53. Answers will vary. A sample answer follows. A prime number is a whole number that has exactly two different factors, itself and . Examples
include , , , and À A composite number
has a factor(s) other than itself or . Examples include , , , and . The numbers and are neither prime nor composite.
54. No even number other than is prime because all even numbers have as a factor. Many odd numbers are multiples of prime numbers and are not prime. For example, , , and are all multiples of .
55. All the possible factors of are , , , , , , and . This list includes both prime numbers and composite numbers. The prime factors of include only prime numbers. The prime factorization of is

$$
\sim \cdot \cdot \cdot \sim \cdot \grave{A}
$$

57.

Divide by .
\lceil Divide by .

Quotient is 1.
58.

Divide by .

Divide by .

\lceil Divide by
Divide by .
П Divide by .
Divide by .
Divide by .

Quotient is 1.
59.

No,	use only prime numbers,
the	your answers will be correct.
order	However, it does seem easier of
to always start with and	
divisi	then use progressively
on	greater prime numbers. The
does	prime factorization of is
not	
matter	
As	
long	
as you	
on Education, Inc.	

Divide by	de by .		
Divide by .			
D		\quad	Divide by .
:---			
D			

Quotient is 1 .
y

D
i

V
i
d
e
b
y

D
i

V
i ~•••••••~••
60.

61.

Divide	by
Divide	by À
Divide	by À
Divide	by
Divide	by
Divide	by

62. Quotient is 1.

Divide	by
Divide	by
Divide	b

63.

64.

$\tilde{\mathrm{A}} \quad \hat{\mathrm{A}}$
65. The prime numbers less than are , , , , , , , , , , , and .
66. A prime number is a whole number that is evenly divisible by itself and only.
67. No. Every other even number is divisible by in
addition to being divisible by itself and
68. No. A multiple of a prime number can never be prime because it will always be divisible by the prime number.
69.
Divide by .
Divide by .
Quotient is 1.

2.4 Writing a Fraction in Lowest Terms

2.4 Margin Exercises

1. (a) , ;
\sim • ~.

Yes, is a common factor of and
(b)
~. ~.
Yes, is a common factor of and
(c) \sim; , but is not a factor of.

No.
(d) $\sim, \quad ; \quad \sim \quad$.

Yes, is a common factor of and
2. (a)
and have no common factor other than Yes, it is in lowest terms.
(b)
and have a common factor of
No, it is not in lowest terms.
(c)
and have a common factor of

No, it is not in lowest terms.
(d)
and have no common factor other than
Yes, it is in lowest terms.
(a)
(a) $\sim \mathrm{e} \sim$
(b) $-\sim$ ••••
(c)
\qquad

(d) $-\sim \frac{\backslash . \ .}{\text { \.\. }} \sim \frac{. .}{. . .} \sim$
5. (a) - and
\.\.\.\

The fractions are not equivalent ${ }^{2} £ 3_{A}$
(c) - and
(b)
e

(c) $-\sim \frac{e}{e} \sim$
(d) $-\sim \frac{\mathrm{e}}{\mathrm{e}} \sim$
(e) $-\sim \frac{e}{e} \sim$
4. (a) $-\sim \underset{\bullet \cdot}{\bullet \cdot}$ •

$$
\sim \frac{\backslash . \backslash . \}{\text { \.\.\. }} \sim \frac{. \cdot}{. . \cdot} \sim
$$

The fractions are equivalent (\sim).
(d) - and -

$$
-\sim \frac{\backslash \cdot \backslash \cdot \cdot \cdot \backslash}{\lambda \cdot \backslash \cdot \cdot \cdot \cdot \cdot \backslash}
$$

The fractions are not equivalent ${ }^{2} £-3 \dot{A}$

2.4 Section Exercises

1. A number can be divided by if the number is an even number.
2. A number can be divided by if the number ends in _or ${ }_{-}$.
3. Any number can be divided by if the number ends in $\underline{0}$.
4. If the sum of a number's digits is divisible by _, the number is divisible by
5.

$$
\underline{9} \underline{9} \underline{9} \underline{9}
$$

6.
7.
8. $\underline{9} \quad \underline{9} \quad \underline{X}$
$\begin{array}{lllll}\text { 9. } \\ \text { 10. } & \frac{9}{X} & \frac{X}{X} & \frac{9}{9} & \frac{9}{X}\end{array}$
9.
10.

$\underline{9} \underline{9} \underline{9}$
e
14. - is in lowest terms, so the fractions and are not equivalent. false
15. - is in lowest terms, so the fractions and are not equivalent. false
2.4 Writing a Fraction in Lowest Terms
24.

25. $-\sim \frac{e}{e} \sim$
\qquad
26.
27.

e
28.

29. \qquad $\sim \frac{\mathrm{e}}{\mathrm{e}}-$
30. $-\sim \frac{e}{e} \sim$
31. \sim e
32. $-\sim$ e
e
33. \sim. . . \quad. .
34. $-\sim \frac{\backslash . \backslash . \ . \}{\sim} \sim$ \. .\.\. .
\qquad
36. $-\sim-1.1$.
37.

16. $-\sim$ e \sim, true
e
17. $-\sim \frac{e}{e} \sim$
18. $-\sim \frac{e}{e} \sim$
19. $-\sim$ e
e
20. $-\sim \frac{e}{e} \sim$
21.

e
22. $-\sim \frac{e}{e} \sim$
23.

e

39.

40.

41.
 \.\. . . .
42.

43. - and

The fractions are equivalent ${ }^{2}-\sim-3 i$
44. - and

The fractions are equivalent ${ }^{2}-\sim-3 \dot{A}$
45. - and

The fractions are not equivalent ${ }^{2} £-\mathbf{3}_{\mathrm{A}}$
46. - and

\.
48. - and

\qquad ~. . ${ }^{\sim}$

The fractions are not equivalent ${ }^{2} £ 3$ ì
49. - and

\qquad

The fractions are equivalent ${ }^{2}-\sim-3 \dot{A}$
50. - and

. \. ${ }^{\sim}$

The fractions are equivalent ${ }^{2} \sim-3 \hat{A}$
51. - and

$-\sim \frac{\cdot \cdot}{\lambda \cdot \cdot \cdot} \sim-$

The fractions are not equivalent ${ }^{2}-£-3 \dot{A}$
47. - and

The fractions are not equivalent ${ }^{2}-£-3 \dot{A}$

The fractions are not equivalent $£$
52. - and -

- • •

$-\frac{1.1 .1 .1 .}{1.1 .1 .1} \sim$

The fractions are equivalent $\sim \AA$
53. - and

The fractions are equivalent ${ }^{2}-\sim-3 A$
54. - and

$$
\sim \sim \frac{\backslash \cdot \backslash \cdot \backslash \cdot \backslash}{\cdot \backslash \cdot \backslash \cdot \backslash \cdot} \sim
$$

$\sim \sim \frac{\cdot \backslash \cdot \backslash}{\lambda \cdot \backslash \cdot . \backslash} \sim-$

The fractions are equivalent ${ }^{2}-\sim-3 A$
55. A fraction is in lowest terms when the numerator and the denominator have no common factors other than . Some examples are,-- , and -A
56. Two fractions are equivalent when they represent the same portion of a whole. For example, the fractions - and are equivalent.

Summary Exercises Fraction Basics

1. The figure has equal parts.

Five parts are shaded:

One part is unshaded:-
2. The figure has equal parts.

One part is shaded:

Two parts are unshaded:
3. The figure has equal parts.

Five parts are shaded:

Three parts are unshaded:
4. $\quad ¥$ Numerator
¥ Denominator
5. $-¥$ Numerator

Y Denominator
6. Proper fractions: numerator smaller than denominator.

$$
-,-
$$

Improper fractions: numerator greater than or equal to denominator.

$$
-,-,-
$$

7. There are winners in total
($\begin{array}{llllll}\mathbf{b} & \mathbf{b} & \mathbf{b} & \mathbf{b} & \mathbf{b} & \\ & \text {. Seven of the }\end{array}$ winners were from Switzerland.
8. Since $\mathbf{b} \sim$ of the winners were from either France or South Africa, c ~ were not.
9. b \sim of the winners were from either Japan

The fractions are equivalent $2-\sim-3 \dot{A}$
57. \qquad $\xrightarrow{\text { \.\.\.\.\. }}$
\.\.\.\.\. . .
58.

. . . . \. 入
59. $-\sim \frac{. \backslash . \}{\backslash . \lambda} \sim-$
¥ Remainder
60. $-\sim \frac{. \cdot \ \cdot \}{\backslash \cdot \lambda} \sim-$
or the United States.
10. Since of the winners were from Canada,
c ~ werenot. ~
11.
¥ Whole number part
\ulcorner

12.
$¥$ Whole number part
13.
$¥$ Whole number part

Γ

- $¥$ Remainder

14.

$$
¥ \text { Whole number part }
$$

Γ
$¥$ Remainder
19. • ~ Multiply and .
b ~ Add.
20. • ~ Multiply and.
b ~ Add .

- ~

21. • ~ Multiply and.
b ~ Add.
~
22. • ~ Multiply and .
b ~ Add.
23.

23. • ~ Multiply and .
b ~ Add.
24. - . ~ Multiply and .
b ~ Add.

28.
29.

30.
$\widetilde{\mathrm{A}} \hat{\mathrm{A}}$

Ar $\hat{\mathrm{A}}$
A $\hat{\mathrm{A}}$
31.

32.
A \hat{A}
A $\quad \hat{A}$
A A

33.

38. $-\sim \frac{e}{e} \sim$
39. $-\sim \frac{e}{e} \sim$
40.

41. \sim e
e
42.

43.

e
44.

45. $\sim \sim$ \.\. $\backslash \sim-$. \.\.
46. $-\sim \frac{\text { \.\.\.\.\} }{\backslash \cdot \ \cdot \backslash \cdot \ \cdot . \^{-}}}{}$
47. $-\frac{1 \cdot \backslash \cdot \cdot \backslash}{1 . \backslash \cdot \} \sim \sim$
48. $-\sim \frac{1 \cdot \backslash \cdot \backslash \cdot \backslash \cdot}{\ \cdot \ \cdot \backslash \cdot \backslash \cdot} \sim$

2.5 Multiplying Fractions

2.5 Margin Exercises

1. - of - as read from the figure is the darker shaded part of the second figure. One of eight equal parts is shaded, or $-\dot{A}$
2. (a) $\quad \sim$ - -
(b) ${ }_{-} \cdot \sim_{-} \frac{\backslash \cdot}{1} \sim_{-}$
3. $\sim \frac{e}{e} \sim$
4. $\sim \mathrm{e} \sim$ e
5. $-\sim \frac{e}{e} \sim$
(c)

(d) ${ }^{-} \cdot-\quad \sim$ • \sim
6. (a) $\ulcorner\cdot \perp \sim \div$
(b) $\perp . \geq \sim$ -
(c) $\geq . \perp^{-} \quad \cdot \cdot$

(d) $\searrow .-\perp \quad$ ••

$$
\lambda^{\lambda} \sim \quad .
$$

4.

(a) $\cdot-\sim,-\sim \cdot \sim-\sim$

(b) $\stackrel{\searrow}{ } \cdot-\sim \cdot \cdot \sim-$ or
(c)

(d)

5. (a) Area \sim length \cdot width

$\sim \mathrm{yd}$
(b) Area \sim length \cdot width

$$
r^{!} \cdot
$$

2. To write a fraction in lowest terms, you must divide both the numerator and denominator by a common factor.
3. A shortcut when multiplying fractions is to divide both a numerator and a denominator by the same
number.
4. Using the shortcut when multiplying fractions should result in an answer that is in lowest terms.
5.

\backslash

7.

8.

9.

10..$--\underset{\sim}{\sim}$

1
11. -. . \sim. \perp^{-}~••

12.

13. - .-.- \quad.- . •

$$
\sim 1 \quad 1^{\sim} . \sim^{\sim}
$$

$\sim \mathrm{mi}$
(c) Area \sim length \cdot width
$\sim 1 .-\perp \sim$
$\sim \mathrm{mi}$

2.5 Section Exercises

1. To multiply two or more fractions, you multiply the numerators and you multiply the denominators.
2.

15. .- $\quad-\quad$ -
16. $-\cdot-\cdot-\frac{\lambda}{\lambda} \cdot \frac{\lambda}{\lambda} \sim \frac{. \quad .}{\cdot \cdot} \sim$
17. $-.-.-\sim \sum_{\cdot} \frac{\lambda}{\lambda} \sim \frac{.}{\cdot \cdot} \sim-$
 1
 \backslash
20. The statement "When multiplying a fraction by a whole number, the whole number should be rewritten as the number over ." is true.
21. - $\sim-$ is false.

The correct method is as follows:
22. . $-\sim-,-\sim-$
23. • ~ • ~
24.

25. .-. \geq !

26.

27.

28.

29. $-. \quad \sim-\cdot \frac{\searrow}{\} \sim-$
37. Area \sim length \cdot width

38. Area \sim length \cdot width

$$
\sim-.-\sim \dot{\sim} \sim \mathrm{ft}
$$

39. Area \sim length \cdot width
$\sim \cdot \sim \cdot \backslash^{-\sim} \sim$ meters
40. Area \sim length \cdot width

$$
\begin{gathered}
-\geq \\
\sim \cdot \sim \cdot \tau \sim \mathrm{in} .
\end{gathered}
$$

41. Area \sim length \cdot width

42. Area \sim length \cdot width
mi
43. Multiply the numerators and multiply the denominators. An example is

$$
-\cdot-\sim \sim \dot{\sim}^{-\grave{i}}
$$

44. You must divide a numerator and a denominator by the same number. If you do all possible divisions, your answer will be in lowest terms. One example is
45. Area \sim length \cdot width
46. Area \sim width • height

$$
\sim \cdot-\sim-\sim_{-}^{\sim}{ }_{-}^{\text {yd }}
$$

50. Rocking Horse Ranch

Area \sim length \cdot width \quad Area \sim length \cdot width

Neither ranch is larger in area. They are both the same size.
51. b b b b b b b \sim supermarkets
The estimate of the total number of supermarkets
in these states is
52. b $\quad \mathbf{b} \quad \sim \xrightarrow[\text { supermarkets, which is the }]{\mathbf{b}}$ exact total number of supermarkets in these states.
53. An estimate of the number of supermarkets in medium to large population areas in New York is

The exact value is

Rounding gives us supermarkets.
54. An estimate of the number of supermarkets in New Hampshire which are in shopping centers, is

$$
-\quad-\quad \sim \cdot \sim
$$

The exact value is

$$
\cdot \sim \cdot \sim \sim \dot{A}
$$

48. Area \sim length \cdot width
$\sim \cdot \sim \cdot \sim \sim \mathrm{mi}$
49. Sunny Side Soccer Park Creekside Soc. Park

Area \sim length \cdot width \quad Area \sim length \cdot width
$\sim-\mathrm{mi}$

They are both the same size.

Rounding gives us supermarkets.
55. We need a multiple of with two nonzero digits that is close to . A reasonable choice is and an estimate is

This value is closer to the exact value because using as a rounded guess is closer to than using as a rounded guess.
56. We need a multiple of with two nonzero digits that is close to . A reasonable choice is and an estimate is

This value is closer to the exact value because using as a rounded guess is closer to than using as a rounded guess.

2.6 Applications of Multiplication

2.6 Margin Exercises

1. (a) Step 1

The problem asks us to find the amount of money they can save in a year.

Step 2

Find the amount they can save by multiplying -
and
Step 3
We can estimate this amount using - and ,

Step 4
Now solve the problem using the original values.

Step 5
They can save \$, in a year.
Step 6
The answer is reasonably close to our estimate.
(b) Step 1

The problem asks us to find the amount of money
she will receive as retirement income.

Step 2
To find her retirement income, multiply - and

2.6 Applications of Multiplication

Step 4

Now solve the problem using the original values.

Step 5
She will receive \$, as retirement income.
Step 6
The answer is reasonably close to our estimate.
2. Step 1

The problem asks for the number of prescriptions paid for by a third party.

Step 2
A third party pays for of the total number of prescriptions,

Step 3
An estimate is ${ }^{-} \quad \sim-\cdot \cdot \sim \quad \grave{\lambda}$

Step 4
The exact value is

Step 5
A third party pays for prescriptions.

Step 6
The answer is reasonably close to our estimate.
3. Step 1

The problem asks for the fraction of students who speak Spanish.

Step 2

- of the - of the students who speak a foreign language, speak Spanish.

Step 3

Step 4
Copyright © 2014 Pearson Education, Inc.
\$

Step 3
We can estimate this amount using - and

\backslash

The exact value is , which is the same as the estimate since we didn't round.

Step 5

The fraction of students who speak Spanish is
Step 6

The answer, - , matches our estimate.

96 Chapter 2 Multiplying and Dividing Fractions

4. (a) From the circle graph, the fraction is -A
(b) Multiply - by the number of people in the
survey, À Since we can estimate the answer using the exact values, our estimated answer will
be the same as the exact answer.

children buy food from vending machines.
(c) From the circle graph, the fraction is $-\AA$
(d) Multiply by . Since we can estimate
the answer using the exact values, our estimated answer will be the same as the exact answer.

children buy food from a convenience store or street vendor.

2.6 Section Exercises

1. The words that are indicator words for multiplication are of, times, twice, triple, product, and twice as much.
2. The final step when solving an application problem is to check your work.
3. When you multiply length by width you are finding the area of a rectangular surface.
4. When calculating area, the length and the width must be in the same units of measurement. If the measurements are both in miles, the answer will be in square miles and shown as mi \AA
5. Multiply the length and the width.

$$
-\cdot-\sim \frac{\backslash \cdot \backslash}{\backslash \cdot \widetilde{X}^{-}}
$$

8. Multiply by , À

, , people who shop at flea markets on a daily basis purchase produce.
9. Multiply the length and the width.

The area of the top of the table is yd .
10. Multiply the number of bowls by the fraction eaten in the summer months.

The average person consumes bowls of cereal in the summer months.
11. Multiply - by À

He earned \$ on his job.
12. Multiply - by À

The average household does loads of wash in the winter months.
13. Multiply the daily parking fee by the fraction.

The daily parking fee in Boston is $\$$.
14. Multiply the daily parking fee by the fraction.
6. t ply the length and Mul i width.

The daily parking fee in San Francisco is \$
15. (a) of the runners are women.

The area of the floor is yd.
7. Multiply the length and the width.

$$
-\cdot-\sim
$$

The area of the cookie sheet is -ft .
runners are women.
(b) The number of runners that are men is
$\mathrm{c} \sim \overline{\mathrm{A}}$
16. (a) Multiply the fraction of nonsmoking rooms by the number of rooms.

There are nonsmoking rooms.
(b) The number of smoking rooms is

$$
c \quad \sim \overline{\mathrm{~A}}
$$

17. The smallest sector of the circle graph is the 4 hours group, so this response was given by the least number of people. To find how many people gave this response, multiply ${ }_{0}$ by the total number of people,

people gave this response.
18. The largest sector of the circle graph is the 2 hours or less group, so this response was given by the greatest number of people. To find how many
people gave this response, multiply - by the total number of people,

people gave this response.
19. The only group that is not willing to wait hours or less is the 8 hours group, and the fraction corresponding to that group is $-\AA$ Thus, the fraction willing to wait hours or less is

$$
\mathrm{c}-\sim-\mathbf{c}-\sim-
$$

The total number of people willing to wait hours or less is

$$
-\cdot \sim \frac{\cdot}{1 \cdot} \sim
$$

20. The only group that is not willing to wait hours or more is the 2 hours or less group, and the fraction corresponding to that group is $-\AA$ Thus,

2.6 Applications of Multiplication

21. Because everyone is included and fractions are given for all groups, the sum of the fractions must be 1 , or all of the people.
22. Answers will vary. Some possibilities are
23. You made an addition error.
24. The fractions on the circle graph are incorrect.
25. The fraction errors were caused by rounding.
26. Add the income for all twelve months to find the income for the year.

The Owens family had income of \$, for the year.
24. Multiply the fraction - by the total income (\$,).

Their taxes were \$,
25. From Exercise 23, the total income is \$ The circle graph shows that of the income is for rent.

\backslash

The amount of their rent is \$, \grave{A}
26. Multiply the fraction by the total income.

They spent \$, on food.
27. Multiply the total income by the fraction saved.

the fraction willing to wait hours or more is

$$
\mathrm{c}-\sim \mathrm{A}-\sim
$$

The total number of people willing to wait hours or more is

$$
-\cdot \quad \sim \frac{\cdot}{\lambda \cdot} \sim \grave{\mathrm{A}}
$$

The Owens family saved \$ for the year.
28. Multiply the fraction - by the total income.

They spent $\$$ on clothing.
29. The error was made when dividing by and writing instead of . The correct solution is

$$
-\frac{-}{d} \sim d
$$

30. Yes, the statements are true. Since whole numbers are or greater, when you multiply, the product will always be greater than either of the numbers multiplied. But, when you multiply two proper fractions, you are finding a fractional part of a fraction, and the product will be smaller than either of the two proper fractions.
31. Multiply the cost in the United States by $-\dot{A}$

The cost of laser eye surgery for one eye in Thailand is \$
32. Multiply the cost in the United States by -

The cost of a knee replacement in Mexico is \$
33. We want - of the actual length.

The length of the scale model is feet.
34. First multiply and , to find the number of pounds saved.

$$
\frac{1}{10} \cdot 10, \quad \sim \frac{1}{\mathbf{V}},
$$

To find the weight of the test truck, subtract:
36. Multiply the fraction by the cost (\$,).

To find the amount borrowed in the first years, subtract

$$
\$, \quad c \$ \quad \sim \$
$$

\$, was borrowed in the first years.
37. Multiply the remaining - of the estate by the fraction going to the American Cancer Society.

- of the estate goes to the American Cancer

Society.
38. Multiply the remaining - of their total investments by the fraction invested in bonds.

$$
{ }^{-} \cdot-\sim-\cdot \cdot \tau^{-}
$$

The couple invested of their total investment in bonds.

2.7 Dividing Fractions

2.7 Margin Exercises

1. (a) ${ }^{-} \hat{\mathbf{A}}^{-}$; The reciprocal of ${ }^{-}$is ${ }^{-}$because
(b) ${ }^{-} \quad$ The reciprocal of ${ }^{-}$is ${ }^{-}$because
(c) The reciprocal of ${ }^{-}$is ${ }^{-}$because
\qquad
_ _ _

- ~ ~ .
(d) The reciprocal of is because
her votes from senior citizens.

\backslash

To find the votes needed from voters other than the senior citizens, subtract:

$$
, \quad \mathbf{c}, \quad \sim \quad \text { votes. }
$$

She needs votes from voters other than the senior citizens.
2. (a) ${ }^{-} \mathbf{e}^{--} \quad \sim \dot{\sim}$
(b) \quad e $\cdot^{-} \sim^{-} \sim$
(c) $-\sim-\mathrm{e}-\sim-\cdot-\sim \frac{\cdot}{\sim}$
(d)

3. (a)
(b) $\mathrm{e}^{---e^{-} \sim^{-} .}$
\backslash
(с) $-\mathrm{e} \sim-\mathrm{e}^{-\sim-}-\underset{\sim}{\sim} . \sim$
(d) $-\mathrm{e} \sim^{-} \mathrm{e}^{-} \sim^{--} \sim^{-} \sim$
4. (a) Step 1

The problem asks for the number of --ounce dispensers that can be filled using ounces of eye drops.

Step 2
Divide the total number of ounces of eye drops by
the fraction of an ounce each dispenser holds.

Step 3
An estimate is \quad e À
Step 4
Solving gives us

```
e ~ e
```

Step 5
--ounce dispensers can be filled.
$e \quad$ e

Step 5
--quart bottles can be filled.
Step 6
The answer is reasonably close to our estimate.
5. (a) Step 1

The problem asks for the fraction of the bonus money that each employee will receive.

Step 2
Divide the fraction of the bonus money, - , by the number of employees,

Step 3
An estimate is $\mathbf{e} \sim-\AA$

Step 4
Solving gives us

Step 5
Each employee will receive of the bonus
money.
Step 6
The answer is reasonably close to our estimate.
(b) Step 1

The problem asks for the fraction of the prize money that each employee will receive.

Step 2
Since they donate - of the winnings, they have

C - ~ - C - -
of the winnings left to divide. Divide the fraction
The answer is reasonably close to our estimate.
(b) Step 1

The problem asks for the number of --quart bottles that can be filled from a -quart cask.

Step 2
Divide the total number of quarts in the cask by the size of the bottles.

Step 3

An estimate is \quad e $\quad \overline{\mathrm{A}}$

Step 4
Solving gives us
of the winnings that remain, , by the number of employees, .
Step 3
An estimate is $\mathrm{e} \sim-\dot{\mathrm{a}}$
Step 4
Solving gives us

Each employee will receive of the prize money.

Step 6
The answer is reasonably close to our estimate.

100 Chapter 2 Multiplying and Dividing Fractions

2.7 Section Exercises

1. When you invert or flip a fraction, you have the reciprocal of the fraction.
2. To find the reciprocal of a whole number, you must first write the whole number over $\underline{1}$, and then invert it.
3. To divide by a fraction, you must first invert the divisor and then change division to multiplication.
4. After completing a fraction division problem, it is best to write the answer in lowest terms.
5. The reciprocal of - is - because
\qquad
6. \sim e $\sim \perp \sim$
7. The reciprocal of - is - because

$$
\cdot \sim \sim
$$

7. The reciprocal of - is - because

$$
\cdot \sim \sim
$$

8. The reciprocal of - is - because
9. The reciprocal of - is - because
10. The reciprocal of - is - because

11. The reciprocal of is - because
12. The reciprocal of is because
13. $-e^{--}$. $1 \quad \sim$
14.

28. $e^{-} \sim^{-} e^{-} \sim^{-}{ }^{-}$
14. $-e^{--} \cdot$
22.
20. $-\mathrm{e}-\sim \frac{\lambda}{\Gamma} \cdot-$
21.

$$
e^{--1} ._{\sim}^{\lambda}
$$

15. $-e^{-} \sim^{-} \cdot-\sim \sim$
16. $-e^{-} \sim^{-} \quad \sim \sim$
17. $-\mathrm{e}^{-} \sim^{--}$-
18. $-\mathrm{e}^{-} \sim^{--}{ }^{-}-$
19. $-\mathrm{e} \sim \xrightarrow{ }$.

$$
1 \sim \sim
$$

30. - \sim e \sim $e-\sim\rangle_{-}$
31.

32. $\sim e \quad \sim e \quad \sim$ \sim
33. - of a quart divided into parts:

Each horse will get - of a quart.
34. Divide the number of quarts of shampoo by the fraction of a quart each container holds.

Harold can fill containers.
35. Divide the total number of cups by the size of the measuring cup.

$$
e-\sim-e-\sim-\cdot{ }_{-}^{\sim}
$$

They need to fill the measuring cup times.
36. Divide the total number of pounds of jelly beans
by the size of the bag.

--pound bags can be filled.
37. Divide the total number of ounces of eye drops by the fraction of an ounce each dispenser holds.

$$
e_{-} \sim-e_{-} \sim{ }_{-}
$$

dispensers can be filled.
38. Divide the number of pounds of peanuts by the fraction of pounds of peanuts each person will likely eat.

41. Answers will vary. A sample answer follows:

You can divide two fractions by multiplying the first fraction by the reciprocal of the second
fraction (divisor).
42. Sometimes the answer is less and sometimes it is greater.

43. Each loafcake requires - pound of jellybeans, so to make loafcakes, use multiplication.

pounds will be needed.
44. We want - of patients-use multiplication.

patients were still taking their drugs.
45. Divide the cans of compound by the fraction of a can needed for each new home.

I
homes can be plumbed.
46. Divide the gallons of differential fluid by the fraction of a gallon needed for each car serviced.
e
39. Divide the total weight of a carton by the weight
per fastener.

There are --pound fasteners in each carton.
40. Divide the total acreage by the acreage per lot.

\backslash There are --acre lots in the subdivision.
cars can be serviced.
47. (a) In - of the visits, doctors failed to discuss the issues-use multiplication.

The doctors failed to discuss the issues in visits.
(b) The doctors did discuss the issues in c \sim visits.
48. (a) - of the miles have been completeduse multiplication.

$$
\cdot \sim-\cdot \sim
$$

He has gone miles.
(b) The number of miles that remain is

C \sim miles.
49. Divide the yards of fabric by the fraction of a yard needed for each dish towel.

towels can be made.
50. Multiply the number of applicants by the fraction of jobs available per applicant.

There are job openings.
51. The indicator words for multiplication are underlined below.

more than double	per twice
times	product less than
equals	$\underline{\text { twice as much }}$

52. The indicator words for division are underlined below.

fewer goes into	sum of divide
equals	quotient
loss of	$\underline{\text { divided by }}$

53. To divide two fractions, multiply the first fraction by the reciprocal of the second fraction.
54. The reciprocal of - is - because
$¥$ Half of is \grave{A}

The reciprocal of - is - because rounds up to .
$\cdot \sim \sim \dot{A}$

The reciprocal of is - because
(e)

- $\sim \sim \dot{A}$

The reciprocal of - is - because
$¥$ is the same as
$¥$ Half of is
rounds up to
(f)

- rounds down to

2. (a) - .

Estimate: -rounds to . - rounds to .
_• ~

Exact: $\quad . \quad-\bar{\top} . \geq \sim-\sim$
(b) - •

Estimate: - rounds to . - rounds to
_• ~
Exact:

(c) - .

Estimate: -rounds to . - rounds to .
_• ~
Exact:

(d) - -

Estimate: rounds to . - rounds to .
\qquad
(b) $\quad-\quad e$

Estimate: rounds to . rounds to .
\qquad e _ ~

Exact:
$-\quad e-\sim e$
\qquad
e -

Estimate: rounds to . - rounds to - $_{-}$

Exact:

e~ \quad e

(d) e

Estimate: -rounds to . rounds to
\qquad e
\qquad \sim -
\qquad

Exact:

4. Multiply the amount of paint needed for each car by the number of cars.

$$
\begin{aligned}
& \text { Estimate: rounds to . rounds to } \\
& \quad \sim \\
& \text { Exact: }-\cdot \sim \square \cdot-\sim \sim \sim
\end{aligned}
$$

Exact:

quarts are needed for cars. The answer is

3. (a) -e

Estimate: _rounds to . - rounds to .
\qquad

Exact:
>1
e \sim e $\sim \cdot \sim \cdot \sim$
reasonably close to the estimate.
5. (a) Divide the total pounds of brass by the number of pounds needed for one engine.

Estimate: rounds to . rounds to .
e š

Exact:

propellers can be manufactured from pounds of brass. The answer is reasonably close to the
estimate.

104
 Chapter 2 Multiplying and Dividing Fractions

(b) Divide the total number of quarts by the number of quarts needed for each oil change.

Estimate: rounds to . - rounds to e š

Exact:

$$
e \quad e \sim \quad e \sim \sim \cdot \tau \sim
$$

oil changes can be made with quarts of oil.
The answer is reasonably close to the estimate.

2.8 Section Exercises

1. The statement "When multiplying two mixed numbers, the reciprocal of the second mixed number must be used." is false. A reciprocal is
used when dividing fractions, not multiplying fractions.
2. The statement "If you were dividing a mixed number by the whole number , the reciprocal of would be -." is false. The reciprocal of is
3. The statement "To round mixed numbers before estimating the answer, decide whether the numerator of the fraction part is less than or more than half of the denominator." is true.
4. The statement "When rounding mixed numbers to estimate the answer to a problem, the estimated answer can vary quite a bit from the exact answer. However, it can still show whether the exact answer is reasonable." is true.
5. - .

Estimate: • ~

Exact: -. - ~-. - ~ ~
6. -

Estimate: • ~

Exact:
8. -

Estimate: • ~
Exact: -. - ~ - - ~ ~
9. - .

Estimate: • ~

1 \}
10. -.

Estimate: • ~

1 \}
11.

Estimate: • ~

Exact:

12.

Estimate: • ~
Exact: . - $\sim \stackrel{1}{-} \sim \sim \sim$
13. - - -

Estimate: • • ~ • ~
Exact: _ $-\cdot \sim \cdot \cdot \backslash \cdot \perp \sim \sim-$
14. - - -

Estimate: • • ~

Exact: -. -. - $-. \ . \sim_{\sim}^{\sim}$
\backslash
15. . .

Estimate: • ~

\

Estimate: • • ~ . ~

\ \
16. -. -

Estimate:

Exact: -. -. ~-. $-\perp$
11^{\sim}
17. - Estimate: . ~

The best estimate is choice (d).
18. - Estimate: • ~

The best estimate is choice (a).
19. - e Estimate: e ~

The best estimate is choice (b).
20. - e Estimate: e ~ -

The best estimate is choice (c).
21. e

Estimate: e ~

Exact: $-\mathrm{e}^{--\mathrm{e}^{-}-1.1}$ ~
\ \
22. - e

Estimate: \mathbf{e} ~

Exact: $\quad \mathbf{e}^{-} \sim^{-} \mathbf{e}^{-} \frac{1}{1} \cdot \frac{1}{1} \sim$
23. - e

Estimate: e ~
26. e -

Estimate: e ~- ~

Exact.
$e \quad-\sim-e^{-}$.
1 ~~
27. - e -

Estimate: e ~

Exact: $-\mathbf{e}^{--} \mathbf{e}^{-} \sim{ }^{\prime}$
28. ${ }^{-}{ }^{-}$

Estimate: e ~

\backslash
29. e

Estimate: e ~ ~ -

1 \}
30. - e

Estimate: e ~

Exact: $-\mathbf{e} \sim^{-} \mathbf{e}^{-} \sim^{-}-$
24. -e

Estimate: e ~ $~$

Exact: $\quad-\mathbf{e} \sim-\mathbf{e}^{-} \sim-\cdot--\sim$
25. e

Estimate: e ~
Exact: $\quad \mathbf{e}-\sim-\mathbf{e}-\sim-$

- ~ _ ~

31. -e

Estimate: e ~

Exact: $\quad \mathbf{e} \sim-\mathbf{e}^{-} \sim-{ }^{-} \sim$
32. -e

Estimate: e ~

Exact: $\quad \mathbf{e} \sim-\mathbf{e}-\sim$

106 Chapter 2 Multiplying and Dividing Fractions
33. Multiply each amount by \ddagger
(a) Applesauce: - cup

Estimate: • ~ cups
Exact: -. - ~ -.- ~ - ~ - cups
(b) Salt:

- tsp.

Estimate: • ~ tsp.
Exact: - . - ~ -.- ~ - ~ - tsp.
(c) Flour:

- cups

Estimate: • ~ cups

Exact: - . - ~ -. ~ - ~ - cups
34. Multiply each amount by it
(a) Flour: - cups
Estimate: • \sim cups
Exact: - $-\sim_{~-~}^{\sim}-\sim_{\sim}^{-}$cups
(b) Applesauce: - cup

Estimate: • ~ cups
Exact: - . - ~ -.- ~ - ~ - cups
(c) Vegetable oil: - cup

Estimate: • ~ cups
Exact: ${ }^{-} \cdot \sim^{---} \sim_{-}^{-} \perp \sim^{-}$cup
35. Divide each amount by
(a) Vanilla extract: - tsp.

Estimate: e ~ ${ }^{\text {tsp. }}$

Exact: - $\mathrm{e} \sim^{-} \mathrm{e}^{-} \sim^{--}{ }^{-}{ }^{-}$tsp.
36. Divide each amount by
(a) Flour: - cups

Estimate: e \sim cup

Exact: ${ }^{-} \mathbf{e} \sim^{-} \mathbf{e}^{-} \sim^{-}{ }^{-}$~ cup
(b) Salt:

- tsp.

Estimate: e ~ - teaspoon

Exact: $-\mathrm{e} \sim-\mathrm{e}^{-} \sim-.-\sim-$ teaspoon
(c) Applesauce: - cup

Estimate: e ~ - cup

Exact: $-\mathrm{e} \sim-\mathrm{e}-\sim-\cdot(\sim$ cup
37. Divide the number of gallons available by the number of gallons needed for each unit.

Estimate: e š units

Exact:

units can be painted with gallons of paint.
38. Divide the number of total minutes by the number of minutes per moment.

Estimate: e ~ moments

Exact:

(b) Applesauce: - cup

Estimate: e ~ - cup

Exact: - $\mathrm{e} \sim-\mathrm{e}^{-} \sim-.-\sim-\operatorname{cup}$
(c) Flour: cups

Estimate: e ~cup
Exact: ${ }^{-} \mathbf{e} \sim{ }^{-} \mathbf{e}^{-} \sim^{-} \cdot{ }^{-}{ }^{-}$cup

There are moments in an 8-hour work day.
39. Each handle requires -inches of steel tubing.

Use multiplication.

Estimate: • ~ in.

Exact: • $\sim-\cdot-\sim \sim \sim-$ in.
inches of steel tubing is needed to make jacks.
40. Assume that the -inch length listed in the overall dimensions is the length of the handle. Use multiplication.
Estimate: • \sim in.

Exact: $\quad \sim \quad$ - \quad in.

The amount of wood that is necessary to make handles is , inches.
41. The answer should include:

Step 1
Change mixed numbers to improper fractions.
Step 2
Multiply the fractions.

Step 3
Write the answer in lowest terms, changing to mixed or whole numbers where possible.
42. The additional step is to use the reciprocal of the second fraction (divisor).
43. Multiply the amount of money for each cell phone times the number of cell phones to get the total amount of money from the sale of gold.

Estimate: \$ million \sim million

Exact: - million $\sim-.-\sim \sim$
~ million
You would have \$ million from the sale of the gold.
44. Divide the number of square yards of carpet by the amount of carpet needed for each apartment unit.

Estimate: e š units
Exact:
46. Divide the total amount of roofing material by the amount of roofing material needed for each roof.

Estimate: e š homes
Exact:

homes can be re-roofed with squares of roofing material.
47. (a) The maximum height of the standard jack is inches. Use multiplication.

Estimate: • ~ in.

Exact: $\quad-\sim \sim \cdot-\sim \sim \sim$ in.

The hydraulic lift must raise the car inches.
(b) There are inches in a foot, so the -foottall mechanic is $\mathbf{d} \sim$ inches tall. So no, the mechanic can not stand under the car without bending.
48. (a) The maximum height of the low-profile jack is inches. Use division.

Estimate: \quad e \sim in.

Exact: e ~ $\quad \sim \quad \sim$ in.

The low-profile lift must raise the car inches.
(b) No, because in. is greater than in.
49. Multiply the swimming speed of the person times the number of times faster that a shark can swim than a person.

Estimate: • ~ miles per hour

Exact:-• - ~ - ~ ~ ~
units can be carpeted
45. Divide the total amount of firewood to be delivered by the amount of firewood that can be delivered per trip.

Estimate: e ~ trips

Exact:

trips will be needed to deliver firewood.

The shark can swim - miles per hour.
50. Multiply the boxes of tile per floor times the number of floors (homes) to get the total number of boxes needed.

$$
\begin{aligned}
& \text { Estimate: } \quad \bullet \quad \sim \quad \text { boxes } \\
& \text { Exact: } \quad-\cdot \sim \sim \cdot \sim \sim
\end{aligned}
$$

boxes of tile are needed.

108 Chapter 2 Multiplying and Dividing Fractions

Chapter 2 Review Exercises

1. There are parts,
and is shaded.
2. There are parts, and are shaded.
3. There are parts, and are shaded.
4. Proper fractions have numerator (top) smaller than denominator (bottom).

They are: $-\hat{A}-\hat{A}$

Improper fractions have numerator (top) larger than or equal to the denominator (bottom).

They are: $-\hat{A}$
5. Proper fractions have numerator (top) smaller than denominator (bottom).

They are: - \hat{A}
Improper fractions have numerator (top) larger than or equal to the denominator (bottom).

They are: $-\hat{A}-\hat{A}$
6. • ~
b ~

- ~ -

7. • ~
b ~
8.

Ã Â

Ã \hat{A}A \square
16.

A $\hat{\mathrm{A}}$
A Â

Ã \hat{A}

Ã Â
17. ~ • ~

Whole 18.
numbe
r part
19. . ~ .
20. \quad - \sim
21. All parts out of a possible parts are gold.

¥

Re
mai nde r
22. 18 of the possible $\mathbf{b} \sim$ parts are gold.

35.
36. $-\mathrm{e}^{-} \sim_{-}^{-} \sim_{\sim}^{+} \sim^{-}$

$$
\overline{\}_{\sim}
$$

38. ~e

39.

$-\sim-e^{-} \frac{1}{1}, \frac{1}{\square} \sim$
40.

41.

42.

$\mathrm{e} \sim \mathrm{e} \sim$ •
44.

45. To find the area, multiply the length and the width.

34.

The area is -ft .
46. To find the area, multiply the length and the width.

The area is - yd .
47. Multiply the length and width.

The area is ft .
48. Multiply the length and width.

The area is -ft .
49. - •

Estimate: • ~

Exact: $\quad{ }^{-} \sim-{ }^{-} \sim \sim$
50. - . - .

Estimate: • • ~

1 \}
51. - e

Estimate:

Exact: \qquad
52.
$-\mathrm{e}$

Estimate: e ~

53. Divide the total tons of almonds by the size of the bins.

Estimate: \quad e $\sim \quad$ - bins
55. Divide the total yardage by the amount needed for each pull cord.

Estimate: e š pull cords

Exact:

pull cords can be made.
56. Multiply the weight per gallon times the number of aquariums times the gallons per aquarium.

Estimate: • • ~

Exact: - . ~ - . . — ~

The weight of the water is - , or -pounds.
57. Ebony sold - of pounds of rice.

Thus, $\quad \mathbf{C}$ pounds remain. She gave of pounds to her parents.

Ebony gave pounds to her parents. The amount she has left is c \sim pounds.
58. Sheila paid - of $\$$ for taxes, social security,
and a retirement plan.

She paid \$ for taxes, social security, and a retirement plan.

She paid of the remainder,
Exact:

bins will be needed to store the almonds.
54. The other equal partners own
c - ~ -
of the business. Divide that amount by
$\mathrm{e} \sim \mathrm{e} \sim \cdot \sim$
Each of the other partners owns of the business.
$\$ \quad \mathbf{c} \$$
expenses.

She has $\$ \quad$ c \$ \quad left.
59. - must be divided by .

Each school will receive of the amount raised.
60. - of the catch must be divided evenly among fishermen.

Each fisherman receives ton.
61. $[2.5]-.-\sim+\sim$
62. [2.5] $-.-\sim-. \geq \sim+\sim$
63. $[2.8]-.-\sim-\cdot \sim-\sim$
64. $[2.8]-.-\sim-.-\sim \sim \sim \sim$
65. [2.7]

66. [2.7]

67. $[2.5]-. \sim-. \searrow \sim+\sim \sim \sim$
68. [2.8]
69. [2.2]
71. [2.2]

$$
\mathrm{b} \text { ~ }
$$

72. [2.2]

$$
\mathrm{b} \sim
$$

73. [2.4]

$$
\sim \frac{\text { \.I. }}{\text { \.\. }} \sim \frac{\cdot \cdot}{. \cdot}
$$

74. [2.4]

75. [2.4

76. [2.4]
77. [2.4]

78. [2.4]

e
79. [2.8] Multiply - ounces per gallon by the number of gallons.
Estimate: • ~ ounces

ounces of the product are needed.
80. [2.8] Multiply the number of tanks by the number of quarts needed for each tank.

Estimate: • ~ qt

$$
-\quad-
$$

$¥$ Remainder
70. [2.2]

$¥$ Remainder

Exact:
quarts are needed.
81. [2.8] To find the area, multiply the length and the width.

The area of the stamp is -in .
82. [2.8] To find the area, multiply the length and the width.

The area of the patio table top is -yd .

Chapter 2 Test

1. There are parts, and are shaded.
2. There are parts, and are shaded.
3. Proper fractions have the numerator (top) smaller than the denominator (bottom).

$$
-\hat{A}-\hat{A}-\hat{A}-
$$

4.

b ~
5.
$¥$ Whole number part

$¥$ Remainder
\qquad
6. Factorizations of :

> The factors of are , , , , and i
7.

$\tilde{\mathrm{A}} \hat{\mathrm{A}}$
8.

Ã Â
10. $-\sim \frac{e}{e} \sim$
11. $-\sim \frac{e}{e} \sim$
12. Write the prime factorization of both numerator and denominator. Divide the numerator and denominator by any common factors. Multiply the remaining factors in the numerator and denominator.

$$
\sim \frac{\backslash \cdot \backslash \cdot \cdot \backslash}{\backslash \cdot \backslash \cdot \cdot \backslash} \sim-
$$

13. Multiply fractions by multiplying the numerators and multiplying the denominators. Divide two fractions by using the reciprocal of the divisor (the second fraction) and then changing division to multiplication.
14. •-~-. ऽ 「
15. . \sim - ~
16. Multiply the length and the width.

The area of the grill is yd .
17. First, find the number of seedlings that don't survive.

Next, subtract to find the number that do survive.

9.

~..... ~ •
seedlings do survive.
18. $-\mathrm{e}^{-} \sim-1-\perp \sim$
19.
20. Divide the total length by the length of the pieces.

pieces can be cut.
21. -.

Estimate: • ~
Exact: -. - ~ - - ~ ~
22. -.

Estimate: • ~
Exact: -. - ~ - — ~ ~
23. - e

Estimate: e ~
Exact:

\backslash
24.

Estimate: e ~- ~

Exact:

25. If -grams can be synthesized per day, multiply to find the amount synthesized in -days.

Estimate: • ~ grams
Exact:

2.
millions:
ten-thousands:
3.

4.

5. / /
c
6.

7.
d
8. . . $\sim^{2} \cdot 3 . \sim$.
9.

10.
$\underline{\mathbf{d}} \frac{\mathbf{d}}{,}$ Attach $\grave{\mathrm{A}}$
grams can be synthesized.

Cumulative Review Exercises

(Chapters 1-2)

1.

hundreds:
tens:
11.
12.

$136458 / 18$	7581

114
Chapter 2 Multiplying and Dividing Fractions
13.
e R

Check:

14.

Check:
d
d

15. To the nearest ten:

Next digit is or less.
Tens place does not change.
All digits to the right of the underlined place change to zero.

To the nearest hundred:
Next digit is or more.

Hundreds place changes ($\mathbf{b} \sim$).
All digits to the right of the underlined place change to zero.

To the nearest thousand:
16. To the nearest ten

Next digit is or less.

Tens place does not change.
All digits to the right of the underlined place change to zero.

To the nearest hundred:
Next digit is or more.
Hundreds place changes (b ~).
All digits to the right of the underlined place change to zero.
To the nearest thousand:
Next digit is or less.

Thousands place does not change.
All digits to the right of the underlined place change to zero. ,
17. $\mathrm{C}^{2} 3$ Exponent
~ c^{23} Multiply.
~ c ~ Subtract.
18. j-c •b Square root
~ $\mathbf{c} \cdot \mathbf{b}$ Multiply.
~ \mathbf{c} b Subtract.
$\sim \mathbf{b} \sim$ Add.
19. Multiply to find the amount used for the half-day and full-day tours; then add to find the total.

gallons of fuel are needed \grave{A}
20. Subtract to find the difference in cases.
$\backslash, ~ \ \backslash \backslash$
Next digit is or more.
Thousands place changes ($\mathbf{b} \sim$).
All digits to the right of the underlined place change to zero.

C

There were , more cases of pertussis than mumps
21. Find the number of hairs lost in years and subtract to find the hairs remaining.

| \mathbf{d} | \mathbf{d}, |
| :---: | :---: | :---: |
| , | |

, hairs remain.
22. Divide the total number of hours by the number of workers.

Each health care worker will work hours.
23. Multiply the number of flushes and the amount of water used per flush to find the number of gallons of water used.

gallons of water are used in flushes.
24. Divide the total length by the length of the pieces.

pieces can be cut.
25. - is proper because the numerator ${ }^{2}{ }^{3}$ is smaller than the denominator ${ }^{2}{ }^{3}$.
26. - is improper because the numerator ${ }^{2}{ }^{3}$ is larger than or the same as the denominator ${ }^{23}$.
27. - is proper because the numerator ${ }^{2}{ }^{3}$ is smaller than the denominator ${ }^{2}{ }^{3}$.
28.
-~
b ~
\qquad
29.

> b
31.
¥ Remainder
\qquad
\sim
32.

Γ

33.

A \hat{A}

$\tilde{\mathrm{A}} \hat{\mathrm{A}}$
34.

A \hat{A}

Ã Â
 -••
35.
~
30.
¥ Whole
number part
36. . ~ . ~
37. • • ~ •
\sim •
e

¥ Remainder
38. $-\sim e^{--}$
39. $-\sim \frac{e^{-}}{e^{-}}$
40. $-\sim \frac{e}{e} \sim$

116 Chapter 2 Multiplying and Dividing Fractions
41. $-{ }^{-} \sim \stackrel{+}{\cdot} \sim$
42. $\cdot-\cdot-\sim-\cdot$ ~ \.
~
43..$--\sim \frac{\lambda}{\backslash} \cdot \frac{\lambda}{\backslash} \sim$
44. $-\mathrm{e}^{-\sim^{-}}{ }^{-}$
45.

46. e - e

